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Abstract

When agents can make information discoveries, their actions will determine which

states can be distinguished and thus which goods are traded. Market equilibria can

then be Pareto ine¢ cient even though the classical requirements of competition are

satis�ed. To restore e¢ ciency, the prices anticipated when agents contemplate an in-

formation discovery must be proportional to the probabilities of the events that could

be revealed. This rule also eliminates self-con�rming equilibria where price expecta-

tions lead agents not to undertake the information discoveries that would invalidate

those expectations. E¢ ciency also requires structural assumptions � risk aversion,

common priors �that are normally irrelevant for the �rst welfare theorem.
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1 Introduction

In classical models of competitive markets, the revelation of information descends without

human intervention. The archetype is the weather, which is learned regardless of how

agents act. But in at least as many cases of economic interest agents must take an action

to reveal the state of nature: a �rm must experiment with a new technology to �nd out if

it is productive, a consumer must try out a good to gauge its utility. The predominant

Schumpeterian analysis of �rms� information discoveries is noncompetitive: �rms try out

new technologies to win a measure of monopoly power and would not conduct experiments

without a chance of that reward.1 Competitive equilibria can nevertheless be de�ned when

agents�actions uncover information. While agents must have expectations of the prices that

will rule if they discover information they can otherwise act as price-takers: I will assume

that the scale of trades does not a¤ect prices, that there are no arbitrage opportunities, and,

to ensure that trades of contingent commodities are veri�able, that no agent enjoys a private

information advantage. Despite these conditions, equilibria can be Pareto ine¢ cient. In a

characteristic example, it can be socially e¢ cient for a �rm to build a new type of capital

equipment that will test an innovation but the output price that agents anticipate if the test is

conducted and the experiment is successful will not be high enough to justify the investment.

In equilibrium the �rm consequently does not experiment with the new technology, leaving

agents ignorant of the state. This example �ips the Schumpeterian story: instead of an

innovator using its informational monopoly to manipulate prices in its favor, �rms face

perfect competition and prices move to an innovator�s disadvantage.

To address the ine¢ ciency, I introduce a stronger de�nition of competition: the prices

for a good k that are expected when an information discovery is contemplated must equal

the price of k that obtains under ignorance multiplied by the probabilities of the events that

would be discovered. This competitive price rule extends price-taking to settings where

the set of tradable goods is determined endogenously: it ensures that as agents consider

information discoveries the price they anticipate paying for an increment in the probability

of receiving a good remains constant. The price rule is the main plank that will restore

1See Schumpeter (1942). More recent work in this vein includes Aghion and Howitt (1998), Grossman
and Helpman (1991), and Romer (1990).
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the �rst welfare theorem: in conjunction with supplementary assumptions, it ensures that

competitive equilibria with information discovery are Pareto e¢ cient. As explained in detail

in a companion paper, Mandler (2017), �rms must take counterintuitive actions to ensure

social e¢ ciency: they must select the riskier production sets. The main result of this paper

shows that in competitive equilibrium �rms will take exactly those actions.

The supplementary assumptions needed for Pareto e¢ ciency �common priors and risk

aversion �have a classical pedigree but are alien to the contemporary understanding of the

e¢ ciency of markets. A revelation of Arrow (1951) and Debreu (1951) was that the �rst

welfare theorem is nearly assumption-free: the weak Pareto e¢ ciency of equilibria requires

no assumptions and strong e¢ ciency requires only that preferences are transitive and locally

nonsatiated. The present need for more will make sense in retrospect: without risk aversion

and common priors, an agent that fails to make an information discovery can harm other

agents by denying them the opportunity to make utility-increasing gambles.

The equilibria that lead to ine¢ ciency are typically �self-con�rming�: agents hold unre-

alistic price expectations that lead them not to make the information discoveries that would

discon�rm those expectations, similarly to Fudenberg and Levine (1993) though the analy-

sis here applies to markets rather than games. Ruling out self con�rmation is delicate.

If we simply impose a subgame perfection requirement that agents accurately perceive the

equilibrium that results as they adjust their actions they would no longer behave as price-

takers: they would adjust their demands to optimize their e¤ect on prices, a noncompetitive

behavior that would lead to ine¢ ciency.

The competitive price rule solves this problem too. First, the prices it mandates coincide

with the equilibrium prices that would rule if we could decree or force the state to be revealed

and if there were no supply-and-demand e¤ects stemming from the information learned.

When information does have a demand impact, the price expectations furnished by the price

rule will no longer match the equilibrium prices that obtain when revelation of the state

is forced, comparably to the fact that price-taking assumptions do not hold literally when

agents contemplate deviations from standard competitive equilibria: knowledge of the state

will change demand and thus the prices that clear markets. But if the value of information

is small, the price rule lays out price expectations that approximate what would occur in
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equilibrium when revelation is forced. The small-information assumption is limiting but it

provides a clear setting where the price rule has a rationale routed in equilibrium behavior;

it also permits a full characterization of the price rule.

The impediments to e¢ ciency considered here stem from the market power that infor-

mation discoverers potentially wield: since goods are distinguished by state, an agent that

causes the state to be revealed can a¤ect which goods are traded and thus indirectly the

prices of goods. This leverage resembles the monopoly power that Schumpeterian �rms gain

when they discover an innovation. The competitive price rule neuters these in�uences on

prices and thus disentangles market power from information discovery. Firm size is pivotal

for the former but irrelevant for the latter.

The existence of equilibrium will be a side issue in this paper. Although discrete costs

for information discoveries will introduce nonconvexities that can interfere with existence,

those di¢ culties have classical �xes and, when �rms are the discoverers, the convexity and

continuity assumptions that guarantee existence can be applied successfully (see section 6).

Though work remains to con�rm that there are no intractable existence problems, the �rst

task is to de�ne what a competitive equilibrium with information discovery actually is.

Boldrin and Levine (2002, 2017a, 2017b) pursue a compatible agenda where innovative

goods are competitively produced under constant returns and optimality obtains. Boldrin

and Levine do not allow for uncertainty, however, a prominent feature of technological de-

velopment; one goal of the competitive price rule is to �ll this gap. My aim though is not

to argue that e¢ ciency is the norm. For competitive equilibria to be e¢ cient, one must

assume that information externalities are absent. There are cases where that assumption

makes sense (consumers �guring out their own tastes) and other Schumpeterian cases where

it does not (expensive technological research that free riders can copy).

2 Equilibrium with information discovery

Consumers, �rms, states, and goods.

The sets of consumers I, �rms J , and states 
 are all �nite with I, J , and S elements

respectively. There are L1 goods in the �rst period and L2 goods at each state in the second
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period. The total number of goods is therefore L = L1 + SL2.

A consumption for i 2 I and a production for j 2 J are given by

xi =
�
xi1(1); :::; x

i
L1
(1);

�
xi1(!); :::; x

i
L2
(!)
�
!2


�
2 RL+,

yj =
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yj1(1); :::; y

j
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(1);

�
yj1(!); :::; y

j
L2
(!)
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!2


�
2 RL.

De�ne also

xi(1) =
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xi1(1); :::; x
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(1)
�
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xi1(!); :::; x

i
L2
(!)
�
, x =

�
xi
�
i2I ,

yj(1) =
�
yj1(1); :::; y
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(1)
�
, yj(!) =

�
yj1(!); :::; y

j
L2
(!)
�
, y =

�
yj
�
j2J ,

and let x�i and y�j denote (xi
0
)i02Infig and (yj

0
)j02Jnfjg.

The probabilities of states and events in 
 are given by �(�) and we �x, for any event

E � 
, conditional probabilities �(�jE) that satisfy Bayes rule when applicable.

Each consumer i at each state ! has a concave and locally nonsatiated utility ui! :

RL1+L2+ ! R, henceforth called a vNM utility, which de�nes an expected utility function

U i : RL+ ! R by U i (xi) =
P

!2
 �(!)u
i
!(x

i(1); xi(!)).

Consumer i�s endowments are given by
�
ei(1); (ei(!))!2


�
2 RL+.

Each �rm j 2 J has a production set Y j � RL. Consumer i�s ownership share of j is

�ij � 0, where
P

i2I �
ij = 1. For each state !, Y j de�nes a single-state production set Y j!

for �rst-period goods and the second-period goods that appear at ! equal to the projection

of Y j onto its �rst L1 coordinates and its L2 !-coordinates:

Y j! =
n
(yj(1); yj(!)) 2 R

L1+L2
:

(yj(1);
�
yj(!0)

�
!02
) 2 Y

j for some
�
yj(!0)

�
!02
nf!g 2 R

L2(S�1)
o
.

A simple and plausible model of the relationship between Y j and the Y j! would be to assume

that �rm j�s production set at state ! equals Y j! regardless of what j chooses at other states:

the �rm chooses yj(1) in the �rst period, nature then selects the state !, and the �rm then
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chooses any vector in
�
yj(!) 2 RL2 : (yj(1); yj(!)) 2 Y j!

	
in the second period.2 But there

is no need to rule out all inter-dependencies of production across states; it is su¢ cient that if

the Y j! coincide at some set of states then the same productions can be chosen simultaneously

at these states, �xing what j does elsewhere. Formally, we assume that if Y j!0 = Y
j
!00 and

yj 2 Y j then the byj de�ned by byj(�) = yj(�) for � = 1 or � 2 
nf!00g and byj(!00) = yj(!0)
is an element of Y j: j can choose at !00 whatever it chooses at !0, all else remaining �xed.

Information.

The actions of the agents in the �rst period uncover information. For each consumer i,

the choice xi � 0 informs all agents of a cell of the partition P i(xi) of 
, where, since it is

i�s �rst-period consumption that reveals the information, P i(xi) = P i(xi0) if xi(1) = xi0(1).

