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Gaining Control by Losing Control

ABSTRACT

We study an agency model with two vertical tasks� an upstream (e.g. capital-raising)

and a downstream task (e.g. implementation). The e¤ort for the upstream task cannot be

veri�ed, and the principal can do it herself (self-performance), or delegate it to the agent

(delegated-performance). Only the agent can do the downstream task whose environment

is his private information. We show the following. When the cost of e¤ort for the upstream

task is small, self-performance is optimal� under delegated-performance, the upstream task

is more likely to fail due to the agent�s �shirking� incentive. When the cost of e¤ort is

large, by contrast, delegated-performance is optimal� under self-performance, the principal

makes an �excessive� e¤ort for the upstream task, and as a result, the distortion in the

downstream task�s output schedule due to the agent�s private information becomes more

of an issue. Our result also has an implication for the principal�s bias in favor of self- or

delegated-performance.

JEL Classi�cation: D82, D86

Key words: Agency, Moral Hazard, Adverse Selection, Excessive E¤ort, Shirking.
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1 Introduction

In a principal-agent relationship, if the principal can perform a task herself, she has to make

a decision about whether or not to delegate the task to the agent based on both direct and

strategic bene�ts. This paper provides a new economic rationale for delegating a task

to the agent. We show that when the principal performs a task herself, she may exerts

an �excessive e¤ort�when the project is less pro�table� although the task is shirked less

frequently, allocation of the organization�s costly e¤ort may be less e¢ cient. When the task

is delegated to the agent, although �shirking�takes place more often, our result suggests that

the very prospect of shirking sometimes allows the principal to allocate the organization�s

e¤ort more e¢ ciently compared to when the task is performed by the principal.

There are two vertical tasks in our model� an upstream task (e.g. capital-raising) and

a downstream task (e.g. implementation). The principal can perform the upstream task

herself (self-performance), or delegate the task to the agent (delegated-performance). The

e¤ort for the upstream task is �hidden action�of the party who is in charge. Only the agent

can perform the downstream task, and the task environment (e.g. cost of implementation)

is his �hidden information.� An e¤ort for the upstream task increases the likelihood that

the task succeeds. If the upstream task succeeds, then the project can generate a revenue

from the downstream task. If the upstream task fails, then nothing can be done in the

downstream task, and the game ends at that point.

In the absence of moral hazard and/or adverse selection problem, self-performance is

always optimal.1 If an e¤ort for the upstream task is not hidden (an e¤ort can be contracted

upon), then it does not matter which party performs the task. That is, it is simply a matter

of transferring the cost of e¤ort based on which party performs the task. If information

on the downstream task is publicly known, then the principal is strictly better o¤ with

self-performance� since the agent reaps no information rent from the downstream task,

delegating the upstream task to the agent only brings about a moral hazard problem. In

the presence of both the moral hazard and the adverse selection problem, however, the

principal faces a time-inconsistency issue when performing the upstream task herself, which

leads to our central trade-o¤ between self- and delegated-performance.

1For expositional purpose, we present the case where the agent�s information on the downstream task

is public knowledge, but the upstream e¤ort level cannot be veri�ed (only the moral hazard problem) in

Appendix B. The benchmark presented in the main text is the case where the information is privately

possessed by the agent, but the upstream e¤ort level is veri�ed (only the adverse selection problem).
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The preview of our results is as follows. The principal must provide information rent

to the agent for the downstream task, due to the agent�s private information about the

task environment. For this reason, with self-performance of the upstream task, the prin-

cipal has less incentive to exert an e¤ort �ex ante�compared to the case where the agent�s

information is public. Since the principal�s e¤ort level cannot be veri�ed, however, the

principal cannot help making more e¤ort �ex post�to make the upstream task successful,

even if the downstream task�s environment is not su¢ ciently favorable. In other words,

with self-performance, the principal�s e¤ort is excessive for less favorable environments for

implementing the project. As a result, the agent obtains excessive information rent from the

downstream task, and to reduce his rent, the optimal contract distorts the output schedule

further downward (compared to the case where an e¤ort level can be veri�ed).

With delegated-performance, on the other hand, the agent has an incentive to shirk the

upstream task unless he reaps enough information rent from the downstream task. We show

that the agent�s shirking incentive has a positive side. Since preventing shirking is costly to

the principal, the agent�s e¤ort for the upstream task is induced only when the downstream

task�s environment is su¢ ciently favorable. In other words, delegated-performance enables

the principal to focus allocation of e¤ort for more favorable environments for implementing

the project. In addition, the direction of change in the output distortions under delegated-

performance is the opposite of that under self-performance. In order to induce the agent�s

e¤ort for the upstream task, the principal increases the agent�s information rent in the

downstream task. As a result, the project�s output schedule in the optimal contract gets

distorted less (compared to the case where an e¤ort level can be veri�ed).

Comparing self- and delegated performance, when the cost of e¤ort for the upstream

task is small, self-performance prevails� for a small e¤ort cost, the principal�s excessive

e¤ort and a larger information rent for the agent under self-performance is less of a problem

when compared to the agent�s shirking under delegated-performance. As the cost of e¤ort

for the upstream task increases, delegated-performance becomes more attractive for the

opposite reason. For a large cost of e¤ort, delegated-performance prevails.

Our result also implies a potential bias in favor of self- or delegated-performance when

the principal�s and the agent�s cost of e¤ort for the upstream task are di¤erent. When the

costs of upstream e¤ort are small, the principal may perform the task herself, even if her

cost is larger than the agent�s� a bias in favor of self-performance. When the costs of

upstream e¤ort are large, by contrast, the principal may delegate the task to the agent,

even if her cost is smaller than the agent�s� a bias in favor of delegated-performance.
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There are previous contributions, like ours, that provide a rationale for delegation in

a principal-agent relationship when the principal�s commitment power is limited.2 In

the majority of literature, unlike in our paper, the principal is allowed to renegotiate the

contracted variables in the beginning, which causes incentive issues such as ratchet problems.

Beaudry and Poitevin (1995) point out that delegation of decision making can make it harder

to achieve a successful renegotiation. Poitevin (2000) extends their analysis to a multi-

agent setting. According to Meyer et al. (1996), assigning the agents joint responsibility

for tasks alleviates ratchet e¤ects. Olsen and Torsvik (2000) show that a �rm�s ability to

learn about the di¢ culty of the tasks agents engage in will induce the �rm to give agents

more discretion over tasks and weaker incentives. In our paper, the contracted variables

cannot be renegotiated. In addition, unlike in these papers, the principal in our paper

is allowed to directly contribute to a task by making an e¤ort� we distinguish �self- vs.

delegated-performance�from �centralization vs. delegation�in that sense.3

The following studies demonstrate the optimality of delegation without the possibility of

renegotiating the contracted variable. La¤ont and Martimort (1998) show that delegation

can prevent collusion between the agents. In their model, when the principal cannot dis-

criminate wages, centralized contracting is not collusion proof. They show that delegation

of contracting to an agent allows the principal to e¤ectively discriminate wages, thus block-

ing collusion. Melumad, et al. (1997) also study the optimality of contractual delegation.

The authors show that delegation allows decisions to be more sensitive to the agent�s private

information, and identify circumstances under which the �exibility gain outweighs the loss

of control. Unlike in ours, the principal cannot perform a task herself in these papers.

Lastly, our paper is also linked to the studies that cope with both adverse selection

and moral hazard problem. The studies include Lewis and Sappington (1997), Crémer et

al. (1998), Gerardi and Maestri (2012), Hoppe and Schmitz (2013), Iossa and Martimort

(2015), Ulbricht (2016), and Zambrano (2019). Again, in these studies, there is no costly

e¤ort made by the principal to directly contribute to a task of the project.

The rest of the paper is organized as follows. The model is presented in the next

section. In Section 3, we present and discuss the optimal outcomes with self- and delegated-

performance. We compare the two arrangements for optimality in Section 4. In Section 5,

we gather conclusion with remarks. All proofs are relegated to Appendix A.

2See Gibbons et al. (2013) for a survey.
3There are also studies demonstrating that delegation can provide more information. See for example,

Aghion and Tirole (1997), Dessein (2002), Aghion et al. (2002, 2004), Harris and Raviv (2005), Alonso and

Matouschek (2007, 2008), and Ludema and Olofsgård (2008).
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2 Model

A principal hires an agent for a project that involves an upstream and a downstream task.

