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Abstract

Decision makers often face uncertainty in relation to the ability and the integrity of

their advisors. Whenever this is the case, we show that if an expert is sufficiently con-

cerned about establishing a reputation for being skilled and unbiased, she may truth-

fully report her private information regarding the decision-relevant state. However,

while in a truthtelling equilibrium, the decision maker learns only about the ability of

the expert, in an equilibrium with some misreporting the decision maker also learns

about the expert’s bias. Although truthful behavior allows for more informed current

decisions, it may lead to worse sorting outcomes. Therefore, if a decision maker places

enough weight on future choices relative to present ones, lying may be welfare im-

proving. Applications of the model include relationships between patients and doctors,

managers and consultants, and politicians and policy advisors.
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1 Introduction

Consider a politician that hires an advisor to make a more informed decision on a spe-

cific policy. The politician knows the advisor is a specialist but does not know how well

informed the advisor is (ability), and whether she is biased in favor of a specific interest

group (integrity). Suppose the advisor is actually biased and yet provides a recommen-

dation that is genuinely based on her expertise, as an unbiased one would do. As the

advisor is a specialist, a truthful recommendation is likely to be correct. This is desirable

for the sake of current decisions. However, in deciding whether to consult the specialist

again in the future, the politician also requires information about her integrity. Indeed,

if the advisor favors a certain industry, she will provide biased recommendations as soon

as it is to her advantage. If her behavior is truthful, however, the politician is prevented

from learning about the integrity of the advisor because the behavior of a biased expert

is indistinguishable from that of an unbiased one (i.e., they both behave truthfully). Now

compare the previous situation with a scenario in which, for example, biased advisors tend

to ignore what their private information would suggest and prescribe a policy that favors

a tax break for a specific industry. In this case, observing such a recommendation may

cast doubt on the advisor’s integrity. Lying thus reveals evidence about preferences, which

remains concealed if behavior is truthful. This knowledge can prove useful in deciding

whether to replace the expert or to continue to rely on her services in order receive better

advice in the future.

A natural question that arises in this setting is whether facing advisors that sometimes

lie in the current period, instead of always honestly reporting their information, may al-

low politicians to make more informed future decisions. To put it more bluntly: is there

scope for good lies? To address this issue, we introduce a model that incorporates the key

features of the example described above and identify situations in which some degree of

misreporting may be preferable to truthful reporting.

The model we propose is general enough to encompass other settings that involve

ongoing relationships between decision makers and experts such as those between patients

and doctors, firms and consultants, and investors and financial analysts. In this context, the

primary focus of our analysis is on the decision maker’s welfare. Specifically, we consider a

two-period model of career concerns in which a decision maker chooses a binary action in
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each period, and her payoff from the action depends on an unknown state of the world. In

each period the decision maker can consult an expert that has privileged information about

the state, but faces uncertainty about both the ability (i.e., the precision of her information)

and the integrity of the advisor (i.e., whether she is biased in favor of a particular course of

action). We assume that ability and integrity are independently distributed. The decision

maker starts with some prior beliefs about ability and integrity, and updates these beliefs

at the end of the first period after observing the recommendation of the expert and the

true state of the world. These posterior beliefs are interpreted as the expert’s reputations

for ability and integrity, and determine how valuable her advice is expected to be in the

second period. In particular, these values determine whether the decision maker retains

the expert, and if so, how much payment the expert receives for her services in the second

period. This, in turn, creates reputational concerns on the part of the expert in the first

period.

We show that reputational concerns may induce both biased and unbiased experts

to truthfully reveal their information about the state of the world in the current period

(discipline effect). This is clearly beneficial for the quality of the decision maker’s current

decisions. The quality of future decisions is instead affected by how much the decision

maker learns about the expert’s ability and bias (sorting effect). In this respect, we note

that there is a trade-off between what the decision maker learns about each of these two

dimensions. In particular, while truthful reporting allows for sharp learning about the abil-

ity of the expert, it nevertheless precludes learning about integrity. Intuitively, this occurs

because in a truthtelling equilibrium observing the expert’s recommendation is equivalent

to observing the expert’s information. Hence, the decision maker is in a good position to

evaluate the quality of the expert’s signal. However, as both biased and unbiased experts

behave exactly in the same way (i.e., they both report their information truthfully) and

are both as likely to have the same information (i.e., ability and integrity are indepen-

dent), it is impossible for the decision maker to infer something about the integrity of the

expert by simply observing her recommendation. On the contrary, we show that equilib-

ria in which experts only partially reveal their information about the state are such that

the reporting strategies of biased and unbiased experts are necessarily different. In these

equilibria, while observing a certain recommendation reveals some information about in-

tegrity, learning about ability becomes less sharp because the reported recommendation
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only partially reflects the actual quality of the expert’s information.

Our main result shows that equilibria with some misreporting can improve sorting with

respect to truthful reporting when they allow for certain specific patterns of learning about

ability and integrity. In these cases, decision makers may prefer some misreporting if they

are sufficiently concerned about the expected quality of their future decisions, in other

words if they have a relative preference for sorting over discipline. We, therefore, prove

that although truthtelling equilibria exist, they can be welfare-dominated by equilibria

that involve some degree of misreporting. Including two dimensions of reputation thus

provides novel results with respect to settings in which there is only one dimension. In

these latter cases, either truthtelling equilibria do not exist (as in Morris, 2001 where

reputation is only related to preferences and biased advisors prefer actions to be distorted

in a particular known direction) or, when they do exist, they always dominate misreporting

equilibria (as in Prat, 2005 and Ottaviani and Sorensen, 2006 where reputation is only due

to ability).

First, we characterize a class of misreporting equilibria that have the potential to im-

prove sorting with respect to truthtelling. In these equilibria, which we name Misreporting
Biased (MB), the unbiased expert always truthfully reports her information, the biased ex-

pert misreports her information by sometimes recommending the action she favors when

her private information would suggest the opposite, and the decision maker retains the

expert if and only if her recommendation is ex-post correct. We show that these equilibria

improve sorting whenever the prior probability that the expert is well-informed is suffi-

ciently high, and thus there is little scope for learning about ability. This proves that there

exist instances in which learning about integrity is relatively more valuable than learning

about ability for making future decisions.

Going back to the politician-advisor example, our result suggests that a politician whose

current decisions are relatively less important than future ones may prefer a setting in

which biased advisors tend to provide advice guided by their conflicts of interest. This

will lead the politician to make more mistakes in the present but will allow her to better

discriminate between biased and unbiased experts. This is so because equilibrium behavior

implies that an advisor that suggests a policy that fails to deliver the desired results will

be replaced, and advisors that provide biased suggestions end up making mistakes more

often. Whenever the skills of the advisor are less of an issue, as in the case in which the
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politician can hire a new expert by picking from a pool of experienced policy analysts, a

setting with some lying improves sorting with respect to a setting with truthful behavior.

We then characterize the class of equilibria in which the unbiased expert misreports

and analyze whether these equilibria have the potential to improve welfare with respect

to truthtelling. Like MB equilibria, this class also displays the feature that the expert’s

recommendation reveals some information about her integrity, and can be further divided

into two subclasses. The first subclass, which we denote Misreporting Unbiased (MU), is

characterized by the unbiased expert partially revealing her information about the state,

the biased expert either truthtelling or partially revealing her information depending on

her level of career concerns, and the decision maker retaining the expert if and only if her

recommendation is ex-post correct. The second subclass, which we denote Total Misre-
porting Unbiased (TMU), is characterized by the unbiased expert always recommending

the action that is least-preferred by the biased expert. In these equilibria, the decision

maker adopts a rather conservative strategy: she ignores the ex-post correctness of the

recommendations and retains the expert only if the recommended action is the one that is

least-preferred by the biased expert.

When we consider MU equilibria in which the unbiased expert misreports and the

biased expert truthfully reveals her information, we find that they never improve sorting

relative to truthtelling equilibria. This is rather surprising because the reporting strategies

ofMU equilibria would suggest a pattern of learning about ability and integrity and hence

a sorting effect similar to the one we have in MB. In fact, we find that misreporting by

the unbiased expert hampers the sorting effect because it diminishes the decision maker’s

chances of consulting an unbiased expert of high ability in the future. Therefore, even

when there is little scope for learning about ability, the sorting effect that comes from the

unbiased expert’s intention of signaling her integrity is not sufficient to offset the sorting

effect associated with truthtelling that derives from greater learning about ability.

The previous result may suggest that when unbiased experts misreport to signal their

type, this is never optimal from the decision maker’s perspective. However, we show that

this is not the case, and that there exists a non-empty set of TMU equilibria that can

dominate truthtelling. To illustrate this result, consider a patient-doctor relationship. In

this setting, TMU equilibria can be described as follows: a patient consults a doctor with

the intention to follow her current advice but to switch to a new doctor in the future if
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her diagnosis suggests undergoing a specific treatment from which it is well known that

a biased physician may directly benefit. In this equilibrium, an unbiased doctor that does

not face a conflict of interest will never suggest undergoing treatment even if her diagnosis

suggests that this is the best current choice for the patient. On the contrary, a biased

doctor will suggest undergoing treatment with a positive probability, because she can profit

from carrying out the treatment today even knowing that the patient will not return in

the future. This behavior allows the patient to learn something about the physician’s

integrity. If the patient is more concerned about future consultations, in which the odds

of facing serious health issues are higher, this scenario prescribed by TMU equilibria will

be preferred to one in which both biased and unbiased doctors provide honest evaluations

based on their expertise.

Finally, to provide a more complete picture of our findings, we characterize informa-

tive equilibria based on the level of reputational concerns of the expert. We show that

truthtelling can be sustained only when the expert’s career concerns are sufficiently high.

However, we find that TMU equilibria may also exist in this case, thus undermining the

potential for truthful reporting to be welfare maximizing. Moreover, when career con-

cerns are mild and truthtelling cannot be supported, there exist misreporting equilibria

such as MB, which have the potential to dominate truthtelling in terms of welfare. This

suggests that it may not always be optimal for a decision maker to consult experts with

high reputational concerns.

Our work builds on the existing literature that studies the effects of reputational con-

cerns within models of expertise. This literature has alternatively focused either on reputa-

tion for ability (Scharfstein and Stein, 1990; Trueman, 1994; Holmstrom, 1999; Ottaviani

and Sorensen, 2006) or for preferences (Sobel, 1985; Benabou and Laroque,1992; Morris,

2001; Ely and Valimaki, 2003). A contribution of the present paper is to propose a model

that incorporates both these sources of reputational concerns.

In particular, Morris (2001) and Ely and Valimaki (2003) highlight how reputational

concerns may be self-defeating and therefore useless in aligning incentives. In both papers,

reputational concerns lead a good agent to engage in inefficient behavior for signaling

purposes. In Morris (2001), when reputational concerns are strong, information revelation

completely breaks down and babbling is the only equilibrium. Eli and Valimaki (2003)

consider an infinite-horizon principal-agent model, and show that principals anticipate
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the "bad reputation" effect and hence never hire an agent, thereby leading to the loss

of all surplus. Although our focus is different because we concentrate on comparing the

welfare properties of different informative equilibria, our model provides some insight

on these results. With respect to Morris (2001), we show that as long as there is some

uncertainty regarding ability, informative equilibria always exist if experts’ reputational

concerns are high. This suggests that Morris’ result that reputational concerns can be

self-defeating when they are too pronounced crucially depends on the existence of a single

dimension of uncertainty. Ely and Valimaki (2003) derive their bad reputation result under

the assumption that principals are short-run players. In fact, they show that if principals

are long-run players, the positive value of reputation can be restored, as principals can

internalize the value of learning about the type of the agent. Our model also exploits

this learning feature, but in a cheap-talk environment and relying on a finite horizon. In

particular, as we consider two dimensions of reputation, in our framework, learning about

preferences comes at the cost of learning about ability. We, therefore, focus on comparing

which of these two effects dominates in different circumstances.

Our paper is also related to Prat (2005), who studies welfare in a static model of

expertise in which the agent bears reputational concerns only for ability, and the principal

learns about the ability-type of the agent. We also analyze welfare, but we consider two

dimensions of uncertainty and endogenously derive the value of information in a two-

period model of reputational cheap talk, in the spirit of Li (2007) and Morris (2001). In

particular, while in Prat (2005) the discipline and sorting effects go in the same direction

(i.e., equilibria with better discipline also display better sorting), in our setting with two

dimensions of reputation, there may be a trade-off between the two.

Another strand of literature that is related to our work is the signaling literature that

considers agents that are heterogeneous on two dimensions (Austen-Smith and Fryer,

2005; Esteban and Ray, 2006; Bagwell, 2007; and Frankel and Kartik, 2016). In par-

ticular, there is a parallel between our analysis and that of Frankel and Kartik (2016).

They show that there is a trade-off between the information that can be revealed on each

of two dimensions of uncertainty when only one action is available. In this context, learn-

ing about one dimension versus the other depends on the cost of signaling, while in our

setting, it depends on the equilibrium communication strategy of the experts. A signifi-

cant difference with respect to this literature is that we incorporate learning about our two
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dimensions of heterogeneity (i.e., ability and integrity) in an endogenous expression for

the value of information. This allows us to evaluate how learning about each dimension

affects the decision maker’s welfare.

The remainder of the paper is organized as follows. In Section 2, we introduce the

general setup of the model and present a preliminary equilibrium analysis. In Section 3, we

introduce the main elements of welfare analysis and illustrate how misreporting equilibria

necessarily involve more learning about integrity and less about ability with respect to

truthtelling. In Section 4, we characterize the informative equilibria in which the unbiased

expert reports truthfully and analyze the welfare properties of these equilibria to illustrate

our main results. Section 5 discusses other informative equilibria. In Section 6, we present

a complete mapping of all the equilibria providing general welfare results. In Section 7,

we discuss the crucial role of reputation for ability, and Section 8 concludes.

2 The Model

There are two periods t = 1; 2. In each period, a risk-neutral decision-maker (DM) has to

choose an action at 2 f0; 1g and receives a payoff Rt(at; xt) that depends on both at and

the state of the world xt 2 f0; 1g as follows:

Rt(at; xt) =

8><>:
r if at = 1; xt = 1

�r if at = 1; xt = 0

0 if at = 0:

where r > 0.

We assume that in each period, states xt = 0 and xt = 1 occur with equal probability,

and that states x1 and x2 are independently distributed.1 At the moment of choosing at,

DM does not observe the realization of xt but can consult an expert who has access to

a signal st 2 (0; 1) that is potentially informative about xt. The expert observes st and

then reports a message mt 2 (0; 1) to DM , and is paid a fixed fee wt for her services.

1The assumption of a fair prior is not without a loss of generality. However, the results of the paper
hold whenever the prior on the state is not too extreme. A setting with a fair prior represents the situation
in which uncertainty about the state is highest, and it is thus more likely that DM seeks the advice of an
expert.
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The assumption of a fixed fee reflects the contractual incompleteness that is typical of the

situations we are modelling, in which both the state of the world and the report of the

advisor are observable but not verifiable; thus, contracts cannot be written conditional on

reports or on the accuracy of reports.

