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Abstract

We generalize Keller, Rady and Cripps’s [2005] model of strategic experimentation

by assuming that transfers of information between players are costly. We introduce

costly communication in three different ways. First, we consider the Paying to ex-

change information game: the exchange of information between players occurs if and

only if both payed the communication cost. Second, we consider the Paying to buy in-

formation case, where players pay the cost to observe their opponent’s action. Finally,

we study the Paying to give information case, where players pay the communication

cost to display their actions and outcomes. We study the existence and the structure

of equilibria in each setting. We show that making communication costly is efficient,

in the sense that it decreases free-riding, and increases the speed of learning at equi-

librium.

1 Introduction

In many economic situations, agents are trying to optimize their decisions while im-

proving their information at the same time. Consider for instance oil or gas companies,

contemplating the exploitation of a new site. The new site can be either very rewarding,
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having more reserves than the old one, or can contain no oil at all. Each company has to

decide how much of its effort to allocate to the new site, whose reward is unknown, and

how much to the old one, whose reward can be considered as certain in the short run.

A large literature in operation research and in game theory has analyzed the decision

problem of a single agent who has to choose sequentially between two alternatives whose

expected return are uncertain. Multi-armed bandits models1 where an agent has to decide

whether to play a safe arm, offering a known payoff, and a risky arm of unknown payoff,

have been used to formalized this tradeoff between exploration (trying out each arm to

find the best one) and exploitation (playing the arm believed to give the best payoff).

In particular situations such as those described in the oil company example, the first

breakthrough discovery of oil in the new site reveals its superiority to the old site and

leads all companies to drill there and to abandon the exploitation of the old site. In such

situations, no news is bad news: players gradually become less optimistic as long as no

breakthrough happens, and fully informed as soon as it does. This particular exploration

versus exploitation trade-off has been studied by Keller, Rady, and Cripps [2005] (KRC

hereafter), using a game of strategic experimentation in continuous time where the risky

arm generates positive payoffs after exponentially distributed random times if it is good,

and never pays out anything if it is bad. In this game, players have to decide what fraction

of a given resource to allocate to the risky arm (the new site in the oil company example),

and to the safe arm (the old site). Players are said to experiment if they allocate some

resource to the risky arm while its type is still unknown. Players observe each other’s

actions (the resource allocated to each arm) and outcomes (the occurrence or absence of

a breakthrough), so that information about the type of the risky arm is a public good.

1For a review of literature on bandit models and their applications in economics, see Bergemann and

Välimäki (2006).
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It follows that players free-ride on experimentation at equilibrium, in the sense that, at a

given belief, they experiment less than what they would have done, were they isolated.

We may think of many situations in which players facing the same exploration versus

exploitation trade-off cannot physically observe each other. For instance, the old and the

new sites can be so vast that companies cannot observe where their competitors are drilling,

and whether they find oil in the new site or not. The fact that players “observe” each other

in KRC’s model implies that there is some mechanism such that the information about

each player’s action is public and free (giant screen, oral announcement,...).

In this paper, we generalize KRC’s model by assuming that transfers of information

between players are costly. We consider two players2 who have to choose sequentially what

fraction of their resource to allocate between a risky and a safe arm. As in KRC, the

risky arm generates positive payoffs after exponentially distributed random times if it is

good, and never pays out anything if it is bad. At each date, players have the opportunity

to pay a cost to “communicate” with their opponent in a particular sense. We introduce

costly communication in KRC’s model in three different ways. By communication we mean

that players can choose to truthfully give or to obtain information, that is the history of

his actions and observation, at some cost. First, we consider the Paying to exchange

information game: the exchange of information between players occurs if and only if both

payed the communication cost. Second, we consider the Paying to buy information case,

where players pay the cost to observe their opponent’s action. Finally, we study the Paying

to give information case, where players pay the communication cost to display their actions

and outcomes.

We study the existence and the structure of equilibria in Markov strategies in the

different communication settings, and investigate whether making information transfers

2Results could be easily obtain in the n-player game, with the appropriate communication structure.
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costly reduces free-riding and modifies the speed of learning.

We show that in any setting, there exist equilibria in Markov strategies with individual

beliefs as state variable. Their structure strongly depend on the communication setting. 1)

When players pay to exchange their information, there exist multiple symmetric equilibria

in which players communicate for intermediate beliefs if the communication cost is not

too high. Their structure is as follows: when players are very pessimistic, namely when

their belief of the risky arm being good is small, they allocate all of their resource to the

safe arm and do not communicate. When they are very optimistic, they devote all their

resource to the risky arm and don’t communicate either. For intermediate beliefs, the

expected gain of information is greater that its cost: players communicate, and allocate

a positive share of their resource to both arms. We identify the symmetric equilibrium

that maximizes players’ expected payoff. We also show that if the communication cost is

positive, there is no asymmetric equilibrium, whereas it is shown in KRC that there exist

several asymmetric equilibria when communication is free. 2) When players pay to buy

their opponent’s information, there is a unique symmetric equilibrium. This equilibrium

is identical to the one with the largest communication interval in the case where players

exchange information.However, there exists at least one asymmetric equilibrium, whose

structure is as follows. Players have two distinct roles, one being a pioneer (say player 1)

and the other one a free-rider (player 2). For very pessimistic beliefs, no player experiments.

For optimistic beliefs, both players experiment, buying the other one’s information except

for very optimistic beliefs where the expected gain of new information is not worth the

cost. For intermediate beliefs, only one player experiments, while the other one free-rides

in the sense that he plays the safe arm but buys the other player’s information. The two

players swap the role of pioneer and free-rider on this range of beliefs. 3) When players

pay to give information, there is no equilibrium in which players communicate, whether
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symmetric or asymmetric. This result partly follows from the absence of encouragement

effect in the exponential bandits model, first analyzed by Bolton and Harris [1999]. By this

effect, the players experiment at some beliefs at which they wouldn’t have experimented,

were they isolated. As explained in KRC, its absence in the exponential bandits model

follows from the fact that a player will experiment more than if he were alone if he thinks

that it encourages its opponent to experiment. The only way for this to happen is to have

a breakthrough. Yet in this case, all the uncertainty would be resolved, and the additional

information that the player would receive would be of no value to him. In our game, a

player will display his outcome if he thinks he may receive useful information from it. Yet

the only way for him to make his opponent communicates is to display a useful information,

that is to have a breakthrough, in which case his opponent’s information is of no value to

him. The absence of asymetric equilibrium where player exchange or give information is

true for all c > 0. This implies that the asymetric equilibria found in KRC are not robust

to communication cost in some sense.

We show that the amount of experimentation, that is the total quantity of resource

allocated by both players to the risky arm over time, increases with the communication

cost. This result shows that, quite intuitively, making communication costly reduces free-

riding. Indeed, making communication costly tends to reduce the exchange of information

at equilibrium, and then reduces the possibility of free-riding. Another important welfare

issue is that players make the right decision, that is play R if the risky arm is good, and

S otherwise. From this point of view, the relevant criterium to maximize is the speed of

learning. We show that there exists an optimal communication cost, for which players

learn faster than when they never communicate or when they always communicate.

Utile? We use a model of strategic experimentation that generalizes that in KRC, and

whose characteristics are that 1) many agents face a bandit problem in continuous time,
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where the risky arm might yield payoffs after exponentially distributed random times, and

that 2) agents do not observe others’ actions and outcomes.

