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Modeling Ambiguity Aversion as Aversion to Utility Dispersion Caused by Ambiguous Events 

Pavlo Blavatskyy 

Abstract: In choice under ambiguity a decision maker may know the objective probabilities 

of some but not all events. The phenomenon of ambiguity aversion is observed when the 

decision maker prefers to bet on events with known (rather than unknown) objective 

probabilities. This paper proposes a novel way of modeling ambiguity aversion. In the 

proposed model the ambiguousness of an act is determined by the dispersion of the utility 

of its outcomes across states with unknown objective probabilities. The proposed model can 

rationalize Ellsberg (1963) example and Machina (2009) reflection example. Behavioral 

characterization of the model is provided. 
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Introduction 

We consider monetary bets (acts) on two independent random variables: 1) a toss of a 

fair coin with a 50%-50% chance of heads or tails to come up; 2) a draw of a ball from an urn 

that contains only black and white balls in unknown proportion. For example, an act f1 on 

figure 1 yields $4000 if heads come up and nothing if tails come up. An act g1 on figure 1 

yields $4000 if a black ball is drawn and nothing if a white ball is drawn. 

Act f1  
BLACK WHITE  

Act g1 
BLACK WHITE 

HEADS $4000 $4000  HEADS $4000 $0 

TAILS $0 $0  TAILS $4000 $0 

Figure 1 Ellsberg (1961) two-color example 

Ellsberg (1961) argued that people prefer f1 over g1 and this preference holds for any 

permutation of rows and/or columns. Ellsberg (1961) showed that such preference falsifies 

Savage (1954) subjective expected utility theory. Ellsberg (1961) example motivated the 

development of numerous models of ambiguity aversion.   

Act f2  
BLACK WHITE  

Act g2 
BLACK WHITE 

HEADS $4000 $4000  HEADS $4000 $8000 

TAILS $8000 $0  TAILS $4000 $0 

Figure 2 A variant of Machina (2009) reflection example 

Consider now a variant of Machina (2009) reflection example presented on figure 2.1 

Machina (2009) conjectured that people prefer f2 over g2 and this preference holds for any 

permutation of rows and/or columns.2 Machina (2009) demonstrated that such preference 

falsifies Choquet expected utility (Gilboa, 1987; Schmeidler, 1989). It also falsifies Tversky 

and Kahneman (1992) cumulative prospect theory which coincides with Choquet expected 

utility in this example (when all outcomes are nonnegative).  

                                                           
1
 This example corresponds to the example in table 5 in Machina (2009) with an 

additional restriction that Machina’s events E1 and E3 are equally likely (which implies that 

events E2 and E4 are equally likely as well). 

2
 L’Haridon and Placido (2010) present experimental evidence on Machina (2009) 

reflection example confirming his conjecture. 
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Baillon et al. (2011) showed that the preference typically revealed in Machina (2009) 

reflection example also falsifies Cerreia-Vioglio et al. (2009) model or uncertainty averse 

preferences which includes as special cases: 

a) Gilboa and Schmeidler (1989) maxmin expected utility or multiple priors; 

b) Hansen and Sargent  (2001) and Strzalecki (2011) multiplier preferences or relative 

entropy; 

c) Klibanoff et al. (2005) smooth model with concave φ; 

d) Maccheroni et al. (2006) variational preferences; 

e) Ahn (2008) model with concave φ; and 

f) Chateauneuf and Faro (2009) confidence function model. 

Additionally, Baillon et al. (2011) showed that Ghirardato et al. (2004) α-maxmin 

theory can accommodate either Ellsberg (1961) example or Machina (2009) reflection 

example but not both at the same time. This conclusion also holds for Olszewski (2007) 

model that is de facto equivalent to α-maxmin in the present context. 

