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Abstract

We analyze delinquent networks of adolescents in the United States. We develop a

theoretical model showing who the key player is, i.e. the criminal who once removed

generates the highest possible reduction in aggregate crime level. We also show that

key players are not necessary the most active criminals in a network. We then test our

model using data on criminal behaviors of adolescents in the United States (AddHealth

data). Compared to other criminals, key players are more likely to be a male, have less

educated parents, are less attached to religion and feel socially more excluded. They

also feel that adults care less about them, are less attached to their school and have

more troubles getting along with the teachers. We also find that, even though some

criminals are not very active in criminal activities, they can be key players because

they have a crucial position in the network in terms of betweenness centrality.
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1 Introduction

There are 2.3 million people behind bars at any moment of time in the United States and

that number continues to grow. It is the highest level of incarceration per capita in the

world. Moreover, since the crime explosion of the 1960s, the prison population in the United

States has multiplied fivefold, to one prisoner for every hundred adults—a rate unprecedented

in American history and unmatched anywhere in the world. Even as the prisoner head count

continues to rise, crime has stopped falling, and poor people and minorities still bear the

brunt of both crime and punishment. We are clearly in a bad equilibrium and it is important

to know how we can get out of it: We need to cut both crime and the prison population in

half within a decade.

One possible way to reduce crime is to detect, apprehend, convict, and punish criminals.

This is what has been done in the United States and all of those actions cost money, currently

about $200 billion per year nationwide. This “brute force” policy does not seem to work

well since, for example, the cost of prison in California is higher than the cost of education1

and crime rates do not seem to decrease.

In his recent book published in 2009, Mark Kleiman argues that simply locking up more

people for lengthier terms is no longer a workable crime-control strategy. But, says Kleiman,

there has been a revolution in controlling crime by means other than brute-force incarcer-

ation: substituting swiftness and certainty of punishment for randomized severity, concen-

trating enforcement resources rather than dispersing them, communicating specific threats

of punishment to specific offenders, and enforcing probation and parole conditions to make

community corrections a genuine alternative to incarceration. As Kleiman shows, “zero

tolerance” is nonsense: there are always more offenses than there is punishment capacity.

Is there an alternative to brute force? In this paper, we argue that concentrating efforts

by targeting the “most active” criminals can have large effects on crime because of the

feedback effects or “social multipliers” at work (see, in particular, Sah, 1991; Kleiman, 1993,

2009; Glaeser et al., 1996; Rasmussen, 1996; Schrag and Scotchmer, 1997; Verdier and

Zenou, 2004; Rogers and Zenou, 2010). That is, as the fraction of individuals participating

in a criminal behavior increases, the impact on others is multiplied through social networks.

Thus, criminal behaviors can be magnified, and interventions can become more effective. The

impacts from social networks may also be particularly important for adolescents because this

developmental period overlaps with the initiation and continuation of many risky, unhealthy,

1For example, “Three Strikes” is a law in California passed in 1994 that mandates extremely long prison

terms (between 29 years and life) for anyone previously convicted in two serious of violent felonies (including

residential burglary) who is convicted of a third felony, even something as minor as a petty theft.
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and delinquent behaviors and is a period of maximal response to peer pressure.

It is indeed well-established that delinquency is, to some extent, a group phenomenon, and

the source of crime and delinquency is located in the intimate social networks of individuals

(see e.g. Sutherland, 1947; Sarnecki, 2001; Warr, 2002; Haynie, 2001; Patacchini and Zenou,

2008; 2011). Indeed, delinquents often have friends who have themselves committed several

offences, and social ties among delinquents are seen as a means whereby individuals exert an

influence over one another to commit crimes. In fact, not only friends but also the structure

of social networks matters in explaining individual’s own delinquent behavior. This suggests

that the underlying structural properties of friendship networks must be taken into account

to better understand the impact of peer influence on delinquent behavior and to address

adequate and novel delinquency-reducing policies.

Following Ballester et al. (2006, 2010), we propose a theoretical model of criminal net-

works. Building on the Beckerian incentives approach to delinquency, we develop a model

where peer effects matter so that criminals are directly influenced by their friends. Indi-

viduals decide non-cooperatively their crime effort and we show that, in equilibrium, each

criminal effort is equal to his/her weighted Katz-Bonacich centrality,2 where the weights are

the ex ante heterogeneity of criminals. The Katz-Bonacich centrality measure is an index of

connectivity that not only takes into account the number of direct links a given delinquent

has but also all his indirect connections. In our delinquency game, the network payoff in-

terdependence is restricted to direct network mates. But, because clusters of direct friends

overlap, this local payoff interdependence spreads all over the network. In equilibrium, indi-

vidual decisions emanate from all the existing network chains of direct and indirect contacts

stemming from each player, a feature characteristic of Katz-Bonacich centrality.

