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Abstract

We develop a model of the daily return-volume relationship which incorporates

information and liquidity shocks. First, we distinguish between two trading strate-

gies, information-based and liquidity-based trading and suggest that their respective

impacts on returns and volume should be modeled differently. Second, we integrate

the microstructure setting of Grossman and Miller (1988) with the information flow

perspective of Tauchen and Pitts (1983) and derive a modified MDH model with two

latent factors related to information and liquidity. Our model explains how the liquidity

frictions can increase the daily traded volume, in the presence of liquidity arbitragers.

Finally, we propose a stock-specific liquidity measure using daily return and volume

observations of FTSE100 stocks.
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1 Introduction

In this article, we develop a model of the daily return-volume relationship which takes into

account both information and liquidity shocks. To do so, we reconcile the information flow

perspective of the mixture of distribution hypothesis (MDH) with the microstructure setting

of Grossman and Miller (1988) which captures market liquidity. We develop a modified MDH

model with two latent factors related to information and liquidity shocks.

Several empirical studies [see Ying (1966), Crouch (1970), Clark (1973), Copeland (1976),

Copeland (1977), Epps and Epps (1976), Westerfield (1977), Rogalski (1978), Tauchen and

Pitts (1983), Harris (1982), Harris (1986) and Harris (1987)] of both futures and equity mar-

kets find a positive association between price variability1 and the contemporaneous trading

volume2 at the daily frequency. The usual theoretical explanation of this positive volume-

return volatility relation comes from microstructure models which analyze how information

is disseminated into prices, and how market prices convey information. Thus, several models

predict a positive return volatility-volume relation that depends on the rate of information

flow and the interaction between specialists, informed and liquidity traders [Kyle (1985),

Glosten and Milgrom (1985), Easley and O’Hara (1987), Diamond and Verrechia (1987),

Admati and Pfleiderer (1988), Foster and Viswanathan (1990), Foster and Viswanathan

(1993) and Easley et al. (1996)], the market size [Gallant et al. (1992)] or the existence of a

short sales constraint [Diamond and Verrechia (1987)].

The mixture of distribution hypothesis (MDH) models attempt to explore the microstruc-

ture framework in which information asymmetries and liquidity needs motivate trade in re-

sponse to information arrivals. The MDH, pioneered by Clark (1973) and extended by Harris

(1982), Tauchen and Pitts (1983) and Andersen (1996) among others, provides an explana-

tion of the positive correlation between volume and the squared value of price change at

a daily frequency. For example, Clark (1973) model assumes that events important to the

1As measured by either the square price change or the price change per se.
2See Karpoff (1987) for a detailed review of the literature.
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pricing of a security occur at a random rate through time. It appears that price data are

generated by a conditional normal stochastic process with a changing variance parameter

that can be proxied by volume whose distribution is assumed to be lognormal. Clark (1973)

shows that the lognormal-normal mixture outperforms several members of stable family. Us-

ing the same assumption, Harris (1982), Harris (1986), Harris (1987) and Tauchen and Pitts

(1983) show that the joint distribution of daily price changes and volume can also be modeled

by a mixture of bivariate normal distributions. They assume that both variables (the daily

price change and daily volume) are conditioned by the rate of information which is random

and serially uncorrelated. Assuming a lognormal distribution for the mixing variable, the

model can be estimated by maximum likelihood [see Tauchen and Pitts (1983) for further

discussion]. As pointed out by Harris (1982), Harris (1986) and Harris (1987), the MDH

can explain the fat tailed probability distribution of the daily price change, and the positive

correlation between return volatility and volume. The standard MDH models assume that

information inflow drives the positive volatility-volume relationship.

If earlier tests find evidence supportive of the MDH model [Clark (1973), Epps and Epps

(1976), Tauchen and Pitts (1983), Harris (1982), Harris (1986) and Harris (1987)], later

studies are less favorable [Heimstra and Jones (1994), Lamoureux and Lastrapes (1994),

Richardson and Smith (1994), and Andersen (1996)]. Different authors propose various ex-

tensions of the standard MDH model in order to improve its explicative power. Lamoureux

and Lastrapes (1994) extension assumes that the information-arrival rate is serially corre-

lated3. Andersen (1996) develops a modified MDH model that includes a conditional Poisson

distribution for the trading process and a volume component that is not information sen-

sitive. His tests suggest that the modified version significantly outperforms the standard

MDH, which assumes that both returns and volume are normally distributed.

3However their model fails to explain GARCH persistence in return variance. Their finding is consistent
with the results of Richardson and Smith (1994), who used the generalized method of moments (GMM) to
test the mixture model but did not account for time dependencies in the data. Thus, the evidence against the
model isolates the inability of the model to jointly accommodate the dynamic properties of squared returns
and volume.
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Previous MDH tests are performed under the assumption that markets are perfectly

liquid and the impact of liquidity frictions on the volatility-volume relation is disregarded.

However, several studies show that liquidity shocks are priced by the market [see Amihud

(2002), and Acharya and Pedersen (2005) among others] and that they impact both returns

and traded volume [see Chordia et al. (2001), Chordia et al. (2000), and Darolles and Fol

(2005)]. In particular, as discussed by Darolles and Fol (2005), some large investors, such as

Hedge Funds, play the role of liquidity arbitragers by tracking price pressures due to liquidity

frictions and entering the market in order to provide immediacy and to cash the liquidity

premium. Their intervention tends to correct price imperfections due to liquidity shocks and

thus lowers the intra-day return volatility. Once the prices are back to their fully revealing

information level, the arbitrage traders will liquidate their positions in order to benefit from

the price reversals. As a consequence, the volume they trade adds to the volume that would

prevail in the absence of liquidity frictions.

It follows that the observed daily traded volume of a particular stock is the result of both

information-based trading and liquidity arbitragers. Thus, understanding and decomposing

the traded volume can give some insights concerning the market liquidity. In particular, the

raw traded volume is commonly used in the literature as a proxy for liquidity risk or market

quality [Gallant et al. (1992), Domowitz and Wang (1994), Gourieroux and Fol (1998)].

However, more recent studies are less favorable to the idea that the raw traded volume is an

efficient measure of liquidity. For example, Borgy et al. (2010) point out that price-impact

based indicators are more accurate than raw traded volume in order to identify liquidity

problems in the currency exchange (FX) market. In this paper, we suggest that total daily

volume can be misleading since, in the presence of liquidity arbitragers, liquidity frictions

can be associated with higher volume.

These observations motivate us to extend the standard MDH model framework by in-

corporating liquidity effects on daily stock returns and traded volume. To do so, we focus

on the theoretical framework of Grossman and Miller (1988) who develop a market mi-
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crostructure model that captures the essence of market liquidity. They consider two types

of market participants. The first one trades in response to information shocks and can be

assimilated to the active traders of Tauchen and Pitts (1983). The second type of traders

enters the market to exploit the presence of the liquidity events and will be called liquidity

arbitragers. A liquidity event is represented by a temporary order imbalance due to trade

asynchronization among the active traders. In the presence of a liquidity event, trades occur

at two dates. At time 1, the liquidity arbitragers observe price imperfections due to the order

imbalance among the active traders and enter the market to provide immediacy. At time

2, they liquidate their positions as other active traders arrive to the market with opposite

order imbalances4. The Grossman and Miller (1988) model implies that the volume traded

by liquidity arbitragers at date 2 increases the aggregated traded volume.

Using the implications of the Grossman and Miller (1988) model at an aggregated level

across times 1 and 2, we include an additional latent mixing variable L in the model of

Tauchen and Pitts (1983) to take into account the liquidity shocks which are supposed

to arrive randomly within the trading day. Our modified MDH model with two latent

variables − called the MDHL model − permits us to decompose the trading volume into two

components driven respectively by information and liquidity. Moreover, following Richardson

and Smith (1994), we propose a direct test of the modified MDH model. Indeed, the model

imposes restrictions on the joint moments of price changes and volume as a function of only

a few parameters. It is then possible to form overidentifying restrictions. These restrictions

can be tested using the generalized method of moments (GMM) procedure of Hansen (1982).

Based on FTSE100 stock daily return and volume time series ranging from January 2005 to

July 2007, we show that the MDHL model with two latent factors outperforms the standard

MDH, suggesting that the inclusion of a latent liquidity variable may reconcile previous

divergent results found in the literature.

4Note that, Grossman and Miller (1988) assume that if all the active traders were present at time 1, there
would be no order imbalance and no benefit for liquidity arbitragers to enter the market.

5



The contribution5 of this paper is threefold. First, it distinguishes between two trad-

ing strategies, information-based trading and liquidity arbitrage, and suggests that their

respective impacts on returns and traded volume should be modeled differently. The for-

mer is incorporated into the daily price changes and traded volume and drives the positive

volatility-volume relationship. The latter impacts the intraday price variations and volumes

but does not affect the daily price changes, while increasing the daily traded volume. Al-

though previous literature distinguishes between active traders and liquidity providers [see

for example Grossman and Miller (1988)], we are the first to use the arbitrage trading impact

on individual stock returns and volume in order to decompose the total traded volume into

two components due to information and liquidity shocks. To do so, we blend the Grossman

and Miller (1988) microstructure framework into the Tauchen and Pitts (1983) standard

MDH and develop a two-latent factor model accounting for information inflow and liquidity

frictions. Second, we use a structural model, the MDHL model herein proposed, to exploit

the volume-volatility relation in order to extract a stock-specific liquidity measure µlav us-

ing daily data. Finally, the MDHL model confirms previous studies by implying a positive

volatility-volume relation driven by the common dependence of the observables on the in-

formation flow. However, in our framework, this positive correlation does not depend on

the total traded volume but is function of the volume component due to information-based

trading µatv after controlling for the impact of liquidity shocks µlav . The standard MDH model

appears to be a special case of the MDHL model in the absence of liquidity frictions.

The paper is organized as follows. In Section 2, we briefly present the standard MDH

model based on the Tauchen and Pitts (1983) framework. In Section 3, we develop our

model. We first summarize the Grossman and Miller (1988) microstructure framework, and

then discuss its implications concerning aggregated data. Finally, we develop a modified

MDH model accounting for both information and liquidity shocks. In Section 4, we present

the GMM tests and discuss the empirical results. Section 5 concludes the paper.

5Table 7 given in Appendix G compares our paper’s contributions to those of previous results in the
literature.
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2 The standard MDH model (Tauchen and Pitts (1983))

This section provides a brief summary of the standard MDH model based on the theoretical

framework of Tauchen and Pitts (1983), henceforth TP6. The model considers a simple econ-

omy with only one risky asset and J active traders. J is fixed over time. Each trading day,

the market experiences a series of different Walrasian within-day equilibria; the information

inflow triggers market progression from one equilibrium to the next7. No assumptions are

made concerning liquidity problems since, in the TP economy, assets are deemed perfectly

liquid.

The authors first assume that the number of within-day equilibria It is random since

the number of new pieces of information hitting the market varies significantly across the

trading days. Using, in addition, a variance-component model for the trader’s reservation

price increments, TP demonstrate that the intraday price change and the traded volume,

denoted respectively by ∆Pi and Vi (i = 1, ..., It) are normally distributed:

∆Pi ∼ N(0, σ2
p), Vi ∼ N(µv, σ

2
v), (2.1)

where price increment variance σ2
p as well as volume mean and variance parameters denoted

respectively by µv and σ2
v are given in Appendix A.

In order to illustrate the TP model’s world mechanism, we consider a simple example

given in Figure 1. Let It be the number of intra-day equilibria of the t-th trading day and

Pt−1 be the closing price of the previous trading day. To show how intra-day price varies in

response to the inflow of new information, we assume that only three pieces of information

arrive in the course of day t, I1, I2 and I3. Should I1 be perceived as good news, the trader’s

expected value for the risky asset will increase resulting in a new equilibrium price P1 > Pt−1;

in this case the price increment due to the arrival of I1, ∆P1, is positive. I2 being seen as

6A more detailed presentation of the TP model is provided in Appendix A.
7According to TP, "the intervals between successive equilibria are not necessarily of the same length;

since buy/sell orders are executed sequentially, many actual transactions at the exchange can comprise what
we think of as a single market clearing or transaction".
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Figure 1: Day t price change as a function of intra-day price variations due to information shocks.

bad news, the next price increment ∆P2 is negative. Lastly, I3, which turns out to be good

news, initiates the movement to the third intra-day equilibrium and ∆P3 is positive. At the

end of day t, we observe the daily price increment ∆Pt = P3 − Pt−1. The daily price change

is the sum of intra-day price increments due to the arrival of the new information. More

generally, summing the within-day price changes and trading volumes, we obtain the day-t

price change ∆Pt and traded volume Vt:

∆Pt =

It
∑

i=1

∆Pi, Vt =

It
∑

i=1

Vi. (2.2)

Both ∆Pt and Vt appears to be mixtures of independent normals with the same mixing

variable It. Conditional on It, the daily price change ∆Pt is N(0, σ2
pIt) and the daily volume

is N(µvIt, σ
2
vIt), which yields the bivariate normal mixture:

∆Pt = σp
√

ItZ1t, (2.3)

Vt = µvIt + σv
√

ItZ2t, (2.4)
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where Z1t and Z2t are i.i.d. standard normal variables and mutually independent. At the

end of the day t, all the incoming information is incorporated into the price change ∆Pt and

traded volume Vt. From (2.3)-(2.4), it follows that the contemporaneous relation between

∆P 2
t and Vt is:

Cov(∆P 2
t , Vt) = σ2

pµvV ar[It] > 0. (2.5)

Following TP, volume and prices can only change through the information arrival process.

The TP framework is appealing as it defines an interesting factorial structure that we aim

at extending to incorporate a liquidity shock arrival process.

3 Our theoretical framework

Based on the theoretical analysis of Grossman and Miller (1988), henceforth GM, we modify

the standard MDH model by incorporating the effect of market liquidity on volatility-volume

relationship. In our framework, we use "liquidity arbitragers" to refer to a particular family

of liquidity providers who adopt a strategic behavior in order to take advantage of price

distortions due to liquidity frictions. The aim of liquidity arbitragers is to cash the liquidity

premium by offsetting their positions once prices revealing the information are established.

In practice, many financial actors, such as proprietary trading desks or Hedge Funds, may

play the role of liquidity arbitragers. In Subsection 1, we discuss the implications of the GM

framework concerning total price changes and traded volumes, i.e. price changes and volumes

related to information and liquidity shocks. In Subsection 2, we develop our modified MDH

model accounting for both information and liquidity shocks.
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3.1 Modeling the impact of liquidity shocks on total returns and

volume

This paragraph adapts the GM model8 to our economy and discusses how it can be extended

to model the impact of intraday liquidity shocks on price changes and traded volumes. GM

focus on a market in which liquidity is modeled as being determined by the demand and

supply of immediacy. They consider two types of traders: the outside customers who trade

in response to information inflow, and the market makers who trade in response to liquidity

shocks. In our framework, the outside customers are called active traders as in TP and the

market makers of GM correspond to our liquidity arbitragers.

