
Choice by lexicographic semiorders

Paola Manzini Marco Mariotti∗

November 2009

Abstract

In Tversky’s [30] model of a lexicographic semiorder, preference is generated

by the sequential application of numerical criteria, by declaring an alternative x

better than an alternative y if the first criterion that distinguishes between x and

y ranks x higher than y by an amount exceeding a fixed threshold. We generalise

this idea to a fully-fledged model of boundedly rational choice. We explore the

connection with sequential rationalisability of choice ([1], [20]), and we provide

axiomatic characterisations of both models in terms of observable choice data.
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1 Introduction

Lexicographic heuristics have gained much attention in the study of decision making, in

several fields: in psychology (e.g. Tversky [30], [31]; Gigerenzer and Todd [9]); in positive

economics (e.g. Rubinstein [25]; Leland [13]; Manzini and Mariotti [20]; Apesteguia and

Ballester [1]); in normative economics (e.g. Tadenuma [28], [29]; Houy and Tadenuma

[11]); in marketing science (e.g. Yee, Dahan, Hauser and Orlin [33]; Kohli and Jedidi

[12]). The explanation for this success is obvious: lexicographic procedures look appeal-

ingly simple and realistic since they eschew the complex trade-offs between several criteria

of classical decision makers. On the other hand, the lack of trade-offs may also seem to

constitute a disadvantage (especially among economists). Price may be the most impor-

tant criterion in the purchase of a house from a set of suitable ones. Yet who would be

prevented by a difference of a few bucks from selecting a house in a much more desirable

neighbourhood? Arguably, very few people would be so uncompromising as to ignore any

significant improvement in one dimension because of an arbitrarily small loss in the most

important dimension. When modelling boundedly rational behaviour, the rigid applica-

tion of simple ‘rules of thumb’(such as ‘buy the cheapest house among the acceptable

ones’) may look even less realistic than the trade-offs of textbook utility maximisation.

In other words, it is reasonable that, even in a boundedly rational heuristics, criteria

that detect significant differences between the alternatives under consideration should

over-ride criteria that do not. In this paper we study a model of choice that formalises

this intuition. Note that a number of ‘basic criteria’could be aggregated into a single, more

complex criterion, to which our observations on the house buyer above would nevertheless

still apply: if the agent constructs an index which trades offprice and location, that index

constitutes a new criterion, for which it may be unwise not to ignore small differences in

favour, say, of house size. And so on.1 Only a fully rational decision maker would be

able to pack together all possible trade-offs in a single criterion. However, in a more

realistic model of decision making, there is a limit to the number of simultaneous trade-

1As another example, in Manzini and Mariotti [19] we have proposed a multi-criterion model of choice

over time in which the first criterion is the exponentially discounted value, which trades off the time and

size of of a monetary reward.
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offs the decision maker is able to carry out. Thus, it seems very plausible to expect the

decision maker to rely on a lexicographic list of ‘slack’criteria. The choice procedure we

propose can explain observed ‘anomalies’, while at the same time preserving a convincing

flexibility.

Considerations of this kind have already led some of the researchers mentioned above2

to build models of preference or binary choice based on the application of numerical

criteria where small differences in the values of criteria are ignored.3 However, such

models leave unanswered the issue of choice from more complex sets (e.g., budget sets).

They do not study choice functions. If binary preferences are derived from a boundedly

rational procedure, the issue of associating such preferences with higher order choices is

far from trivial: on the one hand it may be impossible to maximise the preference (when it

is cyclical); and on the other hand it may be inappropriate to even consider maximisation

when the issue is one of bounded rationality.

We focus on Tversky’s [30] fruitful notion of lexicographic semiorder, in which pref-

erence is generated by the sequential application of numerical criteria, by declaring an

alternative x better than an alternative y if the first criterion that distinguishes between

x and y ranks x higher than y by an amount exceeding a fixed threshold. Our first

contribution is to define a choice procedure based on Tversky’s idea.

Tversky himself considered lexicographic semiorders appealing but restrictive as a

model of preference.4 In fact, this judgement is shown to be somewhat pessimistic. Even

when the agent is endowed with very rudimental discriminatory abilities (being only able

to classify criteria values in ‘good’, ‘neutral’and ‘bad’, where just ‘good’and ‘bad’are

rankable), the model can account for a surprisingly rich variety of behaviours.

The proposed model of choice by lexicographic semiorders turns out to be connected

with another, much more general-looking, notion of boundedly rational choice, namely

‘sequentially rationalisable choice’(Manzini and Mariotti [20]): an arbitrary number of

arbitrary asymmetric binary relations (‘rationales’) is applied sequentially to single out

2Tversky [30], Rubinstein [25], Leland [13]
3A difference being small is often interpreted as ‘similarity’.
4See Section 3.
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an alternative. On any finite domain5, bar the restriction that the rationales should be

acyclic, the two models have exactly the same reach: they restrict choice data in identical

ways (proposition 1).

However, the clause ‘on any finite domain’is key. When this clause is relaxed even

marginally, by allowing a countably infinite number of finite choice sets, the equivalence

breaks down: even the use of only two rationales may produce behaviours that cannot be

generated by any number of semiorders and any number of discriminations (proposition

2). So, the two models are in general distinguishable by observable choice data.

Next, we characterise choice by lexicographic semiorder (on domains which are not

necessarily finite) in terms of a new contraction consistency condition (Reducibility), at

the same time providing an algorithm to construct the semiorders (theorem 1).

As a bonus, for the case of finite domains, this result automatically also yields a

characterisation of acyclic sequentially rationalisable choice. On the same domain, this

leads directly to a relaxation of Reducibility which characterises standard sequential ra-

tionalisability, and to an algorithm to construct the rationales (theorem 3). These two

results, while tangential to main line of enquiry of this paper, are of independent interest,

since the characterisation of sequential rationalisability has proved to be a hard problem

which we left open in [20]. Our results in this respect build on and complement those by

Apesteguia and Ballester [1], who were the first to draw attention to the restriction of

sequential rationalisability to acyclic rationales and to provide a characterisation for it.

In the Appendix we work out one of their examples of sequentially rationalisable choices

to construct the rationales with our algorithm. Our work can also be seen as an extension

of the approach in Mandler, Manzini and Mariotti [18]: we discuss this relation in the

concluding section.