Some works use exponential bandits with public observation: the financial contracting

models of Bergemann and Hege [1998,2005], the investment timing model of Décamps and

Mariotti [2004]. Other works study bandit problems with many agents in continuous time

with a different information structure: Bolton and Harris (1999) with a model where the

risky arm yields a flow payoff with Brownian noise, Keller and Rady [2009] with a model

where the risky arm distributes lump-sum payoffs according to a Poisson process; some

others study bandit models with many agents in discrete time: Bergemann and Valimaki

[1996], in which the model is set in discrete time and a general model of uncertainty is

considered. In all these works, actions and outcomes of players are publicly observed. A

recent literature focuses on the case in which only the actions of the opponents (Rosenberg,

Solan and Vieille [2007], Valimaki and Murto [2009]), or only the payoffs of the opponents

(Bonnatti and Horner [2010], Horner and Samuelson [2010]) are observed . To the best

of our knowledge, strategic communication in a bandit model where actions and outcomes

are private information has not been studied.

The rest of the paper is organized as followed. In section 2, we introduce KRC’s

model of strategic experimentation. In section 3 we present the general game of strategic

costly communication we consider. We study the equilibria of the Paying to exchange

information, Paying to buy information, and Paying to give information in sections 4, 5,

and 6. In section 7, we study the welfare properties of costly communication. We discuss

in section 8 of remaining questions and possible extensions.
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2 Strategic experimentation with exponential bandits

The aim of this section is to introduce KRC’s model of strategic experimentation with

exponential bandits. This model corresponds to those studied in this paper for a commu-

nication cost zero.

2.1 The model

Bandit problem

Time t is continuous. There are two players, each of them endowed with one unit of a

perfectly divisible resource per unit of time. Each player faces a two-armed bandit problem

where he continually has to decide what fraction of the resource to allocate to each arm.

One arm, denoted S, is safe and yields a deterministic payoff s > 0 per unit of resource

allocated to it. The other arm, denoted R, is risky and can be either “bad” or “good”. If

it is bad, then it always yield a payoff 0. If it is good, then it yields random payoffs of

mean h > 0 at random times, the arrival rate of these payoffs being a constant λ per unit

of resource allocated to the risky arm. The average payoff per unit of resource allocated

to the risky arm over time is denoted by g := λh. Furthermore, the arrival of lump-sums

is independent across players. The term exponential bandits used by KRC comes from the

fact that the time of arrival of the first lump-sum would be exponentially distributed if

players were to use a time-invariant allocation.

Formally, if a player allocates the fraction kt ∈ [0, 1] of the resource to the risky arm

over an interval of time [t, t + dt), and consequently the fraction 1 − kt to the safe arm,

then he receives the payoff (1 − kt)sdt from the arm S, the payoff 0 from the risky arm if

it is bad, and the payoff ktg from the risky arm if it is good. The payoffs are supposed to

be such that 0 < s < g, so that each player strictly prefers R to S if the risky arm is good,

and strictly prefers S to R if it is bad.
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Beliefs

At the beginning of the game, players do not know the state of the risky arm but have a

common prior belief about it. In KRC’s model, players observe each other’s actions and

outcomes at any time, and therefore will hold common posterior beliefs throughout time.

We will depart from this setting by assuming that players decide whether to show or not

their actions and outcomes. Let pt denote the players’ probability at date t that the risky

arm is good. Since a bad risky arm always yields a payoff 0, the first arrival of a lump-sum

payoff, called a breakthrough, reveals to all players that the risky arm is good. In other

words, the arrival of a breakthrough resolves the players’ uncertainty about the type of the

risky arm. Players are said to experiment when they use R while its type is still unknown.

As long as players experiment, the probability that R is good decreases.

Payoffs

The belief pt depends on the arrival of a breakthrough, and is then a random variable. The

actions of players depend on their beliefs and are then also random variables. Let ki
t be

the fraction of the unit resource allocated by player i to the risky arm over the interval

[t, t+dt), and {ki
t}t≥0 the stochastic process of player i’s actions, such that ki

t is measurable

with respect to the information available to player i at time t. Player i’s total expected

discounted payoff is

E{ki
t},{pt}

[∫ ∞

0
re−rt[(1 − ki

t)s + ki
tgpt]dt

]

A player’s payoff depends on others’ actions only through their impact on the evolution of

his beliefs.

Evolution of beliefs

Let Kt := k1
t + k2

t be the total amount of resource allocated to the risky arm over the

interval [t, t+dt). If the risky arm is good, the probability of none of the players achieving
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a breakthrough is
∏

i(1−ki
tλdt) which is equal to 1−Ktλdt up to terms to the order o(dt)

which will be ignored in the rest of the paper; if the risky arm is bad, the probability of

none of them achieving a breakthrough is 1. Therefore, if players start with the common

belief pt at time t and don’t achieve a breakthrough in [t, t + dt), the updated belief at the

end of the period is

pt+dt =
pt(1 − Ktλdt)

1 − pt + pt(1 − Ktλdt)

by Bayes’rule.

Therefore, as long as there is no breakthrough, the belief changes by3

dpt = −Ktλpt(1 − pt)dt

Once there is a breakthrough, the posterior belief jumps to 1.

2.2 Strategic experimentation

Myopic behavior

A myopic agent would simply maximize the expected short-run payoff (1 − kt)s + ktgpt.

Therefore, for pt > pm := s
g , it is myopically optimal to allocate the resource only to R;

for pt < pm, it is myopically optimal to allocate the resource only to S;

Farsighted behavior

Since 0 < s < g, agents strictly prefer the risky arm if it is good. Farsighted agents

anticipate that they may receive more in the future by playing R if it is good. Therefore,

there exists a belief threshold p such that it is optimal for foresighted agents to devote

some resource to R for pt ∈ [p, pm].

In the one-agent model, the information of the agent only comes from his own experi-

3 dpt

dt
= p′

t = limdt→0
pt+dt−pt

dt
= limdt→0

−(1−pt)ptKtλ
1−pt+pt(1−Ktλdt

= −Ktλpt(1 − pt)
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mentation. It has been shown4 that it is optimal for the agent to allocate all of his resource

to S if his belief is below a threshold p, and to allocate all of his resource to R otherwise.

p will therefore be called the single agent cut-off belief.

In the multi-player model of KRC however, the information of a player comes from

the experimentation of all of them. This implies that at the unique symmetric Markovian

equilibrium, players experiment less than in the one-agent case, in the sense that they

allocate only a fraction of the resource to the risky arm for beliefs at which they would

have allocated all the resource if they were isolated. More precisely, KRC show that the

equilibrium strategies of the players at the symmetric equilibrium are as follows. When a

player is very confident that the risky arm is good, that is when pt is above a threshold

p < pm, then it is optimal for him to play R with probability 1. When his belief of R being

good is under p, then it is optimal for him to play S with probability one. However, for

intermediate beliefs, that is for pt ∈ [p, p], it is optimal for players to allocate an increasing

fraction of the resource to the risky arm. This equilibrium behavior features free-riding in

the following sense. For pt ∈ [p∗, p∗], it would be optimal for an isolated agent to devote all

of his resource to R. When the player benefits from the information gained by observing

others’ actions and outcomes, he is better off by insuring himself in allocating a part of his

resource to S and letting the other player experimenting for him.

p
1p p̃

exp

1

0

KRC also show that the encouragement effect analyzed by Bolton and Harris (1999)

4See KRC
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doesn’t exist. By this effect, the presence of other players encourages at least one of them

to continue experimenting at beliefs more pessimistic than the single-agent cut-off belief.

It rests on two conditions: the additional experimentation by one player must increase the

likelihood that other players will experiment in the future, and this future experimentation

must be valuable to the player who acts as a pioneer. With exponential bandits, the

likelihood that others will experiment decreases unless a breakthrough happens. But since

a breakthrough is fully revealing, the additional experimentation by other players after the

breakthrough is of no value to the pioneer.

