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Abstract

We study a class of games where players face restrictions on how much

information they can obtain on a common payoff relevant state, but have

some leeway in covertly choosing the dependence between their signals,

before simultaneously choosing actions. Using a new stochastic dependence

ordering between signals, we show that each player chooses information that

is more dependent on the information of other players whose actions are

either isotonic and complements with his actions or antitonic and substitutes

with his actions. Similarly, each player chooses information that is less

dependent on the information of other players whose actions are antitonic

and complements with his actions or isotonic and substitutes with his

actions. We then provide sufficient conditions for information structures

such as public or private information to arise in equilibrium. Equilibrium

information structures may be inefficient. Making which signals were chosen

(but not their realizations) publicly observable may restore efficiency.
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1 Introduction

Economic agents are often exposed to more information than they can process.

They are also often surrounded by more information sources than their limited

cognitive abilities enable them to pay attention to (Sims 2003, 2005, 2006). The

increase of information flows and the proliferation of information sources has

accelerated in the Digital Age. As Google’s CEO Eric Schmidt stated it in 2010,

every two days now we create as much information as we did from the dawn of

civilization up until 2003.1

This plethora of information sources is perceived as enabling individuals to make

better choices by giving them the possibility to learn about various variables relevant

to their decision making. In the theory of decision making under uncertainty, various

orderings and measures have been developed that allow a decision maker to rank

information structures, and the general conclusion of this research is that, for a

decision maker, more information is always better.

When many agents interact, information choice is complicated in at least two

ways. The first complication is that in a strategic context, information choice

becomes a strategic decision, and the value of the various information choices

depends on other agents’ information choices, as it is the case for any strategic

decision. The second complication is that more information is not always better,

because in some games, ignorance has commitment value.

In this paper, we study the strategic choice of information, together with the

strategic choice of actions. Our focus is not on the quality, quantity or precision of

the information acquired –those are the main issues in decision making and remain

important in a strategic context–, but on the diversity of the information that

agents choose to acquire, which is meaningful only in a model with many agents.

Information is diverse if agents choose to acquire dissimilar information and it is

homogenous if agents choose to acquire similar information. In our framework,

diversity is an endogenous outcome that results from economic fundamentals, such

as the payoffs of the agents.

Information asymmetries have played an important role in many economic

models in many different fields, including industrial organization, the economics

of organizations, political economy, macroeconomics and financial economics. As

a first step to understand the influence exerted by information on action choices,

the models assume an exogenous information structure. But soon, questions arise

1Siegler, MG. (2010, August 4). Eric Schmidt: Every 2 Days We Create As Much Information
As We Did Up To 2003. Retrieved from http://techcrunch.com/2010/08/04/schmidt-data/
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on where the information structure comes from, who chooses it and how and why

they choose it. In an influential paper, Morris and Shin (2002) initiate a literature

on the preferences of the central bank (or the planner) over the macroeconomic

information structure. In the context of an auction, Bergemann and Pesendorfer

(2007) consider the joint design problem of a seller choosing the rules of an auction

and the precision of the information of the bidders, in order to maximize his

expected profits. Similar questions have been asked in other contexts and a

literature on information design has emerged that seeks, more generally, to describe

for a given game or for a game to be designed, all possible outcomes a planner could

achieve by choosing the players’ information structure (Gentzkow and Kamenica,

2011; Bergemman and Morris, 2013; Taneva 2014).

Another approach, the one we adopt, is to model the information structure

as the result of the agents’ decentralized information choices. Until recently, the

literature that followed this path restricted attention to the acquisition of private

information and was exclusively concerned with the strategic decision of how much

private information (in terms of information quantity, quality or precision) agents

choose to acquire when interacting with others. Hellwig and Veldkamp (2009)

and Myatt and Wallace (2010) depart from this tradition by allowing agents to

acquire potentially public or correlated information in a model of a beauty contest

with a continuum of symmetric agents. These authors note that in a strategic

context, information about an unknown payoff relevant parameter is at the same

time information about what other players know. In these model, actions are

either strategic complements or strategic substitutes and agents play actions that

are increasing in their signal. The authors make the informal observation that

when actions are complements, agents would like to know what the others know

and when actions are substitute, they would prefer not to know what the others

know, but to have independent information. Thus they make a claim about the

players’ preferences over information dependence. At the same time, in both

papers, the authors establish a complementarity inheritance result: the sign of the

complementarity in actions is passed on to the complementarity in information

precisions. If actions are complements, precisions are also complements. If actions

are substitutes, precisions are also substitutes. Last, the authors claim that players’

preferences over information dependence reflect the players’ preferences over action

dependence.

Although complementarity inheritance has been noted in several models, all

these models are very similar in that they rely on very similar functional forms

and distributions. It has been shown that the result is not robust to even slight
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deviations from the models in which it holds. For example, Jimenez-Martinez (2013)

consider the same functional forms as Hellwig and Veldkamp (2009), but assumes

two players instead of a continuum, and obtains that complementarity inheritance

only holds in a subset of the parameter space. Szkup and Trevino (2014) consider a

model that departs from Hellwig and Veldkamp (2009)’s only in that they assume

binary actions instead of a continuum. They find that while actions are strategic

complements in their model, information precisions need not be complements.

In our view, although complementarity inheritance is related in some way with

the players’ preferences over information dependence, these are two rather different

phenomena. First, complementarity inheritance is a result on preferences over

information precision. Preferences over information precision are tricky for two

reasons. First, because they mix two different considerations: (i) whether the

player wants or not to know more on the uncertain variable; (ii) whether the player

wants or not to know what the other players know. Second, because the uncertainty

about the other players’ knowledge is not held fixed when varying the other players’

precisions: it increases as the other players choose a greater precision. Thus, a

positive complementarity in precisions, i.e. the fact that following an increase in

the information precision by the other players, the remaining player also prefers to

increase his precision in reaction, could be due to various reasons. First, it could

be that the remaining player is now more willing to know the state more precisely;

Second, it could be that he is now more willing to know what the other agents

know more precisely; Finally, it could be that he is now more uncertain about

what the others know and as a result, is willing to compensate the uncertainty

by increasing his own precision. Of course, it could also be some complicated

combination of the three reasons we just listed.

This confusion arises even if the players acquire signals that are independent

conditional on state realizations. Indeed, when a player acquires private information

on the state, he cannot avoid acquiring information on what the other players

know, because what they know is correlated with the state. This implies that the

issue of precision choice cannot be fully isolated from the players’ preferences over

information dependence.

It is however possible to study the players’ preference over dependence, and

the consequences of these preferences on choice and equilibrium, in isolation

from the choice of precision. In this paper, we disentangle the two issues and

concentrate on the issue of information diversity. We build a model where the

only information choice each player has is one between signals that are all equally

informative on the state, but are diverse in the sense that they are not perfectly
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correlated with each other. The amount of information a player can acquire is

fixed, perhaps endogenously determined at an earlier stage, but exogenously given

from the perspective of the game.2 Therefore, the only motive driving the players’

information choices is whether they want or not to observe the same signal as this

or the other player.3

We show that there exists a general link between complementarities in payoffs

and the players’ preferences over information, and that the equilibrium structure

can be linked to strategic complementarities in a large class of models, without

relying on particular functional forms, distributional assumptions, nor a continuum

of agents. Our result is robust in these dimensions, but it requires the amount of

information that each player acquires to be held fixed.

We distinguish two components in the choice made by a player. The first one is

which signal he chooses to observe. The second one is his action strategy, namely

the function that maps the signal he obtains to his actions. One feature of the

equilibrium that plays a crucial role are the monotonicity properties of equilibrium

action strategies. In general, equilibrium action strategies need not posses any

monotonicity property, but in some games they do. Even when this is the case,

these properties depend on the information structure.4

The problem we study is a complex one: equilibrium action strategies depend

on the information structure the players believe in, but the equilibrium information

structure depends on the action strategies they expect. We connect player’s prefer-

ences over information, their equilibrium information choices and the equilibrium

information diversity to two types of payoff complementarities: positive or negative

complementarities between own action and others’ actions, and positive or negative

complementarities between own action and the unknown state.

It is useful to decompose our analysis in two parts. First, we need to understand

how the information structure determines action strategy monotonicity properties.

2This assumption is relatively reasonable in many applications. Firms usually set budgets
to information gathering activities, individuals subscribe to newspapers and magazines on a
year-term basis, etc. Van Nieuwerburgh & Veldkamp (2009) show how this assumption is not
restrictive using a duality argument.

3In our model, the players’ information choice is akin to a location choice in some abstract
information space in which positive dependence can be thought of as an incomplete ranking
of distance. By choosing their signals, agents determine the information diversity, in the same
way as firms determine the level of brand diversity or geographical dispersion in a market by
choosing their brand or their location, as captured in the Hotelling and Salop firm location
models.

4A large literature studies, for games with exogenous information structures, which fundamentals
(in particular, which information structures) guarantee the existence of equilibria where all
players’ action strategies are increasing in their type (Athey, 2001; McAdams, 2003; Van Zandt
and Vives, 2007, Reny, 2010).
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Second, we need to understand how the interplay between these monotonicity prop-

erties and the payoff complementarities in actions shapes the players’ preferences

over signals and information structures.

For the first part, we show that for any exogenous information structure, if

complementarities between own action and state are strong and complementarities

between actions are weak, there exists a Nash Bayesian equilibrium in action

strategies where action strategies are monotonic in a way that agrees with the

state complementarity between own action and state: if this complementarity is

positive, the action strategy is increasing and if it is negative, the action strategy is

decreasing. Although action complementarities may work against these monotonic-

ities, if they are weak, they do not prevent the existence of such an equilibrium.

When the dominance of state complementarities over action complementarities

is sufficiently strong, an equilibrium where action monotonicity agrees with state

complementarities exists, regardless of what the information structure is. In some

special cases, studied in particular by Van Zandt and Vives (2007), action comple-

mentarities work in the same direction as state complementarities. This is the case

for example if all complementarities, action and state, are positive. In this case, a

monotone equilibrium that agrees with state complementarities can be obtained

under weaker assumptions.

For the second part, we study the players’ preferences over signals. These

preferences are hedonic: a player does not prefer one signal over another per se.

Instead the preference depends on what signals the other players choose, on how

they react to their signal, and on the dependence properties between the different

signals. We show that these hedonic preferences depend on the interplay between

action strategy monotonicities and complementarities in actions. More precisely,

we show that the preference of a player between two signals depends on which of the

two signals is more dependent on (or more similar to) the signals of a certain group

of players the agent would like to be informationally close to, and less dependent

(or less similar to) the signals of another group of players the agent would like

to be informationally far away from. The action strategies of two players are

isotonic if they move in the same direction with their signals and antitonic if they

move in opposite directions. We show that each player seeks to be informationally

close to players whose actions are either isotonic and complement with his own, or

antitonic and substitute with his own, and informationally far away from players

whose actions are either antitonic and complement with his own, or isotonic and

substitute with his own.
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We obtain our results for a general class of payoff functions and distributions.

With the functional forms and distributions that are usually studied in the literature

(e.g. linear and quadratic payoff functions, Gaussian distributions), dependence

boils down to the conditional correlation between the signals. To tackle the general

case, we define a new notion of statistical dependence between signals. In the case

of two players, our dependence ordering between signals coincides with familiar

orderings (supermodular, concordance, positive orthant dependence orderings),

but in the case of three agents or more, our dependence ordering is novel and of

independent interest.

Assembling the two parts of the analysis, we provide sufficient conditions for

certain monotonicity patterns and information structures to arise in equilibrium,

as well as sufficient conditions for these structures to be the most plausible ones in

equilibrium. In particular, we show that if all complementarities (state and action)

are positive and public information is feasible, there exists an equilibrium where

information is public. In this case, knowing what the other knows allows a player

to know a lot on the action of that other player. It is perhaps not surprising that

the players choose to obtain the highest level of information by having perfectly

correlated information.

However, if all state complementarities are positive, but all action comple-

mentarities are negative, and state complementarities sufficiently dominate action

complementarities, then there exists an equilibrium where information is as private

as possible. It may seem surprising that not knowing what the other players know

is better. The reason is that this allows a player to rely more on his signal, without

incurring the cost of playing an action that covariates positively with the other

players’ actions.

Along the way, we show by an example, that equilibrium information structures

can be inefficient in an ex ante sense. Interestingly, efficiency can sometimes be

restored if the players observe the others’ signal choice (but not their realizations).

This is because, in this case, the agents internalize some payoff relevant decisions

that are ignored when information choice are not observed. In particular, a

deviation in information has an effect on actions that is absent when information

choice are not observed. These reactions in the action stage may sometimes serve

to discipline the players from choosing a suboptimal information structure in the

information acquisition stage.

The paper is structured as follows. In Section 2, we present the model. In

Section 3, we illustrate all of our results with a simple example. In Sections 4,

we introduce definitions that are needed in the analysis of the general case, in
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particular our new ordering of signal conditional dependence. Section 5 presents

the core results of the paper. In Section 6, we show how our model can be applied

to different situations. In Section 7, we conclude with a more precise discussion of

the literature.

2 The model

In this section, we define a Bayesian game with information choice. Let I =

{1, ..., N} be a finite set of players. In the game, each player i chooses an action

ai ∈ Ai ⊆ R. An action profile is denoted a = (a1, ..., aN) . The players’ payoffs

depend on a, but also on some unknown state of the world θ ∈ R. Each player

has a von Neumann-Morgenstern utility function ui (a, θ) . Actions are chosen

simultaneously, but prior to choosing an action, each player chooses a piece of

information about θ and observes this information. The information structure is

therefore endogenous. We now describe how players choose information.

From the players’ point of view, before they acquire information, the state of

the world θ is the unknown realization of a random variable Θ, whose support

is T ⊆ R. A signal is a finite support random variable Xs, which is correlated

with the state, and therefore may carry payoff-relevant information, but does not

itself directly enter the players’ payoffs. Each player i has a set Xi of signals

he can potentially observe, but he can only choose exactly one signal Xi ∈ Xi,

of which he observes the realization xi ∈ R. For simplicity, we assume that all

the signals that a player can potentially observe have the same finite support

Xi and in addition, we assume without loss of generality that this support is

symmetric around zero, i.e. −Xi = Xi.5 Let X =
⋃
iXi be the set of all available

signals for all players, X = (X1, ..., XN) be a profile of signal choices and x =

(x1, ..., xN) be a profile of signal realizations. Let F be the joint cdf of the random

vector (Θ, (Xs : Xs ∈ X)) . The tuple (X1, ...,XN , F ) is the signal structure of

the game. A Bayesian game with information choice is defined by the tuple

Γ = (I, (A1, ..., AN) , (u1, ..., uN) , (X1, ...,XN , F )) .