Similarly, for each �rm j, the production yj 2 Y j informs all agents of a cell of the partition

Pj(yj), where Pj(yj) = Pj(yj0) if yj(1) = yj0(1). Since goods can be useless and have

a 0 price, the model can let agents costlessly select a partition from an arbitrary menu

of partitions without a¤ecting their useful consumption (see section 5). The following

examples consider the information that one agent can discover; typically many agents will

make discoveries simultaneously.

Example 1 Suppose consumer i can uncover information by buying c 2 RL1+ or more in the

�rst period: for some nontrivial partition bP of 
, P i(xi) = bP if xi(1) � c and P i(xi) = f
g
otherwise. The partition bP could indicate whether i likes good 1 with the cells of bP given
by

PI = f! 2 
 : ui! is increasing in xi1(!)g,

PD = f! 2 
 : ui! is decreasing in xi1(!)g,

PN = 
n(PI [ PD).

The cost c might consist of a minimum-size sampling of the good in the �rst period: c1 > 0

and ck = 0 for 2 � k � L1. �

2Firm j�s production set would then be given by

Y j =
n�
yj(1);

�
yj(!)

�
!2


�
2 RL :

�
yj(1); yj(!)

�
2 Y j! for all ! 2 


o
.
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Example 2 A �rm j tries out a production process by building a prototype of a good in

the �rst period. The prototype requires inputs of c 2 RL1+ or greater, which reveals if the

experiment succeeds, the event Ps, or fails, Pf = 
nPs. So Pj(yj) = fPs; Pfg if yj(1) � �c

and Pj(yj) = f
g otherwise. If the �rm builds the prototype and ! 2 Ps then it has

second-period access to a production function g : Rn+ ! Rm+ such that g(0) = 0; otherwise

j cannot engage in second-period production. Letting the second-period inputs have the

initial indices among second-period goods, the production set is given by

yj 2 Y j ,

8>>><>>>:
yj(1) � �c, yj(!) � (�l; g(l)) for some l � 0 if ! 2 Ps, yj(!) � 0 if ! 2 Pf ,

or

yj(1) � �c, yj(1) � 0, yj(!) � 0 for all ! 2 
. �

Examples 1 and 2 above share the nonconvexity that information is discovered only if

a threshold payment c is made. This feature is by no means necessary. Information

discovery can readily �t standard convexity assumptions, particularly in production where

the harnessing of inputs can by itself reveal information. In the following example, mentioned

in the Introduction, a �rm can build a capital good in the �rst period to produce output

in the second period. In the course of constructing the capital, the �rm �nds out if its

experimental technology �works�, whether it has high or low productivity.

Example 3 There are two states !H and !L indicating high and low productivity and one

good at each date and state. A �rm j can use a linear activity with coe¢ cients (�2; 3; 1)

for the �rst-period, !H , and !L goods respectively and therefore has the production set

Y j = f(y(1); y(!H); y(!L)) : (y(1); y(!H); y(!L)) � �(�2; 3; 1) for some � � 0g .

The state is revealed if and only if the �rm chooses y(1) < 0: P(y) = ff!Hg; f!Lgg if

y(1) < 0 and P(y) = f
g otherwise. Notably, the production set Y j is convex. �

Examples 2 and 3 baked into a �rm j�s production set the measurability restriction that it

cannot vary its actions more �nely than its information reveals. When other agents besides

j make decisions that leave information undiscovered then measurability restrictions on j�s

actions must be imposed directly.
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All information is shared: the agents face a common information partition, from which

a cell is revealed at the end of the �rst period. When agents take the actions (x; y) 2

RIL+ �
Q
j2J Y

j, this partition will be the coarsest common re�nement of the partitions in

fP i(xi) : i 2 Ig and fPj(yj) : j 2 J g which we denote by Px;y. The absence of asymmetric

information is important for e¢ ciency: both sides of any trade can con�rm its execution and

agents can condition their consumption or production on the �nest information possible.

For i 2 I and j 2 J , let
V
P i and

V
Pj be �nest common coarsening of the partitions

in fP i(xi) : xi � 0g and fPj(yj) : yj 2 Y jg respectively:
V
P l represents the information

agent l will necessarily uncover regardless of what action l takes. We assume that, for

each consumer i, the random variable ei is measurable with respect to the coarsest common

re�nement of the partitions in
�V

P l : l 2 I [ J
	
. So each consumer i�s endowment will

be known to i (and any other agent) in the second period whatever actions the agents take.3

Consumer i therefore always has the option of delivering any portion of his endowment to

the market. The assumption also ensures that if the market for delivery of a good at a state

in P 2 Px;y clears then so will the markets for the same good at other states in P .

Markets and equilibrium.

Let p =
�
p1(1); :::; pL1(1); (p1(!); :::; pL2(!))!2


�
2 RL+ denote a price vector. Prices for

second-period goods have operational meaning only in relation to the partition Px;y that

agents face: the price of good k in the event P 2 Px;y is
P

!2P pk(!). The pk(!) need not

indicate the prices of k at the states in 
 since those states need not form cells of a partition

that agents might face. The pk(!) nevertheless play an important role: they determine the

prices agents face as they alter their actions and thereby change Px;y.

Given prices p, productions y, and consumptions x�i for all consumers besides i, the

budget set for consumer i is

Bi(p; x�i; y) =

(
xi 2 RL+ : xi is Pxi;x�i;y-measurable and p � xi � p � ei +

X
j

�ijp � yj
)
.

Given the consumptions x and productions y�j for all �rms besides j, the action set for �rm

3Conversely, if second-period endowments are publicly observed in the second period then a violation of
this measurability assumption would mean that, for some set of �rst-period actions the agents might take,
the agents would be failing to learn all that can be inferred from their observations.
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j is given by

Aj(x; y�j) =
�
yj 2 Y j : yj is Px;yj ;y�j -measurable

	
.

These measurability requirements ensure that agents cannot take actions that are a function

of information they are not privy to. But, since the measurability requirements adjust as

agents vary their actions, agents do take account of how their information changes with their

actions. Price-taking has no clear-cut meaning in this setting: since actions can change the

set of purchasable goods, agents enjoy a measure of market power.

De�nition 1 An equilibrium is a (p; x; y) such that, for each i 2 I and j 2 J ,

� xi 2 Bi(p; x�i; y) and U i(xi) � U i(xi0) for each xi0 2 Bi(p; x�i; y),

� yj 2 Aj(x; y�j) and p � yj � p � yj0 for each yj0 2 Aj(x; y�j),

�
P

i2I x
i �

P
j2J y

j+
P

i2I e
i, with pk(�) = 0 if strict inequality obtains for good k and

period � = 1 or state � = !.

3 Ine¢ ciency and its cure

We begin with two examples of ine¢ ciency. The �rst returns to the �rm in Example 3 that

tested a convex technology in the course of building its capital equipment. Although it is

socially e¢ cient for the �rm to perform this test, if agents expect a low price for output when

the test is undertaken and the technology is successful the �rm will not do so. Outside of

information discovery being an active choice, the example is entirely orthodox.

Example 3 Continued There is one �rm, an arbitrary number of consumers, two states

!H and !L, and one good at each date and state: J = 1, S = 2, with probabilities given by

�(!H) =
2
3
and �(!L) = 1

3
. Endowments satisfy

P
i2I e

i(1) > 0 and ei(!L) = ei(!H) > 0 for

each i, with the equality ensuring that agents cannot deduce the state from the endowment

pro�le. Since there is one good at every date and state, we omit the subscripts denoting

goods.

As described the original example, the �rm can use a linear activity with coe¢ cients

(�2; 3; 1) for the �rst-period, !H , and !L goods respectively and the state is revealed if and
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only if the �rm chooses y(1) < 0. Each consumer i is risk-neutral and does not discount the

future and therefore has the utility U i(xi(1); xi(!H); xi(!L)) = xi(1) + 2
3
xi(!H) +

1
3
xi(!L).

With the prices p(1) = 3, p(!H) = 1, p(!L) = 2, the �rm will choose y = (0; 0; 0) rather

than produce: an investment of two units of the �rst-period good would cost 6 and earn

a return of 5. When the state is not revealed, the consumers are happy to consume their

endowments since units of �rst-period and second-period consumption (the latter delivered

at both states) each cost 3.

This equilibrium is ine¢ cient: a sacri�ce of 2 units of the �rst-period consumption yields�
2
3
� 3
�
+
�
1
3
� 1
�
= 21

3
units of expected second-period consumption. �

The equilibrium in Example 3 Continued has the self-con�rming property that agents�

price expectations lead the �rm not to make the information discovery that could discon�rm

those expectations. The price expectations consistent with a no-discovery equilibrium can

therefore vary widely. If the state is unknown, the price that consumers pay for second-

period consumption is the sum p(!H) + p(!L) and as long as p(1) = p(!H) + p(!L) the

decomposition of that sum into state-by-state prices is irrelevant: any decomposition that

leads the �rm to refrain from information discovery will be consistent with equilibrium. We

examine self-con�rmation in more detail in section 4.

In the next Example, a consumer rather than a �rm makes the information discovery and

consequently the prices that lead to ine¢ ciency have to be chosen more carefully in some

cases. The convexity that Example 3 Continued enjoyed is less plausible with a consumer as

the discoverer and we therefore use a variant of Example 1: the consumer reveals information

by paying a discrete cost. Since that information is valuable only to the same consumer, no

externality is present.

Example 4 There are two consumers a and b, no �rms, two states !H and !L, and one

good at each date and state: I = 2, J = 0, S = 2, with probabilities given by �(!H) = 1
2
and

�(!L) =
1
2
. Both agents are risk-neutral. Consumer a has vNM utilities 2xa(1) + 3xa(!H)

at !H and 2xa(1) + xa(!L) at !L and b has the vNM utility xb(1) + xb(!) at each !. Thus

!H and !L indicate whether a�s marginal utility of consumption is high or low. We again

omit subscripts denoting goods.
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Consumer a can discover the state by spending c � 0 of the �rst-period good on an

information-discovery technology and is thus the only agent with a state-dependent utility

and the only agent that can discover information.4 Let endowments satisfy ea(1) > c and

ei(!L) = e
i(!H) > 0 for each i.

