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Abstract

We study the sorting of skill/income-heterogeneous consumers within and between cities.

We allow for non-homothetic preferences and locations that are di¤erentiated by their ac-

cessibility to exogenous amenities and distance to employment centers, where production

is subject to local externalities. The residential equilibrium is driven by the properties of

an amenity-commuting aggregator obtained from the primitives of the model. Using the

model�s structure and estimated parameters based on micro-data of the Netherlands, we

predict that exogenous amenities are a key driver of spatial sorting. Our general equilibrium

counterfactual analysis shows that in the absence of amenities, the GDP increases by 10%

because commutes are shorter. However, income segregation rises and 95% of consumers are

worse-o¤.
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1 Introduction

Spatial segregation seems to generate negative and persistent e¤ects on individual development

and to threaten social cohesion (Chetty and Hendren, 2018; Bazzi et al., 2019). This is why we

�nd it important to study the various forces that underpin the sorting of heterogeneous households

within and between cities. To this end, we develop a full-�edged general equilibrium model that

determines the locations of skill-heterogeneous households and shows how their choices pin down

the aggregate income. This in turn allows us to study the e¤ects of exogenous amenities �such

as natural and historic attributes of locations � on the spatial distribution of households and

activities. Our approach tackles this problem from two complementary perspectives. First, we

develop a new urban economic model in which skill-heterogeneous households choose where to live

and where to work in a polycentric space-economy in the presence of agglomeration economies and

heterogeneous commuting behavior. Second, we estimate this model by using various datasets from

the Netherlands and undertake a counterfactual that highlights the impact of speci�c amenities

on spatial sorting and the aggregate income.

The canonical monocentric city model leads to a fairly extreme prediction: households are

sorted by increasing income order as the distance to the central business district rises (Fujita,

1989). One missing key explanation, at least for cities that have a long history, is the existence of

exogenous amenities, such as historic buildings and architecture, scenic landscapes, river and sea

proximity. That such amenities matter in residential choices has been well documented (Brueckner

et al., 1999; Glaeser et al., 2001; Koster and Rouwendal, 2017; Lee and Lin, 2018). Furthermore,

there are substantial di¤erences in total factor productivity among employment centers (Hornbeck

and Moretti, 2019). However, we do not know well how these forces interact to determine how

households distribute themselves across urban areas. This paper attempts to ful�ll this gap by

proposing a new approach in which locations are distinguished by the distance to employment

centers, which have an endogenous total factor productivity, and the accessibility to given and

�xed amenities that vary across space.

What are our main contributions? First, we develop a quantitative urban sorting model

based on the bid-rent function approach to show that, regardless of the functional form of the

amenity, commuting time, and skill distributions, the spatial sorting of heterogeneous households

across a continuum of locations is imperfect. In other words, a greater geographical distance

between households no longer implies a wider income gap. Although our problem has the nature

of a matching problem between landlords and households, matching theory cannot be applied

here because a household�s land consumption varies with both income and location while it is

exogenous in matching theory (Chiappori, 2017). This is why we use the bid rent approach in this

paper.
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Second, we characterize the equilibrium skill mapping under Stone-Geary preferences, which

are not homothetic, and a large number of potential employment centers. Homothetic prefer-

ences such as the Cobb-Douglas or the CES, which are the speci�cations most often used in the

literature, must be ruled out because they generate multiplicity of equilibria when a continuum

of households have di¤erent incomes (Gaigné et al., 2017), while failing to capture the fact that

housing expenditure shares decline with income (Albouy et al., 2016). We show that the equilib-

rium skill mapping re�ects the behavior of a location-quality index de�ned over the location set.

This index is built from the primitives of the model and its value at any particular location is

determined by households�commuting behavior. Furthermore, since the location-quality index is

de�ned over a set that includes locations belonging to di¤erent cities, we account for the fact that

amenity and productivity di¤erences in urban areas are critical in choosing a residential place. It

is worth stressing that our results are not speci�c to the Stone-Geary preferences. They hold true

for other non-homothetic preferences; what changes is the functional form of the location-quality

index.

The upshot is that the bliss point is the global maximizer of the location-quality index, thus

implying that this location is occupied by the high-skilled because they propose the highest bid.

As one moves away from this location along all admissible directions, households are sorted by

decreasing skills until a local minimizer of the location-quality index is reached where low-skilled

households are located. Around this minimizer, household skill starts rising. As a result, house-

holds get more exposure to and have more contacts with other social groups when the number of

turning points of the location-quality index rises.

Third, production, which operates through employment centers whose size and productivity

are endogenous, allows the determination of households� incomes according to their skills and

residential choices. To make our setting consistent with real life, we account for the fact that

individuals�commuting behavior is gravitational in nature. In line with the empirical literature

on agglomeration economies (Combes and Gobillon, 2015), we also recognize that workers�pro-

ductivity depends on the density of jobs in their working places, which are characterized by an

endogenous and speci�c total factor productivity. The heterogeneity of space implies that workers

having the same skills may end up earning di¤erent incomes though each skill-group enjoys the

same utility level.

Fourth, we show that a spatial equilibrium always exists. It is well known that settings involving

agglomeration economies are often plagued with the existence of multiple equilibria (Duranton and

Puga, 2004). However, we show that the spatial equilibrium is unique if agglomeration economies

are not too strong (Allen and Arkolakis, 2014). From the empirical viewpoint, this assumption

does not seem to be an issue because our calculations show that the equilibrium is unique for the

estimated values of the elasticity of agglomeration economies.
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Fifth, our model is �exible enough to determine analytically the equilibrium outcome when

skills and the location-quality index are Fréchet-distributed. We use this location-quality index

to predict the equilibrium skill mapping and test these predictions by estimating recursively the

main parameters of a discretized version of the theoretical model. We �rst estimate a commuting

gravity equation and, then, the income mapping, which is shown to be directly related to the

skill mapping. This provides the necessary information to estimate the elasticity of agglomeration

economies.

For the empirical analysis, we use rich Dutch microdata for more than 10 million households

covering the years 2010 to 2015 on incomes, residential and job locations at the household level,

employment accessibility, as well as land values and amenities at each location. The choice of

the Netherlands is motivated by (i) the availability of these disaggregated data and (ii) the fact

that the public services that underpin social cohesion (e.g., education and health) are centrally

�nanced and/or administered (Ritzen et al., 1997). As a result, competition between jurisdictions

supplying schools that characterizes many U.S. metropolitan areas is much less of an issue. The

Netherlands is one of the countries with the highest population densities in the world (if we

disregard city states). Today, with a population density of 407:4 pop/sq km, the Netherlands is

almost as dense as the San Francisco Bay area whose area is similar to that of the Netherlands.

This is an important feature in settings where density economies matter. It is also one of the

richest, with a GDP per capita higher than the UK, Germany and Japan. Moreover, Dutch cities

were established long ago and are known to o¤er a high quality of life, which is at least partly due

to the presence of exogenous amenities. Despite being a small country, the Netherlands hosts no

less than 8 UNESCO world heritage sites, which is almost as much as London and Paris together,

while it hosts 61; 908 listed buildings, which is more than three times the number of listed buildings

in Greater London.

To measure the level of exogenous amenities, we use a proxy suggested by Ahlfeldt (2013)

and Saiz et al. (2018): the number of outside geocoded pictures taken by residents at a certain

location. One key advantage of this index is that it lets consumers choose the aesthetic quality

of buildings and locations they like best by �voting with their clicks� (Carlino and Saiz, 2019).

This allows us to move beyond the approach of de�ning amenities implicitly, as in Ahlfeldt et al.

(2015) and Albouy (2016). We show the robustness of our results by using an alternative proxy

for amenities based on Lee and Lin (2018).

Admittedly, households also care about the proximity to private facilities such as shops, restau-

rants and theaters, which may be disproportionately located in upscale neighborhoods where many

pictures are taken. In addition, since there is no proxy that perfectly captures the full amenity

potential at a certain location, amenities are measured with error. Employment accessibility is

also likely to be endogenous due to correlation with unobservable household characteristics and
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agglomeration economies �the latter being more prevalent in dense areas where commutes are

shorter. We address the endogenous nature of amenities and accessibility in our econometric analy-

sis in several ways, e.g., by obtaining Oster�s (2019) bias-adjusted estimates and by constructing

historic instruments. Since the strategy of using instruments based on historic data raises several

issues, we devote considerable attention to the validity of such an identi�cation strategy.

We �rst report results from reduced-form regressions. The results unambiguously suggest that

both amenities and commuting costs are important in determining the spatial income distribution.

We �nd that doubling the amenity level attracts households whose incomes are 2:3% higher, while

doubling accessibility attracts households whose incomes are 3:8% higher. Hence, the impacts of

amenities and accessibility have a similar order of magnitude. We then estimate the structural

parameters of the model, which enables us to undertake counterfactual experiments.

Since our main focus is on the e¤ects of exogenous amenities, we consider a scenario where

these amenities are set to the lowest value observed in the sample. This mimics many U.S. cities,

where households focus only on commuting. As a result, commutes are shorter and the overall

output increases by 10:6%. This is because the Dutch high-skilled workers who reside in high

amenity places move into the most productive locations. The aggregate real income rises by 7:3%,

while the aggregate land rent decreases by 0:6%. Such numbers could suggest that the demand

for amenities reduces the overall productivity of the Dutch economy. However, this argument

ignores the fact that consumers, despite lower incomes, do value historic and natural amenities

since 95% of the households lose utility when amenities are set to their lowest value. Furthermore,

a �at distribution of exogenous amenities has strong repercussions for the spatial distribution

of skills, hence of incomes: the correlation between the values observed in the data and in the

counterfactual is only 0:556. Hence, we may conclude that amenities are a key determinant of

the skill-based sorting of households within and between cities. In addition, we have constructed a

measure of income mixing, i.e., the standard deviation of skills in adjacent neighborhoods, to see

how the counterfactual scenario a¤ects income mixing within the Netherlands. More speci�cally, a

uniform amenity distribution implies that income mixing is reduced by approximately two-thirds.

Hence, there is substantially more spatial segregation when amenities are absent. This con�rms the

armchair evidence that European, especially Dutch, cities are more socially mixed than American

cities. Last, because our experiment is about consumer amenities, we do not observe substantial

di¤erences in the spatial distribution of production in a situation where exogenous amenities are

absent.

Related literature. Suggesting the complexity of the issue, only a handful of papers in urban

economics have studied the social strati�cation of cities with heterogeneous households. Beckmann

(1969) was the �rst attempt to take into account a continuum of heterogeneous households in the
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monocentric city. Unfortunately, the assignment approach used by Beckmann was �awed (Monte-

sano, 1972). Recent surveys, such as Duranton and Puga (2015) and Behrens and Robert-Nicoud

(2015), highlight the various di¢ culties associated with the spatial assignment of heterogeneous

agents and express some skepticism about the ability of the bid-rent approach to deal with het-

erogeneous households and a continuum of locations.

Diamond (2016) studied how local wages, urban costs and employment respond to local labor

shocks. However, this author focuses on workers�locational choices between cities and disregard

workers�residential choices within cities. Using a dynamic setting, Lee and Lin (2018) showed

that richer households are anchored in neighborhoods with better natural amenities. We di¤er

from them in at least one fundamental aspect: in their setting people are assumed to work where

they live. In our setting, households are free to choose where to live and where to work, while

accounting explicitly for commuting costs between the residence and the workplace.

In an important paper, Ahlfeldt et al. (2015) highlight the role of amenities, agglomeration

economies and commuting in residential location choices in their study of the internal structure of

Berlin. Our paper di¤ers from theirs in several fundamental aspects. First, these authors assume an

open city model in which the total city population is endogenous while households enjoy the same

exogenous utility level. In contrast, we work with a model in which the utility level is endogenous.

Second, they assume homogeneous individuals, whereas we consider skill-heterogeneous workers,

so that the endogenous utility level varies across skills. Third, Ahlfeldt et al. do not provide

any properties of the spatial equilibrium. This should not come as a surprise as characterizing

the equilibrium outcome is problematic under a �nite location set. Indeed, one cannot use the

tools of analytical calculus. By contrast, by working with a continuum of locations, we are able

to show that residential choices are driven by a location-quality index that allows us to pin down

households�location choices.

These di¤erences imply that the estimation procedures used in the two papers also di¤er along

several lines. For example, Ahlfeldt et al. (2015) �nd that the elasticity of amenities with respect

to residential density is 0:15, which is quite high. This is so mainly because amenities are measured

as �structural residuals�, meaning that it is unclear what these amenities actually capture (e.g.,

they may capture housing characteristics or sorting on unobserved household characteristics).

In our paper, we de�ne amenities explicitly and strive to show that amenities and employment

accessibility have a causal and signi�cant impact on the spatial equilibrium. Whereas Ahlfeldt

et al. obtain structural residuals proxying for amenities and local productivity by using Cobb-

Douglas utility and production functions, we use the income mapping to recover preferences for

amenities using Stone-Geary preferences and a CES production function. Closer to us, Tsivanidis

(2019) considers two skill-groups and a closed-city setting. Like us, he uses Stone-Geary preferences

because the observed Engel curves are nonlinear. However, his work di¤ers from ours along

6



several lines. In particular, Tsivanidis focuses on the intra-urban impact of a major transportation

infrastructure and does not aim to develop a setting that yields theory results. In this respect,

his work remains in the spirit of Ahlfeldt et al. (2015).

The remainder of the paper is organized as follows. We provide a detailed description of our

model in Section 2. Section 3 characterizes the equilibrium skill mapping for general distribution

functions. We also determine analytically the equilibrium skill and income mappings when skills

and the location-quality index are Fréchet-distributed. Data are discussed in Section 4. In Section

5, we provide reduced-form evidence of the impact of amenities and accessibility to jobs on sorting

by incomes. In Section 6, we outline the procedure to identify the model�s parameters and present

the results of our counterfactual analysis. Section 7 concludes.

2 The model and preliminary results

2.1 The economy

The economy involves a unit mass of skill-heterogeneous households. A household is characterized

by her skill s 2 R+ and is endowed with one unit of s-labor. The skill c.d.f. F (s) is continuously
di¤erentiable on R+ and its density is denoted f(s). Like most many recent contributions in urban
economics, we treat the skill distribution as a given. Each household has one unit of time that she

divides between commuting and producing. Her allocation of time is determined by the residence

and working place she chooses.

The economy involves two normal consumption goods: (i) land h, which is a proxy for housing,

and (ii) a homogeneous �nal consumption good q. Shipping the �nal good within the city is

costless. Therefore, its price is the same across city locations. This good is used as the numéraire.

The land density at each location of the network is 1 while the opportunity cost of land is given

by the constant R0 � 0.
The map formed by streets, roads, highways, and railway junctions (in a city, region or country)

is modeled by means of a topological network. A topological arc, denoted az, is the image in R2 of
a compact interval of R by a continuous one-to-one mapping. Clearly, any arc linking two distinct
locations contains a continuum of locations. A topological network N = [Zz=1az is de�ned as the
union of a �nite number Z � 1 of topological arcs. Each arc has a �nite length. Furthermore,

N is such that for any two points x1 and x2 belonging to N there is at least one concatenation

of arcs and subarcs of N that links these two points. The distance d(x1; x2) between x1 and x2
is given by the length of the shortest path that connects these locations. Clearly, d(�) is a metric
de�ned on N . The endpoints of the arcs are called vertices. We assume that these vertices are

not colinear, so that (N; d) is not a one-dimensional metric space. An example of transportation

networks similar to ours can be found in Allen and Arkolakis (2014). In what follows, we assume
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that all functions are di¤erentiable along each arc of the network N , except may at the vertices.

2.2 Consumption

Households share the same utility function. Since households prefer more amenities than less, we

consider a preference structure similar to the one used in models of vertical product di¤erentiation:

U(q; h; b) = b � u(q; h);

where b denotes the amenity level, q the costlessly traded numéraire, and h the land consump-

tion. Hence, the utility derived from consuming amenities rises with income. Let b(x) > 0 be a

given function whose value expresses the amenity level (or, equivalently, an aggregator of distinct

amenities) available at x 2 N , which are exogenous and intrinsic to a location. In the featureless
city of urban economics, b(x) is constant across locations. In this paper, b(x) varies with x.

We have seen that homothetic preferences must be ruled out to study the impact of skill

heterogeneity on residential choices. A well-known example of non-homothetic utility is Stone-

Geary�s:

u(q; h) = q1�� � (h� h)�; (1)

where 0 < � < 1 and h > 0 the minimum amount of �oor-space in which to live, which is supposed

to be su¢ ciently low for the equilibrium consumption of the numéraire to be positive.

A s-household�s residing at x faces the following budget constraint:

y(s) = q +R(x)h;

where y(s) the income of a s-household and R(x) the land rent at x, which are both speci�ed

below. In line with the literature, we assume that the land rent is paid to absentee landlords

(Fujita, 1989).

Maximizing (1) with respect to q and h subject to the budget constraint leads to the linear

expenditure system:

q�(x; y(s)) = (1� �)[y(s)�R(x)h]; (2)

h�(x; y(s)) = (1� �)h+ � y(s)
R(x)

; (3)

which shows that the land demand at any location x increases less than proportionally with

income.
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The corresponding indirect utility V (R(x); y(s)) is given by the following expression:

V (R(x); y(s)) = (1� �)1����b(x)
�
y(s)�R(x)h

�
R(x)��:

2.3 Production and income

The �nal sector, which operates under constant returns and perfect competition, supplies the

numéraire by combining horizontally di¤erentiated intermediate inputs produced by workers in

employment locations. Each worker produces a single intermediate input and each intermediate

input is produced by a single worker. The production function of the �nal sector is given by

Y =

�Z 1

0

[z (')](��1)=� d'
��=(��1)

;

where z (') denotes the quantity of input ' while � > 1 is the elasticity of substitution between

intermediate inputs. Shipping these inputs across space is costless.

There is a given and �nite number of employment locations i = 1; :::; n 2 N . When a s-worker
produces the intermediate input ' at i, her output is given by z (') = Ai`is units of input ',

where Ai > 0 is the total factor productivity of location i and `i is the worker�s labor time at

i. Let gi(s) � 0 be the endogenous density of s-households working at i (see (10) for a formal

de�nition). Since the intermediate inputs are shipped at no cost, the total output of the economy

is given by a nested CES (Bénabou, 1996):

Y =

(
nX
i=1

h
Ai
�R1
0
(`is)

(��1)=�gi(s)ds
��=(��1)i(��1)=�)�=(��1)

: (4)

In other words, the aggregate output may be viewed as a CES-sum of what is accomplished

in each employment location. In doing so, we account for the direct interdependence between

employment centers, each one providing a particular range of intermediate inputs according to its

skill composition.