The GM model focuses on a single risky asset and considers only three dates (1, 2, and

3). Dates 1 and 2 are trading dates, while date 3 is introduced only as a terminal condition;

the liquidation value of the risky asset at date 3 is denoted by P̃3. Information concerning P̃3

is assumed to arrive before trading at period 1 and before trading at period 2. Let J be the

number of all the potential active traders in the market. The active trader j (j = 1, ..., J) at

time 1 has an endowment of size zj in the security, which is inappropriate given the trade-

off between his risk preferences and information at that date. At period 1, some liquidity

frictions may arise because of asynchronization of order flows. This will result in a temporary

order imbalance; if all the active participants were present in the market at date 1, the order

imbalance would vanish and the net trading demand would be zero at the current price.

Generally speaking, it is important to distinguish between:

(i) the aggregated endowment shock across active participants and across periods 1 and 2, by

definition equal to zero. If all the active traders were simultaneously present in the market

at date 1, there would be no liquidity event and the equilibrium price would reveal all the

available information about the future liquidation value of the asset;

8The GM model is presented in details in Appendix B. Here, we only report some important results
helping to understand trader motivations, as well as the implications of the GM model concerning total price
changes and total traded volumes, i.e., price changes and traded volumes related to both information and
liquidity shocks.
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(ii) the aggregated endowment shock across active traders willing to trade at date 1:

z =

J1
∑

j=1

zj 6= 0, (3.1)

where J1 < J is the number of active traders being present in the market at date 1. In this

case, z represents a temporary order imbalance caused by trade asynchronization.

Liquidity arbitragers, who continuously observe the market, provide immediacy at date

1 by taking trading positions that they hold until date 2. At date 2, they liquidate their

positions as other active traders arrive with the opposite order imbalance.

Assuming exponential preferences for both types of traders, GM use backward induction

to obtain the optimal excess demands for active traders as well as liquidity arbitragers at

both dates. Then, given the market clearing conditions, the equilibrium price at period 1

denoted by P1 is:

P1 = E1P̃3 −
zαV ar1(E2P̃3)

1 +M
, (3.2)

where α represents trader preferences which are assumed to be identical for all market

participants, M is the number of liquidity arbitragers and V ar1(E2P̃3) represents the risk

from the point of view of period 1 that P2 = E2P̃3 is not known. From equation (3.2), the

equilibrium price at date 1 will deviate from the price revealing the information E1P̃3 and

the equilibrium aggregate excess demand for active traders at date 1 is:

Qat
1 = − M

1 +M
z. (3.3)

In the same way, the equilibrium excess demand per liquidity arbitrager at date 1 is:

Qla
1 =

z

1 +M
, (3.4)
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Since the GM world assumes that liquidity arbitragers face a participation cost c > 0, their

number M will be finite, which implies a limited capacity in providing immediacy and a

deviation of P1 from its fully revealing information level E1P̃3. As discussed by Brunnermeier

and Pedersen (2009), funding liquidity constraints can also explain why the liquidity is not

fully provided.

Generally speaking, the GM framework focuses on the consequences of an order imbalance

on the intraday patterns of price change and transaction volume. At this stage, the model

shows that in the presence of liquidity frictions and exogenous transaction costs:

(i) the traded volume at date 1 is lower than it would have been if there were no order

imbalance |Qat
1 | < |z|.

(ii) the transaction price at date 1 deviates from its revealing information level (P1 6= E1P̃3).

However, from the assumptions that the order imbalance sums to zero across periods 1

and 2, and that the liquidity arbitragers offset their positions at date 2, it follows that the

traded volume across dates 1 and 2 is higher than it would have been in the absence of

liquidity frictions if the condition M ≥ 1 is satisfied9.

A. Order imbalances and the price change

As discussed by TP, the trading day can be considered as a set of successive equilibria and

the movement from one equilibrium to the next is driven by the arrival of new information.

Let us consider a trading day consisting of only 2 information arrivals10. Let δi be an

indicator variable such as δi = 1 (i = 1, 2) in the presence of order imbalances and δi = 0

(i = 1, 2) otherwise. Here, we take δ1 = 1 and δ2 = 0, hence the trading day reduces to a

3-date process in the sense of GM. In other words, we assume that trade asynchronization

occurring just after the arrival of the first piece of information (δ1 = 1) results in a 3-date

9In other words, the order imbalance faced by active traders who exchange at date 1 is offset thanks to
immediacy provided by liquidity arbitragers who will liquidate their positions at date 2 and thus increase
the traded volume.

10In the next subsection we will generalize this simple example by allowing for multiple information arrivals
within a given trading day.
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GM-process with the second piece of information arriving before trading at date 2 and P̃3

being the liquidation value of the asset at the end of the trading day.

Note that, z1 can be expressed as a function of δ1:

z1 =

J1
∑

j=1

z1j + (1− δ1)

J
∑

j=J1+1

z1j = −δ1
J
∑

j=J1+1

z1j , (3.5)

which implies that: (i) for δ1 = 0, z1 =
∑J

j=1 z1j equals zero by definition, and (ii) for δ1 = 1

equation (3.5) is equivalent to equation (3.1).

Let P0 = E0P̃3 be the price prevailing at the beginning of the trading day and E0P̃3 =

E0E1P̃3 be the expectation concerning P̃3 before the arrival of new information to the market.

From equation (3.2), the total price change at date 1 (i = 1), ∆P1 = P1 − P0, is:

∆P1 = (E1P̃3 −E0P̃3)−
z1αV ar1(E2P̃3)

1 +M
= ∆P

′

1 +∆P
′′

1 (z1), (3.6)

where z1 is the order imbalance occurring at date 1, ∆P
′

1 = E1P̃3 −E0P̃3 is the price change

due to information hitting the market at date 1 and ∆P
′′

1 (z1) = −z1αV ar1(E2P̃3)
1+M

is the price

change due to order imbalance at date 1. In the same way, the total price change at date 2,

∆P2 = P2 − P1, can be written as:

∆P2 = (E2P̃3 −E1P̃3) +
z1αV ar1(E2P̃3)

1 +M
= ∆P

′

2 −∆P
′′

1 (z1), (3.7)

where ∆P
′

2 = E2P̃3 − E1P̃3 represents the price change due to information arrival at date 2

and −∆P
′′

1 (z1) represents the price adjustment as new active traders arrive at date 2 with

opposite order imbalance.

From (3.6)-(3.7), the total price change across periods 1 and 2 is equal to:

∆P
′

1 +∆P
′

2 = E2P̃3 −E0P̃0, (3.8)
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i.e. the impact of the order imbalance on the total price change vanishes; price variation due

to liquidity shocks and price adjustments offset each other and the aggregated price change

is only due to information flow.

Figure 2 illustrates how intraday price increments behave in response to both informa-

tion flow and liquidity shocks in the simple example considered here. Suppose that the two

successive pieces of information reaching the market, denoted respectively by I1 and I2, are

perceived as good news. The intraday price behavior in the absence of liquidity shocks is

visually described by the dashed lines and corresponds exactly to Figure 1. Trade asynchro-

nization occurring just after the arrival of I1, results in a 3-date GM-process with I2 arriving

before trading at date 2 and date 3 being a terminal condition; the liquidation value of the

risky asset is P̃3.

Let ∆P
′

1 = E1P̃3−P0 be the price increment due to I1, and ∆P
′′

1 (z1) be the price variation

due to the liquidity friction at date 1. As for I1, the active trader expectations concerning

P̃3 will rise, resulting in a positive ∆P
′

1. The active traders face sell-side liquidity shortage

due to trade asynchronization at date 1 and the asset price increases more than if there were

no liquidity problems, resulting in a positive ∆P
′′

1 (z1).

In particular, the liquidity arbitragers observing the exchange enter the market to provide

the missing liquidity. At date-1-equilibrium, they sell the stock at P1 = P0+∆P
′

1+∆P
′′

1 (z1),

where δ1 = 1. At date 2, the liquidity arbitragers enter the market to buy the stock at

P2 = P
′

2 = E2P̃3 (the price revealing the information at date 2), as new active traders

arrive with the opposite order imbalance. The date-2-equilibrium price can be written:

P2 = P0 + ∆P
′

1 + ∆P
′′

1 (z1) + ∆P
′

2 − ∆P
′′

1 (z1), where −∆P
′′

1 (z1) is the price adjustment as

new active traders arrive at date 2 to offset the order imbalance. Since price distortion due

to liquidity event at date 1 and price variation due to liquidity adjustment cancel out, the

price returns to its fully revealing information level which corresponds also to the price that

would prevail in the absence of trade asynchronization at date 1 (as shown by the dashed

lines). It follows that the intraday price distortion due to liquidity shocks does not impact
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Figure 2: Day t price change as a function of intra-day price fluctuations due to information and liquidity
shocks.

the total price change and equation (3.8) is always satisfied.

B. Order imbalances and the traded volume

We focus on a simple trading day with two pieces of information and a unique order

imbalance occurring after the first information arrival and discuss the impact of liquidity

frictions on the intraday traded volume. Let V1 (i = 1) be the total traded volume due to

the first information arrival and the liquidity friction; it is the sum of the volume V
′

1 due

to information flow and the volume V
′′

1 due to the intervention of liquidity arbitragers. As

discussed by GM, when a new piece of information hits the market, active traders, who

revise their expectations concerning the future liquidation value of the asset, are willing to

rebalance their positions in order to share risk through the market. Let z1j be the quantity

that trader j (j = 1, ..., J) is willing to trade in response to the first information arrival of
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the trading day. We obtain:

V
′

1 =
1

2

J
∑

j=1

| z1j | . (3.9)

V
′

1 corresponds to the traded volume due to the first piece of information (i = 1) in the TP

model. If all the active traders arrive simultaneously in the market at date 1, V
′

1 represents

the total traded volume due to the first piece of information and equals V1.

Any liquidity event occurring at date 1, creates a temporary order imbalance. Since

the order imbalance sums to zero across periods 1 and 2, the liquidity arbitragers offset

their positions at date 2 as other active traders arrive with the opposite order imbalance. It

follows that the total traded volume V1 is higher than V
′

1 . The difference V
′′

1 is the amount of

immediacy provided by liquidity arbitragers at equilibrium at date 1, MQla
1 (MQla

1 = −Qat
1 ).

From equation (3.4) or (3.3), V
′′

1 is given by:

V
′′

1 =MQla
1 = Qat

1 =
M

1 +M
| z1 | . (3.10)

Generally speaking, the total traded volume V1 due to the first information arrival can

be written as:

V1 = V
′

1 + V
′′

1 (z1), (3.11)

where the V
′′

1 (z1) is used to denote the dependence of V
′′

1 on z1 as expressed in equation

(3.10). It follows that:

(i) In the absence of liquidity frictions (δ1 = 0) V
′′

1 = 0 and we obtain the TP model which

states that the total traded volume is completely explained by information inflow: V1 = V
′

1 .

(ii) The occurrence of liquidity events (δ1 = 1) increases the total traded volume related

to the first piece of information: V1 > V
′

1 . This is due to the intervention of the liquidity

arbitragers in the market.
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In conclusion, the liquidity shocks can increase the total traded volume11 but have no

impact on the total price change. This result motivates us to blend the GM model’s impli-

cations into the standard framework of TP in order to model the impact of liquidity events

on the daily price change and traded volume and thus separate the observed traded volume

into two parts due to information and liquidity.

3.2 A modified MDH model with information and liquidity shocks

This section develops the modified MDH model which takes into account both information

and liquidity shocks. Indeed, as discussed above, some liquidity frictions may arise from

trade asynchronization, even if the number of active traders J is large. The equilibrium

price then differs significantly from the price revealing the information, which motivates the

liquidity arbitragers to enter the market, provide immediacy and cash the liquidity premium.

We focus on a simple economy with a risk-free asset and a single risky security having a

liquidation value P̃T at the end of the trading day. The risk-free rate is normalized to zero.

To generalize the simple example of the previous subsection (based on the GM analysis) at

a daily frequency by allowing for multiple information arrivals within the trading day, we

consider each 3-date-process as a 2-trading-date (or 2-equilibria) process, henceforth GM

process, and report the terminal condition at the end of the trading day. There are only two

kinds of traders in the market: the active traders who trade in response to new information,

and the liquidity arbitragers who trade in response to liquidity frictions. The number of each

category of traders − respectively J and M − is nonrandom and fixed over time. We then

assume that, within the day, the market passes through a sequence of distinct equilibria in

the sense of TP. The movement from one equilibrium to the next is initiated by the arrival

of new information to the market. Given the new information, the active traders decide to

rebalance their positions in order to share risk through the market. Let zij be the endowment

11At this stage of the analysis, for simplicity purpose, we make abstraction of the impact of the second
piece of information on the traded volume. Since in this simple example δ2 = 0, the volume due to the second
information arrival corresponds to that of TP for i = 2; This amount will be added to V1 when considering
the total traded volume across periods 1 and 2.
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shock of trader j (j = 1, ..., J) given the ith piece of information (i = 1, ..., It). As in TP, It

is assumed to be random since the number of pieces of information reaching the market each

day varies significantly. If all the active traders are present in the market, the aggregated

endowment shock across traders is zero and the ith equilibrium price equals its fully revealing

information level.

However, if a liquidity event occurs, the aggregated endowment shock across the active

traders being present in the market (J1 < J) represents the order imbalance: zi =
∑J1

j=1 zij 6=

0. Liquidity arbitragers who observe this market imperfection enter the market in order to

provide immediacy and the trade is generated from a GM process. Date 1 of the GM-process

coincides with the ith piece of information and the equilibrium price at this date deviates

from the price revealing the information12. In order to denote the appartenance to the ith

within-day equilibrium, we index by i all the intraday variables of interest, such as price

changes, excess demands of traders, as well as traded volumes. In the previous subsection,

we introduced an indicator variable, δi, such as δi = 1 in the presence of liquidity frictions

and δi = 0 otherwise. Then, equation (3.5) can be generalized as follows:

zi =

J1
∑

j=1

zij + (1− δi)
J
∑

j=J1+1

zij = −δi
J
∑

j=J1+1

zij , i = 1, ..., It. (3.12)

In addition, we assume that zi ∼ N(0, σ2
z) when a liquidity event occurs (δi = 1) and zi = 0

otherwise (δi = 0).