Siniscalchi (2009) vector expected utility (VEU) can accommodate either the example 

on figure 1 or on figure 2 but not both at the same time. This novel result is demonstrated in 

the appendix. Intuitively, VEU is built on the premise that the ambiguousness of 

complementary uncertain events “cancels out”. This cancelation is done on the expected 

utility basis. For example, f1 is not ambiguous according to VEU because two complementary 

uncertain events (drawing a black ball and drawing a white ball) yield the same expected 

utility. On the other hand, g1 is ambiguous because drawing a black ball yields $4000 

whereas drawing a white ball yields nothing. Similarly, VEU predicts that g2 is not ambiguous 

for a risk-neutral individual (with a linear Bernoulli utility function) because drawing a black 

ball yields exactly the same expected value ($4000) as drawing a white ball. However, f2 is 

always ambiguous according to VEU because drawing a black ball yields a strictly higher 

utility than drawing a white ball. Thus, “cancelation” in VEU works in the opposite directions 

in examples 1 and 2. 

The model of Nau (2006)3 can rationalize either the example on figure 1 or on figure 2 

but not both at the same time. This novel result is formally shown in the appendix. 

                                                           
3
 Neilson (2010) second-order expected utility theory coincides with model II in Nau 

(2006, p. 143). 
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Intuitively, Nau (2006) generates ambiguity aversion through an additive function of 

expected utilities in uncertain events. If this function is concave, then two uncertain events 

each yielding a 50% chance of $4000 (as in f1) are preferred over one uncertain event 

yielding $4000 for sure (as in g1) due to Jensen’s inequality. For the same reason, a risk-

neutral individual prefers two uncertain events each with an expected value of $4000 (as in 

g2) over two uncertain events with expected values of $6000 and $2000 (as in f2). Thus, 

concavity in Nau (2006) model works in the opposite directions in examples 1 and 2. 

Jaffray (1989) linear utility theory for belief functions can rationalize either the 

example on figure 1 or on figure 2 but not both at the same time. This novel result is shown 

in the appendix. This result also holds for Gul and Pesendorfer (2010) expected uncertain 

utility theory which coincides with Jaffray (1989) model in the present context of a finite 

state space (cf. theorem 2 in Jaffray (1989) and formula (6) in Gul and Pesendorfer (2010)). 

The only model in the existing literature that can account for both examples presented 

on figures 1 and 2 is Ergin and Gul (2009) second-order probabilistically sophisticated (SPS) 

preferences. Yet, two representations that Ergin and Gul (2009) considered within this 

general class of preferences can rationalize only one example at most. The first 

representation (SPS expected utility) is equivalent to Klibanoff et al. (2005) smooth model. 

This model can rationalize either Ellsberg (1961) example (with concave φ) or Machina 

(2009) reflection example (with convex φ) but not both at the same time (see Baillon et al. 

(2011)). The analogous result for the second representation (SPS Choquet expected utility) is 

demonstrated in the appendix. 

This paper presents a new model of ambiguity aversion that can rationalize Machina’s 

reflection example. As in Knight (1921), the premise of our model is the distinction between 

events with known and unknown objective probabilities. Unlike many contemporary models 

of ambiguity aversion, we do not assume that a decision maker behaves as if making 

probability judgments on the relative likelihood of ambiguous events. Though such 

judgments can be incorporated into the model (as demonstrated in the concluding section), 

we model ambiguity aversion as aversion to utility dispersion caused by ambiguous events.  

The paper is organized as follows. Section 1 introduces notation and a new model. 

Sections 2 and 3 illustrate how the proposed model can rationalize the Ellsberg paradox and 

the Machina’s reflection example correspondingly. Section 4 provides a behavioral 

characterization of the model. Section 5 concludes. 
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1. Notation and Model 

There is a non-empty set S. The elements of S are called states of the world. There is a 

sigma-algebra Σ of the subsets of S that are called events. The objective probability of event 

E ∈Σ , if known, is denoted by P(E). Obviously, ( ) 0P ∅ =  and ( ) 1P S = . Set S is partitioned 

into n ∈�  disjoint events  Ei 
4 such that:  

1) ( )iP E  is known for all { }1,...,i n∈ ;  

2) ( )P E  is known for all 1E E⊂ ; and  

3) the objective probability is not known for any event 
i

E E⊂ , { }2,...,i n∈ .  