We then consider different policies that aim at reducing the total crime activity in a

delinquent network. The standard policy tool to reduce aggregate delinquency relies on the

deterrence effects of punishment (Becker, 1968). By uniformly hardening the punishment

costs borne by all delinquents, the distribution of delinquency efforts shifts to the left and

the average (and aggregate) delinquency level decreases. This homogeneous policy tackles

average behavior explicitly and does not discriminate among delinquents depending on their

relative contribution to the aggregate delinquency level. To this “brute force” policy, we

propose a targeted policy that discriminates among delinquents depending on their relative

network location, and removes a few suitably selected targets from this network, alters the

whole distribution of delinquency efforts, not just shifting it. To characterize the network

optimal targets, we use a new measure of network centrality, the intercentrality measure,

2due to Katz (1953) and Bonacich (1987).
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proposed by Ballester et al. (2006). This measure solves the planner’s problem that consists

in finding and getting rid of the key player, i.e., the delinquent who, once removed, leads to

the highest aggregate delinquency reduction. We show that the key player is, precisely, the

individual with the highest intercentrality in the network.

Using the AddHealth data of adolescents in the United States, we then test the results of

our theoretical analysis. We first test whether or not there are peer effects in crime and how

the Katz-Bonacich centrality of each individual affects his/her criminal activity. While the

potential benefits of leveraging social networks to reduce criminal behaviors are substantial,

so too are the empirical difficulties of uncovering how social networks form and operate. It is

because of the lack of theoretical models that can help us understand the way these feedback

effects operate. It is also because of the lack of network data and the fact that social networks

are formed purposefully and connected individuals share environmental influences; both of

these features of social networks complicate the estimation of causal impacts of networks and

reduce the ability to suggest policies to reduce bad behaviors and encourage good behaviors.

It is often difficult to disentangle whether the observation of two friends skipping school or

smoking with other adolescents is due to both facing low punishment regimes, or because

they influence each other to pursue risky behaviors, or because they chose to be friends based

on their common interest in pursuing risky behaviors.

In order to suggest policies that can leverage social networks to reduce risky behaviors,

researchers must be able to disentangle these mechanisms. For example, policy makers may

want to increase punishments, target both friends simultaneously with interventions, recruit

one friend into an intervention program and rely on spillover effects to reduce both friends’

bad behaviors, or seek to connect those who pursue risky behaviors with friends who do

not pursue these behaviors. It is difficult to know which type of policy to suggest without

knowing the mechanism underlying the observation that friends often make similar choices.

We tackle these econometric issues by extending the recent results of Lee et al. (2010).

Using an instrumental variable approach as well as network fixed effects, we estimate the first-

order conditions of our theoretical model to evaluate the intensity of peer effects as well as

the role of centrality in crime. We find that a standard deviation increase in the aggregate

level of delinquent activity of the peers translate into a roughly 11 percent increase of a

standard deviation in the individual level of activity.

Finally, we test the second prediction of the theoretical model, the key player policy. We

determine for each network the key player (i.e., the delinquent who, once removed, leads

to the highest aggregate delinquency reduction) and analyze his/her main characteristics.

Compared to other criminals, we find that key players are more likely to be a male, have
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less educated parents, are less attached to religion and feel socially more excluded. They

also feel that adults care less about them, are less attached to their school and have more

troubles getting along with the teachers. We also find that, even though some criminals are

not very active in criminal activities, they can be key players because they have a crucial

position in the network in terms of betweenness centrality.

The rest of the paper unfolds as follows. In the next section, we discuss the related

literature and explain our contribution. In Section 3, we present our theoretical framework,

that is both the Nash equilibrium and the key-player policy. Our data are described in

Section 4 while the estimation and empirical results of the impact of peer effects on crime

are provided in Section 5. Section 6 details the empirical analysis of the key player and gives

the results. Finally, in Section 7, we conclude and discuss some policy implications of our

results.