3 Strategic communication

We generalize KRC’s model by assuming that transfers of information between players

are costly. We introduce costly information in three different ways: first, players may pay a

cost c > 0 to exchange information, in the sense that both players observe their opponent’s

action if and only if they both payed the cost c. Second, they may pay the cost c to get

information about others. Finally, they may pay the cost c to inform their opponent of

their own actions and outcomes.

For each setting, we describe the game of strategic acquisition of information, then we

characterize players’s best responses and we study equilibria.

At each date t, players decide whether to pay the communication cost c > 0, or to pay

nothing. What they expect to receive from paying c depends on the setting considered. At

each time t, players also decide what quantity of the resource to be allocated to the risky

arm, and whether they communicate or not. Players’ strategies have then two components:

an experimentation strategy kt ∈ [0, 1], and an information acquisition strategy qt ∈ {0, 1},

where qt = 1 if players pay the cost c, and qt = 0 otherwise. We will call communication
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the action of paying c. More precisely players pay c, a flow cost to observe (or reveal) the

histories of actions and observation that takes place while the flow is bieng paid.

As in KRC, we will consider stationary Markov strategies, namely strategies that de-

pend only on individual beliefs.

Fix a belief p and consider ki ∈ [0, 1] and qi ∈ {0, 1} player i’s experimentation and

communication decisions for this belief. Let K := ki + kj be the total amount of experi-

mentation.

If player i’s actions are ki, qi, then i gets (1−ki)s from the safe arm, kig from the risky

arm if it is good, which is an event of probability p, and pays c if he communicates, that is

if qi = 1. Therefore, i’s expected current payoff is (1 − ki)s + kigp − qic. By the principle

of optimality, player i’s value function satisfies the following Bellman equation:

u(p) = max
ki,qi

{
r((1 − ki)s + kigp − qic)dt + e−rdtE[u(p + dp) | p, ki, kj , qi, qj ]

}

where the first term is the expected current payoff and the second term is the discounted

expected continuation payoff.

The expected continuation payoff u(p + dp) is g if a breakthrough occurs, and u(p) +

u′(p)dp otherwise. If individual actions ki and kj are known to player i, his probability of

a breakthrough is pKλdt and his belief evolutes following dp = −Kλp(1 − p)dt. If player

i doesn’t know his opponent’s action, then his subjective probability of a breakthrough is

pkiλdt, and his belief changes following dp = −kiλp(1 − p)dt.

The discounted expected continuation payoff E[u(p + dp) | p, ki, kj , qi, qj ] depends on

the communication setting we consider.

1. In the setting where players pay to exchange their information, i knows j’s action if

and only if qi = qj = 1. His expected continuation payoff is then
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E[u(p + dp) | p, ki, kj , qi, qj ] = qiqj

[
gpKλdt + (1 − pKλdt)(u(p) − Kλp(1 − p)u′(p)dt)

]

+(1 − qiqj)
[
gpkiλdt + (1 − pkiλdt)(u(p) − kiλp(1 − p)u′(p)dt)

]

2. In the setting where players pay to get the information, i knows j’s action if and only

if qi = 1. His expected continuation payoff is then

E[u(p + dp) | p, ki, kj , qi, qj ] = qi

[
gpKλdt + (1 − pKλdt)(u(p) − Kλp(1 − p)u′(p)dt)

]

+(1 − qi)
[
gpkiλdt + (1 − pkiλdt)(u(p) − kiλp(1 − p)u′(p)dt)

]

3. In the setting where players pay to display their information, i knows j’s action if

and only if qj = 1. His expected continuation payoff is then

E[u(p + dp) | p, ki, kj , qi, qj ] = qj

[
gpKλdt + (1 − pKλdt)(u(p) − Kλp(1 − p)u′(p)dt)

]

+(1 − qj)
[
gpkiλdt + (1 − pkiλdt)(u(p) − kiλp(1 − p)u′(p)dt)

]

In the rest of the paper, we will use the following notation: c(p) := s−gp and b(p, u) :=

λ
r p(g − u(p) − (1 − p)u′(p)). c(p) is the opportunity cost of playing R, and b(p, u) is the

discounted expected private benefit of playing R, and has two parts: λp(g − u(p)) is the

expected value of the jump to u(p) = 1 should a breakthrough occur, and −λp(1− p)u′(p)

is the negative effect on the overall payoff should no breakthrough occur.

4 Paying to exchange the information (PTEI)

We make the assumption that the exchange of information between players occurs only

if both decided to pay the communication cost. The kind of communication we consider

is then that of a club: to communicate with each other, two agents have to undertake a
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costly action. In other words, both have to go to the club to be able to talk with each

other.

Using 1− rdt as an approximation to e−rdt, and neglecting terms of the order o(dt), we

can rewrite player i’s payoff u(p) = s+ max
ki∈[0,1],qi∈{0,1}

{
ki(gp − s +

λ

r
p(g − u(p) − (1 − p)u′(p)))

+qi(−c + qjkj
λ
r p(g − u(p) − (1 − p)u′(p)))

}

player i’s payoff rewrites

u(p) = s + max
ki∈[0,1],qi∈{0,1}

{ki(b(p, u) − c(p)) + qi(qjkjb(p, u) − c)}

where: - c is the communication cost

- q2k2b(p, u) is the discounted expected private benefit of communicating, that is the

benefit to player i of the information generated by player j, and has also two parts:

q2k2λp(g − u(p)) is the expected value of the jump to u(p) = 1 should a breakthrough

occur for player j, and −λp(1 − p)u′(p) the negative effect on the overall payoff should no

breakthrough occur for player j.

4.1 Best responses

Players’ best-responses are determined by comparing c(p) and b(p, u), namely the op-

portunity cost with the expected private benefit of playing R for the experimentation deci-

sion, and by comparing c and kjqjb(p, u), namely the instantaneous cost of communication

with the expected benefit of the information gained from player j for the communication

decision.

Let us first point out that no player will communicate alone at equilibrium. Indeed,

if qj = 0, then ui(p) = s + maxki∈[0,1],qi∈{0,1} {ki(b(p, u) − c(p)) + qi(−c)}. If i were to

communicate, he would pay the communication cost without gaining anything from it,

then qi = 0.
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Suppose now that player j communicates (qj = 1), and let us determine player i’s best

responses to kj . When qj = 1, player i’s continuation payoff is

ui(p) = s + max
ki∈[0,1],qi∈{0,1}

{ki(−c(p) + b(p, u))) + qi(−c + kjb(p, u))}

• qi = 0 and ki = 0 if kjb(p, u) − c < 0 and b(p, u) − c(p) < 0. In this case, ui(p) = s,

so b(p, u) = p
µ(g − s) and these are best-response if p ≤ min{p, µc

kj(g−s)}, where p :=

µs
(1+µ)(g−s)+µs is the single-agent cut-off.

• qi = 0 and ki = 1 if kjb(p, u) − c < 0 and b(p, u) − c(p) > 0. In this case, ui(p) =

s + b(p, u) − c(p) so these are best-response if ui(p) ∈ [s, s + c
kj

− c(p)].

• qi = 0 and ki ∈ [0, 1] if kjb(p, u)−c < 0 and b(p, u)−c(p) = 0. In this case, ui(p) = s,

so these are best-responses only if p = p.

• qi = 1 and ki = 0 if kjb(p, u) − c > 0 and b(p, u) − c(p) < 0. In this case, ui(p) =

s + kjb(p, u) − c so these are best-responses if ui(p) ∈ [s, s + kjc(p) − c].