In the framework of pure subjective uncertainty the objective probabilities of all 

events are unknown, i.e. 1E = ∅  and 
i

E S=  for some { }2,...,i n∈ . In choice under risk with 

a given state space the objective probabilities of all events are known, i.e. 1E S=  and 

i
E = ∅  for all { }2,...,i n∈ . In choice under ambiguity, analyzed in this paper, the objective 

probabilities of some but not all events are known, i.e. there is { }2,...,i n∈  such that 
i

E ≠ ∅  

and 
i

E S≠ . 

There is a connected and separable set X. The elements of X are called outcomes. An 

act :f S X→  is a Σ-measurable function from S to X. The set of all acts is denoted by F. 

A decision maker has a preference relation �  on F. As usual, the symmetric part of �  

is denoted by ∼  and the asymmetric part of �  is denoted by � . Preferences are 

represented by utility function :U F → �  when f g�  if and only if ( ) ( )U f U g≥  for all 

,f g F∈ . In this paper we consider utility function (1). 

(1) ( ) ( ) ( ) ( )( )
2

0.5
i i

n

s st

s S i s E t E

U f u f s u f s u f tϕ
∈ = ∈ ∈

= + −∑ ∑∑∑� � �  

In formula (1), a standard state-contingent utility function :
s

u X →�  captures the 

desirability of outcome x X∈  contingent on the state s S∈ . (Bernoulli) utility function 

:u X → �  represents state-uniform preferences under risk. Functions ( ).su  and ( ).u  satisfy 

the restriction ( ) ( ) ( )s

s E

u x P E u x
∈

= ⋅∑  for all x X∈  and all E ∈Σ  such that ( )P E  is 

                                                           

4
 i.e., 

1

n

i

i

E S
=

=∪  and 
i j

E E∩ = ∅  for all { }, 1,...,i j n∈ , i j≠ . 



6 

 

known.5 Functions :
s

u X →�  and :u X → �  are continuous and determined up to an 

increasing linear transformation.  

Function :
st

ϕ + →� �  captures the attitude of a decision maker to utility dispersion 

across ambiguous states ,
i

s t E∈ . Function ( ).stϕ  satisfies two natural restrictions. First, 

( )0 0stϕ = , i.e., ambiguous states that yield the same utility are de facto not ambiguous. 

Second, ( ) ( )st tsv vϕ ϕ=  for all v +∈� , i.e., ambiguity attitudes do not depend on the 

labeling of ambiguous states. Function ( ).stϕ  is continuous and determined up to an 

increasing linear transformation. Savage (1954) subjective expected utility theory is a special 

case of representation (1) when function ( ).stϕ  is always equal to zero and a decision maker 

has state-uniform preferences. 

2. Ellsberg (1963) three-color example 

In the well-known Ellsberg (1963) three-color example { }, ,S R B Y= , { }( ) 1 3P R = ,

{ }( ), 2 3P B Y =  and objective probabilities of the states B and Y are unknown. Thus, we 

have a partition { }1E R=  and { }2 ,E B Y= .  Four acts are presented in Table 1. 

Acts 
States of the world 

R B Y 

f $100 $0 $0 

g $0 $100 $0 

h $100 $0 $100 

l $0 $100 $100 

Table 1 Four acts in Ellsberg (1963) three-color example 

People often reveal a choice pattern f g�  and l h� . This revealed choice pattern is 

known as ambiguity aversion. The opposite choice pattern g f�  and h l�  is known as 

ambiguity seeking. According to representation (1) a decision maker reveals preference 

f g�  if and only if condition (2) holds. 

(2) ( ) ( ) ( ) ( ) ( ) ( )( )$100 $0 $0 $100 $100 $0R R B B BYu u u u u uϕ− + − > −  

Similarly, a decision maker reveals preference l h�  if and only if condition (3) holds. 

                                                           
5 This restriction insures that a decision maker has state-uniform preferences under risk. 
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(3) ( ) ( ) ( ) ( ) ( ) ( )( )$100 $0 $0 $100 $100 $0R R B B BYu u u u u uϕ− + − < − −  

Inequalities (2) and (3) cannot hold simultaneously if ( ) ( )( )$100 $0 0BY u uϕ − = . Thus, 

Savage (1954) subjective expected utility theory cannot explain ambiguity aversion. 