With the prices p(1) = 4, p(!H) = 3, p(!L) = 1, consumer a has no incentive to discover

the state. Whether or not the state is known, a dollar buys 1
4
units of xa(1) and hence a

utility gain of 1
2
= 2 � 1

4
. If the state is not known a dollar buys a bundle of 1

4
units each

of xa(!H) and xa(!L) and thus a utility gain of 12 =
�
1
2
� 3� 1

4

�
+
�
1
2
� 1� 1

4

�
, while if the

state is known a dollar buys 1
3
units of xa(!H) for a utility gain of 12 =

�
1
2
� 3� 1

3

�
or 1

unit of xa(!L) for a utility gain of 12 =
�
1
2
� 1� 1

�
. Thus, putting aside the discovery cost,

consumer a experiences neither a gain nor a loss if the state is revealed. Consequently, if

c > 0 then the only equilibrium with the above prices is for consumer a not to discover.

For c su¢ ciently small, this equilibrium is ine¢ cient: if the state were known, both a

and b would be strictly better o¤ if b transferred a unit of second-period consumption to a

at state !H and received a unit from a at !L. �

When the discovery cost c in Example 4 is 0, the price expectations that will lead con-

sumer a not to discover the state must assume the precise values that equalize the marginal

utility of income across states; otherwise a would discover the state in order to concen-

trate consumption in the state with the higher marginal utility. If c > 0 though the price

expectations consistent with nondiscovery enjoy greater latitude.

3.1 The competitive price rule

When agents can discover information, competition by itself will not lead to Pareto e¢ ciency:

the information that one agent can uncover might be valuable to others and, as with standard

externalities, potential discoverers will ignore those consequences. But as the Examples

above have shown an absence of information externalities is not enough.

4When c > 0, this discovery can be modeled as the purchase of c units of an additional �rst-period good
produced by a �rm that uses c of the original �rst-period good as its only input. So Pa(xa) = ff!Lg; f!Hgg
if xa2(1) � c and Pa(xa) = f
g otherwise. We can leave out further mention of these details by having
the �rm buy and sell at the same price, thus leaving no pro�ts to distribute to its owners. When c = 0,
discovery can be modeled as the purchase of a free good: see section 5.

10



De�nition 2 An equilibrium (p; x; y) satis�es the competitive price rule if, for each P 2

Px;y, ! 2 P , and good k,

pk(!) = �(!jP )
X
!02P

pk(!
0).

To understand the sense in which this rule is competitive, suppose at some equilibrium

(p; x; y) that consumer i, by deviating to xi0, reveals some event E contained in an event

that is observable at (p; x; y). That is, suppose E � P 2 Px;y and E 2 Pxi0;x�i;;y. The

competitive price rule then leads to a price of good k at E given by

X
!2E

pk(!) =
X
!2E

�(!jP )
X
!02P

pk(!
0) = �(EjP )

X
!02P

pk(!
0).

The derivative of the price of k at E with respect to the conditional probability of E given

P is thus a constant,
P

!02P pk(!
0). So, although agents can change the set of purchasable

goods and thus cannot be traditional price-takers, under the competitive price rule they face

a constant price for good k per increment of likelihood. Agents can adjust these likelihoods

by varying the information discoveries they choose. When E is an arbitrary event in 
 the

price of k at E according to the price rule will equal

X
!2E

pk(!) =
X
P2Px;y

X
!2E

�(!jP )
X
!02P

pk(!
0) =

X
P2Px;y

�(EjP )
X
!02P

pk(!
0).

The interpretation is similar. At any P 2 Px;y agents face a constant price for good k

per increment of likelihood: the marginal impact on the price of good k of increasing the

conditional probability of E given P by the same amount at every P 2 Px;y is again a

constant,
P

!2
 pk(!), that does not vary with the conditional probabilities.

Consider a weaker version of the price rule that requires the price of good k at a subevent

E of P 2 Px;y plus the price of k at the complementary event PnE to equal the price of

k at P : using obvious notation, pk(E) + pk(PnE) = pk(P ). This condition will hold in

equilibrium if agents can costlessly undertake a discovery that re�nes P into the subevents

E and PnE: if it were violated then either buyers or sellers of k would gain by making the

discovery. See Theorem 4 in section 5 for a result in this vein. The competitive price rule

implies this weaker version but says more: the prices of k at subevents must be proportional
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to their conditional likelihoods.

The following Example illustrates the price rule and makes clear that it can be applied

even when informational externalities make e¢ ciency impossible.

Example 5 There are three �rms, one consumer, two states, with labor and output present

at each date and state: I = 1, J = 3, S = 2, with probabilities �(!g) = �(!b) = 1
2
. Each

�rm at each period and state can use a linear production function f that takes labor l as its

input, subject to a capacity constraint: f(l) = min[l; 1] for l � 0. In the �rst period, any of

the �rms can use a unit of output to test a production function h equal to h(l) = min[2l; 2]

in state !g and h(l) = 0 in state !b.5 If some �rm tests the technology then agents face the

partition ff!gg; f!bgg while if no �rm tests they face ff!g; !bgg.

The consumer is risk-neutral and elastically supplies labor at a price equal to half a unit

of output: letting the subscripts o and l indicate output and labor/leisure and omitting the

superscript, the consumer�s utility is

U (x) = xo(1) +
1

2
xl(1) +

X
!2f!g ;!bg

1

2

�
xo(!) +

1

2
xl(!)

�
.

The consumer has the same endowment of labor el > 3 at each date and state.

In the only equilibrium that satis�es the competitive price rule (up to a normalization),

no �rm tests the uncertain technology, prices are po(1) = 1, pl(1) = 1
2
, po(!g) = po(!b) = 1

2
,

pl(!g) = pl(!b) =
1
4
, each �rm j chooses yj(1) = yj(!g) = yj(!b) = (1;�1) (output has the

�rst index). At each date and state, consumption is 3 plus any output endowment. Since

po(!g) = po(!b) =
1
2
(po(!g) + po(!b)) and pl(!g) = pl(!b) =

1
2
(pl(!g) + pl(!b)), the price

rule is satis�ed. If a �rm tests the technology it gains po(!g) � 1 = 1
2
in revenue but loses

the cost of 1: the decision not to test is pro�t-maximizing. Due to the externality, that

decision is socially ine¢ cient: expected output would increase by 1
2
�3 while the output cost

of testing is 1. �
5Formally, this discovery can be modeled as the production by some �rm j of an additional �rst-period

good d with a technology that produces positive output if and only if at least one unit of labor is applied.
So Pj(yj) = ff!gg; f!bgg if yjd(1) � 1 and Pj(yj) = f
g otherwise. Implicitly good d has price 0 below.
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3.2 The �rst welfare theorem

To achieve e¢ ciency we need to assume that information about an agent�s utility function

or production set is conditionally independent of the information that the remaining agents

can discover, given one of the cells that could be revealed in equilibrium. Otherwise, as in

Example 5, there would be an externality: one agent�s discovery would be valuable to another

agent. Conditional independence, unlike unconditional independence, lets agents receive

common information, e.g., they all read the same weather report or learn some fact that

some agent always uncovers, while requiring that more re�ned information is independent

across agents.

Let Q�l for l 2 I [ J equal the coarsest common re�nement of the partitions in

�
P i(xi) : i 2 Inflg and xi � 0

	
and

�
Pj(yj) : j 2 J nflg and yj 2 Y j

	
.

This partition represents the information that all agents besides l can obtain.

For i 2 I, let V i be the partition of 
 that demarcates the utilities consumer i might

have: W 2 V i if and only if there exists a vNM utility v such that W = f! 2 
 : ui! = vg.

Similarly, for j 2 J , let Yj be the partition of 
 that demarcates the single-state production

sets �rm j might have: W 2 Yj if and only there exists a Y � RL1+L2 such that W = f! 2


 : Y j! = Y g.

De�nition 3 No externalities is satis�ed if the realization of an agent�s utility function

or production set is conditionally independent of the information other agents can obtain,

given the information all agents do obtain: for all x � 0, y 2
Q
j2J Y

j, P 2 Px;y, l 2 I [ J ,

W 2 V l for l 2 I, W 2 Y l for l 2 J , and Q 2 Q�l,

� (W \QjP ) = �(W jP )�(QjP ),

and W 2 Y l and W \ Q \ P 6= ? imply W 0 \ Q \ P 6= ? for any W 0 2 Y l such that

W 0 \ P 6= ?.

Under no externalities, what all other agents besides l can learn (beyond P 2 Px;y)

provides no information about l�s utility if l is a consumer or about l�s production possibilities
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if l is a �rm. The last part of De�nition 3 extends conditional independence to 0-probability

events: even if �(W jP ) = 0 or �(QjP ) = 0, for W 2 Y l and Q 2 Q�l that intersect P ,

a switch of the single-state production set from W to W 0 still de�nes a non-null event in

P (though with probability 0). This requirement needs to be applied only to �rms, not

consumers, and thus is irrelevant in an exchange economy.

Examples 3 Continued and 4 satisfy no externalities, in both cases because the only

agent with a state-dependent utility function or production set is also the only agent that

can discover information. That e¢ ciency requires an absence of information externalities is

no surprise; the notable fact is that ruling them out is not enough.

An allocation x 2 RIL+ is feasible if xi is Px;y measurable for each i 2 I, there exists a

y 2 RJL such that yj 2 Aj(x; y�j) for each j 2 J and
P

i2I x
i �

P
j2J y

j +
P

i2I e
i. An

equilibrium (p; x; y) is Pareto e¢ cient if there does not exist a feasible allocation x0 such

U i(xi0) � U(xi) for all i 2 I and with strict inequality for some i 2 I.