• qi = 1 and ki ∈ [0, 1] if kjb(p, u) − c > 0 and b(p, u) − c(p) = 0. So these are

best-responses if ui(p) = s + kjc(p) − c.

• qi = 1 and ki = 1 if kjb(p, u) − c > 0 and b(p, u) − c(p) > 0. In this case, ui(p) =

s − c + kjb(p, u) + b(p, u) − c(p), so these are best-responses if ui(p) > s − c − c(p) + (1 +

kj)max{ c
kj

, c(p)}.

This analysis shows that player i’s best-response depends on whether in the (p, u)-

plane, the point (p, ui(p)) lies below, on or above the line Dkj
and below or above the line

Dkj , where

Dkj
:= {(p, u) ∈ [0, 1] × R+ | u = s − c + kjc(p)}

Dkj := {(p, u) ∈ [0, 1] × R+ | u = s +
c

kj
− c(p)}
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For kj > 0, Dkj
and Dkj are respectively a downward and an upward sloping diagonal,

which both cross the safe payoff line u(p) = s at p =
s−c/kj

g . For kj = 0, Dkj
coincides

with the safe payoff line, and Dkj “tends” to u(p) = ∞, so that the area where qi = 1

best-responses is empty. The following graph gives the area of best responses when the

opponent communicate and spends a proportion of time kj playing the risky arm in a given

interval of time.
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p

s−c/kj

g

u

qi = 1, ki = 0 qi = 0, ki = 1

s

qi = 1, ki = 1 qi = 1, ki = 1

Dkj

Dkj

q
i =

1, k
i ∈

[0, 1]

4.2 Equilibria

We now study the Markovian equilibria of the game. We first show that there is no

asymmetric equilibrium if the communication cost is positive. Then we show that there is

a multiplicity of symmetric Markovian equilibria, with all the same structure.

Proposition 1 (Asymmetric equilibrium). If c > 0, there is no asymmetric equilibrium in

Markov strategies.

Proof of Proposition 1. By best-responses analysis, we know that qj = 0 ⇒ qi = 0. There-

fore, either qi = qj = 0, or qi = qj = 1. There can be no asymmetry in communication

strategies. If qi(p) = qj(p) = 0, then there is no asymmetry in experimentation strategies

since both players face the single-agent problem. Suppose now that qi(p) = qj(p) = 1. By

best-response analysis, we know that kj = 0 ⇒ qi = 0. Therefore, qi = qj = 1 ⇒ ki > 0

and kj > 0. Let us show that ki ∈]0, 1[⇒ kj ∈]0, 1[. If ki ∈]0, 1[, then b(p, u) = c(p) and
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u = s − c + kjc(p). If kj = 1, then ki ∈]0, 1[ only when i’s continuation payoff crosses the

line u = s − c + c(p), which happens only for some belief p̃. For p > p̃, the continuation

payoff u is above the line s−c+c(p), and is then in the area where ki = 1 is a best-response

to kj = 1. Thus there is no range of beliefs such that ki ∈]0, 1[ is a best-response to kj = 1.

Therefore, there is no equilibrium in which both players communicate, with only one

of them allocating all the resource to R.

It is noteworthy that there exist asymmetric equilibria when c = 0. Indeed, KRC

show that there exist several types of asymmetric equilibria. In one of these types for

instance, when the players are optimistic, they play R; when they are pessimistic, they

play S; in between, there are two regions in which one of them free-rides by playing S

while the other one plays R, players swaping roles of pioneer and free-rider between the

two regions. Formally, there are two cut-offs p1 and p2, and one switchpoint ps, such that

both players play S when the common belief p is below p1, both play R when p > p2;

on (p1, ps], player 1 plays R and player 2 plays S, and on (ps, p2], player 1 plays S and

player 2 plays R. When c = 0 there exists also an equilibrium profile where players do

not communicate. Thus in c = 0 the set of asymmetric equilibria is greater than in KRC.

Note that the set of equilibrium payoffs is not lower hemi continuous in c. Moreover the

following proposition means that if communication is costly then there is no symmetric

equilibria, even is c is arbitrarily small. This means that asymmetric equilibrium are not

robust to communication cost.

In the PTEI setting, the fact that communication is costly implies that either both play-

ers communicate, or both don’t. If they don’t communicate, they both play the single-agent

optimal strategy. Since a player will not communicate if his opponent doesn’t experiment,

there can be no equilibrium in which for some beliefs, both players communicate, one of

18



them experimenting while the other one free-rides.

We now show that the PTEI game has infinitely many equilibria, all with the same

structure.

Proposition 2 (Structure of symmetric equilibria). Let c ≥ 0 be a communication cost.

The PTEI game has a infinitely many equilibria in Markovian strategies with the common

posterior belief as the state variable.

In these equilibria, the equilibrium allocation of the resource and the communication

strategies are defined as follows. There exist p, p(c), a(c), and a(c) such that p ≤ a(c) ≤

p(c) ≤ a(c) and such that for all p(c) ≤ x ≤ y ≤ a(c), the following strategy is an

equilibrium strategy:

• the safe arm is used exclusively at beliefs below the single-player cut-off p;

• the risky arm is used exclusively on [p, a(c)] and on [p(c), 1].

• for beliefs on [a(c), p(c)], players communicate and allocate an increasing fraction of

the resource to R up to the belief cut-off p(c).

• for beliefs above p(c), they use R exclusively and communicate only on [x, y].

There exists cmax > 0 such that ∀ c < cmax, p < a(c) < p(c) < a(c).

Let us first remark that for c = 0, this equilibrium is KRC’s equilibrium.

Furthermore, if c ≥ cmax, then a(cmax) = a(cmax), and then players do not communi-

cate at equilibrium.

Finally, the equilibrium where x = a(c) and y = a(c), namely the equilibrium in which

the range of beliefs for which players communicate is the biggest, is the one that procures

the maximal payoffs to players. The following graph gives a rough shape of this equilibrium:
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Proof of Proposition 2. We first show that the strategy where x = p(c) and y = a(c) is the

strategy of a symmetric equilibrium. Then we show that any strategy with p < x < a(c)

is also a strategy of a symmetric equilibrium.

• Let us first list player i’s best-response at symmetric equilibrium:

• (qi = 0, ki = 0) if p ≤ p;

• (qi = 0, ki = 1) if p > p;

• (qi = 1, ki = 0) if u ∈ [s, s − c] = ∅;

• (qi = 1, ki ∈ [0, 1]) if u = s + k(p)c(p) − c and k(p)c(p) > c;

• (qi = 1, ki = 1) if u > s − c − c(p) + 2 max{c, c(p)} = (s + c − c(p)) p> s−c
g

+ (s +

c(p) − c) p< s−c
g

.

Lemma 1. If p ≥ s−c
g , then a(c) = p(c) = a(c). It follows that q(p) = 0 for all p, and

k(p) = 0 on p ≤ p, and k(p) = 1 on p > p.

Proof : On p ≤ p, k = 0. The diagonal Dkj
crosses the safe payoff line u(p) = s in

s−c/kj

g < p for any value of kj . Since u(p) = s, players’ payoff cannot cross Dkj
, and always

remains in the area where q = 0 and k = 1 are best-response. �

Proof : �

Lemma 2. If c > 0, then p < a(c).
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Proof : As soon as c > 0, (0, 0) followed by (0, 1). c > 0 ⇒ k(p) = 0 for p < p and

u(p) = s. At p = p, the continuation payoff enters in the area where q = 0 and k = 1

are best-responses with k = 0. At symmetric equilibrium, it means that kj = 0 and that

the line s − c + kjc(p) is s − c. Therefore, i’s continuation payoff cannot cross the line

s − c + kjc(p) at p = p. Therefore, it will cross the line for some p̃ > p, and i will play

qi = 0 and ki = 1 for p in between. �

Lemma 3. If p < s−c
g , and if there exists p̃ ∈ [p, s−c

g such that s − c + k(p̃)c(p̃) = s, then

a(c) < p(c) < a(c).