2 Lexicographic semiorders: preferences and choice

Fix a nonempty set X. A semiorder (Luce [15]) is an irreflexive6 relation P on X which

satisfies two additional properties:

5That is a domain including a finite number of finite sets.
6Irreflexivity: for all x ∈ X, (x, x) /∈ P .
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1. (x, y) , (w, z) ∈ P imply (x, z) ∈ P or (w, y) ∈ P ;

2. (x, y) ∈ P and (y, z) ∈ P imply (x,w) ∈ P or (w, z) ∈ P .

Given the irreflexivity of P , each of (1) or (2) imply that P is also transitive.7 So a

semiorder is a very special type of strict partial order. The interest of semiorders is that

they can be interpreted as a simple threshold model of (partial) rankings: on suitable

domains, P is a semiorder if and only if there exists a real valued function f on X and

a number σ ≥ 0 such that (x, y) ∈ P if and only if f (x) > f (y) + σ. Here f (x) is the

‘value’of the alternative x and σ is the amount by which the value of one alternative x

must exceed the value of another alternative y for x to be declared superior to y. The

fact that σ is fixed makes this a very parsimonious model of binary preferences.8

Tversky [30] essentially proposed a lexicographic procedure, which extends the use of

semiorders, to make binary comparisons between alternatives in a set X. There exists

an ordered sequence f = (f1, ..., fn) of real valued functions on X and a σ > 0 such

that x is declared better than y iff, for the first i for which |fi (x) − fi (y) | > σ, we

have fi (x) > fi (y) + σ. The idea is that the agent compares alternatives along several

dimensions. As in our opening example, dimensions are ranked in order of importance,

and a later dimension is only considered if all previous dimensions failed to discriminate

between the two alternatives under consideration. In other words, the agent examines the

dimensions lexicographically: as soon as a dimension i is found for which one alternative x

is superior to another alternative y by an amount exceeding the threshold σ, x is declared

better than y. When such an i is found, no dimension j that comes later in the order

has any bearing, no matter the size of the differences between the alternatives in these

subsequent dimensions. That σ is chosen to be the same for all fi is not a relevant issue,

since even if we had different σi, the fi and σi can always be rescaled so as to choose

σi = 1. Given f and σ, this procedure can be used to generate a revealed preference

7Transitivity: for all x, y, z ∈ X, (x, y) ∈ P , (y, z) ∈ P ⇒ (x, z) ∈ P .
8In an interval order (Fishburn [7]), characterised by condition 1 alone, the threshold σ is allowed to

vary with the alternatives being compared, being a function σ : X → R+. This makes for a much richer

structure. See e.g. Fishburn [8].
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relation �(f,σ) on pairs of alternatives.9

Suppose now that the agent wants to apply the procedure to produce a selection out

of choice sets S larger than the binary ones. There are several ways to do so, some of

which are however problematic. One could for example start from the binary revealed

preference relation and use either of the following two plausible methods:

- the choice from S is the set of the maximal elements of �(f,σ)

- the choice from S is the top cycle (or the uncovered set) of �(f,σ) restricted to each

S.10

Unfortunately, the preference relation �(f,σ) may be cyclic - this ‘anomalous’feature

was indeed the very point of Tversky introducing the procedure. So the first method

above may not be well-defined if a nonempty-valued choice function is desired. The

second method above borrows the ideas of authors such as Ehlers and Sprumont [5] and

Lombardi [14], who use weaker notions of maximization to produce choices out of non-

standard preferences formed of asymmetric and complete binary relations (tournaments).

These methods would for example select the entire set S = {x1, x2, ..., xn} whenever

x1 �(f,σ) x2 �(f,σ) ... �(f,σ) xn �(f,σ) x1.

Here we pursue a different natural way of extending and abstracting Tversky’s idea.

The method we suggest is, on the one hand, more in line with the procedural (as opposed

to maximising) nature of Tversky’s approach; and, on the other hand, it can produce

a unique selection even from the awkward cycles discussed above. The reason for these

two features is that the method, unlike the others suggested, preserves and uses the

information on the order in which the dimensions are considered.

We impose no arbitrary uniform bound on the number of dimensions that the agent

is allowed to consider. Nevertheless, we insist that the procedure always halts in a finite

9Rubinstein [25] proposes a related but distinct procedure. This procedure has recently been studied

experimentally by Binmore, Voorhoeve and Wallace [2].
10More precisely, let P |S denote the restriction to S of a complete asymmetric binary relation P

defined on X. (Completeness: for all x, y ∈ X either (x, y) ∈ P or (y, x) ∈ P . Asymmetry: for all

x, y ∈ X, (x, y) ∈ P ⇒ (y, x) /∈ P ). Let (P |S)t denote the transitive closure of P |S. The top cycle of

P in S is the set of maximal elements of (P |S)t in S. Define the covering relation C (P, S) of P in S

by: (x, y) ∈ C (P, S) iff x, y ∈ S and either (x, y) ∈ P or there exists z ∈ S such that (x, z) ∈ P and

(z, y) ∈ P . The uncovered set of P in S is the set of maximal elements of C (P, S) in S.
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number of steps in any choice situation.

Our proposed procedure works via a process of sequential elimination. Formally, let

Σ be a domain of choice sets, where each S in Σ is a nonempty subset of X. A choice

function on Σ is a function c : Σ→ X such that c (S) ∈ S for all S ∈ Σ. A choice set S

which has the form S = {x} for some x ∈ X will be called trivial. A collection C ⊆Σ of

choice sets is trivial if each S ∈ C is trivial.

An ordered sequence f = (fi)i∈I , where I is either an interval of numbers {1, ..., n} or

the entire set of natural numbers N, together with a σ > 0 is a lexicographic semiorder

on X, denoted (f1, f2, ..., σ) = (fi, σ)i∈I . We abuse terminology and call each fi directly

a semiorder although strictly speaking fi is a numerical representation of it.

Given a choice set S⊆X and a lexicographic semiorder (fi, σ)i∈I , define inductively

the following ‘survivor sets’Mi(S), for all i > 0:

M0(S) = S

Mi(S) = {s ∈Mi−1 (S) |fi (s) + σ ≥ fi (s
′) ∀s′ ∈Mi−1 (S)}

This sequence of sets captures the procedure the agent follows in order to arrive at a final

selection from the choice set S: at every round i he looks for alternatives in the current

survivor set Mi−1 (S) which are judged ‘worse’than some other alternative in Mi−1 (S)

according to the Tversky procedure described before. He discards all such inferior alter-

natives (if any), generating the next survivor set Mi (S), and so on.