Theorem 1 If an equilibrium satis�es no externalities and the competitive price rule then

it is Pareto e¢ cient.

It is easy to con�rm that Examples 3 Continued and 4 both have equilibria that satisfy

the competitive price rule and which are therefore e¢ cient: the market can induce agents to

undertake the optimal information discoveries. In Example 3 Continued, for instance, the

�rm can earn enough when the technology it is testing has high productivity to make up for

its losses when productivity is low.

The proof constructs an arti�cial economy where agents have to satisfy only those mea-

surability requirements implied by their own information discoveries. We then show that

an equilibrium of the true economy is an equilibrium of the arti�cial economy. If there

were a gain in the arti�cial economy to a consumer i from letting xi vary with respect to

the information uncovered by other agents then by no externalities and the concavity of i�s

vNM utilities an �averaged�version of that action that would also be a gain for i in the true

economy, and the competitive price rule implies that the averaged action would be a¤ordable

in the true economy. Similarly, if there were a gain in the arti�cial economy for a �rm j

from letting yj vary with respect to information uncovered by other agents then due to no
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externalities j could, in the true economy, choose whichever action from among these new

possibilities yields the greatest pro�ts, and the competitive price rule implies that this choice

would also lead to an increase in pro�ts in the true economy. The presence of an advanta-

geous deviation in the arti�cial economy for either a consumer or a �rm thus implies that the

true economy could not have been in equilibrium. Since, by the �rst welfare theorem, the

equilibrium allocation is Pareto e¢ cient in the arti�cial economy, it must be Pareto e¢ cient

in the true economy as well.6 Proofs can be found in Appendix B.

3.3 Why are the assumptions so strong?

The assumptions needed for the �rst welfare theorem are famously weak. The Pareto

e¢ ciency of competitive equilibria requires only that preferences are transitive and locally

nonsatiated. Weak Pareto e¢ ciency � the absence of an allocation that gives a strict

improvement to every consumer �requires no assumptions at all.

Several assumptions in contrast underlie Theorem 1. No externalities and the compet-

itive price rule address points that do not arise in the standard general equilibrium model,

namely actions that reveal information and the prices of goods that are not marketed in

equilibrium. The need for no externalities is plain: if a �rm can discover the productivity

of its technology or if a consumer can discover his tastes only when another agent pays the

costs then ine¢ ciency will result. The competitive price rule is part of the de�nition of

equilibrium rather than being an assumption on primitives: it speci�es the prices of goods

at events that are not observed in equilibrium. The price rule, considered in sections 4 and

5, will be our main focus.

Theorem 1 also imposes additional structural assumptions, the concavity of the vNM

utilities and implicitly that the agents share a common probability �. Since these conditions

are unnecessary for the standard �rst welfare theorem, their presence requires explanation.

A consumer with a nonconcave vNM utility can prefer a lottery of consumption bundles

over receiving the lottery�s expected value with certainty. But if the lottery is conducted

6An equilibrium of the true economy will not generally be an equilibrium of a di¤erent arti�cial economy
that omits all measurability requirements on agents: a consumer i that is not measurability restricted could
want to vary his consumption to take advantage of information about his own utility but not be willing to
pay to reveal that information.
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only if a distinct agent undertakes an information discovery then the �rst consumer can fail

to reap this bene�t (or his part of one of the Pareto improvements the lottery can make

possible). Example 7 in Appendix A illustrates the ine¢ ciency that can result.

If consumers hold di¤erent prior probabilities they will typically be able to achieve a

Pareto improvement by betting against each other. But they will not be able to make

these bets if the lottery that allows them to do so is conducted only when some other agent

undertakes an information discovery. See Example 8 in Appendix A.

Since consumers can have state-dependent utilities, any model where consumers have

diverse probabilities is behaviorally identical to a model with common priors and utilities

that are rescaled separately by state. This modi�cation would however convert a model that

satis�es no externalities �such as Example 8 �to one where it would be violated. While the

ine¢ ciency that can accompany diverse probabilities can therefore be diagnosed as a type of

externality, the story becomes awkward: one agent�s discovery might provide information to

others only with respect to a hypothetical probability distribution that none of the agents

holds.

Outside of no externalities, Theorem 1 imposes no extra assumptions on �rms: the con-

vexity of the Y j is not needed and, as in the standard general equilibriummodel, probabilities

do not enter into �rm decision-making.

4 Self-con�rming equilibria

The striking deviation in Theorem 1 from the classical �rst welfare theorem is the competitive

price rule. One rationale for the price rule is that violations of the rule can lead to equilibria

that are self-con�rming: the hypothetical prices that agents assign to events that they do

not learn in equilibrium would not be borne out if agents could trade all state-contingent

goods (they are released from their measurability requirements). These misguided price

expectations can in turn validate the equilibrium decision not to discover information. We

�rst return to our earlier examples of ine¢ ciency to underscore the mismatch between the

prices agents assign to events and the prices that would rule if all markets were open.

Examples 3 Continued and 4 (revisited) In the equilibrium in Example 3 Continued,
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the price ratio p(!H)
p(!L)

= 1
2
that agents assign to the goods that appear at the high and low

states does not coincide with the ratio given by the competitive price rule, namely �(!H)
�(!L)

= 2
1
.

If we could force the state to be revealed �say by requiring the �rm to use " units of the

�rst-period good as an input �the market-determined price ratio for the high and low state

goods will equal the ratio of the consumer�s marginal utilities, 2
1
, in accord with the price

rule. Although the prices that agents assign to states thus do not match the prices that

would rule if revelation of the state were forced, the fact that the state is not discovered in

equilibrium allows these beliefs to be sustained.

In Example 4, suppose we require consumer 1 to pay the " revelation cost thus revealing

the state. If consumer a is small relative to b (speci�cally if 2ea(1)+ ea(!L) � eb(!H)) then

the ratio of equilibrium prices p(!H)
p(!L)

will be determined by consumer b�s ratio of high-state

to low-state marginal utility, 1
1
, which is also the ratio given by the competitive price rule.7

In the equilibrium without forced revelation, in contrast, agents assign a price ratio of 3
1
to

the high-state and low-state goods. �

The revisited examples are unusual in that the prices enforced by the market if the

revelation of the state is forced will exactly equal the prices prescribed by the competitive

price rule. This precision is exceptional since in most cases the additional information

provided by the state will change demand and thus have an impact on prices. In Example

4, for instance, the variation by state of b�s demands will a¤ect equilibrium prices when the

revelation of the state is mandated and b fails to be small relative to a.

We cannot eliminate the combination of self-con�rmation and ine¢ ciency simply by re-

quiring, in the spirit of subgame perfection, that agents�price expectations must coincide

with the market equilibrium prices that would obtain as they adjust their information dis-

coveries and demands. That requirement would give agents a strategic, noncompetitive

7To �nd the equilibrium when the state is revealed, set p(1) = 1. Since for both a and b the ratio
of the marginal utility of �rst-period consumption to state-invariant second-period consumption equals 1,
p(!H) + p(!L) = p(1) = 1 must hold in equilibrium. If p(!H) � 1

2 then a consumes only x
a(!H) and

thus has an excess demand za(!H) determined by p(!H)za(!H) = ea(1)+ p(!L)ea(!L). If p(!H) < 1
2 then

xb(!L) = 0 but xa(!L) + xb(!L) = 0 cannot occur in equilibrium. If p(!H) > 1
2 then x

b(!H) = 0 and

za(!H) � 1
p(!H)

ea(1) + p(!L)
p(!H)

ea(!L) < 2ea(1) + ea(!L). The assumption that 2ea(1) + ea(!L) � eb(!H)

thus implies za(!H) < eb(!H) and hence za(!H) + zb(!H) < 0, which also cannot occur in equilibrium.
Hence p(!H) = 1

2 .
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power to manipulate prices and would allow ine¢ ciency to return.

The standard response to the manipulation problem is to argue that the price e¤ect of

any deviation from equilibrium actions is small; so even though price-taking assumptions

cannot hold literally, they can hold approximately. We follow a similar path by showing

that the competitive price rule will be a good predictor of the prices that obtain when

revelation of the state is forced if and only if the demand-and-supply e¤ects of revelation are

small. The analogy is imperfect �the demand e¤ect of information on prices will normally

be substantial while an individual�s demand e¤ect in a conventional general equilibrium

model will typically be small �and hence in many cases the competitive price rule will not

approximate the market prices that would rule if revelation were forced. But the assumption

that the demand e¤ect of information is small also serves a theoretical goal: it will allow a

full characterization of the price rule.

We �rst show that if the true state does not convey valuable information beyond what

is learned in equilibrium then the predictions of the competitive price rule hold exactly

if and only if there is no di¤erence between an equilibrium as previously de�ned and the

equilibrium that would occur if revelation of the state were forced. We then show that if

the information content of further information and the costs of discovery are small then the

price rule holds approximately if and only if the di¤erence between an equilibrium and a full-

revelation equilibrium is small. Costs as well as information content need to be small since

no agent will spend resources on information discovery if the state is going to be revealed

anyway; large costs would therefore lead to a discrepancy between equilibrium demand and

forced-revelation demand.

To concentrate on essentials, we consider exchange economies (J = 0) and therefore omit

all y�s from our notation. Recall that V i is the partition of 
 that de�nes the utilities

consumer i might have: V 2 V i if and only if there exists a vNM utility v such that

V = f! 2 
 : ui! = vg.

De�nition 4 Information discoveries are conclusive if, for all x � 0, P 2 Px, i 2 I, and

V 2 V i, �(V jP ) equals 0 or 1.

When information discoveries are conclusive, a P 2 Px for a potential equilibrium (p; x)
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fully reveals the utilities agents have. If information discoveries were not conclusive then

revelation of the exact state P would provide some consumer i with utility information and

change i�s demand, which would typically cause the competitive price rule to fail to hold.