Proof If p ≤ p, then k = 0, q = 0, and u(p) = s. The continuation payoff enters in the

area where it could cross the line Dkj
with k(p) = 0. At symmetric equilibrium, kj will

then be equal to 0, and D0 = s − c is strictly above the safe payoff line. Therefore, there

exists ε > 0 such that u(p) cannot cross Dk(p) on [p, p + ε]. If k(p) = 1 on [p, p + ε], then

s < s−c+c(p) so qi = 0 is a best response to any strategy of j. Therefore, k = 1 and q = 0

on [p, p + ε]. Players payoff is then the single agent payoff V0(p) = gp + (1 − p)K0Ω(p)µ),

with Ω(p) = 1−p
p and µ = λ

r , obtained by solving V = s+b(p, V (p))−c(p) up to a constant

of integration K0. The constant is determined by the usual smooth-pasting condition

V (p) = s.

On [p, p + ε], k(p) = 1, so D1 is the line of equation u = s− c + c(p). Since there exists

p̃ such that s − c + k(p̃) = s, the diagonal Dkj
belongs to the area between u = s and

u = s − c + c(p). Since furthermore players’ payoff V (p) is increasing, it will cross D1 for

some value a(c), determined by

V (a(c)) = s − c + c(a(c))

There exists ε > such that for p on [a(c), a(c)+ε], players play q = 1 and k ∈ [0, 1]. Let

W (p) the payoff they obtain in that case. q = 1 and k ∈ [0, 1] are optimal if b(p, W ) = c(p),
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that is if W (p) = s + (1 + µ)(g − s) + µs(1− p) ln Ω(p) + KW (1− p), with KW a constant

of integration. By the smooth-pasting condition, Kw is determined by W (a(c)) = V (a(c).

Players’ payoff in that case is also determined by u(p) = s − c + k(p)c(p). This give the

optimal fraction of resource allocated to the risky arm: k(p) =
W (p) − s + c

c(p)
. k(p) is

increasing. It is a best-response as long as k(p) ≤ 1. Let p(c) be the cut-off such that

k(p(c)) = 1, namely such that

k(p(c)) =
W (p(c)) − s + c

c(p(c))

There exists ε > 0 such that on [p(c), p(c) + ε], k(p) = 1, and players’payoff is above

the line D1, and above D1. Therefore, it is in the area where q = 1 and k = 1 are best-

responses. Let us denote by V1 the continuation payoff in that area. V1(p) is obtained by

resolving V1(p) = s−c+2b(p, V1)−c(p), and is V1(p) = gp+(1−p)K1Ω(p)
µ
2 −c(1−p 2

2+µ),

with K1 a constant of integration determined by W (p(c)) = V1(p(c)). Since V1(1) =

g − c µ
2+µ < s − c − c(1) = g and V1(p(c)) > s − c + c(p(c)), there exists a(c) such that

V1(a(c)) = s − c + c(a(c))

For p > a(c), players’ payoff is in the area where q = 0, k = 1 is dominant. Players’

payoff in this area is V2(p) = gp + (1 − p)K2Ω(p)µ), the constant K2 being determined by

V1(a(c)) = V2(a(c)). �

Lemma 4. There exists cmax such c ≤ cmax ⇒ p̃ ≥ p.

Proof : p̃ is defined by k(p̃)c(p̃) = c ⇔ W (p̃) = s. If c = 0, p̃ = s
g the myopic cut-off,

so s
g > p is a sufficient condition for p̃ > p if c = 0. If c = s, then p̃ < p. Furthermore,

differentiating with respect to c, we find that K ′
W (1 − p̃) = p̃′(µs ln(Ω(p̃)) + µs

p̃ + KW ).

Easy calculations show that K ′
W < 0, which implies that p̃′ < 0. Since s

g > p is always

true, there exists cmax > 0 such that for all c ≥ cmax, p̃ ≥ p. �
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5 Paying to buy information (PTBI)

We now consider the case where players simply pay to get information about their oppo-

nent’s actions and outcomes. As in the previous section, we use 1−rdt as an approximation

to e−rdt, and neglect terms of the order o(dt), so that player i’s payoff rewrites

u(p) = s + max
ki∈[0,1],qi∈{0,1}

{ki(b(p, u) − c(p)) + qi(kjb(p, u) − c)}

5.1 Best-responses

The analysis of best-responses is the same as that of the Paying to exchange information

case except that player i may purchase information (qi = 1) even if player j doesn’t (qj = 0).

Let kj be player j’s experimentation decision. Player i’s continuation payoff is

u(p) = s + max
ki∈[0,1],qi∈{0,1}

{ki(−c(p) + b(p, u))) + qi(−c + kjb(p, u))}

• qi = 0 and ki = 0 if kjb(p, u) − c < 0 and b(p, u) − c(p) < 0. In this case, u = s, so

these are best-response if p ≤ min{p, µc
kj(g−s)}.

• qi = 0 and ki = 1 if kjb(p, u) − c < 0 and b(p, u) − c(p) > 0. In this case, u =

s + b(p, u) − c(p) so these are best-response if u ∈ [s, s + c
kj

− c(p)].

• qi = 0 and ki ∈ [0, 1] if kjb(p, u) − c < 0 and b(p, u) − c(p) = 0, so these are

best-responses only if p = p.

• qi = 1 and ki = 0 if kjb(p, u) − c > 0 and b(p, u) − c(p) < 0. In this case, u =

s + kjb(p, u) − c so these are best-responses if u ∈ [s, s + kjc(p) − c].

23



• qi = 1 and ki ∈ [0, 1] if kjb(p, u) − c > 0 and b(p, u) − c(p) = 0. In this case,

u = s + kjc(p) − c, so these are best-responses if kjc(p) − c > 0.

• qi = 1 and ki = 1 if kjb(p, u)− c > 0 and b(p, u)− c(p) > 0. In this case, u = s− c +

kjb(p, u)+b(p, u)−c(p), so these are best-responses if u > s−c−c(p)+(1+kj)max{ c
kj

, c(p)}.

5.2 Equilibria

At symmetric equilibrium, the situation where one player purchases information while

the other doesn’t will not occur. Therefore, there is a unique symmetric equilibrium, which

is the same as the one in the PTBI game whose communication interval is the largest.

Proposition 3 (Symmetric equilibrium). There is unique symetric equilibrium in which

players play the equilibrium strategy profile with the largest communication interval in the

PTEI game.

Proof of Proposition 3. At symmetric equilibrium, either qi = qi = 0 or qi = qj = 1.

Therefore, even if best-responses are not the same in the PTBI game, best-responses at

symmetric equilibrium are the same than the one with the largest interval. Recall that in

the previous case multiplicity was a consequence that if a player communicate in ain (a, ā)

it was best response to do so (otherwise the player would pay c and receive no information).

This argument dos not hold any more in the present case.

However, since qi = 1 may be a best-response to qj = 0, there may exist asymmetric

equilibria, contrary to the previous case. Indeed, we show that there exists at least one

asymmetric equilibrium, in which players have two distinct roles, one being a pioneer

(say player 1) and the other one a free-rider (player 2). For very pessimistic beliefs, no

player experiments. For optimistic beliefs, both players experiment, buying the other one’s

information except for very optimistic beliefs where the expected gain of new information
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is not worth the cost. For intermediate beliefs, only one player experiments, while the other

one free-rides in the sense that he plays the safe arm but buys the other one’s information.