Since we already account for the heterogeneity of the labor force at i in (4), we assume that

the total factor productivity Ai of the location i depends only on its size:

Ai = AiL�i � 0; i = 1; ::; n (5)

where Ai > 0 is an exogenous location-speci�c shifter, Li � 0 the employment level at i, and

� > 0 the elasticity of agglomeration economies with respect to Li at location i. We treat the

vector L � (L1; :::; Ln), with L1 � 0; :::; Ln � 0 and �ni=1Li = 1, as given and will determine the
equilibrium values L�1; ::; L

�
n in Proposition 1.
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Denote by `i(x) the labor time of a household residing at x and working at i. Since the �nal

sector is competitive, it follows from (4) that the income earned by a s-household residing at x

and working at i is given by

Ai`i (x) s
@Y

@[Ai`i (x) s]
= [Ai`i (x) s]

(��1)=�Y 1=�

� !(s)ti(x)

where

!(s) � s(��1)=�Y 1=� (6)

is a s-household�s skill-speci�c component of the household�s income, which also depends on the

overall productivity Y of the city, while

ti(x) � [Ai(Li)`i(x)](��1)=�

is the commuting component of the income for any given Ai. For any Ai and Aj, we assume that

ti(x) = tj(x) for j 6= i has a �nite number of solutions.

2.4 Workplace choice

A s-household is characterized by an intrinsic income !(s) that depends on her skill s and the

total output Y , while her income also depends on her residential location x and workplace i. The

s-households located at x have idiosyncratic reasons for working in di¤erent employment locations.

In line with discrete choice theory, we assume that a s-household�s income is random and given by

!(s)ti(x)�kxi, where the �kxi are i.i.d. shocks on commuting which are speci�c to the individual k

and locations x and i. These shocks capture households�idiosyncrasies.

The e¤ect of uncertainty on location and consumption decisions depends on the timing of un-

certainty resolution and on the �exibility that allows a household to revise her decision in response

to information. We assume here a timing that endows households with the possibility to adjust

their workplace and total consumption conditional upon their residential choices. Before observ-

ing their actual income, households choose their residential locations x at the spatial equilibrium

associated with the distribution of expected incomes. Once households are located, they are able

to observe their actual incomes. The households then choose the workplaces that give them the

highest incomes, as well as the corresponding consumption of land and numéraire. Since house-

holds are heterogeneous in commuting, those who choose the same residential location x need not

earn the same income and consume the same commodity bundle.

Since households anticipate they will choose the best workplace after the resolution of uncer-
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tainty, the expected indirect utility of a household at x is de�ned as follows:

E [V (R(x); !(s)ti(x)�i)] = E
�
(1� �)1����b(x)

�
max
i=1;::;n

!(s)ti(x)�i �R(x)h
�
R(x)��

�
: (7)

When the �i are i.i.d. according to a Fréchet c.d.f. I(z) = exp(�Kiz
�") where the shape

parameter " is an inverse measure of the dispersion of idiosyncratic tastes, which is assumed to be

the same across employment locations, and Ki is the scale parameter of the employment location

i. We show in Proposition 1 that the equilibrium outcome is such that the households who reside

at x share the same skill s(x). Since the land rent R(x) is given to a s-household located at x,

maximizing (7) amounts to maximizing her expected income given by

y(s(x); x) � !(s(x))t(x); (8)

where

t(x) � E
�
max
i=1;::;n

ti(x)�i

�
= �

�
"� 1
"

�" nX
i=1

Kit
"
i (x)

#1="
and � (�) is the gamma function (McFadden, 1974). It follows from (8) that the expected income

of a s-household located at x is strictly increasing in s. Furthermore, y(s; x) also depends on the

locational choices made by all types of households through the total factor productivity of the

employment locations captured in ti. As a result, individual incomes are determined at the market

outcome.

The probability that a household living at x chooses to work at i is given by the gravity

equation:

�i(x) =
Ki [ti(x)]

"Pn
j=1Kj [tj(x))]

" > 0 for all x 2 N: (9)

Thus, households residing at the same location work in di¤erent employment locations.

Because the s-households may be distributed over several residential locations, we denote by

�(x; s) 2 [0; 1] the share of s-households who reside at x. Therefore, we have:

gi(s) =
R
N
�i(x)�(x; s)f(s)dx: (10)

Using this expression, (4) becomes:

Y =

"
nX
i=1

Z 1

0

Z
N

[Ai`i (x) s]
(��1)=� �i(x)�(x; s)f(s)dxds

#�=(��1)
: (11)
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2.5 The spatial equilibrium

Given an amenity function b(x), a given mass of heterogeneous households choose where to live

and where to work in the city, how much land and how much of the composite good to consume.

The s-households may be distributed over several locations. The land market clearing condition

holds if s(x) satis�es the following condition:

j�(x; s)f(s)h(x; s)dsj = dx: (12)

In other words, the amount of land available between any x and x + dx > x and the area

occupied by the households whose skill varies from s to s+ jdsj are the same. Since s(x) need not
be monotone, the land market clearing condition is expressed in absolute value.

A spatial equilibrium is de�ned by the following vector:

(s�(x); ��(x; s�(x)); Y �; R�(x); h�(x; s�(x)); q�(x; s�(x)); L�1; :::; L
�
n)

with x 2 N , which is such that

b(x) � u[q�(x; s�(x)); h�(x; s�(x))] � b(y) � u[q�(y; s�(x)); h�(y; s�(x))] for all x 2 N

holds under the budget constraints, the population constraint and (12).

If the inequality is strict for all y 6= x, then all s�(x)-households are located at x (��(x; s�(x)) =
1). Otherwise, there exist at least two locations x1 and x2 such that the s�(x)-households are

indi¤erent between the locations x1 and x2. Thus, we have 0 < ��(�; s�(x)) < 1 at x1 and x2, while
the sum of the shares is equal to 1. In this case, we say that there is spatial splitting of identical

households.

In our setting, heterogeneous households enjoy di¤erent equilibrium utility levels. This is to

be contrasted with Ahlfeldt et al. (2015) who assume that households share the same expected

utility level, which is the exogenous reservation utility that prevails in the rest of the economy.

3 The sorting of skills

3.1 The location-quality index

The bid rent 	(x; y(s; x); U) of a household whose expected income is y(s; x) is the highest amount

she is willing to pay for one unit of land at x when her utility level is given and equal to U . In
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other words, the bid rent function is de�ned as follows:

	(x; y(s; x); U) � max
q;h

�
y(s; x)� q

h

���� s.t. b(x) � u(q; h) = U�
= max

h

y(s; x)�Q(h; U=b(x))
h

; (13)

where Q(h; U=b(x)) is the unique solution to b(x) � u(q; h) = U because u is strictly increasing in
h and indi¤erence curves do not cut the axes.

Since households treat the utility level as given, applying the �rst-order condition to (13) yields

the equation:

Q(h; U=b(x))� hQh(h; U=b(x))� y(s; x) = 0 (14)

whose solution, denoted H(y(s; x); U=b(x)), is the quantity of land consumed by a s-household at

x if her bid rent is equal to the land rent.1 The solution H(�) is called the bid-max lot size (Fujita,
1989). In Appendix A.2, we show that this solution is unique.

The budget constraint implies that the bid rent function may be rewritten as follows:

	(x; y(s; x); U) � y(s; x)�Q(y(s; x); U=b(x))
H(y(s; x); U=b(x))

: (15)

Land at x is allocated to the highest bidder. Therefore, if the type s�(x) is located at x, then

s�(x) must solve the equation:

	s =
@	(x; y; U)

@y
� @y(s; x)

@s
= 0; (16)

with
@y(s; x)

@s
= !st(x) =

� � 1
�

s�1=�Y 1=�t(x);

where we have used (6) and (8). The second-order condition implies 	ss < 0. Applying the

implicit function theorem shows that s�x and 	sx have the same sign. Therefore, we know how the

skill mapping varies when the sign of 	sx is determined.

De�ning

B(x) � bx(x)

b(x)
T (x) � �tx(x)

t(x)
;

we show in Appendix A.1 that

	sx =
t(x)h

H2
� [B(x)� (1� �)T (x)] � @y(s; x)

@s
: (17)

1For any function f(y; z), let fy (resp., fyz) be the partial (cross-) derivative of f with respect to y (resp., y
and z).
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As will become clear after Proposition 1, under Stone-Geary preferences, it is possible to

subsume the amenity and commuting e¤ects at x into a single scalar that has the nature of a

location-quality index. This scalar is given by

�(x) � b(x)[t(x)]1��: (18)

As L is given, the function �(x) at x is well de�ned. Since @y(s; x)=@s > 0, di¤erentiating (18)

shows that �x(x), B(x)� (1��)T (x) and 	sx have the same sign. Therefore, 	sx changes sign at
any extrema of the location-quality index. Furthermore, the higher �, the stronger the preference

for land. Therefore, as the intensity of preference for land increases, commuting matters less than

the accessibility to amenities. We assume without much loss of generality that b(x) and t(x) are

such that �(x) is never �at on a positive measure interval.

Although we assume Stone-Geary preferences, our results hold true whenever the location-

quality index �(x) is a function of b(x) and t(x) which is independent of s. To illustrate, consider

u(q; h) = q�1 + h�2 with 0 < �i < 1 and �1 6= �2. The elasticity of substitution between land and
the numéraire is variable and equal to 1=(1 � �1�1 � �2�2) where �i is the expenditure share on
good i = 1; 2. When �1 > �2, i.e., the composite good matters more than land, it can be shown

that the above preferences generate the index �(x) � [b(x)]1=�1 t(x), which is similar to (18).

3.2 The equilibrium skill mapping

Our objective is now to determine the equilibrium skill mapping that speci�es which s-households

are located at x. The next proposition shows that skills are distributed across N according to the

values of the location-quality index. Conditional on L, we rank the values of �(x) by increasing

order and denote by G(�) be the corresponding c.d.f. de�ned over R+.
The following proposition is proved in Appendix A.2.

Proposition 1. Assume Stone-Geary preferences. Then, (i) each location hosts at most one

household type; (ii) there exists a spatial equilibrium and this equilibrium is unique when the

elasticity of (5) with respect to employment is not too large; (iii) the equilibrium skill mapping

s�(x) and the equilibrium location-quality index ��(x) vary together with x. Furthermore, denoting

by G(�) the distribution of the values of ��(x), the equilibrium skill mapping is given by

s�(x) = F�1[G(��(x))]: (19)

In Appendix A.2, we also show that the equilibrium utility level satis�es the Spence-Mirrlees

condition, thus implying the existence of a positive assortative matching between skills and the

values of the location-quality index. In this case, there is a unique one-to-one and increasing

relationship between s and � (Chiappori, 2017). Hence, the highest skilled locate where the
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equilibrium location-quality index �� reaches its maximum. As �� starts decreasing with x, the

skill level of the corresponding residents also decreases. The lowest skilled reside at a global

minimizer of the equilibrium location-quality index. Around this location, the skill level rises

together with ��. As a result, the skill sorting does not translate into spatial sorting because the

function ��(x) is in general not monotonic in x. In other words, we have:

@

@x

dU�

ds
? 0:

For example, in a monocentric city, a wider income gap is no longer matched with a greater

distance between two households.

The skill sorting generates a speci�c output level Y �. When b(x) is constant, a household

chooses the location that maximizes her expected productivity. In this case, the sorting of skills

leads to the highest expected total output. By contrast, an uneven distribution of exogenous

amenities fosters a lower expected total output because historic and natural amenities are likely

to attract the most skilled people away from the places where they are the most productive. In this

event, the drop in the consumption of private goods is the counterpart of a higher level of local

amenity.

3.3 From theory to data

To estimate the model, we need an explicit form of the skill-speci�c mapping s�(x) = F�1[G(��(x))].

For this, we must consider speci�c distributions F and G. Earning distributions are skewed to

the right and the Fréchet distribution is a good candidate to capture this. Equally important,

the Fréchet distribution leads to an analytical solution of our model. In what follows, we assume

that the variable s is drawn from a Fréchet distribution to the power (� � 1)=� with the shape
parameter s > 0 and the scale parameter Ks > 0: F (z) = exp(�Ksz

�S(��1)=�) over R+ with
density

f(s) = Kss
� � 1
�

[exp(�Kss
�s(��1)=�)]s�[s(��1)+�]=�:

An increase in s leads to less income inequality.

It is analytically convenient to assume that the values of ��(x) = b(x) [t�(x)]1�� are also drawn

from a Fréchet distribution with the c.d.f. G(z) = exp(�K�z
��) over R+ and density g(z). This

holds if b(x) and t�(x) are Fréchet-distributed.

Using (19), the mapping s�(x) can then be retrieved from the condition:Z 1

s�
f(z)dz = 1� exp(�Ks(s

�)�s(��1)=�) =

Z 1

��
g(�)d� = 1� exp(�K�(�

�)��);

which is the counterpart in the ��-space of the land market clearing condition (12). It follows
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from Proposition 1 that households ranked by decreasing incomes are assigned to locations having

a decreasing location-quality index.

Set  � �=s and K � Ks=K�. Solving the above equation yields the equilibrium skill

mapping:

s�(x) =
�
K1=s [��(x)]

	�=(��1)
: (20)

We show in Appendix A.2 that ��(x; s�(x)) is uniquely determined for any x. Therefore, the

equilibrium output is given by

(Y �)(��1)=� =

nX
i=1

Z
N

[Ai(L
�
i )`i (x) s

�(x)](��1)=� ��i (x)�
�(x; s�(x))f(s�(x))dx;

where ��i (x) is obtained by replacing ti(x) by t
�
i (x) in �i(x).

Since a continuous distribution of skills is not directly observed in the data, we estimate the

income mapping instead. As ! = s(��1)=�Y 1=�, the equilibrium income mapping is thus given by

y(s�(x); x) = t�(x)!(s�(x)) = K1=s [��(x)] t�(x)(Y �)1=�: (21)

Last, we show in Appendix A.3 that the equilibrium land rent at x is given by

R�(x) = �(1� �)
1��
� k�

1
� t�(x) [��(x)]

1
�

�
�t�(x)

R�(x)
+
(1� �)h
!(s�(x))

� 1
(1��)�

; (22)

where k is a positive constant.

Therefore, the land rent is a priori neither monotonic nor the mirror image of the spatial

income distribution. In short, the interaction between amenities, commuting and income sorting

may give rise to a variety of land rent pro�les, which are not driven by the location-quality index

alone.

4 Data and descriptives

4.1 Datasets

We have gained access to various nationwide non-public microdata from Statistics Netherlands

between 2010 and 2015. Unlike the United States or the United Kingdom, the Netherlands does

not undertake censuses to register their population, but the register is constantly updated when

people move or when there are changes in the household composition. The �rst dataset we

use is the Sociaal Statistisch Bestand (SSB), which provides basic information on demographic

characteristics, such as age, country of birth, marital status and gender. We only keep people
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that could be part of the working population, that is, those who are between 18 and 65 years and

aggregate these data to the household level. Importantly, the SSB data enable us to determine

where households reside, up to the postcode level. Hence, space is discrete in the plane.

The data on yearly income of households is obtained from the Integraal Huishoudens Inkomen

panel dataset. These data are based on the tax register, which provides information on taxable

income, tax paid, as well as payments to or bene�ts from property rents or dividends. The income

data also provide information on whether households are homeowners or renters. Public housing

is rent controlled and there are often long waiting lists for public housing. So, households are

not entirely free to choose their utility-maximizing location. Therefore, we will focus on owner-

occupied housing, which means that we keep about 70% of the data.2

To estimate the commuting time for each household, we use the tax register information, which

provides information on individual jobs and the number of hours worked in each �rm for each year.

Using data on location information on each establishment from ABR Regio and network travel

time from SpinLab we calculate for each household the average commuting time. More information

on how we calculate the commuting time between locations is provided in Appendix B.1.

Information on land values and lot sizes is not directly available. As is common practice, we

infer them from data on housing transactions, provided byDutch Association of Real Estate Agents

(NVM ). The methodology used to calculate land values and lot sizes is described in Appendix

B.2. The NVM data contains information on the large majority (about 75%) of owner-occupied

house transactions between 2000 and 2015. We know the transaction price, the lot size, inside

�oor space size (both in m2), the exact address, and a wide range of housing attributes such as

house type, number of rooms, construction year, garden, state of maintenance, and whether a

house is equipped with central heating.3 We also know whether the house is a listed building.

We are interested in the impact of amenities on income sorting and land prices. We proxy the

amenity level by the picture density in a neighborhood. More speci�cally, we gather data from

Eric Fisher�s Geotagger�s World Atlas, which contain all geocoded pictures on the website Flickr.

The idea is that locations with an abundant supply of aesthetic amenities will have a high picture

density. We show in Appendix B.6 that there is a strong positive correlation between picture

density and historic amenities or geographical variables, such as access to open water or open

space. There are, however, several issues with using geocoded pictures as a proxy for amenities.4

First, to avoid the possibility of inaccurate geocoding, we keep only one geocoded picture per

2We furthermore obtain information on the educational level of adults in the household. This is available for
only 75% of the population, but our main speci�cations will not use these data, so this appears not to be an issue.

3We exclude transactions with prices that are above e1 million or below e25; 000 and have a price per square
meter which is above e5; 000 or below e500. We furthermore leave out transactions that refer to properties that
are larger than 250m2of inside �oor space, are smaller than 25m2, or have lot sizes above 5000m2. These selections
consist of less than one percent of the data and do not in�uence our results.