Forcing the revelation of the state translates formally into releasing agents from their

measurability requirements. Any result seeking a correspondence between equilibrium out-

comes and the competitive price rule has to drop those requirements: if delivery of a good

k at ! must be bundled with delivery at !0, no market mechanism could patrol the relative

price of k at these states.

De�nition 5 A full-revelation equilibrium satis�es all of the requirements of an equilib-

rium except that, for each i 2 I and j 2 J , the measurability conditions in Bi and Aj are

omitted.8

When, for each i 2 I and ! 2 
, ui! is di¤erentiable and strictly increasing in each good,

the economy is di¤erentiable. An equilibrium (p; x) (in the sense of De�nition 1) is interior

if xi � 0 for each i 2 I.

Theorem 2 For a di¤erentiable exchange economy in which information discoveries are

conclusive, any interior equilibrium is a full-revelation equilibrium if and only if the compet-

itive price rule holds.

So, when information discoveries are conclusive, a violation of the competitive price rule

implies that an equilibrium cannot persist undisturbed if agents gain the right to trade for

delivery at any state: the equilibrium would have to jump in response. The proof in this

direction (�only if�) argues that if a full-revelation equilibrium does not satisfy the price

rule then there must be a mismatch between the ratio of probabilities for two subevents

of some P 2 Px and the ratio of the prices of goods delivered at those subevents; a shift

of consumption to the underpriced subevent would then increase a consumer i�s utility at

P (i has only one utility function at P due to conclusiveness), violating the assumption

of equilibrium. For �if�, a standard equilibrium that satis�es the price rule must also be

a full-revelation equilibrium: if a utility improvement were available when we drop the

8We will later use full-revelation equilibria when �rms are present.
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measurability requirements on agents then an �averaged�version of that improvement would

also be an improvement and would satisfy the measurability requirements, a contradiction

similar to the one used in the proof of Theorem 1. The equivalence of equilibria and full-

revelation equilibria (given conclusiveness) thus provides a complete characterization of the

price rule.

To extend Theorem 2 to information discoveries that are less than conclusive, we model

the cost of information discovery as a distinct expenditure of goods, ci(P i) 2 RL+, for any

discovery P i (a partition of 
) that i can undertake from a menu of partitions Mi.9 For

equilibria that nearly satisfy the competitive price rule to approximate the full-revelation

equilibria, discovery costs must be small: in a full-revelation equilibrium no one will agree

to pay any discovery costs.

Given the partitions P�i and letting RPi;P�i denote the coarsest common re�nement of

P i and the P�i, consumer i�s budget set will now be

Bi(p;P�i) =
��
xi;P i

�
2 RL+ �Mi : xi is RPi;P�i-measurable and p � xi + p � ci(P i) � p � ei

	
.

Accordingly an equilibrium is now a (p; x) such that there exists
�
P1; :::;PI

�
2
Q
i2IMi

where, for every consumer i, (xi;P i) 2 Bi(p;P�i) and U i(xi) � U i(xi0) for each (xi0;P i0) 2

Bi(p;P�i) and where the market-clearing inequality in De�nition 1 is replaced by
P

i2I(x
i+

ci(P i)) �
P

i2I e
i.

If, for each i 2 I, ui di¤erentiably strictly concave and increasing then the economy is

smooth. Fixing ui, ei, andMi for each agent i 2 I, a model E consists of a cost ci(P) for

each i 2 I and P 2Mi and a probability �. For a sequence of models En, the costs of

information converge to 0 if cin(P)! 0 for each i 2 I and P 2Mi and the inconclusiveness

of information converges to 0 if there is a �, called the probability identi�ed by En, that

satis�es De�nition 4 and �n ! �.

If En is a sequence for a smooth economy such that the inconclusiveness of information

converges to 0 then each consumer i has well-de�ned full-revelation demands xi(p) when

9As with endowments, we should assume, for each i 2 I and Pi2Mi, that ci(Pi) is measurable with
respect to the coarsest common re�nement of the partitions in

�V
Pi : i 2 I

	
.
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facing p � 0 and the probability identi�ed by En.10 A (p; x) is regular if D
P

i2I x
i(p) has

rank L� 1 and (p; x)� 0. The rank condition is generically satis�ed at equilibria.11

Given En, the sequence (pn; xn) satis�es the competitive price rule in the limit if

pk;n(!)� �n(!jPn(!))
X

!02Pn(!)

pk;n(!
0)! 0

for each state ! and good k, where Pn(!) indicates the cell of Pxn that contains !.

Theorem 3 If for a sequence of smooth exchange economies the costs and inconclusiveness

of information converge to 0 and the equilibria (pn; xn) converge to a regular point then there

exist full-revelation equilibria (p�n; x
�
n) such that the distance between (p

�
n; x

�
n) and (pn; xn)

converges to 0 if and only if (pn; xn) satis�es the competitive price rule in the limit.

So if the costs and inconclusiveness of information are small the equilibria that satisfy

the competitive price rule would not be disturbed by much if markets for all state-contingent

goods were to open. The competitive-price-rule equilibria thus do not display the suspicious

self-con�rmation pattern where the hypothetical prices of goods at events that will not be

observed lie far from the values that would obtain if markets for goods at those events were

operating.

5 The price rule as a positive feature of equilibrium

Theorems 2 and 3 raise the question of whether the competitive price rule will be a nec-

essary property of (standard, not full-revelation) equilibrium when information discoveries

are conclusive and costless. A violation of the price rule means that the prices that agents

assign to goods at some unobserved event E will be disproportionately low relative to the

probability of E, which gives agents an incentive to undertake an information discovery that

can distinguish E from its complement. As we will now see, this argument is correct but it

does not imply the price rule, which typically requires the coordinated discoveries of many

agents.

10That is, xi(p) is the solution to max
P

!2
 �(!)u
i
!(x

i
!) s.t. p � xi � p � ei, xi � 0.

11See, e.g., Mas-Colell (1985), chapter 8.
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The positive result that a partial price rule must hold in equilibrium requires only a

weaker form of conclusiveness. Since the information discoveries we consider might not

reveal the exact state, we do not need to assume that agents know their utilities once they

learn P 2 Px;y. It is enough that any further information beyond P is independent of the

information agents receive about their utilities from P .

The information discovery (partition) D is conditionally conclusive for consumer i at the

equilibrium (p; x; y) if i�s vNM utility and the information i can discover are conditionally

independent given i�s information in equilibrium: if for all D 2 D, P 2 Px;y, and V 2 V i,

�(D \ V jP ) = �(DjP )�(V jP ).

The information discovery D is costless for consumer i at equilibrium (p; x; y) if there is

a xi0 � 0 such that (i) D = Pxi0;x�i;y, (ii) D re�nes Px;y, (iii) p � xi0 = p � xi, and (iv)

U i(xi0) = U i(xi). So D is costless to a consumer if paying for the discovery does not lead to

a utility loss and the consumer gains information relative to what he knows in equilibrium.

As mentioned earlier, the general model of section 2 can accommodate costless information

discoveries if we introduce goods that provide no utility with a price of 0. De�ne consumer

i�s utility for k to be di¤erentiable at (p; x; y) if, for each ! 2 
, ui! is di¤erentiable and

strictly increasing with respect to xik(!) and x
i
k(!) > 0.

Theorem 4 Assume consumer�s i utility for k is di¤erentiable at the equilibrium (p; x; y).

If D is conditionally conclusive and costless for consumer i at (p; x; y) then the competitive

price rule obtains with respect to D and good k: for each P 2 Px;y and D 2 D with D � P ,

X
!2D

pk(!) = �(DjP )
X
!2P

pk(!).

The reasoning behind Theorem 4 is similar to the proof of Theorem 2: a violation of the

price rule at some event D would induce i to reveal D and buy a little bit more of good k

either at D or its complement in P at a disproportionately low price.

Theorem 4 is as far as we can go and even its strong assumptions do not imply the

competitive price rule, as the following Example shows. To avoid the ine¢ ciency that
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accompanies information discovery, we have to impose the price rule: it will not impose

itself.

Example 6 Set 
 = f!1; !2; !3; !4g with probabilities given by:

�(!1) = :1 �(!2) = :4

�(!3) = :4 �(!4) = :1
.

There are two consumers and no �rms, I = 2 and J = 0. Consumer 1 can costlessly discover

the rows above, the cells f!1; !2g and f!3; !4g while 2 can costlessly discover the columns,

f!1; !3g and f!2; !4g.

Assume there is one �rst-period good (in addition to a useless good that triggers infor-

mation discoveries) and one second-period good per state. If each consumer i has the vNM

utility ui!(x
i(1); xi(!)) = xi(1) + xi(!) at state ! then it is an equilibrium action for each

agent to consume his endowment at the prices p(1) = 1 and p(!) = :25 for all ! 2 
 and to

not uncover the information he could discover: the sum of the prices at any event D an agent

can discover,
P

!2D p(!), equals
1
2
as does �(D)

P
!2
 p(!). The conclusion of Theorem

4 is therefore satis�ed. The competitive price rule in contrast requires that (p(!))!2
 be

proportional to (�(!))!2
. Notice that if at least one of the two agents does undertake

discovery then the competitive price rule must hold. �

The limited enforcement of the price rule given in Theorem 4 applies only to the discover-

ies of consumers, not �rms. Firms do not hold probability judgements and do not maximize

an expected value of any random variable: they therefore are not in a position to exploit

prices that are not proportional to probabilities. See Example 3 Continued.

6 Conclusion

When agents can discover information, competitive equilibria can be ine¢ cient. Ruling out

information externalities will not by itself solve the problem; we need to impose a competitive

price rule that the prices agents assign to goods at undiscovered events are proportional to

the probabilities of those events. Additional classical assumptions that are usually irrelevant
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for e¢ ciency �agreement on probabilities and risk aversion �are also required. From the

glass-is-half-full perspective, the price rule extends the concept of price-taking to settings

where agents can discover information: the rule holds constant the price of increases in the

likelihood that a good is received. When the value of information is small, the price rule

also has the virtue of avoiding the self-con�rmation phenomenon where prices jump from

their equilibrium values if markets for goods at unobserved events were to open.