We can think ofDM ’s decision as the decision to invest (at = 1) or not invest (at = 0) in

a project or asset whose return is uncertain, and we can think of the expert as a consultant

or a financial advisor. However, as we mentioned previously, the model is sufficiently

general to represent many situations that involve ongoing relationships between a decision

maker and an expert, such as those between patients and doctors, firms and consultants,

or politicians and policy advisors. Throughout the paper, we will alternately refer to some

of these examples to illustrate our findings.

We assume that there is a finite pool of risk-neutral experts and that DM can consult

only one expert per period. Experts differ in their preferences and in their ability. However,

DM observes neither the preferences nor the ability of an expert.

Expert’s ability. An expert can be either smart (S) or dumb (D). A smart expert

receives an informative signal, while a dumb expert receives an uninformative signal as

modelled by the following signal technology:

Pr(st = xt j xt; S) = p > Pr(st = xt j xt; D) = 1=2:

As it is customary in models of career concerns, we assume that an expert does not know

her own ability.2 We denote � as the common prior about an expert being smart and

q � �p+ (1� �)1
2

as the ex-ante expected precision of an expert’s signal.

Expert’s preferences. An expert can be either unbiased (U) or biased (B). While an

unbiased expert does not favor any particular action, a biased expert strictly prefers at = 1.

We assume that an expert knows her own preferences and let  denote the common prior

about an expert being unbiased. In the remainder of the paper we will refer to the quality

of being unbiased as integrity. We also assume that there is no correlation between ability

and integrity, so that unbiased and biased experts have the same chances of being smart.

Payoffs and welfare. We model stage-payoffs as follows. A biased expert gets a stage-

2Given our signal structure, the assumption of a fair prior about the state of the world guarantees that an
expert does not learn anything about her own ability by observing her own signal.
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payoff equal to wt+at, where at is assumed to be relation-specific. Namely, a biased expert

receives at in period t if and only if the expert has been hired by DM in period t.3 An

unbiased expert faces no conflict of interest and gets a stage-payoff equal to wt. Finally,

we assume that DM ’s stage-payoff is equal to Rt(at; xt). This is equivalent to assuming

that while an expert seeks to maximize her monetary payoff, DM is only concerned about

choosing the best state-contingent action in each period. When we analyze welfare, we

thus focus exclusively on the decision maker’s utility.

We assume that agents may assign different weights to their stage-payoffs. We let

�E 2 (0; 1) denote the weight that an expert assigns to her future payoff relative to her

current payoff. Thus, the total payoff of an unbiased expert and the total payoff of a

biased expert respectively read:

�U = (1� �E)w1 + �Ew2;
�B = (1� �E)(w1 + a1) + �E(w2 + a2):

Similarly, we let �DM 2 (0; 1) denote the weight that DM assigns to her future payoff

relative to her current payoff. Thus, DM ’s total payoff reads:

�DM = (1� �DM)R1(a1; x1) + �DMR2(a2; x2):

Hence, in analyzing welfare, we will focus on the expected value of �DM .

2.1 Reputations and the Value Function

We model reputations by assuming that at the end of the first period, state x1 is publicly

revealed and that DM uses the realization (m1; x1) to update her prior beliefs about the

ability and the integrity of the incumbent expert. We respectively denote with b�(m1; x1) �
Pr(S j m1; x1) and b(m1; x1) � Pr(U j m1; x1) DM ’s posterior beliefs about the ability

and the integrity of the incumbent expert. These two beliefs respectively represent the

reputations that the incumbent has established at the end of the first period for being smart

3This is, for example, the case of a financial analyst who may obtain some side benefits if she persuades
an investor to make an investment, or of a doctor that receives a higher compensation if she convinces a
patient to undergo surgery.
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and for being unbiased. They also summarize what DM has learned about the ability and

the integrity of the incumbent after interacting with her. We denote the corresponding

update on the expected precision of the incumbent’s signal with bq(m1; x1) � b�(m1; x1)p +

(1� b�(m1; x1))
1
2
.

As we will formally see in the next section, both b�(m1; x1) and b(m1; x1) positively

affect the value of the incumbent’s information in the second period. Intuitively, the

smarter and the more unbiased the incumbent is, the more useful her information is.

We let V (m1; x1) denote the value of the incumbent’s information in the second period,

and refer to V (m1; x1) as the value function. Essentially, V (m1; x1) maps the reputation

of the incumbent for being unbiased and that for being smart (or equivalently what DM

has learned about the incumbent’s ability and integrity) into the expected value of the

incumbent’s information in the second period.

We introduce reputational concerns on the part of experts via two channels. First, we

assume that at the beginning of the second period, DM computes V (m1; x1) and decides

whether to retain the incumbent or replace her with a new expert. In this latter case, the

new expert is randomly selected from the original pool of experts. Hence, the value of

the information of a new expert is independent from what happened in the first period

and depends on the prior beliefs � and . We will denote the value function of a new

expert with V . As we will see, DM will retain the incumbent whenever V (m1; x1) � V .

A second channel of career concerns comes from the fee that is paid to the expert in

the second period, w2. In particular, we assume that w2 is set equal to the value of the

expert’s information in the second period. Hence, for the incumbent expert, we have that

w2 = V (m1; x1).4,5 All this implies that the incumbent is concerned about maximizing the

value of her reputations b�(m1; x1) and b(m1; x1) to maximize V (m1; x1), for doing this

positively affects both her chances of being retained and the fee she gets in case she is

retained.

Before we move on to the equilibrium analysis, it is worth commenting on the specific

features of our setting, which combines a binary action with the reputational mechanism

4Note that w1 plays no role and could be set equal to zero, while w2 is instrumental to generate reputa-
tional concerns that, conditional on the expert being retained, are continuously increasing in the levels of
reputations b� and b .

5We make this simplifying assumption for the sake of exposition. Allowing the expert to receive only a
share of the expected value of her information does not affect the results.
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described above. First, in terms of sorting, this structure allows the decision maker to fully

exploit what she learns about the ability and the integrity of the incumbent at the end of

period t = 1. Moreover, because our main focus is on welfare, adopting this structure sig-

nificantly reduces the computational complexity with respect to a model with continuous

actions.6

2.2 Equilibrium Analysis: Preliminaries

We use the concept of perfect Bayesian equilibrium and focus on informative equilibria de-

fined as equilibria in which, in each period, the decision maker learns something decision-

relevant from the expert’s messages.

In this section, we provide a descriptive characterization of these equilibria, a formal

analysis of which is relegated to the Appendix. The first thing to observe is that in any

informative equilibrium, in each period, the expert’s message must reveal some infor-

mation about the state of the world.7 This implies that in any informative equilibrium,

mt makes DM change her belief about xt.8 Because in our setting Rt(1; 1) = �Rt(1; 0)
and Pr(xt = 1) = 1

2
, it is then true that in any informative equilibrium, DM chooses

at(mt) = mt.9 With this in mind, we proceed by backward induction.

6In terms of sorting, this structure makes the model qualitatively equivalent to the model with continuous
action and quadratic loss function used, for example, by Sobel (1985) and Morris (2001). In particular, in
both those settings, DM takes an action based on the expected correctness of the expert’s information,
which depends on the expert’s updated reputation. However, while in the continuous action model, sorting
involves choosing a continuous action that minimizes expected loss, in our setting, it involves replacing an
incumbent.

7This result is implied by Lemma 5(i) in the Appendix. Intuitively, because in the second period, learning
about ability or integrity is no longer decision relevant for the future, any informative equilibrium must
involve DM learning something about x2. In the proof of Lemma 5(i) we further show that any equilibrium
strategy profile in which the expert does not reveal any information about x1 must necessarily be a "babbling"
strategy, also implying that no learning occurs about either ability or integrity.

8Without loss of generality, we restrict attention to informative equilibria in whichDM interprets message
1 to be (weakly) correlated with signal 1 and hence state 1.

9Put differently, in this model if an equilibrium is informative, it is also persuasive. With discrete actions
and a prior that is not fair, an informative equilibrium may not be persuasive. For example, if either the prior
on the state is extreme or the return in one state is extreme, a message by the expert may induce DM to
revise her beliefs about the state. However, this revision may not be sufficient to induce DM to choose the
action recommended by the expert.
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2.2.1 The Second Period

Reporting strategies and DM ’s action. An expert that is active in the second and last

period is not concerned about her reputation. For an unbiased expert with no preferences

in favor of a particular action, any strategy is a continuation equilibrium. In line with the

rest of the literature on career concerns, we focus on the continuation equilibrium in which

an unbiased expert acts in the interest of DM and thus truthfully reveals her signal.10 In

this equilibrium, messages contain some information about the state of the world. Hence,

DM chooses a2(m2) = m2, and a biased expert reports m2 = 1 regardless of her signal to

induce action a2 = 1.

The value function. Having pinned down the reporting strategies of biased and unbi-

ased experts in the second period, we can now easily derive the value function V (m1; x1),

which represents the value of the incumbent’s information in the second period. Note that

this value is equal the payoff that DM expects to attain in the second period thanks to the

information of the incumbent. Since at the moment of calculating this expected payoff,

DM knows the incumbent’s reputations, we have that:

V (m1; x1) � E [R2(a2; x2) j b(m1; x1); b�(m1; x1)] :

Given the equilibrium strategies that biased and unbiased experts use in the second

period, it then follows that:

V (m1; x1) =
r

2
b(m1; x1) [2bq(m1; x1)� 1] : (1)

It is straightforward to verify that V (m1; x1) is strictly increasing in the incumbent’s repu-

tations b(m1; x1) and b�(m1; x1).

DM ’s retaining strategy. At the beginning of the second period, DM chooses whether

to retain the incumbent or hire a new expert. Again, using the second-period equilib-

rium strategies outlined at the beginning of this section, we obtain that the value of the

10Note that this equilibrium is the most informative in the Blackwell sense, but it is not unique. Indeed,
any strategy profile that involves the unbiased expert revealing her signal with probability between 0 and 1
gives rise to an informative equilibrium that is obviously less informative than the one in which the unbiased
expert truthfully reveals her signal. As our analysis focuses on first-period behavior, selecting this most
informative continuation equilibrium is without loss of generality.
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information of a new expert reads:

V � E [R2(a2; x2)] =
r

2
 (2q � 1) : (2)

Given the analysis above, it should be apparent that at the beginning of the second

period, DM retains the incumbent expert whenever V (m1; x1) � V and replaces her with

a new expert otherwise.11

2.2.2 The First Period

We are now ready to analyze the reporting strategies of biased and unbiased experts in the

first period. In doing so, we assume that the continuation equilibrium described above is

played.

First, let us define function {(m1; x1) as follows:

{(m1; x1) =

(
1 if V (m1; x1) � V
0 otherwise.

(3)

Then, for a biased expert with signal s1, the expected payoff of choosing messagem1 reads:

(1� �E) [w1 + a(m1)] + �E
X

x1
Pr(x1 j s1) [V (m1; x1) + 1] {(m1; x1): (4)

For an unbiased expert with signal s1, the expected payoff of choosing message m1 reads:

(1� �E)w1 + �E
X

x1
Pr(x1 j s1) [V (m1; x1)] {(m1; x1): (5)

Biased and unbiased experts will respectively choose m1 to maximize expressions (4) and

(5). It is worth noticing that while m1 affects both the current and the future payoff of a

biased expert, it only affects the future payoff of an unbiased expert. In other words, while

a biased expert has both current and reputational incentives, an unbiased expert only has

reputational concerns.

11Because both q and bq(m1; x1) are greater than 1
2 (i.e., in expectation the expert is better informed than

DM), both bV (m1; x1) and V are strictly positive. Thus, DM always finds it optimal to consult an expert in
period 2.
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It turns out that a multitude of informative first-period reporting strategies is consistent

with the continuation equilibrium outlined in the previous subsection. In what follows, we

use the expression truthtelling equilibrium (or simply truthtelling) to denote an equilibrium

in which both biased and unbiased experts truthfully reveal their signals in the first period;

we instead use the expression informative misreporting equilibrium (or simply misreporting
equilibrium) to denote an equilibrium in which experts’ signals are partially disclosed in

the first period.

As we are interested in analyzing whether misreporting equilibria have the potential to

increase welfare with respect to truthtelling, it is convenient to introduce the basic tools of

the welfare analysis at this stage, and then proceed with the characterization of the various

informative equilibria. In doing so, we are implicitly assuming that both truthtelling and

informative misreporting equilibria exist. We indeed show that this is true in Sections 4

and 5.

3 Welfare: Discipline versus Sorting

As mentioned in Section 2, we focus on the decision maker’s welfare and thus on the

ex-ante expected payoff of DM in a given equilibrium �, defined as follows:12

E�0 [�DM ] = (1� �DM)E�0 [R1(a1; x1)] + �DME�0 [R2(a2; x2)] : (6)

As a first step towards analyzing welfare, it is useful to identify two distinct effects that

emerge in equilibrium, namely the discipline and sorting effects. The discipline effect arises

in the first period, when reputational concerns induce an expert to reveal some of her infor-

mation about the state of the world. The sorting effect arises at the end of the first period,

when DM learns something about the incumbent’s ability and integrity after observing

m1 and x1. While the discipline effect positively affects the expected payoff of the first

period decision (i.e., E�0 [R1(a1; x1)]), the sorting effect positively affects the expected pay-

off of the second period decision (i.e., E�0 [R2(a2; x2)]). A truthtelling equilibrium always

involves greater discipline and thus a higher expected utility of current decisions than any

12Throughout the paper, equilibrium values in a particular equilibrium will be denoted with a superscript
representing the name of that particular equilibrium.
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other misreporting equilibrium. However, when we compare a misreporting equilibrium

with a truthtelling equilibrium in terms of how much the decision maker learns about the

integrity and the ability of the incumbent expert, results are not so straightforward.

Let ME denote an informative misreporting equilibrium and TT denote a truthtelling

equilibrium. We then say that a given equilibriumME improves sorting with respect to TT

if and only if EME
0 [R2(a2; x2)] > ETT0 [R2(a2; x2)]. To analyze under what conditions this

inequality is satisfied, we formally define distinct measures of learning for both integrity

and ability.

Definition 1 jb�(m1; x1)� j and jb��(m1; x1)� �j respectively measure the amount of learn-
ing about integrity and ability in a putative equilibrium � when realization (m1; x1) is ob-
served.

The following proposition then establishes a general property of informative misreport-

ing equilibria that suggests that lies may have a positive effect.

Proposition 1 For every (m1; x1),��bME(m1; x1)� 
�� > ��bTT (m1; x1)� 

�� = 0;
and ��b�ME(m1; x1)� �

�� � ��b�TT (m1; x1)� �
�� ;

with strict inequality for at least one (m1; x1) {Proof in the Appendix}.

In other words, proposition 1 suggests that relative to truthtelling, all informative mis-

reporting equilibria lead to more learning about integrity and less learning about ability.