Definition 1 A choice function c is a choice by lexicographic semiorder (cles) iff

there exists a lexicographic semiorder (fi, σ)i∈I such that, for all S ∈ Σ, there is a j ∈ I

for which {c (S)} = Mj (S) = Mk (S) for all k ≥ j.

In this case we say that (fi, σ)i∈I induces c.

That is, for a cles c, the iterative elimination procedure described before stops on any

choice set S after a finite number of steps, yielding precisely the alternative that c picks

in S. Note that, in spite of this property of ‘finite termination’, there might not exist any

fixed j that works for all S. When this happens, which means that I can be chosen to be

finite, we say that c is a choice by finite lexicographic semiorder.
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Basic Semiorders

A semiorder fi is basic if it ranges only in {−1, 0, 1} and σ = 1. A lexicographic

semiorder (fi, σ)i∈I is basic if each fi is basic. So, with a basic lexicographic semiorder

the agent has only a very limited power of discrimination. Essentially, on each dimension

he can only perform a rough classification of alternatives into ‘good’ones (those x for

which fi (x) = 1), ‘bad’ ones (fi (x) = −1), and ‘neutral ones’ (fi (x) = 0): a good

alternative ‘beats’a bad one (on the given dimension), and a neutral alternative neither

beats a bad one nor is beaten by a good one.

A basic lexicographic semiorder can be denoted simply as f = (fi)i∈I . To emphasise

that the survivor sets Mi (S) are obtained from the basic lexicographic semiorder f we

write them as M f
i (S).

Example: Let X = {x, y, z} and let Σ = {{x, y} , {y, z} , {z, x} , X}. Let c ({x, y}) =

c (X) = x, c ({y, z}) = y and c ({x, z}) = z. This is a choice function by basic lexi-

cographic semiorder. To see this, let f1 (x) = 0, f1 (y) = 1, f1 (z) = −1, f2 (x) = 1,

f2 (y) = −1, f2 (z) = 0, f3 (x) = −1, f3 (y) = 1, f3 (z) = 1. Observe how different

(unique) choices from X can be obtained by permuting the order of the fi.

3 Characterisation

3.1 General remarks

Tversky thought that the model of binary choice by lexicographic semiorder, while useful

to explain the anomaly of cyclical preferences, had a narrow scope otherwise. He writes:

" ... despite its intuitive appeal, it is based on a noncompensatory principle

that is likely to be too restrictive in many contexts." ([30], p. 40).

Following this logic, one might conjecture that the version with basic semiorders, with

its minimal concession to discriminatory powers, is even more restrictive. We study this

issue.

In order to pinpoint the restrictions on behavior implied by the cles model, we begin

by recalling a definition from Manzini and Mariotti [20]. For a generic binary relation B
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and a set S⊆X, denote by max (S,B) the set of B−maximal elements in S, max (S,B) =

{x : x ∈ S and (y, x) /∈ B for all y ∈ S}.

Definition 2 A choice function c is sequentially rationalisable whenever there exists

an ordered list P1, ..., PK of asymmetric relations, with Pi ⊆ X × X for i = 1...K, such

that, defining recursively

M∗
0 (S) = S

M∗
i (S) = max

(
M∗

i−1 (S) ;Pi
)
, i = 1, ..., K

we have

{c (S)} = M∗
K (S) for all S ∈ P (X)

In that case we say that (P1, ..., PK) sequentially rationalise c. Each Pi is a rationale.

Two specialisation of sequential rationalisability are:

Definition 3 (Manzini and Mariotti [20]) A choice function is a Rational Shortlist

Method (RSM) iff it is sequentially rationalisable with two rationales.

Definition 4 (Apesteguia and Ballester [1]) A choice function is acyclic sequentially

rationalisable iff it is sequentially rationalisable by rationales that are acyclic.

Both acyclic and standard sequential rationalisability constitute at first sight a much

more general model than cles, because the rationales are not required to have any thresh-

old structure and can thus apparently accommodate more sophisticated discriminations.

But in fact, for arbitrary finite domains, the behaviours that can be generated by the

lexicographic semiorder model and those that can be generated by the acyclic sequential

rationalisability model are just the same. And, we need to look no further than basic

semiorders to yield this equivalence.

On the other side of the coin, the restriction to finite domains is not merely a conve-

nience for the inductive argument used in the proof, but it is necessary for the equivalence

to hold. When the restriction is relaxed even marginally (by retaining the finiteness of

each choice set but allowing for a countable number of choice sets), the model of acyclic
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sequential rationalisability suddenly appears far more general than the lexicographic semi-

order model: even only two acyclic rationales suffi ce to produce behaviours that cannot be

induced by any basic lexicographic semiorder. And increasing the discriminatory ability

of the agent is to no avail: the ‘basic’restriction is inessential for this result.

These assertions are made precise in the next two results. The first one can be derived

(in the case of Σ being the domain of all nonempty subsets of a finite set X) from theorem

B.1 of [1]. We present here a different (inductive) method of proof.

Proposition 1 Let X be finite. Then a choice function c is acyclic sequentially rational-

isable if and only if it is induced by a basic lexicographic semiorder.

Proof. A semiorder is an acyclic rationale, so it suffi ces to prove the ‘only if’part of

the statement. Given acyclic rationales (P1, ..., PK), recall the definition 2 of survivor sets

M∗
i (S). We will show that, for any domainΣ, there exists a a basic lexicographic semiorder

f = (fi)i∈I such that, for all S ∈ Σ, there is a j ∈ I such thatM∗
K(S) = M f

j (S) = M f
k (S)

for all k ≥ j. This proves the assertion in the statement.