The game unfolds as follows in two stages. Initially all players start with the

common prior F, which can be thought of as Nature’s mixed strategy. In the

first stage, each player i simultaneously chooses a signal Xi ∈ Xi. In the second

5The finite support assumption is made to simplify the exposition, and to avoid uninteresting
technical complications. We conjecture that our results extend to the case where X is infinite.
The symmetry assumption is without loss of generality, because the problem is invariant, under
any increasing transformation of the set Xi and any finite set Xi can be transformed into a
symmetric set. The assumption simplifies notations later on.
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stage, each player i privately observes his own signal realization xi, and then

simultaneously chooses an action ai, without having observed the other players’

first stage choices, nor the other players’ signal realizations.

In the normal form of this game, a pure strategy for player i is a pair (Xi, αi)

in Xi × AXi×Xi
i . The first component in the pair is the signal Xi chosen by player

i in stage 1. The second component in the pair is the player’s action strategy

αi, a mapping that determines player i’s action choice, given the realization xi he

observed and the source Xi he chose. In most of the paper, we will restrict attention

to pure strategies.6 For simplicity and without loss of generality, given the focus

on pure strategies, we restrict attention to action strategies in AXi
i , such that the

action chosen by each player only depends on his signal observation.7 A strategy

profile (X,α) = (Xi, αi)i∈I is a full-fledged Nash-Bayesian equilibrium if for

all i and all (X ′i, α
′
i) 6= (Xi, αi) , we have

EΘ,X (ui (αi (Xi) , α−i (X−i) ,Θ)) ≥ EΘ,X′i,X−i
(ui (α

′
i (X

′
i) , α−i (X−i) ,Θ)) .

Our goal is to understand what type of information structure can arise in a

Nash-Bayesian equilibrium of a Bayesian game with information choice Γ, and how

the equilibrium information structure relates to the equilibrium action strategies.

Of course, both questions are very broad, and could be analyzed from a variety

of angles. Important considerations in a player’s choice of a signal could be how

informative on θ the different available signals are, how costly they are, or which

aspects of θ they reveal.8 We do not consider this type of choice here. Instead,

we focus on the choice of signal conditional dependence: does a player want his

signal to depend, conditionally on θ, on the other players’ signals or not? In order

to eliminate the other motives, and to concentrate on the conditional dependence

motive, we assume that a player has access to signals that are all equally informative

on the state in the sense of Blackwell. Namely, for each i, not only the support of

all signals in Xi is the same, but in addition the joint marginal distribution of Θ

and Xs is the same for all signals Xs in Xi.
9

6We consider mixed strategies in Appendix E.
7With pure strategies, it is without loss of generality to restrict attention to action strategies αi

that do not depend on Xi. Indeed, holding a strategy profile for the other players (X−i, α−i)
fixed, any joint distribution over T ×AN induced by some profile (X,α) such that αi depends
on Xi, can also be induced by some other profile (Xi, α

′
i, α−i) such that α′i does not depend on

Xi.
8For example, one signal could reveal θ’s sign, whereas another could reveal θ’s absolute value.
9In particular, if all players have access to the same signals, i.e. all the sets Xi are equal to
X, then our assumption is that all signals in X are equally informative on θ in the sense of
Blackwell.
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Given this restriction, the only remaining degree of freedom the players have

when choosing their information is the conditional dependence of their signals with

each other. The goal of the paper is to study which dependence patterns between

players’ signals can arise in a Nash Equilibrium. We interpret these dependence

patterns in terms of informational diversity. We also relate the dependence patterns

with the monotonicity properties of action strategies and the payoff complementar-

ities in actions. For some information structures, we provide sufficient conditions

on the primitives of the model, which ensure that this information structure is

chosen by the players in some equilibrium of the game.

In the rest of the paper, we refer to Γ as the game with endogenous information

structure, that is the game where the players choose which signal to observe. We

also refer to ΓX as the game with an exogenous information structure such that

the profile of signal observed by the players is X.

In Section 3, we first examine the questions in a simple example and provide

complete answers in this context. We then show in Section 5 that several of the

insights gained from studying the example can be generalized to a large class of

games, and do not rely on specific payoffs nor on a particular information structure.

3 An illustrative example

To fix ideas, we start with a simple example.10 Suppose that N = 2, X1 = X2 =

{XI , XII} and player i chooses an action ai ∈ R. The payoffs of the game are

ui (a, θ) = −a2
i + 2biaaiaj + 2biθaiθ +K (aj, θ) (1)

where bia and biθ are real numbers for i ∈ {1, 2} and K (·, ·) is a function that does

not affect the set of Nash-Bayesian equilibria, but may have an effect on welfare.

The parameter bia captures the level of strategic interaction between player i’s and

player j’s actions and the parameter biθ, the strategic interaction between player

i’s action and the state. Positivity implies action complementarity and negativity,

action substitutability.

The information structure is as follows. The random vector (θ,XI , XII) is

distributed in {−1, 1}3 according to a probability distribution function such that

10One could also consider the normal quadratic payoff setting to illustrate our results. Such an
example, however, is not strictly speaking a special case of our model, because the support
of the signals is infinite. Note, that the finiteness assumption is made to keep the exposition
simple, not for more fundamental reasons.
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the vectors (Θ, XI) and (Θ, XII) have the same joint marginal distribution given by

X` = −1 X` = 1

Θ = −1 1−ε
2

ε
2

Θ = 1 ε
2

1−ε
2

,

for ` ∈ {I, II} and where ε ∈ (0, 1/2). Moreover, we assume that P(θ = −1) =

P(θ = 1) = 1/2, and that the joint distribution of two signals, conditional on

Θ = θ ∈ {−1, 1} is given by the following matrix:

XII = θ XII 6= θ

XI = θ (1− ε)2 ε(1− ε)
XI 6= θ ε(1− ε) ε2

.

Fixing signal choices Xi ∈ {XI , XII} for i = 1, 2, the ex ante expected payoff

of player i given the profile of signal choice X is

EΘ,X(ui(α(X),Θ)) =

P(Xi = −1) ·
(
P(Xj = 1|Xi = −1)E(ui(Θ, αi (−1) , αj (1))|Xi = −1)

+P(Xj = −1|Xi = −1)E(ui(Θ, αi (−1) , αj (−1)))|Xi = −1)
)

(2)

+P(Xi = 1) ·
(
P(Xj = −1|Xi = 1)E(ui(Θ, αi (1) , αj (−1)))|Xi = 1)

+P(Xj = 1|Xi = 1)E(ui(Θ, αi (1) , αj (1)))|Xi = 1)
)
,

where P(Xj = x|Xi = x) = 1 if Xi = Xj and P(Xj = x|Xi = x) = 1− 2ε(1− ε)
if Xi 6= Xj. By taking the first-order condition to (2) with respect to αi (1) and

αi (−1) for i = 1, 2 and then solving for (α1 (−1) , α1 (1) , α2 (−1) , α2 (1)), we can

compute the equilibrium in the second-stage, that is, once the information structure

is fixed. In particular, we obtain αi (−1) = −αi (1) and

αi (1) =
(biθ + biabjθ [2P (Xj = x|Xi = x)− 1])

1− biabja [2P (Xj = x|Xi = x)− 1]2
(1− 2ε) . (3)

Because αi (−1) = −αi (1) , the number αi (1) equals the slope of the action

strategy of player i, and its sign indicates whether this strategy is increasing or

decreasing in his signal.

To avoid non generic trivial cases, we will assume that for all i, j ∈ {1, 2} ,
such that i 6= j, we have biθ + biabjθ 6= 0, biabja 6= 1, biθ + biabjθ (1− 2ε)2 6= 0

and biabja (1− 2ε)4 6= 1. These conditions ensure that (a) for any profile of pure
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signal strategies (X1, X2) , a unique pure Nash-Bayesian equilibrium exists in the

action game with exogenous information structure (X1, X2) , and (b) that in this

Nash-Equilibrium, each player’s action strategy is strictly monotonic: either it is

strictly increasing, or it is strictly decreasing.

A look at Equation (3) shows that whether player i’s action strategy is strictly

increasing or strictly decreasing in his signal depends on bia, the level of strategic

complementarity, biθ, the level of state complementarity and P(Xj = x|Xi = x),

the information structure.

The profile of action strategies (α1, α2) is said to be strictly isotonic if both

players’s actions are either strictly increasing (αi (1) > 0) or strictly decreasing

(αi (1) < 0). This occurs when b1θ + b1ab2θ (2P (X2 = x|X1 = x)− 1) and b2θ +

b2ab1θ (2P (X1 = x|X2 = x)− 1) have the same sign.

3.1 Information choices

We turn now to the information choice stage of the game. The main question

that motivates our work is to understand which assumptions about the payoffs are

necessary for information diversity to emerge as a result of the players’ individual

choice. The binary example allows us to illustrate very clearly the main contribution

of the paper.

Fixing the action strategies to (α1, α2), where the αi are the odd functions

given by (3), the expected payoff for player i can be written as

EΘ,X(ui(α(X),Θ)) = 2bia (2P(Xj = x|Xi = x)− 1)αi (1)αj (1) + Constant.

Player i’s information choice determines P(Xj = x|Xi = x) and which one is

optimal depends on the monotonicity of actions strategies (the sign of αi (1)αj (1))

and on the strategic motive in actions (the sign of bia). In our example, since the

players have access to exactly the same signal, the information structure is either

public, if both players observe the same signal, or private, if the players observe

different signals.

3.1.1 Conflict on the information structure

A first observation is that whenever the players have conflicting preferences over

the information structure, which is this context means that one of the two players

would prefer the information to be public, while the other would prefer it to be

private, there cannot be an equilibrium of the endogenous information game that
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is in pure strategies. This is because the players are playing a game akin to

Matching Pennies in the first stage. The players have conflicting preferences over

the information structure when b1ab2a < 0.

Proposition 1. In the binary quadratic example, if b1ab2a < 0, players have

conflicting preferences over the information structure. In this case, the game with

endogenous information acquisition does not have an equilibrium in pure strategies.

However, it can be shown in a more general context, that this game always

has an equilibrium in mixed strategies.11 In the rest of the analysis of the binary

quadratic example, we will restrict attention to the case where players agree on

the information structure they like best, that is, we assume that b1ab2a > 0.

3.1.2 Agreement on the information structure

Proposition 2 characterizes the equilibrium information structure. With isotonic

action strategies, a low value for P(Xj = x|Xi = x) is desirable for player i only

if bia < 0, i.e., when actions are substitutes. With antitonic action strategies, a

low value for P(Xj = x|Xi = x) is desirable for player i only if bia > 0, i.e., when

actions are complements.

Proposition 2. In the binary quadratic example, let b1ab2a > 0 and let (X, (α1, α2))

be a pure Nash-Bayesian equilibrium of the game. Then,

1. X1 = X2 only if α1 (1)α2 (1) bia > 0 for i = 1, 2.

2. X1 6= X2 only if α1 (1)α2 (1) bia < 0 for i = 1, 2.

The result in Proposition 2 is an instance of a more general phenomenon, which

we will analyze in greater generality in Theorem 4.

A general feature of games with endogenous information structure is that

multiple equilibria can exist. For instance, it can be the case that the players

choose to acquire the same signal, so that they hold public information, but that

the actual signal they observe can be either one contained in the set X. This type

of multiplicity is trivial since the dependence pattern among the players’ signals is

the same for all equilibria. More interesting is the fact that non-trivial multiplicity

can also occur with endogenous information choice. One such example would be

a game where two types of equilibria can be sustained, an equilibrium where the

players choose the same signal and another one where the players choose different

signals.

11See Appendix E.
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Theorem 1. In a game with endogenous information choice, non-trivial multiple

equilibria can exist.

Basically, Theorem 1 establishes that the dependence pattern in information

choice is not always uniquely pin down by action complementarities. We prove

Theorem 1 using our binary quadratic example. More specifically, we construct

an example with strategic substitutability in actions and complementarities in a

player’s action and the state and show that both public and private information

can be sustained in some equilibrium of the game.

3.2 Ex ante constrained inefficiency of the equilibrium in-

formation structure

Next, we use the binary quadratic example to show that, under certain conditions,

the players’ equilibrium signal choices do not result in the information structure a

planner would design. We compare the equilibrium of the endogenous information

game (in cases covered by Proposition 2) with an auxiliary game in which the

planner chooses the information structure. In particular, we assume the planner

chooses between either (XI , XI) or (XI , XII) , then this information structure

becomes common knowledge, and the players simultaneously choose actions in a

noncooperative manner. Of course, it is not necessarily obvious what the preferences

of the planner should be. In order to avoid this difficulty, we focus on the case

where the two players have symmetric payoffs, given by

ui (θ, a) = −a2
i + 2baaiaj + 2bθaiθ + 2bθaajθ + 2baaa

2
j . (4)

This is a special case of Equation (1) considered before, when the players have

symmetric payoffs and with K(aj, θ) = 2bθaajθ + 2baaa
2
j . The terms in K(aj, θ)

capture an externality that does not affect the Nash-Bayesian equilibrium in the

game with endogenous information choice, but contributes to determine which

information structures are constrained efficient.

Since the players’ payoffs are symmetric, the unique equilibrium is also symmet-

ric. We may then safely assume that the planner maximizes the expected payoff

of player 1. Given a profile of signal choices (X1, X2) and action strategies α as
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in (3) , the ex ante expected utility of player 1 is written as

EΘ,X(u1(α(X),Θ)) = 2ba (2P(X2 = x|X1 = x)− 1)α1 (1)α2 (1)− (α1 (1))2

+2baa (α2 (1))2 + 2bθα1 (1) (1− 2ε)

+4bθaα2 (1) (1− 2ε) (5)

Player 1 would optimize his signal choice by considering that he has a direct

impact on the first term through a change in P(X2 = x|X1 = x). On the other

hand, the planner, when pondering over which information structure to impose,

considers that player 1’s utility, also depends indirectly on P(X2 = x|X1 = x) as

this term enters α1 (1) and α2 (1).

Therefore, the social planner, since he knows the signal choices, uses a different

expected payoff function when maximizing welfare, and thus, would not necessarily

choose the Nash-Bayesian equilibrium for the signal choice structure.

Theorem 2. A pure Nash-Bayesian equilibrium (X,α) of the game with endogenous

information acquisition need not be constrained ex-ante Pareto efficient.