To see this, note that a biased expert has the same probability that an unbiased expert has

of receiving any given signal. Because biased and unbiased experts use the same reporting

strategy in a truthtelling equilibrium, any given message is as likely to come from one type

or the other. Therefore, messages are completely uninformative about integrity. On the

contrary, informative misreporting equilibria are characterized by biased and unbiased ex-

perts using different reporting strategies. This implies that, in equilibrium, each message

is sent more frequently by one type of expert or the other. Hence, the message in itself
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allows DM to learn something about the expert’s integrity. For example, if a biased doctor

recommends surgery more often than an unbiased doctor, receiving a surgery recommen-

dation will rationally lead the patient to believe that the doctor is more likely to be biased

than when she is prescribed a more conservative treatment. As for ability, note that in a

truthtelling equilibrium, observing the expert’s recommendation is equivalent to observing

her information. Hence, the decision maker is in the best position to evaluate the quality

of the expert’s signals. This is not the case in a misreporting equilibrium. Indeed, as there

is some lying, messages do not fully reflect the information of the expert. Hence, infer-

ence about the ability of the expert is less sharp than in TT for at least some realizations

(m1; x1).

Having established that informative misreporting equilibria lead to more learning about

preferences does not imply that these equilibria will necessarily lead to better expected

decisions in the future (i.e., to better sorting) than truthtelling. Considering the expression

for V (m1; x1) given by (1), the value of the expert’s information in the second period

depends on both ability and integrity. To clarify, and continuing with the patient-doctor

example, if a patient learns that a doctor is unbiased without learning enough about the

doctor’s ability, it is not obvious that the patient will receive more informed medical advice

in the future.

In the following sections, we show that there are several cases in which informative

misreporting equilibria actually lead to better sorting than truthtelling. Considering the

expression for E�0 [�DM ] given by (6), it then becomes clear that a misreporting equilibrium

with better sorting has the potential to dominate truthtelling. Whether this occurs or

not depends on DM ’s preferences for the future versus the present as established in the

following lemma.

Lemma 1 For any informative misreporting equilibrium that improves sorting with respect
to truthtelling, there always exists a ��DM 2 (0; 1), such that the misreporting equilibrium
increases (decreases) DM 0s ex-ante expected utility with respect to truthtelling if �DM > ��DM

(�DM < ��DM).

Proof. For any putative informative misreporting equilibrium ME and truthtelling equi-

librium TT , EME
0 [R1(a1; x1)] < ETT0 [R1(a1; x1)]. If ME improves sorting, we have that
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EME
0 [R2(a2; x2)] > E

TT
0 [R2(a2; x2)]. As E�0 (�DM) is monotonic in �DM , this completes the

proof.

We are now ready to complete the analysis of Section 2 and characterize the informative

equilibria of our game. This amounts to characterizing the first-period reporting strategies

of biased and unbiased experts. For this reason, in what follows, when we analyze the

behavior of biased and unbiased experts, we refer to first-period behavior.

For the sake of exposition, we divide informative equilibria into two main classes: i)
equilibria in which the unbiased expert truthfully reports her signals in the first period;

and ii) equilibria in which the unbiased expert misreports. In Section 4, we begin by

analyzing the first class of equilibria. We then focus on the second class of equilibria in

Section 5. For each misreporting equilibrium that we identify, we compare how it fares in

terms of welfare with respect to truthtelling.

4 Truthful Reporting by the Unbiased Expert

In this section, we consider informative equilibria in which the unbiased type reports truth-

fully. This allows us to show the existence of truthtelling equilibria and then illustrate the

main results of the paper. The following proposition characterizes the class of informative

equilibria in which the unbiased expert truthfully reports her signals, by dividing them into

two subclasses which we label TT and MB.

Proposition 2 Each equilibrium in which U truthfully reports her signals belongs to one of
the following two subclasses:

i) Truthtelling (TT ), in which B truthfully reveals her signals;
ii) Misreporting Biased (MB), in which B reports signal s1 = 1 truthfully, and signal

s1 = 0 with probability 0 < �B;0 < 1.
In both subclasses, DM retains the incumbent expert if and only if m1 = x1.
{Proof in the Appendix}.

It is worth noticing that a TT equilibrium could never be supported if reputational

concerns were only related to preferences, as in Morris (2001). It is the presence of a
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second dimension of reputation (i.e. reputation for ability) that creates the right incentives

to fully reveal information about the state of the world.13

To gather a better understanding of how each of these equilibria arise, consider Figure

1, which shows how DM ’s beliefs b�(m1; x1) and b(m1; x1) vary as a function of 1 � �B;0
(i.e., the probability with which the biased expert misreports s1 = 0). The case �B;0 = 1

identifies a TT equilibrium, while the case 0 < �B;0 < 1 identifies an MB equilibrium.

Note that when �B;0 = 1, we have that:

bTT (m1; x1) =  for all (m1; x1);

� � b�TT (1; 0) = b�TT (0; 1) < � < b�TT (1; 1) = b�TT (0; 0) � �:
Hence, as shown in proposition 1, messages have no impact on the reputation for being

unbiased. However, in a TT equilibrium, reporting a correct (incorrect) message causes

the expert to establish the highest (lowest) reputation for being smart. To ease notation,

throughout the paper, we will use q to denote the value of bq(m1; x1) corresponding to �.

Given the above values of the reputations, we may verify that in a truthtelling equilib-

rium the following holds true:

V � V TT (1; 0) = V TT (0; 1) < V < V TT (1; 1) = V TT (0; 0) � V: (7)

Relation (7) implies that in a TT equilibrium, DM retains the incumbent if she makes

a correct recommendation and replaces her if she makes a mistake. Because signals are

on average informative, truthfully reporting a signal maximizes the chances of providing

a correct recommendation and hence being retained. For this reason, for an unbiased

expert who is solely concerned about the impact of m1 on her continuation payoff, always

reporting m1 = s1 is consistent with the equilibrium. The same incentive applies to a

biased expert when �E is sufficiently large, in other words when the biased expert is more

concerned about the continuation payoff than the current payoff. In the appendix, we

show that there always exists a scalar �TTE 2 (0; 1) such that if �E � �TTE , then a biased

expert always reports truthfully. Thus, a TT equilibrium exists if and only if a biased expert

is sufficiently concerned about her career prospects. All this is driven by the reputational

13Section 7 explores this issue in further detail.
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concern for ability, since in a truthtelling equilibrium there is no variation in the reputation

for integrity.

Figure 1: Reputation values as a function of B0s probability of misreporting (1� �B;0)

When �E < �TTE , the career concerns of a biased expert are not sufficiently high to induce

her to truthfully report all her signals. In particular, a biased expert will be tempted to

lie when receiving s1 = 0. In the appendix, we show that there always exists a scalar

�MB
E 2

�
0; �TTE

�
such that if �MB

E � �E < �
TT
E , the MB equilibria described in proposition

2 exist. In these equilibria, while an unbiased expert reports truthfully, a biased expert

truthfully reports s1 = 1 and partially reveals s1 = 0.

We can again turn to Figure 1 for an intuition of how MB equilibria arise. From

figure 1, it is apparent that when 0 < �B;0 < 1, the decision maker’s beliefs b�(m1; x1) andb(m1; x1) satisfy the following relations:

bMB(1; 0) < bMB(1; 1) <  < bMB(0; 1) = b(0; 0)MB;

� = b�MB(0; 1) < b�MB(1; 0) < � < b�MB(1; 1) < b�MB(0; 0) = �:

In other words, in an MB equilibrium, observing m1 = 0 (m1 = 1) increases (reduces)

the value of b(m1; x1) above (below) the prior . This occurs because in MB, an unbiased

20



expert reports m1 = 0 more often than a biased expert, and m1 = 0 (m1 = 1) thus conveys

information about the expert’s likelihood of being unbiased (biased). Concerning ability,

because messages partially reflect the private signal of the expert, the comparison of m1

with x1 allowsDM to infer something about the ability of the expert. Note that since there

is some misreporting there are some realizations (m1; x1) after which this inference is less

sharp than in a TT equilibrium. However, as in TT , an ex-post correct (wrong) message

increases (decreases) the value of b�(m1; x1) above (below) the prior �, thereby providing

an incentive to report truthfully. Following this argument, it should be intuitive that in an

MB equilibrium, the expected reputational reward from reporting m1 = 0 when s1 = 0 is

observed is relatively large since it enhances both reputations. Indeed, it is this substantial

reputational reward that eventually offsets the low value of �E and preserves the incentive

of a biased expert to partially reveal st = 0 instead of disregarding it completely.

4.1 When Can Misreporting Be Preferred to Truthtelling?

We now compare howMB equilibria fare in terms of welfare with respect to TT equilibria.

Figure 1 shows us the pattern of learning about ability and integrity in the two cases.

Not surprisingly, this is consistent with the result of proposition 1. MB equilibria (i.e.,

equilibria with misreporting) lead to more learning about integrity and less learning about

ability with respect to truthtelling. We know by Lemma 1 that if this learning pattern

leads to better sorting, MB has the potential to improve welfare with respect to TT . The

following proposition highlights how MB equilibria fare with respect to TT ones in terms

of sorting.

Proposition 3 There always exists a scalar �� 2 (0; 1), such that MB improves sorting with
respect to TT if and only if � > ��.{Proof in the Appendix}.

For an intuition of this result recall that, as shown in proposition 1, TT guarantees the

sharpest learning about ability yet no learning about integrity, while MB allows for some

learning about both ability and integrity. Since when � is high there is little scope for

learning about ability, this allows MB to improve sorting with respect to TT .

To see this, let Pr(m1; x1 j �) denote the ex-ante probability that realization (m1; x1)

is observed given that equilibrium � is played. Then, consider the following expressions
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representing the ex-ante second-period expected payoffs in MB and TT :

EMB
0 [R2(a2; x2)] = Pr(1; 1jMB)V MB(1; 1) + Pr(0; 0jMB)V MB(0; 0) (8)

+Pr(0; 1jMB)V + Pr(0; 1jMB)V;

ETT0 [R2(a2; x2)] = Pr(1; 1jTT )V + Pr(0; 0jTT )V (9)

+Pr(1; 0jTT )V + Pr(0; 1jTT )V:

Proposition 3 states that when � is sufficiently high, EMB
0 [R2(a2; x2)]�ETT0 [R2(a2; x2)] > 0.

Note that this difference can be decomposed into two components. First, consider the

difference between the bites of (8) and (9) that refer to the events in which the expert

makes a mistake and hence is fired (i.e., events in which m1 6= x1). We denote this value

as the replacement component, which can be written as follows:

Pr(1; 0jMB)V + Pr(0; 1jMB)V � [Pr(1; 0jTT )V + Pr(0; 1jTT )V ] = (10)

= [Pr(m1 6= x1; BjMB)� Pr(m1 6= x1; BjTT )]V > 0:

Expression (10) highlights that the replacement component is positive. This occurs be-

cause the probability of replacing an unbiased expert is the same in both equilibria, while

the probability of correctly replacing a biased expert is strictly higher in MB than in TT .

Indeed, since in MB the biased expert misreports with positive probability, her chances of

making a mistake are larger than in TT .

Now, consider the difference between the bites of (8) and (9) that refer to the events

in which the expert provides a correct recommendation (i.e., events in which m1 = x1).

We denote this value as the continuation component, which reads:

Pr(1; 1jMB)V MB(1; 1) + Pr(0; 0jMB)V MB(0; 0) +

�
�
Pr(1; 1jTT )V + Pr(0; 0jTT )V

�
:

After replacing the equilibrium values of V MB(m1; x1) and V and simplifying, the previous

expression becomes:
r

2
q
�bqMB(1; 1)� q

�
< 0: (11)
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Since TT is the equilibrium with the sharpest learning about ability, q � bqMB(1; 1) implying

that expression (11) is always negative. This means that, for MB to exhibit a stronger

sorting effect with respect to TT , (10) must be large enough compared to (11). When � is

sufficiently high, there is little scope for learning about ability. Consequently, the differencebqMB(1; 1)�q becomes small and so does expression (11). At the same time, expression (10)

remains strictly positive since Pr(m1 6= x1; BjMB) is strictly larger than Pr(m1 6= x1; BjTT )
due to misreporting by the biased expert inMB.14 This result does not symmetrically apply

when � is sufficiently close to zero because in this case both (10) and (11) tend to zero.

For (11), this occurs for the same reasons we mentioned when � is high. For (10), notice

that for small values of �, signals tend to be uninformative. Therefore, the probability of

correctly replacing a biased expert that makes an incorrect evaluation tends to 1=2Pr(B)

in both MB and TT . This implies that (10) tends to zero.

Proposition 3 suggests that it may not always be the case that TT is the welfare max-

imizing equilibrium. While TT allows for a higher expected utility of current decisions

(discipline effect), MB may imply better expected decisions in the future thanks to a

stronger sorting effect. As mentioned in Lemma 1, if DM is sufficiently concerned about

future decisions, then MB may indeed improve welfare with respect to TT .

5 Misreporting by the Unbiased Expert

So far we have restricted our analysis to the class of equilibria in which an unbiased expert

truthfully reports all her signals. However, there also exist equilibria in which the unbiased

expert misreports. These equilibria have the flavor of the political correctness equilibria

described by Morris (2001), since the unbiased expert lies and sends a specific message

more often than the biased expert to signal her type to the decision maker. The following

proposition characterizes the class of informative equilibria in which the unbiased expert

misreports, by dividing them into two subclasses which we label MU and TMU .

Proposition 4 Each equilibrium in which U misreports belongs to one of the following two
14More formally, in the Appendix we show that there always exists an � strictly less than 1 for which

both MB and TT exist, and above which the replacement component always dominates the continuation
component. Note also that this result holds true for every  2 (0; 1). Therefore, the result of Proposition 3
does not rely on uncertainty about integrity being greater than uncertainty about ability.
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subclasses:
i) Misreporting Unbiased (MU), in which U partially reveals one signal and truthfully

reports the other signal, and DM retains the incumbent if and only if m1 = x1;
ii) Total Misreporting Unbiased (TMU), in which U always sends m1 = 0 regardless of

her signal, and DM retains the incumbent if m1 = x1 = 0, and replaces her if m1 = 1.
In both subclasses, B’s strategy must be such that the message that is falsely reported by U

is sent more often by U than by B.
{Proof in the Appendix}.

Notice that misreporting a signal implies sending a message that is more likely to be

incorrect ex-post and hence reduces the expert’s expected reputation for ability. Thus, the

only reason for U to lie is that lying brings about a sufficient increase in the reputation

for integrity. This occurs if, in equilibrium, the message that is falsely reported by U is

sent more often by U than by B, so that such a message "signals" that the sender is more

likely to be unbiased. This is exactly what happens in the MU and TMU equilibria of

proposition 4.