The two player swaps the role of pioneer and free-rider on this range of beliefs.

Proposition 4 (Asymmetric equilibrium). If s−c
g > p, there is an asymmetric Markovian

equilibrium in the “Paying to buy information” game, where the players’s actions depend

as follows on the common belief.

There are five cut-offs, p, p1, p2, p3 and p4 such that:

- player 1 buys player 2’s information on [p1, p3]. He plays S on [0, p] ∪ [p1, p2], and R

otherwise.

- player 2 buys player 1’s information on [p, p1] ∪ [p2, p4]. He plays S on [0, p1], and R

otherwise.

Proof of Proposition 4. If s−c
g ≤ p, we know from the proof of Proposition 2 that player

i’s payoff cannot cross the diagonal D1, whatever ki and qi for p > p, and then qi = 0 is

a dominant strategy for both players. Players then face the single-agent problem and play

the same experimentation strategy.

Suppose now that s−c
g > p. Let player 2 be the free-rider, and player 1 the pioneer.

• For p < p, both players play qi = 0, ki = 0.

• Suppose that k1 = 1 for p ∈ [p, p + ε], and let us study player 2’s best-responses. If

q2 = 0, then k2 = 1 and u = s+b(p, u)−c(p). Yet q2 = 0 if −c+k1b(p, u) < 0 ⇒ b(p, u) < c,

so q2 = 0 if u < s + c − c(p) = c + gp. Since p < s−c
g , u(p) ≥ s = u(p) > c + gp. So q2 = 0

cannot be a best-response and q2 = 1.

Given q2 = 1, k2 = 0 is optimal if and only if u < s − c + c(p). Since p < s−c
g , there

exists p1 > p such that k2(p) = 0 for all p ∈ [p, p1]. In this case, 2’s payoff is defined by

u2(p) = s − c + b(p, u2) with u2(p) = s. p1 is determined by u2(p1) = s − c + c(p1).
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If k2 = 0 for p ∈ [p, p1], then it is optimal for player 1 to play k1 = 1 since p > p.

For p > p1 it becomes dominant for player 2 to play k2 = 1, whatever k1. Indeed, 2’s

payoff is in the area where qi = 1, ki = 1 is a best-response against qi = 1, ki = 1 since

u > s−c+c(p), and also in the area where (qi = 0, ki = 1) is a best-response against ki = 0.

Therefore, k2 = 1. For p ≤ p1, player 1’s payoff is u1(p) = V (p) < u2(p). Therefore, there

exists p2 > p1 such that u1(p) < s − c + c(p) for all p ∈ [p1, p2]. Then it is optimal for

player 1 to free-ride in turn and to play q1 = 1 and k1 = 0. On this range of beliefs, 1’s

payoff is defined by u1(p) = s − c + b(p, u1) with u1(p1) = V (p1), and p2 is determined by

u2(p2) = s − c + c(p2).

For p > p2, for the same reasons as for player 2, it becomes dominant for player 1

to play k1 = 1. Since both payoffs are in the area where (qi = 1, ki = 1) is a best-

response against (qi = 1, ki = 1), both players experiment and communicate, as long as

their payoffs are above the line s + c− c(p). In this area, individual payoffs are defined by

ui(p) = s− c + 2b(p, ui)− c(p), with continuity of payoffs in p2. Since u2(p) > u1(p), there

exists p3 and p4, p3 < p4, such that u1(p) and u2(p) cross the line s + c− c(p) respectively

in p3 and p4.

6 Paying to give information (PTGI)

We now consider the case where players pay to give their information to their opponent.

This is the classical kind of “postal” communication, where for instance player 1 sends by

e-mail the description of his actions and outcomes to player 2. As in the previous sections,

using 1 − rdt as an approximation to e−rdt and neglecting terms of the order o(dt), we
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rewrite player i’s payoff

u(p) = s + qjkjb(p, u) + max
ki,qi

{−qic + ki(b(p, u) − c(p)}

Clearly, it is dominant for i to play qi = 0. It follows that when players use Markov

strategies, there is no asymmetric equilibrium, and there is a unique symmetric equilibrium

in which players do not communicate and play the single-agent solution.

Proposition 5 (Symmetric equilibrium). The “Paying to give information” game has a

unique symmetric equilibrium in Markov strategies, in which players do not communicate

and experiment like the single-agent:

For any p, q∗(p) = 0 and k∗(p) = 0 for p ≥ p and k∗(p) = 1 for p > p.

Proof of Proposition 5. For any qj , kj , u(p) = s+ qjkjb(p, u)+maxki,qi{−qic+ ki(b(p, u)−

c(p)} = s + qjkjb(p, u) + maxki{ki(b(p, u) − c(p)}. Therefore, at any equilibrium, whether

symmetric or asymmetric, i’s continuation payoff is u(p) = s + maxki{ki(b(p, u) − c(p)}. i

faces the single-agent problem, and plays k∗
sa(p).

Therefore, there is no equilibrium in Markov strategies, namely when individual actions

only depend on individual beliefs in which players communicate. However, we know from

the analysis of the two previous settings, PTEI and PTBI, that players would be better off

for some intermediate beliefs if they could receive information from the other at a cost c.

We then study the possibility for players to coordinate on some “communication phases” by

using strategies that depend on their belief and on time, that we may call non-stationary

Markov strategies.

A simple backward induction argument proves that, even in non-stationary Markov

strategies, there can be no equilibrium, whether symmetric or asymmetric, in which players

communicate.
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Proposition 6. There is no equilibrium in non-stationary Markov strategies in which

players communicate.

Proof of Proposition 6. Suppose that players know that they stop communicating at some

date t. So at t−dt, player 1 will not communicate since he earns c by doing so. Consequently

player 2 stops also communicating at t − dt. By continuing backward, it is easy to show

that both players never communicate.

The crucial difference with the PTEI game is that at symmetric equilibrium, player 1

communicates today not for having player 2’s information today, but for having it tomor-

row. Therefore, a player will communicate at some date t only if it might provide him with

valuable information at date t + dt. Suppose that at equilibrium, players communicate

for beliefs in [p1, p2]. Therefore, the impossibility of communication at equilibrium follows

from the absence of encouragement effect in the exponential bandit model. By this effect,

first analyzed by Bolton and Harris [1999], the presence of a player encourages the other to

experiment at beliefs more pessimistic than the single-agent cut-off belief p. We now that

for p < p, players will not experiment, and consequently will not communicate. Then there

exists some cut-off p̃ ≥ p such that players will stop communicating for p ≤ p̃. Suppose

that i is the last player to communicate. He will do so if it might encourage his opponent

to experiment and communicate about this experimentation, and if this additional infor-

mation is valuable to him. Yet the only way to make his opponent experiment more is to

have a breakthrough. But in this case, there is no more uncertainty and the additional

information is of no value to player i.
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7 Welfare results

In this section we study the welfare properties of costly communication following three

different approaches: first in terms of amount of experimentation, then in terms of intensity

of experimentation, and finally in terms of payoffs. We give the results for games in which

players communicate for some beliefs at equilibrium, namely the PTEI and PTBY games.

7.1 Amount of experimentation

The first question we address is that of the impact of communication in terms of amount

of experimentation, defined as K̂ =
∫ ∞
0 Ktdt. The amount of information measures how

much of the resource is allocated to risky arms overall up to time ∞. The next proposition

states that the higher the communication cost c, the higher the amount of experimentation

at equilibrium.