Inequalities (2) and (3) can hold simultaneously only if ( ) ( )( )$100 $0 0BY u uϕ − < . Thus, 

ambiguity aversion is captured by a negative function ( ).stϕ  in representation (1). Similarly, 

ambiguity seeking corresponds to a positive function ( ).stϕ . 

3. Machina (2009) reflection example 

In Machina (2009) reflection example there are four states of the world that we label 

as R, B , Y and G. Objective probabilities of these four states are unknown. Yet, it is known 

that { }( ), 0.5P R B =  and { }( ), 0.5P Y G = . Thus, we have a partition 1E = ∅ , { }2 ,E R B=  

and { }3 ,E Y G= .  Four acts are presented in Table 2. 

Acts 

States of the world 

R B Y G 

f $4000 $4000 $8000 $0 

g $4000 $8000 $4000 $0 

h $0 $4000 $8000 $4000 

l $0 $8000 $4000 $4000 

Table 2 Four acts in Machina (2009) reflection example 

L’Haridon and Placido (2010) found that people often reveal a choice pattern f g�  

and l h�  in Machina (2009) reflection example. Let ( ) ( )$4000 $0a u u= −  and 

( ) ( )$8000 $4000b u u= − . According to representation (1) a decision maker then reveals 

preference f g�  if and only if condition (4) holds. 

(4) ( ) ( ) ( ) ( ) ( ) ( ) ( )$4 $8 $8 $4B B Y Y RB YG YGu k u k u k u k b a a bϕ ϕ ϕ− + − > + − +  

Similarly, a decision maker reveals preference l h�  if and only if condition (5) holds. 

(5) ( ) ( ) ( ) ( ) ( ) ( ) ( )$4 $8 $8 $4B B Y Y RB RB YGu k u k u k u k a b a bϕ ϕ ϕ− + − < + − −  

Inequalities (4) and (5) can hold simultaneously only if condition (6) is satisfied. 
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(6) ( ) ( ) ( ) ( ) ( ) ( )RB YG RB RB YG YGa b a b a b a bϕ ϕ ϕ ϕ ϕ ϕ+ + + > + + +  

Thus, if function ( ).stϕ  in representation (1) is convex then inequality (6) is satisfied 

and a decision maker can reveal a choice pattern f g�  and l h� . On the other hand, if 

function ( ).stϕ  is concave then inequality (6) is violated and a decision maker can reveal the 

opposite choice pattern g f�  and h l� . Only when function ( ).stϕ  is linear the right-hand 

side of inequality (4) is exactly equal to the right-hand side of inequality (5) and a decision 

maker cannot reveal a switching choice pattern in Machina (2009) reflection example. 

4. Behavioral characterization of the model 

We now present the list of axioms to be imposed on the preference relation �  so that 

it admits representation (1). For compact notation, let fEg denote an act that yields 

outcome ( )f s  in states s E∈  and outcome ( )g s  in states \s S E∈  for some event E ∈Σ . 

Axiom 1 (Completeness) For all ,f g F∈  either f g�  or g f�  (or both). 

Axiom 2 (Separability for Risk) If 1 2 2 1f Eg f Eg�  and 2 3 3 2f Eg f Eg�  then 1 3 3 1f Eg f Eg�  for 

all 1 2 3, , :f f f E X→ , all 1 2 3, , : \g g g S E X→  and all E ∈Σ  such that ( )P E  is known.6 

Axiom 3 (Continuity) For all f F∈  the sets { }:g F g f∈ �  and { }:g F f g∈ �  are 

closed. 

Proposition 1 (Debreu, 1960) Preference relation �  satisfies axioms 1-3 if and only if 

(7) ( ) ( ) ( ) ( )( )
1

1 ( )

2

,...,
i

n

s E i im i

s E i

U f u f s u f s f s
∈ =

= +∑ ∑� , 

where utility functions :
s

u X →�  and 
( )

:
i

m i

Eu X →�  are continuous and determined up 

to an increasing linear transformation; and the elements of iE  are numbered as ( )1,...,i im i
s s . 