The upstream task can be seen, for example, as capital or fund raising for the project, and

the downstream task as implementing the project. At the outset, the principal decides

whether to perform the upstream task herself (self-performance: ' = s), or delegate the

task to the agent (delegated-performance: ' = d). The downstream task must be done by

the agent, who privately learns the task environment upon accepting the principal�s o¤er.

The principal pays a lump sum transfer t out of the project�s revenue to the agent for his

service(s).

The Upstream Task The cost of e¤ort for the upstream task is given by  (�) = ��;

where � 2 [0; 1]. Given an e¤ort level �; the upstream task succeeds (k = Y : Yes) with

probability 
(�); and fails (k = N : No) with 1 � 
(�): An e¤ort for the upstream task

increases the likelihood of success and we let:


(�) = �
G + (1� �)
B; where 
G; 
B 2 (0; 1) and �
 � 
G � 
B > 0:

Thus, 
(�) = 
G with � = 1; and 
(�) = 
B with � = 0.

An e¤ort level for the upstream task (�upstream e¤ort�hereafter), � 2 [0; 1]; is hidden
action and cannot be veri�ed. If the upstream task succeeds (k = Y with 
(�)), the

downstream task can generate an output level q 2 R+: The principal values the project by
v(q) that satis�es the Inada condition.4 If the upstream task fails (k = N with 1� 
(�)),
the downstream task generates no output: qN = 0. The realized k 2 fY;Ng is publicly
observed.

The Downstream Task The agent�s cost of implementing the downstream task for

output q is given by c(q; �) = �q; where � is the marginal cost of production that represents

the environment to implement the project. The project environment � is drawn from a

range � = [�; �] with the corresponding distribution and density function, F (�) and f(�)

respectively. We make the standard assumption of non-decreasing hazard ratio:

d [F (�)=f(�)]

d�
� 0:

4The Inada conditions of v(q) assures that the entrepreneur does not want to exclude any � 2 � provided
that the project can generate a strictly positive revenue (i.e., k = Y ).
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The distribution of � is publicly known, but the agent privately observes the realized �.

Regardless of ' 2 fs; dg; once participated, the agent observes � and makes a report on it,
denoted by b� 2 �:
The O¤er and the Payo¤s The principal�s o¤er to the agent speci�es f'; qk(b�); tk(b�)g;
where ' 2 fs; dg; k 2 fY;Ng and all contractual veriables can be veri�ed. After the agent�s
report on � 2 �; the party that engages in the upstream task (depending on ' 2 fs; dg)
chooses her/his e¤ort level �, which determines the likelihood of the project�s success 
(�):

The agent�s liability is limited in that he can quit and walk away anytime. Thus, tN (�) = 0

in the optimal contract since qN (�) = 0 regardless of ' 2 fs; dg:5 To simplify the notations,
we let: q(�) � qY (�) and t(�) � tY (�):

The principal�s and the agent�s ex post payo¤s are respectively:

� =

8<: 
(�(b�)) hv(q(b�))� t(b�)i� ��(b�) with ' = s;


(�(�))
h
v(q(b�))� t(b�)i with ' = d.

u =

8<: 
(�(b�)) ht(b�)� �q(b�)i with ' = s;


(�(�))
h
t(b�)� �q(b�)i� ��(�) with ' = d.

With ' = s; the principal incurs the cost of upstream e¤ort, whereas with ' = d; the agent

incurs the cost of e¤ort. The agent�s reservation payo¤ is normalized to zero.

The Timing We summarize the timing of the game as follows:

1. The principal o¤ers f'; q(b�); t(b�)g to the agent.
2. If the o¤er is accepted, the agent observes � 2 � and sends a report on it.

3. The principal/the agent (according to ') chooses �; and k 2 fY;Ng is realized.

4. If k = Y; then the agent produces q(b�) and the principal pays t(b�) to the agent.
The First-Best Outcome When neither adverse selection nor moral hazard is an issue,

the optimal outcome is the �rst-best. The �rst-best outcome maximizes the total surplus,

and is characterized as:

v0(q�(�)) = �;

5We will discuss more on this point in the concluding section.
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and the optimal e¤ort levels are:

�� = 1 for � � �� and �� = 0 for � > ��;

where �� is characterized by:

v(q�(��))� ��q�(��) = �=�
 and �
 � 
G � 
B > 0:

In our model, the principal�s choice of �� is equivalent to her choice of e¤ort. The cuto¤

�� is interior (�� < �) for � > �� � �

�
v(q�(�))� �q�(�)

�
: For � � ��; the e¤ort choice is

�� = 1 for 8� 2 �; i.e., �� = �: Without adverse selection and moral hazard problem, the

principal is indi¤erent to ' 2 fs; dg:

3 Analyses and Results

For later convenience, we �rst establish the following expressions.

De�nition 1 De�ne the following expressions for the principal�s surplus for any given out-

put level q(�):

��(q(�); �) � v(q(�))� �q(�);

�b(q(�); �) � v(q(�))�
�
� +

F (�)

f(�)

�
q(�):

In the literature, �b(q(�); �) is referred to as �virtual surplus,�which has taken account

of the rent given to the agent. For convenience, we will refer to ��(q(�); �) as �real surplus.�

Notice that, for any given q(�); ��(q(�); �) > �b(q(�); �): The maximizers of ��(q(�); �) and

�b(q(�); �) are denoted by q�(�) and qb(�) respectively, and:

��q (q
�(�); �) = 0 and �bq(q

b(�); �) = 0;

where q�(�) is the �rst-best output schedule presented in the previous section. The following

lemma establish the properties of these surpluses and output schedules.

Lemma 1 d�b(qb(�);�)
d� < 0 where dqb(�)

d� < 0; and ��q (q
b(�); �) � d��(q(�);�)

dq

���
q=qb

> 0:

We �rst discuss our benchmark case below� the case where upstream e¤ort � 2 [0; 1] is
publicly veri�able. For expositional purpose, the case in which the agent�s information on

the downstream task is public knowledge, but the upstream e¤ort level cannot be veri�ed

(the case where only the moral hazard is an issue) is relegated to Appendix B.6

6As shown in Appendix B, self-performance (' = s) dominates delegated-performance (' = d) in that

case.
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When Upstream E¤ort Can be Veri�ed (Benchmark)

When the upstream e¤ort can be veri�ed, it does not matter which party performs the

upstream task. It is simply a matter of transferring the e¤ort cost �� based on which party

bears upstream e¤ort� as in the �rst-best case, the principal is indi¤erent to ' 2 fs; dg:
Without loss of generality, therefore, we allocate the upstream task to the principal here

(' = s).

In setting out the principal�s problem, we list the constraints that must be satis�ed. To

induce the agent�s truth-telling on �; the following incentive compatibility constraint must

be satis�ed:

� 2 argmaxb� u(b�j�); where u(b�j�) � 
(�(b�)) ht(b�)� �q(b�)i : (IC)

In addition, to induce the agent�s participation, the optimal contract must satisfy:

u(�) � 0 for 8� 2 �; where u(�) � u(�j�): (PC)

The principal�s problem, when upstream e¤ort level � 2 [0; 1] is publicly veri�ed, is:

Max
�;q;t

Z
�
[
(�(�)) [v(q(�))� t(�)]� ��(�)] f(�)d�;

subject to (IC) and (PC):

As in standard models of adverse selection, the participation constraint (PC) is binding

for � = �; and we substitute the incentive constraint into the principal�s objective function.

Then, recalling that 
(�) = �
G + (1� �)
B; the principal�s problem can be written as in

the following lemma.

Lemma 2 Suppose upstream e¤ort is publicly veri�ed. Then, there exists �b such that

� = 1 for � � �b, and � = 0 for � > �b. The principal�s problem becomes:

Pb : Max
�b

Z �b

�
f
G

h
�b(q(�); �)

i
� �gf(�)d� +

Z �

�b

B

h
�b(q(�); �)

i
f(�)d�.

Again, the principal�s choice of �b is equivalent to her choice of e¤ort. Thus, the �rst

term in the principal�s objective function in Lemma 1 is her surplus less the e¤ort cost with

� = 1 for � � �b; and the second term is her surplus with � = 0 for � > �b.

De�nition 2 Let �b � �
�b(qb(�); �).

The following proposition presents the optimal outcome when upstream e¤ort is publicly

veri�ed.
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Proposition 1 The optimal outcome in Pb entails that:

(i) q(�) = qb(�),

(ii) �b is characterized by �b(qb(�b); �b) = �=�
; where �b < � for � > �b,

(iii) �b is decreasing in �.