4Ahlfeldt (2013) shows that in Berlin and London the picture density is strongly correlated to the number of
restaurants, music nodes, historic amenities and architectural sites, as well as parks and water bodies.
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location de�ned by its geographical coordinates.5 This reduces the number of pictures by about

50%. Second, one may argue that the patterns of pictures taken by tourists and residents may be

very di¤erent. Since we have information on users�identi�ers, we can distinguish between residents�

and tourists�pictures by keeping users who take pictures for at least 6 consecutive months between

2004 and 2015 in the Randstad. It seems unlikely that tourists stay for 6 consecutive months in the

area. Note that the correlation between residents�and tourists�pictures is 0:653, which is rather

low. Third, many recorded pictures may not be related to amenities but to ordinary events in

daily life occurring inside the house. Hence, we only keep pictures that are taken outside buildings,

using information on all the buildings in the Netherlands from the GKN dataset, which comprises

information on the universe of buildings. Furthermore, if pictures are not related to amenities, one

would expect almost a one-to-one relationship with population density. However, if we calculate

the population density in the same way as we calculate the amenity level, the correlation is

only 0:223. Last, we recognize that people who take pictures may belong to a speci�c socio-

demographic group (e.g., young people with a smartphone) by including demographic controls

and using instrumental variables.

Though imperfect, we believe that the picture density is probably the best proxy available

for the relative importance of urban amenities at a certain location because it captures both

the heterogeneity in aesthetic quality of buildings and residents�perceived quality of a certain

location. Nevertheless, we test the robustness of our results using an alternative hedonic amenity

index in the spirit of Lee and Lin (2018) (see Appendix B.3 for more details). The hedonic index

aggregates the average impact of several proxies of amenities, such as the locations of historic

buildings, proximity to open space and water bodies, by testing their joint impact on house prices.

We also construct historic instruments. Knol et al. (2004) have scanned and digitized maps of

land use in 1900 into 50 by 50 meter grids and classi�ed each grid into 10 categories, including

built-up areas, water, sand, and forest. We aggregate these 10 categories into 3 categories: built-

up areas, open space, and water bodies and calculate the share of the area used for each type in

each neighborhood. We further gather data from the 1909 census on occupations and employment

in each municipality. Those ones were much smaller than current ones and about 4 times the size

of the current neighborhoods. For each occupation we obtain the required skill level. This enables

us to calculate the share of households who are medium and high-skilled. We gather additional

data on the railway network in 1900 and the stations which by then existed (see Appendix B.4 for

more information), enabling us to calculate employment accessibility in 1909. To show robustness,

similar instruments based on land use in 1832 obtained from HISGIS and NLGIS are constructed.

HISGIS provides information on the exact space occupied by buildings. The cadastral income was

5In continuous space, the probability that several pictures are taken at exactly the same location is zero. Hence,
observing multiple pictures at the same location is likely caused by inaccurate geocoding.
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used to determine the property tax and re�ected the land value at that time. A disadvantage of

the HISGIS is that it is only available for parts of the Netherlands, thereby reducing the number

of observations by about 50%. Additional information on the road network in 1821 is obtained

from Levkovich et al. (2017).

4.2 Descriptive statistics

Figure 1.A provides a map of the Netherlands, the study area, where we indicate the most im-

portant cities. The conurbation formed by the four largest cities, i.e., Amsterdam, Rotterdam,

The Hague, and Utrecht is known as the Randstad, which has a population of about 7:1 million.

Figure 1.B displays the commuting pattern across neighborhoods and shows that the Dutch ur-

ban structure is really polycentric as many commuting �ows occur between di¤erent cities. This

underlines the need for a model that allows for location choices in the whole country. Figure 1.C

is a map of the most important roads and railways that form the transportation network in the

Netherlands.

[Figure 1 about here]

We report descriptive statistics of the 10; 213; 524 households of our sample in Table 1. The

average (median) yearly income is e91; 535 (e86; 732). Incomes are approximately Fréchet dis-

tributed (see Appendix B.5).6 The average land price in the sample is e1; 312 , but there are

stark spatial di¤erences. For example, in the capital Amsterdam, it is e3; 046, while in the rural

province of Friesland it is only e716. As expected, the correlation between the estimated land

price and lot size is negative (� = �0:245). The average lot size is 364m2. However, in Ams-

terdam it is only 253m2, which corresponds to the higher land values in this city. About 15% of

households occupy apartments and the correlation between occupying an apartment and the land

price is positive (� = 0:153).

[Table 1 about here]

We use the neighborhood de�nition proposed by Statistics Netherlands, so that we have 4; 033

neighborhoods, which de�ne from now on to be the location set. The picture density, i.e., the

proxy for amenities, range from 0 to 231 pictures per hectare. Only 0:2% of the households live

in neighborhoods that do not have any pictures. We will disregard those households. The average

picture density in Amsterdam (22:7) is much higher than in Rotterdam (9:63), The Hague (6:17),

and Utrecht (7:66). Recall that we only use pictures outside a building taken by residents in

determining the amenity index. It appears that 80% of the pictures are taken outside a building

6We report maps and histograms of income and land prices in Appendix B.5.
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while about 60% of the pictures are taken by local residents. Going back to Table 1, we see that

the average commuting time is 26 minutes, which is very close to statistics provided by other

sources (Department of Transport, Communications and Public Works, 2010). The unconditional

correlation of picture density with the income is close to zero (� = 0:0533), but this is not very

informative as we do not control for household characteristics. The correlation of the amenity

index with land prices is substantially higher (� = 0:431). Finally, households that have a short

commute do not seem to live in high amenity locations as the correlation between the amenity

level and commuting time is low (� = �0:0454).
The descriptive of the historic instruments that we use are described in Table B.6 of Appendix

B.4.

5 Reduced-form income mapping

5.1 Econometric framework and identi�cation

Before developing the structural estimation of the parameters of the model, we consider the income

mapping, which plays a key role in our model. We �rst provide reduced-form evidence that sorting

by incomes is indeed related to our proxy for amenities and accessibility to jobs �the variables

that constitute the location-quality index (see (21)). Set

log ~yki(x) = �1 log ~b(x) + �2 log ~a(x) + �3Ck + 
i + �ki(x); (23)

where ~yki(x) is the observed income net of commuting of household k living at x and working in i;
~b(x) is the density of geocoded pictures �our proxy for amenities, ~a(x) is a proxy for employment

accessibility, Ck are household characteristics, 
i are workplace �xed e¤ects, and �ki(x) is an error

term. The parameters �1, �2, �3 and 
i are estimated. For the moment, we proxy ~a(x) by:

~a(x) =

IX
i=1

F (�i(x))ni:

In other words, at location x we weight the number of jobs ni at i by the share of people whose

commute is at most equal to �i(x).

There are several issues when using (23) to identify the causal impact of ~b(x) and ~a(x) on

sorting on the basis of income. First, regarding accessibility ~a(x), a reason for a bias is that

labor markets may not be fully competitive as households may bargain over to get an income

compensation for living further away. Hence, observed incomes ~yki(x) may be higher when people

live further away. Note that about 15% of the costs of a longer commute is paid by the employer

(Mulalic et al., 2013).
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Second, a more general concern about �1 and �2 as measures of the impacts of amenities

and accessibility on the spatial income distribution is that there is an omitted variable bias due to

sorting, heterogeneity in preferences for housing quality, agglomeration economies, and unobserved

spatial features. More speci�cally, households may not only sort on the basis of income, but also

on the basis of other household characteristics. Households with children, for example, may aim to

locate in neighborhoods with a large amount of green space. The variables ~b(x) and ~a(x) could also

be correlated with unobserved housing attributes because households with di¤erent incomes may

have di¤erent preferences for housing quality, such as the age of the housing stock (Brueckner and

Rosenthal, 2009). For example, a large share of the housing stock in the city center of Amsterdam

takes the form of apartments. This may imply that the a uent are not willing to locate there

because they eschew apartment living (Glaeser et al., 2008).

Third, there may be reverse causality between ~yki(x) and ~b(x) and between ~yki(x) and ~a(x). For

example, the provision of amenities may be a direct result of the presence of high-income house-

holds. Indeed, anecdotal evidence suggests that cultural and leisure services are often abundantly

available in upscale neighborhoods (Glaeser et al., 2001). Similarly, high income neighborhoods

may attract employers that are in need of specialized and highly educated labor. Last, since we

do not observe the �exact�amenity level, there may be a measurement error in ~b(x), which may

lead to a downward bias of �1 when the error is random.7

The �rst step to mitigate the biases associated with these concerns is �rst to �purge�household,

job and housing characteristics, Ck, from neighborhood characteristics. For example, Ck captures

the members of the households who work full-time or part-time, the size of the household and

the age of the adults, while housing attributes are, for example, housing type and construction

year. This approach reduces the likelihood that we measure sorting on the basis of household

characteristics other than incomes. Furthermore, since we also include workplace �xed e¤ects 
i,

we control for productivity di¤erences (e.g., due to agglomeration economies) at the workplace.

Working with an endless string of controls will not fully address the endogeneity concerns

raised above. Unfortunately, our data do not allow us to exploit quasi-experimental or temporal

variation in ~b(x) and ~a(x). Therefore, to investigate the importance of omitted variable bias

we analyze coe¢ cient movements after including controls. Oster (2019) shows that coe¢ cient

movements together with changes in the R2 can be used to estimate biased-corrected coe¢ cients.

We will outline this procedure and discuss the results in detail in Appendix B.6.

Omitted variable bias is not the only endogeneity issue. Our proxies may also su¤er from

7As suggested by the literature on local public goods, there might be reverse causality, meaning that the location
of local public goods and jobs is determined by the spatial income distribution. To a large extent, this is because
the institutional context that prevails in the U.S. implies that the quality of schools and other neighborhood
characteristics are often determined by the average income in the neighborhood (Bayer et al., 2007). This is to be
contrasted with what we observe in many other countries where local public goods such as schools are provided by
centralized bodies.
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measurement error and reverse causality. We will, therefore, rely on instrumental variables. Our

�rst set of speci�cations uses contemporary instruments, while our second set of speci�cations

appeals to historic instruments. Regarding contemporary instruments for amenities, we use a set

of observed, arguably exogenous, proxies for amenities, such as the listed building density, the

share of the neighborhood x that is in a historic district, as well as the share of built-up areas

and water bodies. By using other proxies for amenities, the measurement error of ~b(x) is likely

to be mitigated. One may argue that the contemporary instruments do not convincingly address

the issue of unobserved locational and household characteristics that may be correlated with ~b(x).

Moreover, they do not address the potential endogeneity of accessibility ~a(x).

Alternatively, we exploit the fact that ~b(x) and ~a(x) are autocorrelated. First, land use in 1900

is used as an instrument. We expect aesthetic amenities to be positively correlated to the share

of built-up area in 1900. For example, the historic city center of Amsterdam has many buildings

that have been built before 1900; which are now listed buildings. Furthermore, we also expect

water bodies available in 1900 to be correlated to current water bodies, which are often considered

as an amenity. As an instrument for commuting time, we count the total number of households

Ex;1909 in 1909 within a commuting distance by using the railway network in 1900:

a1909(x) =

nX
i=1

F (�i(x))ni;1909; (24)

where �i(x) is the commuting time between x and employment location i = 1; :::; n, while F (�i(x))

is the share of people who commute at most � minutes in the sample (see Appendix B.1). Hence,

F (�i(x)) represents the aggregate cumulative distribution of commuting times, while ni;1909 is the

total employment at i in 1909. Because of temporal autocorrelation, we expect that a better

employment accessibility in 1909 also implies a better employment accessibility today.

Historic instruments can be criticized because of the (strong) identifying assumption that

past unobserved locational features are correlated to current unobserved locational endowments.

However, these instruments are more likely to be valid in the context of income sorting because

the patterns of income sorting within each city have considerably changed throughout the last

century. Around 1900, open water and densely built-up areas were not necessarily considered

as amenities. For example, the canals in Amsterdam were essentially open sewers (Geels, 2006).

Therefore, locations near a canal often repelled high-income households who located in lush areas

just outside the city. It was also before the time when cars became the dominant mode of transport.

People around 1900 often walked to their working place, so that commuting distances were short.

However, the rich could a¤ord to live outside the city and take the train to their workplace.

The cities in 1900 were not yet in�uenced by (endogenous) planning regulations, as the �rst

comprehensive city plans date from the 1930s.
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Still, one may be concerned that the measure of amenities is itself determined by the wealth

of individuals who locate there. The reason is that unobservables that determine the concentra-

tion of wealthy individuals in the past also determine the locations of landmarks today, and thus

determine where pictures are taken. Moreover, one may argue that historic employment acces-

sibility, which is correlated to current employment accessibility, makes it easier to �nd jobs for

all household members, and thus increases household income due to better matching, rather than

shorter commutes. We address these concerns in several ways.

1. We go back further in time as it is less likely that unobserved characteristics of a location

or building in the past are correlated with those in present time. We exploit land use data

from the census in 1832. We use municipal populations in 1832 and calculate the travel time of

population within commuting distance using information on the road network of 1821. We further

control for the share of buildings, the share of built-up area, and the share of water bodies within

neighborhood as instruments. Moreover, using data on the Cadastral Income, we can control for

the value of land at that time. If rich households sort themselves into the most attractive locations

of the past, we expect to see a positive correlation with the Cadastral Income in 1832.

2. We estimate speci�cations where we control for the current share of built-up areas and

population density. Locations that were attractive in the past attracted people and consequently

have a high share of built-up area in 1900. The share of built-up areas in 1900 is likely to

be correlated to the current population density and to shares of built-up areas nowadays. By

controlling for the current share of built-up areas and population density we mitigate the issue

that our proxy for amenity just captures contemporary population density, rather than a higher

amenity level because of the historic buildings.

3. We gather data from the 1909 census on occupations and skills in each municipality. We

then control in various ways for the average skill level of households in 1909 as a proxy for the

income in the past. Controlling for the skill level should also address the issue that employment

density in 1909 may be correlated to better matching opportunities. Since this proxy may be

imperfect, we also use the share of Protestants in 1899 at the municipality level as another proxy

for income/skill. Indeed, at that time Protestants had a higher education level and were wealthier.

4. We also consider another instrument for employment accessibility. From the 1899 census,

we gather data on the share of locally born people (i.e., within the same municipality). If the

(lack of) mobility of households is correlated over time, the share of locally born people should be

correlated positively to current commuting times because immobile households have to commute

on average longer to their jobs.

5. Finally, we estimate speci�cations where we exclusively focus on areas of reclaimed land

since 1900. These are areas that are reclaimed from the sea (about 5% of the land) just before

and after World War II. As these reclaimed locations are otherwise identical, and as no one was
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living in those locations at that time, we address reverse causality.

5.2 Reduced-form results

Table 2 reports the baseline reduced-form results of the income mapping. Column (1) shows a

simple regression of log income on log amenities and log accessibility, while we only control for

demographic characteristics and year �xed e¤ects. This shows that more amenities and accessi-

bility are associated with higher incomes. Doubling amenities implies an increase in income of

(log 2 � log 1) � 0:0215 = 1:5%. Doubling of accessibility attracts households whose incomes are
6:9% higher. In column (2), we add a wider array of controls related to housing quality and job

characteristics. Although the R2 increases by almost 50%, the coe¢ cients related to amenities

and accessibility are hardly a¤ected. This suggests that amenities are not so much correlated to

building quality. In column (3), we include workplace �xed e¤ects to control for agglomeration

economies in the workplace and identify the �pure�accessibility e¤ect. We observe that the coef-

�cient is somewhat lower. A 100% increase in amenities now attracts households whose incomes

are 1:2% higher. The coe¢ cient related to employment accessibility is hardly a¤ected.

Despite the inclusion of controls and workplace �xed e¤ects, one may argue that we do not

convincingly address omitted variable bias. We deal with this issue by estimating bias-corrected

regressions following Oster (2019) in Appendix B.6. We show that when we choose the appropriate

maximum attainable R2 (as only part of the variation in incomes can be explained by variables

varying at the neighborhood level), the estimates are very close to the OLS estimates. This

strongly suggests that omitted variable bias is not a major issue.

In column (4) we aim to address potential measurement error in the picture density as a proxy

for amenities by instrumenting for it with observed proxies for amenities (e.g., nearby historic

buildings or share water bodies). The �rst-stage results in Appendix B.6 show the expected

signs: there is a higher picture density in built-up areas, in areas with more water bodies (e.g.,

the Amsterdam canal district), and where there are many historic buildings.8 The contemporary

instruments are strong instruments for amenities. The second-stage coe¢ cient related to amenities

in column (4), Table 2, is essentially identical, suggesting that measurement error is not a main

concern.

[Table 2 about here]

Yet, amenities and accessibility may be endogenous due to reverse causality. The use of

8Since we have more instruments than endogenous variables, one might object that two-stage least squares
estimates are biased (Angrist and Pischke, 2009). Hence, we also have experimented with other estimators that
are (approximately) median unbiased, such as LIML or GMM estimators. The results are virtually identical. For
this reason, we do not report them in the paper.
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contemporary instruments may only partly address this issue. This is why we instrument amenities

with historic variables in column (5). The instruments are the shares of water bodies and of built-

up area in 1900 within a neighborhood x. In Appendix B.6, we report the corresponding �rst-stage

results. The share of built-up area, the share of water bodies in 1900 are strongly and positively

correlated to the current amenity level. Going back to Table 2, the coe¢ cient of amenities is

now somewhat higher: doubling amenities attracts households whose incomes are 2:3% higher.

In column (6) we also instrument for employment accessibility with the number of households

within commuting distance in 1909 using the railway network in 1900. The number of people

reachable within commuting distance is positively correlated to current accessibility; the elasticity

is 0:42. Overall, the Kleibergen-Paap F -statistic is above the rule-of-thumb value of 10 in all

speci�cations, suggesting that the instruments are su¢ ciently strong.

The second-stage results reported in column (6), Table 2, reveal that when we instrument

amenities and commuting times there is a positive e¤ect of picture density and accessibility on

incomes. This speci�cation is our preferred speci�cation. Doubling amenities attracts households

whose incomes are 2:3% higher. Doubling accessibility leads to households whose incomes are

3:8% higher. The impacts of accessibility and amenities are thus similar.

Alternative proxies for amenities and e¤ects on land prices. One may worried that our

results hinge on the particular choice of the amenity index. We therefore consider three alternative

proxies for amenities. Following Lee and Lin (2018), we construct an aggregate hedonic amenity

index that describes the amenity provision at every location using house prices. The procedure is

described in Appendix B.3. To make the results comparable, we rescale the hedonic amenity index

in such a way that the standard deviation of the log of the hedonic amenity index is the same as

that of the log of the picture index. In column (1), Panel A of Table 3, we re-estimate our preferred

speci�cation with historic instruments. It appears that the amenity elasticity is essentially the

same as the estimates obtained by using the picture index. We also gather data on �places

of interest� from the augmented reality game Pokémon Go as another proxy for amenities (see

Appendix B.3 for detail). Our results show that the density of Pokéstops is positively associated

with incomes: doubling the Pokéstop density attracts households whose incomes are 2:2% higher.