Proof: If iE S=  for some { }2,...,i n∈  then equation (7) holds trivially by setting 

( ) ( )
iEU f u f= . If iE S≠  for all { }2,...,i n∈  then there is at least one event E ∈Σ  such that 

( )P E  is known and ,E S≠ ∅ . Proposition 1 then follows from Theorems 1 and 3 in Debreu 

(1960). Q.E.D. 

                                                           
6 When E S=  axiom 2 becomes a standard transitivity axiom: if 1 2f f�  and 2 3f f�  then 

1 3f f�  for all 1 2 3, ,f f f F∈ . 



9 

 

Proposition 1 establishes standard separability for risk. The next step is to obtain 

separability for ambiguity. Intuitively, for ambiguous events we want to weaken axiom 2 so 

that it holds only when each pair of acts has the same utility dispersion across ambiguous 

states. Thus, we first need a behavioral characterization of utility dispersion. We will use the 

tradeoff technique (cf. chapter 4 in Wakker, 2010). 

In choice under ambiguity, as already mentioned above, there is { }2,...,i n∈  such that 

iE ≠ ∅  and iE S≠ . Let ixE z  denote an act that yields outcome x X∈  in states is E∈  and 

outcome z X∈  in states \ is S E∈ . If 
1 1 1 2i ix E z y E z∼  and 

2 1 2 2i ix E z y E z∼  then proposition 1 

implies that ( ) ( ) ( ) ( )1 2 1 2i i i iE E E Eu x u x u y u y− = − .7 This provides us with a simple behavioral 

characterization of utility difference. In general, this behavioral characterization may depend 

on specific event iE  if a decision maker has state-dependent preferences under risk. Thus, it 

is necessary to assume state-uniform preferences for all events with known objective 

probabilities. This is achieved in the following axiom. 

Axiom 4 (State-Uniform Preferences Under Risk) If 
1 1 1 2x Ez y Ez∼ , 

2 1 2 2x Ez y Ez∼  and 

1 3 1 4x E z y E z′ ′∼  then 
2 3 2 4x E z y E z′ ′∼

 
for all 

1 2 1 2 1 2 3 4, , , , , , ,x x y y z z z z X∈  and for all ,E E′∈Σ  

such that ( )P E
 
and ( )P E′  are known. 

With axiom 4 at hand, if 
1 1 1 2i ix E z y E z∼  and 

2 1 2 2i ix E z y E z∼  then we can simply write 

that ( ) ( ) ( ) ( )1 2 1 2u x u x u y u y− = − , i.e., we can drop the subscript of utility function ( )
iEu x . 

With this behavioral characterization of utility dispersion we are now ready to impose 

separability for ambiguous events. For compact notation, let [ ] ixtf E g denote an act that 

yields outcome x X∈  is state it E∈ , outcome ( )f s  in states { }\is E t∈  and outcome ( )g s  

in states \ is S E∈  for some { }2,...,i n∈ .  

Axiom 5 (Separability for Ambiguity) If [ ] [ ]1 2 2 1i ix tf E g x tf E g�   and 

[ ] [ ]2 3 3 2i ix tf E g x tf E g�   then [ ] [ ]1 3 3 1i ix tf E g x tf E g�   for all 1 2 3, ,x x x X∈ , all 

{ }1 2 3, , : \if f f E t X→ , all : \ ig S E X→ , all it E∈  and all { }2,...,i n∈  such that  

(8) 
1 1 2 2x Ez x Ez∼  and ( ) ( )2 1 1 2f s Ez f s Ez∼  for all { }\is E t∈ ; 

                                                           
7 We slightly abused notation by abbreviating ( ),...,

iEu x x  into ( )
iEu x  for all x X∈ . 
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(9) 
2 3 3 4x Ez x Ez∼  and ( ) ( )3 3 2 4f s Ez f s Ez∼  for all { }\is E t∈ ; 

for some 
1 2 3 4, , ,z z z z X∈  and some E ∈Σ  such that ( )P E

 
is known and ,E S≠ ∅ . 

Proposition 2 Preference relation �  satisfies axioms 1-5 if and only if it admits 

representation (1). 