The optimal output schedule, qb(�); that maximizes �b(q(�); �) in De�nition 1 is charac-

terized by �bq(q
b(�); �) = 0, and is the well-known second-best output schedule (Baron and

Myerson, 1982): qb(�) < q�(�): The intuition behind the downward distortion is standard

and well known� the agent can reap information rent by exaggerating �; and the principal

reduces the agent�s rent by distorting the project�s optimal output schedule downward.

For � small enough (� � �b), � = 1 for 8� 2 �; i.e., �b = �: In such a case, the

marginal bene�t of upstream e¤ort is always greater than the marginal cost of e¤ort ex

ante. For � > �b; however, as a result of balancing the marginal bene�t and the marginal

cost, the upstream task is shirked when the project environment is not attractive enough.

The interior cuto¤ �b is determined by the virtual surplus with the second best-output,

�b(qb(�); �):

We now proceed to the main part of this paper� the cases where upstream e¤ort cannot

be veri�ed.

When Upstream E¤ort Cannot be Veri�ed

Without veri�ability, upstream e¤ort is chosen based on the ex post incentive of the party

in charge. Therefore, the contract o¤ered by the principal must take the e¤ort making

party�s incentive at the point of making an e¤ort for the upstream task. We will �rst

discuss the case with self-performance, followed by the case with delegated-performance.

Self-Performance (' = s)

Recall from the principal�s problem in Pb (the benchmark case) that, when upstream e¤ort

is publicly veri�able thus can be contracted upon, the principal is indi¤erent to � 2 [0; 1] ex
ante at � = �b; with � = 1 for � < �b and � = 0 for � > �b: When upstream e¤ort cannot be

veri�ed (thus not contractible upon), however, the principal can change her e¤ort level due

to her interest ex post. Thus, we need to see that if the principal would still be indi¤erent

to � 2 [0; 1] at � = �b at the point of making an e¤ort (not at the point of contracting).
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With the optimal outcome in Pb in Proposition 2, let us evaluate the principal�s ex post
incentive regarding her own e¤ort with self-performance. The principal�s payo¤s are:


G
�
v(qb(�b))� t(�b)

�
� � if �(�b) = 1;


B
�
v(qb(�b))� t(�b)

�
if �(�b) = 0;

Again, we stress that the principal is indi¤erent to � 2 [0; 1] ex ante, according to the

principal�s problem in Pb; where she can fully commit to her e¤ort. This, however, does

not mean that she is indi¤erent to her e¤ort ex post. Comparing the principal�s payo¤s at

� = �b; the following must be true regarding her ex post incentive for � with the optimal

outcome in Pb:

�(�b) =

8>>>>>><>>>>>>:
1 if


G
�
v(qb(�b))� t(�b)

�
� �

> 
B
�
v(qb(�b))� t(�b)

�
;

0 if

G
�
v(qb(�b))� t(�b)

�
� �

< 
B
�
v(qb(�b))� t(�b)

�
:

The next claim shows the principal�s ex post incentive.

Claim 1 In Pb, the principal strictly prefers making an e¤ort at � = �b ex post.

The claim above implies that, unless � is not su¢ ciently larger than �b; the principal will

choose � = 1 with the optimal outcome in Pb� again, when upstream e¤ort is contractible,

� = 0 for any � > �b; which is her optimal choice ex ante. Thus, the optimal contract under

self-performance must respect the principal�s ex post incentive for her upstream e¤ort.

When upstream e¤ort is hidden action, the principal�s problem with ' = e is as follows:

Max
�;q;t

Z
�
f
(�(�)) [v(q(�))� t(�)]� ��(�)g f(�)d�;

subject to (IC); (PC) and

�(�) 2 argmaxb� f
(b�(�)) [v(q(�))� t(�)]� �b�(�)g :7 (ECs)

7We rely on the revelation principle in Myerson (1986) since our setup features moral hazard and adverse

selection. According to the revelation principle, there is no loss in focusing on mechanisms under which the

agent truthfully reports his type and follows the mechanism�s recommendations. If the principal does not

delegate the upstream decision, the principal is also a player (i.e., an agent). The principal has no private

information but makes a uncontractible decision. The mechanism according to Myerson (1986) asks the

agent to report his type and then sends the principal either the recommendation to invest or not to invest.

The recommendation is informative about the agent�s type, but the principal does not perfectly know theta

when making the investment decision.
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Constraint (ECs) re�ects that the principal�s upstream e¤ort is hidden action. The

principal�s inability to commit to her e¤ort level is the central issue with self-performance�

her e¤ort level is chosen at the point of making an e¤ort, which in turn may a¤ect the

outcome in the optimal contract.

The principal�s problem described above can be rewritten as in the following lemma.

Lemma 3 Suppose the upstream e¤ort is hidden action. With ' = s, there exists �s such

that � = 1 for � � �s, and � = 0 for � > �s. The principal�s problem becomes:

Ps : Max
q;�s

Z �s

�

n

G

h
�b(q(�); �)

i
� �

o
f(�)d� +

Z �

�s

B

h
�b(q(�); �)

i
f(�)d�,

s.t. ��(q(�s); �s)�
Z �

�s
q(�)d� = �=�
:

The di¤erence from the benchmark problem Pb is readily apparent from the constraint

in Ps (without the constraint, Ps becomes equivalent to Pb). Again, with self-performance,
the principal exerts an e¤ort when her expected payo¤ is high enough to cover the cost of

e¤ort as well as the agent�s ex post rent. We make the following de�nition to present our

�rst main result.

De�nition 3 Let �s � �
��(qb(�); �).

The next proposition presents the optimal outcome with self-performance when up-

stream e¤ort is hidden action.

Proposition 2 The optimal outcome in Ps entails that:

(i) qs(�)

(
= qb(�) for � � �s;

< qb(�) for � > �s:

(ii) �s is characterized by ��(qb(�s); �s)�
R �
�s q

s(�)d� = �=�
, where �s < � for � > �s,

(iii) �s is decreasing in �.

The key result in Proposition 3 is that qs(�) < qb(�) for � > �s: When upstream

e¤ort is hidden action, downward output distortion in the optimal contract becomes larger

under self-performance. Since the principal has an incentive to make an excessive e¤ort,

as pointed out in Claim 1, the agent can potentially obtain more information rent in the

downstream task, even for not so favorable environment (compared to when upstream e¤ort
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can be veri�ed). To reduce the agent�s rent, therefore, the principal distorts the output

schedule further down in the optimal contract.

Comparing �b in Propositions 1 and �s in Proposition 2, we have the following corollary.

Corollary 1 Suppose � > �b. Under self-performance (' = s), the upstream task is

carried out more frequently, i.e., �s > �b, when upstream e¤ort cannot be veri�ed.

When upstream e¤ort cannot be veri�ed, the cuto¤ level �s is determined by the prin-

cipal�s incentive ex post. Although this ex post incentive is expected, the optimal contract

does not make the principal to reduce her e¤ort all the way to the ex ante optimal level� she

still makes an excessive e¤ort on the upstream task in equilibrium from the ex ante view

point. This result indicates that, under self-performance, the organization�s resources may

be excessively expended even when the project is not attractive enough ex ante.

Delegated-Performance (' = d)

We revisit our benchmark case where upstream task is publicly veri�ed� recall that in Pb;
self- and delegated�performance yield the same optimal outcome. At � = �b; the following

must be true regarding the agent�s incentive for � with the optimal outcome in Pb:

�(�b) =

8>>>>>><>>>>>>:
1 if


G
�
t(�b)� �bq(�b)

�
� �

> 
B
�
t(�b)� �bq(�b)

�
;

0 if

G
�
t(�b)� �bq(�b)

�
� �

< 
B
�
t(�b)� �bq(�b)

�
:

The next claim shows the agent�s incentive with the optimal outcome in Pb when upstream
e¤ort cannot be veri�ed.

Claim 2 In Pb, the agent strictly prefers shirking at � = �b.

Whereas ine¢ ciency under self-performance comes from the principal�s excessive e¤ort,

under delegated-performance, ine¢ ciency comes from the agent�s shirking incentive. At

� = �b; the e¤ort cost is larger than his expected rent in Pb, and hence the agent will shirk
on the upstream task if his e¤ort cannot be veri�ed.