The commuting time elasticity is very much the same compared to the baseline speci�cation.

In column (3) we use the share of land available in a neighborhood that is part of an o¢ cially

designated historic district. Using historic instruments, we �nd a strong and statistically signi�cant

e¤ect on household incomes: a 10% increase in the share of land that is part of a historic district

attracts households whose incomes are 3% higher.

[Table 3 about here]
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In Panel B of Table 3, we investigate the reduced-form impacts of amenities and commuting

times on land prices. In our setup the signs of the e¤ects of amenities and accessibility on land

prices and incomes are the same (although magnitudes may di¤er). Therefore, we now estimate

the e¤ects of amenities and commuting time on land prices. We start in column (4), Table 3, with

a simple OLS speci�cation including amenities and accessibility, while controlling for households,

job and housing characteristics. This leads to a strong positive e¤ect of amenities on land prices:

doubling amenities implies a land price increase of 8:7%, while doubling accessibility leads to land

prices that are 22:4% higher. When we control for workplace �xed e¤ects, the coe¢ cients are

hardly a¤ected. In the �nal column we instrument for amenities and accessibility with historic

instruments from around 1900. The e¤ect of accessibility becomes somewhat lower, while the

e¤ect of picture density becomes about twice as strong. Hence, the reduced-form e¤ects on land

prices do indeed have the same signs as the e¤ects on income, but are stronger in magnitude.

Other sensitivity checks. Appendix B.8 shows that our results still hold for a wide range

of alternative robustness checks and sample selections. To the extent one is still worried that

endogeneity plagues our estimates, we strongly advise the reader to consult Appendix B.8. More

speci�cally, we show that our results hold if we (i) only focus on the urban area of the Randstad

or close to city centers, (ii) use data from 1832 to construct instruments for amenities and employ-

ment accessibility, (iii) control for current land use and population density, (iv) control for sorting

based on skills in 1909, (v) use alternative (historic) instruments and (vi) only use observations

in land that is reclaimed from the sea.

Further robustness analyses minimize any measurement error regarding accessibility and work-

place productivity, by running speci�cations where we only keep households (i) with a single job,

(ii) with a single job in a single-plant �rm, and (iii) households with a company car so that it is

likely that those households actually use car for commuting. We further test whether our results

change when using the share of highly educated adults in the household, which is a more direct

way to estimate the (reduced-form) skills mapping. We �nd very similar e¤ects, both in terms of

sign and magnitude, which con�rms that looking at income or skill levels is more or less equivalent.

We also use commuting time by rail instead of commuting time over the road. Overall, the impact

of amenities and commuting time on income sorting choice is robust.
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6 Structural estimation

6.1 Estimation and identi�cation

We de�ne the amenity function as follows:

b(x) �
h
~b(x)

i�
:

In other words, amenities are related to picture density (~b(x)) where � is the elasticity of pref-

erences for amenities. Furthermore, letting `i (x) � [�i(x)]�� with � the elasticity of commuting
time, the labor supply is given by

ti(x)�ki(x) = fAi[�i(x)]��g(��1)=��ki(x);

where �ki(x) are i.i.d. idiosyncratic shocks on commuting times drawn from a Fréchet distribution

with a shape parameter " > 1 and scale parameter Ki > 0.

We use the structure of the model to identify its parameters f�; �; �; "; �; ; S; �g. In this
way we are able to calculate the counterfactual income mappings and land rents.

Our model has a recursive structure. Hence, estimation of the parameters consists of esti-

mating a number of standard regression equations. However, only the �rst step �estimating the

commuting gravity equation �is the same as in Ahlfeldt et al. To be precise, the gravity equa-

tion identi�es the commuting time elasticity { = �". Since our model di¤ers considerably from
Ahlfeldt et al. (2015), it comes as no surprise that the remaining steps used to recover the model

parameters are substantially di¤erent.

In the second step, using actual data on incomes, we can recover commuting heterogeneity

". Third, using information on land rents and lot sizes, which we observe for a subset of the

data, we recover preferences for land �. The fourth step uses the income mapping to identify the

preferences for amenities � and the relative heterogeneity of the location quality index . This

enables us to identify the location quality index up to a multiplication constant. The remaining

heterogeneity parameters (� and S) are identi�ed in the �fth step. In the �nal step, we estimate

the agglomeration elasticity �.

In line with spatial quantitative equilibrium models, we �x base parameters f�; �hg.9 Fur-

thermore, we choose � = 4 which is in line with the literature (Dustman et al., 2009). We set

h = 25m2, which corresponds to the minimum lot size in the sample, and we use a discount rate

of 3:5% to go from land prices to land rents (see Koster and Pinchbeck, 2019). In what follows,

we discuss the moment conditions, the identifying assumptions in each step, and the estimation

9Note that we identify everything up to a multiplication constant. Therefore, the scale parameters of the Fréchet
distribution are not strictly identi�ed.
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procedure.

6.1.1 Estimating the gravity equation

It follows from (9) that the probability that a household living in x chooses to work in i is equal

to:

�i(x) =
Ki(!

�(x)ti(x))
"

nP
j=1

Kj(!�(x)tj(x))"
=

KiA
"(��1)

�
i [�i(x)]

� "�(��1)
�

nP
j=1

KjA
"(��1)

�
j [�j(x)]

� "�(��1)
�

: (25)

In line with Ahlfeldt et al. (2015), we �rst recover an estimate for { � �"� (� � 1) =� by
estimating a log gravity model with residence and workplace �xed e¤ects, which absorb Ki and

Ai. The �rst moment condition is given by:

E[log �i(x)� { log �i(x)� ~�(x)� ~
i] = 0: (26)

By including residence �xed e¤ects ~�(x) and workplace �xed e¤ects ~
i, we mitigate the endo-

geneity issues associated with �i(x). We then use Poisson Pseudo-Maximum Likelihood methods

to deal with the zeroes. One remaining issue is the reverse causality between �ows and travel

times. Indeed, at locations where there is more demand for travel, better transport infrastructure

is likely to be provided, which in turn leads to a shorter travel time. We address this issue by

instrumenting log �i(x) with the log of Euclidian distance between two locations. We use a control

function approach where the �rst stage residual is inserted as a control function in the second

stage.

6.1.2 Commuting heterogeneity

The next step is to recover " from the data. In the spirit of Ahlfeldt et al. (2015), we choose

to minimize the squared di¤erences between variances within neighborhoods x of adjusted labor

supply and labor supply observed in the data. More speci�cally, let ~yki(x) � !(x)ti(x)�ki(x) be the
observed income in the data of a household k located in neighborhood x and working in neighbor-

hood i. We observe income conditional on labor supply in the data. For example, if someone has

a longer commute and therefore supplies less labor, we observe a lower income net of commuting

costs. More speci�cally, we use the observed income and control for household characteristics and

location pair �xed e¤ects at the level of the neighborhood. We then recover location-speci�c income

log byi(x) by taking the estimated values of the location pair �xed e¤ects. Let ~ti(x) � Ki[ti(x)]
"

be the transformed labor supply, obtained from (26). Note that �2
log(!(x)~ti(x))jx = �

2
log ~ti(x)jx because

!(x) does not vary within the neighborhood. Hence, the relationship between the variance within

neighborhood x of the log transformed incomes �2
log ~ti(x)jx and the variance of the log of location-
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speci�c income, incomes �2log byi(x)jx is given by �2log ~ti(x)jx = "2�2log byi(x)jx. This enables us to recover
" from the second moment condition:

E[�2log ~ti(x)jx � "
2�2log byi(x)jx] = 0: (27)

Since the above speci�cation is linear in parameters, we can just use linear regression techniques

to obtain ".

6.1.3 Preferences for land

In the third step we use information on land prices R(x) and lot sizes h(x) for a subset of the

sample. Moreover, we use byi(x) �the estimated location-speci�c income �from the previous step.
Rewriting (3), we derive the third moment condition to determine �:

E
�
R(x)� �byi(x)

h(x)� (1� �)h

�
= 0: (28)

Since this equation is non-linear, we use nonlinear least squares to obtain an estimate for �.

6.1.4 Estimating the income mapping

The income mapping plays a central role in the structural estimation. Recall that the income

mapping (21) is derived from the skill mapping (20). The household k who locates at x is given

by

s(x) =
h
K1=S

�
~�(x)

�i�=(��1)
with K � KS=K� and

~�(x) � b(x)
�
E
�
max
i=1;::;n

ti(x)�ki(x)

��1��̂
= [~b(x)]� [~a(x)]

1��̂
"̂ ; (29)

because the maximum of Fréchet variables is a Fréchet variable, while the employment accessibility

~a(x) is de�ned as follows:

~a(x) =

�
�

�
"̂� 1
"̂

��"̂
�

nX
i=1

~ti(x) =

�
�

�
"̂� 1
"̂

��"̂
�

nX
i=1

KiA
"̂(��1)

�
i � [�i(x)]�

"̂�̂(��1)
� ;

where ~ti(x) is obtained from the gravity equation and � (�) is the gamma function. Hence, in
contrast to the reduced-form speci�cations where we choose a somewhat arbitrary functional form

for accessibility, we use here an accessibility measure that is dictated by the model.
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Recall that the observed income in the data is ~yki(x) � !(x)ti(x)�ki(x). Since ti(x) �
[Ai(�i(x))

��̂](��1)=� and !(x) = [s(x)]
��1
� Y 1=�, the expected income of a household k residing

at x and working in neighborhood i can be rewritten as follows:

~yki(x) = K
1=S [~b(x)]� [~a(x)]

(1��̂)
"̂ [ti(x)�ki(x)](Y

�)1=�:

Therefore,

log ~yki(x) + �̂
� � 1
�

log �i(x) = �(x) + 
i + �ki(x); (30)

where �(x) are residence �xed e¤ects and 
i workplace �xed e¤ects.

We �rst estimate the location and workplace �xed e¤ects. Then it should hold that

�(x) = �0 + �1 log ~b(x) + �2 log ~a(x) and 
i =
� � 1
�

logAi;

where �1 � �, �2 � (1� �̂)="̂. Hence,  = �̂2"̂=(1� �̂) and � = �̂1(1� �̂)=�̂2"̂.
Equipped with estimates for ~ti(x) (from the gravity equation), �̂, "̂, and �̂, we can infer  and

� from �(x). Note further that 
i are workplace �xed e¤ects, so that wage di¤erences associated

with workplace productivity di¤erences Ai (e.g., due to agglomeration economies) are absorbed

by the �xed e¤ects. More speci�cally, we focus on the job within the household that generates

the highest number of working hours and use a work-location �xed e¤ect for each location pair.

Hence, we compare households that work at the same location(s), but have di¤erent residential

locations. Last, given 
i, we recover the adjusted workplace productivity ~Ai (up to a constant):

~Ai = e
�

��1
i :

We estimate the income mapping in two stages. We de�ne the fourth moment condition as

follows:

E[log ~yki(x) + �̂
� � 1
�

log �i(x)��(x)� 
i � �3Ck] = 0; (31)

while the �fth moment condition is given by:

E
hb�(x)� �0 � �1 log ~b(x)� �2 log ~a(x)i = 0: (32)

To obtain the causal parameters �1 and �2, and therefore causal estimates for � and , we face

the same endogeneity issues as in the reduced-form speci�cation (23). We refrain from repeating

this discussion here. Like in the reduced-form analysis, we will rely on historic instruments to

mitigate endogeneity issues, such as the presence of open space, water bodies and employment

accessibility in 1909 using (24). For the income mapping (moment conditions 4 and 5), we also use

linear regression techniques. When instrumenting for amenities and employment accessibility, we
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use two-stage least squares (2SLS) implying that we replace log ~b(x) and log ~a(x) by their �tted

values obtained in the �rst stage.

6.1.5 Recovering the parameters of the Fréchet distributions

Using f�̂; �̂; �̂; ̂g, we may obtain the shape parameters of the location-quality index and the
income mapping. First, we calculate the expected labor supply at each location by using (25).

Using observed amenities, commuting distances, and the adjusted workplace productivity, we can

recover the location-quality index (up to a multiplication constant) at each location:

~�(x) = [~b(x)]�̂ � [~a(x)]
1��̂
"̂ :

Hence, the sixth moment condition may be written as follows:

E

24f ~� � ~�(x)��  ~�
~K ~�

e
�
�
~�(x)
K ~�

�� ~�  ~�(x)
~K ~�

!�(1+ ~�)35 = 0; (33)

where f ~�( ~�(x)) is the p.d.f. of the adjusted location-quality index. To obtain the Fréchet para-

meters (moment condition 6), we use Maximum Likelihood. From this, we obtain s = ̂�=̂.

6.1.6 Recovering the agglomeration elasticity

In the last step, we estimate the elasticity of agglomeration economies. We �rst determine the

skill mapping for each location given the estimated parameters:

[s(x)]
��1
� = K1=̂S [~b(x)]�̂̂ [~a(x)]

1��̂
"̂ :

Note that we identify s(x) up to a multiplication constant. Hence, we set K� in such a way that

the geometric mean of bs(x) equals one and then �t a Fréchet distribution to bs(x) to obtain KS.

Using (5), we assume that Ai = Ai ~L�i , where ~Li is given by:

~Li =

NX
x=1

~txiPn
j=1
~txj

�
K̂S ̂S

� � 1
�

e�K̂S [bs(x)]�̂S(��1)=� [bs(x)]�[̂S(��1)+�]=�� :
The �rst term is the share of households living at x commuting to i and the bracketed term is the

employment density at location x. The moment condition is then given by:

E
h
log ~Ai � logAi � � log ~Li

i
= 0: (34)

Once again, one may argue that ~Li is endogenous and correlated to unobserved locational char-
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acteristics. As discussed in the foregoing, we use the employment accessibility in 1909. Note that

historic instruments are frequently used in the literature to address the endogeneity of employment

density (Combes et al., 2010). The identifying assumption permits that past unobservables that

cause employment accessibility in 1909 are unrelated to current unobservables to give rise to ~Li.

We provided extensive support for this assumption in Section 5.2. Moreover, we test whether the

results are di¤erent when using data on accessibility to population in 1832 as it is less likely that

unobserved characteristics of a location in the past are correlated with those in present time.

Moment condition 7 can be estimated by OLS, but if we instrument for ~Li, we replace ~Li by

the �tted values obtained in a �rst stage.

6.2 Structural parameters

In Table 4, we report the results of the structural estimation. We obtain cluster-bootstrapped

standard errors by �rst choosing a set of randomly drawn neighborhoods and then estimate the

consecutive steps described above 250 times.

We �nd that a commuting time elasticity equal to � = 0:22, which is higher than in the

literature. However, one should keep in mind that we use the log of commuting time, so that

this represents an elasticity rather than the semi-elasticity. In Appendix B.9, we show that when

we instrument travel times with the Euclidian distance, the travel time elasticity is considerably

lower, in line with the expectation that reverse causality would lead to an overestimate. Given that

endogeneity is quite important, we consider this speci�cation as the preferred one.10 Commuting

heterogeneity " is about 2:73, which is somewhat lower than Ahlfeldt et al. (2015), but close to

the value picked by Brinkman and Lee (2019). The estimate � indicates the preferences for land.

We �nd that � = 0:0955, which con�rms that richer households spend less of their income on land

(Albouy et al., 2016). Note that �̂ may seem low, but we only include payments to land, not to

housing itself.

[Table 4 about here]

So far, all the estimated parameters are identical for di¤erent speci�cations because the historic

instruments are used only in the later steps to identify preferences for amenities, accessibility,

and agglomeration economies. The preference parameter � that indicates how households value

amenities in column (1) is similar to the baseline reduced-form result. However, when we use

instruments based on data from 1909 � is considerably larger. This is mainly because the relative

location-quality heterogeneity parameter  is about 50% smaller. The preference for amenities

10In Appendix B.9 we also show other speci�cations of the gravity model. We consider (i) to use commuting
�ows based on the two jobs that generate the most working hours, (ii) use travel time using railways, and (iii)
only keep location pairs with a su¢ ciently high number of commuters. The results are very robust.
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is not much a¤ected if we use instruments based on data from 1832. The estimated elasticity of

agglomeration economies is 0:0465 if we do not instrument, while it is higher when we use historic

instruments (0:0745 and 0:0887 using instruments from 1900 and 1832, respectively). These

estimates fall within the range provided by the literature. For example, Rosenthal and Strange

(2004) suggest a range of 0:03-0:08. Our estimates are higher than those reported by Combes and

Gobillon (2015) who study the elasticity of wages with respect to population density.

Overidenti�cation checks. Our structural estimation procedure suggests natural overidenti�-

cation checks that can be used to investigate whether our model is able to �t the data reasonably

well. We do not expect to �nd a perfect �t because we consider only two determinants of location

choices, while actual location choices are a¤ected by more factors. First, our estimation procedure

leads to an approximation for the employment level ~Li at each location i. If we compare the

estimated ~Li to the observed employment level in each area, we �nd a correlation of 0:839, which

is fairly high. One may be worried that this high correlation might be driven by a few locations

that host many workers. This appears not to be an issue because the correlation between the log

of estimated employment to the log of observed employment is equal to 0:907.

Another overidenti�cation check involves the comparison of the ex-post estimated land rents

(see (22)) to the observed land prices. Because land prices are not a direct input in our model,

there is no pre-determined mechanical correlation between estimated and actual land prices.11 We

�nd a correlation between estimated and observed land prices of 0:643. When we correlate the

log of estimated land prices to the log of observed land prices, we �nd a slightly higher correlation

(� = 0:718). Given that we only include two determinants of locational choices, these correlations

are quite high as and suggest that amenities and accessibility are very important determinants of

locational choices.

6.3 Counterfactual

Given the estimated parameters, our model allows for the undertaking of counterfactual analyses.