Note that Theorem 2 applies to every game that fits the description of our model

in Section 2 and not just the particular binary quadratic example. Essentially,

the reason for the inefficiency is that the planner will take into consideration

the impact of the signal choices on the actions when making a choice on the

information structure, an effect that the players do not individually consider. This

result suggests that policy intervention is sometimes beneficial in markets for

information. In a decentralized system, players may choose either too similar or

too dissimilar information, and policy intervention can help to mitigate this type

of inefficiency.

In the main model, we make the assumption that signal choices of the first stage

are not observed by the players. This is important, since it implies that a deviation

from equilibrium play does not affect the other player’s action choices in the second

stage: the choice of signal and actions are strategically simultaneous. One can

imagine situations where signal choices are observable. For example, a company

may sign a contract with a market research firms and this may be observable by

all other companies.

Interestingly, this difference can have important effects. To see this, consider

again the case of two symmetric players. In this case, both players in stage 1 face

the problem of the planner, which we analyzed earlier. As we showed, the planner’s
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solution may be disjoint from the set of Nash equilibria of the game where signal

choices are unobservable. We can thus deduce the following result.

Theorem 3. Suppose the players publicly observe the profile of signal choices.

Then, any pure Nash-Bayesian equilibrium (X,α) of the game is constrained ex

ante Pareto efficient.

In this alternative model where the players publicly observe the profile of signal

choices, the actions in the second stage are functions of the profile of signal choices.

Therefore, a shift of signal by a player has an impact on the other players’ actions,

which is in turn acknowledged by the deviating player. So it turns out that allowing

for the public observation of information choices induces the players to internalize

the impact of their signal choice and to behave as the planner would want them to.

Theorem 3 suggests that an intervention that mandates players to publicly

disclose their sources of information may sometimes be desirable, in that it could

help to mitigate excessive information similarity or dissimilarity that may result

from a decentralized market for information.

4 General case: preliminary definitions

In this Section, we introduce the concepts that are needed in order to generalize

some of the insights obtained in the example studied in Section 3. We first introduce

monotonicity properties, then strategic complementarities in actions. Last, we

introduce a new partial order on a set of information structures, the “dependence

ordering,” which compares the positive dependence between a single player’s signal

and all the other players’ signals across information structures.

4.1 Monotonicity properties of action strategies

For any action strategy αi : X →R, we say that αi is increasing if for all xi, x
′
i ∈ X ,

we have xi ≤ x′i =⇒ αi (xi) ≤ αi (x
′
i) , and that αi is strictly increasing if for

all xi, x
′
i ∈ X , we have xi < x′i =⇒ αi (xi) < αi (x

′
i) . We say that αi is (strictly)

decreasing if −αi is (strictly) increasing.

A profile of action strategies α is (strictly) monotonic if for all i, the action

strategy αi is either (strictly) increasing or (strictly) decreasing. It is (strictly)

isotonic if either, for all i, the action strategy αi is (strictly) increasing, or for

all i, αi is (strictly) decreasing.
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We also want to encompass the cases where the action profiles are (strictly)

monotonic, but not necessarily (strictly) isotonic. For any vector m ∈ {1,−1}I ,
we say that the profile of action strategies α is (strictly) m-monotonic if for

all i, the function miαi is (strictly) increasing. In particular, for any vector m,

a (strictly) m-monotonic profile of action strategies α is (strictly) isotonic if, for

all i, the mi have the same sign. Fixing a player i, a profile of action strategies

α is (strictly) antitonic for i if it is (strictly) m-monotonic, and m satisfies

mi = −mj for all j 6= i.

4.2 Strategic complementarities in actions

Let a−i,j ∈ RI\{i,j} be the action strategies of players I \ {i, j}. We say that

player i has (strict) positive complementarities in actions with player

j 6= i, if for all a′i < a′′i , and all a−i,j ∈ RI\{i,j} the difference ui (a
′′
i , aj, a−i,j) −

ui (a
′
i, aj, a−i,j) is (strictly) increasing in aj. We say that player i has (strict)

negative complementarities in actions with player j 6= i, if for all a′i < a′′i ,

and all a−i,j ∈ RI\{i,j}, the difference ui (a
′′
i , aj, a−i,j)− ui (a′i, aj, a−i,j) is (strictly)

decreasing in aj. We say that player i has (strict) positive complementarities in

actions if he has (strict) positive complementarities with all the other players.

We say that he has (strict) negative complementarities in actions if he has strict

(negative) complementarities with all the other players.12

Although these definitions can be used to describe many situations, we are

interested in a richer class of payoff functions where each player may have a (strict)

positive complementarity in actions with some players and a (strict) negative

complementarity with some other players. The complementarity properties of a

payoff function ui are encoded by a complementarity vector ci =
(
cij
)
j∈I ∈ {−1, 1}I

with cii = 1. We say that player i has (strict) ci-complementarities in actions

if he has (strict) positive complementarities in actions with all players j 6= i such

that cij = 1 and (strict) negative complementarities in actions with all players j 6= i

such that cij = −1. In particular, the case where ci = (1, ..., 1) corresponds to the

case of a player that has a (strict) positive complementarity in actions. Similarly,

the case where ci−i = (−1, ...,−1) corresponds to the case of a player that has a

(strict) negative complementarity in actions.13

12In a complete information game in which the best response function of player i is well defined, if
ui has positive (negative) complementarities in actions with player j, his best response function
is increasing (decreasing) in aj (Topkis, 1998; Milgrom and Roberts, 1994).

13If the payoff ui is twice continuously differentiable, then player i has ci-complementarities in

actions if and only if cij
∂2ui

∂ai∂aj
(a) ≥ 0 for all j 6= i and all a, and he has strict complementarities
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4.3 Conditional dependence orderings

We now introduce a family of weak partial ordering on a set Xi of signals accessible

to player i, the “conditional dependence orderings.” Each such ordering is indexed

by some fixed profile of the other player’s signals X−i and compares across the

signals Xi accessible to player i the positive dependence between Xi and X−i.

These orderings play a central role in all the results in Section 5.

This notion requires the following definition. For any k ≥ 1, a subset L ⊆ X k is

an increasing subset of X k if for all x, x′ ∈ X k, such that x ≤ x′, x ∈ L⇒ x′ ∈ L.
Equivalently, L is an increasing subset if its indicator function 1L (x) is increasing.

Definition 1 (weakly greater conditional dependence). Let i ∈ I and let X−i be a

profile of signals for all players different from i. For all X ′i and X ′′i in Xi, we say

that X ′i depends at least as much as X ′′i on X−i conditionally on Θ, if for

all (θ, x), and all increasing set L ⊆ X I\{i}, we have

P (X ′i ≥ x | X−i ∈ L, Θ = θ) ≥ P (X ′′i ≥ x | X−i ∈ L, Θ = θ) .14

For each profile X−i of signals chosen by the other players, this defines a weak

partial order over the signals accessible to player i.

Similarly, we define a larger class of weak partial orders over Xi. It enables us

to compare, for two signals X ′i and X ′′i , whether one signal depends more on some

other player signal, but less on another player’s signal than the other.

Definition 2 (weakly greater conditional di-dependence). Let i ∈ I and di ∈
{−1, 1}I . For all X ′i and X ′′i in Xi, we say that X ′i d

i-depends at least as

much as X ′′i on X−i conditionally on Θ, if for all (θ, x), diiX
′
i depends at least

as much as diiX
′′
i on

(
dijXj

)
j 6=i .

For each profile X−i of signals chosen by the other players, and for each

dependence vector di, this defines a weak partial order over the signals accessible

to player i.15

Our interpretation of weakly greater conditional di-dependence is that player i’s

signal X ′i depends at least as much on the signals of the players j such that dii = dij

in actions if this inequalities hold strictly, almost everywhere. But we do not assume that
payoffs have this regularity property.

14We provide an equivalent definition, based on the notion of multivariate first order stochastic
dominance in Appendix A.

15Similarly to Definition 1 (respectively to Definition 2), one can define a weakly greater uncon-
ditional dependence (respectively di-dependence) partial ordering, which is weaker than the
orderings in this definition. Only the conditional versions play a role in the paper, because we
are interested in information structures, not in random variables.
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and at most as little on the signals of the players j such that dii = −dij, as player

i’s signal X ′′i , conditional on θ. Note that weakly greater conditional dependence

is precisely the special case of weakly greater conditional di-dependence, when

di1 = ... = diN ∈ {−1, 1} .
For the two weak partial orders defined in this subsection, a strict partial

order is defined as follows: we say that X ′i depends more than X ′′i on X−i if X ′i

depends as much as X ′′i on X−i, and X ′′i does not depend as much as X ′i on X−i.

5 Equilibrium information structures

In this section, which is the core of the paper, we determine which information

structures can be part of a full-fledged Nash-Bayesian equilibrium of the game

with information choice.

The analysis is in two steps, each subdivided in two sub-steps. In the first

step (Sections 5.1 and 5.2), we assume that action strategies are m-monotonic, for

some exogenously fixed vector m. The action strategies themselves may not be

fixed, but their monotonicity is. We show in Section 5.1 that together with m, the

complementarities in actions determine preferences over conditional dependence

between own and others’ signals. For each pair (i, j) of players, we determine

whether player i wants his signal to be as conditionally dependent as possible on

player j’s signal, whichever this signal is, or as independent as possible of this

signal, whichever this signal is. The answer to this question depends on the action

complementarities between i and j for player i and on the monotonicities mi and

mj. More precisely, it only depends on the sign of the product mimjc
i
j.

We then characterize in Section 5.2 the set of signal profiles which are “com-

patible” with the maximization of the preferences over conditional dependence

described in Section 5.1, while still holding the monotonicity vector m of the action

strategies fixed. Throughout this first step, the problem we study is akin to the

study of a “location game,” where a finite number of players choose a location

from a set of possible locations, and have preferences over locating close to of far

from each of the other players, except that the “locations” are in fact the signals

and the distance is replaced by our notion of conditional dependence.

In the second step (Sections 5.3 and 5.4), we proceed to endogenize the mono-

tonicity vector m, so as to obtain a full-fledged Nash-Bayesian equilibrium of the

Bayesian game with information choice, where both the information structure and

the action strategies are jointly determined. In Section 5.3, we provide sufficient

conditions for a signal profile X to be part of an equilibrium. The way this works
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is that if the Bayesian game ΓX with exogenous information equilibrium X admits

an equilibrium α in m-monotonic strategies, such that in addition, X is compatible

with α in the sense of the characterization of Section 5.2, then an equilibrium (X,α)

turns out to be a full-fledged equilibrium, and then, it follows from this that X is

the signal profile of some equilibrium. In Section 5.4, we provide conditions under

which the equilibrium information structure is essentially unique, in the sense that

all (possibly multiple) equilibria have the same information structure.

5.1 Preferences for conditional (in)dependence

We now show how the monotonicity m of action strategies and the complementari-

ties in actions for a given player jointly determine this player’s preferences over the

conditional dependence between his own and other players’ signals. Throughout

Section 5.1, we suppose that a monotonicity vector m ∈ {−1, 1}I is fixed and that

players are restricted to play second stage action strategies that are m-monotonic.

The restriction to m-monotonic action strategies for some given m is a step in the

analysis, but in some cases, the restriction may follow from the primitives. For

example, the restriction could result from an external constraint, or from iterative

elimination of never best-response action strategies.

5.1.1 Preferences for conditional dependence

We are now ready to present our characterization of the preferences for conditional

dependence.

Theorem 4. Let i ∈ I and let ci be a complementarity vector for i. Fix a

monotonicity profile m ∈ {−1, 1}I and a profile of signals X−i.

(i) Suppose that ui has ci-complementarity in actions. Suppose that X ′i and X ′′i

are two signals in Xi such that X ′i d
i-depends at least as much on X−i as X ′′i

does, where di is the conditional dependence vector such that

dij = mimjc
i
j (6)

for all j ∈ I \ {i} and dii = 1. Then for any profile of pure m-monotonic

action strategies α, player i finds signal X ′i at least as good as signal X ′′i :

EΘ,X′i,X−i
(ui (αi (X

′
i) , α−i (X−i) ,Θ)) ≥ EΘ,X′′i ,X−i

(ui (αi (X
′′
i ) , α−i (X−i) ,Θ)) .

(7)
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(ii) If, in addition, ui has strictly ci-complementarity in actions, and X ′i d
i-

depends more on X−i than X ′′i does, then for any profile of pure strictly

m-monotonic action strategies α, player i strictly prefers signal X ′i to signal

X ′′i :

EΘ,X′i,X−i
(ui (αi (X

′
i) , α−i (X−i) ,Θ)) > EΘ,X′′i ,X−i

(ui (αi (X
′′
i ) , α−i (X−i) ,Θ)) .

(8)

Part (i) in Theorem 4 is tight in the sense that if X ′i and X ′′i do not satisfy

X ′i d
i-depends at least as much on X−i as X ′′i , where di is player i’s most preferred

dependence vector under m-monotonic action strategies and ci-complementarity

in actions, then a payoff function ui with ci-complementarity in actions and an

m-monotonic profile of action strategies can be found, such that the inequality (7)

does not hold. Part (ii) is also tight, in a similar sense. In other words, the di-

dependence ordering over signals is the weakest ordering for which the inequalities

(7) and (8) hold.

In a nutshell, Theorem 4 states that player i prefers a signal that is

- as conditionally dependent as possible on the signals of players who belong

to one of two groups: first, the players whose actions are complement to his

own and whose monotonic strategy varies in the same direction as his own;

and second, the players whose actions are substitute to his own and whose

monotonic strategy varies in the direction opposite to his own;

- as conditionally independent as possible of the signals of players who belong

to one of two groups: first, the players whose actions are complement to his

own and whose monotonic strategy varies in a direction opposite to his own;

and second, the players whose actions are substitute to his own and whose

monotonic strategy varies in the same direction as his own;

Moreover, part (i) of Theorem 4 simplifies in the four following cases:

a. If player i has a positive complementarity in actions, i.e. ci = (1, ..., 1) , and

α is isotonic, i.e. m = (1, ..., 1) or m = (−1, ...,−1) , then player i prefers a

signal that is as conditionally dependent as possible on X−i.

b. If player i has a negative complementarity in actions, i.e. ci−i = (−1, ...,−1) ,

and α is isotonic, i.e. m = (1, ..., 1) or m = (−1, ...,−1) , then player i prefers

a signal that is as conditionally independent as possible of X−i.
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c. If player i has a positive complementarity in actions, and α is antitonic

for i, i.e. mj = −mi for all j 6= i, then player i prefers a signal that is as

conditionally independent as possible of X−i.

d. If player i has a negative complementarity in actions, and α is strictly antitonic

for i, then player i prefers a signal that is as conditionally dependent as

possible on X−i

Part (ii) of Theorem 4 also simplifies is a similar way in the analogous four

cases. Theorem 4 motivates and justifies the following definition.