Proof is presented in the appendix. 

 

 

5. Conclusion 

This paper proposes a novel way of modeling the phenomenon of ambiguity aversion. 

The preferences of a decision maker are represented by a standard separable utility function 

that includes extra terms for utility dispersion across ambiguous states. This modeling 

approach captures attitudes to ambiguity through subjective functions on the set of 

outcomes (not the state space). Such modeling approach avoids the necessity of considering 

mixture acts and extending the preferences of a decision maker over the set of mixture acts. 

In the baseline model (1) a decision maker does not have subjective beliefs on the likelihood 

of events with unknown objective probabilities. 

In practical applications, beyond simple examples considered in sections 2 and 3, 

however, the model with state-contingent utility functions may be too general and a more 

parsimonious specification is desirable. A natural special case to consider is the case of state-

uniform preferences.8 In this case, state-contingent utility functions :su X →�  differ only 

by a positive multiplicative constant that is conventionally interpreted as (objective or 

subjective) probability ( )P s  of state s S∈ . Using a specific functional form 

( ) ( ) ( ) ( )st v P s P t vϕ ϕ= ⋅ ⋅  where :ϕ + →� �  is an arbitrary function,9 we obtain a 

parsimonious model (10). 

                                                           
8 I.e., we impose axiom 4 on all events (not only those with known objective 

probabilities). 

9 Ellsberg (1963) three-color example and Machina (2009) reflection example suggest 

that people have a negative and convex function ( ).ϕ . If function ( ).ϕ  is differentiable, 

monotonicity requires ( )1 1vϕ ′− ≤ ≤  for all v +∈� . 



11 

 

(10) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2

0.5
i i

n

s S i s E t E

U f P s u f s P s P t u f s u f tϕ
∈ = ∈ ∈

= ⋅ + ⋅ ⋅ −∑ ∑∑∑� � �  

Model (10) evaluates an act through a linear tradeoff between its subjective expected 

utility and its utility dispersion across ambiguous states. Model (10) resembles the theory of 

disappointment without prior expectation proposed by Delquié and Cilo (2006) for choice 

under risk. When outcomes are monetary, utility function ( ).u  is linear and function ( ).ϕ  is 

quadratic, model (10) becomes the analog of Markowitz (1952) mean-variance approach for 

decision under ambiguity. The second term on the right hand side of equation (10) (or, more 

generally, of equation (1)) can be interpreted as a subjective measure of ambiguousness of 

an act. Model (10) also resembles Jaffray (1989) if the focal set of a belief function in Jaffray 

(1989) contains only singletons and pairs of ambiguous states.  

The model presented in this paper separates only between states with known and 

unknown objective probabilities. A natural extension is to consider various subjective 

degrees of ambiguity and source preference. 
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Appendix 

Vector expected utility and the example presented on figure 2 

We normalize von-Neumann-Morgenstern utility function so that u($0)=0, u($4000)=v, 

v∈(0,1), and u($8000)=1. Let p∈[0,1] denote a baseline probability that a black ball is drawn. 

Let ζ denote the adjustment factor for the event when a black ball is drawn. The adjustment 

factor for the complementary event (when a white ball is drawn) is then -ζp/(1-p). The utility 

of f2 and g2 can be written as (A1) and (A2) correspondingly. 

(A1) VEU(f2)=0.5(v+p)+A(0.5ζp) 

(A2) VEU(g2)=vp +0.5(1-p)+A(ζp[v-0.5]) 

A decision maker then prefers f2 over g2 if inequality (A3) is satisfied. 

(A3)  (p-0.5)(1-v) > A(ζp[v-0.5]) - A(0.5ζp) 

Similarly, we can show that the preference for f2 is preserved after a permutation of 

rows and columns in figure 2 if inequality (A4) is satisfied. 

(A4)  A(-0.5ζp) - A(ζp[0.5-v]) > (p-0.5)(1-v) 

In vector expected utility function A(.) is symmetric, i.e. A(-φ)=A(φ) for all φ. Using this 

fact it is straightforward to show that inequalities (A3) and (A4) can hold simultaneously only 

if inequality (A5) is satisfied. 