We describe the exact procedure to solve for the counterfactual values and derive the aggregate

land rent and real income in Appendix B.9. Let us consider the scenario where we assume away

amenities throughout the Netherlands; that is, we set the amenity level equal to the minimum

value of amenities observed in the data.12 The idea is to mimic U.S. cities where exogenous

11One may argue that land prices are used in the determination of �. However, spatial di¤erences in estimated
land price is largely insensitive to the exact magnitude of � and will hardly a¤ect the correlation between observed
and estimated land prices.
12The absolute amenity level makes no di¤erence for the outcomes because we re-adjust the parameter K� for

the aggregate skill distribution to have a geometric mean equal to 1. Moreover, assuming an equal value for ~bx
leads to the same result as when setting � = 0.
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amenity levels are considerably lower than in the Netherlands. We estimate the outcomes for the

baseline scenario and the counterfactual scenarios and report them in Table 5.

[Table 5 about here]

Since households do not care about amenities anymore, they live on average closer to their

workplace and earn higher incomes. We �nd that the overall output increases by 10:6%, while the

aggregate real income rise by 7:3%. The aggregate land rent decreases by 0:6% in the absence of

amenities. We also construct a measure of income mixing, which is the standard deviation of skills

in adjacent neighborhoods, to see how the counterfactual scenario a¤ects income mixing within

the Netherlands. A uniform amenity distribution implies substantially less income mixing as the

standard deviation is much lower than the baseline estimate. More speci�cally, income mixing

is reduced by about two-thirds, which is substantial. This con�rms the anecdotal evidence that

European, especially Dutch, cities are more socially mixed than American cities.

Furthermore, a priori one would expect households to be better o¤ because the net income

is signi�cantly higher. However, things are not that simple. Even though households are able to

consume more, they no longer enjoy the historic and natural amenities. As a result, the result is a

priori ambiguous. Our analysis shows that no less than 95% of the whole population of households

are worse-o¤, despite their higher income, than in the situation in which amenities are available.

Having a uniform distribution of amenities also has strong repercussions for the spatial distri-

bution of skills, hence of incomes. Indeed, the correlation between the values observed in the data

and in the counterfactual is 0:556. Hence, amenities are a key determinant of the spatial sorting of

households within and between cities. We report maps in Figure 2. Figure 2.A shows the relative

changes in skills at each location. In locations with high levels of exogenous amenities, such as

the city center of Amsterdam, The Hague or Utrecht, we observe a relatively large decrease in

skills, e.g., up to 20% in Amsterdam, thus con�rming that high-skilled people value amenities

more. The most skilled households in the Netherlands live in the city center of Amsterdam in the

baseline scenario. However, this would change in the no amenity scenario. In Figure 2.B, where

we zoom in on Amsterdam, we show that skills decrease by 10-20% in the historic city center of

Amsterdam. High skilled households are found in the suburbs where there is an abundance of

space. For the lower skilled households changes are less severe: they can mostly be found in the

more sparsely populated northern provinces of the Netherlands in both scenarios.

[Figure 2 about here]

As shown in Figure 2.C, the land rent generally decreases in locations with initially high

amenities. However, because consumers earn higher incomes they bid more for land, leading to
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increases in land rent in locations with a high employment accessibility. This is illustrated in Figure

2.D where we zoom in on Amsterdam. The city center, where amenities are now gone, witness

decreases in land rents. By contrast, the port area, which has a good employment accessibility,

experiences increases in land rents (up to 5:6%).

So far, we did not discuss the implications of the counterfactual for the spatial employment

distribution. This distribution is hardly a¤ected by changes in amenities that a¤ect mainly residen-

tial choices. The impact on employment centers is second order because agglomeration economies

are relatively weak (�) as compared to the locational fundamentals Ai, which are una¤ected by
changes in amenities. Production is, to a large extent, anchored in the same locations, thus re-

�ecting the impact of history, like in Bleakley and Lin (2012). We have tested this contention by

assuming unrealistically strong agglomeration economies. In this case, the spatial distribution of

jobs changes considerably.

7 Concluding remarks

In this paper, we used a new setup in which any location is di¤erentiated by two attributes,

i.e., the bene�t generated by the amenity �eld at this location and its distance to employment

locations. The bid rent function of urban economics may be used to show that the uneven

provision of exogenous amenities is su¢ cient to break down the perfect sorting of households across

the space-economy. Under Stone-Geary preferences, there exists a location-quality index that

blends amenities and commuting costs into a single aggregate whose behavior drives households�s

residential choices. Studying this index allows us to gain insights about how governments and urban

planners can design policies whose aim is to redraw the social map of cities. For example, the

higher the index of a particular location, the higher the income of households who choose to locate

there. The relevance of exogenous amenities and commuting costs to explain the residential choices

of heterogeneous consumers is con�rmed by the empirical analysis of where both e¤ects are found

to be signi�cant. More generally, policies that aim at a uniform distribution of public services

push toward more spatial segregation as residential choices are mainly driven by commuting costs.

Rather, if social mixing is a major policy objective, our results suggest that governments or related

bodies should target speci�c neighborhoods where to build public facilities providing services to

the population.
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Tables
Table 1 – Descriptive statistics

(1) (2) (3) (4)
mean sd min max

Gross income (in e) 91,535 53,683 3,589 999,897
Land price (eper m2) 1,312 752.2 0.00753 22,418
Lot size (m2) 364.3 923.8 25 24,824
Pictures per ha 2.189 8.840 0 231.9
Hedonic amenity index 2.821 0.0915 2.723 3.885
Share historic district 0.0347 0.139 0 1
Listed building 0.0941 0.699 0 17.06
Share built-up land 0.449 0.298 0.000856 1
Share water 0.0496 0.0738 0 0.813
Commuting time in minutes 26.39 17.18 0 120.0
Employment accessibility 624,940 275,990 14,427 1.347e+06
Total hours worked in household 2,159 913.1 416.1 6,239
Household has company car 0.149 0.356 0 1
Works at single-establishment firm 0.443 0.497 0 1
Number of jobs in household 1.511 0.968 1 18
Person is male 0.521 0.215 0 1
Person is foreigner 0.0718 0.217 0 1
Age of person 41.99 9.008 18 64
Apartment 0.153 0.360 0 1
House built <1945 0.192 0.394 0 1

The number of observations is 10,213,540. For land price and lot size the number
of observations is 2,196,280. Because of confidentiality restrictons the minimum and
maximum values refer to the 0.01% and 99.99% percentile. This implies that we
exclude the bottom and top 1,024 observations.
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Table 2 – Baseline reduced-form regression results
(Dependent variable: the log of household gross income)

+ Housing + Workplace Contemporary Historic

and job controls fixed effects Instruments instruments

(1) (2) (3) (4) (5) (6)
OLS OLS OLS 2SLS 2SLS 2SLS

Pictures per ha (log) 0.0215*** 0.0285*** 0.0166*** 0.0168*** 0.0333*** 0.0382***
(0.0016) (0.0013) (0.0011) (0.0023) (0.0037) (0.0037)

Employment accessibility (log) 0.0999*** 0.0942*** 0.0881*** 0.0879*** 0.0737*** 0.0526***
(0.0043) (0.0040) (0.0035) (0.0038) (0.0048) (0.0100)

Household controls Yes Yes Yes Yes Yes Yes
Housing and job controls No Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Workplace fixed effects No No Yes Yes Yes Yes

Number of observations 10,213,540 10,213,540 10,213,524 10,213,524 10,213,524 10,213,524
R2 0.2041 0.2949 0.3316
Kleibergen-Paap F -statistic 386.2 238.8 86.04

Notes: Bold indicates instrumented. Household controls include household size, mean age of adults, mean gender, household
type (couple, single, kids), the share of the household that is foreign-born. Job controls are the total hours worked, whether the
household has a company car, the share of full-time contracts, the share of permanent contracts. Housing controls include house
type, height of the building, construction year dummies and whether a building is listed. Standard errors are clustered at the
neighborhood level and in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10

Table 3 – Reduced form results: alternative proxies for amenities and land prices
(Dependent variable: the log of household gross income)

Alternative proxies for amenities Effects on land prices

(1) (2) (3) (4) (5) (6)
2SLS 2SLS 2SLS OLS OLS 2SLS

Pictures per ha (log) 0.1016*** 0.0919*** 0.2061***
(0.0038) (0.0034) (0.0138)

Hedonic amenity index (log, std) 0.0250***
(0.0028)

Pokéstops per ha (log) 0.0396***
(0.0046)

Share historic district 0.2914***
(0.0309)

Employment accessibility (log) 0.0782*** 0.0580*** 0.0731*** 0.3586*** 0.3343*** 0.2119***
(0.0086) (0.0113) (0.0088) (0.0104) (0.0091) (0.0323)

Number of observations 10,233,115 9,839,819 10,236,308 2,196,280 2,196,280 2,196,280

Household controls Yes Yes Yes Yes Yes Yes
Housing and job controls Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Workplace fixed effects Yes Yes Yes No Yes Yes

R2 0.5564 0.5891
Kleibergen-Paap F-statistic 29.02 68.45 29.14 75.29

Notes: Bold indicates instrumented. Household controls include household size, mean age of adults, mean gender, household
type (couple, single, kids), the share of the household that is foreign-born. Job controls are the total hours worked, whether
the household has a company car, the share of full-time contracts, the share of permanent contracts. Housing controls
include house type, height of the building, construction year dummies and whether a building is listed. Standard errors are
clustered at the neighborhood level and in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table 4 – Structural estimation

No 1900 1832

instruments instruments instruments

(1) (2) (3)

Commuting time elasticity, κ̂ 0.2210*** 0.2210*** 0.2210***
(0.0048) (0.0048) (0.0048)

Commuting heterogeneity, ε̂ 2.7323*** 2.7323*** 2.7323***
(0.0144) (0.0144) (0.0144)

Land preferences, µ̂ 0.0955*** 0.0955*** 0.0955***
(0.0003) (0.0003) (0.0003)

Amenity preferences, β̂ 0.0404** 0.1559** 0.1062***
(0.0181) (0.0712) (0.0262)

Relative location quality heterogeneity, γ̂ 0.3142*** 0.1421*** 0.2493***
(0.0124) (0.0370) (0.0408)

Agglomeration elasticity, δ̂ 0.0465*** 0.0887*** 0.0745***
(0.0016) (0.0040) (0.0034)

Location quality heterogeneity, γ̂∆ 6.0911*** 3.2809*** 4.2179***
(0.2162) (0.5683) (0.3531)

Skills heterogeneity, γ̂s 23.0909*** 16.9213*** 6.0911***
(1.7681) (1.0818) (0.2162)

Fixed parameters:
Minimum lot size, h̄ 25 25 25
Elasticity of substitution, σ 4 4 4

Number of areas 4,033 4,033 4,033
Number of area pairs 16,265,089 16,265,089 16,265,089

Notes: We estimate the parameters using data at neighborhood level. In column (2) we
use as instruments the share of water bodies in 1900 in the neighborhood, the share of
built-up land in 1900 in the neighborhood, the share of built-up land in 1900 <500m of the
neighborhood, the share of built-up land in 1900 500-1000m, and employment accessibility
in 1909. In column (3) we use as instruments the share of water bodies in 1832 in the
neighborhood, the share of built-up land in 1832 in the neighborhood, the share of buildings
in 1832 in the neighborhood, the share of buildings in 1832 <500m of the neighborhood,
the share of buildings in 1832 500-1000m, and population accessibility in 1832. Standard
errors are bootstrapped (250 replications) and clustered at the neighborhood level; ***
p < 0.01, ** p < 0.5, * p < 0.10.

Table 5 – Counterfactual analysis

Baseline scenario No amenities scenario

(1) (2)

Total output 120,959 133,805
Aggregate land rents 437,039 434,299
Aggregate real income 11,821 12,680
Income mixing, σ̄x 0.0472 0.0148

Notes: We calculate aggregate land rents as:
∑L∗

x=1 hc
xR

c
x and

aggregate net wages as :
∑L∗

x=1(1/hc
x)ωc

xt
c
x. Hence, we weight

aggregate labor income by the density in each location.
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Figures

(a) Overview map

(b) Commuting networks (c) Transport Network

Figure 1 – The Netherlands
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(a) % change in sx (b) % change in sx in Amsterdam

(c) % change in Rx (d) % change in Rx in Amsterdam

Figure 2 – Counterfactual analysis: no amenities
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Appendix A

A.1 The bid rent

Since !(s) is strictly increasing in s, we work with the variable !(s) and write the equilibrium

utility level as follows: U�(!(s)). Di¤erentiating (15) w.r.t. x and using (14), we obtain:

	x(x; !(s)t(x); U
�(!(s))) =

!t

H

�
tx
t
� Qb
!t
bx

�
: (A.1.1)

Di¤erentiating (A.1.1) w.r.t. ! and rearranging terms yields the following expression:

	!x(x; !(s)t(x); U
�(!(s))) =

t

H

�
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t
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1� !

H
(H! +HUU

�
!)
i

+
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H! +HUU

�
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Qb � (QbH(H! +HUU�!) +QbUU�!)

��
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It is readily veri�ed from (1) that

Q(h; U=b(x)) =

�
1

(h� h)�
U

b

� 1
1��

; (A.1.3)

while it follows from (A.1.3) that
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Plugging Qb; QbH and QbU into (A.1.2) and rearranging terms leads to

	!x(x; !(s)t(x); U
�(!(s))) =
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Plugging Qh and Q in (14) and solving the corresponding equation yields

h� (1� �)h
(1� �)(h� h)

= !t

�
b

U
(h� h)�

� 1
1��

: (A.1.5)

Using QU , (A.1.5) may be rewritten as follows:�
�U
t
QU

��
h� (1� �)h
(1� �)(h� h)

�
= � !

1� �: (A.1.6)

Di¤erentiating (15) with respect to ! and using (14), we obtain:

	!(x; !(s)t(x); U
�(!(s))) =

t

H

�
1� QU

t
U�!

�
; (A.1.7)

which is equal to 0 if and only if

U�! =
t

QU
: (A.1.8)

Plugging (A.1.6) and (A.1.8) in (A.1.4) yields

	!x(x; !(s)t(x); U
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�
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i
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Applying the implicit function theorem to (A.1.5) yields

HU =
(h� (1� �)h)(h� h)

U�h

and

H! = �
t(1� �)2
�h

U�
1

1�� b
1

1�� (h� h)1+
1

1�� :

Given QU , (A.1.8) is equivalent to

U�! = t � (1� �)
�
b � (h� h)�

� 1
1�� (U�(!))�

�
1�� : (A.1.10)

Using the above three expressions, we obtain:

H! +HUU
�
! = t � (1� �)(h� h)

�
b

U�(!)
(h� h)�

� 1
1��

:

Therefore, by implication of (A.1.5), we have:

1� !

H
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H
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Substituting this expression into (A.1.9) yields the desired expression:

	!x(x; !(s)t(x); U
�(!(s))) =

t

H
� h
H
� [B(x)� (1� �)T (x)] :

A.2 Proof of Proposition 1

The proof involves six steps.

(i) The bid-max lot size. From the de�nition of the location-quality index given by (18),

(A.1.5) can be rewritten as follows:

H � (1� �)h
(1� �)(H � h)

= !�
1

1��

�
(H � h)�

U

� 1
1��

; (A.2.1)

which implies H(!(s)t(x); U=b(x)) � H(�(x); !(s); U) so that the bid-max lot size depends on
b(x) and t(x) only through the location-quality index �(x).

The LHS of (A.2.1) is decreasing and tends to +1 when H ! h and to 1=(1 � �) > 0 when
H ! +1: The RHS of (A.2.1) is increasing in H. It tends to 0 when H ! h and to +1 when

H ! +1: Therefore, (A.2.1), equivalently (14), has a single solution H(!t(x); U=b(x)), which
implies that the housing demand is uniquely determined.

Applying the implicit function theorem to (A.2.1) yields

@H

@�
= �

�
U

1
1�� (H � h)�

1
1���1

�H

(1� �)

��1
!�

�
1�� < 0: (A.2.2)

(ii) Equilibrium utility level. Using the de�nition of the location-quality index, (A.1.10)

implies that the equilibrium utility level is a solution to the di¤erential equation in U�:

U�! = �
1

1�� (1� �)(H � h)
�

1�� (U�(!))�
�

1�� ; (A.2.3)

so that U�(!) depends on � only.

(iii) Supermodularity of the equilibrium utility level. Di¤erentiating (A.2.3) w.r.t. �,

we obtain:
@

@�

dU�

d!
= �

�
1�� (H � h)

�
1�� (U�(!))�

�
1�� �

�
1 + ��(H � h)�1@H

@�

�
:

Using (A.2.2), this expression may be rewritten as follows:

@

@�

dU�

d!
= �

�
1�� (H � h)

�
1�� (U�(!))�

�
1�� �

"
1� (H � h)

1
1��
(1� �)!�

1
1��

(U�(!))
1

1��H

#
:
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From (A.2.1), the expression in the bracketed term is equivalent to

1� (H � h)
1

1��
(1� �)!�

1
1��

(U�(!))
1

1��H
= (1� �)h

h
> 0:

Therefore,
@

@�

dU�

ds
=

@

@�

dU�

d!
d!
ds
> 0:

The Spence-Mirrlees condition thus holds, which implies the existence of a positive assortative

matching between skills and the values of the location-quality index. In other words, there is a

unique one-to-one and increasing relationship between s and � (Chiappori, 2017). Regardless of

the value of Y > 0, households ordered by increasing skills must be assigned to locations endowed

with rising values of the location-quality index. Since a single value of � is associated with x,

a unique value of s must be associated with x. Therefore, the equilibrium conditions (16) has a

unique solution, which means that s�(x) is a mapping.

Note that the supermodularity of U�(!) is equivalent to the inequality 	!� > 0. Indeed,

di¤erentiating (A.1.7) w.r.t. � and using (A.1.8) yield:

	!�(x; !(s)t(x); U
�(!(s)))j	!=0 =

t

H

�
@(t=QU)=@�

U�!

�
=
t

H

@U�!=@�

U�!
> 0:

(iv) Uniqueness of the equilibrium shares ��(x; s�(x)): The proof follows Montesano (1972).