Definition 3. For any i ∈ I, any monotonicity vector m and any complemen-

tarity vector ci, let player i’s most preferred dependence vector under

m-monotonic action strategies and ci-complementarity in actions be

the vector di such that for all j ∈ I, the equation (6) holds.

5.1.2 Link with the literature on dependence orderings

Before we proceed with the rest of the analysis, we shall now pause and discuss how

Theorem 4 relates to the literature in applied probability, which studies dependence

orderings and the logical relations between them.

Part (i) in Theorem 4 can be viewed as a generalization of a classic result in

this literature, due to Tchen (1980). This scholar compares, for N -variate random

vectors with fixed marginals, two dependence orderings: the Positive Quadrant

Dependence ordering (PQD) and the Supermodular Dependence ordering (SPM).

While it is well known that SPM dependence implies PQD dependence, Tchen

shows that in the case N = 2, PQD dependence also implies SPM dependence,

i.e. the two are equivalent.16 In contrast, for N ≥ 3, PQD dependence no longer

implies SPM dependence. Müller and Scarsini (2003) provide a counterexample in

the case N = 3.17

One difference between the two cases, which in our view is crucial for the

difference in results, is that while in two dimensions, dependence only involves

a single pair of components (1, 2), in three dimensions, it involves three pairs of

components: (1, 2) , (2, 3) and (1, 3) . In other words, it becomes a measure of

multilateral dependence (or interdependence).

16For definitions of SPM and PQD, see the Appendix D. See Müller and Stoyan (2002, Theorem
3.8.2) for related results.

17One way implications between various interdependence orderings and some equivalences have
been obtained for the case N ≥ 3. They are reviewed by Strulovici and Meyer (2012), who
also establish new implications (see also Christofides and Vaggelatou, 2004; Müller and Stoyan,
2002; and Hu, Müller and Scarsini, 2004).
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The paradigm in the applied probability literature is to conceive dependence

orderings as multilateral dependence between multiple univariate components. Our

result departs from this paradigm by defining dependence between two components

of a multivariate random vector, one of which is itself multivariate.

In applied probability literature, different concepts of dependence relate to our

definition of dependence between an univariate and a multivariate components.18

These are called concepts of setwise dependence (e.g. Chhetry et al., 1989) and

can be seen as generalizations of the positive upper (lower) orthant dependence

concept.19

The various concepts of setwise dependence describe the dependence between

random vectors, while disregarding the dependence between the univariate com-

ponents within each of these vectors. In our particular problem, we only need to

study the dependence between the signal choice of a given player and the choices

of other players, not the dependence patterns among these other players’ signals.

Although such concepts of setwise dependence between vectors have been studied,

we are not aware of any work studying setwise dependence orderings, such as the

one we define.

Our Theorem 4 can be viewed as an extension of Tchen’s result to the more

general setwise case. Indeed, our concept of dependence is an appropriate general-

ization of PQD dependence in a setwise setting, and the inequality (7) is also an

appropriate generalization of SPM dependence.20 More specifically, in the special

case where the state Θ is deterministic, N = 2, i = 1, α1 and α2 are the identity

functions (so that m1 = m2 = 1) and c1 = (1, 1) , we obtain the following result.

Corollary 1 (Tchen, 1980). Suppose that u1 has (1, 1)-complementarity in actions.

Fix a signal X2 ∈ X2. Suppose that X1 and X ′1 are two signals in X1 such that X ′1

depends at least as much as X1 on X2. Then player 1 finds signal X ′1 at least as

good as signal X1

EX′1,X2
(u1 (X ′1, X2)) ≥ EX1,X2 (u1 (X1, X2)) .

18We thank Marco Scarsini for pointing us to this literature.
19One such concept in Chhetry et al. (1989) is setwise positive upper (lower) orthant dependence,

SPUOD (SPLOD). The set (X1, ..., Xk) with Xt a pt × 1 vector in Rp
t is said to be setwise

positively upper (lower) orthant dependent if for all xt ∈ Rp
t , t = 1, .., k,

P
[
∩kt=1{Xt > (≤)xt}

]
≥ Πk

t=1P [Xt > (≤)xt] .

20An appropriate name for this generalization of the SPM dependence ordering would be Increasing
Differences dependence ordering.
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This Corollary is a reformulation of Tchen’s result, because (1, 1)-complementarity

in actions coincides with supermodularity for a function of two variables, and the

assumption that X ′1 depends at least as much on X2 as X1 is equivalent to the

assumption that (X ′1, X2) is at least as PQD dependent as (X1, X2) in the bivariate

case.

Another way in which Theorem 4 extends Tchen’s result is not mathematical,

but purely conceptual. Our comparison dependence orderings are conditional

on the state Θ. While this does not raise any mathematical difficulty, it allows

us to interpret our dependence ordering as similarity between information sets,

rather than between the components of a random vector. Similarly, inequality (7)

indicates a preference for an information set over another. This generalization

enables us to interpret Theorem 4 as telling us, between two pieces of information,

which one a player prefers to have, depending on his preferences over actions, when

one piece is more (or less) similar than the other to the other players’ information.

We believe that both our new bilateral (conditional) dependence ordering for

multivariate distributions and the extension of Tchen’s result in Theorem 4 are of

independent interest, and that they are likely to have applications in economics,

in addition to the particular one we study in this paper. We now return to the

analysis of Bayesian games with information choice.

5.2 Equilibria of the information choice game

Every Bayesian game with information choice Γ and every fixed profile of action

strategies α induce an information choice game Γα, which is the normal form

in which each players i ∈ I chooses a signal Xi ∈ Xi and receives the payoffs

EΘ,X (ui (αi (Xi) , α−i (X−i) ,Θ)) , where α is the fixed profile of action strategies.

We now use part (ii) in Theorem 4 to obtain a characterization of the equilibria

of the information choice game Γα when α is a strictly m-monotonic action strategy

profile, for some monotonicity vector m.

Corollary 2. Let
(
c1, ..., cN

)
be a profile of complementarity vectors. Suppose

that for each i, player i has strict ci-complementarities in actions. Suppose that

(X,α) is a full-fledged Nash-Bayesian equilibrium profile in pure strategies. Suppose

that α is strictly m-monotonic, for some monotonicity vector m. Then for all i,

there exists no signal X ′i that di-depends more on X−i than Xi, where di is player

i’s most preferred dependence vector under m-monotonic action strategies and

ci-complementarity in actions.
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In some cases, by this result, Nash-Bayesian equilibrium conditions imply that

m-monotonicity of action strategies together with ci-complementarity in actions

pin down an essentially unique information structure. Whether or not this is the

case depends on the geometric structure of the signal structure. We now study

this question in more detail.

5.2.1 Most di-dependent signals

The first set of situations where monotonicity pins down the information structure

is when the dependence preference of each player are to some extent independent on

the information choices of the other players. For example, if there are two players

and both have access to two different signals XI and XII , none of these signals is

intrinsically more public than the other. For each player, the more public signal is

the signal the other player chooses. Yet, in many contexts, the different available

signals do not possess that kind of symmetry. Some signals are unambiguously

more public than others, some are unambiguously more private than others. We

push this idea even further and introduce the concept of a most di-dependent

signal, independently of the signals chosen by others.

For any signal structure (X1, ...,XN) , any distribution F and any dependence

vector di, and for all Xi in Xi, we say that X∗i is the most di-dependent signal

in Xi if X∗i has the property that, for all signal profiles X−i, the signal X∗i is a

greatest element of the “as di-dependent on X−i as” weak partial order on Xi.

In plain words, the signal X∗i provides player i with information that is more

di-dependent on the other player’s signals, than any other signal player i could

choose to observe, regardless of what signals the other players choose to observe.

In particular, for di = (1, ..., 1) , we call this signal player i’s most public signal

and for di−i = (−1, ...,−1) , for di−i = (dij)j 6=i we call this signal player i’s most

private signal.21

We obtain the following direct implication of Corollary 2 (a direct implication

of Theorem 4).

Corollary 3. Let
(
c1, ..., cN

)
be a profile of complementarity vectors. Suppose

that for each i, player i has strict ci-complementarities in actions. Suppose that

(X,α) is a full-fledged Nash-Bayesian equilibrium profile in pure strategies. Suppose

21Most di-dependent signals in Xi need not be unique, but they are payoff-equivalent under
m-monotonic action strategies. See the last paragraph of Section 5.4. If two different players i
and j both have a most public signal, then it must be that the intersection Xi ∩Xj has at most
(essentially) one element. Moreover, if this intersection is indeed nonempty, its (essentially)
unique element is both i’s and j’s most public signal.
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that α is strictly m-monotonic, for some monotonicity vector m. Suppose that

for all i ∈ I, player i has a most di-dependent signal in Xi, where di is player

i’s most preferred dependence vector under m-monotonic action strategies and

ci-complementarity in actions. Then Xi must be a most di-dependent signal in Xi.

To illustrate the usefulness of this result, it is helpful to consider the following

three special cases:

1. If every player has a most public signal, and mimjc
i
j = 1 for all i, j such that

i 6= j, then in any Nash-Bayesian equilibrium in which actions are strictly

m-monotonic, every player must be choosing his most public signal.

2. More specifically, if every player has a most public signal and strict positive

complementarities in actions, then in any Nash-Bayesian equilibrium in which

actions are strictly isotonic, every player must be choosing his most public

signal.

3. If every player has a most private signal, and mimjc
i
j = −1 for all i, j such

that i 6= j, then in any Nash-Bayesian equilibrium in which actions are

strictly m-monotonic, every player must be choosing his most private signal.

Of course, whether or not Corollary 3 has bite hinges upon whether there exists

or not a most di-dependent signal for each player i. The answer to this question

depends on the geometry of the signal structure X.
To gain intuition, it is helpful to visualize the information choice game (where

action monotonicities are held fixed) as a location game in a spatial setting. For

each player i, the set Xi is the analog of a set of admissible locations where this

player can locate. Each player’s preferences over locations only depends on where

the other players locate. He wants to be close to some of them and far away from

some of them. The preferences of player i are summarized by the vector di. For

each j 6= i, if dij = 1, call j a friend of i, and if dij = −1, call j an enemy of i. Note

that j may be a friend of i, while i is an enemy of j. Then each player i wants

to locate as close as possible to all his friends and as far as possible from all his

enemies. Corollary 3 says that if each player has a location Xi that minimizes

distance with all his friends and maximizes distance with all his enemies, regardless

of where all of them locate, then player i must choose this location in any Nash

equilibrium in pure strategies.

In Appendix B we show how to construct examples of signal structures X that

admit a most public signal, a most private signal and a most di-dependent signal.
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One case of interest where Corollary 3 does not apply is when the signal

structure is symmetric, i.e. when X1 = ... = XN . In this case, except in degenerate

cases, players do not have most di-dependent signals. But, in the symmetric case,

we can still obtain sharp predictions in the case where N = 2.

If N = 2 and the two players have strict positive (negative) complementarities in

actions, in any pure Nash-Bayesian equilibrium, whose actions are strictly isotonic

(antitonic for both players) they choose to acquire essentially the same information.

We say that (X1, X2) is public information if the event X1 = X2 has probability

one.

Corollary 4. Suppose that N = 2, that X1 = X2 and suppose that the payoff

functions ui have strict positive (negative) complementarities in actions, for i = 1, 2.

Let (X1, X2, α1, α2) be a pure full-fledged Nash-Bayesian equilibrium of the game.

If α is strictly isotonic (antitonic for both players), the equilibrium information

structure must be public information.22

Note that, under the assumptions of Corollary 4, the equilibrium is never

unique: if (XI , XI , α1, α2) is a full-fledged Nash-Bayesian equilibrium, then for any

XII ∈ X, the profile (XII , XII , α1, α2) is also a Nash-Bayesian equilibrium. But all

of these equilibria are payoff equivalent. The players higher order beliefs are also

the same across all the equilibria. In the example of Section 3 we referred to this

as trivial multiplicity.

Corollary 4 describes a case where the two players “agree” on the information

structure they want. In the case of a symmetric signal structure with two players,

this agreement is necessary. Indeed, in the case where they do not agree, it is

easy to see that no equilibrium in pure strategies can exist, even when, for any

information structure X, the game with exogenous information structure X admits

a Nash-Bayesian equilibrium in pure strategies. This was illustrated in the example

studied in Section 3.1.1, but it is a more general phenomenon.

Corollary 5. Suppose that N = 2, that X1 = X2 and contain at least two signals

whose realizations are not equal with probability one, and suppose that both players

have strict complementarities in actions, but of opposing signs. There is no pure full-

fledged Nash Bayesian equilibrium (X1, X2, α1, α2) such that α is strictly monotonic.

To see why Corollary 5 is true, suppose for example that player 1 has a

strict positive complementarity in actions, while player 2 has a strict negative

22It is worth noting that Corollary 4 does not generalize to the case of three players or more.
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complementarity in actions. Suppose further that action strategies are set to be

strictly isotonic in the second stage. Then, there cannot be an equilibrium in pure

strategies in the first stage. This is because player 1 wants to observe the same

signal as player 2, in order to increase dependence, whereas player 2 wants to

observe a signal different from player 1, in order to decrease dependence. Similarly,

if action strategies are set to be strictly antitonic in the second stage, there cannot

be an equilibrium in pure strategies in the first stage either. This is because player

2 now wants to observe the same signal as player 1, in order to increase dependence,

whereas player 1 wants to observe a signal different from player 2, in order to

decrease dependence. In both cases, the signal choice in the first stage of the game

has a structure à la matching pennies. No equilibrium in pure strategies exists,

although (as shown in Appendix E) a mixed equilibrium can always be constructed.

Note, however, that Corollary 5 need not hold when the signal structure is not

symmetric. For example, as shown in Corollary 3, and with the payoff configuration

of the previous paragraph, if player 1 has access to a most-dependent signal and

player 2 has access to a less dependent signal, then the information structure

defined by these two signals is a (unique) candidate for an equilibrium where the

strategies are strictly isotonic. Similarly, if player 1 has access to a least-dependent

signal and player 2 has access to a most dependent signal, then the information

structure defined by these two signals is a (unique) candidate for an equilibrium

where the strategies are strictly isotonic.