We now lay out the constraints the principal faces under delegated-performance. The

agent�s truth-telling on � with delegated-performance requires the following condition:

� 2 argmaxb� u(b�j�); where u(b�j�) � 
(�(�))
h
t(b�)� �q(b�)i� ��(�): (ICd)

12



To induce the agent�s participation, the optimal contract must satisfy:

u(�) � 0 for 8� 2 �; where u(�) � u(�j�): (PCd)

Lastly, the optimal contract under delegated-performance must respect the agent�s incentive

for his upstream e¤ort, and therefore must satisfy:

�(�) 2 argmaxe� 
(e�(�)) [t(�)� �q(�)]� �e�(�): (ECd)

When upstream e¤ort is hidden action, the principal�s problem with ' = d is:

Max
�;q;t

Z
�

(�(�)) [v(q(�))� t(�)] f(�)d�;

subject to (ICd), (PCd) and (ECd): The principal�s problem under delegated-performance

is rewritten as follows.

Lemma 4 Suppose upstream e¤ort is hidden action. With ' = d, there exists �d such

that � = 1 for � � �d, and � = 0 for � > �d. In addition, there exists �d (> �) such that,

if �d < �d, the principal does not induce the agent�s e¤ort for the entire range � = [�; �].

The principal�s problem becomes:

Pd : Max
q;�d

Z �d

�
f
G

h
�b(q(�); �)

i
� �gf(�)d� +

Z �

�d

B

h
�b(q(�); �)

i
f(�)d�,

s.t.
Z �

�d
q(�)d� =

�

�

for �d 2 [�d; �]; and Pd = Pb(�b = �) for �d 2 [�; �d):

The LHS of the constraint,
R �
�d q(�)d�; is the agent�s ex post rent for � = �d. The

constraint re�ects the fact that the agent�s incentive to make an e¤ort depends on his rent.

For � < �d (� > �d); an increase in the agent�s rent from making upstream e¤ort is larger

(smaller) than the cost of e¤ort. As mentioned in the lemma, if �d; the cuto¤ level of �; is

too small (i.e., the range of � with � = 0 is too large), then the principal simply chooses the

optimal outcome in Pb with no e¤ort for the entire range of �: Since inducing the agent�s
upstream e¤ort requires an extra constraint in the principal�s problem, if the range of �

with � = 0 is too large, then it is not worth inducing the agent�s e¤ort for a small range

of �: As a result, the principal chooses to implement the optimal outcome in Pb with no
e¤ort for the entire range �:

The following proposition presents the optimal outcome under delegated-performance

when upstream e¤ort cannot be veri�ed.

13



Proposition 3 When �d 2 [�d; �]; the optimal outcome in Pd entails that:

(i) qd(�)

(
= qb(�) for � � �d;

> qb(�) for � > �d:

(ii) �d is characterized by
R �
�d q

b(�)d� = �=�
, where �d < � for � > 0:

(iii) �d is decreasing in �:

When �d 2 [�; �d); qd(�) = qb(�) and �(�) = 0 for � 2 �.

The key result is in Proposition 3 is that qd(�) > qb(�) for � > �d. Since �d is decreasing

in �; this is the case when � is not too large that �d 2 [�d; �]: When upstream e¤ort is

hidden action, downward output distortion in the optimal contract becomes smaller under

delegated-performance. As pointed out in Claim 2, the agent has an incentive to shirk the

upstream task, and inducing his e¤ort for the task requires more rent provision (compared

to when upstream e¤ort can be veri�ed). Since distorting the output schedule downward is

used as the device to extract the agent�s information rent, by increasing the output schedule

in the optimal contract, the principal provides more rent to the agent, thereby incentivizing

him to exert an e¤ort for the upstream task.

For �d 2 [�; �d); the optimal outcome in Pd is the same as that in Pb with �b = �, which

follows directly from Lemma 4. When �d < �d due to a su¢ ciently large �; the principal is

providing too much rent to the agent to induce his e¤ort for a small favorable range of the

project project environment. Consequently, the principal completely abandons inducing

the agent�s e¤ort in such a case.

In what follows, we will assume that following condition holds.

Condition 1 �(qd(�); �) > r(qd(�); �) for 8� 2 �; where r(qd(�); �) �
R �
� q

d(�)d�:

By imposing the condition above, we are considering parameter values such that, under

delegated-performance, the principal�s ex post surplus is greater than the agent�s ex post

rent. Recall that, when upstream e¤ort is veri�able (in Pb), it does not matter which party
performs the upstream task. Comparing the cuto¤ levels give the next corollary.

Corollary 2 Suppose � > �b: Under delegated-performance (' = w), the upstream task is

shirked more frequently, i.e., �d < �b when upstream e¤ort cannot be veri�ed.

14



Without veri�cation, the upstream task under delegated-performance fails more fre-

quently due to the agent�s shirking incentive. The cuto¤ level �d under delegated-performance

is determined by the agent�s incentive regarding the upstream task. Although the agent�s

shirking incentive is well expected, the principal does not induce the agent�s e¤ort all the

way to the benchmark level in the optimal contract� the agent still shirk the upstream task

in equilibrium from the ex ante view point. The result suggests that, under delegated-

performance, the organization�s resources may not be fully utilized even when the project

is attractive enough ex ante.

4 Self- vs. Delegated-Performance

We now compare self- and delegated-performance. Under self-performance (' = s), the

principal faces a time-inconsistency problem. Without ability to commit to her e¤ort, the

principal cannot help but make an e¤ort for the upstream task ex post, unless the cost of ef-

fort is prohibitively large. As a result, upstream e¤ort is exerted more frequently compared

to the benchmark case where there is no hidden action (�s > �b). Since the project will

be carried out even for less favorable environments, the agent can obtain more information

rent, and to reduce the agent�s rent, the output schedule is distorted more compared to the

benchmark case. As aforementioned, under self-performance, the organization�s resources

may be excessively expended even when the project is not attractive enough ex ante.

Under delegated-performance (' = d), the principal faces a shirking problem� upstream

e¤ort is exerted less frequently compared to the benchmark case (�d < �b). To induce the

agent�s e¤ort for the upstream task, the principal increases the agent�s rent in the down-

stream task by increasing the optimal output levels� as a result, the output schedule is dis-

torted less compared to the benchmark case. Contrast to the case under self-performance,

under delegated performance, the organization�s resources may not be fully utilized even

when the project is not attractive enough ex ante.

As will be shown below, the optimality of self- or delegated-performance depends on

the cost of upstream e¤ort �. We make the following de�nition to compare self- and

delegated-performance.

De�nition 4 Let �s � �
[��(q�(�); �)�
R �
� q

s(�)d�]:

For � � �
s
; the principal makes �s = �, i.e., she makes �s = 0 for the entire range of �

in Ps. Our �nal result is presented in the following proposition.
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Proposition 4 There exist � and � such that:

� The principal�s payo¤ is strictly higher with self-performance (' = s) for � 2 (0; �]:

� The principal�s payo¤ is strictly higher with delegated-performance (' = d) for � 2
[�; �

s
):

When the e¤ort cost � is small, an excessive frequency of upstream e¤ort is less of a

problem from the principal�s ex ante view point. By contrast, shirking is relatively costlier

to the principal since the upstream task is not carried out even when it is easy to be done.

When � is large, the trade-o¤ shifts to the other direction. Too much e¤ort is made

with self-performance even for less favorable project environments when the upstream task

is very costly. In addition, compared to the benchmark, the agent can reap more rent

under either self- or delegated-performance (due to the principal�s excessive e¤ort with self-

performance, and due to the agent�s shirking incentive with delegated-performance), but

under self-performance the downward distortion in the optimal output schedule becomes

exacerbated, whereas the distortion becomes smaller under delegated-performance� this

e¤ect also becomes signi�cant for large �:

The optimal output schedules and upstream e¤orts under self- and delegated-performance

with interior cuto¤ levels of � are illustrated in Figure 1.

q*(θ )

qd(θ )

qb(θ )

θ θθ bθ d θ s

αb = αs = αd = 1 αb = αd = 0
αs = 1

αb = αs = 1
αd = 0

αb = αs = αd = 0

θ

q(θ )

qb(θ ) = qs(θ ) = qd(θ )

qs(θ )

Fig 1. Optimal Upstream E¤ort and Output Schedule
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Bias in Favor of Self- or Delegated Performance

Up to this point, we have assumed that the cost of upstream e¤ort is the same for the

principal and the agent. We now relax this assumption. When the principal�s and the

agent�s cost of upstream e¤ort are di¤erent, Proposition 5 has the following implication.