Though several examples have illustrated the existence of equilibrium, this paper has

focused on e¢ ciency. For purposes of countering the Schumpeterian view that optimal ex-

perimentation with new technologies leads inevitably to market power, it is the compatibility

of e¢ ciency and competition that is most relevant. Moreover the existence issues that do

arise can be addressed by known tools. For instance, one natural case of information acqui-

sition occurs when agents must pay a discrete cost to make a discovery (Examples 1 and 2).

This nonconvexity can block existence since it introduces a discontinuity of demand: agents

can respond to a small price change by discretely deciding to start or stop paying the discov-

ery cost. The Starr (1969) approach to existence can tackle this problem: a continuum of

agents can bridge the discontinuities by letting a fraction of agents (a continuous variable)

pay the discrete discovery cost.

The existence of equilibria is easier to establish when information discoveries are made

by �rms. As Example 3 indicated, discovery can occur as a byproduct of trying out a

technology in the �rst period or building capital equipment. The conditions that guarantee

existence of an Arrow-Debreu equilibrium �convexity, continuity, and positive endowments

� will then imply that a full-revelation equilibrium exists.12 As long as second-period

production requires �rst-period inputs, one can then build a De�nition 1 equilibrium from a

full-revelation equilibrium. We close with a brief sketch.

Recall that Yj is the partition that indicates �rm j�s single-state production sets.

De�nition 6 If there exists a partition P of 
 and a Y j1 � RL1 for each j 2 J such that

1. for all j 2 J , yj(1) 2 Y j1 implies Pj(yj) is the coarsest common re�nement of Yj and

P while yj(1) =2 Y j1 implies Pj(yj) = P and yj(!) = 0 for all ! 2 
,
12A full-revelation equilibrium amounts to an Arrow-Debreu equilibrium in which the state is revealed

independently of agent actions at the end of the �rst period.
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2. for all i 2 I and xi � 0, P i(xi) = P,

3. the coarsest common re�nement of P and the Yj, j 2 J , equals the partition of

singletons ff!g : ! 2 
g,

then �rst-period production is fully revealing.

The partition P above indicates the information revealed by nature independently of agent

actions. Condition 1 says that each �rm j can discover its second-period production possi-

bilities and go on to produce in the second period if and only if it tries out production in the

�rst period by taking an action in Y j1 . Conditions 2 and 3 say that the information revealed

by �rms and nature form the whole of the economy�s uncertainty.

Proposition 1 If a full-revelation equilibrium exists and production sets are convex, no

externalities is satis�ed, and �rst-period production is fully revealing then an equilibrium

exists.

The proof, which we omit, builds an equilibrium from a full-revelation equilibrium by

having each agent, at each cell P of the partition Px;y that arises in a full-revelation equilib-

rium (p; x; y), instead take the average of the actions the agent takes at P . As in the proof of

Theorem 1, the new actions are feasible given the convexity assumption and deliver the same

utility or pro�ts.13 It may be that some information is not revealed in equilibrium since

some �rm j may decide not to take an action in Y j1 . But the assumption that �rst-period

production is fully revealing ensures that this information loss does not hamper �rm j: by

De�nition 6-1, when j fails to take an action in Y j1 the missing information is useless.

A Appendix: risk aversion and common priors

Example 7 Let there be two consumers a and b and two states in an exchange economy

with one consumption good at each date and state: I = 2, J = 0, S = 2 with probabilities

�(!1) = �(!2) =
1
2
. Endowments for both consumers are constant across dates and states,

13In e¤ect, this is a full-revelation equilibrium that is constant across sunspots. See Cass and Polemar-
chakis (1990) for a similar argument.
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ea = eb = (1; 1; 1). Consumer a is risk-loving with vNM utility xa(1) + (xa(!))2 at each

state ! while consumer b is risk-neutral with vNM utility xb(1) + 2xb(!) at each !. (We

omit subscripts on consumptions and prices.) Since the vNM utilities do not vary by state,

no externalities is vacuously satis�ed.

Consumer b can reveal the state by spending " � 0 of the �rst-period good on an

information-discovery technology.14 In the following equilibrium, b does not reveal the state

�with a strict disincentive if " > 0 �but it would be socially e¢ cient to do so. The prices

are p = (p(1); p(!1); p(!2)) = (1; 1; 1), which satis�es the competitive price rule, and each

agent i consumes (xi(1); xi(!1); xi(!2)) = (1; 1; 1). But if " � 0 and � > 0 are su¢ ciently

small, the consumption pro�le

(xa(1); xa(!1); x
a(!2)) = (1� "� �; 2; 0),

(xb(1); xb(!1); x
b(!2)) = (1 + �; 0; 2),

strictly Pareto dominates equilibrium consumption. �

Example 8 Suppose there are three consumers a, b, and c, and two states in an exchange

economy with one good at each date and state: I = 3, J = 0, S = 2, with probabilities now

varying by individual and de�ned by �a (!1) = 1
2
, �b(!1) = 1

4
, �c(!1) = 3

4
. Each consumer

i is endowed with one unit of the good at each date and state, ei = (1; 1; 1).

Consumer a by devoting " � 0 of the �rst-period good to a production technology can

reveal the state. We build an equilibrium where the consumer does not reveal the state but

where it is socially e¢ cient to do so. The price vector will be p = (p(1); p(!1); p(!2)) =

(1; 1
2
; 1
2
) which satis�es the price rule when �(!1) = 1

2
. (We again omit the subscripts on

prices and consumptions.)

For consumers b and c, set the utility functions so that at p: if the state is revealed,

the agent consumes 3
2
at the state to which the agent assigns the probability 3

4
and con-

sumes 1
2
at the state to which the agent assigns probability 1

4
and if the state is not

revealed, the agent consumes 1 unit of each good. That is, (xb(1); xb(!1); xb(!2)) =

14As in Example 4, discovery must be modeled formally as the purchase of an additional �rst-period good
produced by a �rm that uses the original �rst-period good as its input. See footnote 4.
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(1; 1
2
; 3
2
) and (xc1; x

c(!1); x
c(!2)) = (1;

3
2
; 1
2
) if the state is revealed and (xb1; x

b(!1); x
b(!2)) =

(xc1; x
c(!1); x

c(!2)) = (1; 1; 1) if the state is not revealed. To satisfy these features, let bu be
di¤erentiable and strictly concave such that 1

4
bu0(1

2
) = 1

2
bu0(1) = 3

4
bu0(3

2
) and assume that each

consumer i (including i = a) has the expected utility

U i
�
xi
�
= bu(xi(1)) + �i(!1)bu(xi(!1)) + �i(!2)bu(xi(!2)).

As the vNM utilities do not vary by state, no externalities is satis�ed regardless of which

distribution �i is used in De�nition 3.

If there were no discovery cost, consumer a would consume (1; 1; 1) at p and thus enjoy

the same expected utility level (2) whether or not the state is revealed. Thus a has no

incentive to reveal the state and has a strict disincentive if " > 0. But when b and c both

consume (1; 1; 1), the ratio of b�s marginal utilities for consumption at !1 and !2,
�b(!1)
�b(!2)

= 1
3
,

does not equal the same ratio for c, �
c(!1)
�c(!2)

= 3. Consequently if the state were revealed a

reallocation between b and c of their consumption at !1 and !2 can increase both agents�

expected utility. Hence, when " is su¢ ciently small, consumer a could be compensated

enough to reveal the state, achieving a Pareto improvement.

Observe that the price rule is satis�ed both with respect to �a, the belief of the con-

sumer who makes the decision to reveal the state, and the average beliefs of the consumers,
1
3

�
�a + �b + �c

�
. �

B Appendix: proofs

Throughout Appendix B, we use the notation xi! = (x
i(1); xi(!)) and yj! = (y

j(1); yj(!)).

Proof of Theorem 1. Let (p; x; y) be an equilibrium that satis�es the price rule. We
show that (p; x; y) is a competitive equilibrium of the following model bE . Let each i 2 I
have the consumption set

bX i =
�
xi 2 RL+ : xi is measurable w.r.t. the coarsest common re�nement of P i(xi) and Q�i	 ,

and, given p 2 RL+ and y 2 RLJ+ , the budget set bBi(p; y) = fxi 2 bX i : p�xi � p�ei+
P

j �
ijp�yjg.

Let each j 2 J have the production set

bY j = �yj 2 Y j : yj is measurable w.r.t. the coarsest common re�nement of Pj(yj) and Q�j	 .
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Each i 2 I must choose a xi 2 bBi(p; y) but can violate the further measurability require-
ments in Bi(p; x�i; y) and each j 2 J must choose a yj 2 bY j but can violate the further
measurability requirements in Aj(x; y�j). Otherwise the de�nition of equilibrium remains
unchanged. Given that preferences are utility-representable and hence transitive and our
local nonsatiation assumption, the �rst welfare theorem applies to bE and x is therefore Pareto
e¢ cient among allocations in

bF = nx 2Y
i2I

bX i : there exists y 2
Y

j2J
bY j such that X

i2I
bxi �X

j2J
yj +

X
i2I
ei
o
.

Since bF contains the set of feasible allocations for the original model, Pareto e¢ ciency in bF
implies that x is Pareto e¢ cient in the original model.
To conclude that (p; x; y) is a competitive equilibrium of bE , suppose to the contrary

that there is either (1) a i 2 I and bxi 2 bX i such that p � bxi � p � ei +
P

j2J �
ijp � yj and

U i (bxi) > U i �xi� (an a¤ordable but possibly non-Px;y-measurable bxi that increases i�s utility
relative to xi), or (2) a j 2 J and byj 2 bY j such that p � byj > p � yj (a feasible but possibly
non-Px;y-measurable byj that increases j�s pro�ts relative to yj).
For (1), de�ne the Pbxi;x�i;y-measurable exi by setting exi(1) = bxi(1) and, for each P 2

Pbxi;x�i;y and ! 2 P , exi(!) =P!02P �(!
0jP )bxi(!0). Since exi is Pbxi;x�i;y-measurable, exi 2 bX i.