(A5)  A(0.5ζp) > A(ζp|v-0.5|) 
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Since v∈(0,1), the argument of function A(.) on the left-hand-side of (A5) is always 

greater than that on the right-hand-side of (A5). Hence, inequality (A5) effectively states that 

function A(.) is increasing on the positive orthant of Euclidean space. Since A(0)=0 by 

definition, we conclude that function A(.) is positive. Yet, to explain the Ellsberg (1961) 

paradox function A(.) must be nonpositive (cf. Siniscalchi, 2009, section 4.3). 

Nau (2006) model and the example presented on figure 2 

Nau (2006) general model I allows for state-dependent utility. Let subscript 

i∈{HB,HW,TB,TW} denote each of four possible states (e.g., HB denotes a state when Heads 

come up and a Black ball is drawn). In each state i  we normalize standard state-dependent 

utility function so that the utility of $0 is zero, the utility of $4000 is vi∈(0,1) and the utility of 

$8000 is one. Let functions uB :ℝ→ℝ and uW :ℝ→ℝ denote second-order utilities (unique up 

to a positive affine transformation). We normalize second-order utilities so that 

uB(vTB)=uW(vHW) and uB(1)=uW(1). 

A decision maker prefers f2 over g2 if inequality (A6) is satisfied. 

(A6)  uB(1+vHB) + uW(vHW) > uB(vHB+vTB) + uW(1) 

Using our normalization of second-order utilities, inequality (A6) can be rewritten as 

(A7). 

(A7)  uB(1+vHB) + uB(vTB) > uB(vHB+vTB) + uB(1) 

Inequality (A7) is Karamata’s majorization inequality (Karamata, 1932) which 

generalizes Jensen’s inequality and characterizes a convex function uB(.). Yet, to explain the 

Ellsberg (1961) paradox function uB(.) must be concave (cf. theorem 1 in Nau, 2006). 

Jaffray (1989) model and examples presented on figure 1-2 

Let pi denote the Möbius inverse of a belief function for a state i∈{HB,HW,TB,TW} (e.g., 

HB denotes a state when Heads come up and a Black ball is drawn). Let p-i denote the 

Möbius inverse of a belief function for an event that is complementary to state 

i∈{HB,HW,TB,TW}. Finally, let pj denote the Möbius inverse of a belief function for an event 

j∈{H,T,B,W} (e.g., H denotes an event when Heads come up). Let u:ℝxℝ→ℝ denote utility 

function. 

A decision maker then prefers f1 over g1 if inequality (A8) is satisfied. 
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(A8)  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

$4000,$4000 $0,$0

$4000,$4000 $0,$4000

$0,$4000 $0,$0 0

HW TB

H B

W T

p p u u

p p u u

p p u u

− − +  

+ − − +  

+ − − >  

 

The preference for f1 is preserved after a permutation of rows and columns in figure 1 

if inequality (A9) is satisfied. 

(A9)  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

$4000,$4000 $0,$0

$4000,$4000 $0,$4000

$0,$4000 $0,$0 0

TB HW

T W

B H

p p u u

p p u u

p p u u

− − +  

+ − − +  

+ − − >  

 

Adding inequalities (A8) and (A9) together we get condition (A10). 

(A10)  ( ) ( ) ( ) ( )$4000,$4000 $0,$0 2 $0,$4000 0T H B Wp p p p u u u+ − − + − >    

Thus, Jaffray (1989) model can account for Ellsberg (1961) two-color example only 

when either 1) pT +pH >pB +pW  and utility function u(.,.) is strictly supermodular; or 2) pT +pH 

<pB +pW  and utility function u(.,.) is strictly submodular. 

A decision maker prefers f2 over g2 if inequality (A11) is satisfied. 

(A11)  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

$8000,$8000 $4000,$4000

$4000,$8000 $4000,$4000

$0,$8000 $0,$4000 0

TB HW

B H

T W HW TB

p p u u

p p u u

p p p p u u− −

− − +  

+ − − +  

+ − + − − >  

 

The preference for f2 is preserved after a permutation of rows and columns in figure 2 

if inequality (A12) is satisfied. 