Note thatMU equilibria include two cases, each characterized by a different misreport-

ing behavior by U . In the first case, U partially reveals s1 = 1 and truthfully reveals s1 = 0;

in the second case, the opposite holds.15 TMU equilibria instead represent the more ex-

treme cases in which the unbiased expert never communicates the evaluation favored by

the biased expert. These equilibria are supported by a very conservative strategy of the

decision maker. Indeed, DM ignores the ex-post correctness of a message and retains the

incumbent if m1 = 0 is ex-post correct and replaces her whenever m1 = 1 is observed.16

A natural question is whether equilibria in which an unbiased expert lies have the po-

tential to improve sorting and hence the expected utility ofDM with respect to truthtelling

equilibria.
15Notice that MU equilibria in which U partially reveals s1 = 0 and truthfully reveals s1 = 1 are specific

to our setting. Here, U lies by falsely reporting m1 = 1. To support this equilibrium, B’s strategy must be
such that if she misreports s1 = 0, she must do so with higher probability than U so thatm1 = 1 is eventually
sent more often by U than by B. One may wonder how it can be that in equilibrium, B sends her favorite
message less often than U . In our setting, this can occur because the bias is "relation specific". This implies
that B benefits from DM choosing a2 = 1 if and only if B has been retained by DM . As in these equilibria
the expert is retained if and only if m1 = x1, B has some incentive to report m1 = 0 after observing s1 = 0
because doing so maximizes the probability that the message is ex-post correct.

16As we show in the Appendix, there exist TMU equilibria in whichDM retains the expert after (m1; x1) =
(0; 1) as well as TMU equilibria in which DM replaces the expert afetr (m1; x1) = (0; 1).
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5.1 Equilibria in which an Unbiased Expert Lies that Are Never Pre-

ferred to Truthtelling

We begin by consideringMU equilibria. In particular, we would expect thoseMU in which

B reports truthfully to have the potential to improve sorting with respect to TT , since the

structure of the reporting strategy is the same as in MB. Rather surprisingly, we find that

this is not the case and that they are always dominated by truthtelling.17 The following

proposition highlights this result:

Proposition 5 MU equilibria in which B truthfully reports can never improve sorting with
respect to TT . {Proof in the Appendix}.

While we confine the formal proof of proposition 5 to the appendix, we now provide

an intuition of why U ’s misreporting negatively affects sorting. Intuitively, this occurs

because in the attempt to signal her type, U misreports, and this gives rise to a learning

pattern that reduces DM ’s chances of consulting an unbiased expert of high ability in

the second period. To see this, it is convenient to compare the sorting effect that arises

in MU equilibria characterized by U partially revealing s1 = 1 and truthfully revealing

s1 = 0, with the sorting effect that arises in MB.18 To make this comparison meaningful,

let us assume that the expected amount of lying in the first period is the same in the two

equilibria. This is the case when  = 1
2

and the probability with which the biased expert

and the unbiased expert lie is the same (i.e., �U;1 = �B;0 = �).19 Under these assumptions,

any difference between the two equilibria is not driven by the fact that one type of expert

lies more or less than the other type.

First, notice that if the expected amount of lying in the first period is the same in both

equilibria, the probability that m1 6= x1 is also the same. Since the payoff associated

with events in which m1 6= x1 is also the same in both equilibria (i.e., V ), the difference

in sorting between MB and TT can be entirely explained by considering what happens

17With respect toMU equilibria in which B randomizes, note that as U ’s probability of misreporting tends
to zero, these equilibria converge to MB and thus have the potential to improve sorting with respect to
truthtelling.

18A similar argument applies when comparing MU equilibria in which U partially reveals s1 = 0 and
truthfully reveals s1 = 1 with MB equilibria.

19The expected amount of lying is (1� )�B;0 in MB and �U;1 in these MU equilibria.
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when m1 = x1 (i.e., by the continuation component). Indeed, we have that:

EMB
0 [R2(a2; x2)]� EMU

0 [R2(a2; x2)] =

= Pr(1; 1jMB)V MB(1; 1) + Pr(0; 0jMB)V MB(0; 0) +

�Pr(1; 1jMU)V MU(1; 1)� Pr(0; 0jMU)V MU(0; 0):

Notice that in both equilibria, message m1 = 0 signals that the expert is likely to be unbi-

ased, and message m1 = 1 signals that the expert is likely to be biased. Instead, learning

about ability takes place in a different way in each of the two cases. In MB equilibria, re-

porting strategies are such that message m1 = 0 perfectly reveals signal s1 = 0, while mes-

sage m1 = 1 only imperfectly reveals signal s1 = 1. This implies that reputation for ability

increases more after realization (m1; x1) = (0; 0) than after realization (m1; x1) = (1; 1)

(i.e., b�MB(0; 0) > b�MB(1; 1)). The opposite occurs in MU because message m1 = 1 per-

fectly reveals signal s1 = 1, and message m1 = 0 only imperfectly reveals signal s1 = 0

(i.e., b�MU(1; 1) > b�MU(0; 0)). It is easy to see that when the expected amount of lying is

the same in the two equilibria, we have that:

� < b�MU(0; 0) = b�MB(1; 1) < b�MU(1; 1) = b�MB(0; 0) = �:

This implies that:

q < qlow � bqMU(0; 0) = bqMB(1; 1) < bqMU(1; 1) = bqMB(0; 0) = q:

Now, using equilibrium values and simplifying, we can rewrite the difference in sorting

between MB and TT as follows:

EMB
0 [R2(a2; x2)]�EMU

0 [R2(a2; x2)] = (1��)q(2q�1)�(1��)(1�q)(2qlow�1) > 0: (12)

The first term is positive since after realizations (m1; x1) that reveal more information

on ability (i.e., (0; 0) inMB; and (1; 1) inMU), it is more likely that the expert is unbiased

in MB than in MU . This is so because in both equilibria, m1 = 0 is sent more often by

U than by B, and thus m1 = 0 (m1 = 1) signals that the expert is likely to be unbiased

(biased). More specifically, in the first case, the unbiased expert always truthfully reports
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her signal in the state that is more informative on ability, while in the second case, this

occurs with probability � < 1. The second term is negative due to the fact that realizations

(m1; x1) that reveal less information on ability (i.e., (1; 1) in MB; and (0; 0) in MU) are

more frequently associated with an unbiased expert inMU , since in this equilibrium, when

receiving signal s1 = 1, U misreports with probability (1��) by sending message 0, whereas

U never misreports in MB.

Overall, the positive term always outweighs the negative one so that (12) is greater

than zero. To see this, first recall that the positive term is associated to more learning

about ability, in other words, as mentioned previously q > qlow. In addition, the negative

term is assigned a smaller probability with respect to the positive term. Indeed, since the

negative term represents cases in which there is misreporting, the evaluation is less likely

to be correct and the chances of being retained are equal to (1� q), while for the positive

term, as it represents situations in which the expert reports truthfully, , her odds of being

retained are equal to q.

5.2 Equilibria in which an Unbiased Expert Lies that May Be Preferred

to Truthtelling

We now consider the more conservative equilibria in which DM never retains an expert

that reports m1 = 1. It turns out that these equilibria may improve sorting relative to

truthtelling equilibria. The following proposition states this result.

Proposition 6 There exists a non-empty set of values of p and � for which it is always possible
to find a scalar � 2 (0; 1) such that for any  < �, there exists a TMU equilibrium that
improves sorting with respect to TT . {Proof in the Appendix}.

To identify equilibria that satisfy proposition 6, we consider the TMU equilibria in

which DM retains the incumbent if and only if (m1; x1) = (0; 0) is observed, and B always

truthfully reports her signals.20 As we show in the appendix, these particular TMU equilib-

ria may improve sorting with respect to TT when DM faces higher odds of encountering a

20We focus on these particular equilibria only for the sake of exposition. Indeed, also for the TMU
equilibria in which the expert is retained even after (m1; x1) = (0; 1), it is possible to show that there exists
a non-empty space of parameters for which these can improve sorting with respect to TT .
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biased expert, that is, when  is relatively low. To understand why, notice that as  tends to
1, we have that in both equilibria DM is likely to end up retaining an expert that is unbiased.
However, since TT allows for sharper learning about ability, the unbiased expert is more likely
to be smart in TT than in TMU . This makes TT superior to TMU when  tends to 1. On the

contrary, when  is below a certain threshold, the conservative replacement strategy im-

plied by this particular TMU equilibrium allows DM to better discriminate biased versus

unbiased experts while also learning something about ability. To see this, we can break up

the net welfare gain of TMU with respect to TT into the usual two components, namely

the bite that refers to the events in which the expert makes a mistake and is fired (i.e., the

replacement component):

[Pr((m1; x1) 6= (0; 0))jTMU)� Pr(m1 6= x1jTT )]V = (13)

=
r

2


�
(2q � 1) 1

2
((1� )q +  (2q � 1))

�
;

and the bite that refers to the events in which the expert provides a correct recommenda-

tion and is retained (i.e., the continuation component):

Pr(0; 0jTMU)V TMU(0; 0)� Pr(m1 = x1jTT )V =
r

2


�
1

2

�
2bqTMU
00 � 1

�
� q(2q � 1)

�
: (14)

Note that the replacement component (13) is always positive. This is because the

probability of observing realizations (m1; x1) after which the incumbent expert is replaced

is larger in this particular TMU than in TT . The decision maker is therefore more likely to

fire the incumbent expert in the former rather than in the latter equilibrium. This is simply

due to the fact that in this particular TMU : i) biased experts behave in the same way as

in TT , but they are also replaced after realization (1; 1); and ii) unbiased experts always

send m1 = 0 regardless of their signals, which makes the probability of making a mistake

and hence being fired larger than in TT . Terms (1�)q and  (2q � 1) respectively capture

the increase in the probability of firing a biased expert and the increase in the probability

of firing an unbiased expert relative to TT .

Instead, the continuation component (14) is always negative. This is so for two reasons.

First, in any equilibrium with misreporting, there is less learning about ability. Therefore,

whenever DM retains an expert that made a correct evaluation, she is less certain about
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the expert’s ability. This is captured by bqTMU
00 < q. Second, in TMU , experts are retained

only when they provide a correct evaluation after sending message m1 = 0, which occurs

with probability 1=2. On the other hand, in TT , experts are retained as long as they

provide a correct evaluation independently of the message they send, which occurs with

probability q > 1
2
.

Now notice that as  decreases, the negative term
�
1
2
(2bqTMU

00 � 1)� q(2q � 1)
�

in ex-

pression (14) shrinks. This is because biased experts report truthfully in both equilibria,

while unbiased experts do so only in TT . Therefore, as  decreases, the fraction of experts

that lie (tell the truth) in TMU decreases (increases) allowing DM to learn more about

ability. All this is captured by qTMU
00 increasing and approaching q as  decreases. Intu-

itively, as  decreases, the expected quality of the expert that is retained tends to be the

same in both equilibria. This reduces the advantage of TT over TMU . At the same time,

as  decreases, the positive term
�
(2q � 1) 1

2
((1� )q + (2q � 1))

�
in expression (13) in-

creases. This occurs because in TT , the probability of firing an expert does not depend on

, while in TMU , this probability is decreasing in  since the chances of firing a biased ex-

pert are greater than those of firing an unbiased expert.21 As we show in the proof, below

a certain threshold of , the net advantage of TT over TMU in terms of a sharper learning

about ability becomes small and is offset by the net advantage of TMU over TT in terms

of better sorting out biased versus unbiased experts.

6 A Complete Mapping of Equilibria and Welfare Implica-

tions

So far, we have established that TT equilibria may sometimes be dominated by other

equilibria that involve some degree of misreporting. To provide a more complete picture

of our results, it is useful to present a mapping of all the equilibria based on the priors that

represent the information environment. In particular, we characterize the equilibria with

respect to the career concerns of the experts represented by parameter �E. This allows us

to establish which types of equilibria may exist for the different regions of �E, to better

21In TMU , an unbiased expert only sends message m1 = 0, while a biased expert sends both message
m1 = 0 and message m1 = 1. Hence, it is more likely that realizations (m1; x1) after which an expert is fired
arise from a biased expert rather than from an unbiased one.
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comprehend in which cases truthful equilibria may or may not be welfare maximizing.

The first thing to notice is that informative equilibria exist whenever the expert assigns

a high enough weight to future payoffs. Moreover, for all the values of �E for which

informative equilibria exist, there is always a potential for multiplicity. Another relevant

feature is that truthtelling equilibria may never coexist with MB , as shown in Section 2.

The following proposition formally represents this situation:

Proposition 7 There exist �E; �E 2 (0; 1) with �E < �E such that:
a) For �E < �E, no informative equilibria exist;
b) For �E 2 (�E; �E), there always exists a non-empty set of informative equilibria that

includes MB and at most both of the following: MU and TMU ;
c) For �E 2 (�E; 1), there always exists a non-empty set of informative equilibria that

includes TT and at most both of the following: MU , and TMU .
{Proof in the Appendix}.

Although equilibrium multiplicity does not allow us to uniquely establish which equi-

librium will be played, the welfare maximizing equilibrium represents the best possible

outcome attainable for a given range of values of �E. This complete mapping of the equi-

libria allows us to state that truthtelling may not necessarily be welfare maximizing. In

particular, the following general welfare results apply. First, when �E is sufficiently high,

TT is feasible, and welfare maximizing as long as TMU does not exist. However, when-

ever TMU exists, it may dominate TT , as we observed in the previous section. Further-

more, when experts do not care enough about future payoffs, truthtelling breaks down,

but there always exist other equilibria that involve some degree of misreporting (either

MB or TMU) that may even generate higher levels of welfare with respect to truthtelling.

As a final observation, we consider the role that commitment may play in this setting. If

we assume that DM can commit to a replacement strategy ex-ante and that non-babbling

equilibria will always be played if they exist, then this device can, in some cases, function

as a mechanism for eliminating welfare dominated equilibria. For instance, consider the

case in which �E > �E and TMU , MU and TT equilibria all exist. By committing to one of

the two strategies that are consistent with equilibrium, that is, either retaining the expert

if m1 = 0 and always replacing her if m1 = 1, or retaining her if and only if m1 = x1, DM

can respectively induce either TMU or one between MU and TT . In this setting, DM
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should then adopt the first strategy whenever all TMU equilibria dominate the other two

equilibria and the second strategy whenever the welfare-inferior equilibrium betweenMU

and TT dominates all TMU equilibria. However, if for example someMU is dominated by

some TMU when TT dominates all TMU , then committing to a replacement strategy may

not be useful for eliminating dominated equilibria. The same reasoning naturally applies

to the case in which �E 2 (�E; �E).
To illustrate this commitment device, let us consider the doctor-patient example once

again. In this case, whenever career concerns are such that TT , MU and TMU may exist,

if both MU and TT deliver worst sorting with respect to TMU , and as long as the patient

is sufficiently concerned about the future relative to the present, it is optimal for her to

pledge to continue to rely on the doctor’s services in the future, only if mild treatment

is recommended in the current period. This will induce doctors to behave as implied by

TMU . On the contrary, consider the case in which getting the right treatment in the

present period is of crucial importance. Then, as long as not only TT but also any MU is a

better alternative to TMU in terms of discipline, the patient will be better off committing

to continue to consult the physician if and only if her condition improves after undergoing

the suggested treatment, regardless of whether the doctor recommended more rather than

less intensive therapies.