We show that U i (exi) � U i (bxi) and exi 2 Bi(p; x�i; y), thus contradicting the fact that
(p; x; y) is a competitive equilibrium.
Fix P 2 Pbxi;x�i;y and V � 2 V i such that �(V �\P ) > 0. For anyQ 2 Q�i, the assumption

that bxi 2 bX i implies there is a bxiQ 2 RL1+L2 such that bxi! = bxiQ for all ! 2 Q \ P . Hence,
for any ! 2 P , exi(!) =X

V 2Vi
�(V jP )

X
Q2Q�i

�(QjV \ P )bxiQ.
For all V 2 V i with �(V \ P ) > 0 and all Q 2 Q�i, no externalities implies �(QjV \ P ) =
�(QjV �\P ) and thus

P
V 2Vi �(V jP )

P
Q2Q�i �(QjV \P )bxiQ =PQ2Q�i �(QjV �\P )bxiQ. For

xi 2 RL+, let vi(xi) denote the random variable equal to ui!(x
i
!) at ! 2 
 and let uiV � denote

the vNM utility ui! where ! is any state in V
�. Then

E[vi(exi)jV � \ P ] = uiV � �X
Q2Q�i

�(QjV � \ P )bxiQ� .
Since

E[vi(bxi)jV � \ P ] =X
Q2Q�i

�(QjV � \ P )uiV �(bxiQ),
the concavity of the ui! and Jensen�s inequality imply E[v

i(exi)jV � \ P ] � E[vi(bxi)jV � \ P ].
Consequently U i (exi) � U i (bxi).
To con�rm that exi 2 Bi(p; x�i; y), �x P 2 Pbxi;x�i;y and a good k. The competitive price

rule then implies the third equality below:X
!2P

pk(!)exik(!) =X
!2P

pk(!)
X
!02P

�(!0jP )bxik(!0) = X
!02P

�(!0jP )
X
!2P

pk(!)bxik(!0) = X
!02P

pk(!
0)bxik(!0).

Hence p � exi = p � bxi. Since p � bxi � p � ei +Pj2J �
ijp � yj, exi 2 Bi(p; x�i; y). Combined with
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U i (exi) � U i (bxi) > U i �xi�, this contradicts xi being an equilibrium choice for i.
For (2), the assumption that byj 2 bY j implies that for each P 2 Px;byj ;y�j and Q 2 Q�j

there is a byjP\Q 2 RL2 such that byj(!) = byjP\Q for ! 2 P\Q. For each P 2 Px;byj ;y�j , setQP to
be an element of argmaxQ

P
!2P p(!)�byjP\Q s.t. Q\P 6= ?, where p(!) = �p1(!); :::; pL2(!)�,

and de�ne eyj 2 RL by eyj(1) = byj(1) and eyj(!) = byjP (!)\QP for each ! 2 P , where P (!)
denotes the P 2 Px;byj ;y�j such that ! 2 P .
We �rst show that eyj 2 Aj(x; y�j). Since eyj is Px;byj ;y�j -measurable, we need to show

that eyj 2 Y j. To that end, enumerate the cells in the coarsest common re�nement of Yj
and Px;byj ;y�j as R = fR1; :::; Rng and let P (Rm) 2 Px;byj ;y�j satisfy P (Rm) � Rm. Beginning
with byj 2 Y j, change byj(!) to eyj(!) for ! in the sequence of cells R1; :::; Rn until arriving ateyj. Formally, for m 2 f0; :::; ng, de�ne yj(m) 2 RL by

yj!(m) =

� eyj! if ! 2 Rl and 1 � l � m,byj! otherwise.

To argue by induction that yj(n) = eyj 2 Y j, note that yj(0) 2 Y j and suppose yj(m �
1) 2 Y j for some m 2 f1; :::; ng. Recall our assumption that if Y j!0 = Y j!00 and y

j 2 Y j
then yj0 2 Y j for the yj0 de�ned by yj0! = yj! for ! 2 
nf!00g and y

j0
!00 = yj!0. Since (i)

Y j!0 = Y j!00 for all !
0; !00 2 Rm, (ii) yj(m � 1) 2 Y j, and (iii) QP (Rm) \ P (Rm) 6= ? and

no externalities imply that QP (Rm) \ Rm 6= ? and hence there is a ! 2 Rm such that
yj!(m� 1) = (byj(1); byjP (Rm)\QP (Rm)

), we conclude that yj(m) 2 Y j.
To �nish, we show that p �eyj � p �byj and therefore p �eyj > p �yj which contradicts yj being

an equilibrium choice for j. Fix P 2 Px;byj ;y�j . For yj 2 RL, de�ne �(yj) =P!2P p(!)�yj(!)
(the pro�ts earned by yj at P ) and let Q(!) denotes the Q 2 Q�j such that ! 2 Q. Then
�(eyj) =P!2P p(!) � byjP\QP while the competitive price rule implies
�(byj) =X

!2P
p(!)�byjP\Q(!) =X

!2P

 
�(!jP )

X
!02P

p(!0)

!
�byjP\Q(!) =X

!2P
�(!jP )

 X
!02P

p(!0) � byjP\Q(!)
!
.

Since the de�nition of QP implies
P

!2P p(!) �byjP\QP �P!2P p(!) �byjP\Q(!), we have �(eyj) �
�(byj) and hence p � eyj � p � byj > p � yj.
Proof of Theorem 2. Suppose (p; x) is a full-revelation equilibrium and the com-
petitive price rule fails: there exist P 2 Px, !0 2 P , and a good k such that pk(!0) 6=
�(!0jP )

P
!2P pk(!).

Observation 1: for any bP � 
, �( bP ) = 0 i¤ P!2 bP pk0(!) = 0 for each good k0. Proof:
if �( bP ) = 0 then xi � 0 implies pk0(!) = 0 for each ! 2 bP , while if P!2 bP pk0(!) = 0 then
the increasingness of the utilities implies �( bP ) = 0.
Observation 2: �(P ) > 0. Proof: if �(P ) = 0 then, by Observation 1,

P
!2P pk(!) = 0

and pk(!0) = 0 which imply pk(!0) = �(!0jP )
P

!2P pk(!), a contradiction.
To conclude that there is a P 0 � P such that

P
!2P 0 pk(!) < �(P

0jP )
P

!2P pk(!), note
that f!0g can serve as P 0 if pk(!0) < �(!0jP )

P
!2P pk(!). If pk(!

0) > �(!0jP )
P

!2P pk(!)
then

P
!2Pnf!0g pk(!) < �(Pnf!0gjP )

P
!2P pk(!) and so Pnf!0g can serve as P 0.
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Next we show that
P

!2PnP 0 pk(!) > 0. If instead
P

!2PnP 0 pk(!) = 0 then, by Observa-
tion 1, �(P 0jP ) = 1 and hence

P
!2P 0 pk(!) = �(P

0jP )
P

!2P pk(!), a contradiction. This
fact permits the following de�nitions.
For " > 0 and ! 2 
, de�ne exi("; !) 2 RL2 by setting, for each good k0,

exik0("; !) =
8><>:
xik(!) + " if k0 = k and ! 2 P 0,
xik(!)�

Pb!2P 0 pk(b!)Pb!2PnP 0 pk(b!)" if k0 = k and ! 2 PnP 0,
xik0(!) otherwise,

and also exi!(") = (xi(1); exi("; !)) and exi(") = �xi(1); (exi("; !))!2
�.
Since

P
!2P 0 pk(!) < �(P

0jP )
P

!2P pk(!) implies
P

!2PnP 0 pk(!) > �(PnP 0jP )
P

!2P pk(!)

and therefore �(P 0) > �(PnP 0)
P
!2P 0 pk(!)P

!2PnP 0 pk(!)
, we have

E
�exik("; �)�� E �xik (�)� =

 
�(P 0)� �(PnP 0)

P
!2P 0 pk(!)P
!2PnP 0 pk(!)

!
" > 0.

Given our di¤erentiability assumption, Arrow (1965) implies that, for any vNM utility u and
all " > 0 su¢ ciently small,

P
!2P �(!jP )u(exi!(")) >P!2P �(!jP )u(xi!).

For xi 2 RL+, let vi(xi) denote the random variable equal to ui!(x
i
!) at !; for V 2

V i, let uiV denote the vNM utility ui! where ! is any state in V . Since �(V jP ) equals
either 0 or 1 for each V 2 V i there is one V 2 V i such that �(V jP ) = 1, which we label
V �. Hence E[vi(exi("))jP ] = P

!2P �(!jP )uiV �(exi!(")). Since
P

!2P �(!jP )uiV �(exi!(")) >P
!2P �(!jP )uiV �(xi!), we conclude that

E[vi(exi("))jP ] > uiV � �xiP � = E[vi(xi)jP ].
Since, by Observation 2, �(P ) > 0, U i (exi(")) > U i(xi) for all " > 0 su¢ ciently small, and
since

X
!2P

pk(!)exik("; !) = X
!2P 0

pk(!)
�
xik(!) + "

�
+
X

!2PnP 0
pk(!)

 
xik(!)�

P
!2P 0 pk(!)P
!2PnP 0 pk(!)