2 Related literature

Theory There is a growing theoretical literature on the social aspects of crime. In

Sah (1991), the social setting affects the individual perception of the costs of crime, and is

thus conducive to a higher or a lower sense of impunity. In Glaeser et al. (1996), criminal

interconnections act as a social multiplier on aggregate crime. Calvó-Armengol and Zenou

(2004), Ballester et al. (2006, 2010), Patacchini and Zenou (2008, 2011) develop more general

models by studying the effect of the structure of the social network on crime. They show

that the location in the social network is crucial to understand crime and that not only direct

friends but also friends of friends of friends, etc. have an impact of criminal activities and

the decision to become a criminal.3

Empirics There is a also growing empirical literature in economics suggesting that

peer effects are very strong in criminal decisions. Case and Katz (1991), using data from

the 1989 NBER survey of youths living in low-income Boston neighborhoods, find that the

behaviors of neighborhood peers appear to substantially affect criminal activities of youth

behaviors. They find that the direct effect of moving a youth with given family and personal

characteristics to a neighborhood where 10 percent more of the youths are involved in crime

3Linking social interactions with crime has also been done in dynamic general equilibrium models (İmro-

horoğlu et al., 2000, and Lochner 2004) and in search-theoretic frameworks (Burdett et al., 2004, and Huang

et al., 2004). Other related contributions on the social aspects of crime include Silverman (2004), Verdier

and Zenou (2004), Calvó-Armengol et al. (2007), Ferrer (2010).
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than in his or her initial neighborhood is to raise the probability the youth will become

involved in crime by 2.3 percent. Ludwig et al. (2001) and Kling et al. (2005) explore this

last result by using data from the Moving to Opportunity (MTO) experiment that relocates

families from high- to low-poverty neighborhoods. They find that this policy reduces juvenile

arrests for violent offences by 30 to 50 percent for the control group. This also suggests very

strong social interactions in crime behaviors. Patacchini and Zenou (2008, 2011) find that

peer effects in crime are strong, especially for petty crimes.

Damm and Dustmann (2008) investigate the following question: Does growing up in a

neighborhood in which a relatively high share of youth has committed crime increase the

individual’s probability of committing crime later on? To answer this question, Damm and

Dustmann exploit a Danish natural experiment that randomly allocates parents of young

children to neighborhoods with different shares of youth criminals. With area fixed effects,

their key results are that one standard deviation increase in the share of youth criminals

in the municipality of initial assignment increases the probability of being charge with an

offense at the age 18-21 by 8 percentages point (or 23 percent) for men. This neighborhood

crime effect is mainly driven by property crime. Bayer et al. (2009) consider the influence

that juvenile offenders serving time in the same correctional facility have on each other’s

subsequent criminal behavior. They also find strong evidence of learning effects in criminal

activities since exposure to peers with a history of committing a particular crime increases the

probability that an individual who has already committed the same type of crime recidivates

with that crime.4

Compared to these literatures, we have the following contributions:

(i) We provide an explicit crime model where individuals are ex ante heterogeneous,

derive the key-player policy and propose a simple model that can explain the link formation

in our specific context;

(ii) We improve the identification strategy of peer effects proposed by Bramoullé et al.

(2009) and Lee et al. (2010) by addressing the case of a non-row normalized matrix of social

interactions;

(iii) We test the impact of a weighted Katz-Bonacich centrality on criminal activities;

(iv) Using a counterfactual analysis, we identify the characteristics of the key player in

each network of criminals in the AddHealth data, study the significant differences between

key players and criminals and see if other measures of centrality can explain why some key

players are not the most active criminals in a network.

4Building on the binary choice model of Brock and Durlauf (2001), Sirakaya (2006) identifies social

interactions as the primary source of recidivist behavior in the United States.
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3 Theoretical framework

3.1 The model

We develop a network model of peer effects, where the network reflects the collection of

active bilateral influences.

The network Nr = {1, . . . , nr} is a finite set of agents in network r = 1, ..., r. We keep

track of social connections by a delinquency network gr, where gij,r = 1 if i and j are direct

friends, and gij,r = 0, otherwise. Friendship are reciprocal so that gij,r = gji,r. All our results

hold for non-symmetric networks but, for the ease of the presentation, we focus on symmetric

networks in the theoretical model (which is more relevant for friendship networks). We also

set gii,r = 0.5

Preferences Delinquents in network r decide how much effort to exert. We denote

by yi,r the delinquency effort level of delinquent i in network r and by yr = (y1,r, ..., yn,r)

the population delinquency profile in network r. Each agent i selects an effort yi,r ≥ 0,

and obtains a payoff ui,r(yr, g) that depends on the effort profile yr and on the underlying

network gr, in the following way:

ui,r(y, gr) = (ai,r + ηr + εi,r) yi,r︸ ︷︷ ︸
Proceeds

− 1

2
y2i,r
︸︷︷︸

moral cost of crime

− p f yi,r︸ ︷︷ ︸
cost of being caught

+ φ
n∑

j=1

gij,ryi,ryj,r

︸ ︷︷ ︸
positive peer effects

(1)

where φ > 0. This utility has a standard cost/benefit structure (as in Becker, 1968). The

proceeds from crime are given by (ai,r + ηr + εi,r) yi,r and are increasing in own effort yi,r.