7 Discussion: The Role of Reputation for Ability

As a final result, it is worth noting that informative equilibria would not exist if reputational

concerns were only related to preferences. It is the presence of a second dimension of

reputation (i.e., reputation for ability) that creates the right incentives for information

revelation. To see this, assume that � = 1, which implies that there is no uncertainty on

ability, and consider a putative informative equilibrium in which the unbiased expert is

at least partially revealing her information. This cannot be an equilibrium, since U has

a strict incentive to deviate by always sending the message that the biased expert sends

less frequently to signal that she is unbiased. This is so precisely because there is no

reputational reward of providing a correct evaluation. On the contrary, if we consider

putative equilibria in which the unbiased expert always sends a given message regardless

of the signal received, these can be informative only if the biased expert partially reveals
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her information. However, this can never be the case because reputation for ability does

not play a role, and B always has a strict incentive to mimic U ’s strategy. Thus, babbling

is the only equilibrium if there is no uncertainty about ability.

This result provides further insight on Morris’s (2001) result that reputation can be

self-defeating, implying that for high enough reputational concerns of the unbiased ex-

pert, information revelation breaks down. Notice, in fact, that our setup is equivalent

to assuming that U ’s reputational concerns are maximum, for the unbiased expert is not

concerned at all about current decisions. When we set � = 1, as prescribed by Morris,

reputational concerns are, in fact, self-defeating. However, our model illustrates that al-

lowing for uncertainty about ability restores the positive value of reputation. Indeed, we

find that as long as reputational concerns for ability are present, informative equilibria

always exist (for sufficiently high reputational concerns of the biased expert) even when

the reputational concerns of the unbiased advisor are greatest.

8 Conclusion

Decision makers often seek the advice of experts before making a decision. The presump-

tion is that an expert has access to valuable information (not available to the decision

maker) that is relevant for making correct decisions and that the expert will truthfully re-

port such information to the decision maker. In fact, experts may differ in their abilities to

retrieve accurate information and may well have objectives that are not necessarily aligned

with those of decision makers.

In the present paper, we analyzed a model of cheap talk where the credibility of the ex-

pert’s advice hinges upon the decision maker’s beliefs about how unbiased and competent

the expert is. When the expert and the decision maker interact repeatedly, the expert can

use present interaction to affect the beliefs of the decision maker and establish a reputation

for being unbiased and competent, thereby increasing the credibility of her future advice.

We show that these reputational concerns on the part of the expert may suffice to

achieve truthtelling. However, truthtelling may not necessarily be the outcome preferred

by the decision maker. In particular, we highlight the existence of a trade-off between

how much the decision maker learns about the expert’s ability versus her integrity (i.e.,

the bias). In particular, with respect to truthtelling, misreporting equilibria lead to more
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learning about integrity and less about ability. In a dynamic setting in which a decision

maker has to make current and future decisions, this trade-off plays an important role.

The decision maker may in fact prefer to give up some information on the current state of

the world and learn less about the advisor’s skills, if learning more about her preferences

allows the decision maker to make better decisions in the future.
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A Appendix

A.1 Notation and Terminology

a) i = U;B denotes the preference type of an expert, i.e., unbiased (U) and biased (B).

b) �i;s1 denotes the probability with which type i reports first-period signal s1 truthfully.

That is, �i;s1 = Pr(m1 = s1 j s1; i).
c) We say that expert i misreports signal s1 if and only if �i;s1 < 1.

d) We say that expert i truthfully reports signal s1 if and only if �i;s1 = 1.

e) The expression misreporting equilibrium denotes an equilibrium in which there ex-

ists an i = U;B and a signal s1 = 0; 1 such that �i;s1 < 1.

A.2 Characterization of Informative Equilibria

In this section, we characterize the informative equilibria of the game described in Section

2. The game can be solved by backward induction. Without loss of generality, we restrict

attention to informative equilibria in which DM interprets message 1 to be (weakly) cor-

related with signal 1 and hence state 1. We begin by establishing a lemma that will make

it easier to analyze the whole game.

Lemma 2 In any equilibrium in which mt reveals some information about xt, DM chooses
at(mt) = mt.

Proof. If mt is informative about xt, then Pr(xt = 1 j mt = 0) < Pr(xt = 1) < Pr(xt = 1 j
mt = 1). Since Rt(1; 1) = �Rt(1; 0) and Pr(xt = 1) = 1

2
, then E [Rt(at = 1; xt) j mt = 1] >

E [Rt(at = 0; xt) j mt = 1] and E [Rt(at = 0; xt) j mt = 0] > E [Rt(at = 1; xt) j mt = 0].

We now proceed by backward induction.

A.2.1 Second Period

Lemma 3 and Lemma 4 below characterize the most informative equilibrium of the second

period of the game.
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Lemma 3 In the most informative second period continuation equilibrium: i)B sendsm2 = 1

irrespective of s2; ii) U reports truthfully.

Proof. In the last period, the expert will not be concerned about her reputation. Thus

the biased expert will always claim to have observed signal 1 in order to induce DM to

choose action 1. For an unbiased expert with no explicit preferences in favor of a particular

action, any strategy is a continuation equilibrium. Without loss of generality we focus on

most informative continuation equilibrium in which the unbiased expert acts in the interest

of the DM and truthfully reveals her signal.

Lemma 4 At the beginning of the second period, DM retains the incumbent if and only if
V (m1; x1) � V and hires a new expert otherwise.

Proof. Given lemma 3, it is straightforward to show that:

V =
r

2
 (2q � 1)

V (m1; x1) =
r

2
b(m1; x1) [2bq(m1; x1)� 1]

Since both q and bq(m1; x1) are greater than 1
2

(i.e. in expectation the expert always has

better information than DM), both V (m1; x1) and V are strictly positive. Thus, DM al-

ways finds it optimal to consult an expert in period 2. In particular, DM will retain the

incumbent whenever V (m1; x1) � V and fire her otherwise.

A.2.2 First Period

Assuming that experts and decision makers behave as described by Lemmas 2-4, the con-

tinuation payoff of a biased expert at the end of the first period (i.e., when realization

(m1; x1) has been observed) can be written as [V (m1; x1) + 1] {(m1; x1), where

{(m1; x1) =

(
1 if V (m1; x1) � V;
0 otherwise.

Similarly, the continuation payoff of an unbiased expert can be written as V (m1; x1){(m1; x1).
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Hence, for a biased expert who observes signal s1, the expected continuation payoff of

choosing message m1 reads:

�2;B(m1; s1) =
X

x1
Pr(x1 j s1) [V (m1; x1) + 1] {(m1; x1);

Similarly, for an unbiased expert who observes s1, the expected continuation payoff of

choosing message m1 reads:

�2;U(m1; s1) =
X

x1
Pr(x1 j s1) [V (m1; x1)] {(m1; x1);

Having determined the continuation payoffs, we can write the conditions under which

each type of expert has a weak incentive to truthfully reveal a given signal s1 in the first

period. For a biased expert, these conditions read:

�E�2;B(0; 0)� (1� �E)� �E�2;B(1; 0) � 0 if s1 = 0; (15)

(1� �E) + �E�2;B(1; 1)� �E�2;B(0; 1) � 0 if s1 = 1; (16)

For an unbiased expert instead, we have:

�2;U(0; 0)� �2;U(1; 0) � 0 if s1 = 0; (17)

�2;U(1; 1)� �2;U(0; 1) � 0 if s1 = 1; (18)

We now establish the following lemma that states the properties that an informative

equilibrium cannot have.

Lemma 5 An informative equilibrium never satisfies any of the following properties:
i) mt does not reveal information on the state of the world xt.
ii) U always sends m1 = 1 regardless of the signal received.
iii) For some i = U;B, �i;s1 2 (0; 1) for every s1 = 0; 1.
iv) �B;1 2 [0; 1) and �U;1 2 (0; 1].

Proof. i) We need to show that in an informative equilibrium mt necessarily reveals some

information about xt for any t = 1; 2. In the second period, the only decision relevant

information is the information about x2. Hence, if m2 did not reveal any information

38



about x2, the equilibrium could not be informative. In the first period, if m1 did not reveal

information about x1, the equilibrium could still be informative so long as DM could

learn something about either the ability or the integrity of the expert. Note that if m1 is

uninformative about x1, it is because the expert is sending a message that is independent

from the signal received. This implies that DM cannot not learn anything about ability.

What about integrity? There are two cases to consider: a) Both U and B follow the

same reporting strategy; b) U and B follow different reporting strategies. In the first

case, DM obviously learns nothing about integrity, messages are meaningless and the only

equilibrium that satisfies these properties is babbling. Hence in this case no decision-

relevant learning takes place in period 1. In the second case, there must be a message

that is sent more often by U and another message that is sent more often by B. Hence,

DM would learn about integrity by observing messages, and would retain more often the

expert that reports the message that is sent more often by U . However, this cannot be an

equilibrium since B would always deviate to report the message that is sent more often by

B.

ii) If this were true, by 5i a necessary condition for the equilibrium to be informative

is that B truthfully reports m1 = 0 with positive probability. However, this cannot be part

of the equilibrium since reporting m1 = 0 would immediately allow DM to identify the

expert as biased and to fire her, providing B with an incentive to always report m1 = 1

(which is the message that also provides current benefits to B).

iii) We first show that it cannot be that both (17) and (18) are satisfied with equal-

ity, implying that it cannot be that both �U;1 2 (0; 1) and �U;0 2 (0; 1). Note that both

(17) and (18) are satisfied with equality if and only if V (1; 1)�(1; 1) = V (0; 1)�(0; 1) and

V (0; 0)�(0; 0) = V (1; 0)�(1; 0). Furthermore, note that if both �U;1 2 (0; 1) and �U;0 2 (0; 1),
then V (m1; x1) > 0 for all (m1; x1).

A trivial case in which both (17) and (18) are satisfied with equality is when �(m1; x1) =

0 for all (m1; x1). However this cannot happen if the equilibrium is informative. Indeed, if

the equilibrium is informative, there exist some realizations (m1; x1) for which V (m1; x1) >

V and for which it would then be optimal for DM to retain the expert.

We now prove that in all the other cases, if (18) is satisfied with equality then (17)

never is. To do so, first consider the case in which V (1; 1)�(1; 1) = V (0; 1)�(0; 1) > 0. This

case occurs only if V (1; 1) = V (0; 1). Now note that if the equilibrium is informative,
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�(1; 1) > � > �(0; 1). Hence, V (1; 1) = V (0; 1) requires that m1 = 0 is a positive signal of

integrity so that (0; 1) >  > (1; 1). But if m1 = 0 is a positive signal of integrity, since

�(0; 0) > � > �(1; 0), it is also true that V (0; 0) > V (1; 0). This implies that �(0; 0) = 1

and �(1; 0) = 0, and hence V (0; 0)�(0; 0) > V (1; 0)�(1; 0) = 0. Thus. (17) is always strictly

positive.

The only other possible case is when V (1; 1)�(1; 1) = V (0; 1)�(0; 1) = 0. This case occurs

only if �(1; 1) = �(0; 1) = 0. Now, if �(1; 1) = 0, it must be that V (1; 1) < V . Since in

an informative equilibrium �(1; 1) > �, we must have that m1 = 1 is a negative signal of

integrity so that (1; 1) < . This implies that �(1; 0) = 0. Hence, if �(0; 0) = 0 we are in

the first case analyzed above in which �(m1; x1) = 0 for all (m1; x1). Instead, if �(0; 0) = 1,

we have V (0; 0)�(0; 0) > V (1; 0)�(1; 0) = 0, and again (17) is always strictly positive.

The same line of reasoning applies to show that it cannot be that both (15) and (16) are

satisfied with equality implying that it cannot be that both �B;1 2 (0; 1) and �B;0 2 (0; 1).
iv) We first show that if �U;1 2 (0; 1], then it must be that �B;1 = 1. Given the definition

of �2;i(m1; s1), we have that:

�2;B(m1; s1 = 1) = �2;U(m1; s1 = 1) +
X

x1
Pr(x1 j s1 = 1){(m1; x1)

This implies that the LHS of (16) reads as follows:

(1� �E) + �E [�2;B(1; 1)� �2;B(0; 1)] =
= (1� �E)+ �E [�2;U(1; 1)� �2;U(0; 1)]+ �Efq [{(1; 1)� {(0; 1)] + (1� q) [i(1; 0)� i(0; 0)]g| {z }

C

where q = Pr(x1 = 1 j s1 = 1) > 1
2
. If the expression above is strictly positive, then

�B;1 = 1. We now show that C > 0 is satisfied whenever (18) is satisfied with equality,

which further implies that the expression above is always strictly positive whenever (18) is

satisfied with equality. Since q > 1
2
, there are only two cases in which C could be negative:

a) �(1; 1) = 0 and �(0; 1) = 1. Notice that if �(0; 1) = 1, then it must be that m = 0

is a positive signal for integrity and hence m = 1 a negative one. But then it must be

V (1; 0) < V and V (0; 0) > V , and hence �(1; 0) = 0 and �(0; 0) = 1. This implies that

�U(0; 1) > �U(1; 1) which contradicts (18).

b) �(1; 1) = �(0; 1) = �(1; 0) = 0 and �(0; 0) = 1. In this case, it is straightforward to
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notice that �U(0; 1) > �U(1; 1) which again contradicts (18).

This implies that (16) is satisfied with strict inequality which is equivalent to say that

if �U;1 2 (0; 1], then �B;1 = 1.

A.3 Proof of Proposition 1

We first show that
��bME(m1; x1)� 

�� > ��bTT (m1; x1)� 
�� = 0 for every m1 = 0; 1 and

x1 = 0; 1. Given a realization (m1; x1), the update on the prior  reads:

b(m1; x1) = Pr(U j m1; x1) =
 Pr(m1 j U; x1)

 Pr(m1 j U; x1) Pr(U) + (1� ) Pr(m1 j B; x1)
: (19)

In a TT equilibrium, both U and B truthfully use the same strategy of truthfully

reporting the signal they receive. Since the probability of receiving a given signal is

not correlated with the expert’s type i = U;B, it follows that for any m1 = 0; 1 and

x1 = 0; 1, Pr(m1 j U; x1) = Pr(m1 j B; x1). Hence b(m1; x1) = . This proves that��bTT (m1; x1)� 
�� = 0 for every m1 = 0; 1 and x1 = 0; 1.

With regard to ME equilibria, we know by Lemma 5(iii) that each type i = U;B can

misreport at most one signal. So, let s0 = 0; 1 denote a signal received by the expert.