Corollary 3 Let �� � �P � �A; where �P and �A denote the principal�s and the agent�s

cost of upstream e¤ort respectively. There exist �� > 0 and �� < 0 such that:

� For �P ; �E 2 (0; �] and �� < ��; the principal prefers ' = s even if �� > 0:

� For �P ; �A 2 [�; �
s
) and �� > ��; the principal prefers ' = d even if �� < 0:

The corollary above states that when the upstream task is easy (�P and �A are small),

the principal may assign the upstream task to herself, even if her cost is larger than the

agent�s (a bias in favor of self-performance). When the upstream task is hard (�O and �A are

large), by contrast, the principal may assign the task to the agent, even if her opportunity

cost is smaller than the agent�s (a bias in favor of delegated-performance). Our previous

results, together with Corollary 3, also imply that when the principal is biased in favor of

self-performance, distortions in the optimal output levels can only be larger, whereas when

she is biased in favor of delegated-management, such distortions can be smaller.

5 Conclusion with Remarks

This paper has provided a novel rationale for delegated-performance even when the principal

can directly contribute to a task. We have argued that �loss of control�under delegated-

performance may enable the principal to have more e¤ective allocation of e¤ort in the

organization. In our model, there are two vertical tasks. The upstream task can be

performed by the principal or delegated to the agent, while only the agent can perform

the downstream task. We have shown that, while self-performance of the upstream task

increases the likelihood of the project�s success, the principal exerts an e¤ort even when the

project is not pro�table enough.

Under delegated-performance, the agent�s e¤ort is induced only when the downstream

task�s environment is su¢ ciently favorable� delegated-performance enables the principal

to focus allocation of e¤ort for more favorable environments. We have also shown that

directions of additional distortions in the output schedule under the two management styles
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are opposite� output schedule is distorted more under self-performance, and less under

delegated-performance.

Our result suggests that, for the cost of upstream e¤ort small (large) enough, the prin-

cipal prefers self-performance (delegated-performance). This result has an implication for

a potential bias of the principal toward self- or delegated-performance.

We assumed that when the upstream task fails (e.g. no fund raised), no output can be

produced in the downstream task (qN (�) = 0): As aforementioned, in this setting (recall

that q(�) � qY (�) and t(�) � tY (�)), we have tN (�) = 0 in the optimal contract. To

illustrate, the principal�s problem in the benchmark case (Pb) is:

Max
�;q;t

Z
�
f
(�(�)) [v(q(�))� t(�)]� [1� 
(�(�))] tN (�)� ��(�)g f(�)d�:

Since qN (�) = 0; the agent�s rent is linked only to q(�) and thus it is clear from the objective

function that tN (�) = 0: The same argument holds for the case of self-performance under

moral hazard (Ps): For the case of delegated-performance under moral hazard (Pd); the
e¤ort condition for the agent enters as:

�
 [t(�)� �q(�)]� � = �
tN (�):

It is clear from the above equation that, if tN (�) > 0 then the agent�s shirking incentive

increases compared to when tN (�) = 0: Thus, together with the principal�s objective

function above, it is implied that tN (�) = 0 at the optimum.

Finally, our model can be extended to a hierarchical agency, in which the principal

hires, for example, two agents: one for the upstream task and the other for the downstream

task.8 Under self-performance, the principal directly deals with both agents. Under

delegated-performance, the principal only contracts with one agent, who in turn, contracts

with the other agent. If the contract for one agent can be linked to the contract for the

other, then self-performance can always implement the optimal outcome under delegated-

performance. If that arrangement is not possible, however, then moral hazard and adverse

selection do not interplay with each other under self-performance. Delegated-performance

under such environments then can be optimal because it links the upstream agent�s e¤ort

to the downstream agent�s information rent.

8For studies on hierarchical structures in multi-agent setting, see Baron and Besanko (1992), Gilbert and

Riordan (1995), Melumad et al. (1995), Mookherjee and Reichelstein (2001) and Mookherjee (2006) among

others. Gromb and Martimort (2007) analyze the optimality of using multiple agents when there are both

vertical and horizontal collusion possibilities.

18



Appendix A: Proofs

Proof of Lemma 1.

From �bq(q
b(�); �) = 0; i.e., v0(qb(�)) = �+ F (�)=f(�); where d [F (�)=f(�)] =d� � 0; we have

v00(qb(�))dqb(�)=d� = 1 + d [F (�)=f(�)] =d�; implying that:

dqb(�)

d�
=
1 + d [F (�)=f(�)] =d�

v00(�) < 0:

Di¤erentiating �b(qb(�); �) � v(qb(�))� (� + [F (�)=f(�)]) qb(�) gives:

d�b(qb(�); �)

d�
= v0(qb(�))

dqb(�)

d�
�
�
1 +

d [F (�)=f(�)]

d�

�
qb(�)�

�
� +

F (�)

f(�)

�
dqb(�)

d�

=

�
v0(qb(�))�

�
� +

F (�)

f(�)

��
| {z }

=0

dqb(�)

d�
�
�
1 +

d [F (�)=f(�)]

d�

�
qb(�) < 0:

Finally, since �bq(q
b(�); �) = 0 and ��q (q

�(�); �) = 0; we have qb(�) < q�(�): This implies

that:
d��(q(�); �)

dq

����
q=qb

> 0:

�

Proof of Lemma 2.

By the envelope theorem, the necessary condition of (IC) is: u0(�) = �
(�(�))q(�) < 0:

This is valid �almost everywhere�� as will be shown later, the e¤ort level drops from � = 1

(thus 
(�(�)) = 
G) to � = 0 (thus 
(�(�)) = 
B) at the cuto¤ level of �: However, it is

innocuous to use this expression in our model since we is needed is that the agent�s expected

utility is decreasing in �: Integration gives:

u(�) = u(�) +

Z �

�

(�(�))q(�)d�: (A1)

The second order condition of (IC) is:

�
�0(�)q(�) + 
(�(�))q0(�) � 0;

and as usual in the model of this type, this condition is automatically satis�ed by the

solution without it. Again, as will be shown later, �0(�) = 0 except the cuto¤ level of � (at

the cuto¤ point, �0(�) = �1), and q(�) = qb(�) in the optimal contract in all cases, where

dqb(�)=d� < 0 from Lemma 1.
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Using integration by part in (A1), the agent�s expected rent, E [u(�)] =
R �
� u(�)f(�)d�;

is expressed as follows:

E [u(�)] = u(�) +

Z �

�

(�(�))q(�)F (�)d�; (A2)

where u(�) = 0 in the optimum. Since u(�) = 
(�(�))[t(�)� �q(�)]; the transfer is: t(�) =
�q(�) + [u(�)=
(�(�))]: Substituting for t(�) with the expression in (A2); the principal�s

problem becomes:

Max
q;�

Z �

�
f
(�(�))

h
�b(q(�); �)

i
� ��(�)gf(�)d�: (A3)

The objective function is linear in �(�) since 
(�(�)) = �(�)
G + (1 � �(�))
B; and

�b(qb(�); �) is decreasing in � in (A3) by Lemma 1, implying that optimization with re-

spect to �(�) gives a cuto¤ � such that:

� =

(
1 for � � �b

0 for � > �b
(A4)

Using (A4); the objective function in (A3) is rewritten as the one in Lemma 2. �

Proof of Proposition 1.

Point-wise maximizing the objective function in Lemma 2 with respect to q(�) gives �bq(q(�); �) =

0 implying that q(�) = qb(�): The cuto¤ �b is characterized by di¤erentiating the objective

function with respect to �b:

�
�b(qb(�b); �b)� � = 0: (A5)

The second-order condition for maximization is satis�ed by Lemma 1. The equation in

(A5) implies that, for � > �
�b(qb(�); �), the cuto¤ �b < �. To see the sign of d�b=d�; we

di¤erentiate (D1) to have:

�
[�bq(q
b(�b); �b)

dqb

d�b
+ �b�(q

b(�b); �b)]d�b � d� = 0: (A6)

Since �bq(q
b(�); �) = 0; (A6) gives: d�b=d� = 1=[�
�b�(q

b(�b); �b)] < 0: �

Proof of Claim 1.