Proposition 7. The amount of experimentation in the equilibrium of the game increases

with c, and is maximal for c ≥ cmax.

Proof of Proposition 7. From the dynamics of beliefs, we know that Kt = − dp
λ(1−p)pdt if

players communicate, and that Kt = − 2dp
λ(1−p)pdt if they don’t. If c < cmax and p0 > a(c),

then the amount of experimentation at equilibrium is then:

K̂ =
∫ ∞
0 Ktdt

=
∫ a(c)
p0

− dp
λ(1−p)p +

∫ a(c)
a(c) − 2dp

λ(1−p)p +
∫ p∗

a(c) −
dp

λ(1−p)p

= 1
λ

(
ln(a(c)) − ln(a(c)) + ln(p∗) − ln(p0)

)

> 1
λ (ln(p1) − ln(p0))

ln(a(c)) − ln(a(c)) increases with c as long as c < cmax, and is equal to ln(p∗) − ln(p0)

for all c ≥ cmax. Therefore, the amount of experimentation is maximal if players do not

communicate, that is for c ≥ cmax.
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This result shows that, quite intuitively, making communication costly reduces free-

riding. Indeed, free-riding comes from the fact that players may learn information from

the experimentation of others, through communication. Obviously, making communica-

tion costly tends to reduce the exchange of information at equilibrium, and then reduces

the possibility of free-riding. Therefore, if the objective is to fight free-riding behaviors,

an extreme and efficient way is to impose a communication cost high enough to deter

communication.

However, why would a social planner want to maximize the amount of experimentation?

A somehow more important welfare issue for a social planner is that players make the right

decision, that is play R if the risky arm is good, and S otherwise. From this point of view,

the amount of information is not the relevant criterium to maximize. What matters is that

players learn fast, so that they stop to experiment quickly if the risky arm is bad. We now

study how the speed of learning depends on the communication cost, and we show that

deterring communication to take place is not efficient.

7.2 Speed of learning

Suppose that the risky arm is bad. The best action for players is then to play the safe

arm. Starting with a prior belief p0 above the single-agent cut-off p, they will start the

game in experimenting. Since R is bad, they will never observe a breakthrough, and their

belief will continuously decrease with time, until it reaches the belief threshold p under

which they will stop experimenting. Obviously, in this situation, the sooner they stop

experimenting, the better. Let us call T (p0) the time at which the common belief reaches

p starting at p0. The speed of learning is measured by T (p0), the smaller being T (p0), the

faster the learning. KRC show that if the prior belief p0 is above p, then players’ common

posterior belief never reaches p at equilibrium. In other words, if the risky arm is bad, and
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if players start with a prior belief high enough to make them experimenting, they will never

stop making the wrong action. We first show that if no breakthrough happens, which is

the case if the risky arm is bad, then for any c > 0, individual beliefs reach p in finite time.

Proposition 8. Let p0 > p. T (p0) < ∞ except if a breakthrough appears iff c > 0.

Proof of Proposition 8. If c = 0, then the setting is that of KRC, and T (p0) = ∞. Suppose

now that c > 0. At equilibrium, the dynamics of beliefs is given by

dp =

0 if p ≤ p

−λp(1 − p)dt if p ∈ [p, a(c)]

−λ2k(p)p(1 − p)dt if p ∈ [a(c), p(c)]

−λ2p(1 − p)dt if p ∈ [p(c), a(c)]

−λp(1 − p)dt if p > a(c)]

with k(p) = W (p)−s+c
s−gp .

Let us show that for any prior belief p0, pt reaches p in finite time if no breakthrough

occurs.

• Suppose that p0 > a(c) and let us show that pt reaches a(c) in finite time. The

dynamics of beliefs is dp = −2λp(1 − p)dt, thus pt = 1
1+Ω(p0)e2λt . Then pt = p(c) ⇔

t = 1
2λ ln

(
Ω(p(c))
Ω(p0)

)
< ∞. By the same argument, if p0 ∈ [p, a(c)], the dynamics of

beliefs is dp = −λp(1 − p)dt, thus pt = p ⇔ t = 1
λ ln

(
Ω(p)

Ω(p0)

)
< ∞.

• Suppose that p0 ∈ [p(c), a(c)] and let us show that pt reaches p in finite time. The

dynamics of beliefs is dp = −2λp(1 − p)dt, thus pt = 1
1+Ω(p0)e2λt . Then pt = a(c) ⇔

t = 1
2λ ln

(
Ω(p(c))
Ω(p0)

)
< ∞.

• Suppose now that p0 ∈ [a(c), p(c)] and let us show that pt reaches a(c) in finite

time. The dynamics of beliefs is dp = −2λh(p)dt, with h(p) := k(p)p(1 − p). We
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have h′(p) = W ′(p)p(1−p)
s−gp + (W (p) − s + c) s−2ps+p2g

(s−pg)2
and h′′(p) = W ′′(p)p(1−p)

s−gp +

2W ′(p) s−2ps+p2g
(s−pg)2

+ (W (p) − s + c) 2s(g−s)
(s−pg)3

. Thus h′′(p) > 0 and h′(a(c)) > 0. Then

there exists a line that cuts the graph of h(p) at p = a(c) and which is strictly below

for p > a(c). Formally, there exists m > 0 such that h(p) > m(p − a(c)) + h(a(c))

for any p > a(c).

Consider the dynamics dp = −2λ(m(p − a(c)) + h(a(c)))dt. We show easily that

pt = p0e
−2λmt +(a(c)+ h(a(c))

2λm )(1− e−2λm). Therefore, the date t at which pt reaches

a(c) is given by e2λmt = (a(c) − p0)
2λm

h(a(c)) + 1 and is finite. Since this dynamics

has a lower rate of decrease than the true dynamics of beliefs, it is proved that the

dynamics of beliefs reaches a(c) in finite time.

The intuition of this result is the following. In both cases, free and costly information,

players allocate a decreasing fraction of the resource to the risky arm as their belief de-

creases. The difference is that if information is free (KRC’s setting), this fraction goes to 0

as the belief goes to p with smooth pasting, that is the speed at which the fraction goes to

0 decreases and tends to 0 as the belief tends to p. If information is costly however, even

for a very small cost, the speed at which individual beliefs decreases never tends to 0.

The next results states that there exists a communication cost c∗ ∈]0, cmax[ that max-

imizes the speed of learning.

Let c1/2 be the communication cost for which k(a(c)) = 1
2 . If the prior belief is below

the prior under which players mix between the two arms for c = c1/2, p(c1/2), then c1/2

dominates c = 0 and c = cmax with respect to the speed of learning.

Proposition 9. If p0 < p(c1/2), then T (p0, c1/2) < T (p0, 0) and T (p0, c1/2) < T (p0, cmax).

32



Proof of Proposition 9. Let T1(p0, c) be the expected time spent in [p, a(c1/2)], T2(p0, c)

in [a(c1/2), p̄(c1/2)], T3(p0, c) in [p̄(c1/2), p̄(0)] and T4(p0, c) in [p̄(c1/2), p0]. Notice that

T (p0, c) =
∑n=4

n=1 Tn(p0, c).