5.3 Full-fledged equilibrium information structures

In general, the information structure and the actions strategies (and their mono-

tonicity properties) are jointly determined in equilibrium. The conditional depen-

dence properties between the signals chosen by the different players contribute

to determine incentives to choose actions strategies that are either increasing or

decreasing in signal realizations. Conversely, in Sections 5.1 and 5.2, we showed

how the monotonicity properties of the action strategies chosen by the players con-

tribute to determine their incentives to choose more or less conditionally dependent

signals. In this section, we propose conditions that guarantee that an equilibrium

exists, with certain pre-specified monotonicity characteristics and with a certain

pre-specified information structure.

The key condition that guarantees existence of an equilibrium is a form of

compatibility between the monotonicity properties of the candidate action strategies

and the candidate information structure. But other conditions are required as
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well. In the equilibrium we construct, the m-monotonicity of the equilibrium

action strategies agrees with the state complementarity in the players’ payoffs. For

example, if for player i, the state and his action are positive complements, his

equilibrium action strategy will be increasing in the signal. If they are negative

complements instead, his equilibrium strategy will be decreasing in the signal.

Existence of such an equilibrium is established in two cases. First, when the

action complementarities are aligned with the state complementarities, and in

effect reinforce them, by giving players additional incentives to play m-monotonic

action strategies. Second, when the sign of the monotonicity of equilibrium action

strategies is predictable.

5.3.1 When action complementarities reinforce state complementari-

ties

We first provide sufficient conditions that ensure that an equilibrium exists where

players have public information (or most public information). We show that a very

simple condition ensuring this is that all players have positive complementarities,

both in actions and in state. But we also show that it is the case for a weaker

condition. It only requires that the state complementarities be aligned with

the action complementarities in the sense that if the sign of the players’ state

complementarities are given by the vector m and their action complementarities

are given by the vectors (ci)i∈I , then for all i 6= j, we have cij = mimj. Clearly, the

situation where all (action and state) complementarities are positive is the special

case where m = (1, ..., 1) and ci = (1, ..., 1) for all i.

First, when state complementarities are aligned with action complementarities,

we establish, using a result due to Van Zandt and Vives (2007), that fixing the

information structure X, the game ΓX admits an m-monotonic Nash-Bayesian

equilibrium αX . A partial intuition for why this is true is that the monotonicity of

each player i’s equilibrium strategy mi is dictated by his state complementarity,

also mi, but is further reinforced by the action complementarities.

For example, consider the situation where all players have positive action and

state complementarity. Suppose further that each signal depends positively on the

state so that a high realization is evidence that the state is likely to be high, and

that conditionally on the state, all signals are positively dependent among each

other. Thus, when a player observes a high (low) realization, he believes that the

state is high and that other players’ realizations are also high. A first-order effect

is that he wants to play a high (low) action, so that his action will be aligned with
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the state, which he believes to be high (low). But there is a second-order effect,

which is that he also believes that, conditional on the state, the other players’

realizations are high (low), so that they are likely to be playing high (low) actions.

Because the action complementarities are positive, this gives an additional reason

to play a high (low) action. Since all players can realize this, there is then a third

order effect which further increases the incentive to play a high (low) action. The

process then goes on ad infinitum.

Second, we show that when state complementarities are aligned with action

complementarities, and players choose either a public or a most public information

structure X, and play an m-monotonic Nash-Bayesian equilibrium αX of the

game ΓX , no player can strictly gain by deviating to another strategy (X ′i, α
′
i) 6=(

Xi, α
X
i

)
. To establish this, we first argue that assuming by contradiction that the

deviation (X ′i, α
′
i) is a profitable deviation, there exists another deviation (X ′i, α

′′
i )

that is even better, where α′′i is mi-monotonic. But in this case, we can show that

the deviation (Xi, α
′′
i ) is even better, so it must be profitable, which contradicts

the fact that αX was an equilibrium of the game ΓX in the first place.

The precise conditions that guarantee the existence of an equilibrium where

dependence among signals is maximized (most public signals are chosen) are the

following.

Theorem 5. Let N ≥ 2. Let m be a monotonicity vector and let (ci)i∈I be the

profile of complementarity vectors such that for all i, j, cij = mimj. Suppose that

i. For each i ∈ I, ui has ci-complementarities in actions.

ii. For each i ∈ I, ui has mi-complementarities in ai and θ.

iii. For all xi < x′i, the distribution of θ conditional on Xi = x′i first order

stochastically dominates the distribution of θ conditional on Xi = xi.

iv. For every profile X, all i and all xi < x′i, the distribution of X−i conditional on

Xi = x′i first order stochastically dominates the distribution of X−i conditional

on Xi = xi.

Then for any profile X of signal choices such that for each i, the signal Xi is

most dependent on X−i in Xi, there exists an m-monotonic action strategy profile

α such that (X,α) is a full-fledged Nash-Bayesian equilibrium for the game.

The following result is a direct implication of Theorem 5.
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Corollary 6. Let N ≥ 2. Suppose that conditions (i) to (iv) of Theorem 5 hold.

In addition, suppose that a public (most public) signal profile exists. Then for any

public (most public) information signal profile X, there exists an m-monotonic

action strategy profile α such that (X,α) is a full-fledged Nash-Bayesian equilibrium

for the game Γ.

5.3.2 When the monotonicity of action strategies is predictable

We now move away from the case where action complementarities reinforce state

complementarities and consider cases where action complementarities may create

incentives for the players to play actions that vary in the direction opposite to the

one which agrees with the state complementarity. In that case, it is not possible to

predict in general whether the action strategies of any full-fledged Nash-Bayesian

equilibrium will be m-monotonic for any particular monotonicity vector m.

Nevertheless, in some context, we may have enough information to know that

in equilibrium, action strategies are m-monotonic for some pre-specified vector

m. For example, it could be that all profiles of action strategies α that are not

m-monotonic are strictly dominated, or do not survive iterated elimination of

strictly dominated strategies.

One natural reason why m may be predictable is that each player i could have an

mi-complementarity in state which is strong enough that it dominates any potential

higher order effect and that it single-handedly determines the monotonicity of

equilibrium action strategies. For example, in an symmetric Cournot duopoly,

where firms 1 and 2 should produce a larger quantity when the state is high and a

lower quantity when the state is low, the negative action complementarity creates

a contrarian incentive. But if this second order effect and all other higher order

effects are negligible compared to the first order effect, it could be predictable that

equilibrium action strategies are increasing in signal realizations.

Alternatively, the monotonicity of action strategies could be predictable for other

reasons. For example, in the same setting, it could be that firm 1’s complementarity

in state dominates firm 1’s (negative) action complementarities, so that this firm

always plays an increasing action strategy in any equilibrium. In contrast, firm 2

could have a (negative) action complementarity that is much stronger than its

positive complementarity in state. This and the fact that firm 1 plays an increasing

action strategy in any equilibrium could imply that firm 2 plays a decreasing action

strategy in any equilibrium. As a result, in any equilibrium, the action strategy

profile is (1,−1)-monotonic.
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When the monotonicity of action strategies is predictable in this sense, and

under the assumption that each player i has ci-complementarities in actions, in light

of Theorem 4, a natural candidate X may emerge for an equilibrium information

structure: one that has the property that for each i, Xi is most di-dependent on X−i

than any other signal in Xi, where di is agent i’s most preferred dependence vector

under m-monotonic action strategies and ci-complementarities in actions (defined in

Equation (6)). Our main result in this section provides a simple sufficient condition

for this candidate to form a full-fledged Nash-Bayesian equilibrium, together with

some m-monotonic action strategy α. The condition imposes that for any player i,

and for any signal deviation X ′i, in the game ΓX′i,X−i
, player i has at least one best

response to α−i that is mi-monotonic.

The logic at play here is the same as in Theorem 5. There, because action

complementarities reinforce state complementarities, monotonic equilibrium action

strategies are known to exist. We thus obtain dij = mimjc
j
i = 1 · 1 · 1 for all i and j

and the natural candidate that emerges is any information structure where positive

dependence is maximized for all players. The same condition on deviations to other

signals X ′i as the one stated in the previous paragraph can then be obtained from

primitives and is sufficient to establish that this candidate is indeed an equilibrium.

The difference now is that, both existence and the condition on deviation to

signals X ′i are assumed rather than derived from primitives, and therefore need

to be verified directly. But the result shows that this approach can be adapted

beyond the case where complementarities reinforce each other.

For any strategy profile (X,α) , we say that the action strategy αi is a best

response for player i in game ΓX , if for all xi,

αi (xi) ∈ arg max
ai∈Ai

EΘ,X (ui (ai, α−i (X−i) ,Θ) | Xi = xi) .

Theorem 6. Let N ≥ 2. Let m be a monotonicity vector. For each i, let ci be a

complementarity vector, and let di be agent i’s most preferred dependence vector

under m-monotonic action strategies and ci-complementarities in actions. Let

(X,α) be a strategy profile such that:

i. For each i, the payoff of player i has ci-complementarities in actions.

ii. For each i, Xi is most di-dependent on X−i in Xi.

iii. The profile α is an m-monotonic Nash-Bayesian equilibrium of the game ΓX .
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iv. For each i and each X ′i, in the game ΓX′i,X−i
, player i has a best response α′i

to the action profile α−i that is mi-monotonic.

Then, the profile (X,α) is a full-fledged Nash-Bayesian equilibrium of the

game Γ.

Note that assumptions (iii) and (iv) are not on primitives, but they could be

derived from assumptions on primitives: for example, one could assume that only

m-monotonic profiles survive iterated elimination of strictly dominated strategies

(and existence of a Nash-Bayesian equilibrium of game ΓX could be established

using Kakutani’s fixed point theorem). However, we feel that in practice, both

assumptions (iii) and (iv) are much less restrictive than those assumptions on

primitives, and can often be easily checked in most applications. The scope of our

result is thus larger than if we imposed those assumptions.

5.4 Conditions for a unique full-fledged equilibrium infor-

mation structure

We would now like to provide conditions under which the information structure

is essentially the same in all full-fledged Nash-Bayesian equilibria. In fact, this

question is already answered in Corollary 3, which only needs to be reformulated

and reinterpreted.

In the reformulation, the key assumptions we make are (i) that for all infor-

mation structures X, all Nash-Bayesian equilibria are strictly m-monotonic for

some monotonicity vector m such that there is a profile of dependence vectors(
d1, ..., dN

)
where each di is agent i’s most preferred dependence vector under

m-monotonic action strategies and his actual ci-complementarities in actions and

(ii) that each agent has a most di-dependent signal in Xi. When this holds, then

all full-fledged Nash-Bayesian equilibria of the game must have an information

structure where each agent chooses a most di-dependent signal in Xi.

Again, as in Section 5.3.2, the predetermined monotonicity m in assumption (i)

could be the resulting balance of a number of contrarian forces.

Corollary 7. Let N ≥ 2. Suppose that for each i, player i has ci-complementarities

in actions. Suppose for any signal profile X, all Nash-Bayesian equilibria of the

game ΓX are strictly m-monotonic, for some m such that there exist vectors(
d1, ..., dN

)
such that for all i, di is player i’s most preferred dependence vector

under m-monotonic action strategies and ci-complementarities in actions. Suppose

that each player i has a most di-dependent signal in Xi. Then in any full-fledged
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Nash-Bayesian equilibrium (X,α) of the game Γ, for each i, the signal Xi is a most

di-dependent signal in Xi.

Although the formulation and the interpretation is different, this result is

formally equivalent to Corollary 3. Strictly speaking, Corollary 7 does not pin down

a unique information structure, because each player i may have multiple most di-

dependent signals. But most di-dependent signals are interchangeable when actions

are played according to a strictly m-monotonic profile α, in the sense that if X and

X ′ are two signal profiles, each made up of (possibly distinct) most di-dependent

signals Xi and X ′i, where for each i, di is player i’s most preferred dependence

vector under m-monotonic action strategies and his ci-complementarities in actions,

then (X ′, α) is also a full-fledged Nash Bayesian equilibrium of the game and all

players obtain the same expected payoff in both equilibria.

6 Applications

In this section, we now illustrate how the model can be applied to different contexts.

6.1 Currency speculation

This example is adapted from the model of currency speculation of Morris and

Shin (1998), to which we add information choice. The game is played between

N agents. Each agent i decides whether (ai = 1) or not (ai = 0) she speculates

against a currency. The bank then observes the realization of the number n of

agents who speculate and the realization θ ∈ {θ1, ..., θp} , with θ1 < ... < θp, of an

uncertain but relevant fundamental state Θ. It defends the currency if and only if

n ≤ θ. If this condition holds, the attack is “unsuccessful” and it is “successful”

otherwise. The payoff of an agent who chooses to speculate is π − bθ −K, with

π > 0, b > 0 and K > 0 if the attack is successful and −K if it is unsuccessful.

The payoff of not speculating is 0.

Before deciding whether or not to speculate, each of the agents i chooses a

single signal Xi from a common set of accessible signals Xi = X. Suppose that

assumptions (iii) and (iv) of Theorem 5 hold, so that high realizations of any of

the accessible signals are associated with high realizations both of the state and of

the other accessible signals.

In this game, all agents have negative complementarities in state and positive

complementarities in the other agents’ actions: if other agents are more likely to

attack, the agent is more willing to attack.
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All assumptions of Theorem 5 are satisfied. Therefore we know that at least one

full-fledged Nash-Bayesian equilibrium exists, where all agents choose to observe

the same (i.e. public) signal. Doing so enables them to perfectly coordinate:

whenever the realization of the public signal is lower than some threshold, all

agents attack.23

An implication is that unanimous attacks followed by devaluation sometimes

occur even for high realizations of the fundamental.

These unanimous attacks are a poor signal of the fundamental, since they only

reflect part of the information of one signal, and ignore the information contained

in all the other signals that the agents choose not to observe.

In this equilibrium, the movements of the currency are essentially driven by

random realizations of a signal used by speculators for coordination purposes.

While such an equilibrium may be detrimental to society, it may be good for

speculators. But in a version of the model, this “herding on the same signal”

equilibrium may be bad for the speculators themselves.

Following Goldstein, Ozdenoren and Yuan (2011), consider instead a setting

where the central bank does not observe the realization of Θ at all, nor does it

observe a signal of it, and where n does not directly enter its decision on whether

or not to defend the currency. Suppose instead that the central bank learns about

the state from the occurrence and potentially also from the size of an attack, and

that it defends the currency peg if and only if E (Θ | n) > 0. Taking again the

bank’s decision rule as given, the agents play a coordination game with information

choice, the payoffs of which are endogenous, since they depend on which signal

action strategies the bank expects them to play. For the same reasons as in the

previous model, there exists an equilibrium where all agents choose to observe

the same signal. This implies that a unanimous attack is a weak signal that the

realization of the fundamental is low. Consider the case where E (Θ) > 0 and

E (Θ | Xi ≤ x∗) > 0, where x∗ is the threshold realization of the common signal

below which the agents choose to attack. Then, when observing an attack, the

bank does not find evidence in favor of abandoning the peg convincing enough,

because the unanimous attack only reflects the information of one signal.