Assume that there arem � 2 points x1 6= x2::: 6= xm exist such that�(x1) = �(xj) for j = 2; :::;m.
Using (12) and Step (i), we have:

j�(xj; s)f(s�(xj))H f�(xj); !(s�(xj)); U� [!(s�(xj))]g dsj = dx j = 1; :::;m: (A.2.4)

The supermodularity of U� w.r.t. � implies s�(x1) = s�(xj), so that f(s�(x1)) = f(s�(xj)) for

j = 2; :::;m. In other words,

H f�(x1); !(s�(x1)); U� [!(s�(x1))]g = H f�(xj); !(s�(xj)); U� [!(s�(xj))]g :

Hence, dividing relationships (A.2.4) between themselves leads to

�(x1; s
�(x1))

�(xk; s�(xk))
= 1 k = 2; :::;m:
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Since
Pm

j=1�(xj; s) = 1, we obtain:

��(xj; s
�(xj)) =

1

m
j = 1; :::;m:

Since b(x) and t�(x) are never constant on a nonegligible subset of N , we may assume that

there is an integer M such that m �M .

(v) Existence of a spatial equilibrium. Since t(x) is the mean of the upper envelop of n

continuous functions of Li, the mapping s�(x;L) is continuous in L. Let Nm � N be the set

of locations, which may be empty or negligible, such that �(x; s�(x;L)) = 1=m for x 2 Nm and
[Mm=1Nm = N for m = 1; ; ::;M (up to a negligible set).

Let Z be the number of arcs az of the network N . The set Nm is the union of a �nite number of

subarcs; a subarc of az links the points �mz 2 az and �mz 2 az. For notational simplicity, we assume
that each arc az includes at most one subarc (�mz ; �

m
z ) in Nm (otherwise a third summation over

the subarcs of az included in Nm is needed).

Hence, the function

Fi(L) � L�i ; i = 1; :::; n

=

(
MX
m=1

1

m

ZX
z=1

Z �mz

�mz

f [s�(x;L)]
Ki[ti(x; Li)]

"Pn
j=1Kj [tj(x; Lj))]

"dx

)�
(A.2.5)

is also continuous in L.

Since F(L) � (F1(L); :::;Fn(L)) is a continuous mapping from the simplex

Sn � fL;L1 � 0; ::; Ln � 0 and �ni=1Li = 1g

into itself, F(L) has at least one �xed point L�.

(vi) Uniqueness. We determine a su¢ cient condition for the spatial equilibrium to be unique.

It is well known that uniqueness holds when the function F(L) given by (A.2.5) is a contraction.
This is so when the matrix norm jj�jj1 of the Jacobian J(F) of F(L) is smaller than 1. The function
F(L) is di¤erentiable everywhere but over the negligible set I of L � Sm such that ti(x) = tj(x)
or L�i=L

�
j = Aj`j(x)=Ai`i(x) for i 6= j since the function `i(x) is strictly increasing in the distance

d(x; i) for i = 1; :::; n.

Di¤erentiating (A.2.5) with respect to Lk yields the following expression de�ned on the interior
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of Sn � I:

@Fi(L)
@Lk

= �

(
MX
m=1

1

m

ZX
z=1

Z �mz

�mz

f [s�(x;L)]
Ki[ti(x; Li)]

"Pn
j=1Kj [tj(x; Lj))]

"dx

)��1

�
(

MX
m=1

1

m

ZX
z=1

f [s�(�mz (L);L)]
Ki[ti(�

m
z (L); Li)]

"Pn
j=1Kj [tj(�mz (L); Lj)]

" �
@�mz (L)

@Lk

�
MX
m=1

1

m

ZX
z=1

f [s�(�mz (L);L)]
Ki[ti(�

m
z (L); Li)]

"Pn
j=1Kj [tj(�mz (L); Lj)]

" �
@�mz (L)

@Lk

+

MX
m=1

1

m

ZX
z=1

Z �mz

�mz

@

@Lk

"
f(s�(x;L))

Ki[ti(x; Li)]
"Pn

j=1Kj [tj(x; Lj))]
"

#
dx

)
; i; k = 1; :::; n:

Since all the terms in the right-hand side of this expression are continuous on Sn�I, @Fi(L)=@Lk
has a supremum Cik 6= 0. Therefore, we have:

nX
k=1

����@Fi(L)@Lk

���� < � nX
k=1

jCikj < 1;

where the second inequality holds for all 0 < � < �i � 1=(�k jCikj). Let �min be the minimum of

�i over i = 1; :::; n. If � < �min, jjJ(F)jj1 is smaller than 1. In other words, when � > 0 is small

enough, F(L) is a contraction.

A.3 The equilibrium land rent under Fréchet distributions

Using (14), we may rewrite (15) as follows:

	(x; !t; U) = �QH(H;U=b(x)):

Using QH leads to

	(x; !t; U) =
�

1� �(H � h)
�1
1��

�
U

b

� 1
1��

: (A.3.1)

Rearranging terms in (3) yields:

H � h = �
�

!t

	(x; !; U)
� h
�

(A.3.2)

and plugging the above expression into (A.3.1) leads to

	(x; !; U) = ��
�

1�� (1� �)�1
�

!t

	(x; !; U)
� h
� �1
1��
�
U(!)

b

� 1
1��

:
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Dividing this expression by t(x) and setting � � 	=t, we get

� = ��
�

1�� (1� �)�1
�!
�
� h
�� 1

1��
[U(!)]

1
1�� (��)

�1
1�� :

Rearranging terms, this expression becomes:

� = �(1� �)
1��
�
�
! � �h

� 1
� [U(!)]�

1
� (��)

1
� : (A.3.3)

Applying the �rst-order condition to � yields the following di¤erential equation in !:

U�!(!) =
1

! � �h
U�(!):

Let

U�(!) =
�
! � �h

�
X(!) (A.3.4)

be a solution to the above di¤erential equation where X(!) is determined below. Di¤erentiating

(A.3.4) with respect to !, we obtain

U!(!) =

�
1

! � �h
� h

! � �h
�! +

X!(!)

X(!)

�
U(!):

Totally di¤erentiating � leads to

�! �
d�
d!

=
@�

@!
+ ���! = ���!: (A.3.5)

Di¤erentiating (A.3.3) with respect to � yields:

�� = �

�
1

�
(��)�1 � 1

�
��h

�
! � �h

��1�
;

whose solution in �� is

�� =
1

��
�

�

�
�(! � �h)

�(! � �h) + h�

�
:

Therefore, we may rewrite (A.3.2) as follows:

H� = �(! � �h) + h�: (A.3.6)

Plugging (A.3.6) into �� leads to

�� =
! � �h
��H

:
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Using �! and �!, (A.3.5) becomes:

�! = ���
�
! =

1



! � �h
!H

=
1

�

(H � h)�
!H

> 0:

Since U!(!)=U(!) is equal to 1=(! � �h) in equilibrium, it must be that

X!(!)

X(!)
=

h

! � �h
�! =

h

! � �h
1

�

(H � h)�
!H

:

Therefore, using (A.3.6) leads to the following di¤erential equation in !:

X!(!) =
1



h

!H
X(!);

whose solution is

X(!) = k
� !
H

� �
1��
; (A.3.7)

where k > 0 is the constant of integration. Indeed, di¤erentiating the above equation with respect

to ! leads to

X!(!) =
1

(1� �)
H � !(H! +H�

UU!)

H2

H

!
X(!):

Using (A.1.11), we obtain:

X!(!) =
1

(1� �)
(1� �)h
H

1

!
X(!) =

1



h

!H
X(!):

Substituting (A.3.7) into (A.3.4) yields:

U(!) =
�
! � �h

�
k
� !
H

� 1
(1��)

:

Plugging this expression into (A.3.3) and rearranging terms, we obtain the following implicit

solution for the equilibrium land rent:

R�(x) = �(1� �)
1��
� k�

1
� t(x)(��(x))

1
�

�
�t(x)

R�(x)
+

(1� �)h
K1=s [��(x)] (Y �)1=�

� 1
(1��)�

: (A.3.8)

Since the RHS of (A.3.8) is strictly decreasing and tends to 0 (1) when R(x) ! 1 (0), (A.3.8)

has a unique solution in R�(x).

The lowest income in the sample, denoted by !, is strictly positive. It follows from (21) that
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the lowest location-quality index associated with the poorest household is given by

� =

�
KS

K�

��=S
(Y �)�=� (!)1= > 0:

The constant k may be obtained by evaluating R�(x) at the least enjoyable location x where

��(x) reached its minimum �. We assume that x is unique. Furthermore, the land rent at x is

equal to the opportunity cost of land, R0. Therefore, it is readily veri�ed that k is given by

k�
1
� = R0�

�1(1� �)�
1��
� [t(x)]�1�� 1

�

�
�t(x)

R0
+
(1� �)h
!

� �1
(1��)�

:

Plugging this expression into (A.3.8) yields the equilibrium land rent at x:

R�(x) = R0
t(x)

t(x)

�
��(x)

�

� 1
�

"
� t(x)
R�(x) + (1� �)

h
!�(x)

� t(x)
R0
+ (1� �) h

!

# 1
(1��)�

:

Note that this expression captures several e¤ects: the commuting costs at x and x, the location-

quality index at x and x, and the mapping !�(x).

A.4 The real wage under Stone-Geary preferences

With a Stone-Geary utility function, we have U = b � u(q; h)

u = (1� �)�(1��)���q1��
�
h� h

��
(A.4.1)

and the budget constraint is given by q+Rh = !t. The price index under Stone-Geary preferences

is given by

P = R�
!t

!t�Rh
:

Proof. Inserting the equilibrium consumption of numéraire and housing in (A.4.1) yields the

indirect utility of consumption:

u� = (!t�Rh)R��

= !tR��
!t�Rh
!t

:

Hence, total expenditures are given by

!t = u�R�
!t

!t�Rh
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so that the price index is

P = R�
!t

!t�Rh
:

Because the Stone-Geary utility function is non homogeneous, the price index P depends on

income and varies across individuals.�
Hence, the real wage is given by

!t

P
=
!t�Rh
R�

:

Appendix B

In this appendix, we �rst pay attention to the construction of the various datasets. In Appendix

B.1 we elaborate on how we calculate network distances and show the relationship with Euclidian

distance. Appendix B.2 continues by explaining how we measure land prices and lot sizes for

all locations. This is followed in B.3 by more information on our proxies for amenities: the

picture index and the construction of the hedonic amenity index. In Appendix B.4 we introduce

the historical data based on 1900 land use maps and the 1832 Census. Appendix B.5 reports

distributions of the variables of interest.

The second part of this appendix reports various additional econometric results. First, we

report bias-corrected estimates using Oster�s (2019) methodology in Appendix B.6. Second, �rst-

stage results in Appendix B.7. We undertake additional robustness checks in Appendix B.8. Ap-

pendix B.9 discusses the outcomes of alternative speci�cations of the gravity model. In Appendix

B.10 we outline the procedure to solve for counterfactual outcomes of the model.

B.1 Commuting and travel times

To estimate the commuting time for each household, we use the tax register information, which

provides information on individual jobs and the number of hours worked in each �rm for each

year. From the ABR Regio dataset, we get information on all �rms which provide information

on each establishment in the Netherlands, such as its exact location, the industrial sector, and

the estimated number of employees in each establishment. To avoid miscoding and to exclude

employment agencies (where people do not actually work), we exclude �rms with more than 10

thousand employees. Since we do not know the exact establishment, only the �rm, people work

for, we assume that they work at the nearest establishment of the �rm. This assumption may be

problematic for �rms having a large number of establishments (e.g., supermarkets or large banks).

Therefore, we keep only �rms with a maximum of 15 establishments throughout the Netherlands.

As many such �rms have establishments in di¤erent cities, it is reasonable to assume that people
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work in the nearest establishment.13 Overall, we are left with 95% of �rms.

We �rst calculate the commuting time from each home location x to each job location i for

each year. Then, we determine the commuting time of each household by computing the average

commuting time of each adult household member weighted by the number of hours (s)he worked.

To calculate the travel time (as well as the time to travel to amenities) we obtain information on

the street network from SpinLab, which provides information on average free-�ow speeds per short

road segment (the median length of a segment is 96m), which are usually lower than the speed

limit.

The dataset from SpinLab provides information on actual free-�ow driving speeds for every

major street in the Netherlands. The actual speeds are usually well below the free-�ow driving

speeds, due to tra¢ c lights, roundabouts and intersections. For each neighborhood we calculate

the straight-line distance to the nearest access points on the network and then calculate the

network distance. The median distance from an observation in the dataset to the nearest access

point of the network is 195m (the average is 326m). We assume that the average speed to get

to the nearest access points is 10km/h. This is the speed based on the Euclidian distance; in

reality the distance to get to the network will be higher because streets are usually curved. Hence,

the assumption of 10km/h seems reasonable as the minimum speed on roads in the network is

20km/h. Furthermore, because of the dominance of the bicycle, this would be close to the average

cycling speed. Using these information, we calculate the total driving time, which is the sum

of the driving time to access the network, the network driving time and the time it takes from

the network to arrive at the destination. Alternatively, we calculate for each location pair the

Euclidian distance and assume again an average speed of 10km/h.

We also calculate the travel time using the train, using a similar approach. The median distance

of each centroid to the nearest station is 5:25km. We then choose the minimum of the travel time

over the road, using the train or taking the Euclidian travel time.

[Figure B.1 about here]

The correlation between travel time and Euclidian distance is modest (� = 0:643). For short

distances (< 10km) the correlation is, however, much higher (� = 0:862). We plot the relationship

between distance and travel time in Figure B.1.A. This relationship is monotonic. Figure B.1.B

shows the share of commuting people who travel at most � minutes, which we use to calculate

employment accessibility in 1900.

13Alternatively, we could consider a distance-decay average of distances to the �rm�s establishments. Instead,
we test robustness by keeping households which have only one working-member who works during the whole year
in a single-establishment �rm leading to nearly identical results.
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B.2 Land prices and lot sizes

Information on land values and lot sizes is not directly available but may be inferred from data on

home sales. We use information on home sales from NVM (The Dutch Association of Realtors),

which comprises the large majority (about 75%) of owner-occupied house transactions between

2003 and 2017. We know the transaction price, the lot size, inside �oor space size (both in m2),

the exact address, and a wide range of housing attributes such as house type, number of rooms,

construction year, garden, state of maintenance, and whether a house is equipped with central

heating. We make some selections to make sure that our results are not driven by outliers. First,

we exclude transactions with prices that are above e1 million or below e25; 000 and have a price

per square meter which is above e5; 000 or below e500. We also leave out transactions that refer

to properties that are larger than 250m2 or smaller than 25m2, or have lot sizes above 5000m2.

These selections consist of less than 1% of the data and do not in�uence our results. We follow a

similar procedure as Rossi-Hansberg et al. (2010), implying that we can only use information on

residential properties with land. We are left with 1; 337; 445 housing transactions.

Let P(x) denote the house price in year y, H(~x) the observed lot size and C(~x) the housing
characteristics of property ~x. The log land rent R(x) is equal to the �xed e¤ects at the level of

the postcode (about 15-20 addresses), which we denote by &(x), while #(y) denote year y �xed

e¤ects. For each city, we estimate:

log
P(~x; y)
H(~x; y)

= �1C(~x; y) + &(x) + #(y) + �(~x; y); (C.2.1)

where �(~x; y) is an identically and independently distributed error term that is assumed to be

uncorrelated to land rents and housing characteristics, while �1 are parameters to be estimated.

As logRx are given by the very local �xed e¤ects, we do not impose any structure on how land

rents Rx vary across locations. For about 80% of the data we do not observe land prices directly,

because either there were no multiple sales in our study period or because there is no owner-

occupied housing in the respective postcode. We therefore also estimate the above equation with

neighborhood �xed e¤ects instead.

[Tables B.1 and B.2 about here]

Descriptive statistics for the housing sample are reported in Table B.1. Coe¢ cients �1 related

to the housing attributes are reported in Table B.2. It appears that the house price per square

meter of land is generally a bit lower when the property is larger. However, the house price per

square meter of land of properties that are (semi-)detached is generally higher. Furthermore, when

the maintenance state of a property is good, prices are about 502=1269 = 40% higher. When a

property has central heating, the price per square meter is about 5:1% higher. The dummies
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related to the construction decades show the expected signs. Properties constructed after World

War II until 1970 generally have lower prices because this is a period associated with a lower

building quality. Lot sizes are inversely related to pattern of land prices (� = �0:245). In other
words, more expensive locations generally have smaller lots, which makes sense.

B.3 Amenities

Hedonic amenity index. We test whether our results are robust to using an alternative hedonic

amenity index, rather than relying on geocoded pictures. Following Lee and Lin (2018), we

construct an aggregate amenity index that describes the amenity level in every neighborhood x.14

We will make a distinction between historic amenities and natural amenities.

Let A(~x) be a set of variables that describe amenities of property ~x (so the location is more
detailed than the neighborhood x). For example, we calculate the share of historic districts, the

number of listed buildings, water bodies and open space within 500m of each property. Let P(~x; y)
the house price, while C(~x; y) are housing characteristics at location ~x, and #(y) are year y �xed

e¤ects. We also include neighborhood �xed e¤ects &(x) , so we identify the e¤ects of amenities on

prices within neighborhoods. We then estimate:

logP(~x; y) = �0A(~x) + �1C(~x; y) + #(y) + &(x) + �(~x; y); (B.3.1)

where �0 and �1 are parameters to be estimated and �(~x; y) is an identically and independently

distributed error term. We then use b�0 and A(~x) to predict the amenity level in each location x
in the Randstad:

~b(x) =
1

N(x)

NxX
~x=1

b�0A(~x); (B.3.2)

where ~bx is the (alternative) amenity value at x and N(x) are the number of observations in

neighborhood x. Hence, we take the mean amenity value within neighborhoods x.

We use data on the universe of housing transactions in the Netherlands between 2010 and 2015

from the NVM. Additional descriptive statistics of the NVM data are reported in Table B.3. We

have 695; 709 observations and the average house price is e229 thousand.

[Tables B.3 and B.4 about here]

In Table B.4 we report the results of the regression of equation (B.3.1). We �rst investigate the

14Albouy (2016) uses information on wages and housing costs to infer the level of amenities for U.S. cities.
However, his approach is not applicable here because we are also interested in intra-city variation in amenities.
Using Albouy�s proxy for amenities could capture the sorting of rich households in certain locations, but this is
exactly the relationship we aim to test.
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impact of listed buildings. It can be seen that the share of historic districts leads to higher price.