The costs of committing crime are captured by the probability to be caught p yi,r, which in-

creases with own effort yi,r, as the apprehension probability increases with one’s involvement

in crime, times the fine f , i.e. the severity of the punishment. Also, as it now quite standard

(see e.g. Verdier and Zenou, 2004; Conley and Wang, 2006), individuals have a moral cost

of committing crime equals to 1
2
y2i,r, which is also increasing in own crime effort yi,r. Finally,

the new element in this utility function is the last term φ
∑nr

j=1 gij,ryi,ryj,r, which reflects the

influence of friends’ behavior on own action. The peer effect component is also heteroge-

neous, and this endogenous heterogeneity reflects the different locations of individuals in the

friendship network gr and the resulting effort levels. More precisely, bilateral influences are

5See Goyal (2007) and Jackson (2008) for overviews on network theory.
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captured by the following cross derivatives, for i �= j:

∂2ui,r(yr, gr)

∂yi,r∂yj,r
= φgij,r ≥ 0. (2)

When i and j are direct friends, the cross derivative is φ > 0 and reflects a strategic com-

plementarity in efforts. When i and j are not direct friends, this cross derivative is zero. In

the context of crime, φ > 0 means that if two students are friends, i.e. gij,r = 1, and if j

increases her crime effort, then i will experience an increase in her (marginal) utility if she

also increases her crime effort.

Let us now comment in more detail this utility function. In (1), ηr denotes the prosperous

level of the neighborhood/network r (i.e. more prosperous neighborhoods lead to higher

proceeds from crime) and εi,r is an error term, meaning that there is some uncertainty in

the proceeds from crime. Both ηr and εi,r are observed by the delinquents but not by

the econometrician. Also, in (1), ai,r denotes the exogenous heterogeneity that captures

the observable differences between individuals. In this model, ai,r captures the fact that

individuals differ in their ability (or productivity) of committing crime. Indeed, for a given

effort level yi,r, the higher ai,r, the higher the productivity and thus the higher the proceeds

from crime ai,ryi,r. Observe that ai,r is assumed to be deterministic, perfectly observable by

all individuals in the network and corresponds to the observable characteristics of individual

i (like e.g. sex, race, age, parental education, etc.)

To summarize, the utility function can be written as:

ui,r(yr, gr) = [ai,r − p f + ηr + εi,r] yi,r −
1

2
y2i,r + φ

nr∑

j=1

gij,ryi,ryj,r

So when a delinquent i exerts some effort in crime, the proceeds from crime depends on

ability ai,r, the probability of being caught pf , how prosperous is the neighborhood/network

ηr and on some random element εi,r, which is specific to individual i. In other words, ai,r

is the observable part (by the econometrician) of i’s characteristics while εi,r captures the

unobservable characteristics of individual i. Note that the utility (1) is concave in own

decisions, and displays decreasing marginal returns in own effort levels.

From now on, since we focus only on one network, when there is ambiguity we will drop

the subscript r in the theoretical section.

The Bonacich network centrality To each network g, we associate its adjacency

matrix G = [gij ]. This is a symmetric zero-diagonal square matrix that keeps track of the

direct connections in g.
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The kth power Gk = G(k times)... G of the adjacency matrix G keeps track of indirect

connections in g. More precisely, the coefficient g
[k]
ij in the (i, j) cell of Gk gives the number

of paths of length k in g between i and j. In particular, G0 = I. Note that, by definition, a

path between i and j needs not to follow the shortest possible route between those agents.

For instance, when gij = 1, the sequence ij → ji→ ij constitutes a path of length three in

g between i and j.

Definition 1 ((Katz, 1953; Bonacich, 1987)) Given a vector u ∈ R
n
+, and φ ≥ 0 a

small enough scalar, the vector of Bonacich centralities of parameter φ in network g is

defined as:

bu (g, φ) = (I− φG)−1 u =
+∞∑

p=0

φpGpu. (3)

Nash equilibrium

We now characterize the Nash equilibrium of the game where agents choose their effort

level yi ≥ 0 simultaneously. At equilibrium, each agent maximizes her utility (1). The

corresponding first-order conditions are:

∂ui(y,g)

∂yi
= ai − pf + ηr + εi − yi + φ

nκ∑

j=1

gijyj = 0.