The proof is by induction on the sum of the cardinalities of the sets S in Σ, which

we denote by n (Σ) =
∑

S∈Σ
|S|. If n (Σ) = 1 the claim is obviously true. Take now

n (Σ) > 1. If Σ is trivial, then the claim is also obviously true, so assume Σ is not trivial,

and w.l.o.g. assume in addition that P1 is nonempty on some S ∈ Σ (otherwise just

exclude P1 and renumber the remaining Pi). By the acyclicity of P1 there exist S ∈ Σ

and x, y ∈ S such that (x, y) ∈ P1 and (y, z) /∈ P1 for all z ∈
⋃

S∈Σ
S with y, z ∈ T for

some T ∈ Σ (in words, y is P1−dominated in some choice set and it does not P1−dominate

any element which appears together with y in any choice set). Fix those x and y, and

define

Σ′ = {S : {x, y} * S ∈ Σ} ∪ {S : S = T\ {y} for some T ∈ Σ s.t. {x, y}⊆T}

Because a T as in the right-hand member of the union above exists by construction,

n (Σ′) < n (Σ). So by the inductive hypothesis there exists a basic lexicographic semiorder

f = (fi)i∈I such that, for all S ∈ Σ′, there is a j ∈ I such thatM∗
K(S) = M f

j (S) = M f
k (S)
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for all k ≥ j. Now consider the basic lexicographic semiorder g = (gi)i∈I′ defined by

gi = fi−1 for all i > 1

g1 (x) = 1, g1 (y) = −1 and g1 (z) = 0 for all z 6= x, y

Thus, for all S ∈ Σ such that {x, y}⊆S, M g
1 (S) = S\ {y} ∈ Σ′ and consequently

M∗
K(S\ {y}) = M g

j+1 (S) = M g
k (S) for all k ≥ j + 1 (this follows by the second line of the

displayed definition of g and the fact that M∗
K(S\ {y}) = M f

j (S\ {y}) = M f
k (S\ {y}) for

all k ≥ j). Moreover, clearly for all S ∈ Σ such that {x, y}⊆S, M∗
K (S) = M∗

K (S\ {y}).

Therefore, for all S ∈ Σ, M∗
K (S) = M∗

K (S\ {y}) = M g
j+1 (S) = M g

k (S) for all k ≥ j + 1.

Proposition 2 There exist Rational Shortlist Methods using acyclic rationales which are

not induced by any lexicographic semiorder.

Proof. Let X = {1, 2...}, let Σ be the collection of finite subsets of X, and let c be

uniquely defined as the RSM rationalised by the following two acyclic rationales P1 and

P2:

P1 = {(i, i+ 1) : i ∈ X}

and

P2 = {(j, i) : j > i+ 1}

We show that c is not induced by any lexicographic semiorder. By contradiction,

suppose that (fα, σ)α∈I is a lexicographic semiorder which induces c. Let i, j ∈ X be such

that f1 (j) > f1 (i) + σ. Such an i and j exists w.l.o.g., possibly by renumbering the fα

so that f1 is the first fα for which f1 (k′) > f1 (k) + σ for some k, k′ ∈ X. Also, note that

i 6= 1 since the application of the rationales yields c ({1, 2, .., l}) = 1 for all l ∈ X. It must

be j = i− 1 (that is, i is eliminated by i− 1 in the first step in any set that contains both

of them). Otherwise suppose first that j > i. Then c ({i, i+ 1, i+ 2, ..., j}) = i would be

contradicted by i /∈M1 ({i, i+ 1, i+ 2, .., j}). Alternatively, suppose that j < i−1. Then

c ({j, i}) = i would be contradicted by i /∈M1 ({j, i}).

Thus, f1 (i− 1) > f1 (i)+σ. Since c ({i− 1, i+ 1}) = i+1, it must be that, letting n be

the first α for whichMα ({i− 1, i+ 1}) 6= {i− 1, i+ 1}, we have fn (i+ 1) > fn (i− 1)+σ.
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Applying this fact to S = {i− 1, i, i+ 1}, we have that either (if n = 1)M1 (S) = {i+ 1},

or (if n > 1) c (S) = c (M1 (S)) = c ({i− 1, i+ 1}) = i + 1. In both cases we have a

contradiction with c (S) = i− 1.

Some observations are in order. Apesteguia and Ballester [1] define a simple rationale

P as a relation of the type P = {(x, y)} for some x and y in X. That is, a simple rationale

relates only one pair of alternatives. Our notion of ‘basic’refers instead to the number

of discriminations the agent is able to make, rather than to the number of pairs ranked

by the relation (which may be high). In fact, reasonably effi cient (that is, short) lists

of simple semiorders that induce a cles will ‘pack’together several comparisons in each

semiorder (so that they will not be simple rationales). It is of course possible to express

a simple rationale P = {(x, y)} as a basic semiorder (though not vice-versa), by setting

f (x) = 1, f (y) = −1 and f (z) = 0 for all other z (this means that, as observed above,

proposition 1 could also be derived, in the case of Σ being the domain of all nonempty

subsets of a finite set X, with [1]’s reasoning).

However, while the equivalence holds at a formal level, at a conceptual level there is

still a distinction, in that there may be circumstances in which the lexicographic semi-

order description is more accurate as a decision making procedure (as in the situations

conceived byTversky). Using simple rationales instead of basic semiorders may necessi-

tate an unrealistically large number of semiorders in a cles. There is no upper bound

to the number of simple rationales needed to express a basic semiorder. For example,

the rationale P = {(x, y) : y ∈ X\ {x}}, for a fixed x, is a single basic semiorder for

any n, which is nevertheless decomposed into (n− 1) distinct simple rationales. In this

example, where an agent simply considers that x is better than any other alternative,

suppose n = 1000. It seems more natural to describe the agent’s behaviour by expressing

directly (via a semiorder) the agent’s discrimination between x and anything else, rather

than imagining that he proceeds lexicographically via 1000 steps to recognise that x is

better, as a representation by simple rationales would require. In recent work, Mandler

[17] has studied in detail the general issue of the minimum number of rationales needed to

express a given arbitrary preference relation using the procedure of sequential rationalis-
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ability.11 His main result is that a ‘rational agent’(an agent with complete and transitive

preferences) never needs more, and sometimes needs fewer, rationales than an ‘irrational

agent’.

Proposition 2 shows that the domain restriction |X| <∞ of theorem B.1 of [1] is nec-

essary. Their result establishes that, on the domain of all nonempty subsets of a finite set

X, the only crucial distinction is between the asymmetry and the acyclicity (a strength-

ening of asymmetry) of the rationales: further strengthening acyclicity to transitivity, for

example, produces no further behavioural restriction. Proposition 2 shows that on larger

domains the move from acyclicity to transitivity (semiorders) crosses another important

threshold: the transitivity of the agent’s discriminatory power alone suffi ces to rule out

behaviours allowed by acyclic rationales. This remains true no matter how limited that

power is.

3.2 ‘Revealed preference’characterisation

Next,we explore directly the restrictions on observable choice data that the procedure

we have proposed implies. The following axiom is formulated imagining that the decision

maker may find himself choosing from subcollections C of the entire choice domainΣ: while

over the week you express your choice on the set Σ of all restaurants which you patronize,

on Sunday you can only express your choice on the collection C of those restaurants which

do not close on that day.