We will show that in Pb the principal strictly prefers choosing �(�b) = 1 ex post. The

principal (weakly) prefers choosing �(�b) = 1 if:


G

h
v(qb(�b))� t(�b)

i
� � � 
B

h
v(qb(�b))� t(�b)

i
: (A7)
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Since u(�) = 
(�(�)) [t(�)� �q(�)] ; we have t(�) = �q(�)+ [u(�)=
(�(�))]: Substituting

for t(�); the inequality in (A7) becomes:


G

24v(qb(�b))� �bqb(�b)�
h
u(�) +

R �
�b 
Gq

b(�)d�
i


G

35� �
� 
B

24v(qb(�b))� �bqb(�b)�
h
u(�) +

R �
�b 
Bq

b(�)d�
i


B

35 :
Since u(�) cancels out as it enters both LHS and the RHS of the above inequality, it can be

rewritten as:

�
[v(qb(�b))� �bqb(�b)�
Z �

�b
qb(�)d�] � �: (A8)

Since ��(q(�); �) � v(q(�))� �q(�), (A8) is rewritten as:

��(qb(�b); �b) � �

�

+

Z �

�b
qb(�)d�: (A9)

We prove next that constraint (A9) must be slack, i.e., satis�ed as a strict inequality in Pb.
Consider the principal�s problem Pb complemented by the constraint (A9):

Pb : Max
�b

Z �b

�

n

G

h
�b(qb(�); �)

i
� �

o
f(�)d� +

Z �

�b

B

h
�b(qb(�); �)

i
f(�)d�

subject to:

��(qb(�b); �b) � �

�

+

Z �

�b
qb(�)d�:

The Lagrangian function for the optimization problem is:

L =
Z �b

�

n

G

h
�b(qb(�); �)

i
� �

o
f(�)d� +

Z �

�b

B

h
�b(qb(�); �)

i
f(�)d�

+ �[��(qb(�b); �b)� �

�

�
Z �

�b
qb(�)d�];

where the multiplier � 2 R is a constant. Di¤erentiating L with respect to �b we obtain:

�

h
�b(q(�b); �b)

i
� � + �

�
d��(q(�b); �b)

d�b
+ q(�b)

�
= 0: (A10)

Recall that in Pb the optimal �b is given by �b(q(�b); �b) = �=�
, which together with

(A10) implies that:

�

�
d��(q(�b); �b)

d�b
+ q(�b)

�
= 0: (A11)
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We show next that
�
d��(q(�b); �b)=d�b

�
+ q(�b) < 0, which will imply that � = 0, i.e.,

the constraint (A9) is slack. We rewrite the expression for
�
d��(q(�b); �b)=d�b

�
+ q(�b) as

follows: h
d��(q(�b); �b)=d�b

i
+ q(�b)

= v0(q(�b))
dq(�b)

d�b
� q(�b)� �bdq(�

b)

d�b
+ q(�b)

=
h
v0(q(�b))� �b

i dq(�b)
d�b

< 0;

where v0(q(�b))� �b > 0 and dq(�b)=d�b < 0. Therefore, � = 0 and the constraint (A9) is

satis�ed a strict inequality. �

Proof of Lemma 3.

The expression for the agent�s rent and expected rent are the same as in Pb and they are:

u(�) = u(�) +

Z �

�

(�(�))q(�)d� and

� [u(�)] = u(�) +

Z �

�

(�(�))q(�)F (�)d�:

Using these expressions with t(�) = �q(�)+[u(�)=
(�(�))]; the principal�s objective function

is rewritten as: Z �

�
f
(�(�))[�b(q(�); �)]� u(�)� ��(�)gf(�)d�: (A12)

The principal�s ex post e¤ort rule from (ECs) gives characterization of the cuto¤ �s:


G

24v(q(�s))� �sq(�s)�
h
u(�) +

R �
�s 
Gq(�)d�

i

G

35� �
= 
B

24v(q(�s))� �sq(�s)�
h
u(�) +

R �
�s 
Bq(�)d�

i

B

35 ;
which simpli�es to:

��(q(�s); �s)�
Z �

�s
q(�)d� =

�

�

: (A13)

We next show that the LHS of (A13); ��(q(�s); �s) �
R �
�s q(�)d�; is a monotonically

decreasing function of �s, which will imply that the e¤ort level �(�) will be �(�) = 1 if � � �s
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and �(�) = 0 if � > �s. Consider the �rst-order derivative of ��(q(�s); �s)�
R �
�s q(�)d� with

respect to �s:

d[��(q(�s); �s)�
R �
�s q(�)d�]

d�s

=
d[v(q(�s))� �sq(�s)�

R �
�s q(�)d�]

d�s

= v0(q(�s))
dq(�s)

d�s
� q(�s)� �sdq(�

s)

d�s
+ q(�s)

=
dq(�s)

d�s
�
v0(q(�s))� �s

�
:

As will be shown in Proof of Proposition 2, dq(�s)=d�s < 0 and the output schedule is dis-

torted downward in the optimal contract, i.e., v0(q(�s)) > �s. Therefore, dq(�
s)

d�s [v0(q(�s))� �s] <
0 and, as a result:

� =

(
1 for � � �s

0 for � > �s
: (A14)

Using (A14); the principal�s objective function in (A12) is rewritten as:Z �s

�
f
G

h
�b(q(�); �)

i
� u(�)� �gf(�)d� +

Z �

�s
f
B

h
�b(q(�); �)

i
� u(�)gf(�)d�: (A15)

The principal�s problem is maximizing (A15) subject to (A13): Since u(�) enters only the

objective function, u(�) = 0 in the optimum and the principal�s problem is expressed as the

one in the lemma. �

Proof of Proposition 2.

The principal�s problem in Ps from Lemma 3 is written as:

Ps : Max
q();�s

Z �s

�

n

G

h
�b(q(�); �)

i
� �

o
f(�)d� +

Z �

�s

B

h
�b(q(�); �)

i
f(�)d�; (A16)

subject to:

��(q(�s); �s)�
Z �

�s
q(�)d� =

�

�

: (A17)

We �rst show that the output will be at the benchmark level, qs(�) = qb(�); for � � �s,

and will be distorted down more, qs(�) < qb(�), for � > �s. Replacing �s with �s(�) �
�s(q(�s); fq(�)g���s) in (A16); the principal�s maximization problem in q(�) is written as:

Max
q

Z �s(�)

�

n

G

h
�b(q(�); �)

i
� �

o
f(�)d� +

Z �

�s(�)

B

h
�b(q(�); �)

i
f(�)d�:
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Since q(�) depends on �s(�) only for � � �s it is clear from the problem that regardless of

the value of �s; the point-wise maximization for � � �s gives that:

�bq(q(�); �) = 0 for � � �s;

implying that qs(�) = qb(�) for � � �s. Next, consider � > �s. Using the Leibniz integral

rule, the point-wise maximization with respect to q implies:h

G�

b(q; �s(�))� �
i
f(�s(�))d�

s

dq
� 
B�b(q; �s(�))f(�s(�))

d�s

dq
+

Z �

�s(�)

B�

b
q(q; �)f(�)d� = 0;

which simpli�es to:

[�
�b(q; �s(�))� �]f(�s(�))d�
s

dq
+

Z �

�s(�)

B�

b
q(q; �)f(�)d� = 0:

From (A16) it follows that d�s=dq < 0 and �
�b(q; �s(�)) � � > 0, and hence we have

qs(�) < qb(�) for � > �s. Thus we have shown that:

qs(�)

(
= qb(�) for � � �s

< qb(�) for � > �s
:

The cuto¤ �s is then obtained from (A17) with qs(�) described above:

��(qb(�s); �s)�
Z �

�s
qs(�)d� = �=�
; (A18)

For �s = �; (A18) gives � = �s � �
��(qb(�); �).
To show that �s is decreasing in �; we di¤erentiate (A18) to have:2664��q (qb(�s); �s)dqb(�s)d�s| {z }

(�)

+ ���(q
b(�s); �s)| {z }
(�)

3775 d�s = 1

�

d�: (A19)

In (A19); ��q (q
b(�s); �s) > 0 and dqb(�s)=d�s < 0 by Lemma 1. That ��� < 0 follows from

��(q(�); �) = v(q(�))� �q(�): Together, it is implied from (A19) that d�s=d� < 0. �

Proof of Corollary 1.