The more dp decreases, the smaller is Tn(p0, c) . On [p̄(c), p̄(0)], when c = 0 and c =

c1/2, players follow the same strategy. So T4(p0, c) = T4(p0, 0). When players experiment

alone, that is when c = cmax, dp decreases less rapidly. So T4(p0, c) < T4(p0, cmax). On

[p̄(c1/2), p̄(0)], if player c = 0 then ki = 0 whereas k = 1 when c = c1/2. So dp decreases

faster when c = c1/2. So T3(p0, c1/2) < T3(p0, 0). As k = 1 if c = c1/2 and players exchange

information then T3(p0, c1/2) < T3(p0, cmax). On [a(c1/2), p̄(c1/2)] players communicate if

c = 0 or c = c1/2 and kc1/2
(p) > k0(p). So T2(p0, c1/2) < T2(p0, 0). If c = c1/2, ki + kj > 1

so T2(p0, c1/2) < T2(p0, cmax). On [p, a(c1/2)], if c = 0 then ki + kj > 1 and if c = c1/2 then

ki = kj = 1. So T1(p0, c1/2) < T1(p0, 0). Finally when c = c1/2on this interval players face a

situation similar to the case when player experiment alone. So T4(p0, c1/2) = T4(p0, 0).

This proposition shows that there exists some cost c∗ ∈]0, cmax[ for which the speed of

learning is maximal. Let p0 > a(c) and let us denote t1, t2, t3, and t4 the time spent to go

from p0 to a(c), from a to p2, from p(c) to a(c), and from a to p. The average speed of

learning is V (c) :=
p0−p

t1+t2+t3+t4
.

The optimal cost c∗ maximizes V (c). Since t3 cannot be computed explicitly, we have

not been able for now to compute c∗

Two types of mistakes can be made by players: experimenting when the risky arm is

bad, and stopping experimentation when the risky arm is good. We showed that making

communication costly reduces the occurrence of the first type of mistake. It may seem

that it increases the occurrence of the second type. However, if beliefs never reach p when

c = 0, it’s basically because players tend to almost not experiment, so in fact players may
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commit the second type of mistake even if c = 0.

7.3 Payoffs

We now turn to the question of the efficiency of communication in terms of individual

payoffs.

Proposition 10. Individual expected payoffs decrease with c as long as c < cmax.

Proof of Proposition 10. Fix c ∈]0, cmax[. For p ∈ [p, a(c)], players get an expected payoff

V (p) = gp+(1−p)KV Ω(p)µ whereas they would get a payoff W0(p) = s+(1+µ)(g− s)+

µs(1 − p) ln(Ω(p)) + C(1 − p) if c were 0. Using the fact that KV is defined by V (p) = s

and W (p) = s, we show that V (p) ≤ W0(p) for all p ≥ p showing that W ′′
0 (p) > V ′′(p) and

the convexity of W0 and V .

Since k(p) increases with c, p(c) < p(0). For p ∈ [a(c), p(c)], players get W (p) =

s + (1 + µ)(g − s) + µs(1 − p) ln(Ω(p)) + KW (1 − p) and would get a payoff W0(p) =

s + (1 + µ)(g − s) + µs(1 − p) ln(Ω(p)) + C(1 − p) if c were 0. Since W0(p) = s, we have

W (p) ≤ W0(p) for all p ∈ [a(c), p(c)].

For p ∈ [p(c)), p(0)], players get a payoff V1(p) which is smaller than W (p) and then

smaller than W0(p) that players would get if c were 0.

For p ∈ [p(0), a(c)], players get a payoff V1(p) = gp + K1(1 − p)Ω(p)µ/2 − c(1 − 2p
2+µ)

and would get gp + C(1− p)Ω(p)µ2 if c were 0. They gain from more information without

paying the cost.

For p > a(c), players get V (p) = gp+(1−p)KV Ω(p)µ, and would get gp+C(1−p)Ω(p)µ2

if c were 0.

This means that free-riding doesn’t affect individual payoffs.
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8 Discussion

Information structure Exponential bandit model are somehow specific: in many

situations learning does happen through a breakthrough but rather through a gradual

process. For instance, suppose that a farmer tests a new pesticide whose efficiency is

unknown. An increase in the quantity or quality of his production does not imply that the

pesticide is efficient. Other factors, like weather or human effort, may partly explain the

observed growth of the production. The observation of a higher quality just means that

it is more likely that the pesticide is efficient, and the farmer can learn more about the

degree of efficiency of the pesticide in repeating experimentations. Keller and Rady (2010)

analyze a bandit that takes into account such situations: they assume that the lump sums,

which follow a Poisson distribution, are more frequent when the arm is good. The equilibria

of this paper share many qualitative features with KRC. For instance, in the symmetric

equilibrium players experiment for high beliefs, take the safe arm for low beliefs and mix

for the intermediate beliefs. A huge difference is that encouragement effects occurs.

What would be the consequences of introducing costly information transfers in Keller

and Rady (2010)? We may expect that costly transfers reduce the encouragements effect.

Indeed, costly transfers of information reduce the benefit generated by the information

externalities. Indeed experimenting in order to induce the other to do so is more costly,

since the experimenter has to pay to send information.

Irreversibility Irreversibility of the safe action is a relatively frequent assumption in

the bandit literature (c.f. Rosenberg, Solan and Vieille (2007) and Murto and Välimäki

(2009)). What would be the impact of this assumption in a setting of costly information

transfers? Irreversibility of communication would not change our results: in all the equi-

libria we exhibit, communication strategies are threshold strategies. In other words players
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play as if communication were irreversible. Irreversibility of experimentation may increase

the amount of experimentation.

Homogeneity of communication costs We assume that the communication cost is

the same across players. Does a difference in costs modify the results? Clearly in the case

PTEI and PTGI there is no hope for asymmetric equilibrium to emerge. The structure of

symmetric equilibria may not be affected by an heterogeneity in communication costs. It is

plausible that the equilibria would be those of the homogeneous case with a communication

cost equal to the highest cost of both players.

Type of messages An important assumption is that players can not lie on the in-

formation they send. Either they show their actions and outcomes, or they don’t. An

alternative way of modelling communication could be to assume that players can send

messages to each other chosen in a set of arbitrarily many messages (as in cheap-talk

models, but at some cost c). What would be the structure of information at equilibrium?

Would it be dominant for all players to send the same message as a player who would

have receive a breakthrough? Would a perfectly revealing equilibrium exist, where players’

messages reveal their type, namely the history of their actions and outcomes? This kind of

communication introduces a new difficulty since players’ beliefs may differ at some dates.

We let this work for latter research.

References

[1] Bergemann D., Välimäki J., (1996), Learning and strategic pricing, Econometrica, 64,

1125-49.

[2] Bergemann D., Välimäki J., (1997), Market diffusion with two-sided learning, RAND

J. Econo., 28, 773-795.

36



[3] Bergemann D., Välimäki J., (2000), Experimentation in markets, Review of Economic

Studies, 67, 213-234.

[4] Bergemann D., Välimäki J., (2006), Bandit problems, Cowles Foundation Discussion

Paper n 1551.

[5] Bolton P., Harris C., (1999), Strategic experimentation, Econometrica, 67, 349-374.

[6] Bonatti A., Hörner J., (2010), Collaborating, Cowles Foundation Paper 1695, forth-

coming in American Economic Review.

[7] Hörner J., Samuelson L., (2010), Incentives for experimenting agents, Cowles Foun-

dation Discussion Paper n 1726.

[8] Keller G., Rady S., Cripps M., (2005), Strategic experimentation with exponential

bandits, Econometrica, 73, 39-68.

[9] Keller G., Rady S., (2010), Strategic experimentation with Poisson bandits, Theoret-

ical Economics, Econometric Society, 5, 275-311

[10] Murto P., Välimäki J., (2009), Delay and information aggregation in stopping games

with private information.

[11] Murto P., Välimäki J., (2009), Learning and information aggregation in an exit game.

[12] Rosenberg D., Solan E., Vieille N., (2007), Social learning in one-arm Bandit problems,

Econometrica, 75, 1591-1611.

37