Reducibility: For every C ⊆ Σ, there exists S ∈ C and x, y ∈ S such that:

(T\ {y}) ∈ C, x ∈ T ⇒ c (T ) = c (T\ {y}) for all T ∈ C

A choice function which satisfies Reducibility is called reducible.

Reducibility refers to the following type of behaviour: independently of which restau-

rants are open, you simply ignore steak tartare in any restaurant which also offers pizza

(though you may or may not choose pizza). Here, pizza is a negative signal about the

11To make sense of this assertion, observe that a binary preference relation R can be identified as the

base relation of a choice function defined on all pairs of alternatives, i.e. (x, y) ∈ R⇔ x ∈ c ({x, y}).
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kitchen’s sophistication, so that you are induced to ignore sophisticated items on the

menu, even if you may end up not choosing the signal item itself.12

More abstractly, given a collection of choice sets C, say that x makes y C−irrelevant

if x and y belong to some set in the collection, and whenever this happens, removing y

from S has no effect on the final choice from S (so that, in particular y is never chosen

if x is available). If x makes y C−irrelevant, then y has no relevance for the purposes of

choice whenever x is available. Reducibility requires that the C−irrelevancy relation is

nonempty.

One way of satisfying Reducibility is the existence of a ‘best’ alternative. If c is

a choice function that maximizes an ordinary strict preference relation, an alternative

which is chosen from an S in C trivially makes C−irrelevant any alternative which is not

chosen from S. In fact in standard theory ‘irrelevant’ is essentially synonymous with

‘unchosen’. Therefore c is reducible in the standard case.

Reducibility relaxes the standard requirement that all rejected alternatives need to

be made C-irrelevant on all C (via the single preference relation) by the ‘best’(chosen)

alternative, and it does so in two ways. First, some rejected alternatives may not be

made C-irrelevant. And, second, an alternative may be made C-irrelevant by some other

alternative which is itself not chosen. In other words, Reducibility requires just a bare

skeleton of preference to survive.

An example of a reducible non-standard choice function is the three-cycle of choice:

X = {x, y, z}, c (X) = x, c ({x, y}) = x, c ({y, z}) = y, c ({x, z}) = z. Here y makes

z C−irrelevant when either X or {y, z} are in C, and Reducibility is satisfied vacuously

otherwise. Observe that the choice from the grand set does not make either y or z

C−irrelevant for C coinciding with the full domain.

On the contrary, the reader can check that the choice function c in the proof of

proposition 2 (where c is sequentially rationalisable but not cles) is not reducible. An even

12In this example pizza plays a symmetric role that of frog legs in the celebrated example by Luce and

Raiffa [16] (a decision maker chooses steak when frog legs are on the menu and chicken when they are

not). In Luce and Raiffa’s example, frog legs are a positive signal about the quality of the restaurant,

so that the decision maker is induced by the presence of frog legs on the menu to choose a high quality

item, even if not frog legs themselves.
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simpler example of a non-reducible c is given by X = {x, y, z}, c ({x, y}) = c ({x, z}) = x,

c ({x, y, z}) = y. Letting C = {{x, y} , {x, z} , X} we have c (X) 6= c (X\ {y}), c (X) 6=

c (X\ {z}) so that no alternative makes y or z C−irrelevant. And the choices from binary

sets show that no alternative makes x C−irrelevant.

On finite domains Reducibility is easily seen to be a weakening of a standard contrac-

tion consistency axiom. Consider the following formulation of Independence of Irrelevant

Alternatives:

Independence of Irrelevant Alternatives (IIA): Let C ⊆ Σ. Then c (S) = c (S\ {y})

for all y ∈ S\ {c (S)} for all S ∈ C such that S\ {y} ∈ C.

Now consider the following weakening (where we highlight the additional conditions):

Reducibility (restated): Let C ⊆ Σ. Then for some x ∈ X, c (S) = c (S\ {y}) for

some y ∈ S\ {c (S)} for all S ∈ C such that S\ {y} ∈ C and S 3 x.

While standard IIA requires the choice to be unchanged if any unchosen alternative

is removed from any set, Reducibility requires this to hold only for some alternative and

for some sets (those containing x). Because IIA is so strong, the fact that if it holds, it

must hold on the entire domain Σ as well as on any subcollection C, usually needs not to

be made explicit.

Below we establish that Reducibility captures all the observable implications of the

lexicographic semiorder procedure, and that basic lexicographic semiorders cover exactly

the same ground as general lexicographic semiorders. This is true on domains larger than

the subsets of a finite set, and therefore also on domains for which the equivalence between

the sequential rationalisability and the lexicographic semiorder model fails.

Theorem 1 Let X be countable. Let c be a choice function defined on the domain Σ of

all finite subsets of X. Then the following statements are equivalent:

(i) c is a choice by lexicographic semiorder;

(ii) c is reducible;

(iii) c is a choice by basic lexicographic semiorder.
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Proof. (i) ⇒ (ii). Let c be induced by the lexicographic semiorder (fi, σ)i∈I , and let

C ⊆ Σ be any non-trivial collection of choice sets. Let

j = min {i : Mi (S) 6= S for some S ∈ C}

(j is well-defined because of the single valuedness of c).13

Let T ∈ C be such thatMj (T ) 6= T . Fix x,y ∈ T such that fj (x) > fj (y)+σ. For any

S ∈ C either {x, y} * S, in which case Reducibility holds vacuously; or {x, y} ⊆ S. In

this latter case (which holds at least for S = T ), for any z ∈ S, if fj (y) > fj (z) + σ then

also fj (x) > fj (z) + σ. Therefore Mj (S) = Mj (S\ {y}), implying c (S) = c (S\ {y}).

(ii) ⇒ (iii). Let c be a reducible choice function on Σ. We first provide an algorithm

to construct a simple lexicographic semiorder for any choice function, then show that this

semiorder induces c.

The algorithm proceeds by recursively defining a sequence of collections {Ci}i∈I and

an associated sequence of pairs {xi, yi}i∈I , where I is either an interval {0, 1, ..., n} or the

set of natural numbers. Let C0 = Σ, and let x0, y0 ∈ X be any two alternatives such that,

for all S ∈ C0, x0, y0 ∈ S ⇒ c (S) = c (S\ {y0}) (alternatives such as x0 and y0 exist by

Reducibility, and S\ {y0} ∈ Σ by assumption). For 0 < i define recursively xi, yi ∈ X as

any two alternatives such that (xi, yi) 6= (xj, yj) for all j < i, and

for all S ∈
⋂

j<i
Cj: xi, yi ∈ S ⇒ c (S) = c (S\ {yi})

and

Ci =
⋂

j<i
Cj\
{
S ∈

⋂
j<i
Cj : {xi, yi} ⊆ S

}
For all i, let fi (xi) = 1, fi (yi) = −1, fi (z) = 0 for all z ∈ X\ {xi, yi}, and σ = 1.