23Under our assumption that the set of accessible signals Xi is the same for all speculators, we
cannot rule out other information structures in equilibria. Under the alternative assumption
that each speculator i has a unique most public signal in Xi, an argument in the spirit of
Corollary 7 can be used to establish that for an open set of parameters, a unique information
structure arise in all full-fledged Nash-Bayesian equilibria, such that all agents choose their
most public signal (possibly the same one).
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Because of the excessive similarity in speculators’ information, the bank chooses

to always defend the currency. Consequently, attacks are never successful and

therefore they never occur in equilibrium.

What happens in this case is that, while individually, each speculator has an

incentive to observe the same signal as the others, their collective interest is that the

bank expects them to acquire diversified information. The equilibrium is however

determined by their individual interest. From the speculators’ point of view,

informational diversity is a public good that they under-provide in equilibrium.

The above analysis can also be applied to technology adoption in the presence of

positive network externalities, or the problem of collective action in a revolutionary

movement. In both cases, complementarities imply that players might observe the

same signal so that the aggregate action is not a good aggregator of all available

information.

6.2 Other Applications

In each of the following examples, θ is an uncertain parameter with support

{−1, 1} , with P(Θ = −1) = P(Θ = 1) = 1/2. Moreover, available signals are

X = (X1, ..., XL) with L ≥ N , each with support in {−1, 1} such that the random

vector (θ,X`) is distributed in {−1, 1}2 according to a joint marginal distribution

given by

X` = −1 X` = 1

Θ = −1 1−ε
2

ε
2

Θ = 1 ε
2

1−ε
2

(9)

for all X` and ε ∈ (0, 1/2). The signals X` are independent, conditional on any

realization of θ. Conditional on θ ∈ {−1, 1}, two signals (Xs, X`) have the joint

distribution
X` = θ X` 6= θ

Xs = θ (1− ε)2 (1− ε)ε
Xs 6= θ (1− ε)ε ε2

(10)

Given the information structure, when two players observe the same signal,

their signal’s realization is the same with probability one. When two players do

not observe the same signal, their signal’s realization is the same with probability

1− ε.
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6.2.1 Supply chain

Suppose there is a supply chain with 1 manufacturer (denoted M) and 2 retailers

(denoted R1 and R2). The manufacturer chooses the wholesale price w, and

retailer Ri, the markup pi over the wholesale price. Final prices are w + p1 and

w + p2. The demand for retailer Ri is

Qi(pi, pj, w; θ) = A+ biθ + λi(w + pj)− (w + pi), (11)

where bi > 0, A > bi and 0 < λi < 1 for i = 1, 2. All three players are uncertain

on the intercept of the retailers’ demand function θ and have access to the signals

(X1, ..., XL). Retailer Ri’s profits function is given by

ΠRi
(pi, pj, w; θ) = pi · (A+ biθ + λi(w + pj)− (w + pi)), (12)

for i = 1, 2, and the manufacturer’s profits function is given by

ΠM(w, pi, pj; θ) = w·(2A+(b1+b2)θ−(1−λ1)p2−(1−λ2)p1+w(λ1+λ2−2)). (13)

The vector encoding action complementarities is cRi ≡ (cRi
Rj
, cRi
M ) = (1,−1) for

retailer Ri, and cM ≡ (cMR1
, cMR2

) = (−1,−1) for the manufacturer.

It is natural to look for an equilibrium where (p1, p2, w) are strictly increasing

in θ, so that the action strategies are strictlym-monotonic withm ≡ (mR1 ,mR2 ,mM ) =

(1, 1, 1). Then, assuming that m describes the monotonicity of equilibrium ac-

tion strategies, Theorem 4 implies that the players’ dependence preferences are

obtained by combining the monotonicity and the complementarity vectors, such

that dRi ≡ (dRi
Rj
, dRi

M ) = (1,−1) for retailer Ri and dM ≡ (dMR1
, dMR2

) = (−1,−1) for

the manufacturer. Hence, the retailers prefer to observe the same signal and the

manufacturer a signal different from the one observed by the retailers.

6.2.2 Beauty contests

Suppose a set I of players interacts in a beauty contest game. Two versions of

the beauty contest model can be found in the literature. In both versions, each

player i ∈ I chooses an action and his payoff depends on the others’ average action

ā = 1
N

(∑
j∈I\{i} aj

)
. Version 1 (as in Myatt and Wallace (2011)) assumes the

payoff function

ui(ai, ā; θ) = −(1− r)(ai − θ)2 − r(ai − ā)2,
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while version 2 (as in Hellwig and Veldkamp (2009)) assumes the payoff function

ui(ai, ā; θ) = −(ai − (1− r)θ − rā)2,

where r ∈ (−1, 1). In both versions, all players have positive complementarities in

actions if r > 0 and negative complementarities in actions if r < 0, and they all

have positive complementarities in state.

For both versions, given the information structure is fixed, a player’s best

response in action is αi(xi) = (1− r)E(Θ|xi, X)) + rE(a|xi, X).

If r is sufficiently small (such that 1− r is big enough), then the best response

will be increasing in the signal’s realization for all players. Then, by Theorem 6,

the situations where all players play action strategies that are strictly increasing in

state and i) all players observe the same signal if r > 0, and ii) all players observe

different signals if r < 0 are equilibria of the game with an endogenous information

structure.

6.2.3 Technological Spillovers

Suppose a set I of players have the possibility to exert effort in developing a

new technology. A player chooses his level of effort ai to the development of this

technology. The cost of effort ai is ca2
i , with c > 0, while the benefit for each

individual is
(

(Kai + bθ)
∑

j∈I aj

)
, with b > 0 so that the payoff of player i is

ui(a; θ) =

(
(Kai + bθ)

∑
j∈I

aj

)
− ca2

i .

The effort exerted by the other players has a positive impact on player i’s payoff.

Hence, all players have positive complementarities in actions and positive com-

plementarities in state. When all players observe the same signals, there exists

an equilibrium where all players choose an effort level that is increasing in their

signal if b is large enough. Then, Theorem 6 ensures that the situations where all

players choose a strictly increasing action strategies and all choose to observe the

same signals is still an equilibrium of the game with an endogenous information

structure. Therefore, information acquisition on the state is suboptimal from a

social viewpoint since acquired information will be homogenous.
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6.2.4 Policy choice in federations

This example is adapted from Loeper (2011). Assume there is a set I of jurisdictions

and that each of them needs to decide on a policy. A jurisdiction’s policy choice

is ai, and its payoff is

ui(a; θ) = −(ai − βiθθ)2 −
∑
j 6=i

βij(ai − aj)2,

where βiθ is jurisdiction i’s alignment preference with the state θ and βij ∈ (−1, 1)

the coordination externality that jurisdiction j imposes on i. Jurisdiction i has

positive (negative) complementarities in state when βiθ > (<) 0 and positive

(negative) complementarity in actions with jurisdiction j when βij > (<) 0.

A player’s action best response is

αi(xi) =
βiθE[θ|xi] +

∑
j 6=i βijE[aj|xi]

(1 +
∑

j 6=i βij)
.

When all jurisdictions have positive (negative) complementarity in state and

positive complementarity in actions, such that the action complementarities are

aligned with the state complementarities, Theorem 5 ensures that there exists

an equilibrium where policy choices are increasing (decreasing) in the signal and

all jurisdictions observe the same signal. In this type of equilibrium, the vector

of policy choices would not be very informative on the fundamental θ, since all

policies will be based on the same signal.

Consider next the case where all jurisdictions have negative (positive) comple-

mentarity in state and negative complementarity in actions. Suppose further that

when it is exogenously determined that all jurisdictions observe different signals

then, in this case, there exists an equilibrium where policy choices are decreasing

(increasing) in the signal. Then, Theorem 6 implies that observing different signals

is still an equilibrium in Γ, the game with endogenous information choice, when all

jurisdictions have sufficiently negative (positive) complementarity in state.

6.2.5 Imperfect competition

These examples are adapted from Jiménez-Martinez (2013).

Cournot: Consider a set I of firms interacting in an oligopoly and competing

in Cournot. Let the aggregate demand function be given by P (q1, ..., qI ; θ) =

A+ bθ − δ(q1 + ...+ qI), with b > 0, δ > 0.
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Each of the firms sets a quantity qi, i = 1, ..., I assuming the marginal cost is

constant and equals to ci > 0 for each firm. Firm i’s payoff is

ui(qi, q−i; θ) =
(
A+ bθ − δ(q1 + ...+ qI)− ci

)
qi.

In this context, the firms have negative complementarities in actions and positive

complementarities in state.

Thus Theorem 6 implies that when condition iv) holds, which is the case if

b is large enough (and ε is small enough relative to the other parameters), there

exists an equilibrium where all firms choose different signals and play a quantity

strategy increasing in their signal. In particular, the price P is very informative on

the state since it aggregates the information of N independent signals.

Bertrand: Consider next an oligopoly where two firms produce a differentiated

product and compete in Bertrand. Each of the two firms i = 1, 2 sets a price pi for

its product and faces the linear demand Qi = b0 + b1θ − γ(pi − pj) with b0 > 0,

b1 > 0 and γ > 0. Each firm i has a constant marginal cost ci.

Firm i’s profits function is then

ui(pi, pj; θ) =
(
b0 + b1θ − γ(pi − pj)

)(
pi − ci

)
.

The firms have positive complementarities in actions and positive complementarities

in states. Thus, since state and action complementarities reinforce each other,

Theorem 5 implies that there exists an equilibrium where both firms choose the

same (public) signal and choose a price strategy that is increasing in the signal.

In this case, the quantity Q1 +Q2 only reflects the information contained in one

signal and does not aggregate all the information potentially available.

7 Related literature

We contribute to the applied probability literature on dependence orderings. We

explain this contribution in section 5.1.2.

Regarding decentralized information acquisition, the most commonly studied

framework is a two stage game where players start with a common prior on some

unknown common value state that affects all players’ payoffs.24 In the first stage,

24See Li, McKelvey and Page (1987), Vives (1988), Hellwig and Veldkamp (2009), Myatt and
Wallace (2011), Szkup and Trevino (2014), Yang (2014), and many others. Veldkamp’s
monograph (2011) and Hellwig, Kohls and Veldkamp (2013) provide excellent surveys on the
widely studied special case of the beauty contest games with a continuum of actions and
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each player makes an information choice (for example, the precision of the signal he

receives) that determines the information on the state that he has when entering

the second stage. In the second stage, players simultaneously choose an action.

Two different extensive forms have been considered, depending on whether the

choices made at the first stage are observed or not. In some models, the acquisition

is publicly observed. The game is then an extensive form game where each profile

of information acquisition choices defines a subgame, and in each subgame, the

information structure is common knowledge: in these games, acquisition is overt.

In other models, the choices of the players in the first period are not observed

before actions are taken. Acquisition is then covert. A game where information

acquisition is covert is essentially static, as it is equivalent to one where all players

simultaneously choose both their information and a commitment to an action

strategy that maps the signal they will observe to the action they choose. The

difference between overt and covert information acquisition is in the way a deviation

in the first stage is treated: Under overt acquisition, a deviation on information

choice is commonly observed, and the information structure is common knowledge

in the second stage subgame following the deviation; Under covert acquisition,

players form a belief of what the information structure is in the second stage, and

this belief is correct in equilibrium. But whenever a player deviates, all other

players’ belief on the information structure is incorrect. It should be noted that

in games with a continuum of players (Hellwig and Veldkamp, 2009; Myatt and

Wallace, 2011; Szkup and Trevino, 2014), where players’ payoffs only depend on

the statistical distribution of the other players’ actions, the two forms of acquisition

are equivalent. Thus, there is no need to make a distinction in this case. The

distinction matters only for games with finitely many players. In this paper, we

derive results that apply to games with covert acquisition and finitely many players,

and to games with covert or overt acquisition and a continuum of players. The

case where acquisition is overt and the number of players is finite is also considered

but only in section 7.3.

7.1 The motive inheritance result

The main focus in the literature has been on the player’s choice of amount of

information (their signal’s precision for signals that are independent conditional on

the state), and on the acquisition of private information. A central question in this

players, quadratic payoffs and a Gaussian information structure, and their applications to
macroeconomics and finance. Our paper covers a larger class of models, since we do not rely
on specific functional forms and allow for a finite number of players.
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context is whether the players’ amount of information acquisition are complements,

substitutes, or neither complements nor substitutes. With finitely many players,

the question is meaningful only when acquisition is overt. With a continuum of

players, the question is meaningful for both overt and covert acquisition, since the

two are in this case equivalent. Li, McKelvey and Page (1987) study a Cournot

market with finitely many firms and overt acquisition. The unknown common

value state is the demand intercept and the information structure satisfies certain

conditions. Actions are substitutes and they find that the precision levels of the

private information acquired in the first stage are substitutes as well.25 Vives

(1988) obtains a similar result in the case of a continuum of players. Assuming as

well a continuum of players, Hellwig and Veldkamp (2009) obtain a similar result

in the context of a beauty contest game, where actions can be either substitutes or

complements. They find that when actions are substitutes, acquisition levels are

substitutes and when actions are complements, acquisition levels are complements:

the strategic motive in actions is inherited by the acquisition game. All of these

papers assume an unbounded continuum of actions (the real line), quadratic payoffs,

and a Gaussian information structure.

In spite of the large number of contexts where the inheritance result is confirmed,

it does not generalize to the larger class of all games with strategic complementarities

or substitutabilities. In particular, the unbounded continuum of actions, the

continuum of players and a Gaussian information structure seem to be crucial

for the result. Even with unbounded actions, quadratic payoffs and a Gaussian

information structure, but only two players (as in the case of a differentiated

Bertrand game, which the author uses as an example), Jimenez-Martinez (2013)

shows that it only holds for some parameters: when the complementarity in

actions is strong, levels of acquired precision may be substitutes. And even with

a continuum of players, quadratic payoffs, a Gaussian information structure, but

binary actions, i.e. a global game, Szkup and Trevino (2014) present a model

where the actions are complements but the acquired precision levels are not.