Let us consider a GM-process debuting at the ith intraday equilibrium and comprising

of two successive information arrivals: the ith and the (i+ 1)th pieces of information which

12If there were some noise (non-informed) traders at date 1 who trade in response to liquidity needs, it
would be possible for the arbitrage participants to liquidate their positions before the arrival of the next piece
of information by trading with the noise traders at date 1. Trade between strategic and non-strategic traders
would take place at a disadvantageous price for the noise traders who would bear, in that case, the liquidity
premium perceived by the liquidity arbitragers. Since we do not allow for the presence of noise traders in
our model, the liquidity arbitragers have to wait from period 1 to period 2 to trade as new active traders
arrive with the opposite order imbalance. For this reason, the arbitragers face the risk that a new piece
of information arrives at date 2 causing the date-2-equilibrium price to change towards a disadvantageous
direction for them.
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arrive respectively before trading at date 1 and before trading at date 2. We can now

generalize (3.6) and (3.7) by getting the corresponding price changes at each date ∆Pi (date

1) and ∆Pi+1 (date 2):

∆Pi = ∆P
′

i +∆P
′′

i (zi), (3.13)

∆Pi+1 = ∆P
′

i+1 −∆P
′′

i (zi). (3.14)

In these equations, ∆P
′

i = EiP̃T − Ei−1P̃T and ∆P
′

i+1 = Ei+1P̃T − EiP̃T represent price

changes due to information inflow, ∆P
′′

i (zi) = −ziαV ari(E(i+1)P̃T )

1+M
represents price distortion

due to the liquidity event occurring at date 1 and coinciding with the ith information arrival,

while −∆P
′′

i (zi) represents the price adjustment as other active traders arrive at date 2 with

the opposite order imbalance. The number of GM-processes within a trading day t, denoted

by Lt, corresponds to the number of liquidity events and is given by Lt =
∑It

i=1 δi. Lt and It

are assumed to be conditionally independent Cov(Lt|It, It) = 0. Moreover, we suppose that

a liquidity event may occur at any intraday equilibrium of the trading day t except the last

one, which yields δIt = 0. This assumption is necessary for generalizing the GM 3-period

world at a daily frequency; for instance, for It = 2, i.e. 2 pieces of information and only one

liquidity event, we obtain the GM model as a particular case of our modified model.

Let Vi be the cumulated traded volume across periods 1 and 2 due to the ith piece of

information and the liquidity event occurring at the ith equilibrium:

Vi = V
′

i + V
′′

i (zi), (3.15)

where V
′

i = 1
2

∑J

j=1 | zij | is the traded volume due to the ith information arrival to the

market [see equation (3.9)], and V
′′

i (zi) =| MQla
i (zi) |= M

1+M
| −δi

∑J

j=J1+1 zij | is the traded

volume due to the intervention of the liquidity arbitragers, as measured by the amount of

active traders that is completed by liquidity arbitragers at date 1 [see equation (3.10)]. If

all the active traders were present in the market after the ith information arrival (δi = 0),
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Vi = V
′

i would correspond to the traded volume implied by the standard MDH of TP at the

ith equilibrium of the trading day.

Generally speaking, ex-post, the GM-process includes the TP model as a particular case

in the absence of the liquidity events. The rapprochement can be done in two ways:

(i) a GM-process with new information hitting the market at date 2, corresponds to two

successive TP equilibria in the absence of liquidity frictions13.

(ii) in the absence of new information at date 2 and with no liquidity frictions, the GM-

process would be assimilated to a unique TP (ith) equilibrium.

Let now consider the traded volume Vi resulting from the ith information arrival and the

liquidity event occurring at the ith equilibrium, as given in equation (3.15). As discussed

above, the volume component V
′

i due to information is the same as that considered by TP.

As shown in Appendix A, TP demonstrate that the total traded volume V TP
i is due to the

ith piece of information and is given by:

V TP
i =

α

2

J
∑

j=1

| ψij − ψ̄i |, (3.16)

where α is a constant, ψij is drawn from a normal distribution with mean zero and variance

σ2
ψ and ψ̄i =

1
J

∑J

j=1 ψij . Since in the TP world the market is deemed perfectly liquid, V TP
i

corresponds to V
′

i of our model. TP show that, for large J , V TP
i is approximately normally

distributed with first two moments:

µatv ≡ E[V
′

i ] =
(α

2

)

σψ

√

2

π

(
√

J − 1

J

)

J, (3.17)

(σatv )
2 ≡ V ar[∆V

′

i ] =
(α

2

)2

σ2
ψ

(

1− 2

π

)

J + o(J). (3.18)

13In order to facilitate the comparison between our model with liquidity frictions and the standard MDH
of TP and without any loss of generality, the active traders who were present at the ith equilibrium are also
allowed to trade as the (i + 1)th piece of information hits the market. This has no impact on the (i + 1)th
equilibrium price, but forces the traded volume due to information to equal the cumulated amount that
would prevail in the absence of liquidity frictions across equilibria i and (i+ 1).
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Since V TP
i = V

′

i , from equation (3.9) generalized to i = 1, ..., It and equation (3.16), we

obtain:

1

2

J
∑

j=1

| zij | =
α

2

J
∑

j=1

| ψij − ψ̄i | . (3.19)

We set zij = α(ψij − ψ̄i). Then, combining equations (3.1) generalized to i = 1, ..., It and

(3.19) yields:

zi =
J1
∑

j=1

zij = α
J1
∑

j=1

(ψij − ψ̄i). (3.20)

It follows that the variance of the order imbalance σ2
z is a function of σ2

ψ:

σ2
z = α2J2

1

(

J − J1
JJ1

)

σ2
ψ. (3.21)

When a liquidity event occurs at the ith intraday equilibrium, only J1 out of J active

traders participate at the exchange. As discussed by TP, the ith equilibrium price change is

the average of the reservation price increments of active traders being present at the market.

Let ∆P ∗

ij be the reservation price of trader j (j = 1, ..., J) at the ith equilibrium (i = 1, ..., It).

Following TP, ∆P ∗

ij = φi+ψij with φi ∼ N(0, σ2
φ) and independent of ψij . Then, from (3.13),

we obtain:

∆P
′′

i = ∆Pi −∆P
′

i ,

∆P
′′

i =
1

J1

J1
∑

j=1

∆P ∗

ij −
1

J

J
∑

j=1

∆P ∗

ij ,

(3.22)

∆P
′′

i =
1

J1

J1
∑

j=1

(φi + ψij)−
1

J

J
∑

j=1

(φi + ψij),

∆P
′′

i =
1

J1

J1
∑

j=1

ψij −
1

J

J
∑

j=1

ψij .
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It follows that ∆P
′′

i is a normally distributed variable with mean zero and variance:

V ar(∆P
′′

i ) = σ2
ψ

(

J − J1
JJ1

)

. (3.23)

Replacing 1
J

∑J

j=1 ψij by ψ̄i and rearranging the terms of the last equation of (3.22) yields:

∆P
′′

i =
1

J1

J1
∑

j=1

(ψij − ψ̄i). (3.24)

Then, from equations (3.20) and (3.24), it follows that:

zi = αJ1∆P
′′

i . (3.25)

Replacing (3.25) into (3.10) generalized to i = 1, ..., It, we can show that the traded volume

due to order imbalance zi is a function of ∆P
′′

i :

V
′′

i = a | ∆P ′′

i |, (3.26)

where a = α M
1+M

J1. Thus, V
′′

i is the absolute value (multiplied by a) of a normally distributed

variable ∆P
′′

i with mean zero and variance given in equation (3.23). The first two moments

of V
′′

i denoted respectively by µlav and (σlav )
2 are:

µlav ≡ E[V
′′

i ] = aσψ

√

2

π

(

√

J − J1
JJ1

)

, (3.27)

(σlav )
2 ≡ V ar[∆V

′′

i ] = a2σ2
ψ

(

1− 2

π

)(

J − J1
JJ1

)

. (3.28)

From (3.21) and (3.27) as well as the relation a = α M
1+M

J1, we have: µlav = σz

√

2
π

(

M
1+M

)

when a liquidity event occurs and µlav = 0 otherwise. This means that µlav can be explained by

the combined effect of the occurrence of order imbalance zi and the intervention of liquidity

arbitragers. The average traded volume due to liquidity frictions µlav is an increasing function
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of σz and M . The absence of liquidity events yields µlav = 0; this result follows independently

from µlav = σz

√

2
π

(

M
1+M

)

when z = 0 and from equation (3.22) when J1 = J .

Generally speaking, summing the within-day price changes due to information ∆P
′

i and

the price imperfections due to lacks of liquidity ∆P
′′

i , as well as the liquidity adjustments

−∆P
′′

i , yields the day-t price change ∆Pt:

∆Pt =
It
∑

i=1

∆P
′

i +
It
∑

i=1

δi∆P
′′

i −
It
∑

i=1

δi∆P
′′

i . (3.29)

Therefore, the intraday liquidity events do not impact the daily price change. As in TP, the

daily price increment is normally distributed with mean zero and variance σ2
p, which yields:

∆Pt =
It
∑

i=1

∆P
′

i , (3.30)

where ∆P
′

i ∼ N(0, σ2
p). Consequently, only the information flow impact is integrated in the

daily price change. In our model, by definition, there is no order imbalance at the last trading

date of the day (i.e., date It − 1). Thus, the closing price of the day reveals the information

available up to that date: PIt = EItP̃T . Since the liquidation value of the asset P̃T is revealed

at the end of the trading day, the closing price EItP̃T converges14 to the liquidation value of

the asset PT .

However, as discussed above, the volume traded by liquidity arbitragers adds to the

volume that would be traded in the absence of liquidity imperfections. Summing the within-

day traded volume motivated by information flow V
′

i and the traded volume due to liquidity

shocks V
′′

i , we obtain the day-t traded volume:

Vt =

It
∑

i=1

V
′

i +

It
∑

i=1

δiV
′′

i . (3.31)

14Indeed, during the trading day, thanks to the arrival of new information to the market, the equilibrium
price converges to the liquidation value of the asset that will prevail at the end of the trading day. Here, even
if this convergence is blurred by the presence of liquidity frictions at intraday frequency, it is successfully
achieved at the end of the trading day since no liquidity friction occurs at the last equilibrium.
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In this equation, V
′

i ∼ N(µatv , (σ
at
v )

2), V
′′

i ∼ Half-N(µlav , (σ
la
v )

2) and
∑It

i=1 δiV
′′

i =
∑Lt

l=1 V
′′

l

where l = 1, ..., Lt is a subsequence of i = 1, ..., It such as δi = 1.

In this paper, we assume that It and Lt are conditionally independent Cov[(Lt|It), It] = 0

which implies that Cov(f(Lt|It), g(It)) = 0, where f(Lt|It) and g(It) can be any function

of Lt|It and It, respectively. We consider that the indicator variable δi is independently

drawn from a Bernoulli distribution with parameter15 p. Then, Lt’s first two unconditional16

moments are respectively: E(Lt) = pE(It) and V ar(Lt) = p(1 − p)E(It) + p2V ar(It). The

unconditional covariance between It and Lt is given by:

Cov(It, Lt) = pV ar(It). (3.32)

From equations (3.30) and (3.31), we obtain a mixture of distribution model with two

latent variables, It and Lt. Note that, conditional on It and Lt, V
′

i and V
′′

i are independent.

In addition, (σlav )
2 given in (3.28) can be considered as o(JJ1) when added to (σatv )

2 given

in (3.18). It follows that, conditional on It and Lt, the daily volume Vt can be considered as

N(µatv It+µ
la
v Lt, (σ

at
v )

2It) without any loss of generality17. Henceforth, for notation simplicity,

we replace (σatv )
2 by σ2

v . The bivariate normal mixture can then be written:

∆Pt = σp
√

ItZ1t, (3.33)

Vt = µatv It + µlav Lt + σv
√

ItZ2t, (3.34)

where Cov(∆Pt, Vt | It, Lt) = 0, and Z1t and Z2t are mutually independent standard normal

variables (and independent of It and Lt). Conditional on It, the daily price change is normally

distributed: ∆Pt ∼ N(0, σ2
pIt). Our model implies that the information flow impacts both

15This means that for each i = 1, ..., It, δi takes value 1 with success probability p and value zero with
failure probability (1− p): δi ∼ B(p). Its first two moments are E(δi) = p and V ar(δi) = p(1− p).

16Since Lt =
∑It

i=1
δi, conditional on It, Lt has a binomial distribution with parameters It and p: Lt|It ∼

B(It, p). Let E(It) and V ar(It) be the unconditional mean and variance of It.
17For large Lt, the sum of Lt absolute values of normally distributed variables

∑Lt

l=1
V

′′

l =
∑It

i=1
V

′′

i (zi)
can be approximated by a normal distribution.
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the daily price change and the traded volume, while only the daily volume is affected by the

random liquidity shocks.

Note that the standard MDH of TP as well as the GM model are implied by (3.33)-(3.34)

as particular cases:

(i) When zi = 0, µlav = 0 and the system (3.33)-(3.34) reduces to the standard MDH of TP;

(ii) If the trading day consists of only two trading periods and a terminal condition date as

in Figure 2, the bivariate mixture given in (3.33)-(3.34) reduces to the standard GM model.

From equations (3.32) and (3.33)-(3.34), the unconditional contemporaneous relation

between ∆P 2
t and Vt is:

Cov(∆P 2
t , Vt) = σ2

p(µ
at
v + pµlav )V ar(It), (3.35)

= σ2
pµvV ar(It).

The volatility-volume covariance predicted by our model is positive as is that of TP given

in (2.5). However, while in the TP world the average total volume µv is due to information,

in our model the average total volume is decomposed into two parts, µatv and pµlav , due to

information and liquidity shocks, respectively: µv = µatv + pµlav . Since TP do not account for

liquidity shocks, the standard MDH model may overestimate the average volume related to

information inflow: µv ≥ µatv .

The model given in (3.34) is called the modified MDH model with liquidity (henceforth

MDHL model), and forms the basis of our empirical work. The particularity of this model is

that it takes into account both information and liquidity shocks. Based on the MDHL model,

we can exploit the volume-volatility correlation in order to decompose the traded volume for

a given stock into two components and thus separate information from the liquidity trading

impact on the observed daily volume.
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4 Empirical application

4.1 The data

Our sample consists in all FTSE100 stocks listed on 10 July, 2007. The daily returns Rt are

measured by the daily (log) price change. We consider the period from 4 January 2005 to 26

June 2007, i.e. 636 observation dates. We exclude stocks with missing observations ending

up with 93 stocks. Daily returns and transaction volumes are extracted from Bloomberg

databases. Following Bialkowski et al. (2008), we retain the turnover ratio as a measure

for volume which controls for dependency between the traded volume and the float. The

latter represents the difference between annual common shares outstanding and closely held

shares for any given fiscal year. Common and closely held shares are extracted from Factset

databases. Let qkt be the number of shares traded for asset k, k = 1, ..., K on day t,

t = 1, ..., T , and Nkt the float for asset k on day t. The individual stock turnover for asset k

on day t is Vkt =
qkt
Nkt

.