The Lagrangian for the optimization problem in Ps is:

L =
Z �s

�

n

G

h
�b(q(�); �)

i
� �

o
f(�)d� +

Z �

�s

B

h
�b(q(�); �)

i
f(�)d�

+ �

"
��(q(�s); �s)�

Z �

�s
q(�)d� � �

�


#
;
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where � 2 R is a constant. Di¤erentiating L with respect to q(�) for � > �s we obtain:

dL
dq(�)

=

Z �

�s

B

h
�bq(q(�); �)

i
f(�)d� � �

Z �

�s

dq(�)

dq(�)
d� = 0: (A20)

Since �bq(q(�); �) < 0, it follows from (A20) that � < 0. Di¤erentiating L with respect to
�s we obtain:

�

h
�b(q(�s); �s)

i
� � + �

�
d��(q(�s); �s)

d�s
+ q(�s)

�
= 0: (A21)

To simplify further (A21), we rewrite the expression for [d��(q(�s); �s)=d�s]+q(�s) as follows:

d��(q(�s); �s)

d�s
+ q(�s)

= v0(q(�s))
dq(�s)

d�s
� q(�s)� �sdq(�

s)

d�s
+ q(�s)

= (v0(q(�s))� �s)dq(�
s)

d�s
;

where v0(q(�s))� �s > 0 and dq(�s)=d�s < 0 at the optimum (from Proof of Proposition 2).

Therefore cuto¤ �s is determined by:h
�b(qb(�s); �s)

i
=

�

�

� �

�
d��(q(�s); �s)

d�s
+ q(�s)

�
| {z }

(+)

: (A22)

Recall that in Pb, the cuto¤ �b is determined by:

�b(qb(�b); �b) = �=�
: (A23)

Since �b(qb(�); �) is decreasing in �, by comparing (A22) and (A23) it follows that �b < �s.

�

Proof of Claim 2.

In Pb; the agent prefers shirking at �b if:


G

h
t(�b)� �bqb(�b)

i
� � � 
B

h
t(�b)� �bqb(�b)

i
: (A24)

Since u(�) = 
(�(�)) [t(�)� �q(�)] ; we have t(�) = �q(�)+ [u(�)=
(�(�))]: Substituting for

t(�); the inequality in (A24) becomes:


G

24�bqb(�b)
h
u(�) +

R �
�b 
Gq

b(�)d�
i


G
� �bqb(�b)

35� �
� 
B

24�bqb(�b) +
h
u(�) +

R �
�b 
Bq

b(�)d�
i


B
� �bqb(�b)

35 :
25



Since u(�) cancels out as it enters both LHS and the RHS of the above inequality, it can be

rewritten as:
�

�

�
Z �

�b
qb(�)d� � 0: (A25)

Consider the principal�s problem Pb complemented by the constraint (A25):

Pb : Max
�b

Z �b

�

n

G

h
�b(qb(�); �)

i
� �

o
f(�)d� +

Z �

�b

B

h
�b(qb(�); �)

i
f(�)d�

subject to:
�

�

�
Z �

�b
qb(�)d� � 0:

The Lagrangian function for the optimization problem is:

L =
Z �b

�

n

G

h
�b(qb(�); �)

i
� �

o
f(�)d� +

Z �

�b

B

h
�b(qb(�); �)

i
f(�)d�

+ �

"
�

�

�
Z �

�b
qb(�)d�]

#
;

where � 2 R is a constant.

Di¤erentiating L with respect to �b we obtain:

�

h
�b(q(�b); �b)

i
� � + �[qb(�b)] = 0: (A26)

Recall that in Pb the optimal �b is given by �b(q(�b); �b) = �=�
, which together with

(A26) imply that:

�qb(�b) = 0: (A27)

Since qb(�b) > 0, (A27) implies that � = 0 and the constraint (A24) is satis�ed a strict

inequality. �

Proof of Lemma 4.

By the envelope theorem, the necessary condition of (IC) is: u0(�) = �
(�(�))q(�): Since
the agent�s rent, u(�); is decreasing in �; it is implied from (ECs) that there exists the cuto¤

�d such that:

� =

(
1 for � � �d

0 for � > �d

Therefore, the agent�s rent can be expressed as:

u(b�j�) = ( 
G[t(b�)� �q(b�)]� � for � � �d;


B[t(b�)� �q(b�)] for � > �d;
(A28)
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which in turn gives:

u0(�) = �
Gq(�) and u(�) = 
G
R �d
� q(�)d� + u(�d) for � � �d; (A29)

u0(�) = �
Bq(�) and u(�) = 
B
R �
� q(�)d� + u(�) for � > �d: (A30)

From (A30), we have:

u(�d) = 
B

Z �

�d
q(�)d� + u(�): (A31)

Therefore, from (A29):

u(�) = 
G
R �d
� q(�)d� + 
B

R �
�d q(�)d� + u(�) for � � �d: (A32)

Applying integration by part to the expected values of (A30) for � > �d and (A32) for

� � �d, the agent�s expected rents are:

E���d [u(�)] = 
G
R �d
� q(�)F (�)d� + u(�d)F (�d) +

R �d
� u(�)f(�)d� for � � �d;

E�>�d [u(�)] = 
B
R �
�d q(�)F (�)d� � u(�

d)F (�d) +
R �
�d u(�)f(�)d� for � > �d:

Since 
Gt(�) = 
G�q(�) + u(�) + � for � � �d and 
Bt(�) = 
B�q(�) + u(�) for � > �d from

(A28); using the the expressions for the agent�s expected rents above, we can replace for

E���d [
Gt(�)] and E�>�d [
Bt(�)] in the objective function to have:Z �d

�
f
G

h
�b(q(�); �)

i
� u(�)� �gf(�)d� +

Z �

�d
f
B

h
�b(q(�); �)

i
� u(�)gf(�)d�

=

Z �d

�
f
G

h
�b(q(�); �)

i
� �gf(�)d� +

Z �

�d

B

h
�b(q(�); �)

i
f(�)d� � u(�): (A33)

The �rst order condition for (ECd) gives:

�

�
t(�d)� �dq(�d)

�
� � = 0

() 
G
�
t(�d)� �dq(�d)

�
� � = 
B

�
t(�d)� �dq(�d)

�
() 
G


B

B
�
t(�d)� �dq(�d)

�
� � = 
B

�
t(�d)� �dq(�d)

�
() 
G


B

h

B
R �
�d q(�)d� + u(�)

i
� � = 
B

R �
�d q(�)d� + u(�);

(A34)

where the last step in (A34) follows from the fact that u(�d) = 
B[t(�
d)��dq(�d)] from (A28)

with u(�) � u(�j�); and u(�d) = 
B
R �
�d q(�)d� + u(�) from (A31): A simple rearrangement

of (A34) gives: Z �

�d
q(�)d� +

u(�)


B
=

�

�

: (A35)
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The principal�s problem in Pd is maximizing (A33) subject to (A35) and u(�) � 0: The

principal can optimally choose u(�) = 0; and hence the problem becomes the one presented

in Lemma 4 for �d 2 [�d; �]: Lastly, we show that Pd = Pb(�b = �) for �d 2 [�; �d); i.e.,
qd(�) = qb(�) with �(�) = 0 for the entire range � = [�; �]. Suppose �d = �: Then the

principal�s problem is written as:

Max
q

Z �

�

B

h
�b(q(�); �)

i
f(�)d�, (A36)

s.t.
Z �

�
q(�)d� =

�

�

:

The optimal outcome of this problem, however, is strictly dominated by the optimal outcome

of following problem:

Max
q

Z �

�

B

h
�b(q(�); �)

i
f(�)d�, (A40)

which is Pb(�b = �): That is, at �d = �; the principal�s expected payo¤ in (A40) is

strictly higher than her expected payo¤ in (A39): Since Pb(�b = �) is implementable under

delegated-performance, this shows that there exists �d (> �) such that Pd = Pb(�b = �) for

�d 2 [�; �d): �

Proof of Proposition 3.