In contrast with this literature, we do not allow players to choose how much

information they acquire. We hold the amount of information fixed. Instead, we

let them choose whether the information they acquire is private or public. More

25Hwang (1993) exploits this result in a duopoly to derive various comparative statics results.
Hwang (1995) studies a similar model but focuses on payoff comparisons between different
market structures and different ways in which the levels of information precision of the firms is
set. Bergemann, Shi and Välimäki (2009) obtain conditions under which information acquisition
levels are substitutes or complements, in a VCG auction with interdependent valuations. Their
setting differs from the common value models listed here in several ways.
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generally, we allow players to choose the level of conditional dependence between

their signals. We show that another type of inheritance result holds: complemen-

tarity in actions implies a preference for positive informational dependence, and

substitutability in actions implies a preference for informational independence.

But unlike the motive inheritance result on precision, our dependence inheritance

results hold for all games where actions are strategic complements or substitutes

and do not rely on specific functional forms, provided that the second stage strate-

gies are monotonic (which is a possibility in some games, and an implication of

Nash-Bayesian equilibrium in a subset of these games).

7.2 Public and private information

The issue of the role of public and private information is a central one in the

entire literature on endogenous information structures. Morris and Shin (2002) for

example, show that in a beauty contest game with a continuum of players, when

the planner (the central bank) increases the precision of public information, it can

be detrimental to welfare, because players rely less on their private information.

In the context of information acquisition, Hellwig and Veldkamp (2009) and

Myatt and Wallace (2011) let players choose whether the information is private and

potentially public. They provide models where public information is an equilibrium

outcome of players choosing to observe the same potentially public signals. Thus

in their models, unlike Morris and Shin (2002), public information is not provided

by an external third party, but is the result of the market forces themselves. We

follow up on this idea, and go one step further. While their model has private

and potentially public signals (public signals are the potentially public ones that

all players chose to observe), in a version of our model, all signals are potentially

public: a private signal is one that only one player chose to observe, while a public

signal is one that all players chose to observe.

Like Morris and Shin (2002), Hellwig and Veldkamp (2009) are interested in the

marginal value of additional public information compared to an initial situation.

But because no information is intrinsically public or private, what they really look

at is the marginally value of additional potentially public information. They make

the important observation that marginal value of acquiring more potentially public

information is kinked at some profiles that they call symmetric. At a symmetric

profile, defined as one where all players observe the same potentially public signals,

if a player deviates and observes one more potentially public signal, he obtains

additional information that in effect is private, since nobody else observes it. If he
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instead drops one of his potential signals, he decreases his own access to public

information. This asymmetry and discontinuity causes multiple equilibria that

differ in the level of public information. In Myatt and Wallace (2011), public

information obtains when all players pay a substantial amount of attention to the

same signal. An implication of this assumption is that players who hold public

information are necessarily well informed players. In both of these two papers, the

problem of the division of information between private and public (and everything

in between) is intrinsically intertwined with the more widely studied issue of the

amount of information that the players acquire. In Hellwig and Veldkamp (2009),

it is because of the question they choose to ask, and in Myatt and Wallace (2011),

it is in the way they define public information.

In contrast, we choose to completely disentangle the two issues. At the risk

of making the model seem less realistic (because in practice, economic agents

often face the choice of how much information to acquire), we hold the amount of

information fixed by assuming that all signals an agent can choose to observe are

equally informative of the unknown state: they all have the same joint marginal

distribution with the state. By doing so, we isolate the issue of the partition of

the information structure between public, private and neither private nor public

information, from the issue of the amount of information. Doing so enables us to

identify a robust force and to obtain general results that hold for a large class of

games, not only the Gaussian-quadratic model with a continuum of actions and

players. As we argued earlier, no such result holds when the issue of the amount of

information is not excluded, even when only private information can be acquired.

Our assumption that players are restricted in the amount of information they

acquire (formally, the joint marginal distribution between their own signal and the

state is fixed, no matter what signal they choose) can be thought of as a form of

rational inattention. Players are limited in how much information they can acquire,

(Sims, 2003, 2005, 2006), and thus face a choice of what to observe.

7.3 Inefficiency of equilibrium under hidden information

acquisition

A number of papers are dedicated to the analysis of inefficiencies in the collection

of information and in the use of that information when the information structure

is exogenously given. Angeletos and Pavan (2007) for instance, study a model with

a continuum of players, quadratic payoff and a Gaussian information structure,

where each player observe a private and a public signals. By comparing the
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equilibrium use of information to an efficiency benchmark (the best society could

achieve keeping information decentralized), they show that information use can

be inefficient when the incentives to coordinate actions and the social value for

coordination are different. The welfare impact depends on the degree of strategic

interaction and on its nature (complementarity or substitutability).

Angeletos and Pavan (2007)’s finding is recurrent in the literature. Morris

and Shin (2002) among others also show that an increase in the amount of public

information can impair welfare. This, however, does not hold necessarily if informa-

tion is a choice for the players. Chahrour (2012) proposes a model of endogenous

information acquisition where public information can still have a detrimental effect.

In the model, a central authority chooses both how many signals to divulge and

their precisions. He finds that the authority always chooses the highest possible

precision and releases a positive but finite number of signals. An important result is

that too many signals can cause the players to decrease the amount of information

they acquire which in turn decreases welfare.

Colombo and Femminis (2008, 2011), on the other hand, are examples where

endogenizing the information structure makes additional public information benefi-

cial for welfare. By allowing the players to choose the precision of their private

signals once the central authority has announced the precision of the public signal,

they show that the precisions of private and public signals are strategic substitutes.

Moreover, if the cost of public information is lower than the cost of private infor-

mation, then increasing the precision of the public information increases welfare.

While Colombo and Femminis (2008, 2011) investigate the welfare implications of

public information provision on incentives to acquire private information, Llosa

Gonzalo and Venkateswaran (2012), by considering models different from the

beauty-contest type, study how different links and externalities among players

affect the acquisition process of private information.

Existing work allows the players to choose the level of information precision.

In this paper, our approach was different. Indeed, we take the analysis in an

other direction by keeping the amount of information fixed and focusing instead on

information dependence. We show that covert information acquisition sometimes

leads to inefficiencies when there are payoff externalities that are not reflected in

the players’ equilibrium choice. Interestingly, we show that these inefficiencies can

sometimes be eliminated when information acquisition is overt.
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Appendix

A Multivariate first-order stochastic dominance

and dependence orderings

In this section, we provide equivalent definitions of our dependence ordering, based

on multivariate first order stochastic dominance, which we define next. Note that

the following definition specializes to the usual first-order stochastic dominance in

the univariate case.

Definition 4 (Multivariate first-order stochastic dominance). add a line

i. Let f and g be two multivariate probability distribution functions (pdf) on

the support X k. We say that g first-order stochastically dominates

(FOSD) f if or all increasing L, we have∑
x∈L

f (x) ≤
∑
x∈L

g (x) .

Moreover, we say that g strictly FOSD f if g FOSD f, but f does not

FOSD g.

ii. Let X = (X1, ..., Xk) and X ′ = (X ′1, ..., X
′
k) be two random vectors on the

support X k. We say that X FOSD X ′ if the pdf of X FOSD the pdf of X ′.

Moreover we say that X strictly FOSD X ′ if X FOSDX ′, but X ′ does not

FOSD X.

The following result due to Lehman (1955), Levhari, Paroush and Peleg (1975)

and Østerdal (2010) provides four alternative and equivalent definitions of multi-

variate stochastic dominance.

Theorem 7. Let X and Y be random vectors with respective pdfs f and g on the

support X k. The following conditions are equivalent:

i. Y FOSD X.

ii. For all decreasing L, we have∑
x∈L

f (x) ≥
∑
x∈L

g (x) .
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iii. For all nondecreasing mapping W : X k → R, E(W (Y )) ≥ E(W (X)).

iv. There exist two random vectors X ′ and Y ′ with respective pdfs f and g such

that Y ′ FOSD X ′.

v. There exist a finite list of vector pairs (xt, yt)t=1,...,T with xt ≤ yt and a list

of reals (∆t)t=1,...,m , with ∆t ∈ [0, 1] such that

g (x)− f (x) =
∑
t

∆t

(
1{yt} (x)− 1{xt} (x)

)
.

This enables us to provide the following definition equivalent to Definition (1)

which is in turn used in Definition (2), using the notion of multivariate first-order

stochastic dominance.

Definition 5 (weakly greater conditional dependence). Let i ∈ I and let X−i be

a profile of signals for all players different from i. For all Xi and X ′i in Xi, we

say that X ′i depends at least as much as Xi on X−i conditionally on Θ,

if for all (θ, x) the conditional pdf P (X−i | X ′i ≥ x, Θ = θ) FOSD the conditional

pdf P (X−i | Xi ≥ x, Θ = θ) .

B Most public signal, most private signal and

most d-dependent signal

In this section, we show how to construct two examples of signal structures

(X1, ...,XN) that admit a most public signal, a most private signal and most

d-dependent signal.

Example 1. Let I = {1, 2} . Let
(
Θ, X∗1 , X

∗
2 , X

∗
P , Y

I
1 , Y

II
1 , Y I

2 , Y
II

2

)
be a random

vector distributed on {−1, 1}4 × {0, 1}4 so that, the three vectors (Θ, X∗1 ) , (Θ, X∗2 )

and (Θ, X∗P ) are distributed as (Θ, XI) in the binary information structure pre-

sented in Section 3. Moreover, let the random vector
(
X∗1 , X

∗
2 , X

∗
P , Y

I
1 , Y

II
1 , Y I

2 , Y
II

2

)
be independent conditionally on Θ = θ, for all θ ∈ {−1, 1} and let the vec-

tor
(
Θ, Y I

1 , Y
II

1 , Y I
2 , Y

II
2

)
be independent. For each i ∈ {1, 2} , we assume that

P
(
Y I
i = 1

)
< P

(
Y II
i = 1

)
holds. Last. for each i, let the set Xi consist of two

signals {
XI
i = X∗PY

I
i +X∗i

(
1− Y I

i

)
XII
i = X∗PY

II
i +X∗i

(
1− Y II

i

)
.
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In the signal structure constructed in Example 1, it is easily verified that for

each i, the signals
(
XI
i , X

II
i

)
are such that XI

i ≺ XII
i , regardless of what signals

the other players choose. The signal XI
i is player i’s most private signal and the

signal XII
i is player i’s most public signal. It is also clear that one can generalize

this construction to more than two players, where each player i has a set of signals

Xi = {X1
i , ..., X

mi
i }, so that X1

i ≺i ... ≺i X
mi
i . For each i, the signal is player i’s

most private signal and the signal Xmi
i is player i’s most public signal. When

generalizing this construction to more than two players and more than two signals

per player, each player i still has a most private signal, namely X1
i , and a most

public signal, namely Xmi
i , but for an arbitrary dependence vector di, it is not the

case that player i has a most di-dependent signal.

We now provide an example of a signal structure (X1,X2,X3) for three players,

such that each of the three players i has a most di-dependent signal, for each

dependence vector di.

Example 2. Let I = {1, 2, 3} . Let

(Θ, X∗12, X
∗
23, X

∗
13, X

∗
11, X

∗
22, X

∗
33, Y1, Y2, Y3)

be random vector such that Θ and the X∗ij have support {−1, 1} and the random

variable Yi has full support {{i} , {i, j} , {i, k} , I}. For all i, j, let the vector(
Θ, X∗ij

)
be distributed as (Θ, XI) in the binary signal structure presented in Section

3. Moreover, let the random vector

(X∗12, X
∗
23, X

∗
13, X

∗
11, X

∗
22, X

∗
33, Y1, , Y2, Y3)

be independent conditionally on Θ = θ, for all θ ∈ {−1, 1} and let the vector

(Θ, Y1, Y2, Y3) be independent. Last. for each i, let the set Xi consist of four signals

defined as follows:
X
{i,j,k}
i = 1{Yi=ij}X

∗
ij + 1{Yi=ik}X

∗
ik + 1{Yi=i}X

∗
ii

X ij
i = 1{Yi=ij}X

∗
ij + 1{Yi=ik}X

∗
ii + 1{Yi=i}X

∗
ii.

X
{i,k}
i = 1{Yi=ik}X

∗
ik + 1{Yi=ij}X

∗
ii + 1{Yi=i}X

∗
ii

X
{i}
i = X∗ii

In the signal structure constructed in Example 2, for each player i and each

dependence vector i, the signal XS
i , with S =

{
j : dij = 1

}
is player i’s most di-

dependent signal. One can generalize this construction to more than two players

and to more signals.
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C Proofs

Abusing the terminology defined in section (4.1), for all k ≥ 0, and all d ∈ {−1, 1}k ,
we say that a mapping Φ from X k to R is (strictly) d-monotonic if it is (strictly)

increasing in each xj such that dj = 1 and (strictly) decreasing in each xj such

that dj = −1.

The following Lemma is useful in the Proof of Theorem 4.

Lemma 1. Let X−i be a profile of signals, and let Xi and X ′i be signals. Let

d ∈ {−1, 1}I be a dependence vector, with di = 1 and let Φ be a mapping from

X I\{i} to R.

i. Suppose that X ′i conditionally d-depends as least as much on X−i as Xi does

and that Φ is d−i-monotonic. Then for all z ∈ X ,

EXi,X−i
[Φ (X−i) | Xi > z] ≤ EX′i,X−i

[Φ (X−i) | X ′i > z] . (14)

ii. Suppose that X ′i conditionally d-depends strictly more on X−i than Xi does

and that Φ is strictly d−i-monotonic. Then for all z ∈ X such that z 6= maxX ,

EXi,X−i
[Φ (X−i) | Xi > z] < EX′i,X−i

[Φ (X−i) | X ′i > z] (15)

Proof of Lemma 1: (i) By definition, since X ′i d-depends as least as much on X−i

as Xi does, the pdf of (djXj)j 6=i , conditional on X ′i > z, first-order stochastically

dominates the pdf of (djXj)j 6=i , conditional on Xi > z. Then consider the function

Γ (x−i) = Φ
(

(djXj)j 6=i

)
. Because Φ is d−i-monotonic, the function Γ is increasing.

Together, and by the equivalence between (i) and (iii) in Theorem 7, these last

two claims imply that

EXi,X−i

[
Γ
(

(djXj)j 6=i

)
| Xi > z

]
≤ EX′i,X−i

[
Γ
(

(djXj)j 6=i

)
| X ′i > z

]
,

which is equivalent to inequality (14).

(ii) Under assumptions of point (ii) , the inequalities hold strictly. �

Proof of Theorem 1:

Let Ai,X : α−i −→ αi be the action best-response of player i under information

structure X. Then, the following lemma is useful for the proof of Theorem 1.

Lemma 2. Let (α1, α2) be a Nash Bayesian equilibrium of the game ΓX with an

exogenous information structure X, such that for all i = 1, 2 the following holds
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1) X1 = X2 if and only if α1(1)α2(1)bia > 0

X1 6= X2 if and only if α1(1)α2(1)bia < 0

2) Ai,(Xi,X−i)(α−i) has a sign that does not depend on Xi.