Returns Volume

Average Dispersion Min Max Average Dispersion Min Max

Mean 0,0007 0,0005 -0,0005 0,0024 0,0087 0,0052 0,0018 0,0405

Volatility 0,0137 0,0031 0,0074 0,0263 0,0065 0,0062 0,0011 0,0545

Skewness 0,2853 0,9271 -4,0840 3,1510 3,4636 1,7526 1,0041 9,8661

Kurtosis 9,9205 9,8313 3,2134 61,3788 28,4178 26,5025 4,8613 133,8895

(Return)2 with
Volume - - - - 0,42 0,14 0,17 0,75

Correlation

Table 1: Summary statistics for return and turnover across securities.

For each of the 93 stocks, we compute the empirical first moments (mean, volatility,

skewness and kurtosis) of volume and returns as well as the correlation between squared

returns and volume. The cross-security distribution of these statistics are summarized in
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Table 1. The first row reports the average, the dispersion, the minimum, and the maximum

of the means of returns and volume across the 93 stocks. The second row gives the same

cross-section statistics (average, dispersion, minimum and maximum) of the volatilities of

returns and volume, and so on for the skewness, kurtosis, and the correlation between squared

returns and volume. We perform a Pearson test to check the significance of the correlation

coefficients. These correlation coefficients are statistically significants for 92 over 93 stocks

at the 95% confidence level. The statistics reported in the last row of Table 1 are computed

using only the statistically significant correlations between squared returns and volume.

The implications of the MDH for the joint distribution of daily returns and volume, are

examined in details by Clark (1973), Westerfield (1977), Tauchen and Pitts (1983), Harris

(1986), Harris (1987) among others. They assume that both variables (the daily (log) price

change and daily volume) are conditioned by a random and serially uncorrelated mixing

variable represented by the information flow. They show that the MDH can explain why the

sample distribution of daily returns is kurtotic relative to the normal distribution, why the

distribution of the associated traded volume is positively skewed and kurtotic relative to the

normal distribution and why squared returns are positively correlated with trading volume.

The randomness of the mixing variable is crucial to the MDH analysis. If the mixing variable

were constant, there would be no reason to observe the above empirical patterns, and the

daily returns and volume should be mutually independent and normally distributed.

The results reported in Table 1 are then consistent with the MDH. The average and

minimum statistics of the volume skewness and squared return correlation with volume are

positive; and the average and minimum statistics of return and volume kurtosis are greater

then 3, as predicted by the mixture model. Moreover, these cross-security statistics are larger

than their corresponding constant mixing variable expected values18.

Finally, we present in Figure 3 the scatter plots of returns and squared returns against

turnover for two FTSE100 stocks: ANGLO AMERICAN (AAL LN) and AVIVA (AV LN).

18The expected value of the volume skewness and correlation coefficient is zero, and the expected value of
return and volume kurtosis is 3 when the mixing variable is constant.
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The upper (lower) graphs are pairwise scatter plots for AAL LN (AV LN) with return-

turnover on the left, and volatility-turnover on the right. The graphs highlight the well-

documented positive19 relation between volatility and volume.
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Figure 3: Scatter plots of returns and squared returns against turnover for two FTSE100 stocks: Anglo
American (AAL LN) and AVIVA (AV LN).

19Clark (1973), Copeland (1976), Copeland (1977), Tauchen and Pitts (1983), Harris (1982), Harris (1986),
Harris (1987), Epps and Epps (1976), and Westerfield (1977) among others show a positive correlation
between the variability of price change and volume.
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4.2 The MDHL test

4.2.1 Test methodology

Following Richardson and Smith (1994), we use the Generalized Method of Moments (GMM)

of Hansen (1982) to test the validity of the MDHL model. Since our bivariate mixture with

two latent variables imposes restrictions on the unconditional joint moments of the observ-

ables as a function of model parameters, it is possible to form overidentifying restrictions on

the data. Optimization methods can then be used to estimate the coefficients and test the

global validity of the model simultaneously.

Let Xt = (Rt, Vt) be the vector of return and volume observations prevailing at day t

for a given stock and θ = (µatv , µ
la
v , σ

2
p, σ

2
v , m2I , p) be the 6 × 1 vector of the MDHL model

parameters. The first four coefficients are related to the observables and correspond to the

mean and variance parameters of equations (3.33)-(3.34), m2I is the second moment of the

latent variable It and p is the Bernoulli distribution parameter which drives the distribution

of the latent variable Lt.

If Xt is generated by the MDHL model, there is some true set of parameters θ0 for which:

E[ht(Xt, θ0)] = 0, (4.1)

where ht is a column vector of H unconditional moment conditions implied by our model.

Since we do not observe the true expectation of ht in practice, we define a vector gT (θ)

containing the sample averages corresponding to the elements of ht. For large T , if Xt is

generated by the MDHL model, gT (θ0) should be close to zero20:

gT (θ0) ≡
1

T

T
∑

t=1

ht(Xt, θ0) −→ 0, when T → ∞. (4.2)

In order to derive the moment restrictions implied by the MDHL model, we focus on the

20The GMM procedure of Hansen (1982) is presented in details in the Appendix C.1.
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first four moments of the return and volume time series and on some of their corresponding

cross-moments such as the covariances between returns and either volume or squared volume.

In the previous section we assumed that, conditional on It, Lt is drawn from a binomial

distribution with parameters It and p. It follows that the unconditional moments of Lt

are functions of p and the unconditional moments of It. In addition, we need to choose a

distribution function for the latent variable It. TP assume a lognormal distribution for the

mixing variable It in order to ensure its positiveness. Lognormality has also been suggested

by several authors, such as ? as well as Foster and Viswanathan (1993). Richardson and

Smith (1994) tested several distribution functions for the information inflow and conclude

that the data reject the lognormal distribution less frequently than the other distribution

candidates, such as inverted gamma and Poisson distributions. These results motivate us to

retain a lognormal distribution for It.

As discussed by TP, the mathematical formulations of the latent factor models, such as

the MDHL model, are invariant with respect to scalar transformations of the unobserved

variables. It follows that, if a is any positive constant such as I∗t ≡ It/a, the model:

Rt ∼ N(0, [σ2
pa]I

∗

t | It, Lt), (4.3)

Vt ∼ N([aµatv ]I
∗

t + [µlav ]Lt, [aσ
2
v ]I

∗

t | It, Lt), (4.4)

is empirically the same as the MDHL model given in (3.33)-(3.34). By setting E[I∗t ] = 1, we

can identify the transformed parameters which are given by: µat∗v = µatv m1I , σ
∗2
p = σ2

pm1I ,

σ∗2
v = σ2

vm1I , m
∗

2I = m2I/m
2
1I , m

∗

3I = m3I/m
3
1I and m∗

4I = m4I/m
4
1I . Henceforth, we will

consider only these transformed parameters. However, for notation simplicity, we omit the

"∗" symbol.

The lognormality assumption for It implies the following moment restrictions [see Richard-
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son and Smith (1994)]:

m3I −m3
2I − 3m2

2I = 0

m4I + 4(1 +m2I)
3 + 3− (1 +m2I)

6 − 6(1 +m2I) = 0 (4.5)

where miI , (i = 2, 3, 4) is the ith centered moment for the mixing variable It.

Given the scalar transformations of the parameters depending on It, as well as the dis-

tribution assumptions for It (It ∼ LogN(1, m2I)) and Lt (Lt | It ∼ B(It, p)), the sample

moment vector gT (θ) is given by:

gT (θ) =
1

T

T
∑

t=1
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The functional forms of the sample moments (1)-(9) are given in Appendix C.2. We obtain

a system of nine equations and only six parameters to be estimated which yields three

overidentifying restriction to test21.

4.2.2 Test results

We apply the GMM procedure described in the previous paragraph to the 93 stocks of our

sample using the entire data history. To restrict the Bernoulli parameter p to evolve between

21When working with an overidentified system, the GMM chooses θ̂T as the value of θ that minimizes the
quadratic form of gT (θ) which requires the selection of a weighting matrix. For this purpose, we use the
Newey and West (1987) methodology which is described in Appendix C.1
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0 and 1, we use a logistic-transform with x being the unconstrained parameter. Tables 2

and 3 of Appendix D report the estimation results. The test statistics of Hansen (1982)

allowing to assess the global validity of the MDHL model are given in column 9. With three

overidentifying restrictions, they are asymptotically distributed as a χ2
3. For 83% of the

stocks, the test statistic values do not exceed their critical value of 7, 82. Consequently, we

can not reject the MDHL model at the 95% level of significance.

Columns 2 to 5 in Tables 2 and 3 provide parameter estimates for returns and volume

distributions, while columns 6 to 8 report estimated parameters related to the latent variables

It and Lt distributions. Since we set E(It) = 1, the estimated µatv can be interpreted as the

time-series-average of the impact of information inflow on the daily traded volume. On the

other hand, pµlav can be interpreted as the time-series-average of the impact of liquidity

shocks on the daily traded volume. In particular, pµlav represents a stock-specific measure for

liquidity which is determined by both the amplitude of trade asynchronization, as measured

by µlav , and its probability of occurrence p. The higher the trade asynchronization for a given

stock the higher its frequency and the liquidity-arbitrage-based traded volume. This in turn

results in a higher volume and thus a higher pµlav .

Since our model implies that information moves the market from one equilibrium to

the next and liquidity shocks appear within some of these equilibria, we should expect to

observe a statistically significant µlav parameter only for stocks having also a significant µatv .

The results reported in Appendix D confirm our intuitions. The 43 stocks for which we

obtain significant µlav have also a µatv parameter statistically different from zero. Note that,

for these stocks, we also obtain statistically significant x parameters. Reported are in column

9 of Tables 2 and 3 the relative values of the average liquidity volume as measured by pµlav

divided by the sum of µatv and22 pµlav , henceforth relative pµlav . At this stage of the analysis,

two additional remarks can be made:

(i) A significantly positive pµlav suggests that the stock faces time-average intraday liquidity

22Note that, under our model specification the unconditional mean of the daily traded volume is: E(Vt) =
µat
v + pµla

v .
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frictions. This motivates the liquidity arbitragers to enter the market and thus increase

the average traded volume. Since we do not observe liquidity shocks, we can infer their

occurrence from liquidity arbitrage trading which directly impacts the volume. Our model

helps identify the intraday impact of this type of market participants on the traded volume

using daily data: 39 out of the 43 stocks with a significantly positive pµlav are concerned by

significant liquidity problems23.

(ii) If pµlav is not significant, our model comes down to that of Tauchen and Pitts (1983)

which assumes that the total traded volume is a proxy of the information flow.

4.3 The MDHL-based liquidity measure

We use a structural model to separate the respective impacts of the two latent variables It

and Lt on the average-raw-traded volume of individual stocks. The model is particularly

attractive in practice since it provides a static, stock-specific liquidity measure pµlav which

helps identify the presence of intraday liquidity frictions using daily data. Based on the µatv ,

µlav and p parameters, we can distinguish stocks concerned by liquidity frictions for a given

period (on average) from liquid equities whose average daily traded volume is driven only

by information inflow. In addition, using the relative pµlav reported in column 9 of Tables

2 and 3, stocks facing liquidity frictions can be ranked according to their respective degree

of illiquidity, which is determined for any given stock by (i) the amplitude of trade asyn-

chronization and (ii) its probability of occurrence. Thus, estimating µlav and p separately

provides additional insights concerning the liquidity profile of a given stock. The liquidity-

based average volume for a particular period can be explained by frequent but small liquidity

accidents, rare but large liquidity accidents, or simultaneously frequent and large liquidity

accidents. For example, HAMMERSON PLC (stock 32), SEGRO PLC (stock 77), SCOT-

TISH & SOUTHERN ENERGY (stock 81) and XSTRATA PLC (stock 92), exhibiting the

23The 4 remaining stocks, CADBURY PLC (stock 18), MAN GROUP PLC (stock 27), SABMILLER PLC
(stock 72) and UNILEVER PLC (stock 85), have negligible relative pµla

v characterized by both p and µla
v

values evolving in the neighborhood of zero.
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4 highest relative pµlav of our sample, are characterized by both important µlav parameters

(being 2 to 3 times higher than the corresponding µatv ) and important probabilities of trade

asynchronization p whose values fall in the sample’s highest decile. On the other hand, some

other equity assets, such as LONMIN PLC (stock 50) and MITCHELLS & BUTLERS PLC

(stock 51) face liquidity shocks characterized by much higher amplitude of trade asynchro-

nization than in the former case (of an order of 7 to 9 times higher then the corresponding

µatv ) yet much lower p values.

Previous literature relates stock liquidity to total traded volume and suggests that illiquid

equity assets have low traded volume or turnover24. Thus, the total traded volume appears

to be a good proxy for liquidity. Moreover, using market capitalization as a proxy for stock

liquidity is a common practice in financial markets where small stocks are assumed to face

more liquidity problems than blue chip stocks. We now confront these 2 measures to the

MDHL-based liquidity indicator pµlav .

Figures 4 and 5 focus on the 39 stocks of our sample presenting a significantly positive

relative pµlav and show the relative liquidity volume against the average raw daily volume25

and the average market capitalization26 over the estimation period, respectively. The first

graph points out that there is no systematic relation between relative pµlav and total traded

volume. For example, the highest time-average-raw-volume stock, XSTRATA PLC (stock

92), presents a greater relative pµlav than some others with lower MDHL-based liquidity

measure, such as HSBC HOLDINGS (stock 34) and BP PLC (stock 15). More generally,

within the groups of large traded volume and low traded volume stocks, there is an impor-

tant dispersion of the illiquidity level. As a result, the total traded volume does not help

discriminate stocks facing liquidity shocks according to their degree of illiquidity.

24See Datar et al. (1998), and Chordia et al. (2000) among others.
25The traded volume is measured by the turnover.
26The market capitalization is measured by the float.
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Figure 4: Relative liquidity volume versus average daily traded volume.
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Figure 5: Relative liquidity volume versus average market cap measured by the float.