A 10 percentage point increase in the share of land designated as historic district increases prices

by 1:8%. Listed buildings do have a small additional e¤ect of 0:5% per listed building. In column

(2) we investigate the impact of water bodies and open space. For a 10 percentage point increase

in water bodies, prices rise by 3%. Moreover, a 10 percentage point increase in open space implies

a price increases of 0:6%, so this e¤ect is considerably smaller. When we put historic amenities

and natural amenities together, the coe¢ cients are essentially una¤ected. We consider this as the

preferred speci�cation. In the last speci�cation we investigate whether the results change when

we include endogenous amenities, such as shops, cafés, and leisure establishments. This appears

not to be the case. Only hotels restaurants and cafés have a statistically signi�cant impact on

prices, which suggests that exogenous amenities related to the built environment and land use are

more important than endogenous amenities.

Pokémon amenity index. Pokémon was a hugely popular game in 2017. The game could

be played at certain places of interest, the so-called �Pokéstops�.15 The locations of Pokéstops

were determined in the geolocation game by Ingress. The developers then chose some of the �rst

portals based on sites with historic or cultural signi�cance, such as The Washington Monument,

Big Ben, or museums. Other locations were chosen based on geotagged photos from Goggle. Many

more portals were submitted as suggestions by Ingress players. There were approximately 15

million player-submitted portal locations, 5 million of which have been approved. In other words,

these Pokéstops are not randomly located across space and signify locational attractiveness. We

construct the Pokémon Go amenity index by using the density of Pokéstops in a neighborhood.

B.4 Historic data

To instrument current amenity levels and commuting time we use information on land use, the

railway network and amenities in 1900. For the 1900 land use maps, Knol et al. (2004) have

scanned and digitized maps into 50 by 50 meter grids and classi�ed these grids into 10 categories,

including built-up areas, water, sand and forest. We aggregate these 10 categories into built-

up, open space and water bodies. Knol et al. document large changes in land use across the

Netherlands from 1900 to 2000. For example, the total land used for buildings has increased more

than �vefold. On the other hand, the amount of open space has decreased by about 10%. We also

use information on municipal population in 1900 from NLGIS. Municipalities were much smaller

at that time and about the size of a large neighborhood nowadays. We impute the local population

distribution using the location of buildings and assuming that the population per building is the

15Another type of locations that are used in the game are so-called �Gyms�. The latter types are unfortunately
less useful, as these are almost uniformly distributed within urban areas in gardens, open spaces and public squares.
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same within each municipality. We further use information on railway stations from Koopmans

et al. (2012). We enrich these data by adding missing stations from various sources on the

internet and create a network with travel times. To approximate the speed, we �t a regression of

the length of (current) railway segments between stations on current travel time on the railway

network. Based on historic sources, it appears that the average speed is about 50% of what it is

currently (about 70km/h).

We show a map of land use and the railway network for the Netherlands in 1900 in Figure

B.2. In Panel A it is shown that cities like Amsterdam, Rotterdam, The Hague, and Utrecht were

already large by 1900. It can also be seen that some areas that have been reclaimed from the sea

(e.g., to the northeast of Amsterdam) did not exist in 1900. The Panel B of Figure B.2 shows the

railway network. In particular, places around Amsterdam and Utrecht have a high accessibility.

The �rst railway line in the Netherlands was opened in 1839 between Amsterdam and Haarlem,

soon followed by the openings of many other lines.

[Figure B.2 about here]

We use data composed by HISGIS, which has compiled and digitized data from the �rst Dutch

census in 1832. This dataset provides information on the land use of each parcel in the current

inner cities of Amsterdam, Rotterdam, Leiden, Delft, Hoorn, as well as for the province of Utrecht,

Drenthe, Groningen, Friesland, Overijssel, Gelderland, and parts of Noord-Brabant. The HISGIS

data also provide information on the cadastral income for about one-third of the observations,

which was used to determine the tax at that time and is a proxy for land values. In Panel A

of Figure B.3 we show that the study area is much smaller and excludes the city of The Hague.

Hence, the results using data from 1832 is only based on a subsample of the population. We

rely on municipal population data from NLGIS to calculate the accessibility in 1832. We assume

that population is uniformly distributed within the municipality. Rail networks did not exist yet,

so in order to calculate the population that could be reached within commuting time, we use

information on the road network from 1821 obtained from Levkovich et al. (2017). Panel B of

Figure B.3 shows the network back then.

[Figure B.3 about here]

In Table B.5 we provide descriptives for all instruments. The average share of built-up area in

1900 was 4:3%, while it was 4:2% in 1832. However, this �gure is a bit misleading because for 1832

we have more data near urban areas. On average about 38 thousand jobs and 89 thousand people

could be reached within commuting distance in 1900. Not surprisingly, this was much lower (40
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thousand) in 1832.

[Table B.5 about here]

B.5 Other descriptive statistics

In Figure B.4 we report the distributions of the log of income and the log of land price. The

distributions of land prices is somewhat positively skewed.

[Figure B.4 about here]

In Figure B.5 we show maps of income and land price distributions across the Netherlands.

As expected, land prices are generally higher in cities. The pattern for incomes is less clear, but

generally speaking we �nd that wealthier households locate close to or in cities.

[Figure B.5 about here]

B.6 Bias-corrected estimates

Many non-experimental papers use coe¢ cient movements after the inclusion of control variables

to investigate whether omitted variable bias is important. Oster (2019) argues that coe¢ cient

movements alone are not a su¢ cient statistic to calculate bias. Instead, she argues that whether

omitted variable bias is a concern depends on the variance of the added control variables, as well

as coe¢ cient movements. In other words, changes in the coe¢ cient(s) of interest after adding

controls should be scaled by the change in the R2. Oster (2019) then derives an estimator to

correct estimates for omitted variable bias under the assumption that the relationship between

the variables of interest and unobservables can be recovered from the relationship between the

variables of interest and observables. In our context, this assumption makes sense as control

variables that are added bear some potential relationship to unobservables. In our case, we add

many housing controls as well as workplace �xed e¤ects, which are likely to have at least some

correlation to unobservables.

Oster (2019) then derives a GMM estimator to derive bias-corrected estimates of the impact

of amenities and employment accessibility on incomes. There are two key input parameters that

have to be determined. First, there is the maximum R2 from a hypothetical regression of income

on amenities, accessibility and controls, which we denote as �R. Given that our variables are

neighborhood-speci�c, rather than household-speci�c variables, �R is likely to be much smaller than

1. Second, a parameter must be chosen that determines the relative degree of selection on observed

and unobserved variables, which we denote by $. Although this parameter is fundamentally

unknown, Altonji et al. (2005) and Oster (2019) show that $ = 1 is a reasonable (upper-bound)
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value. Oster (2019) then shows that

��1 � �̂1 �$ [��1 � ~�1]
�R2 � R̂2

R̂2 � �R21
and ��2 � �̂2 �$ [��2 � �̂2]

�R2 � R̂2

R̂2 � �R22
; (B.3.2)

where �̂1 and �̂2 are parameter estimates obtained from a regression with controls (say household,

job and housing controls, as well as workplace �xed e¤ects), and R̂2 is the corresponding R2. ��1
and ��2 are parameter estimates obtained from a regression without controls and �R21 and �R

2
2 are

the corresponding R2s. Hence, this equation provides a simple way to evaluate robustness of the

results. We then report bootstrapped bias-corrected estimates in Table B.6 of the coe¢ cients of

interest. We replicate the �rst three speci�cations reported in Table 3.

[Table B.6 about here]

In columns (1)-(3) of Table B.6, we naively assume that in theory we can fully explain variation

in wages, so that �R = 1. Given this assumption, we �nd in column (1) �where we only include

household controls and year �xed e¤ects �that the e¤ect of amenities is about 10 times as strong,

and the e¤ect of employment accessibility is about twice as strong as in the corresponding OLS

speci�cation. The e¤ect of amenities becomes even stronger once we add housing and job controls

in column (2) and is again comparable to column (1) once we add workplace �xed e¤ects. This

may lead to the conclusion that the OLS estimates are not robust and subject to omitted variable

bias. However, the assumption that �R = 1 is likely to be wrong because the dependent variable is a

variable measured at the micro-level (the household), while amenities and employment accessibility

are measured at the neighborhood level. Hence, the maximum attainable �R when omitted variables

are important is likely substantially lower. To determine �R we therefore run a regression of income

on household, job and housing controls, as well as residence, workplace and year �xed e¤ects. This

leads to an R2 of 0:357 , which is considerably smaller than 1. Moreover, it is around the value of
�R = 1:3R̂2, which is supported by experimental data (Oster, 2019).

Columns (4)-(6) then show that the e¤ect of amenities and employment accessibility are very

similar to the OLS estimates. In our preferred speci�cation, we �nd an elasticity of 0:0239, which is

close to 0:0166 found in the OLS speci�cations. For employment accessibility we �nd an elasticity

of 0:0936, which is essentially the same as 0:0881 reported in the corresponding OLS speci�cation.

In other words, these results strongly suggest that omitted variable bias is not a major issue.

Having said this, Oster�s (2019) methodology does not account for measurement error in ameni-

ties or employment accessibility or reverse causality. It is therefore still important to apply our

instrumental variables strategy.
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B.7 First-stage results

We report �rst-stage estimates in Table B.7. In column (1) we use contemporary instruments for

amenities. We show that current proxies for amenities are strongly positively correlated to picture

density. For example, when the number of listed buildings per hectare increases by 1, picture

density increases by 12:7%. Also the share of a neighborhood designated as historic district is

positively correlated to the picture density. Furthermore, we �nd positive correlations with the

share of built-up land and water bodies located in the neighborhood. Hence, picture density seems

a meaningful proxy for amenities.

[Table B.7 about here]

In column (2) we use historic instruments. This means that we use the share of built-up land

in 1900 and share of water in 1900 as instruments for picture density. We �nd strong positive

e¤ects of the share of built-up land in 1900 on picture density. This e¤ect is about twice as strong

as the share of contemporary built-up land, likely because the share of built-up land in 1900 is

positively correlated to the current intensity of historic amenities.

Column (3) also includes the instruments for employment accessibility: the share of built-up

land in 1900 within 500m, the share of built-up land in 1900 between 500 and 1000m and, most

importantly, employment accessibility, This leaves the e¤ects of the share of built-up land in 1900

in the own neighborhood almost una¤ected.

In column (4) we take employment accessibility as dependent variable. The instruments for

accessibility are relevant. We �nd a strong positive e¤ect of the share of built-up land in 1900

between 500 and 1000m on accessibility, which makes sense. Also employment accessibility in

1909 has a strong positive e¤ect on current employment accessibility. More speci�cally, doubling

employment accessibility in 1909 is associated with an increase in current employment accessibility

of 29%.

B.8 Sensitivity checks for the reduced-form income mapping

Identi�cation revisited. We consider additional robustness analyses in Table B.8 that should

increase con�dence in the validity of our identi�cation strategy. First, we show that our results

are similar once we focus solely on urban areas. In column (1) we only include observations in

the Randstad, i.e., the main polycentric metropolitan area in the Netherlands. This reduces the

total number of observations by more than 50%. However, our results are similar, in particular for

amenities. For employment accessibility we �nd that the coe¢ cient is somewhat stronger, which

may be due to tra¢ c congestion in some parts of the Randstad (e.g., around Amsterdam and

Rotterdam), which would imply that the commuting time elasticity is underestimated. In column
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(2) we exclusively focus on observations close to city centers. That is, we only include locations

within 15km of the center of an urban area with at least 100; 000 inhabitants. The coe¢ cients are

very similar, but for employment accessibility it becomes somewhat imprecise.

In column (3) we go back further in time and use instruments from 1832. This reduces

the number of observations considerably because the 1832 data is not available for whole of the

Netherlands. The Kleibergen-Paap F -statistic in column (3) is lower, which is not too surprising as

going back further in time implies that correlations between instruments and endogenous variables

become less strong. We �nd an e¤ect for accessibility that is about twice as strong as when using

instruments from 1900. In column (4) we use the information on the cadastral income, a proxy for

the land value in 1832. This is missing in two thirds of the cases, so our number of observations drop

further to about 1:8 million observations. Again, we �nd that the e¤ect of amenities is very much

comparable to the baseline speci�cation. The e¤ect of commuting time is even somewhat stronger.

Interestingly, the e¤ect of cadastral income is negative. A 10% decrease in the cadastral income in

1832 attracts households whose incomes are 0:03% higher, meaning that the e¤ect is small. This

is in line with anecdotal evidence that amenities in the past are essentially uncorrelated, or even

negatively correlated, to current amenities.

[Table B.8 about here]

In column (5), Table B.8, we estimate speci�cations where we again use instruments from

1900, but control for the current share of built-up areas and population density to make sure that

our amenity proxy is not just capturing population density or built-up land. We �nd very similar

e¤ects for amenities and accessibility.

One may be more worried that the concentrations of high-income households are autocorrelated

so that our instruments are correlated to the concentrations of high-income households in 1909. To

investigate whether this is an issue, we calculate the share of medium and high-skilled households

in 1909. Municipalities then were much smaller, so this is a rather �ne-grained measure of skill

sorting across space. We also gather data on the share of Protestants in each municipality in 1899

and control for population accessibility in 1900. Including those measures does not impact our

coe¢ cients at all. Note that locations of high-skilled and medium-skilled households in 1909 are

correlated to the locations of lower incomes nowadays, which suggests that the determinants of

residential choices in the two periods are fairly di¤erent. This also con�rms the negative association

of Cadastral Incomes in 1832 to current incomes. Also, conditional on employment accessibility,

population accessibility in 1900 is negatively correlated to current incomes. In column (7), we

further study the sensitivity of our results by choosing another instrument for accessibility. We

use the share of the population in 1909 born in the same municipality. If mobility of households

is correlated over time, the share of locally born people should be negatively correlated to current

A20



accessibility, as the areas that host a high number of jobs (so have a better accessibility) are

expected to attract workers from other places. Indeed, we �nd that the share of locally born

people in 1909 is negatively associated with current employment accessibility. The Kleibergen-

Paap F -statistic again indicates that these are strong instruments. We �nd a similar coe¢ cient

related to employment accessibility.

If one is still worried that household income sorting is autocorrelated, in column (8) we only in-

clude neighborhoods on reclaimed land. The Netherlands is well known for its large-scale projects

that reclaim land from the sea. We consider the three main projects (Wieringermeer, Noordoost-

polder, Oostelijk, and Zuidelijk Flevoland) that occurred between 1930 and 1968, but permission

by the government to reclaim those areas was already given in 1930. Most of the land was intended

for agriculture, but a few small settlements were planned on the newly reclaimed land. Moreover,

Lelystad was planned to be the largest city, but nowadays Almere is by far the largest city in the

area. In other words, the plans di¤er considerably from the current spatial economic distribution.

Since only a small share of the population lives in those areas, we only keep about 2:5% of the

observations.

We then instrument for amenities with the share of planned built-up and green areas in column

(8). We observe that the impact of amenities is slightly lower, but, given the standard error, the

e¤ect is not statistically signi�cantly di¤erent from that of the baseline estimate. The coe¢ cient of

employment accessibility is very similar to the baseline estimate, albeit imprecise. When we also

instrument for employment accessibility with the planned accessibility in column (9), the point

estimates are again similar, but we now have weak instruments leading to imprecise coe¢ cients.

In sum, we address reverse causality as no one was living in those locations at that time, and thus

income was zero.

Other sensitivity checks Table B.9 reports the results of additional robustness checks. Our

dataset contains observations on households. When calculating the commuting elasticity and when

including workplace �xed e¤ects, we focus on the job that generates the most working hours. This

may be problematic when more people are employed in the household that work in di¤erent

location. In column (1) we therefore only include households that are associated with one job.

This does not lead to material di¤erences in outcomes. When calculating the commuting time, we

calculate the commuting time to the nearest plant of a �rm, if it has multiple establishments. We

test whether this introduces error by only including households that are associated with one job

in a single plant �rm in column (2). In this way we address any measurement error in commuting

time. Again, the estimates are very similar.

[Table B.9 about here]
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Our measures of commuting time rely on the minimum of travel time on the road and rail.

However, in almost all cases travel time over the road is shorter. To make sure that households

actually consider this travel time, we only keep households having a company car in column (3).

This does not materially change the results. Column (4) replaces the dependent variable income

by the share of adults in the household that have a college degree or more. We �nd very similar

e¤ects. For example, when the picture density doubles this increases the share of highly educated

households by 3:3 percentage points. Conversely, doubling commuting times decreases the share

of highly educated households by 20:3 percentage points.

Column (5) tests whether the results are robust when using commuting time by rail instead

of commuting time over the road or rail. The results are comparable. Overall, the impact of

amenities and commuting time on income sorting choice is robust.

B.9 The gravity model

In Table B.10 we report the results for the travel time elasticity. In column (1) we only include

location pairs that are within 60 minutes drive from each other. Thus, we drop 77% of the data

and we are left with 3:8 million residence-workplace pairs (note that many of those pairs have

zero commuters so that more than 90% of the commutes are within 60 minutes). The estimated

elasticity is �0:732, thus implying that doubling the commuting time reduces the probability that
someone commutes between x and i is reduced by about 50%. In column (2) we address the

potential endogeneity of travel times. That is, locations that attract many commuters may invite

transport investments, thus leading to lower travel times. We instrument travel times with the

Euclidian distance. Unsurprisingly, this is a very strong instrument. We do include the �rst-stage

residual in the second stage as a control function. As one may observe, the �rst-stage residual is

highly statistically signi�cant, strongly suggesting that endogeneity is an issue. The travel time

elasticity is now somewhat lower (�0:549), in line with the expectation that reverse causality would
lead to an overestimate. Given that endogeneity is quite important, we consider this speci�cation

as the preferred one.

[Table B.10 about here]

In previous speci�cations we focus on commuting �ows based on the job that generates the

most hours in the household. In column (3), as a sensitivity check, we consider the two jobs that

generate the most hours (if applicable). This hardly impacts the results. Column (4) investigates

what happens if we use the railway travel time instead of travel time over the road. We show that

this leads to similar estimates, although the elasticity is somewhat smaller. Rather than making

a selection on maximum commuting time, we can also select locations with a su¢ cient number
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of commutes. In column (5) we include location pairs that have at least 25 commuters, including

about 60% of the commutes. This leads to very similar results.

B.10 Counterfactual analysis

We outline the procedure for the counterfactual analysis discussed in Section 6.