Thanks to Lemma 5(iii) we only need to consider the following three cases:

1) Both U and B report s0 truthfully and misreport 1 � s0. First, we show that U

and B must misreport 1 � s0 with different probabilities, otherwise the equilibrium is not

informative. To see this, suppose the equilibrium is informative and both U and B use

the same (misreporting) strategy. If the equilibrium is informative, messages must be

correlated with signals. Since signals are in turn correlated with the state of the world,

we must have that b�(m1 = x1) > b�(m1 6= x1). At the same time, since both U and B

use the same strategy, Pr(m1 j U; x1) = Pr(m1 j B; x1), and thus b(m1; x1) = . All this

implies that �2;U(0; 0) > �2;U(1; 0) and �2;U(1; 1) > �2;U(0; 1). But then (17) and (18) would

always be satisfied with strict inequality, implying that U would always truthfully reveal

all her signals (contradicting our initial assumption that U misreports). Now, without

loss of generality, assume that U reports 1 � s0 with higher probability than B. That is,

�U;s0 = �B;s0 = 1 and �B;1�s0 < �U;1�s0 < 1. Since the probability of receiving a given

signal is not correlated with the expert’s type i = U;B, it follows that U reports message
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m1 = 1�s0 more frequently than B, and messagem1 = s
0 less frequently than B. But then,

Pr(m1 = 1 � s0 j U; x1) > Pr(m1 = 1 � s0 j B; x1) and Pr(m1 = s
0 j U; x1) < Pr(m1 = s

0 j
B; x1). Hence b(m1 = 1 � s0; x1) >  > b(m1 = s

0; x1). Therefore,
��bME(m1; x1)� 

�� > 0
for every m1 = 0; 1 and x1 = 0; 1.

2) U truthfully reports signal s0 and misreports signal 1� s0 while B does the opposite.

Lemma 5(iv) implies that if U truthfully reveals signal 1, B must do the same. Hence, in

the case under consideration, it must be that s0 = 0. This implies that �U;0 = 1, �U;1 < 1 and

�B;0 < 1, �B;1 = 1. It is then straightforward to show that Pr(m1 = 0 j U; x1) > Pr(m1 =

0 j B; x1) and Pr(m1 = 1 j U; x1) < Pr(m1 = 1 j B; x1) for every x1 = 0; 1. Hence, also in

this case we have b(m1 = s
0; x1) >  > b(m1 = 1� s0; x1). Therefore, also in this case, it is

true that
��bME(m1; x1)� 

�� > 0 for every m1 = 0; 1 and x1 = 0; 1.

3) Only one type of expert i = U;B misreports. Without loss of generality, assume that

U truthfully reports both s0 and 1 � s0, while B truthfully reports s0 but misreports 1 � s0

with positive probability. That is, �U;s0 = �U;1�s0 = 1 and �B;s0 = 1, �B;1�s0 < 1. But then

it is straightforward to show that Pr(m1 = 1 � s0 j U; x1) > Pr(m1 = 1 � s0 j B; x1) and

Pr(m1 = s
0 j U; x1) > Pr(m1 = s

0 j B; x1). Hence, b(m1 = 1 � s0; x1) >  > b(m1 = s
0; x1).

Therefore,
��bME(m1; x1)� 

�� > 0 for every m1 = 0; 1 and x1 = 0; 1.

We now show that
��b�TT (m1; x1)� �

�� > ��bME(m1; x1)� �
�� for every (m1; x1). Let ys1

denote the probability that m1 = s1 given that the expert has received signal s1. Note that

ys1 = �U;s1 + (1� )�B;s1 . Now consider the updates on ability when the expert reports a

correct message:

b�(0; 0) =
� [py0 + (1� p)(1� y1)]
y0q + (1� q)(1� y1)

;

b�(1; 1) =
� [py1 + (1� p)(1� y0)]
y1q + (1� q)(1� y0)

;

In a truthtelling equilibrium, y0 = y1 = 1 and hence b�(0; 0) = b�(1; 1) = �p
q

. In a misreport-

ing equilibrium, y0 � 1 and y1 � 1 with at least one strict inequality. Hence, it is easy to

verify that in a misreporting equilibrium b�(0; 0) � �p
q

and b�(1; 1) � �p
q

with at least one

strict inequality. A similar logic applies to show that the same conclusion holds for the

cases b�(1; 0) and b�(0; 1).
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A.4 Proof of Proposition 2

By Lemma 5(iv), there can only be two putative equilibria in which U truthfully reports all

her signals:

i) Equilibria in which also B truthfully reports all her signals (truthtelling equilibria or

TT in short);

ii) Equilibria in which B truthfully reports s1 = 1, and reports s1 = 0 with probability

�B;0 < 1 (misreporting biased equilibria or MB in short)

A.4.1 Truthtelling Equilibria (TT )

DM ’s strategy. Let bTT (m1; x1) and b�TT (m1; x1) denote the value of reputations in a

(putative) truthtelling equilibrium. It is straightforward to verify that:

bTT (m1; x1) =  for any (m1; x1);

� � b�TT (0; 1) = b�TT (1; 0) < � < b�TT (1; 1) = b�TT (0; 0) � �:
The previous updates of � imply that:

q � bqTT (0; 1) = bqTT (1; 0) < q < bqTT (1; 1) = bqTT (0; 0) � q:
Now let V TT (m1; x1) denote the value of V (m1; x1) in a truthtelling equilibrium. Given

the above values of reputations, it is straightforward to show that:

V � V TT (0; 1) = V TT (1; 0) < V < V TT (1; 1) = V TT (0; 0) � V : (20)

From (20), it follows that in a truthtelling equilibrium DM will retain the incumbent

whenever m1 = x1 and fire her otherwise. Given this retaining strategy, we have that:

{(m1; x1) =

(
1 if m1 = x1;

0 if m1 6= x1:
(21)

B’s strategy. By Lemma 5 (iv), we know that if U truthfully reports s1 = 1, then B

must truthfully report s1 = 1 too. So, we only need to consider the case in which a biased
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expert receives s1 = 0. Expression (15) gives the condition for B truthfully report m1 = 0

after observing s1 = 0. By using the expression of B’s continuation values, we can write

(15) as follows:

(1� �E) a(0) + �E
X

x1
Pr(x1 j s1 = 0) [V (0; x1) + 1] {(0; x1) + (22)

� (1� �E) a(1) + �E
X

x1
Pr(x1 j s1 = 0) [V (1; x1) + 1] i(1; x1) � 0:

Now, by using (20), (21) and the fact that Pr(x1 = 0 j s1 = 0) = q, condition (22) boils

down to:

�E �
1

(2q � 1)V + 2q
� �TTE : (23)

U’s strategy. We consider the case in which an unbiased expert receives s1 = 0 (a

symmetric argument holds for the case in which s1 = 1). Expression (17) gives the con-

dition for U truthfully report m1 = 0 after observing s1 = 0. By using U ’s continuation

values, (17) can be written as:X
x1
Pr(x1 j s1 = 0)V TT (0; x1)i(0; x1)�

X
x1
Pr(x1 j s1 = 0)V TT (1; x1)i(1; x1) � 0: (24)

Finally, by using (20), (21) and the fact that Pr(x1 = 0 j s1 = 0) = q, condition (24)

simplifies to:

(2q � 1)V � 0; (25)

which is always verified because q > 1=2.

Existence intervals with respect to �E: A truthtelling equilibrium exists if and only if

�E 2
�
�TTE ; 1

�
.
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A.4.2 Misreporting Biased Equilibria (MB)

Let bPP (m1; x1) and b�PP (m1; x1) denote the reputation values in a (putative) MB equilib-

rium. It is straightforward to verify that:

bMB(1; 1) < bMB(1; 0) <  < bMB(0; 1) = bMB(0; 0);b�MB(0; 1) < b�MB(1; 0) < � < b�MB(1; 1) < b�MB(0; 0):

The previous updates of � imply that:

bqMB(0; 1) < bqMB(1; 0) < q < bqMB(1; 1) < bqMB(0; 0):

Now let V MB(m1; x1) denote the value of V (m1; x1) in an MB equilibrium. Given the

above values of reputations, it immediately follows that:

V MB(1; 0) < V < V MB(0; 0): (26)

In order to prove existence we proceed in two steps:

Step 1) We begin by showing that given U ’s and B’s strategies, DM retains the expert

if and only if realizations (0; 0) and (1; 1) are observed, and fires her after realizations (0; 1)

and (1; 0). In particular, we show that this occurs if and only if �B;0 is sufficiently high.

Observe that by condition (26) it immediately follows that DM retains the expert after

realization (0; 0), and fires her after realization (1; 0). Note that this implies that it is indeed

a necessary condition for the existence of our putative MB equilibrium that the expert is

retained after (1; 1). If not, the expert would always be fired when sending m1 = 1. And

as a consequence, U (whose only concern is to be retained) would never send m1 = 1

regardless of the signal received (which contradicts her equilibrium strategy).

We now prove that DM retains the expert after (1; 1) if and only if �B;0 is sufficiently

high, and that if the expert is retained after realization (1; 1), she must always be fired

after realization (0; 1). Since V MB(1; 1) approaches V as the probability of telling the

truth approaches one, there always exists a scalar �0B 2 (0; 1) such that for �B;0 > �0B the

following condition is satisfied:

V MB(1; 1) � bMB(1; 1)(2bqMB(1; 1)� 1) > (2q � 1) � V: (27)
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Similarly, since V MB(0; 1) approaches V as the probability of telling the truth approaches

one, there always exists a scalar �00B 2 (0; 1) such that for �B;0 > �00B the following condition

is satisfied:

V MB(0; 1) � bMB(0; 1)(2bqMB(0; 1)� 1) < (2q � 1) � V: (28)

Therefore, to show that whenever the expert is hired in (1; 1) she is always fired in (0; 1),

it is sufficient to show that �0B > �
00
B. We proceed as follows: a) We find �00B; b) We show

that for �B;0 = �00B, (27) is never satisfied; c) Since the LHS of (27) is strictly increasing in

�B;0, we conclude that �0B must be strictly greater than �00B.

a) �00B is the value of �B;0 that satisfies (28) with equality. Substituting the expressions

of bMB(0; 1) and bqMB(0; 1) into (28), and solving for the value of �B;0 that satisfies this

expression with equality, we obtain:

�00B;0 =
1

(1� )

�
(1� p)
(1� q) � 

�
:

b) Using the expressions of bMB(1; 1) and bqMB(1; 1), (27)) can be simplified as follows:

q[p+ (1� p)(1� �B;0)(1� )]
[q + (1� q)(1� �B;0)(1� )]2

> 1:

Substituting �B;0 with the expression of �00B that we obtained in part (a), and simplifying

we obtain:

(p� p2 � 1=4)(1� �(1� �)) > 0:

Since (p � p2 � 1=4) < 0 for p > 1=2 and (1 � �(1 � �)) > 0, this implies that (p � p2 �
1=4)(1� �(1� �)) < 0. It follows that (27) is never satisfied for �B;0 = �00B.

c) Since the LHS of (27) is strictly increasing in �B;0, �0B must be strictly greater than

�00B.

Step 2) We now show that for sufficiently high values of �B;0, U ’s and B’s strategies

are optimal given DM ’s strategy.

U’s strategy. Let’s consider the case in which s1 = 1. U truthfully reports signal s1 = 1

if condition (18) is satisfied. Given DM ’s strategy, condition (18) becomes:

Pr(x1 = 1 j s1 = 1)V MB(1; 1) � Pr(x1 = 0 j s1 = 1)V MB(0; 0): (29)
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Now, note that: i) Pr(x1 = 1 j s1 = 1) = q > Pr(x1 = 0 j s1 = 1) = 1 � q; ii) When

�B;0 = 0, we have that MB(1; 1) = 0 and MB(0; 0) = 1, implying that V MB(1; 1) = 0 and

V MB(0; 0) > 0; iii) When �B;0 = 1, we have that MB(1; 1) = MB(0; 0) = , implying that

V MB(1; 1) = V MB(0; 0) = V ; iv) V MB(1; 1) and V MB(0; 0) are respectively increasing and

decreasing in �B;0. It then follows that there always exists a scalar e�B 2 [0; 1) such that for

�B 2
he�B; 1i, (29) is satisfied. For the case of s1 = 0, the relevant condition for truthtelling

is given by expression (17). It is immediate to note that (17) is always satisfied.

B’s strategy. By Lemma 5 (iv), we know that if U truthfully reports s1 = 1, then

B must truthfully report s1 = 1 too. Note that B reports signal s1 = 0 with probability

�B;0 2 (0; 1) if and only if condition (15) is satisfied with equality. Given DM ’s firing

strategy, this condition boils down to:

Pr(x1 = 0 j s1 = 0)�E
�
V MB(0; 0) + 1

�
�(1��E)+�E Pr(x1 = 1 j s1 = 0)

�
V MB(1; 1) + 1

�
= 0:

Using the fact that Pr(x1 = 1 j s1 = 0) = 1� q and Pr(x1 = 0 j s1 = 0) = q, and rearranging

terms, we can write the previous condition as:

�E =
1

[qV MB(0; 0)]� (1� q)V MB(1; 1)] + 2q
� �MB

E (�B;0): (30)

Note that since q > 1
2

and V MB(0; 0) > V MB(1; 1) for any �B;0 2 (0; 1), we have that

�MB
E (�B;0) 2 (0; 1). Furthermore, since V MB(1; 1) and V MB(0; 0) are respectively strictly

increasing and strictly decreasing in �B;0, �MB
E (�B;0) is strictly increasing in �B;0. This

allows us to easily identify a lower bound �MB
E 2 (0; 1) and an upper bound �

MB

E 2 (0; 1)
such that MB exists if and only if �MB

E < �E < �
MB

E . In particular �MB
E � �MB

E (��B) where

��B = max
�
�0B;

e�B�, and �
MB

E � �MB
E (1). Note further that when �B;0 = 1, V MB(0; 0) =

V MB(1; 1) = V and the RHS of (30) coincides with the RHS of (23). Therefore �
MB

E =

�TTE :

Existence intervals with respect to �E: MB can be supported if and only if �E 2�
�MB
E ; �TTE

�
where �MB

E � �MB
E (��B) and ��B = max

�
�0B;

e�B�.
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A.5 Proof of Proposition 3

A necessary and sufficient condition for MB to improve sorting with respect to TT is that

EMB
0 (R2) > E

TT
0 (R2) or equivalently:

[Pr(0; 1 jMB) + Pr(1; 0 jMB)]V + Pr(0; 0 j MB)V MB(0; 0) + Pr(1; 1 jMB)V MB(1; 1) >

[Pr(0; 1 j TT ) + Pr(1; 0 j TT )]V + Pr(0; 0 j TT )V TT (0; 0) + Pr(1; 1 j TT )V TT (1; 1)

Now note that:

� Pr(0; 1 jMB) + Pr(1; 0 jMB) = 1
2
+ 1

2
(2q � 1) (�B;0 � �B;0 � )

� Pr(1; 1 jMB)MB(1; 1) = Pr(0; 0 jMB)MB(0; 0) = q
2

� Pr(0; 1 j TT ) = Pr(1; 0 j TT ) = 1�q
2

� Pr(0; 0 j TT ) = Pr(1; 1 j TT ) = q
2

� bqMB(0; 0) = bqTT (0; 0) = bqTT (1; 1) = q.
Using these results we can write our condition as follows:�
1

2
+
1

2
(2q � 1) (�B;0 � �B;0 � )

�
r

2
(2q � 1) + r

4
q(2q � 1) + r

4
q(2bqMB(1; 1)� 1)] >

(1� q)r
2
 (2q � 1) + q r

2
 (2q � 1)

Bringing the first term of the RHS to the LHS, and the second term of the LHS to the

RHS, after a bit of algebra, we can rewrite the previous condition as follows:

r

4
(1� )(1� �B;0)(2q � 1)2 >

r

2
q
�
q � bqMB(1; 1)

�
: (31)

Notice that the LHS is the expression of the replacement component (10) while the RHS

is the expression of the opposite of the continuation component (11). Substituting the

equilibrium expressions of q and bqMB(1; 1) into (31), after some algebra, we can rewrite

our condition as follows:

�2[(2p� 1)(1� x)] + �(2 + x)� 1 > 0;
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where x � (1� )(1� �B;0). Let �2[(2p� 1)(1� x)] + �(2 + x)� 1 � LHS(�; x). Note that

since 0 < x < 1, we have that:

a) LHS(0; x) = �1 < 0
b) LHS(1; x) = 2x > 0

c) @2LHS(�;x)
@�2

= (2p� 1)(1� x) > 0, i.e. LHS(�; x) is strictly convex in �.