These results confirm the findings of Borgy et al. (2010) regarding the lack of the traded

volume and the number of transactions to correctly measure market illiquidity. For exam-

ple, a higher number of transactions may be due to a higher liquidity risk which induces

market participants to split their trades, as well as to an increasing market liquidity due

to a larger number of liquidity providers being present into the market. Similarly, in our
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framework, an increasing total traded volume for a given stock may be explained by a rise in

information-based trading, or by an increase in liquidity trading activity due to the interven-

tion of liquidity arbitragers who trade in response to liquidity frictions. This suggests that

decomposing the total traded volume into two components due to information and liquidity

shocks provides more precise indications on market liquidity.

Figure 5 shows that the biggest companies among the 39 stocks are also the most liq-

uid ones. For large market capitalizations, there is indeed quite a strong negative relation

between firm size and illiquidity level. However, within the group of small capitalizations,

there is an important dispersion of pµlav values. For example, some of the most illiquid firms,

such as HAMMERSON PLC (stock 32), SEGRO PLC (stock 77), but also some of the less

illiquid ones, such as LONMIN PLC (stock 50), belong to the lowest size deciles. These

findings suggest that the market size is not a good proxy for liquidity shocks. In particular,

considering small firms to be illiquid may be misleading since market size fails to discriminate

small companies according to their illiquidity level.

Assessing the stock liquidity level through simultaneously total traded volume and mar-

ket capitalization ends up to being quite disconcerting. Illustrating this point, XSTRATA

PLC (stock 92) is considered as the less illiquid among the 39 firms according to the total

traded volume criterion, but as one of the most illiquid ones as reported by the market

capitalization indicator. Conversely, HSBS HOLDINGS (stock 34) and BP PLC (stock 15)

seem to be highly illiquid when focusing on the total traded volume, while their (large) size

ranks them among the less illiquid of the 39 equity assest considered here. These results

highlight the relevance of such a structural liquidity measure as the pµlav , in order to obtain

a better understanding of the market liquidity for a given stock. The pµlav indicator provides

additional insights on a firm’s liquidity while reconciliating and explaining the results ob-

tained using the total traded volume and the market capitalization criteria. In particular,

for XSTRATA PLC (stock 92), HSBS HOLDINGS (stock 34) and BP PLC (stock 15), the

MDHL-based liquidity measure reinforces the results provided by the size criterion at the
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expense of the total traded volume indicator.

4.4 Robustness checks

4.4.1 Global validity of MDHL relative to the standard MDH

We also estimate the standard MDH model using Richardson and Smith (1994) procedure27.

The results are presented in Tables 4 and 5 in the Appendix E. The standard MDH model

is accepted by the data for 89% of stocks versus 83% for the MDHL model. The slight

under-performance of the MDHL model in terms of global validity can be explained by its

higher degree of estimation complexity. Richardson and Smith (1994) estimate unbounded

parameters while we restrict the values of the p to evolve between 0 and 1. On the other

hand, Richardson and Smith (1994) modify the TP’s price change equation by artificially

introducing a mean parameter µp which allows them to obtain much simpler moment condi-

tions than in the absence of µp. This is not the case in our framework; our model is directly

derived from the standard MDH of TP without a mean parameter in the price variation

equation.

The MDHL model has a two-dimensional structure, allowing separating information from

liquidity shock impacts on the total traded volume. While providing a deeper comprehension

of how the daily traded volume is built up, it enables us to obtain a similar level of global

validity compared to the standard MDH model, which stands as its one-dimensional coun-

terpart. When comparing the mean volume parameters obtained by the two models, we find

that µv is approximately equal to the sum of µatv and pµlav . For example, for ASSOCIATED

BRITISH FOODS PLC (stock 2), we have µv = 0, 00621 and (µatv + pµlav ) = 0, 00625; for

BARCLAYS PLC (stock 8), we obtain µv = 0, 00592 and (µatv + pµlav ) = 0, 00589. These

results are intuitive and show that the MDHL model succeeds in decomposing the average

27To estimate the standard MDH model we use the implied unconditional means, variances, skewness, and
corresponding cross-moments of the observable variables, Rt and Vt. With 9 moment conditions and only
6 parameters to be estimated, there are 3 overidentifying restrictions to be tested. For more details, see
Richardson and Smith (1994).
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traded volume into information-based and liquidity-based components.

4.4.2 Parameter stability

As discussed previously, pµlav is, by construction, a static liquidity measure which quantifies,

on average over a given test period, the daily volume driven by liquidity frictions. To assess

its dynamics over time, we perform subperiod analysis for a set of 10 stocks of our sample,

8 of them representing different illiquidity levels as measured by relative pµlav , the other 2

being deemed perfectly liquid. For these 10 candidates, we split the data history into two

subperiods of 318 observations extending from 4 January 2005 to 4 April 2006 and from

5 April 2006 to 10 July 2007, respectively. Our goal is to assess the stability of the stock

liquidity profile over the 2 time intervals. In the presence of time-varying pµlav , we should

observe an increase of the illiquidity level in the second subperiod since stock markets were

impacted in 2007 by significant liquidity shocks in connection with the subprime crisis.

Table 6 in Appendix F gives the MDHL-estimated parameters for both subperiods as

well as the overall time interval. Global validity of the MDHL model is confirmed for both

subperiods; the χ2
3 values do not exceed their critical value of 7, 82. This suggests that, for the

selected stocks, the MDHL model is a plausible explanation of the bivariate distribution of

stock returns and traded volume; its global validity is not sample-dependent. Moreover, the

information-based volume parameter µatv estimated using the overall time period for a given

stock is included in the interval delimited by the µatv values obtained using the two distinct

subperiods. In particular, the overall-period-information-based measure is approximately

equal to the mean of the two subperiod ones. The slight deviations may be due to the

different lengths of the data history − and thus different amplitudes of the standard errors.

The same is true for the MDHL liquidity measure28.

The subperiod analysis provides additional insights concerning the stability of the liq-

28In this case the differences between the full period pµla
v and the mean between the two subperiod pµla

v

are larger than in the former case since our liquidity measure simultaneously depends on two estimated
parameters (p and µla

v ).
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uidity measure pµlav proposed in this paper. As for the 2 liquid stocks considered here,

CAPITA GROUP PLC (stock 22) remains liquid over time, while NATIONAL GRID PLC

(stock 54) is affected by significant liquidity shocks during the second time interval. In this

case, working with the entire sample history hides the presence of liquidity frictions related

to a particular subperiod. Within the group of firms impacted by liquidity shocks, we can

distinguish two types of stocks: those having constant pµlav over time, such as DIAGEO

PLC (stock 24) and ICAP PLC (stock 35), and those exhibiting substantial variations in

the liquidity measure, as for KELLN SOLAR (stock 44) and SEGRO PLC (stock 77). In

the latter case, variations in the absolute illiquidity level are due to significant changes in

the amplitude of liquidity-based volume as well as to the probability of order imbalance,

reflecting a time-varying liquidity profile. KELLN SOLAR (stock 44) illustrates this point

with large but infrequent liquidity shocks for subperiod 1 (µlav = 0, 0176, p = 0, 008) and

lower but more probable liquidity frictions for subperiod 2 (µlav = 0, 0126, p = 0, 038). On

the other hand, the time variation of the SEGRO PLC (stock 77) liquidity profile can be

explained by an substantial growth of the order imbalance frequency which varies from 0, 02

in the first time interval to 0, 11 in the second one.

Generally speaking, subperiod 2 is characterized by an increasing stock illiquidity level as

compared to the first time interval. Even some of the firms with pµlav = 0 during subperiod 1,

such as SAGE GROUP PLC (stock 76), REED ELSEVIER PLC (stock 65) and NATIONAL

GRID PLC (stock 54), turn out to face significant liquidity frictions during the second time

interval. Such results are intuitive and reflect important liquidity shocks which affected

financial markets during the summer of 2007. Our model enriches the analysis by providing

a more acute explanation of the impact of liquidity shocks on trading volume. It enables

us to characterize illiquid firms according to the amplitude of the liquidity shocks and its

probability of occurrence, allowing traders to adapt their strategies accordingly.

To summarize these results, the global validity of the MDHL model seems to be time-

invariant. However, the parameter stability varies from one stock to the other. Such a static
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illiquidity measure pµlav can be directly applied to assets whose liquidity-based volume does

not vary significatively over time. In this case, we can get a better understanding of firm

liquidity and decompose the total traded volume into information-based and liquidity-based

components. On the other hand, the subperiod analysis highlights an important drawback

of our liquidity measure related to its failure to capture the time-dynamics of the stock

illiquidity profile. This remark leads to a natural extension of our framework consisting in

building a time-varying liquidity measure. This point will be discussed in the next section.

5 Concluding remarks

In this article, we first distinguish between two trading strategies, information-based and

liquidity-based trading. We suggest that their respective impacts on returns and traded

volume should be modeled differently. The former is incorporated into the daily price changes

and the traded volume. The latter impacts the intraday price variations and volumes but

do not affect the daily price changes, while increasing the daily traded volume. Second, we

focus on the contemporaneous volatility-volume relationship and blend the microstructure

setting of Grossman and Miller (1988) into the Tauchen and Pitts (1983) framework in order

to develop an modified MDH model with two latent factors related to information arrivals

and liquidity frictions. Our model provides a theoretical explanation of how the liquidity

accidents increase the daily traded volume, in the presence of arbitrage participants. Third,

the MDHL model gives a better comprehension of how the daily traded volume is built

up; We show how to exploit the volatility-volume relation in order to separate information

from liquidity impacts on the observed daily volume. In other words, the increase of volume

due to liquidity arbitragers helps inferring the presence of liquidity frictions corresponding

to order imbalances driven by asynchronization of order flows among active participants.

In particular, our model exploits the time-series dimension of individual assets to provide

an average (over time), stock-specific measure for liquidity shocks using daily data. This
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helps distinguish, for a given period, liquid (presenting not significant pµlav ) from less liquid

stocks (presenting significant pµlav ). In addition, estimating p and µlav separately provides a

better comprehension of the stock liquidity profile determined by the amplitude of the order

imbalances and the probability of their occurrence. This may be useful in order to build

stock-picking strategies at a high trading frequency.

Our MDHL liquidity-based indicator is similar to that of Getmansky et al. (2004) who

provide a static measure of the illiquidity affecting hedge fund returns. The authors sys-

tematically analyze various sources of the observed autocorrelation in hedge fund returns,

such as time-varying expected returns, time-varying leverage, fee structures of hedge funds,

as well as illiquidity and smoothed returns. They conclude that illiquid investments which

drive "marking to model" returns and performance smoothing are the most plausible cause of

the time-persistence of hedge fund returns. It follows that, serial correlation of fund returns

may be a good proxy for illiquidity. Time-series of reported hedge fund returns can then be

used to estimate the serial correlation of individual funds, which helps separate liquid from

illiquid hedge funds for a given period.

Finally, our liquidity indicator presents two main limitations. First, it is a static indicator

and as such it fails to capture the time-varying dynamics of liquidity frictions. The second

limitation concerns the impossibility to build a common (market-wide) liquidity factor using

stock-specific pµlav parameters. Several recent studies are based on the commonality and time-

varying properties of liquidity risk. Patton and Li (2009) extend Getmansky et al. (2004)

analysis by allowing for serial correlation parameters to vary over time. They propose a

model for time-varying hedge fund liquidity, building on the connection between liquidity

and autocorrelation. In their empirical application over 600 individual hedge funds, they

find strong evidence of time-varying liquidity for all hedge fund styles. They also provide

a dynamic time-dependent proxy of liquidity for individual hedge funds. Nagel (2009) uses

the profitability of contrarian strategies as a proxy for returns which compensate liquidity

supplying activity. Using the cross-section of stock returns at each point in time, the author
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extracts a time-varying, market-wide liquidity indicator. The advantage of such an indicator

is that it provides information on how market liquidity evolves over time and what determines

its evolution. For example, Nagel (2009) finds that the liquidity indicator co-moves closely

with the level of the VIX.

Therefore, it would be interesting to expand our stock-specific approach to first extract

time-varying latent liquidity factors for individual stocks. For this purpose, the MDHL

model developed in this paper can be extended to allow for serial dependence in Lt. Several

studies show that liquidity shocks are not isolated events in time but rather seem to be

time-persistent29. This suggests that serial correlation in Lt may explain the persistence of

the traded volume. Signal extraction methods can then be used to filter the latent variable

Lt for individual assets and thus to provide a time-varying, stock-specific liquidity indicator.

Finally, factor decomposition analysis can be applied to the panel of individual liquidity

indicators in order to build market-wide liquidity factors and thus to separate, for a given

stock, common from specific liquidity components. This point is out of the scope of this

paper and is part of current research.

29See, for example, Acharya and Pedersen (2005).
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Appendices

A The MDH model of Tauchen and Pitts (1983)

The economy of Tauchen and Pitts (1983), henceforth TP, comprises a single risky asset

and J active participants who trade in response to information arrival to the market. Each

trading day consists of a series of intraday sucessive equilibria initiated by information shocks.

The number of intraday equilibria It is random which drives the variability of price changes

and traded volume.

Let Qij be the quantity that the trader j (j = 1, ..., J) is willing to trade at the ith

intra-day equilibrium (i = 1, ..., It). Qij is then given by the linear relation:

Qij = a[P ∗

ij − Pi], (j = 1, 2, ..., J), (A.1)

where a > 0 is a constant, P ∗

ij is the reservation price of trader j at the intra-day equilibrium

i and Pi is the current market price30. The reservation price heterogeneity among traders

comes from different expectation about the future liquidation value P̃ , as well as different

needs to transfer the risk through the market. The ith peace of information hitting the

market will result in a price increment ∆Pi and a corresponding traded volume Vi.

In particular, the market clearing condition
∑J

j=1Qij = 0 and equation (A.1) yield the

ith equilibrium price:

Pi =
1

J

J
∑

j=1

P ∗

ij. (A.2)

30Note that transaction costs are not considered in equation (A.1); the model assumes that the traders
differ only in their reservation prices.
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From the market clearing condition and equation (A.1), it follows that:

∆Pi =
1

J

J
∑

j=1

∆P ∗

ij , (A.3)

and

Vi ≡
1

2

J
∑

j=1

|Qij −Qi−1,j| =
α

2

J
∑

j=1

|∆P ∗

ij −∆Pi|, (A.4)

where ∆P ∗

ij is the increment of the jth trader reservation price.