1. The �rst step is to determine the location-speci�c scale parameters Ki, and productivity

endowments Ai. We set �kxi = 1 and use the estimated ~
i and 
i to obtain

Ki = e
~
i�"̂
i Ai = e

�
��1
i=bL�̂i :

2. We build the values for commuting times �xi, exogenous amenities ~bx and productivity

endowments Ai. If values do not vary for the speci�c scenario under consideration, we take

the values from the data. Moreover, we set the starting values for Li equal to the estimated

value from the data and the initial value for the parameters ̂, ̂�, K�, KS to the values

obtained in the structural estimation. We treat the parameters �̂, "̂, �̂, �̂, and �̂ as given

and obtain them from the structural estimation results.

3. We calculate labor productivity txi =
h
AiL�̂i ���̂xi

i(��1)=�
for each location pair (xi), as well

as the accessibility ~ax =
nP
i=1

~txi =
nP
i=1

Kit
"̂
xi of location i.

4. We calculate the location-quality indices:

�x = (~bx)
�̂

�
�

�
"̂� 1
"̂

�
(~ax)

1
"̂

�1��̂
:

5. We �t a Fréchet distribution to �x to obtain the adjusted values of the shape parameter ̂�.

Since the aggregate skill distribution is given, it must be that ̂ = ̂�=̂S.

6. We determine the skill mapping sx =
h
(KS=K�)

1=̂S (�x)
̂
i�=(��1)

and re-adjust K� for the

geometric mean of sx to remain equal to 1. Hence, KS, ̂S and the geometric mean should

not change in the counterfactual.

7. We calculate total counterfactual labor supply in each employment location i. We have:

Li =

NX
x=1

~txiPI
j=1
~txj
f(ŝx):

where

f(ŝx) =
� � 1
�

K̂S ̂Se
�K̂S(ŝx)

�̂S(��1)=�
(sx)

�[̂S(��1)+�]=� ;
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is the skill density. Since Li is an input to Step 3, we repeat steps (3)-(7) until Li converges,

which is usually within 10 iterations.

8. We now have all the information to solve for the total output in the city:

Y =

"
nX
i=1

NX
x=1

Ki [ti(x)]
"̂Pn

j=1Kj [tj(x))]
"̂
txi (ŝx)

��1
� f(ŝx)

# �
(��1)

:

9. We also determine the income mapping !xtxi =
�
KS=K̂�

�1=̂S
(�x)

̂ (Y )1=� (txi), which en-

ables us to determine the land rent at each location x:

Rx = R0
tx
tx

�
�x

�x

� 1
�

24 �̂ tx
Rx
+ (1� �̂) h

!x

�̂
tx
R0
+ (1� �̂) h

!x

35 1
(1��̂)�̂̂

;

where x is the location where the poorest household (with the lowest !x) lives, while R0 is

the agricultural land rent. We do not have good data on agricultural land prices. In any

case, these will be not very useful as agricultural land prices in the Netherlands are highly

regulated. We therefore set R0 equal to the 5th percentile value of the observed land rents

in our data. We use a standard Newton-Raphson procedure to determine the solution Rx.

10. We �nd consumption level of the composite good qx = (1� �̂)(!xtx�Rxh) and the housing
consumption hx = (1� �̂)h+ �̂!xtx=Rx, which is identi�ed up to a multiplication constant,
so that the utility level is given by ux = (qx)

1��̂ (hx� h)�̂. This enables us to determine the
aggregate land rent and aggregate real income:

ALR =

NX
x=1

hxRx; and ARI =

NX
x=1

1

hx

!xtx �Rxh
(Rx)�̂

.

where 1=hx is the density of households in neighborhood x while, as shown in Appendix A.4,

the individual real income is equal to
�
!xtx �Rxh

�
(Rx)

��̂.
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Appendix tables
Table B.1 – Descriptives for NVM dataset

(1) (2) (3) (4)
mean sd min max

Price (in e per m2) 1,269 927.2 25 25,000
Lot size (in m2) 445.7 1,189 25 25,000
Size of property (in m2) 132.4 45.16 26 538
Number of rooms 4.944 1.363 0 25
Terraced property 0.417 0.493 0 1
Semi-detached property 0.370 0.483 0 1
Detached property 0.189 0.392 0 1
Private parking space 0.454 0.498 0 1
Garage 0.394 0.489 0 1
Garden 0.966 0.182 0 1
Number of bathrooms 0.929 0.483 0 8
Number of kitchens 0.677 0.484 0 5
Number of balconies 0.132 0.354 0 4
Number of roof terraces 0.0674 0.257 0 3
Number of floors 2.717 0.636 1 13
Internal office space 0.00444 0.0665 0 1
Maintenance score of the outside 0.758 0.131 0 1
Maintenance score of the inside 0.753 0.143 0 1
Number of types of insulation 2.381 1.831 0 5
Central heating 0.920 0.271 0 1
Listed building 0.00652 0.0805 0 1
Newly built property 0.0417 0.200 0 1
Construction year 1,967 34.95 1,362 2,017
Year of observation 2,011 4.389 2,004 2,017

Notes: The number of observations is 1,337,495. Because of confidentiality
restrictions the minimum and maximum values refer to the 0.01% and 99.99%
percentile. This implies that we exclude the bottom and top observations
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Table B.2 – Estimating land prices and lot sizes
(Dependent variable: the log of land price per m2)

(1)

Rooms -6.1664***
(0.4506)

Terraced property 702.4875***
(6.5087)

Semi-detached property 510.0447***
(6.5516)

Detached property 360.7740***
(6.7580)

Private parking space -56.3558***
(1.9988)

Garage -42.8166***
(2.0556)

Garden 47.5907***
(2.8356)

Number of bathrooms 17.3274***
(0.9885)

Number of kitchens -7.2575***
(1.0818)

Number of balconies 47.8147***
(1.5204)

Number of roof terraces 109.0801***
(1.8878)

Number of floors 94.9407***
(1.0148)

(Internal) office space -55.3454***
(6.3595)

Maintenance score of the outside 29.5137***
(6.3366)

Maintenance score of the inside 501.7345***
(5.8143)

Number of types of insulation 8.3945***
(0.3138)

Central heating 65.8404***
(1.7719)

Listed building 27.9334***
(6.2691)

Newly built property -13.3758***
(4.3108)

3th-order polynomial of property size Yes
Construction decade dummies Yes
Year fixed effects Yes
Postcode fixed effects Yes

Observations 1,280,031
R2 0.8295

Notes: Standard errors are in parentheses. *** p <
0.01, ** p < 0.05, * p < 0.10.
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Table B.3 – Other descriptive statistics for NVM data

(1) (2) (3) (4)
mean sd min max

Price of home (in e) 229,238 116,074 25,000 1,000,000
Share land in historic district <500m 0.0695 0.192 0 1
Listed buildings <500m 0.179 0.894 0 19.53
Share water bodies <500m 0.0411 0.0713 0 0.920
Share open space <500m 0.244 0.217 0 1
Shops, <500m 0.254 0.394 0 4.711
Hotels, restaurants, cafés <500m 0.159 0.364 0 7.983
Leisure establishments <500m 0.0127 0.0215 0 0.318

The number of observations is 695,709. Because of confidentiality restrictions the
minimum and maximum values refer to the 0.01% and 99.99% percentile. This implies
that we exclude the bottom and top 70 observations.

Table B.4 – Determining the hedonic amenity index
(Dependent variable: the log of house price per m2)

(1) (2) (3) (4)
OLS OLS OLS OLS

Share land in historic district <500m 0.1796*** 0.1710*** 0.1695***
(0.0210) (0.0204) (0.0209)

Listed buildings <500m 0.0047** 0.0052** -0.0043
(0.0024) (0.0024) (0.0029)

Share water bodies <500m 0.3014*** 0.2824*** 0.2869***
(0.0255) (0.0253) (0.0251)

Share open space <500m 0.0604*** 0.0636*** 0.0690***
(0.0084) (0.0084) (0.0085)

Shops <500m -0.0084
(0.0074)

Hotels, restaurants, cafés <500m 0.0423***
(0.0118)

Cultural establishments <500m 0.0480
(0.0640)

Leisure establishments <500m 0.0232
(0.0730)

Housing controls Yes Yes Yes Yes
Neighborhood fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes

Number of observations 695,709 695,709 695,709 695,709
R2 0.8206 0.8207 0.8217 0.8219

Notes: Housing controls include house type, house size, whether the property has a garage,
garden and/or central heating, the number of layers of insulation, the maintenance quality, the
number of rooms, construction year dummies and whether a building is listed. Standard errors
are clustered at the neighborhood level and in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10
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Table B.5 – Descriptive statistics for historic data

(1) (2) (3) (4)
mean sd min max

Employment accessibility in 1909 38,029 23,884 1,494 163,349
Share of high-skilled workers in 1909 0.0298 0.0285 0 0.197
Share of medium-skilled workers in 1909 0.216 0.128 0.00386 0.688
Population accessibility in 1900 89,184 62,641 3,008 422,544
Share built-up land in 1900 0.0432 0.103 0 0.930
Share water in 1900 0.0591 0.175 0 1
Share locals in 1899 0.643 0.102 0.217 0.950
Share protestants in 1899 0.518 0.337 0 0.998
Population accessibility in 1832 40,389 20,970 1,986 135,168
Cadastral income in 1832 per ha 603.6 2,235 0 61,866
Share buildings in 1832 0.00726 0.0338 0 0.412
Share built-up land in 1832 0.0416 0.0890 0 1
Share water in 1832 0.120 0.264 0 1

The number of observations is 10,213,524. For the 1832 data it is 5,556,498. Because
of confidentiality restrictions the minimum and maximum values refer to the 0.01%
and 99.99% percentile. This implies that we exclude the bottom and top 1,024
observations

Table B.6 – Bias corrected estimates

R̄2 = 1.000, $ = 1.000 R̄2 = 0.357, $ = 1.000

+ Controls + Workplace f.e. + Controls + Workplace f.e.

(1) (2) (3) (4) (5) (6)
GMM GMM GMM GMM GMM GMM

Pictures per ha (log) 0.2735*** 0.5509*** 0.2105*** 0.0326*** 0.0345*** 0.0239***
(0.0495) (0.0802) (0.0162) (0.0017) (0.0011) (0.0009)

Employment accessibility (log) 0.1900*** 0.1900*** 0.0778*** 0.2377*** 0.1044*** 0.0936***
(0.0647) (0.0647) (0.0285) (0.0154) (0.0054) (0.0045)

Household controls Yes Yes Yes Yes Yes Yes
Housing and job controls No Yes Yes No Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Workplace fixed effects No No Yes No No Yes

R̄ 1.000 1.000 1.000 0.357 0.357 0.357
$ 1.000 1.000 1.000 1.000 1.000 1.000

Number of observations 10,213,540 10,213,540 10,213,540 10,213,540 10,213,540 10,213,540

Notes: Household controls include household size, mean age of adults, mean gender, household type (couple, single, kids), the
share of the household that is foreign-born. Job controls are the total hours worked, whether the household has a company
car, the share of full-time contracts, the share of permanent contracts. Housing controls include house type, height of the
building, construction year dummies and whether a building is listed. Standard errors are bootstrapped (250 replications) and
in parentheses; *** p < 0.01, ** p < 0.5, * p < 0.10.
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Table B.7 – First-stage regression results

Dep.var. Dep.var.

Pictures per ha (log) Employment accessibility (log)

(1) (2) (3) (4)
OLS OLS OLS OLS

Listed buildings per ha 0.1269***
(0.0346)

Share historic district 2.2677***
(0.1894)

Share built-up land 2.4775***
(0.0847)

Share water 2.5560***
(0.3015)

Share built-up land in 1900 5.4119*** 4.4326*** -0.2133***
(0.2521) (0.2908) (0.0400)

Share water in 1900 0.6163*** 0.6727*** 0.0211
(0.1520) (0.1525) (0.0253)

Share built-up land in 1900, 0-500m 0.2646 0.0612
(1.1085) (0.1824)

Share built-up land in 1900, 500-1000m 5.8759*** 0.3781**
(1.3125) (0.1928)

Employment accessibility (log) 0.3448*** 0.7939***
(0.0420) (0.0443)

Employment accessibility in 1909 (log) 0.3150*** 0.4204***
(0.0458) (0.0112)

Household controls Yes Yes Yes Yes
Housing and job controls Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Workplace fixed effects Yes Yes Yes Yes

Observations 10,213,524 10,213,524 10,213,524 10,236,308
R2 0.6046 0.5036 0.4989 0.7875

Notes:Household controls include household size, mean age of adults, mean gender, household type (couple, single, kids),
the share of the household that is foreign-born. Job controls are the total hours worked, whether the household has a
company car, the share of full-time contracts, the share of permanent contracts. Housing controls include house type,
height of the building, construction year dummies and whether a building is listed. Standard errors are clustered at the
neighborhood level and in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10
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Table B.8 – Reduced form results: identification
(Dependent variable: the log of household gross income)

Only City center 1832 Control for 1909 Other Only obs.

Randstad <15km instruments current land use skills instrument on reclaimed land

(1) (2) (3) (4) (5) (6) (7) (8) (9)
2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Pictures per ha (log) 0.0382*** 0.0374*** 0.0375*** 0.0491*** 0.0494*** 0.0483*** 0.0501*** 0.0221** 0.0201
(0.0048) (0.0046) (0.0048) (0.0061) (0.0050) (0.0053) (0.0044) (0.0101) (0.0153)

Employment accessibility (log) 0.1544*** 0.1647*** 0.1134*** 0.1503*** 0.0597*** 0.1081*** 0.2170*** 0.0413 0.0453
(0.0323) (0.0501) (0.0160) (0.0319) (0.0100) (0.0352) (0.0645) (0.0362) (0.1039)

Cadastral income in 1832 per ha (log) -0.0050**
(0.0023)

Share built-up land -0.0936***
(0.0138)

Population per ha (log) -0.0074**
(0.0033)

Population accessibility in 1900 (log) -0.0264* -0.0681***
(0.0150) (0.0249)

Share of medium-skilled workers in 1909 -0.1630*** -0.1860***
(0.0211) (0.0248)

Share of high-skilled workers in 1909 -0.1378 -0.1645
(0.1081) (0.1053)

Share protestants in 1899 -0.0169*** -0.0133*
(0.0061) (0.0072)

Household controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Housing and job controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Workplace fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Number of observations 4,340,639 6,023,886 5,549,488 1,782,784 10,213,325 9,778,046 9,778,046 270,106 270,106
Kleibergen-Paap F-statistic 70.51 34.43 22.73 33.87 61.92 21.16 15.79 9.468 0.804

Notes: Bold indicates instrumented. Household controls include household size, mean age of adults, mean gender, household type (couple, single, kids), the share of the household
that is foreign-born. Job controls are the total hours worked, whether the household has a company car, the share of full-time contracts, the share of permanent contracts.
Housing controls include house type, height of the building, construction year dummies and whether a building is listed. Standard errors are clustered at the neighborhood level
and in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10



Table B.9 – Sensitivity analysis for reduced form regressions

One job + Single Company Education Commuting

households plant firm car level by rail

(1) (2) (3) (4) (5)
2SLS 2SLS 2SLS 2SLS 2SLS

Pictures per ha (log) 0.0401*** 0.0367*** 0.0325*** 0.0540*** 0.0382***
(0.0038) (0.0038) (0.0040) (0.0032) (0.0039)

Employment accessibility (log) 0.0551*** 0.0455*** 0.0708*** 0.0333*** 0.0269***
(0.0111) (0.0134) (0.0112) (0.0099) (0.0062)

Household controls Yes Yes Yes Yes Yes
Housing and job controls Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes
Workplace fixed effects Yes Yes Yes Yes Yes

Number of observations 6,706,524 3,532,906 1,523,567 7,626,355 10,213,524
Kleibergen-Paap F -statistic 85.60 88.36 77.53 82.87 80.51

Notes: Bold indicates instrumented. Household controls include household size, mean age of adults, mean
gender, household type (couple, single, kids), the share of the household that is foreign-born. Job controls are
the total hours worked, whether the household has a company car, the share of full-time contracts, the share of
permanent contracts. Housing controls include house type, height of the building, construction year dummies
and whether a building is listed. Standard errors are clustered at the neighborhood level and in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.10

Table B.10 – Regression results of gravity model
(Dependent variable: the number of commuters)

Baseline Control Flows based Travel time Flow

Poisson function on two jobs by train >25

(1) (2) (3) (4) (5)
Poisson Poisson-CF Poisson-CF Poisson-CF Poisson-CF

Commuting time elasticity, κ̂ -0.7318*** -0.5485*** -0.5703*** -0.3393*** -0.5215***
(0.0139) (0.0122) (0.0111) (0.0080) (0.0086)

First-stage error -0.2378*** -0.2079*** 0.3402*** 0.4154***
(0.0653) (0.0475) (0.0217) (0.0207)

Residence location fixed effects Yes Yes Yes Yes Yes
Workplace location fixed effects Yes Yes Yes Yes Yes

Number of area pairs 3,904,262 3,904,262 3,904,262 3,904,262 66,147

Notes: We use commuting flows between neighborhoods based on the job that generates the most working hours.
In columns (2)-(5) we use as instrument the euclidian distance between two neighbourhoods as instrument. In
column (3) we derive the commuting flow based on the two jobs that generate the most working hours in the
household. Standard errors are bootstrapped (250 replications) and in parentheses; *** p < 0.01, ** p < 0.5, *
p < 0.10.
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Appendix figures

(a) Distance and travel time (b) Commuting time distribution

Figure B.1 – Calculation of travel time and speed

(a) Built-up land (b) The railway network and accessibility

Figure B.2 – Historic data from 1900
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(a) Built-up land (b) The road network and accessibility

Figure B.3 – Historic data from 1832

(a) Incomes (b) Land prices

Figure B.4 – Histograms for the variables of interest
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(a) Average gross income (in e) (b) Average land prices per m2 (in e)
Figure B.5 – Spatial distribution of variables of interest

A34


	Income Sorting Across Space - paper
	GKMT-000-COMPILE
	Tables
	Figures
	Appendix tables
	Appendix figures


	Income Sorting Across Space - appendix
	GKMT-000-COMPILE
	Tables
	Figures
	Appendix tables
	Appendix figures