Again from Lemma 4, the principal�s problem in Pd when �d 2 [�d; �] is:

Max
q;�d

Z �d

�
f
G

h
�b(q(�); �)

i
� �gf(�)d� +

Z �

�d

B

h
�d(q(�); �)

i
f(�)d�; (A41)

subject to: Z �

�d
q(�)d� =

�

�

: (A42)

From (A42); we can express �d as a function of q(�) for the relevant interval, i.e., �d =

�d(q(�)), � 2
�
�d; �

�
: Replacing �d with �d(q(�)) in (A41); the principal�s maximization

problem in q(�) is written as:

Max
q;u(�)

Z �d(q(�))

�
f
G

h
�b(q(�); �)

i
� �gf(�)d� +

Z �

�d(q(�))

B

h
�b(q(�); �)

i
f(�)d�:

We next show that the output will be at the benchmark level, qd(�) = qb(�); for � � �d,

and qd(�) > qb(�), for � > �d. Replacing �d with �d(�) � �d(q(�d); fq(�)g���d) in (A42);
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the principal�s maximization problem in q(�) is written as:

Max
q

Z �d(�)

�

n

G

h
�b(q(�); �)

i
� �

o
f(�)d� +

Z �

�d(�)

B

h
�b(q(�); �)

i
f(�)d�:

First, since q(�) depends on �d(�) only for � � �d by (A42); it is clear from the problem

that regardless of the value of �d; the point-wise maximization for � � �d gives that:

�bq(q(�); �) = 0 for � � �d;

implying that qd(�) = qb(�) for � � �d. Second, consider � > �d. Using the Leibniz integral

rule, the point-wise maximization with respect to q(�) implies:

h

G�

b(q; �d(�))� �
i
f(�d(�))d�

d

dq
� 
B�b(q; �d(�))f(�d(�))

d�d

dq
+

Z �

�d(�)

B�

b
q(q; �)f(�)d� = 0;

which simpli�es to:

[�
�b(q; �d(�))� �]f(�d(�))d�
d

dq
+

Z �

�d(�)

B�

b
q(q; �)f(�)d� = 0:

From (A42) it follows that d�d=dq > 0 and �
�b(q; �d(�)) � � > 0, and thus we have

qd(�) > qb(�) for � < �d. Therefore:

qd(�)

(
= qb(�) for � � �d

> qb(�) for � > �d
: (A43)

The cuto¤ �d is obtained from (A42) with qb(�):Z �

�d
qb(�)d� =

�

�

: (A44)

For �d = �; (A44) gives � = 0: It follows directly from (A44) that, as � increases, �d must

decrease. Lemma 4, together with that �d is decreasing in �; implies that, when �d 2 [�; �d);
qd(�) = qb(�) and �(�) = 0 for � 2 �. �

Proof of Corollary 2.

From Proposition 4, for a given �; the cuto¤ �d in Pd is determined by:Z �

�d
qd(�)d� = �=�
;
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where qd(�d) = qb(�d): Since �(qd(�d); �d) = �b(qb(�d); �d), from Condition 1, we thus have:

�b(qb(�d); �d) >

Z �

�d
qd(�)d� = �=�
: (A45)

Recall that, from Proposition 2, the cuto¤ �b in Pb is determined by:

�b(qb(�b); �b) = �=�
 (A46)

Comparing (A45) and (A46); �b(qb(�d); �d) > �b(qb(�b); �b); and d�b=d� < 0 implies that

�d < �b: �

Proof of Proposition 4.

We have �s = � at � = �s; and �b = � at � = �b: Corollary 1 and 2 imply that �s > �b > 0:

Therefore at � = �b; the optimal outcome in Ps gives the same optimal outcome in Pb:
This implies that there exists � such that, for � 2 (0; �]; the principal�s expected payo¤with
' = s is strictly higher than her expected payo¤ with ' = d: Now, let �

b � �
�b(qb(�); �):
For � � �

b
; the principal makes �b = �, i.e., �b = 0 for the entire range of � in Pb, and

Corollary 1 implies that �
b
< �

s
: At � = �

b
; the optimal outcome in Pd gives the same

optimal outcome in Pb by Proposition 3. This implies that there exists � such that, for
� 2 [�; �s); the principal�s expected payo¤ with ' = d is strictly higher than her expected

payo¤ with ' = s: �

Proof of Corollary 3.

Corollary 3 is implied by Proposition 4. �

Appendix B. When � is Public Information

In this section, we present the case where � is publicly observed� i.e., only hidden action is

an issue. As will be demonstrated below, the principal strictly prefers self-performance to

delegated-performance under such an environment.

Under self-performance (' = s); the principal�s problem is:

Max
�;q;t

Z
�
[
(�(�)) [v(q(�))� t (�)]� ��(�)] f(�)d�; subject to


(�(�)) [t (�)� �q (�)] � 0; and

�(�) 2 argmaxb� f
(b�(�)) [v(q(�))� t(�)]� �b�(�)g :
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The �rst constraint induces the agent�s participation. The second constraint is for the

principal�s upstream e¤ort� since her e¤ort is hidden, and thus non-contractible upon, the

principal must respect her ex post incentive when she makes an o¤er.

Under delegated-performance (' = d); the principal�s problem is:

Max
�;q;t

Z
�

(�(�)) [v(q(�))� t (�)] f(�)d�; subject to


(�(�)) [t (�)� �q (�)]� �� � 0; and

�(�) 2 argmaxe� 
(e�(�)) [t(�)� �q(�)]� �e�(�):
The �rst constraint is for the agent�s participation, and the second constraint is for the

agent�s upstream e¤ort.

The following lemma presents the principal�s choice between self- and delegated-performance

when the agent�s information is public.

Lemma 5 If � is public information, the principal�s expected payo¤ with ' = s is strictly

higher than her expected payo¤ with ' = d:

Proof. With ' = s; the participation constraint for the agent is binding for 8� 2 �;
implying that the principal�s problem can be rewritten as:

Max
�;q

Z
�
[
(�(�)) [v(q(�))� �q(�)]� ��(�)] f(�)d�; subject to

�(�) 2 argmaxb� f
(b�(�)) [v(q(�))� �q(�)]� �b�(�)g ;
where the constraint for the principal�s ex post incentive for upstream e¤ort becomes:

�
[v(q(�)) � �q(�)] = �: This constraint is automatically satis�ed with the �rst-best

outcome. Suppose there is no e¤ort constraint. Then, the optimal output schedule is

the �rst-best: q(�) = q�(�): Also, the objective function is linear in �(�) since 
(�(�)) =

�(�)
G+(1��(�))
B; and v(q�(�))� �q�(�) is decreasing in �; implying that optimization
with respect to �(�) gives a cuto¤ � such that:

� =

(
1 for � � �s�

0 for � > �s�
:

The principal�s problem without the e¤ort constraint becomes:

Max
�s�

Z �s�

�
f
G [v(q�(�))� �q�(�)]� �gf(�)d� +

Z �

�s�

B [v(q

�(�))� �q�(�)] f(�)d�:
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Optimization with respect to �s� gives: �
[v(q�(�)) � �q�(�)] = �; which coincide with

the principal�s ex post incentive from the e¤ort constraint. Also, �s� is characterized by

�
[v(q�(�s�))��s�q�(�s�)] = �; implying that �s� = ��: Thus, when � is public information,

the principal can achieve the �rst-best outcome with ' = s:

With ' = d; the e¤ort constraint for the agent gives:

t(�) = �q(�) +
�

�

;

implying that the participation constraint for the agent is automatically satis�ed. As in

the case with ' = s; the transfer schedule above implies that q(�) = q�(�); and again the

principal induces the agent�s e¤ort for � less than a cuto¤ point. The principal�s problem

is rewritten as:

Max
�d�

Z �d�

�

G

�
v(q�(�))� �q�(�)� �

�


�
f(�)d� +

Z �

�d�

B [v(q

�(�))� �q�(�)] f(�)d�:

Optimization with respect to �d� gives: v(q�(�)) � �q�(�) = 
G�; and �d� is characterized

by v(q�(�d�))� �d�q�(�d�) = 
G�: This implies that �d� < �� = �s�; which in turn implies

that the principal�s expected payo¤ is strictly higher with ' = s:

When the project environment is public information, the agent commands no rent under

self-performance, and the principal�s ex ante and ex post incentives are the same. As a result,

under self-performance, the optimal outcome is the �rst-best when the project environment

is public information.

Under delegated-performance, although the project environment is public information,

inducing the agent�s upstream e¤ort requires rent provision. To be speci�c, the transfer

that induces the agent�s upstream e¤ort is:

t(�) = �q(�) + �=�
;

where the second term, �=�
; represents the extra cost to the principal to induce the

agent�s upstream e¤ort. Thus, when the agent has no private information, there is no

trade-o¤ between self- and delegated-performance� while the former implements the �rst-

best outcome, the latter invites a moral hazard problem. The principal�s optimal payo¤

strictly lower with delegated-performance when � is public information.
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