TP make some additional assumptions concerning the distribution of trader’s reservation

price increments in order to obtain testable implications of the model. They assume a

variance-component model:

∆P ∗

ij = φi + ψij , (A.5)

with φi ∼ N(0, σ2
φ), ψij ∼ N(0, σ2

ψ),

where φ and ψ are mutually independent both across traders and through time. Note that, φi

is common to all traders and represents common variations of equilibrium price in response

to new information. ψij is supposed to be the trader-specific component of price increment

related to trader subjectif interpretation of new information. The higher the absolute value

of φi relative to ψij , the higher the signal-to-noise ratio concerning information inflow. Using

equations (A.3)-(A.5), ∆Pi and Vi can be written as:

∆Pi = φi + ψ̄i, (A.6)

Vi =
α

2

J
∑

j=1

| ψij − ψ̄i |, (A.7)

where ψ̄i =
1
J

∑J

j=1 ψij .

From normality assumption for φi and ψij as well as equations (A.6)-(A.7), it follows show
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that: (i) Intraday price change ∆Pi is normally distributed: ∆Pi ∼ N(µp, σ
2
p); (ii) Intraday

traded volume Vi is approximately normally distributed for large J : Vi ∼ N(µv, σ
2
v); (iii)

∆Pi and Vi are stochastically independent and their first two moments are31:

µp ≡ E[∆Pi] = 0,

σ2
p ≡ V ar[∆Pi] = σ2

φ +
σ2
ψ

J
,

(A.8)

µv ≡ E[Vi] =
(α

2

)

σ2
ψ

√

2

π

(
√

J − 1

J

)

J

σ2
v ≡ V ar[∆Vi] =

(α

2

)2

σ2
ψ

(

1− 2

π

)

J + o(J).

Daily price change ∆Pt and trading volume Vt are obtained by summing their within-day

counterparts ∆Pi and Vi:

∆Pt =

It
∑

i=1

∆Pi, ∆Pi ∼ N(0, σ2
p), (A.9)

Vt =
It
∑

i=1

Vi, Vi ∼ N(µv, σ
2
v). (A.10)

Both ∆Pt and Vt are mixtures of independent normals with the same mixing variable It.

Conditional on It, the bivariate normal mixture is:

∆Pt = σp
√

ItZ1t,

Vt = µvIt + σv
√

ItZ2t, (A.11)

where Z1t and Z2t are i.i.d. standard normal variables and mutually independent. At the

end of the day t, all the incoming information is incorporated into the price change ∆Pt and

traded volume Vt.

31Point (i) is trivial. For more details and proofs of (ii) and (iii), see TP (1983), page 490-91.
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Using a lognormal distribution for It and the maximum likelihood method, TP show that

the standard MDH model captures the positive relationship between price change variance

and volume on the 90-day T-bills futures market. Richardson and Smith (1994) extend TP

work by introducing a mean parameter for daily price change and use GMM tests to validate

the model. In this paper, we use Richardson and Smith (1994) version when estimating the

standard MDH model for robustness checks (see section 4).

B The Grossman and Miller (1988) model

Grossman and Miller (1988), henceforth GM, consider a simple world with only three dates.

Date 1 and date 2 are trading dates, while date 3 is used only as a terminal condition. There

are only two assets in the GM economy: (i) a risky asset whose liquidation value at date 3

is P̃3 and (ii) a risk-free asset whose return is normalized to zero. GM consider two types of

traders, the outside customers who trade in response to information inflow, and the market

makers who trade in response to liquidity shocks. In our framework, the outside customers

are called active traders as in TP. Moreover, the market makers of GM correspond exactly

to our liquidity arbitragers: they provide liquidity when it is needed in order to cash the

liquidity premium.

Information concerning P̃3 is assumed to arrive before trade at period 1 and before trade

at period 2. Let J be the number of all the potential active traders in the market. The

active trader j (j = 1, ..., J) at time 1 has an endowment of size zj in the security which is

unsuitable given the trade-off between his risk preferences and information at that date. At

period 1, some liquidity frictions arise because of asynchronization of time of trade among

the active traders. This will result in a temporary order imbalance of magnitude z given by:

z =
J
′

∑

j=1

zj 6= 0, J
′

< J, (B.1)
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where J
′

is the number of active traders being present in the market at date 1. If all the

active participants were present in the market at date 1, the order imbalance would vanish

and the net trading demand would be zero:

J
∑

j=1

zj = 0. (B.2)

In the GM world, a liquidity event occurs at date 1 which motivates the liquidity arbi-

tragers to enter the market in order to provide immediacy and thus compensate for the

order disproportion; they liquidate their positions at date 2 as other active traders arrive

with the opposite order imbalance. At date 2, the remaining active participants arrive with

the opposite aggregated endowment shock which, by definition, cancels out the time-1-order

imbalance. This assumption is crucial to discerning the advantages for the active traders

arriving at date 1 to postpone their trades to date 2.

Let Bs be the cash-position of the active trader j at date s (s = 1, 2) and Q̄s be the

quantity of the risky asset he holds after trading at time s:

Q̄s = Qs + zj , (B.3)

where Qs is trader’s excess demand. Using exponential preferences:

U(W3) = −e−αW3 , (B.4)

and backward induction, we can obtain the optimal excess demand at period s (s = 1, 2) by

maximizing the expected utility of terminal wealth W3:

EsU(W3) = Es(−e−αW3), (B.5)

under (i) the normality assumption concerning P̃1, P̃2 as well as P̃3, and (ii) the following
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budget constraints:

W3 = B2 + Q̄3P̃3, (B.6)

P̃2Q̄2 +B2 = W2 = B1 + P̃2Q̄1, (B.7)

P̃1Q̄1 +B1 = W1 = P̃1zj +W0, (B.8)

where W0 represents other wealth possessed by the active participant before trade at date 1.

In particular, date-2-participants of the GM world consist of: (i) the active traders who

arrived in the market at date 1; (ii) the active traders arriving at date 2 with opposite order

imbalance, as well as (iii) the liquidity arbitragers willing to liquidate the positions taken at

date 1. At date 2, the maximization program for active trader j belonging to the first group

can be written as:

max
Q2

E2U(W2 − P2zj + (P̃3 − P2)Q2 + P̃3zj), (B.9)

where W3 =W2 −P2zj + (P̃3 −P2)Q2 + P̃3zj is deduced by equations (B.3) and (B.6)-(B.8).

Solving for Q2 yields the optimal excess demand denoted by Qat
2 :

Qat
2 =

E2P̃3 − P2

αV ar2P̃3

− zj , (B.10)

where mean and variance operators reflect the information available at date 2. Assuming that

active traders differ only concerning zj and from linearity between Qat
2 and zj , Q

at
2 corresponds

to the aggregated optimal excess demand across active traders when zj is replaced by z in

equation (B.10):

Qat
2 =

E2P̃3 − P2

αV ar2P̃3

− z. (B.11)

In the same way, the aggregated optimal excess demand of active traders arriving at date
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2 with opposite order imbalance is given by:

E2P̃3 − P2

αV ar2P̃3

+ z. (B.12)

Assuming that there are M liquidity arbitragers in the market having the same prefer-

ences as the active traders except that for them the endowment shock is zero, their total

optimal excess demand at date 2 is given by:

MQla
2 =M

E2P̃3 − P2

αV ar2P̃3

, (B.13)

where Qla
2 is the optimal excess demand per liquidity arbitrager.

Given the excess demand functions (B.11), (B.12) and (B.13), the market clearing con-

dition at date 2 can be written as:

E2P̃3 − P2

αV ar2P̃3

− z +
E2P̃3 − P2

αV ar2P̃3

+ z +M
E2P̃3 − P2

αV ar2P̃3

= 0, (B.14)

which implies that:

P2 = E2P̃3. (B.15)

It follows that at the equilibrium we get:

Qat
2 = −z, (B.16)

Qla
2 = 0. (B.17)

At date 1, the active participants who are willing to trade maximize the expected utility

depending on date-1 information. Note that the risk at date 1 comes from the fact that new

information may arrive at date 2 causing P2 = E2P̃3 to be different from E1P̃3. From (B.5),
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(B.6)-(B.8), (B.15) and (B.16), we get:

max
Q1

E1U(W0 +Q1(E2P̃3 − P1) + zE2P̃3), (B.18)

which yields the optimal aggregated excess demand Qat
1 as given by:

Qat
1 =

E1P̃3 − P1

αV ar1(E2P̃3)
− z, (B.19)

where E1E2P̃3 = E1P̃3, as implied by the law of iterated expectations.

Liquidity arbitragers, who continually observe the market, provide immediacy at date

1 by taking trading positions that they hold until date 2. In the same way as for active

participants, the optimal excess demand per liquidity arbitrager is given by:

Qla
1 =

E1P̃3 − P1

αV ar1(E2P̃3)
. (B.20)

The market clearing condition at period 1 gives:

E1P̃3 − P1

αV ar1(E2P̃3)
− z +M

E1P̃3 − P1

αV ar1(E2P̃3)
= 0, (B.21)

which yields the equilibrium price at time 1, P1:

P1 = E1P̃3 −
zαV ar1(E2P̃3)

1 +M
. (B.22)

From (B.19), (B.20) and (B.22) we get the equilibrium excess demands for both time-1

market participants:

Qat
1 = − M

1 +M
z, (B.23)
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and

Qla
1 =

z

1 +M
. (B.24)

Note that P1 depends on the magnitude and the sign of the order imbalance. When z = 0,

P1 equals the price revealing the information E1P̃3. For z 6= 0, the equilibrium price depends

on the number of liquidity providers present in the market at date 1. The higher the number

of liquidity arbitragers, the lower the order imbalance impact on the equilibrium price P1.

Let R̃2 = P̃2/P1 − 1 be the excess return earned by arbitragers at date 2. From (B.22) it

follows that:

E1R̃2 =
P1z

1 +M
αV ar1(R̃2). (B.25)

Note that, if either z → 0 or M → ∞, E1R̃2 = 0. This means that the combined effect of the

order asynchronization and the finite number of liquidity arbitragers results in departures of

E1R̃2 from zero.

Finally, GM assume that liquidity arbitragers face an exogenous cost of maintaining a

market presence − denoted by c − and that the order imbalance z is not known when this

cost is paid out. Supposing that z behaves as a centered normally distributed variable which

is independent from information shocks, the expected utility for a given liquidity arbitrager

is32:

EU(W3) = EU(W0 − c+ (P̃2 − P1)Q
la
1 ). (B.26)

It follows that, arbitragers will be motivated to enter the market until the transaction costs

32From (B.17), it follows that the profit between period 2 and period 3, (P̃3 − P2)Q
la
2

vanishes.
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offset the expected profits between dates 1 and 2:

EU(W0 − c+ (P̃2 − P1)Q
la
1 ) = EU(W0). (B.27)

Using (B.20) and exponential utility for (B.27), it can be shown that M is a decreasing

function of c33. When c > 0 the number of arbitragers is finite. This result is critical to

understanding the benefits, for liquidity arbitragers, of providing immediacy at date 1.

Generally speaking, the GM framework focuses on the consequences of an order imbalance

on the intraday patterns of price change and transaction volume. At this stage, the model

shows that in the presence of liquidity frictions and exogenous transaction costs:

(i) The traded volume at date 1 is lower than it would have been if there were no order

imbalance34.

(ii) The transaction price at date 1 deviates from its revealing information level (P1 6= E1P̃3).

However, from the assumptions that the order imbalance sums to zero across periods 1

and 2, and that the liquidity arbitragers offset their positions at date 2, it follows that the

traded volume across dates 1 and 2 is higher than it would have been in the absence of

liquidity frictions if the condition M ≥ 1 is verified35. This reasoning motivates us to extend

the GM framework in order to model the impact of liquidity frictions on total price changes

and total traded volume.

33For a detailed demonstration see Grossman and Miller (1988).
34From (B.23) it follows that a finite M implies |Qat

1
| < |z|.

35In other words, the order imbalance faced by outside customers who exchange at date 1 is offset thanks
to immediacy provided by market makers who will liquidate their positions at date 2 and thus increase the
traded volume.
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C The GMM estimations

C.1 The GMM procedure of Hansen (1982) with Newey and West

(1987) weighting matrix

Let Xt = (Rt, Vt) be the vector of return and volume observations prevailing at day t

for a given stock and θ be the (Np × 1) vector of the MDHL model parameters: θ =

(µatv , µ
la
v , σ

2
p, σ

2
v , m2I , p). If Xt is generated by the MDHL model, there is some true set of

parameters θ0 for which:

E[ht(Xt, θ0)] = 0, (C.1)

where ht is a column vector of Nh unconditional moment conditions implied by our model.

Since we do not observe the true expectation of ht, we define a vector gT (θ) containing the

sample averages corresponding to the elements of ht. We index the vector of sample moments

by T to indicate its dependence on the sample size. For large T , if Xt is generated by the

MDHL model, gT (θ0) should be close to zero:

gT (θ0) ≡
1

T

T
∑

t=1

ht(Xt, θ0) −→ 0, when T → ∞. (C.2)

In this paper, we work with an overidentified system, i.e., Nh > Np, which allows us to

estimate θ and test the global validity of the MDHL model simultaneously. In this case, the

GMM chooses θ̂T as the value of θ that minimizes the quadratic form of gT (θ) given by:

QT (θ) ≡ gT (θ)
′WTgT (θ), (C.3)
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where WT is an (Nh x Nh) symmetric-positive-definite-weighting matrix. Since the problem

is nonlinear, this minimization is performed numerically. The first order condition is:

DT (θ̂T )
′WTgT (θ̂T ) = 0, (C.4)

where DT (θ̂) is the sample approximation of the true partial derivative matrix and is given

by:

DT (θ̂T ) = ∂gT (θ̂T )/∂θ̂
′

T . (C.5)

The asymptotic distribution of the coefficient estimate is:

√
T (θ̂T − θ) ∼asy N(0, V ), (C.6)

where V is its asymptotic covariance matrix. An important point of the GMM analysis is to

pick a weighting matrix WT that minimizes V and hence deliver an asymptotically efficient

estimator. In this article, we use the Newey and West (1987) methodology to estimate the

optimal weighting matrix denoted by ST . The Newey-West estimator accounts for serial

correlation and heteroskedasticity among the terms of the matrix ht and is given by:

ST (q, θ̂T ) = Γ0,T (θ̂T ) +

q
∑

j=1

(

q − j

q

)

(

Γj,T (θ̂T ) + Γ
′

j,T (θ̂T )
)

, (C.7)

where q is the number of autocovariances one wishes to include in the computation and

Γj,T (θ̂T ) is the sample autocovariance matrix of ht as given by:

Γj,T (θ̂T ) ≡ T−1

T
∑

t=j+1

ht(θ̂T )ht(θ̂T )
′

. (C.8)
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Finally, Hansen (1982) provides an overidentifying test statistic JT (θ̂) as follows:

JT (θ̂) ≡ TgT (θ̂T )S
−1
T (q, θ̂T )gT (θ̂T ) ∼asy χ2

Nh−Np
,

which allows us to test the global validity of the model.
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C.2 Sample moment conditions for the MDHL model

The sample moment conditions in equation (4.6) are given as follows:

(Vt − E(Vt)) = 0, (C.9)

(Rt − E(Rt))
2 = σ2

p, (C.10)

(Vt −E(Vt))
2 = (µatv )

2m2I + (µlav )
2[p(1− p) + p2m2I ] (C.11)

+2µatv µ
la
v pm2I + σ2

v ,

(R2
t −E(R2

t ))(Vt − E(Vt)) = σ2
p(µ

at
v + pµlav )m2I , (C.12)

(R2
t −E(R2

t ))(V
2
t −E(V 2

t )) = (µatv )
2σ2

p(m3I + 2m2I) (C.13)

+(µlav )
2σ2

p [p
2m3I + p(1− p)m2I ]

+2µatv µ
la
v σ

2
pp(m3I + 2m2I) + σ2

vσ
2
pm2I ,

(Vt −E(Vt))
3 = 3µatv σ

2
vm2I + (µatv )

3m3I (C.14)

+(µlav )
3[p3m3I + 3p2(1− p)m2I + p(1− 3p+ 2p2)]

+3µlav σ
2
vpm2I + 3(µatv )

2µlav pm3I

+3µatv (µ
la
v )

2[p2m3I + p(1− p)m2I ],

(Rt − E(Rt))
4 = 3σ4

p(m2I + 1), (C.15)

(Vt −E(Vt))
4 = (µlav )

4[p4m4I + (6p3 − 6p4)m3I ] (C.16)

+(µlav )
4[(4p2 − 6p3 + 2p4)m2I + (p− 7p2 + 12p3 − 6p4)]

+6(µatv )
2(µlav )

2[p2m4I + p(1− p)(m3I +m2I)]

+6(µatv )
2σ2

v(m3I +m2I) + 4(µatv )
3µlav pm4I

+4µatv (µ
la
v )

3[p3m4I + 3(p2 − p3)m3I + (p− p3)m2I ]

+6(µlav )
2σ2

v [p
2m3I + pm2I + p(1− p)] + (µatv )

4m4I

+12µatv µ
la
v σ

2
vp(m3I +m2I) + 3σ4

v(m2I + 1),

(Rt − E(Rt))
2(Vt −E(Vt))

2 = (µatv )
2σ2

p(m3I +m2I) + σ2
vσ

2
p(m2I + 1) (C.17)

+(µlav )
2σ2

p [p
2m3I + pm2I + p(1− p)] + 2µatv µ

la
v σ

2
pp(m3I +m2I).
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Equations (C.9) to (C.17) correspond to sample moment conditions (1) to (9) in (4.6). The

third and fourth central moments of It, m3I and m4I , are functions of its respective second

central moment m2I as given in equation (4.5). Note that, the central moments of Lt being

functions of p and the central moments of It, need not to be estimated. Finally, expectation

operators of the observables are also functions of θ:

E(Rt) = 0,

E(Vt) = µatv + pµlav ,

E(R2
t ) = σ2

p , (C.18)

E(V 2
t ) = σ2

v + 2µatv µ
la
v p(m2I + 1)

+(µatv )
2(m2I + 1) + (µlav )

2(p+ p2m2I).
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D GMM estimation results for MDHL model
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ID µat
v µla

v σ2

p σ2

v m2I x p χ2

3
pµla

v (%)

1 0,007040** 0,014930* 0,000325** 0,00000000 0,173** 6,09** 0,002 2,78 0,47
2 0,006095** 0,024615** 0,000075** 0,00000000 0,327** 5,07** 0,006 2,95 2,46
3 0,006440** 0,050036** 0,000133** 0,00000000 0,487** 5,56** 0,004 3,23 2,89
4 0,016193** 0,035676 0,000377** 0,00000000 0,239** 6,89 0,001 7,81 -
5 0,004827** 0,007781 0,000127** 0,00000000 0,207** 4,02 0,018 3,68 -
6 0,005632** 0,000000 0,000110** 0,00000000 0,192** 4,11** 0,016 10,57 -
7 0,008299** 0,080822** 0,000180** 0,00000183 0,234** 6,09** 0,002 3,48 2,16
8 0,005706** 0,012923** 0,000137** 0,00000000 0,256** 4,27** 0,014 2,25 3,04
9 0,005497** 0,024871** 0,000105** 0,00000143 0,228** 4,95** 0,007 0,28 3,08
10 0,013645** 0,000005 0,000217** 0,00000313 0,271** 4,47** 0,011 15,93 -
11 0,010347** 0,030288** 0,000235** 0,00001010** 0,212** 4,00** 0,018 1,76 5,01
12 0,004579** 0,023868** 0,000202** 0,00000029 0,194** 7,89** 0,000 2,21 0,20
13 0,007147** 0,020656* 0,000160** 0,00000302 0,223** 4,38** 0,012 5,39 3,44
14 0,005174** 0,017671 0,000348** 0,00000000 0,211** 6,95* 0,001 7,43 -
15 0,005821** 0,019152** 0,000129** 0,00000000 0,157** 6,66** 0,001 3,24 0,42
16 0,011817** 0,067002** 0,000102** 0,00000000 0,332** 5,94** 0,003 8,30 -
17 0,005713** 0,000000 0,000121** 0,00000000 0,219** 8,36** 0,000 8,95 -
18 0,006297** 0,000000** 0,000102** 0,00000000 0,316** 15,41** 0,000 1,11 0,00
19 0,002458** 0,016717 0,000159** 0,00000000 0,322** 9,52** 0,000 4,56 -
20 0,006078** 0,009091** 0,000155** 0,00000000 0,242** 3,45** 0,031 1,97 4,40
21 0,009133** 0,021376 0,000146** 0,00000000 0,367** 4,52 0,011 6,23 -
22 0,006114 0,010793 0,000120** 0,00000000 0,258** 2,87 0,054 3,83 -
23 0,012486** 0,024083 0,000197** 0,00000000 0,364** 5,72 0,003 6,03 -
24 0,005370** 0,010659** 0,000063** 0,00000072 0,130** 3,85** 0,021 4,84 3,97
25 0,005098** 0,019464** 0,000119** 0,00000000 0,352** 4,73** 0,009 2,19 3,25
26 0,011474 0,014244 0,000141** 0,00000200 0,259 3,98 0,018 6,87 -
27 0,010676** 0,000000** 0,000246** 0,00000000 0,310** 15,53** 0,000 6,49 0,00
28 0,009013** 0,025501 0,000136** 0,00000000 0,347** 7,09 0,001 1,14 -
29 0,007865** 0,064835 0,000161** 0,00000000 0,486** 6,72** 0,001 2,70 -
30 0,004305 0,024855 0,000104 0,00000000 0,212 6,16 0,002 2,57 -
31 0,004146** 0,008845** 0,000101** 0,00000000 0,223** 4,00** 0,018 5,11 3,70
32 0,006383** 0,016126** 0,000179** 0,00000000 0,389** 2,85** 0,054 2,52 12,10
33 0,007054** 0,000000 0,000182** 0,00000000 0,442** 6,65** 0,001 2,92 -
34 0,003395** 0,006673** 0,000045** 0,00000067 0,120** 4,30** 0,013 7,55 2,56
35 0,007926** 0,056664** 0,000264** 0,00000945** 0,373** 5,24** 0,005 2,57 3,62
36 0,008806** 0,000000 0,000188** 0,00000000 0,320** 5,05** 0,006 12,55 -
37 0,009513** 0,000000 0,000147** 0,00000000 0,388** 7,18** 0,001 4,89 -
38 0,007438 0,026125 0,000122 0,00000415 0,219 4,72 0,009 3,81 -
39 0,005334** 0,019771** 0,000087** 0,00000000 0,237** 4,91** 0,007 4,89 2,63
40 0,008118** 0,006594 0,000192** 0,00000000 0,231** 2,96 0,049 13,08 -
41 0,011131** 0,000008** 0,000176** 0,00000000 0,315** 13,45** 0,000 7,95 -
42 0,009672 0,000000 0,000284** 0,00000000 0,332** 0,71** 0,328 6,00 -
43 0,006575** 0,000000 0,000146** 0,00000000 0,299** 9,94** 0,000 5,24 -
44 0,006229** 0,013975** 0,000120** 0,00000026 0,258** 3,84** 0,021 1,42 4,50
45 0,009898** 0,045066** 0,000162** 0,00000000 0,364** 4,87** 0,008 4,38 3,36
46 0,005729** 0,013238** 0,000139** 0,00000000 0,236** 4,28** 0,014 9,71 -
"*" and "**" indicate significance at 90% and 95% levels of confidence respectively.

Table 2: MDHL model estimated parameters (1)
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ID µat
v µla

v σ2

p σ2

v m2I x p χ2

3
pµla

v (%)

47 0,005670** 0,039195** 0,000166** 0,00000029 0,299** 5,84** 0,003 0,30 1,96
48 0,005226** 0,008135 0,000119 0,00000124 0,270** 3,34 0,034 4,17 -
49 0,005967** 0,007442 0,000088 0,00000000 0,236** 3,12 0,042 4,70 -
50 0,012743** 0,097959** 0,000364** 0,00000000 0,337** 6,83** 0,001 3,81 0,82
51 0,011330** 0,072937** 0,000175** 0,00000000 0,480** 5,17** 0,006 2,92 3,52
52 0,008719** 0,000000 0,000124** 0,00000000 0,413** 4,01** 0,018 11,47 -
53 0,009159** 0,000000 0,000143** 0,00000000 0,468** 6,73** 0,001 8,04 -
54 0,004448** 0,007292 0,000095** 0,00000000 0,225** 3,19 0,040 4,86 -
55 0,008263** 0,004292 0,000131** 0,00000000 0,335** 1,75** 0,148 6,85 -
56 0,012171 0,003088 0,000128** 0,00000000 0,285** -0,28 0,570 9,09 -
57 0,007277** 0,042687** 0,000219** 0,00000070 0,401** 4,76** 0,008 1,30 4,74
58 0,006668** 0,011587 0,000187 0,00000000 0,218** 5,12 0,006 6,28 -
59 0,007672** 0,022692** 0,000256** 0,00000000 0,276** 5,43** 0,004 1,32 1,17
60 0,007863** 0,011006 0,000113** 0,00000000 0,269** 3,22 0,039 1,32 -
61 0,013258** 0,115264** 0,000175** 0,00000000 0,397** 5,79** 0,003 3,01 2,57
62 0,005446** 0,007457 0,000102 0,00000000 0,237** 4,38 0,012 7,01 -
63 0,004559** 0,030197** 0,000079** 0,00000000 0,141** 6,33** 0,002 9,95 -
64 0,001733** 0,005458** 0,000120** 0,00000000 0,244** 4,50** 0,011 3,31 3,36
65 0,006773** 0,018750** 0,000099 0,00000000 0,236** 5,20** 0,005 5,49 1,37
66 0,007098** 0,015138 0,000104** 0,00000000 0,335** 3,71** 0,024 4,43 -
67 0,005627 0,002416 0,000291** 0,00000000 0,142** 0,18 0,454 13,08 -
68 0,010011** 0,000003 0,000194** 0,00000165 0,254** 4,10** 0,016 2,10 -
69 0,008553** 0,014322 0,000177** 0,00000300 0,365** 8,82** 0,000 6,84 -
70 0,007432 0,024748 0,000164 0,00000000 0,143** 2,13 0,106 5,55 -
71 0,010442** 0,082827 0,000166** 0,00000000 0,343 6,78** 0,001 4,33 -
72 0,003652** 0,000001** 0,000157** 0,00000000 0,264** 7,96** 0,000 4,91 0,00
73 0,011692** 0,000001 0,000099** 0,00000000 0,544** 7,09** 0,001 4,04 -
74 0,007525** 0,043429** 0,000121 0,00000319 0,341** 5,61** 0,004 1,97 2,26
75 0,004046** 0,011888** 0,000218 0,00000000 0,307** 4,48** 0,011 1,63 3,13
76 0,007274** 0,037411** 0,000176 0,00000000 0,316** 6,39** 0,002 2,79 1,02
77 0,005522** 0,010229** 0,000152** 0,00000000 0,278** 2,60** 0,069 1,18 11,32
78 0,010804** 0,086171** 0,000193** 0,00000000 0,357** 6,41** 0,002 5,62 1,30
79 0,008293** 0,015345 0,000125** 0,00000000 0,285** 3,65* 0,025 3,68 -
80 0,008059** 0,036491** 0,000120** 0,00000000 0,256 6,37** 0,002 9,28 -
81 0,005287** 0,008437** 0,000108** 0,00000150 0,157** 2,68** 0,064 2,86 9,28
82 0,006074** 0,032030** 0,000182** 0,00000000 0,391** 4,97** 0,007 1,23 3,50
83 0,007775** 0,047332** 0,000119** 0,00000382 0,228** 5,95** 0,003 1,57 1,56
84 0,005163** 0,015509** 0,000091** 0,00000000 0,227** 5,96** 0,003 10,72 -
85 0,002348** 0,000005** 0,000094** 0,00000012 0,334** 14,48** 0,000 3,53 -
86 0,007168** 0,000002 0,000076** 0,00000083 0,201** 5,17** 0,006 2,19 -
87 0,018066** 0,013050 0,000513** 0,00000024 0,398** 1,97 0,123 7,75 -
88 0,004953** 0,000001** 0,000158** 0,00000000 0,228** 15,31** 0,000 9,16 -
89 0,063894 0,000030 0,000229** 0,00170417 0,347** 0,03** 0,493 20,42 -
90 0,008200** 0,032734** 0,000118** 0,00000048 0,206** 6,08** 0,002 1,65 0,09
91 0,008935** 0,000000 0,000137** 0,00000000 0,491** 7,40** 0,001 4,37 -
92 0,026785** 0,091897** 0,000438** 0,00014244** 0,144** 3,71** 0,024 2,36 7,56
93 0,009267** 0,046187** 0,000148** 0,00000000 0,412 4,66** 0,009 4,29 4,48
"*" and "**" indicate significance at 90% and 95% levels of confidence respectively.