Note that, for any i, unless S ∈ Ci+1 ⇒ |S| = 1 (i.e. unless Ci is a trivial collection), it is

true by Reducibility that Ci 6= Ci+1. Therefore S ∈
⋂

i∈I
Ci ⇒ |S| = 1.

This defines a basic lexicographic semiorder f = (fi)i∈I . As we show below, f induces

c. Recall the definition of the survivor sets Mi (S).

Fix S ∈ Σ. Suppose by induction that c (S) ∈ Mi (S). It must be that Mi (S) ∈

Ci. Otherwise, there would exist k ≤ i such that fk (xk) = 1, fk (yk) = −1 and

13For choice correspondences one would change the qualifier that not all S in C are singletons with that

that not all of them are such that c (S) = S.
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{xk, yk} ⊆Mi (S) ∈ Ck, contradicting the definition of Mi (S). If also Mi (S) ∈ Ci+1, then

{xi+1, yi+1} * Mi (S) and so we have immediately c (S) ∈ Mi+1 (S). If Mi (S) /∈ Ci+1,

then (since Mi (S) ∈ Ci) it must be {xi+1, yi+1} ⊆ S. It cannot be yi+1 = c (S) since,

by construction of the sequence {xi, yi}i∈I , c (S) = c (S\ {y1}) = ... = c (S\ {y1, .., yi+1}).

Therefore c (S) ∈Mi+1 (S).

We now show that for all s ∈ S\ {c (S)} there exists a k such that s /∈ Mk (S).

If not, let
⋂

i∈I
Mi (S) = T , and let s ∈ T . The definition of T implies that, for all

i ∈ I, {xi, yi} * T (otherwise xi, yi ∈ Mi (S), which is impossible by construction since

fi (xi) = 1 and fi (yi) = −1). Therefore T ∈
⋂

i∈I
Ci. But this is a contradiction with

c (S) 6= s ∈ T and c (S) ∈ T , since, as observed before, T ∈
⋂

i∈I
Ci implies |T | = 1.

(iii) ⇒ (i). Trivial.

The countability restriction appearing in theorem 1 is really a product of our insistence

that the agent is confined to using a realistic number of dimensions. The techniques we

have used in this paper permit relatively easy generalisations of both the model of cles

and the proof of theorem 1 to more abstract settings. We could replace the index set

I of (a subset of) natural numbers with any well-ordered14 set (I,≤). In this way, the

definition of survivor sets could be modified using transfinite induction (analogously to

what was done in Mandler, Manzini and Mariotti [18]), and the definition of cles would be

automatically extended (only noticing that now j might not be finite). The proof would

then go through, with obvious adaptations, to the uncountably infinite case.

4 Finite domains

Theorem 1 is in general a characterisation only of choice by lexicographic semiorder and

not of sequentially rationalisable choice (a fact which follows from proposition 2 and its

proof, where an example with a countable X is used). Yet, the result can naturally

be used, together with proposition 1, to provide a characterization of acyclic sequential

rationalisability for the special case of a finite X:

14A set I is well-ordered by ≤ if ≤ is a linear order (a complete, transitive, and antisymmetric relation)

on I such that every nonempty subset of I has a least element inf I such that inf I ≤ i for all i ∈ I.
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Theorem 2 Let X be finite and let Σ be the set of all nonempty subsets of X. Then a

choice function on Σ is acyclic sequentially rationalisable if and only if it is reducible.

Finally, we study the following natural question: on a finite domain, what types

of behaviour can be explained by the sequential rationalisability model but not by the

lexicographic semiorder model? To this aim we introduce a weakening of Reducibility:

Weak reducibility: For every C ⊆ Σ, there exists S ∈ C and a collection of pairs

{xi, yi}i=1,2,..., with xi, yi ∈ S for all i, such that:

T\
⋃

i:xi∈T
{yi} ∈ C ⇒ c (T ) = c

(
T\

⋃
i:xi∈T

{yi}
)
for all T ∈ C

A choice function that satisfies Weak reducibility is called weakly reducible.

The only difference between Reducibility and Weak reducibility is that in the latter

the pair (x, y) has been replaced by a collection {xi, yi}i=1,2,... of pairs. In other words,

compared to a reducible choice function, a choice function which is only weakly reducible

is such that some alternatives which are not individually C−irrelevant (the removal of any

one of those alternatives does affect choice) may nevertheless be ‘collectively’C−irrelevant

(their collective removal from a choice set has no relevance for choice).

We show that the choice functions which are sequentially rationalisable but not cles

are exactly those which are only weakly reducible but not reducible.

Theorem 3 Let X be finite and let Σ be the set of all nonempty subsets of X. Then a

choice function on Σ is sequentially rationalisable if and only if it is weakly reducible.

Proof. Necessity. Let c be sequentially rationalisable with rationales P1, ..., PK , and let

C ⊆ Σ. Let

j = min {i : M∗
i (S) 6= S for some S ∈ C}

Let A = {(x, y) : x, y ∈ S for some S ∈ C and (x, y) ∈ Pj}. A is nonempty by the defini-

tion of j. Enumerate the pairs in A to obtain {xi, yi}i=1,...,n. It follows straightforwardly

that M∗
K (S) = M∗

K

(
S\
⋃
i:xi∈S {yi}

)
for all S ∈ C. The sequential rationalisability of c

thus implies that c (S) = c
(
S\
⋃
i:xi∈S {yi}

)
.
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Suffi ciency. Let c be weakly reducible. We construct the rationales explicitly.15 Let

C0 = Σ, and define recursively

Pi = {(xji, yji)}j=1,...,n(i) , where {xji, yji}j=1,...,n(i) is any collection of pairs such that

c (S) = c

S\ ⋃
j:xji∈S

{yji}

 ∀S ∈ Ci−1;

Ci = {S ∈ Ci−1 : S = M∗
i (T ) for some T ∈ Ci−1}

Let K = max {i : Pi 6= ∅}. The Pi are well-defined for all i = 1, ...K by Weak re-

ducibility. We show that P1, ..., PK sequentially rationalize c.