Then, (X, (α1, α2)) is a Nash Bayesian equilibrium of the game Γ with an

endogenous information structure.

Proof of Lemma 2: First, for each i = 1, 2, because (α1, α2) is a Nash Bayesian

equilibrium of ΓX , player i does not have a profitable deviation of the form (Xi, α
′
i)

with α′i 6= αi.

Suppose by contradiction that (X, (α1, α2)) is not a Nash Bayesian equi-

librium of the game Γ with an endogenous information structure. Then this

means that a player i has a profitable deviation (X ′i, α
′
i) with X ′i 6= Xi. Then,(

X ′i, Ai,(X′i,X−i)(α−i)
)

is an even better deviation, thus it is also profitable. But

because Ai,(X′i,X−i)(α−i) is of the same sign as αi, and by 1), the deviation(
Xi, Ai,(X′i,X−i)(α−i)

)
is even better and thus must be profitable. But then, this

contradicts the assumption that (α1, α2) is a Nash Bayesian equilibrium of the

game ΓX . �

We now proceed to prove Theorem 1. Consider the game given in Section 3

and assume that b1θ = 4.8, b2θ = 5, b1a = −0.8, b2a = −1.2 and ε = 0.26.

Fix the information structure X, then by taking the first-order condition to (2)

with respect to αi (1) and αi (−1) for i = 1, 2, we can observe that −αi (1) = αi (−1)

and that the best response functions are

α1(1) = 288
125
− 4

5
α2(1) and α2(1) = 12

5
− 6

5
α1(1) if X1 = X2

α1(1) = 288
125
− 576

3125
α2(1) and α2(1) = 12

5
− 864

3125
α1(1) if X1 6= X2

. (16)

Given the information structure is X1 6= X2, the unique equilibrium in ac-

tion strategies is ((1.9616,−1.9616), (1.85766,−1.85766)). Whereas, when the

information structure is X1 = X2, the unique equilibrium in action strategies is((
48
5
,−48

5

)
,
(
−228

25
, 228

25

))
.

Then, by checking that conditions 1) and 2) of Lemma 2 hold using (16), we can

show that the profile (X, (1.9616,−1.9616), (1.85766,−1.85766)) with X1 6= X2

and the profile
(
X,
(

48
5
,−48

5

)
,
(
−228

25
, 228

25

))
with X1 = X2 are both Nash Bayesian

equilibria of the game Γ.
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Figure 1 depicts the players’ action best-responses and shows the equilibrium

when X1 = X2 (in blue) and when X1 6= X2 (in red). Figure 2 zooms in on the

equilibrium when X1 6= X2 and shows that Condition 2) of Lemma 2 holds. Then,

Figure 3 zooms in on the equilibrium when X1 = X2 and shows that Condition 2)

of Lemma 2 holds also. �

48
5

1.960.817 311 328
78 125

Α1

-
228
25

1.857

Α2

Figure 1: Players 1’s action best-response (full line), Players 2’s action best-
response (dashed line) given information structure X

1.960.817
Α1

1.857

-
3972

15 625

Α2

Figure 2: Deviation from X1 6= X2: Players 1’s action best-response (full line),
Players 2’s action best-response (dashed line)
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48
5

1.960.817 311 328
78 125

Α1

-
228
25

Α2

Figure 3: Deviation from X1 = X2: Players 1’s action best-response (full line),
Players 2’s action best-response (dashed line)

Proof of Theorem 2: It suffices to give an example where the planner chooses an

information structure that differs from what the players choose in the decentralized

game. Suppose that player i’s payoff is given by Equation (5) and that ba =

−3, bθ = 1, bθa = −2, baa = 0.75 and ε = 0.25. In this case, an equilibrium exists

and according to Proposition 2, the players will choose to obtain private information.

The social planner, however, will prefer to impose public information.�

Proof of Theorem 4: Proof of (i) . Let i ∈ I and let ci be a complementarity

vector for i. Suppose that ui has ci-increasing differences in own and others’ actions.

Let m ∈ {−1, 1}I be a monotonicity profile and let X−i be a profile of signals such

that Xj ∈ Xj for all j. Suppose that Xi and X ′i are two signals in Xi such that

X ′i d
i-depends as least as much on X−i as Xi does, where di is the dependence

vector such that the relation (6) holds for all j. Let α be profile of pure m-monotonic

action strategies. We will show that

EΘ,Xi,X−i
(ui (α (Xi, X−i) ,Θ)) ≤ EΘ,X′i,X−i

(ui (α (X ′i, X−i) ,Θ)) (17)

holds.

Let z1 < ... < zm be the elements of X . Also, for each k ∈ {1, ..,m− 1} , and

each θ ∈ T, let Φk,θ be the function from X I\{i} to R such that

Φk,θ (x−i) = ui
(
α
(
zk+1, x−i

)
, θ
)
− ui

(
α
(
zk, x−i

)
, θ
)
.

The proof is in four steps.

Step 1: The function Φk,θ is di−i-monotonic.
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Proof of Step 1: Since for each θ, the function ui has ci-monotonic differences in x,

and the function α is m-monotonic, it follows that Φk,θ is di−i-monotonic. �

Step 2: For all k ∈ {1, ..,m− 1} , and all θ ∈ T, we have

EXi,X−i

[
Φk,θ (X−i) | Xi > zk, Θ = θ

]
≤ EX′i,X−i

[
Φk,θ (X−i) | X ′i > zk, Θ = θ

]
.

(18)

Proof of Step 2: By Step 1, the function Φk,θ is di−i-monotonic. By assumption,

X ′i d-depends more on X−i than Xi does, thus by Lemma 1, inequality (18) holds.

�

Step 3: For all k ∈ {1, ..,m− 1} , and all θ ∈ T, we have

ui (α (Xi, X−i) , θ) =
m−1∑
k=0

1{Xi>k}Φk,θ (X−i) (19)

and

ui (α (X ′i, X−i) , θ) =
m−1∑
k=0

1{X′i>k}Φk,θ (X−i) . (20)

Proof of Step 3: These identities are easily verified. We leave them to the reader.

�

Step 4:

EΘ,Xi,X−i
[ui (α (Xi, X−i) ,Θ) | Θ = θ] ≤ EΘ,X′i,X−i

[ui (α (X ′i, X−i) ,Θ) | Θ = θ] .

(21)
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Proof of Step 4: We know that

EXi,X−i
[ui (α (Xi, X−i) ,Θ) | Θ = θ]

= EXi,X−i

[
m−1∑
k=0

1{Xi>k} (Φk,θ (X−i)) | Θ = θ

]

=
m−1∑
k=0

EXi,X−i

[
1{Xi>k}Φk,θ (X−i) | Θ = θ

]
=

m−1∑
k=0

EX−i
[Φk,θ (X−i) | Xi > k and Θ = θ]P (Xi > k | Θ = θ)

≤
m−1∑
k=0

EX−i
[Φk,θ (X−i) | X ′i > k and Θ = θ]P (X ′i > k | Θ = θ) (22)

=
m−1∑
k=0

EX′i,X−i

[
1{X′i>k} (Φk,θ (X−i)) | Θ = θ

]
= EX′i,X−i

[
m−1∑
k=0

1{X′i>k} (Φk,θ (X−i)) | Θ = θ

]
= EX′i,X−i

[ui (α (X ′i, X−i) ,Θ) | Θ = θ]

where the first and sixth equalities follow from Step 3, and the inequality follows

from Step 2 and from the assumption that (Xi,Θ) and (X ′i,Θ) have the same joint

marginal distribution. �

Final Step: Since for all θ,

EXi,X−i
[ui (α (Xi, X−i) ,Θ) | Θ = θ] ≤ EX′i,X−i

[ui (α (X ′i, X−i) ,Θ) | Θ = θ] , (23)

taking expectations of both sides on Θ, we obtain

EΘ,Xi,X−i
[ui (α (Xi, X−i) ,Θ)] ≤ EΘ,X′i,X−i

[ui (α (X ′i, X−i) ,Θ)] , (24)

the desired conclusion. ��

Proof of (ii) . Under the additional assumptions we will prove that the inequality

(22) is strict at least for some realization θ. First, Step 1 can be modified as follows.

since for each θ, the function ui has strict ci-complementarities in actions, and the

function α is strictly m-monotonic, the function Φk,θ is strictly di−i-monotonic for all

θ and k. Second, because X ′i d-depends more than Xi on X−i, there exists a realiza-

tion θ◦ and some integer k such that the pdf P
((
dijXj

)
j 6=i | d

i
iX
′
i > k and Θ = θ

)
strictly stochastically dominates the pdf P

((
dijXj

)
j 6=i | d

i
iX
′
i > k and Θ = θ

)
. For
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this realization θ◦ and this integer k, the inequality (18) holds strictly. As a result,

the inequality (23) holds strictly as well. Finally, since all realizations θ of Θ have

positive probability, the inequality (24) holds strictly as well. �

Proof of Corollary 4: Let (X1, X2, α1, α2) be a pure Nash-Bayesian equilibrium

of the game such that α is strictly isotonic (if the payoff complementarities in

actions are strictly positive) or antitonic (if they are strictly negative) and suppose

by contradiction that X1 6= X2 with positive probability. Then by Theorem 4,

the deviation (X ′1, α1) with X ′1 = X2 is strictly profitable for player 1, since X ′1

depends more on X2 than X1. Therefore X must be public information. �

Proof of Theorem 5. By changing variables a′i = miai, the game is equivalent to

one where m = (1, ..., 1) and all ui have increasing differences in actions and in θ.

In the continuation we will thus restrict attention to the case where m = (1, ..., 1)

and ci = (1, ..., 1) .

For any signal profile X, let ΓX denote the game with exogenous information

structure X, and Γ the game with endogenous information. The main result in

Van Zandt and Vives (2007) implies that there exists an increasing action strategy

profile α such that in the game ΓX , the profile α is a Nash-Bayesian equilibrium

of ΓX . Let α be such a profile. We will now show that the profile (X,α) is a

Nash-Bayesian equilibrium of the game with endogenous information Γ.

Suppose by contradiction that (X ′i, α
′
i) is a profitable deviation for player i in

this game. Let α′′i be a player i’s best response to α−i in the game ΓX′i,X−i
. By

Proposition 11 in Van Zandt and Vives (2007), the action strategy α′′i is increasing.

Since (X ′i, α
′
i) is a profitable deviation for player i from profile (X,α) in Γ, it follows

that (X ′i, α
′′
i ) is also a profitable deviation for player i from profile (X,α) in Γ. But,

because Xi depends more on X−i than X ′i, the same argument used in Theorem 4

implies that (Xi, α
′′
i ) is an at least as good profitable deviation for player i from

profile (X,α) in Γ. But this implies that α′′i is a profitable deviation for player

i from profile α in ΓX , which contradicts the statement that α is Nash-Bayesian

equilibrium of ΓX . Therefore no player has any profitable deviation from (X,α) in

Γ, the desired conclusion. �

Proof of Theorem 6. Suppose by contradiction that (X ′i, α
′
i) is a profitable

deviation from (X,α) for player i in this game Γ. Let α′′i be a pure mi-monotonic

action strategy that is a best response for player i’s to α−i in the game ΓX′i,X−i
.

Such an action strategy exists by assumption (iv) and because α is m-monotonic

by assumption (iii) . Since (X ′i, α
′
i) is a profitable deviation for player i from profile
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(X,α) in Γ, it follows that (X ′i, α
′′
i ) is an even better deviation in Γ, and is therefore

also a profitable deviation for player i from (X,α) in Γ. But, because Xi d
i-depends

more on Xi than X ′i, and because (α′′i , α−i) is m-monotonic, the same argument

used in Theorem 4 implies that (Xi, α
′′
i ) is at least as good as (X ′i, α

′′
i ) , and therefore

at least as good as (X ′i, α
′
i) . Therefore (Xi, α

′′
i ) is a profitable deviation for player i

from profile (X,α) in Γ. But this implies that α′′i is a profitable deviation for player

i from profile α in ΓX , which contradicts the statement that α is Nash-Bayesian

equilibrium of ΓX . Therefore no player has any profitable deviation from (X,α) in

Γ, the desired conclusion.�

D PQD and SPM dependence

For any two random vectors X = (X1, ..., XN) and Y = (Y1, ..., YN) with identical

marginals, and respective cdfs F and G, we define the following dependence

orderings.

We say that X is at least as Positive Quadrant Dependent (PQD) as

Y if for all x ∈ RN , we have

F (x) ≤ G (x) .

A function u : RN → R is said to be supermodular if for any x, y ∈ RN it satisfies

u (x) + u (y) ≤ u (x ∧ y) + u (x ∨ y) ,

where the operators ∧ and ∨ denote coordinate-wise minimum and maximum

respectively.

We say that X is at least as Supermodular Dependent (SPM) as Y if

EX (u (X)) ≥ EY (u (Y ))

for all supermodular functions u : RN → R.

E Mixed strategies

The results obtained in Theorem 4 generalize to mixed strategies, but they imply

very few restrictions for Nash-Bayesian equilibria where players play non degenerate

mixed strategies. For example, consider a game with two players and two signals,

with a fixed information structure such that both players observe each of the two

signals with equal probabilities (independent draws). Suppose that this game
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admits a pure Nash-Bayesian equilibrium in action strategies (they could be pure

or not).

Then it is easy to see that the game with an endogenous information structure

admits a Nash-Bayesian equilibrium, where both players randomize with equal

probabilities between the two signals. To see this, suppose that player 2 uses

this strategy. From the point of view of the player 1, the two signals are then

equally informative in a Blackwell sense on the vector (θ, α2) , which is all he cares

about. It is then a best response for him to play this half half mixed strategy

and the same argument holds for player 2. This phenomenon is more general.

A symmetric fully mixed equilibrium exists, for any number of players, if and

only if the Bayesian game where this structure is fixed admits a Nash-Bayesian

equilibrium. What is important for the result is that there are only two signals

in X. A more general result can be obtained for a larger number of signals in X,

provided that some symmetry condition, which automatically holds in the case of

two signals, is imposed on the signal structure.

Theorem 8. Let N ≥ 2 and Xi = {XI , XII} for all i ∈ I. Consider the game with

an exogenous information structure, where each player observes XI or XII with

probability 1/2 (independent draws across players). Suppose that this game admits

a pure Nash-Bayesian equilibrium in action strategies (pure or not). Then this

action profile and this information structure form a Nash-Bayesian equilibrium of

the game Γ where the information structure is endogenous.
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