Table 3: MDHL model estimated parameters (2)
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E GMM estimation to test the standard MDH model

using Richardson and Smith (1994) procedure

65



ID µp µv σ2

p σ2

v m2I m3I χ2

3

1 0,001576** 0,006974** 0,000341** 0,000000 0,164821** 0,076466** 4,43
2 0,000293 0,006213** 0,000082** 0,000007 0,537526** 0,771725** 4,04
3 0,000459 0,006450 0,000124 0,000003 0,615128 1,182884 9,18
4 0,002793** 0,016191** 0,000348** 0,000015 0,168119** 0,086267** 7,89
5 0,000593 0,004944** 0,000117** 0,000000 0,251352** 0,200954* 6,16
6 0,000648 0,005961** 0,000141** 0,000013** 0,623407** 0,916119** 1,89
7 0,000992** 0,008348** 0,000198** 0,000008 0,370009** 0,002626 2,39
8 0,000304 0,005915** 0,000136** 0,000000 0,335995** 0,431232** 2,61
9 0,001127** 0,005421** 0,000104** 0,000001 0,273959** 0,000798 4,37
10 0,000924* 0,014019** 0,000277** 0,000043** 0,506739** 0,544113** 0,85
11 0,001128** 0,010572** 0,000247** 0,000020** 0,209113** 0,504891** 4,44
12 0,001227** 0,004564** 0,000203** 0,000000 0,201264** 0,081835 2,78
13 0,000790* 0,007445** 0,000185** 0,000008* 0,236387** 0,547731** 3,55
14 0,002101** 0,005181** 0,000354** 0,000002 0,218648** 0,422673** 7,01
15 0,000725 0,005650 0,000122 0,000000 0,142258 0,053039 8,15
16 0,000204 0,012450** 0,000116** 0,000020 0,626882** 1,485704** 2,77
17 0,000516 0,005783** 0,000136** 0,000004** 0,369925** 0,364957** 3,74
18 0,000308 0,006282** 0,000104** 0,000002 0,383053** 0,491836** 1,15
19 -0,000209 0,002463** 0,000163** 0,000001 0,462963** 0,457725** 2,70
20 0,000640 0,006393** 0,000152** 0,000002 0,261004** 0,290055** 2,57
21 0,000582 0,009301** 0,000138** 0,000003 0,358138* 0,402375** 7,50
22 0,000851** 0,006702** 0,000119** 0,000006 0,268992** 0,385132 3,77
23 0,001061* 0,012701** 0,000209** 0,000028 0,574036** 0,816102 7,33
24 0,000560** 0,005666** 0,000067** 0,000000 0,254055** 0,296119** 1,31
25 -0,000340 0,005180** 0,000103** 0,000018* -0,213526 1,376168 4,97
26 0,000337 0,011794** 0,000171** 0,000062** 0,791139** 1,474336** 4,09
27 0,001466** 0,011202** 0,000271** 0,000015** 0,468301** 0,549208** 0,32
28 0,000753 0,008973** 0,000135** 0,000000 0,348388** 0,386472** 1,62
29 0,000160 0,008094** 0,000171** 0,000009 0,742010** 2,013111* 1,78
30 0,000213 0,004189** 0,000101** 0,000001 0,253895* 0,083571 4,78
31 0,000403 0,004333** 0,000110** 0,000001 0,338555** 0,400176** 1,81
32 0,000780 0,007169** 0,000187** 0,000011* 0,417406** 1,046547** 2,13
33 0,001097** 0,007001** 0,000178** 0,000018 0,360728* 10,347836 2,76
34 0,000092 0,003656** 0,000052** 0,000001 0,342485** 0,366668** 1,22
35 0,000013 0,008095 0,000271 0,000025 0,181488 0,632359 8,64
36 0,000806* 0,008736** 0,000207** 0,000013 0,505544** 0,636415* 5,52
37 0,000832* 0,009746** 0,000156** 0,000006 0,484987** 0,656846** 1,42
38 0,000898** 0,007722** 0,000143** 0,000002 0,315477** 0,334730** 3,73
39 0,000501 0,005558** 0,000091** 0,000001 0,392350** 0,757375** 3,18
40 0,001586** 0,008806** 0,000226** 0,000011** 0,448834** 0,447771** 0,68
41 -0,000652 0,010979 0,000175 0,000007 0,297440 0,761764 8,64
42 0,000931 0,009666** 0,000311** 0,000025 0,646960** 1,074764 1,94
43 0,000782* 0,006418** 0,000147** 0,000000 0,326012** 0,549908** 4,60
44 0,000667* 0,006578** 0,000119** 0,000005* 0,249873** 0,414520** 3,13
45 -0,001165** 0,009964** 0,000168** 0,000004 0,464029** 1,221262** 5,37
"*" and "**" indicate significance at 90% and 95% levels of confidence respectively.

Table 4: MDH model estimated parameters (1).
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ID µp µv σ2

p σ2

v m2I m3I χ2

3

46 0,000308 0,006052** 0,000170** 0,000002 0,369355** 0,421853** 3,22
47 0,000359 0,005642** 0,000158** 0,000006 0,218251** 1,077850 2,74
48 0,000282 0,005360** 0,000126** 0,000002 0,304649** 0,321132** 6,57
49 0,000184 0,006046 0,000083 0,000001 0,235209 0,195631 9,36
50 0,002334** 0,013313** 0,000435** 0,000039* 0,612897** 1,071623** 1,61
51 0,001268** 0,012308** 0,000185** 0,000009 0,896280** 3,419218** 2,99
52 0,001181** 0,008821** 0,000129** 0,000015* 0,648002** 1,009654** 7,64
53 0,000696 0,009805** 0,000161** 0,000044** 1,140210** 3,849740** 7,01
54 0,000398 0,004967** 0,000107** 0,000003 0,266530** 0,480544** 3,24
55 0,000037 0,009627** 0,000139** 0,000010 0,518172** 0,794861* 3,86
56 0,000210 0,014942** 0,000170** 0,000108** 0,855629** 1,725279** 1,08
57 0,000429 0,007450** 0,000179** 0,000017** 0,429604** 2,473198** 12,86
58 0,000385** 0,006954** 0,000189** 0,000010** 0,491210** 0,718748** 6,44
59 0,000551 0,007730** 0,000253** 0,000004 0,229570** 0,237471** 2,13
60 0,000270 0,008247** 0,000112** 0,000001 0,327870** 0,370144** 2,49
61 0,000975* 0,013523** 0,000176** 0,000025 0,483996** 2,539710** 1,21
62 0,000763** 0,005644** 0,000105** 0,000001 0,310431** 0,257974** 6,28
63 0,000080 0,004747** 0,000093** 0,000004* 0,453089** 0,922374** 4,41
64 0,000421 0,001753** 0,000122** 0,000000 0,256621** 0,317692** 2,41
65 0,000399 0,007069** 0,000121** 0,000025** 0,807689** 1,646781** 1,44
66 0,000322 0,007495** 0,000113** 0,000006 0,532255** 0,735960** 3,05
67 0,002328 0,006563 0,000259 0,000004 0,081158 0,034710 13,13
68 0,001318* 0,010106** 0,000195** 0,000003 0,328610** 0,391733** 1,66
69 0,001144** 0,009141** 0,000197** 0,000016** 0,569769** 0,797812** 2,70
70 -0,000217** 0,011143** 0,000159** 0,000214** 0,015643 16,593616* 3,31
71 0,000831* 0,010479** 0,000168** 0,000007 0,539331** 1,714445 2,91
72 0,000684 0,003646** 0,000158** 0,000000 0,264416** 0,196433** 6,06
73 0,000830** 0,012073** 0,000104** 0,000082** 1,263259** 2,909492 2,95
74 0,000318 0,007707** 0,000123** 0,000005 0,415593** 0,990330** 2,07
75 0,000801 0,004110** 0,000216** 0,000001 0,329465** 0,565500** 3,21
76 0,000259 0,007227** 0,000179** 0,000003 0,358411** 0,352879 3,54
77 0,000297 0,005903** 0,000144** 0,000006 0,280831** 0,527107** 5,27
78 0,001124* 0,011166** 0,000217** 0,000021 0,626097** 1,111593 3,63
79 0,000378 0,008791** 0,000141** 0,000003 0,315523** 0,413985** 2,90
80 -0,000031 0,008275 0,000108 0,000022 0,003433 0,377380 10,43
81 0,000828** 0,005752** 0,000110** 0,000005** 0,165209** 0,225023** 1,37
82 0,000016 0,006422** 0,000177** 0,000012** 0,338610** 1,834843** 6,33
83 0,000415 0,007782** 0,000124** 0,000002 0,296313** 0,011812 3,64
84 0,000401 0,005160** 0,000101** 0,000004** 0,426593** 0,517322** 1,30
85 0,000494 0,002321** 0,000093** 0,000000 0,275580** 0,259745** 5,16
86 0,000398 0,007114** 0,000072** 0,000003 0,150148** 0,093268** 3,25
87 0,003429** 0,020237** 0,000541** 0,000001 0,418237** 0,420424** 4,32
88 0,000316 0,004931** 0,000184** 0,000011* 0,698633** 1,195637 2,12
89 0,000265 0,038437** 0,000218** 0,001783** 0,602895** 2,741132* 1,17
90 -0,000004 0,008261** 0,000115** 0,000006* 0,159434** 0,250851** 5,56
91 0,001053** 0,008996** 0,000137** 0,000025** 0,889680** 2,407741** 7,87
92 0,002545** 0,029124** 0,000449** 0,000298** 0,188494** 0,762121** 2,06
93 0,000493 0,010147** 0,000180** 0,000029** 1,005279** 3,151976** 1,73
"*" and "**" indicate significance at 90% and 95% levels of confidence respectively.

Table 5: MDH model estimated parameters (2).
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F Subperiod analysis
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Overall Period

ID µat
v µla

v σ2

p σ2

v m2I x p χ2

3
pµla

v

22 0,006114 0,010793 0,000120** 0,00000000 0,258** 2,87 0,054 3,83 -
54 0,004448** 0,007292 0,000095** 0,00000000 0,225** 3,19 0,040 4,86 -
76 0,007274** 0,037411** 0,000176 0,00000000 0,316** 6,39** 0,002 2,79 0,000075
65 0,006773** 0,018750** 0,000099 0,00000000 0,236** 5,20** 0,005 5,49 0,000094
24 0,005370** 0,010659** 0,000063** 0,00000072 0,130** 3,85** 0,021 4,84 0,000222
44 0,006229** 0,013975** 0,000120** 0,00000027 0,258** 3,84** 0,021 1,42 0,000294
77 0,005522** 0,010229** 0,000152** 0,00000000 0,278** 2,60** 0,069 1,18 0,000705
31 0,004146** 0,008846** 0,000102** 0,00000000 0,223** 4,00** 0,018 5,11 0,000159
35 0,007926** 0,056664** 0,000264** 0,00000945** 0,373** 5,24** 0,005 2,57 0,000297
82 0,006074** 0,032010** 0,000182** 0,00000000 0,391** 4,97** 0,007 1,23 0,000220

Subperiod 1

ID µat
v µla

v σ2

p σ2

v m2I x p χ2

3
pµla

v

22 0,006079** 0,012897 0,000120** 0,00000000 0,347** 2,927 0,051 1,40 -
54 0,004046** 0,004738* 0,000101** 0,000000000 0,215** 2,04 0,115 0,25 -
76 0,004747** 0,003933** 0,000129** 0,00000000 0,161** 0,80 0,309 3,20 -
65 0,006844** 0,009940 0,000082** 0,00000000 0,203** 3,95* 0,019 3,09 -
24 0,005668** 0,012285** 0,000057** 0,00000208** 0,082* 3,86** 0,021 3,57 0,000253
44 0,005301** 0,017626** 0,000104** 0,00000142 0,187** 4,87** 0,008 0,33 0,000134
77 0,004466** 0,011211** 0,000113** 0,00000163** 0,134** 3,89** 0,020 1,38 0,000224
31 0,004062** 0,010295** 0,000095** 0,00000000 0,210** 4,42** 0,012 2,02 0,000122
35 0,005758** 0,040619** 0,000217** 0,00000623 0,329** 5,01** 0,007 2,15 0,000269
82 0,005762** 0,034560** 0,000150** 0,00000000 0,369** 5,40** 0,004 3,98 0,000155

Subperiod 2

ID µat
v µla

v σ2

p σ2

v m2I x p χ2

3
pµla

v

22 0,006560** 0,008112 0,0001223** 0,00000159 0,203** 3,80 0,022 2,57 -
54 0,004790** 0,014366** 0,0000852** 0,00000000 0,229** 4,28** 0,014 4,71 0,000196
76 0,008524** 0,033431** 0,000204** 0,00000046 0,257** 5,29** 0,005 2,86 0,000168
65 0,006520** 0,021978** 0,000116** 0,00000000 0,238** 5,36** 0,005 3,70 0,000103
24 0,004933** 0,007796** 0,000067** 0,00000000 0,142** 3,21** 0,039 3,48 0,000302
44 0,007154** 0,012640** 0,000134** 0,00000000 0,220** 3,22** 0,038 2,52 0,000485
77 0,006586** 0,009886** 0,000187** 0,00000000 0,224** 2,08** 0,111 0,27 0,001099
31 0,004208** 0,007810** 0,000106* 0,00000000 0,228** 3,65** 0,025 3,33 0,000198
35 0,009750** 0,029675* 0,000278** 0,00000718 0,272** 4,69** 0,009 3,08 0,000271
82 0,005623** 0,013323* 0,000170** 0,00000000 0,228** 3,62* 0,026 4,46 0,000346

"*" and "**" indicate significance at 90% and 95% levels of confidence respectively.

Table 6: MDHL model estimated parameters for subperiod analysis
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G Summary results
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MDH Model
Data extension validity Contributions

Tauchen 90-day T-bills Explains
and futures market − Favorable Cov(R2

t , Vt) > 0
Pitts (1983)

Richardson Dow Jones30
and stocks E(Rt) 6= 0 Less favorable GMM test

Smith (1994)

Lamoureux 10 NYSE MDH explanation for
and stocks Cov(It, It−1) 6= 0 Unfavorable GARCH effects?

Lastrapes
(1994)

Andersen IBM common Non-informed Unfavorable to Volume decomposition:
(1996) stocks part of volume standard MDH; informed versus

Modified MDH uninformed part
does better. of volume

with market maker

Roskelley Dow Jones30 Cov(It, It−1) 6= 0 Unfavorable Moment
(2001) stocks simplification

Li and Dow Jones30 Extend Rejection of Non-informed traders
Wu (2006) stocks Andersen (1996): Andersen (1996); have negative impact

Non-informed part Validation on Cov(R2

t , Vt)
of return volatility of their model.

MDHL model FTSE 100 Extend Favorable Liquidity arbitragers
Stocks TP (1983): to standard MDH are strategic agents

and not noisy traders;
Information and to MDHL Extends standard MDH

and Liquidity by accounting for
shocks liquidity shocks;

Volume decomposition;
Proposes a new liquidity

measure.

Table 7: Paper contributions compared to previous literature.
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