Let x = c (S). Whenever S ∈ Ci−1 for some i, it cannot be (y, x) = Pi, since c (S) 6=

c (S\ ({x} ∪ A)) for any A⊆X, contradicting the definition of Pi. This implies that x ∈

M∗
i (S) for all i.

Let y ∈ S\ {c (S)}. Suppose by contradiction that y ∈ M∗
K (S). This means that

|M∗
K (S)| ≥ 2, so that, given that M∗

K (S) ∈ CK , CK is non-trivial. Therefore by Weak

reducibility there exists a collection {xjK+1, yjK+1}j=1,...,n(K+1) such that

c (T ) = c

T\ ⋃
j:xjK+1∈T

{
y
jK+1

} ∀T ∈ CK
But then PK+1 6= ∅, contradicting the definition of K.

Theorems 2 and 3 are interesting in themselves, as Manzini and Mariotti [20] left the

characterization of sequential rationalisability as an open problem.

Apesteguia and Ballester [1] have pioneered a solution to that problem, in so doing

offering key insights. Their characterisation of acyclic sequential rationalisability is in

terms of a condition called Independence of One Irrelevant Alternative (IOIA). To quickly

sketch that condition, we need to define some auxiliary terms. A binary selector is a

function f which associates to every feasible set S including at least two alternatives a

binary feasible set in S. A binary selector f that satisfies certain consistency properties16

is called consistent. Then IOIA requires that c(S) = c(S\ (f (S) \ {c (f (S))})) for some
15The algorithm provided below is relatively manageable to execute. We show how in the Appendix.
16We refer the reader to Apesteguia and Ballester [1] for a precise statement of the definition, which

requires substantial more notation extraneous to the purposes of this paper.
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consistent binary selector. While this condition may appear involved, its broad logic is

simple, as it essentially imposes a two-stage structure on the choice function c. This

is convenient because it reduces the problem of detecting an arbitrarily long sequential

structure on c to that of detecting a far simpler construction. Thus, IOIA and Reducibility,

which by our results and [1]’s are equivalent conditions in the finite case, highlight different

aspects of sequential rationalisability.

Nevertheless, while the results of [1] and ours settle the question for the finite case,

the challenge ahead is to provide characterisations in this vein for very general domains,

including for example those of standard consumer theory. This remains an open question.

5 Concluding remarks

We have focussed especially on the most minimalist version of the model we are proposing,

which attributes to the agent very weak powers of discrimination (basic lexicographic

semiorders). On finite domains this version is coextensive with a natural restriction of

the seemingly far more general sequentially rationalisable choice model of Manzini and

Mariotti [20]. On broader domains the model restricts choice data more narrowly than

even a stripped down version of sequential rationalisability (Rational Shortlist Methods).

Our Reducibility condition delimits exactly the restrictions on choice behaviour that

our theory implies. While we would argue that this condition (and Weak reducibility) has

a more than a whiffof plausibility, we have eschewed defending it as an a priori compelling

property of bounded rationality. The appeal of the theory stems from its psychological

basis, its tractability and its testability. Our main aim was to work out the observable

implication of the theory, in the spirit of the ‘revealed preference approach’(see Caplin

[3], Gul and Pesendorfer [10], Rubinstein and Salant [26] for methodological discussions of

this issue). Reducibility is an easily interpretable and operationally workable concept (as

demonstrated by our workouts), and as such we believe it fulfills this role. Our approach

is thus in the same spirit as a recent body of work which seeks to characterise models of

boundedly rational choice in terms of direct axioms on choice behaviour (e.g. Cherepanov,

Feddersen and Sandroni [4]; Eliaz, Richter and Rubinstein [6]; Masatlioglu and Ok [21]
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and [22]; Masatlioglu and Nakajima [23]; Masatlioglu, Nakajima and Ozbay [24]; Salant

and Rubinstein [27]; Tyson [32], beside those already discussed).

The present work is also related to the ‘checklist’model of choice in Mandler, Manzini

and Mariotti [18]. In that model, an agent goes through an ordered checklist of properties

(unary relations), at each step eliminating the alternatives that do not have the specified

property. For example, the agent who wishes to buy a house looks first for houses in

a certain location, then for those in that location with a minimum square footage, and

so on until a final selection is made. A choice by basic lexicographic semiorder could

be interpreted as a weakening of a choice by checklist, in which the membership of a

property is allowed to have three values instead of only two. On this interpretation,

fi (x) = 1 (resp., fi (x) = −1) means that x definitely has (resp., does not have) property

i, while fi (x) = 0 means that x neither fully has nor fully does not have property i (it

falls in a ‘grey area’or ‘is neutral’with respect to that property). For example, a house’s

location may neither be entirely convenient (e.g. close to both spouses’workplaces) nor

entirely inconvenient (far from both spouses’workplaces). Because (on certain domains)

choosing by checklist is exactly equivalent to maximising a utility function (as shown in

Mandler, Manzini and Mariotti [18]), a choice by lexicographic semiorder can also be seen

as a versatile but minimal departure from the standard model of rational choice.
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6 Appendix

It is instructive to see how the algorithm to construct the rationales of theorem 3 works.

We use an example provided by Apesteguia and Ballester [1]. The grand set of alternatives

is X = {α, β, γ, δ, ε, ϕ}. The inverse image of the choice function (i.e. the collection of

sets from which each alternative is chosen) is given below:

c−1 (α) =



{α, β, δ, γ, ε} ,

{α, β, γ, ε} , {α, β, δ, γ} , {α, β, δ, ε} , {α, δ, γ, ε} ,

{α, β, δ} , {α, δ, ε} , {α, β, γ} , {α, β, ε} , {α, γ, ε} ,

{α, β} , {α, ε} , {α, δ}



c−1 (β) =



{β, δ, γ, ε, ϕ} ,

{β, δ, γ, ε} , {β, δ, ε, ϕ} , {β, γ, ε, ϕ} ,

{β, δ, γ} , {β, δ, ε} , {β, γ, ε} , {β, ε, ϕ} ,

{β, δ} , {β, γ} , {β, ε}


c−1 (γ) =


{γ, δ, ε, ϕ} , {α, γ, δ, ϕ} ,

{α, γ, ϕ} , {α, γ, δ} , {γ, δ, ε} , {γ, δ, ϕ} ,

{α, γ} , {γ, δ} , {γ, ϕ}


c−1 (δ) = {{β, δ, ϕ} , {δ, ε, ϕ} , {δ, ε} , {δ, ϕ}}

c−1 (ε) =



X, {α, β, γ, ε, ϕ} , {α, β, δ, ε, ϕ} , {α, δ, γ, ε, ϕ} ,

{α, β, ε, ϕ} , {α, γ, ε, ϕ} , {α, δ, ε, ϕ} ,

{α, ε, ϕ} , {γ, ε, ϕ} ,

{γ, ε} , {ε, ϕ}



c−1 (ϕ) =



{α, β, δ, γ, ϕ} ,

{α, β, γ, ϕ} , {β, γ, δ, ϕ} , {α, β, δ, ϕ} ,

{α, β, ϕ} , {β, γ, ϕ} , {α, δ, ϕ} ,

{α, ϕ} , {β, ϕ}


The ‘base relation’Pc = {(a, b) ∈ X ×X : a = c ({a, b})} is thus:
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Pc =