Properties a), b) and c) imply that there exists a unique value ��(x) such that for

� 2 (��(x); 1), LHS(�; x) > 0. In particular, we can find that:

��(x) =
�(2 + x) + [(2 + x)2 + 4(2p� 1)(1� x)]1=2

2(2p� 1)(1� x) 2 (0; 1)

Therefore, we can conclude that for any � 2 (��(x); 1), EMB
0 (R2) > E

TT
0 (R2). Notice that

��(x) depends on xwhich in turn depends on �B;0, i.e. the probability with whichB reports

signal zero in an MB equilibrium. Clearly, �B;0 must be chosen in the range
�
��B;0; 1

�
that

is consistent with the existence of MB (as pointed out in the proof of proposition 2).

A.6 Proof of Proposition 4

Lemma 5 (iii) implies that, in an informative equilibrium, U can misreport at most one

signal. Hence, we can conveniently divide (putative) equilibria in which U misreports into

the following two sub-classes:

i) Misreporting Unbiased equilibria (MU): U randomizes after one signal and truthfully

reveals the other signal. Since in these equilibria �U;1 2 (0; 1], by Lemma 5 (iv), we must

have that �B;1 = 1. All this implies that we can restrict our attention on the existence of

the following two putative equilibria belonging to sub-class MU :

� MU(1): U truthfully reports s1 = 0 and randomizes after s1 = 1; B truthfully reports

s1 = 1 and reports s1 = 0 with probability �B;0 2 [0; 1].

� MU(0): U randomizes after s1 = 0 and truthfully reports s1 = 1; B truthfully reports

s1 = 1 and reports s1 = 0 with probability �B;0 2 [0; 1].

ii) Total Misreporting Unbiased equilibria (TMU): U lies about one signal and truthfully

reveals the other signal. That is, U always sends the same message independently from the
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signal observed. We then know by Lemma 5 (ii) that this must be message m1 = 0. Fur-

thermore, we know by Lemma 5 (iii) that in an informative equilibrium B can misreport

at most one signal. Hence, we can restrict our attention on the existence of the following

two putative equilibria belonging to sub-class TMU :

� TMU(0) : U always sends m1 = 0 regardless of the signal received; B truthfully

reports s1 = 1 and reports s1 = 0 with probability �B;0 2 [0; 1].

� TMU(1): U always sends m1 = 0 regardless of the signal received; B truthfully

reports s1 = 0 and reports s1 = 1 with probability �B;1 2 [0; 1].

We now prove the existence of each of the equilibria outlined above.

A.6.1 MU(1) Equilibria

We first prove that there exist MU(1) equilibria where �B;0 = 1 (i.e., MU(1) equilibria

where B truthfully reports both signals). We then move on to prove that there also exist

MU(1) equilibria where �B;0 < 1 (i.e., MU(1) equilibria where B truthfully reports s1 = 1

and misreports s1 = 0).

Case in which B truthfully reports both s1 = 1 and s1 = 0. Let b�MU(1)(m1; x1) andbMU(1)(m1; x1) denote the value of reputations in this (putative) MU(1) equilibrium. It is

straightforward to verify that:

b�MU(1)(1; 0) < b�MU(1)(0; 1) < � < b�MU(1)(0; 0) < b�MU(1)(1; 1);bMU(1)(1; 1) = bMU(1)(1; 0) <  < bMU(1)(0; 0) < bMU(1)(0; 1):

Given the above values of reputations, we have that:

V MU(1)(1; 0) < V < V MU(1)(0; 0): (32)

In order to prove existence we proceed in two steps.

Step 1) We show that given U ’s and B’s strategies, DM retains the expert if and only

if realizations (0; 0) and (1; 1) are observed. In particular, we show that this occurs if and
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only if �U;1 is sufficiently high. First, note that condition (32) implies that DM retains

the expert after (0; 0) and fires the expert after (1; 0). This also implies that a necessary

condition for the existence of our equilibrium is that the expert is retained after (1; 1).

Indeed, if this did not occur, the expert would always be fired after sending m1 = 1, and

hence U (whose concern is to be retained) would never send m1 = 1 (which contradicts

U ’s equilibrium strategy).

We now show that DM retains the expert after (1; 1) if and only if �U;1 is sufficiently

high. Note, that DM retains the expert after (1; 1) if and only if the following condition is

satisfied: bMU(1)(1; 1)(2bqMU(1)(1; 1)� 1) > (2q � 1): (33)

Substituting the equilibrium values of bMU(1)(1; 1) and bqMU(1)(1; 1) and solving (33) for

�U;1 we obtain:

�U;1 >
q � q
p� q � �

0

U;1 2 (0; 1) :

Hence, condition (33) is satisfied - and DM retains the expert after (1; 1) - if and only if

�U;1 > �
0
U;1.

We now show that when �U;1 > �0U;1, DM must fire the expert after (0; 1). Note that

DM fires the expert after (0; 1) if and only if the following condition is satisfied:

bMU(1)(0; 1)(2bqMU(1)(0; 1)� 1) < (2q � 1): (34)

Substituting the equilibrium values of bMU(1)(0; 1) and bqMU(1)(0; 1) into (34) and simplify-

ing, (34) becomes:

[(1� q) + q(1� �U)][(1� p) + p(1� �U)]
[(1� q) + q(1� �U)]2

� 1 < 0:

If we now substitute �U;1 with the closed form solution �0U;1 obtained above, the last in-

equality boils down to:

(2pq � q2 � p2)(p� q) < 0:

Since (2pq � q2 � p2) < 0 and (p � q) > 0, this last inequality is always satisfied. Hence

condition (34) is always satisfied when �U;1 = �0U;1. Now note that the LHS of (34) is
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strictly decreasing in �U;1 while the RHS does not depend on �U;1. Hence we can conclude

that condition (34) is satisfied - and thus DM fires the expert after (0; 1) - for any �U;1 >

�0U;1.

Step 2) We now show that U ’s and B’s strategies are optimal given DM ’s strategy

outlined in Step 1 and given the constraint �U;1 � �0U;1. First, note that by Lemma 5 (iii),

U will always report signal s1 = 0 truthfully if she misreports signal s1 = 1. Second, we

know by lemma 5 (iv) that if U reports s1 = 1 with positive probability, B will report s1 = 1

truthfully. Hence, there are only two conditions that we must show that are satisfied in

our MU(1) equilibrium. The first one is the condition that makes sure that U randomizes

when receiving s1 = 1, that is:

qV MU(1)(1; 1) = (1� q)V MU(1)(0; 0): (35)

The second one is the condition that makes sure that B truthfully reports s1 = 0, which

can be written as:

�E[qV
MU(1)(0; 0)� (1� q)V MU(1)(1; 1) + 2q � 1] > 1� �E: (36)

Note that since q > 1
2
, if condition (35) is satisfied, then it must be that qV MU(1)(0; 0) >

(1� q)V MU(1)(1; 1), which in turn guarantees that the LHS of (36) is strictly increasing in

�E. Since the RHS is always strictly decreasing in �E, we can conclude that if condition

(35) is satisfied, then there always exists a value of �E above which (36) is satisfied as

well. This means we only need to show that condition (35) is indeed satisfied for some

�U;1 2
�
�0U;1; 1

�
. Note that:

(i) If �U;1 = �0U;1, V
MU(1)(1; 1) = V < V MU(1)(0; 0). Hence, if � is sufficiently small (so

that q is sufficiently small too), the LHS of (35) is smaller than the RHS;

(ii) If �U;1 = 1, V MU(1)(1; 1) = V MU(1)(0; 0) and the LHS of (35) is larger than the

RHS.

Therefore, by continuity, as long as � is sufficiently small, there always exists an �U;1 2�
�0U;1; 1

�
such that condition (35) is satisfied.

Case in which B truthfully reports s1 = 1 and misreports s1 = 0. First note that the

chain of inequalities given by (32) holds true for any �B;0 < 1. Hence, DM retains the
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expert after (0; 0) and fires her after (1; 0). Furthermore, we know by Lemma 5 parts (iii)

and (iv) that if �U;1 2 (0; 1), then it must be that �U;0 = 1 and �B;1 = 1. Hence, we only

need to prove that there exist a �B;0 2 (0; 1) and a �U;1 2 (0; 1) such that the following

three conditions are simultaneously satisfied:

qV MU(1)(1; 1) = (1� q)V MU(1)(0; 0); (37)

�Eq[V
MU(1)(0; 0) + 1] = (1� �E) + �E(1� q)[V MU(1)(1; 1) + 1]; (38)

V MU(1)(0; 1) < V < V MU(1)(1; 1): (39)

Condition (37) is the condition that must be satisfied for U to randomize after s1 = 1.

Condition (38) is the condition that must be satisfied in order for B to randomize after

s1 = 0. Finally, condition (39) is the condition that must be satisfied in order for DM to

retain the expert after (1; 1) and fire the expert after (0; 1).

First, let’s consider condition (37). Let ��U;1 2 (0; 1) be the value of �U;1 that satisfies

(37) when �B;0 = 1 (we know by the proof of the case in which B reports truthfully that

��U;1 exists). Now note that V (1; 1) is strictly increasing in �B;0 while V (0; 0) is strictly

decreasing in �B;0. Hence, when �B;0 = 1 � " (where " > 0) and �U;1 = ��U;1 we have

that: qV MU(1)(1; 1) < (1� q)V MU(1)(0; 0). By the proof of proposition 2 we also know that

when �B;0 = 1 � " and �U;1 = 1 (i.e., when we are in an MB equilibrium) we have that:

qV MU(1)(1; 1) > (1� q)V MU(1)(0; 0). But then, when �B;0 = 1� ", by continuity there must

exist a �U;1 2 (��U ; 1) such that qV MU(1)(1; 1) = (1� q)V MU(1)(0; 0).

Second, let’s consider condition (39). We know by the proof of the case in which B

truthfully reports that when �B;0 = 1 and �U;1 = ��U;1, we have that V MU(1)(0; 1) < V <

V MU(1)(1; 1). Note that when �B;0 = 1 � " and �U;1 = ��U;1, the previous inequality is still

satisfied by continuity (since V MU(1)(1; 1) is strictly increasing in �B;0, and V MU(1)(0; 1)

strictly decreasing in �B;0, " must be chosen small enough to ensure that this inequality

holds true). Finally, note that when �B;0 = 1� " and �U;1 2
�
��U;1; 1

�
, the inequality above

holds a fortiori because V MU(1)(1; 1) is strictly increasing in �U;1 and V MU(1)(0; 1) is strictly

decreasing in �U;1.
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Finally, let’s consider condition (38). If we solve it for �E we obtain:

�E =
1

qV MU(1)(0; 0)� (1� q)V MU(1)(1; 1) + 2q
: (40)

If (37) is satisfied, qV (0; 0) � (1 � q)V (1; 1) is strictly greater than zero and hence the

denominator is strictly greater than one, which in turn implies that the RHS is always

larger than zero and smaller than one. Hence, we can conclude that given a value of

�B;0 2 (0; 1) and �U;1 2 (0; 1) for which (37) and (39) are satisfied, we can always find a

value of �E 2 (0; 1) that guarantees that condition (38) is satisfied too.

Existence intervals with respect to �E. Given the analysis of the two cases above, by

continuity we can conclude that a MU(1) equilibrium exists for �E 2 [�
MU(1)
E ; 1] where

�
MU(1)
E is the smallest value that the RHS of (40)) takes in MU(1).

A.6.2 MU(0) Equilibria

Also for this case, we first prove that there exist MU(0) equilibria where �B;0 = 1, and

then move on to prove that there also exist MU(0) equilibria where �B;0 2 [0; 1).

Case in which B truthfully reports both s1 = 1 and s1 = 0. Let b�MU(0)(m1; x1) andbMU(0)(m1; x1) denote the value of reputations in this (putative) MU(0) equilibrium. It is

straightforward to verify that:

b�MU(0)(1; 0) < b�MU(0)(0; 1) < � < b�MU(0)(0; 0) < b�MU(0)(1; 1);bMU(0)(0; 0) = bMU(0)(0; 1) <  < bMU(0)(1; 1) < bMU(0)(1; 0):

Given the above values of reputations, we have that V MU(0)(1; 1) > V > V MU(0)(0; 1).

Therefore, DM retains the incumbent after observing (1; 1) and fires the incumbent after

observing (0; 1). But then, a necessary condition for the existence of the equilibrium is

that DM retains the incumbent after (0; 0). If not, the expert would always be fired when

sending message zero and hence an unbiased expert would never send m1 = 0 (what
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contradicts her equilibrium strategy). Therefore, existence requires that:

V MU(0)(0; 0) > V: (41)

By applying the same line of reasoning we used to prove the existence of MU(1) equi-

libria in which B reports truthfully, we can show that: i) condition (41) is satisfied if and

only if �U;0 > q�q
p�q � �0U;0; For �U;0 > �0U;0, we also have that DM fires the expert after

(1; 0); iii) U ’s and B’s equilibrium strategies are optimal given DM ’s retaining strategy

and the constraint �U;0 > �0U;0. Hence, also these MU(0) equilibria are characterized by

DM retaining the expert after (0; 0) and (1; 1), and firing her after (1; 0) and (0; 1), and by

U lying with a sufficiently small probability. We also note that, as in the case of MU(1),

�E must be above a certain threshold in order for B0s behavior to be consistent with the

equilibrium. In particular, condition (15) must be satisfied with strict inequality for this to

hold. Since the equilibrium behavior of U implies that qV MU(0)(0; 0) = (1� q)V MU(0)(1; 1),

(15) boils down to �E(2q � 1)� 1� �E > 0, which in turn implies that �E > 1
2q

.