"

!
=
X
!2P

pk(!)x
i
k(!),

exi(") 2 Bi(p; x�i).
Since exi(") for any " su¢ ciently small is therefore a utility-increasing deviation, (p; x)

could not be an equilibrium.
Conversely suppose the competitive price rule holds at the equilibrium (p; x) but (p; x)

is not a full-revelation equilibrium: there is a i 2 I and bxi � 0 such that U i(bxi) > U i(xi)
and p � bxi � p � ei.
Fix P 2 Px such that �(P ) > 0, and let V � be the sole element of V i such that

�(V � \ P ) > 0 and let uiV � denote the vNM utility ui! where ! is any state in V
�. Fol-

lowing the proof of Theorem 1, de�ne the Px-measurable exi by setting exi(1) = bxi(1) and,
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for each P 2 Px and ! 2 P , exi(!) = P!02P �(!
0jP )bxi(!0). Let vi(xi) denote the random

variable de�ned by vi(xi)(!) = ui!(x
i
!). Since E[v

i(exi)jP ] = uiV � �P!02P �(!
0jP )bxi(!0)� and

E[vi(bxi)jP ] = P
!02P �(!

0jP )uiV �(bxi(!0)), the concavity of the ui! and Jensen�s inequality
imply E[vi(exi)jP ] � E[vi(bxi)jP ] and consequently U i (exi) � U i (bxi). Mention budget con-
straint. As in the proof of Theorem 1,

P
!2P pk(!)exik(!) �P!2P pk(!)bxik(!) for each good

k and hence p � exi � p � ei. Thus (p; x) could not be an equilibrium.
Proof of Theorem 3. Let (p; x) denote the regular point to which the equilibria
(pn; xn) converge, let � denote the probabilities to which �n converges, and let

�
P1n; :::;PIn

�
2Q

j2IMj be the partitions chosen at equilibrium (pn; xn). Given the �niteness of 
, there
must be a

�
P1; :::;PI

�
and a subsequence of positive integers hn0i such that

�
P1; :::;PI

�
=�

P1n; :::;PIn
�
for all n0 in the subsequence. Let R denote the coarsest common re�nement of

the Pj.
Note that since (p; x)� 0 our smoothness assumption implies � � 0.
If. Suppose (pn; xn) satis�es the competitive price rule in the limit. We begin by show-

ing that (p; x) is a full-revelation equilibrium when probabilities equal �. Suppose to the
contrary that there is a i 2 I and bxi � 0 such that p � bxi � p � ei and P!2
 �(!)u

i
!(bxi!) >P

!2
 �(!)u
i
!(x

i
!). De�ne theR-measurable exi by setting exi(1) = bxi(1) and, for each P 2 R

and ! 2 P , exi(!) = P
!02P�(!

0jP )bxi(!0). Since pk;n0(!) � �n0(!jP )
P

!02P pk;n0(!
0) !

0 as n0 ! 1 for each good k and � � 0, P 2 R, and ! 2 P , we have pk(!) =
�(!jP )

P
!02P pk(!

0). As in the proofs of Theorem 1 and 2, p � exi = p � bxi andX
!2


�(!)ui!(exi!) �X
!2


�(!)ui!(bxi!) >X
!2


�(!)ui!(x
i
!).

Next de�ne, for each n0 in the subsequence, the P-measurable exin0 by setting exin0(1) = bxi(1)�
cin0(P i) and exin0(!) = exi(!) for each ! 2 
. Since �n0 ! �, cin0(P i) ! 0, (pn; xn) ! (p; x),
and the ui! are continuous,X

!2

�n0(!)u

i
!(exin0(1); exin0(!)) !

X
!2


�(!)ui!(exi(1); exi(!)),X
!2


�n0(!)u
i
!(x

i
n0(1); x

i
n0(!)) !

X
!2


�(!)ui!(x
i(1); xi!),

pn0 � exin0 ! p � exi.
Thus pn0 � exin0 ! p � bxi and hence pn0 � exin0 + pn0 � cin0(P i)� pn0 � ei ! 0 and there exists a " > 0
such that, for all n0 su¢ ciently large,X

!2

�n0(!)u

i
!(exin0(1); exin0(!)) �X

!2

�n0(!)u

i
!(x

i
n0(1); x

i
n0(!)) + ".

There is consequently a � > 0 such thatX
!2


�n0(!)u
i
!(exin0(1)� (�; :::; �); exin0(!)) >X

!2

�n0(!)u

i
!(x

i
n0(1); x

i
n0(!))
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and pn0 � (exin0(1)� (�; :::; �); exin0(!)) � pn0 � ei for all n0 su¢ ciently large, which contradicts the
assumption that each (pn; xn) is an equilibrium. Thus (p; x) is a full-revelation equilibrium
when probabilities are �.
Let xi(p; �) denote agent i�s full-revelation demand as a function of p and �. Given

that ui is di¤erentiably strictly concave and weakly increasing, ui is strictly increasing which
combined with concavity implies DU i (xi) � 0 for any xi � 0. Using this fact and the
di¤erentiably strict concavity of ui, a standard application of the implicit function theorem
to i�s optimization problem implies that xi(�) is continuously di¤erentiable. Since (p; x)
is a full-revelation equilibrium, p = p is a solution of xi(p; �) =

P
i2I e

i. Since (p; x) is
regular, the implicit function theorem implies that if �n ! � then for all n su¢ ciently large
xi(p; �n) =

P
i2I e

i has a solution p = p�n such that p
�
n ! p, and so

�
p�n; (x

i(p�n; �n))i2I
�

provides the desired sequence of full-revelation equilibria.
Only if. Suppose there is a full-revelation equilibrium (p�n; x

�
n) for each En such that

(p�n; x
�
n)� (pn; xn)! 0 and that, for some good k and state !0,

pk;n(!
0)� �n(!0jPn(!0))

X
!2Pn(!)

pk;n(!)

fails to converge to 0. Taking a further subsequence of hn0i if necessary, there must be a
P 2 R and a 6= 0 such that Pn0(!0) = P for all n0 and pk;n0(!0)��n0(!0jP ))

P
!2P pk;n0(!)!

a. Therefore pk(!
0) 6= �(!0jP )

P
!2P pk(!).

We now follow the proof of Theorem 2 and its notation except that xik0(!) replaces x
i
k0(!)

in the de�nition of exi("; !) and En (resp. U in) and E� (resp. U i�) indicate expectations (resp.
expected utilities) calculated using �n and � respectively. Since there exists a P 0 � P such
that

P
!2P 0 pk(!) < �(P

0jP )
P

!2P pk(!), E� [exik("; �)]�E� �xik (�)� > 0. Hence for any vNM
utility u and all " > 0 su¢ ciently small,

P
!2P �(!jP )u(exi!(")) >P!2P �(!jP )u(xi!). Since

the inconclusiveness of information converges to 0, there is a V � 2 V i such that �(V �jP ) = 1.
Hence E�[vi(exi("))jP ] =P!2P �(!jP )uiV �(exi!(")) and therefore

E�[v
i(exi("))jP ] > uiV � �xiP � = E�[vi(xi)jP ].

Since En[vi(exi("))jP ] ! E�[v
i(exi("))jP ] and En[vi(xi)jP ] ! E�[v

i(xi)jP ], we conclude that
En[v

i(exi("))jP ] > E�[vi(xi)jP ] for all large n. Hence U in(exi(")) > U in(xi) for large n. Sinceexi(") 2 Bi(pn; x�in ), (pn; xn) could not be an equilibrium for large n.

Proof of Theorem 4. Suppose that the partitionD is conditionally conclusive and costless
for consumer i at an equilibrium (p; x; y), P 2 Px;y, D 2 D with D � P , and there is a good
k such that

P
!2D pk(!) 6= �(DjP )

P
!2P pk(!) and x

i
k(!) > 0 for ! 2 P .

Following the proof of Theorem 2, �(D) > 0 and there is no loss in generality in assumingP
!2D pk(!) < �(DjP )

P
!2P pk(!). With D = P 0, let exi("; !), exi!("), exi("), the random

variable vi(xi), and the vNM utility uiV assume their earlier de�nitions. Then

E
�exik("; �)�� E �xik (�)� =

 
�(D)� �(PnD)

P
!2D pk(!)P
!2PnD pk(!)

!
" > 0
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and hence, for any vNM utility u and all " > 0 su¢ ciently small,
P

!2P �(!jP )u(exi!(")) >P
!2P �(!jP )u(xi!). Letting exiD(") (resp. exiPnD) denote exi!(") for ! 2 D (resp. ! 2 PnD),

we therefore have �(DjP )u (exiD("))+�(PnDjP )u�exiPnD(")� > u (xiP ) for small " > 0. Using
this fact for the inequality, the fact that D re�nes P for the �rst equality, and the conditional
conclusiveness of D for the third equality, we have, for all " > 0 su¢ ciently small,

E[vi(exi("))jP ] = �(DjP )
X
V 2Vi

�(V jD)uiV
�exiD(")�+ �(PnDjP )X

V 2Vi
�(V jPnD)uiV

�exiPnD(")�
=

X
V 2Vi

�
�(V jD)�(DjP )uiV

�exiD(")�+ �(V jPnD)�(PnDjP )uiV �exiPnD(")��
=

X
V 2Vi

�(V jP )
�
�(DjP )uiV

�exiD(")�+ �(PnDjP )uiV �exiPnD(")��
>

X
V 2Vi

�(V jP )uiV
�
xiP
�
= E[vi(xi)jP ].

Since �(D) > 0 and hence �(P ) > 0, U i (exi(")) > U i(xi) for all " > 0 su¢ ciently small, and
since

X
!2P

pk(!)exik("; !) =X
!2D

pk(!)
�
xik(!) + "

�
+
X
!2PnD

pk(!)

 
xik(!)�

P
!2D pk(!)P
!2PnD pk(!)

"

!
=
X
!2P

pk(!)x
i
k(!),

and D is costless, exi(") 2 Bi(p; x�i; y).
Since exi(") for any " su¢ ciently small is therefore a utility-increasing deviation, (p; x; y)

could not be an equilibrium.
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