 (α, β) , (α, ε) , (α, δ) , (δ, ε) , (δ, ϕ) , (β, δ) , (β, γ) , (β, ε) ,

(γ, α) , (γ, δ) , (γ, ϕ) , (ε, γ) , (ε, ϕ) , (ϕ, α) , (ϕ, β)


If the rationales Pi and the collections Ci−1 are built according to the algorithm in

the proof of theorem 3, obviously it can never be (a, b) ∈ Pc ∩ Pi for any a and b such

that b is chosen from some S ∈ Ci−1 that also contains a. Consequently we are going

to construct the rationales by first ruling out as potential members of Pi all such pairs;

then we will verifying whether the residual subcollection of pairs in Pc which have not yet

been ‘allocated’to any previous rationale Pj, j < i, satisfy the requirement in the Weak

reducibility axiom, removing more pairs if necessary until we have the largest collection

that satisfies the axiom.

Beginning with C0 = Σ, inspection of the inverse images reveals that each alternative

is chosen in the presence of any other, with the exception of δ, which is never chosen in

the presence of α; moreover, δ is also the only alternative such that, when it is removed

from sets that also contain α, leaves choice unchanged. Consequently,

P1 = {(α, δ)}

The domain thus reduces from C0 to C1 as indicated in the display that follows (simply

remove all sets containing α and δ), where observe that the first line is a subcollection of

c−1 (α), the second line is a subcollection of c−1 (β), and so on:

C1 =



{α, β, γ, ε} , {α, β, γ} , {α, β, ε} , {α, γ, ε} , {α,β} , {α, ε}

{β, γ, δ, ε, ϕ} , {β, γ, δ, ε} , {β, δ, ε, ϕ} , {β, γ, ε, ϕ} ,

{β, γ, δ} , {β, δ, ε} , {β, γ, ε} , {β, ε, ϕ} , {β, δ} , {β,γ} , {β, ε}

{γ, δ, ε, ϕ} , {α, γ, ϕ} , {γ, δ, ε} , {γ, δ, ϕ} , {α, γ} , {γ, δ} , {γ, ϕ}

{β, δ, ϕ} , {δ, ε, ϕ} , {δ, ε} , {δ, ϕ}

{α, β, γ, ε, ϕ} , {α, β, ε, ϕ} , {α, γ, ε, ϕ} , {α, ε, ϕ} , {γ, ε, ϕ} , {γ, ε} , {ε,ϕ}

{α, β, γ, ϕ} , {β, γ, δ, ϕ} , {α, β, ϕ} , {β, γ, ϕ} , {α,ϕ} , {β, ϕ}


Next, observe that α and ϕ are chosen in the presence of γ, so that our algorithm

prescribes (γ, α) /∈ P2 and (γ, ϕ) /∈ P2. Moreover, β is chosen in the presence of ϕ; γ is

chosen in the presence of ε; δ and ε in the presence of β; ε is chosen in the presence of α;
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and ϕ is chosen in the presence of δ. This leaves only (α, β), (β, γ), (γ, δ), (δ, ε), (ε, ϕ)

and (ϕ, α) as potential members of P2 (appearing in boldface in the above display), and

it is easy to verify that indeed the whole collection of ‘candidate pairs’

P2 = {(α, β) , (β, γ) , (γ, δ) , (δ, ε) , (ε, ϕ) , (ϕ, α)}

is such that c (S) = c
(
S\
⋃
i:xi∈S yi

)
. Note also that Reducibility fails on the collection C1:

no set contains α and δ, and for the same considerations contained in the previous para-

graphs, the only pairs of alternatives that might satisfy Reducibility are {α, β}, {β, γ},

{γ, δ}, {δ, ε}, {ε, ϕ} and {ϕ, α}. However, none of them does: first of all, because all

these binary sets are in C1, the ‘losing’alternative must be the one that is not chosen

in pairwise sets; in addition, x2, y2 6= α, β since e.g. α = c ({α, β, γ}) 6= c ({α, γ}) = γ;

x2, y2 6= β, γ since e.g. ϕ = c ({β, γ, δ, ϕ}) 6= c ({β, δ, ϕ}) = δ; x2, y2 6= γ, δ since e.g.

γ = c ({γ, δ, ε, ϕ}) 6= c ({γ, ε, ϕ}) = ε; x2, y2 6= δ, ε since e.g. β = c ({β, γ, δ, ε, ϕ}) 6=

c ({β, γ, δ, ϕ}) = ϕ; and finally x2, y2 6= ε, ϕ since e.g. ε = c ({α, β, γ, ε, ϕ}) 6= c ({α, β, γ, ε}) =

α.

Going back to our algorithm, the construction of P2 yields

C2 =



{α, γ, ε} , {α, ε}

{β, δ} , {β, ε}

{α, γ, ϕ} , {α, γ} , {γ,ϕ}

{β, δ, ϕ} , {δ,ϕ}

{γ, ε}

{β,ϕ}


For the next step, we note that δ is chosen in the presence of β; α is chosen in the

presence of γ. So one can verify that all together the remaining candidate pairs provide

a suitable P3, that is:

P3 = {(α, ε) , (ε, γ) , (β, ε) , (δ, ϕ) , (ϕ, β) , (ϕ, γ)}

As a consequence, the subdomain reduces to:

C3 = {{β, δ} , {α, γ}}
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so that we can build the final rationale

P4 = {(β, δ) , (γ, α)}

It is straightforward to double check that P1, P2, P3, P4 so defined sequentially ratio-

nalises c.
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