Case in which B truthfully reports s1 = 1 and misreports s1 = 0. Existence can be

proved by applying the same line of reasoning we used to prove the existence of MU(1)

equilibria in which B truthfully reports s1 = 1 and randomizes after s1 = 0. Here we note

that an MU(0) equilibrium in which both B and U misreport s1 = 0 must be characterized

by �U;0 < �B;0. To see this, consider that for U to misreport s1 = 0, (17) must be satisfied

with equality, that is:

qV MU(0)(0; 0) = (1� q)V MU(0)(1; 1):

Since q > 1 � q, the only way to have equality is that V MU(0)(1; 1) > V MU(0)(0; 0). Now

note that in the equilibrium under consideration b�(0; 0) > b�(1; 1). Hence, to have that

V MU(0)(1; 1) > V MU(0)(0; 0), it must be that b(1; 1) > b(0; 0). By proposition 1 this can

occur only if U sends message 1 more often than B. Being �U;1 = �B;1 = 1, it must then be

that �U;0 < �B;0.

Finally we note that, based on the analysis above of MU(0) equilibria in which B

truthfully reports both signals, we obtain that MU(0) equilibria in which B misreports

exist for �E = 1
2q

.
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Existence intervals with respect to �E Given the analysis of the two cases above, we

can conclude that MU(0) equilibria exist for �E 2 [�MU(0)
E ; 1], where �MU(0)

E = 1=2q.

A.6.3 TMU Equilibria

We first show the existence of TMU equilibria in which U sends m1 = 0 regardless of

s1, and B truthfully reports both her signals. This will prove the existence of TMU(0)

equilibria with �B;0 = 1, as well as the existence of TMU(1) equilibria with �B;1 = 1. In

what follows, we will denote these equilibria in which B reports truthfully by simply using

the upper-script TMU .

First of all, it is straightforward to verify that:

� � b�TMU(1; 0) < b�TMU(0; 1) < � < b�TMU(0; 0) < b�TMU(1; 1) = �; (42)

0 = bTMU(1; 0) = bTMU(1; 1) <  < bTMU(0; 0) = bTMU(0; 1): (43)

Given the above values of reputations, we have that:

0 = V TMU(1; 0) = V TMU(1; 1) < V < V TMU(0; 0); (44)

V ? V TMU(0; 1): (45)

DM ’s strategy. From (44) it follows that DM will always retain the expert whenever

(m1; x1) = (0; 0) and always fire her when (m1; x1) = (1; 0); (1; 1). (45) highlights that DM

possibly retains the expert also when (m1; x1) = (0; 1). In what follows we will focus on

the case in which the expert is fired after (0; 1).22 This occurs if V > V TMU(0; 1), which

holds true so long as �,  and p satisfy the following inequality:

 <
(1� q)2 � (1� p)

q2
� 0(�; p): (46)

Since  2 (0; 1), we must have that 0 < 0(�; p) < 1. First, note that 0(�; p) < 1 for

all values of � 2 (0; 1) and p 2
�
1
2
; 1
�
. Second, note that 0(�; p) > 0 if and only if

p > �1+�+�2+
p
1�2�+2�2

2�2
� p0, and that p0 2

�
3
4
; 1
�

for all values of � 2 (0; 1). Summing up,

22Following a similar line of reasoning, one can show that there exist also TMU equilibria in which DM
retains the expert after (0; 1).
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DM fires the expert after (0; 1) if and only if p > p0 and  satisfies (46).

U’s strategy. Given DM ’s strategy above, the two conditions that must hold for U to

send m1 = 0 when she receives s1 = 1 and s1 = 0 read respectively:

0 < (1� q)V TMU(0; 0);

qV TMU(0; 0) > 0:

It is immediate to see that the previous conditions are always satisfied.

B’s strategy. Given DM ’s strategy, in order for B to truthfully report both s1 = 1 and

s1 = 0, the two following conditions must be satisfied:

(1� �E) � �E(1� q)
�
V TMU(0; 0) + 1

�
; (47)

�Eq
�
V TMU(0; 0) + 1

�
� (1� �E): (48)

It is easy to show that both conditions are simultaneously satisfied for intermediate values

of �E, namely for:

1

qV TMU(0; 0) + 1 + q
� �E �

1

(1� q)V TMU(0; 0) + 2� q :

Note that since 1
2
< q < 1 both the LHS and the RHS take values that are strictly between

zero and one.

This completes the proof of the existence of TMU(0) and TMU(1) equilibria in which

B truthtells. We now complete the proof by considering the cases in which B misreports

one of her signals.

TMU(0) equilibria where B truthfully reports s1 = 1, and reports s1 = 0 with proba-

bility �B;0 2 (0; 1) By continuity, the chains of inequalities given by (42), (43) and hence

(44) (which all held true for �B;0 = 1) continue to hold so long as �B;0 is sufficiently close

to 1. The same applies to condition V > V TMU(0)(0; 1)which (similarly to the case in which

�B;0 = 1) further requires that  be sufficiently small and p sufficiently large (note that the
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thresholds values of  and p are respectively smaller and larger than the threshold values

of the case in which �B;0 = 1). All this implies that as long as �B;0 and p are sufficiently

large, and  is sufficiently small, both DM ’s strategy and U 0s strategy are the same as in

TMU .

In order for B to randomize after s1 = 0 we must have that condition (48) now holds

with equality. It is immediate to verify that this occurs when �E = 1
qV TMU(0)(0;0)+1+q

. Fi-

nally, note that when (48) is satisfied with equality, (47) is satisfied with strict inequality

implying that B truthfully reports s1 = 1.

We conclude by noticing that when �B;0 = 0 we have an equilibrium in which U sends

m1 = 0 regardless of her signal, and B sends m1 = 1 regardless of her signal. Hence,

no information is revealed about x1. We know by lemma 5(i) that this cannot be an

informative equilibrium. Hence, it cannot be that �B;0 = 0.

TMU(1) equilibria where B truthfully reports s1 = 0 and reports s1 = 1 with proba-

bility �B;1 2 (0; 1) By continuity, the chains of inequalities given by (42), (43) and hence

(44) (which all held true for �B;1 = 1) continue to hold so long as �B;1 is sufficiently large.

The same applies to condition V > V TMU(1)(0; 1) which (similarly to the case in which

�B;1 = 1) further requires that  be sufficiently small and p sufficiently large (note that the

thresholds values of  and p are respectively smaller and larger than the threshold values

of the case in which �B;1 = 1). All this implies that as long as �B;1 and p are sufficiently

large and  is sufficiently small, both DM ’s strategy and U ’s strategy are the same as in

TMU .

In order for B to randomize after s1 = 1, we must have that (47) holds with equality.

It is immediate to verify that this occurs when �E = 1
(1�q)V TMU(1)(0;0)+2�q . Finally, note that

when (47) is satisfied with equality, (48) is satisfied with strict inequality implying that B

truthfully reports s1 = 0.

We conclude by noticing that when �B;1 = 0 we have an equilibrium in which both U

and B send m1 = 0 regardless of their signals and thus no information is revealed about

x1. We know by lemma 5(i) that this cannot be an informative equilibrium. Hence, it

cannot be that �B;1 = 0.
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Existence intervals with respect to �E Given the analysis of the cases above, by conti-

nuity we can conclude that TMU exists for �E 2 [�TMU
E ; �

TMU

E ], where �TMU
E is the smallest

value that expression 1
qV TMU (0;0)+1+q

takes in a TMU equilibrium; and �
TMU

E is the largest

value that expression 1
(1�q)V TMU)(0;0)+2�q takes in a TMU equilibrium.

A.7 Proof of Proposition 5

We prove proposition 5 for MU equilibria in which U truthfully reports s1 = 0 and ran-

domizes after s1 = 1 (i.e., those equilibria that we denoted with MU(1) in the proof of

proposition 4). The same line of reasoning applies to show that the results extend to MU

equilibria in which U truthfully reports s1 = 1 and randomizes after s1 = 0 (i.e., those

equilibria that we denoted with MU(0) in the proof of proposition 4).

A necessary condition for MU(1) equilibria to improve sorting with respect to TT

equilibria is that EMU(1)
0 (R2) � ETT0 (R2) > 0. This condition can be equivalently written

as:

[Pr(0; 1 jMU(1)) + Pr(1; 0MU(1))� Pr(0; 1 j TT )� Pr(1; 0 j TT )]V +
+ Pr(1; 1 jMU(1))V MU(1)(1; 1) + Pr(0; 0 jMU(1))V MU(1)(0; 0) +

� Pr(1; 1 j TT )V TT (1; 1) + Pr(0; 0 j TT )V TT (0; 0) > 0

We now show that this previous inequality is never satisfied. Note that:

� Pr(1; 1 jMU(1))MU(1)(1; 1) = 
2
q�U;1.

� Pr(0; 0 jMU(1))MU(1)(0; 0) = 
2
(1� (1� q)�U;1).

� bqMU(1)(1; 1) = bqTT (1; 1) = q.
Thus, we can write the previous inequality as:

[Pr(0; 1 jMU(1)) + Pr(1; 0MU(1))� Pr(0; 1 j TT )� Pr(1; 0 j TT )] (2q � 1) +
+



2
(1� (1� q)�U;1)(2qMU(1)(0; 0)� 1) + 

2
q�U;1(2q � 1)� q(2q � 1) > 0
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Now note that:

[Pr(0; 1 jMU(1)) + Pr(1; 0MU(1))� Pr(0; 1 j TT )� Pr(1; 0 j TT )] (2q � 1) =

= �1
2
(1� 2p)2�2(1� �U;1)

Using this result, and the expressions of qMU(1)(0; 0) and q, after a bit of algebra our condi-

tion can be written as:
AB

C
> 0

where:

� A = (1� 2p)2 � (1� �U;1)

� B = �(2��U)+�(�2p++2p+2+�G1�2p�U;1�2�U;1)+�2 [( (2p� 1) [1�  (1� �U;1)]]

� C = 2 f1 + (1� �U;1) + � (2p� 1) [1�  (1� �U;1)]g

It is easy to verify that A > 0 and C > 0. Thus, our condition is satisfied whenever

B > 0. Note that B is quadratic in �. In particular:

a) When � = 0, B = �(2� �U) < 0;
b) When � = 1, B = �2(1� ) [p+ (1� p)� �U(1� p)] < 0;
c) @2B

@�2
= 2 (2p� 1) [1�  (1� �U)] > 0, i.e. is strictly convex.

Note that a), b) and c) imply that B < 0 for any � 2 (0; 1). Hence inequality AB
C
> 0 is

never satisfied.

A.8 Proof of Proposition 6

In order to find an instance in which TMU may improve welfare with respect to TT , we

consider the equilibrium in which the expert is hired only after (0; 0). Since it is straight-

forward that discipline is always worst in TMU , a necessary condition for TMU to im-

prove welfare with respect to TT is that it must improve sorting. That is, we need that
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E0[R2 j TMU ] > E0[R2 j TT ] or equivalently:(
[Pr(0; 1 j TMU) + Pr(1; 0 j TMU) + Pr(1; 1 j TMU)]V+
+Pr(0; 0 j TMU)V TMU(0; 0)

)
>(

[Pr(0; 1 j TT ) + Pr(1; 0 j TT )]V+
+Pr(1; 1 j TT )V TT (1; 1) + Pr(0; 0 j TT )V TT (0; 0)

)
:

Now, note that:

� Pr(0; 1 j TMU) + Pr(1; 0 j TMU) + Pr(1; 1 j TMU) = 1
4
[3�  + (2q � 1)(�1 + )] ;

� Pr(0; 0 j TMU)V TMU(0; 0) = V TMU(0; 0) = 
2
(2qTMU

00 � 1);

� V TT (1; 1) = V TT (0; 0) = (2q � 1);

� Pr(1; 1 j TT ) = Pr(0; 0 j TT ) = q:

Hence, we can write the last inequality reads:

1

4
[3�  + (2q � 1)(�1 + )]  (2q � 1) +

+


2
(2qTMU

00 � 1) > (1� q)(2q � 1) + q(2q � 1):

Using the equilibrium values of qTMU
00 and q, and then simplifying, we obtain the following

equivalent condition:

q � (1� q) > 2p� p+ (1� p)
q + (1� q) : (49)

Notice that (49) has the following properties: i) the LHS (RHS) is strictly decreasing

(increasing) in ; ii) When  = 0, LHS = q > RHS = p(2q�1)
q

for all � 2 (0; 1) and

p 2 (1
2
; 1);iii) When  = 1, LHS = 2q � 1 < RHS = 2p� 1 for all � 2 (0; 1) and p 2 (1

2
; 1).

Hence, for all � 2 (0; 1) and p 2 (1
2
; 1), there always exist a threshold (�; p) 2 (0; 1) such

that for  < (�; p) (49) is satisfied.

Now, the equilibrium under consideration is a TMU equilibrium where DM fires the

expert after (0; 1). We know from the proof of Proposition 5 that the existence of such

an equilibrium requires that p > p0 and that  < 0(�; p). So, let us define TMU =
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min[(�; p); 0(�; p)]. Then the following is true: For all � 2 (0; 1), p > p0 and  < TMU ,

there always exists a TMU equilibrium that improves sorting with respect to TT . This

completes the proof.

A.9 Proof of Proposition 7

Note that by (17) and (18), �E does not affect the behavior of U . Hence we can focus on

the behavior of B.

The following points allow us to complete the proof.

1) Based on the proof of proposition 2, we know that MB and TT never coexist, and

that MB exists for �E 2 (�MB
E ; �TTE ) where �MB

E < �TTE .
2) Based on the proof of proposition 4, by (18) if U misreports on s1 = 1 it must be that

V MU(1)(0; 0) > V > V MU(1)(1; 1); and by (17) if she misreports after s1 = 0 it must be that

V MU(0)(1; 1) > V > V MU(0)(0; 0). Using the expressions for �TTE ; �
MU(0)
E and �MU(1)

E defined

in the proofs of Propositions 2 and 4, it is then straightforward to show that: �MU(0)
E > �TTE

and �MU(1)
E < �TTE . This implies that MU equilibria exist both when TT exists and when

TT does not exist.

3) Based on the proof of proposition 4, we know that TMU exists for �E 2 [�TMU
E ; �

TMU

E ].

Using the definitions of �
TMU

E and �
TMU

E simple calculations allow us to show that �
TMU

E 7
�TTE , and the sign of this inequality may vary based on the values of ; � and p. This implies

that TMU equilibria may exist both when TT exists and when TT does not exist.

4) When �E < �E � min[�MB
E ; �

MU(1)
E ; �TMU

E ] no informative equilibria exist. To prove

this, notice that given any strategy of U , for these values of �E the biased expert will always

sendm1 = 1. Given this strategy of B, any putative equilibrium in which U is sending both

signals, can never be an equilibrium since by the proofs of propositions 2 and 4, the DM

will never hire after both messages, when the probability of misreporting of the B expert

is too high. The only other plausible equilibrium involves U always sending m1 = 0 and

the DM hiring only after m1 = 0: By the Proof of proposition 4, this can never be an

equilibrium.
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