(A12)  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

$8000,$8000 $4000,$4000

$4000,$8000 $4000,$4000

$0,$8000 $0,$4000 0

HW TB

W T

H B TB HW

p p u u

p p u u

p p p p u u− −

− − +  

+ − − +  

+ − + − − >  

 

Adding inequalities (A11) and (A12) together we get condition (A13). 

(A13)  ( ) ( ) ( ) ( ) ( )$4000,$4000 $4000,$8000 $0,$8000 $0,$4000 0T H B Wp p p p u u u u+ − − − + − >    

Thus, Jaffray (1989) model can account for the example presented on figure 2 only 

when either 1) pT +pH >pB +pW  and utility function u(.,.) is strictly submodular; or 2) pT +pH <pB 

+pW  and utility function u(.,.) is strictly supermodular. This means that Jaffray (1989) model 

can rationalize either the example on figure 1 or on figure 2 but not both at the same time. 
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Ergin and Gul (2009) second-order probabilistically sophisticated Choquet expected utility 

and examples presented on figure 1-2 

We normalize von-Neumann-Morgenstern utility function so that u($0)=0, u($4000)=v, 

v∈(0,1), and u($8000)=1. Let c(p) denote capacity of probability p∈[0,1] that a black ball is 

drawn. A decision maker then prefers f1 over g1 if inequality (A14) is satisfied. 

(A14)  ( )
1

0

0.5pdc p <∫  

A decision maker prefers f2 over g2 if inequality (A15) is satisfied. 

(A15)  [ ] ( ) ( ) ( )
1 1

0 0

0.5 0.5 0.5 1p v dc p p pv dc p+ > − +  ∫ ∫  

Simplifying inequality (A15) yields inequality (A14) with a reversed sign. Thus, Ergin and 

Gul (2009) second-order probabilistically sophisticated Choquet expected utility can 

rationalize either the example on figure 1 or on figure 2 but not both at the same time. 

Proof of proposition 2 

The necessity of axioms 1-5 is relatively straightforward to show. We shall prove only 

their sufficiency. Proposition 1 implies that conditions (8)-(9) in axiom 5 can be rewritten as 

(11)-(12) for some state { }\is E t∈ . 

(11) ( ) ( ) ( ) ( )1 2 2 1u x u f s u x u f s− = −� �  

(12) ( ) ( ) ( ) ( )2 3 3 2u x u f s u x u f s− = −� �  

Note that conditions (11)-(12) together imply condition (13) 

(13) ( ) ( ) ( ) ( )1 3 3 1u x u f s u x u f s− = −� �  

Axiom 5 then guarantees that the conditions of Thomsen-Blaschke theorem (Blaschke, 

1928) are satisfied (see Figure 1). Thus there is a topological transformation carrying the 

family of indifference curves depicted on Figure 3 into a family of parallel straight lines 

( ) ( ) ( ) ( )( )t s tsu x u f s u x u f s constδ+ + − =� � , where functions :
t

u X →� , :su X → �  

and :
ts

δ →� �  are continuous and determined up to an increasing linear transformation..  

By a symmetry argument for every other state { }\is E t′∈  we obtain (14). 

(14) ( ) ( )( ) ( ) ( ) ( )( )1 ( ),...,
i

i i i

E i im i s st

s E s E t E

u f s f s u f s u f s u f tδ
∈ ∈ ∈

= + −∑ ∑∑� � �  
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In formula (14) utility dispersion across each pair of ambiguous states ,
i

s t E∈  is 

considered twice (state s is first compared to state t and then vice versa). For parsimony, we 

can introduce another function ( ) ( ) ( ) ( )st ts st tsv v v vϕ ϕ δ δ≡ = + −  for all v ∈� . Plugging 

this new function into equation (14) and equation (14) in its turn into representation (7) 

yields (1). Q.E.D.  

 

    Outcome in state { }\is E t∈  

 

 

 

 

 

 

 

 

 

 

             Outcome in state 
i

t E∈  

   x1   x2           x3 

 

Figure 3 Graphical illustration of axiom 5 
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