Therefore, we obtain the following best-reply function for each i = 1, ..., n:

yi = φ
n∑

j=1

gijyj +
M∑

m=1

βmx
m
i +

1

gi

M∑

m=1

n∑

j=1

γmgij x
m
j − pf + ηr + εi (4)

Denote by µ1(G) the spectral radius of G, by αi = ai− pf + ηr + εi, with corresponding

vector α, we have:

Proposition 1 If φµ1(G) < 1, the peer effect game with payoffs (1) has a unique Nash

equilibrium in pure strategies given by:

y∗ = bα (g, φ) (5)

Proof. Apply Theorem 1, part b, in Calvó-Armengol et al. (2009) to our problem.

This results shows that the Bonacich centrality is the right network index to account for

equilibrium behavior when the utility functions are linear-quadratic. In (1), the local payoff

interdependence is restricted to direct network contacts. At equilibrium, though, this local

payoff interdependence spreads all over the network through the overlap of direct friendship
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clusters. The Bonacich centrality precisely reflects how individual decisions feed into each

other along any direct and indirect network path. Furthermore, the condition φµ1(G) < 1

stipulates that local complementarities must be small enough than own concavity, which

prevents multiple equilibria to emerge and, in the same time, rules out corner solutions (i.e.,

negative or zero solutions). Observe that

bα (g, φ) = (I− φG)−1α =
+∞∑

p=0

φpGp
α (6)

where

α = a+ ε− pf1+ ηr1

In particular, Proposition 1 states that for each delinquent i, we have:

y∗i = bα,i (g, φ)

3.2 Finding the key player

We would like now to expose the “key player” policy. The planner’s objective to find the key

player is to generate the highest possible reduction in aggregate delinquency level by picking

the appropriate delinquent. Formally, the planner’s problem is the following:

max{y∗(g)− y∗(g−i) | i = 1, ..., n},

which, when the original delinquency network g is fixed, is equivalent to:

min{y∗(g−i) | i = 1, ..., n} (7)

From Ballester et al. (2006), we now define a new network centrality measure d(g, φ) that

will happen to solve this compromise. Define M(g, φ) = (I− φG)−1 a non-negative matrix.

Its coefficients6 mij(g, φ) =
∑+∞

k=0 φ
kg
[k]
ij count the number of walks in g starting from i and

ending at j, where walks of length k are weighted by φk.

The Bonacich centrality of node i is bα,i(g, φ) =
∑n

j=1 αjmij(g, φ), and counts the total

number of paths in g starting from i weighted by the αj of each linked node j.

Let bα,i(g, φ) be the centrality of j in the network g, bα(g, φ) the total centrality in network

g (i.e. bα(g, φ) =
∑i=n

i=1 bα,i(g, φ)) and b
[−i]
α (g, φ) the total centrality in g − {i}.

6Observe that g
[0]
ij = 1.
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Definition 2 For all networks g and for all i, the intercentrality measure of delinquent i is:

di(g, φ) = bα(g, φ)− b[−i]α (g, φ) =
bα,i(g, φ)

∑j=n
j=1 mji(g, φ)

mii(g, φ)
(8)

Proof. Apply Lemma 1 in Ballester et al. (2006) to this problem.

Observe that, in (8), bα,i(g, φ) is the weighted Bonacich (out−) centrality of delinquent

i,
∑j=n

j=1 mji(g, φ) is the unweighted (in−) centrality of player delinquent i (i.e. it counts the

total number of paths in g that start at i) and mii(g, φ) is unweighted and counts the total

number of paths in g from i to i itself. The weights are here in terms of αs.

The intercentrality measure di(g, φ) of delinquent i is the sum of i’s centrality measures

in g, and i’s contribution to the centrality measure of every other delinquent j �= i also in

g. It accounts both for one’s exposure to the rest of the group and for one’s contribution to

every other exposure.

The following result establishes that intercentrality captures, in an meaningful way, the

two dimensions of the removal of a delinquent from a network, namely, the direct effect on

delinquency and the indirect effect on others’ delinquency involvement.

Proposition 2 A player i∗ is the key player that solves (7) if and only if i∗ is a delinquent

with the highest intercentrality in g, that is, di∗(g, φ) ≥ di(g, φ), for all i = 1, ..., n.

Proof. Theorem 3 in Ballester et al. (2006).

Observe that this result is true for both undirected networks (symmetric adjacency ma-

trix) and directed networks (asymmetric adjacency matrix). It is also true for adjacency

matrices with weights (i.e. values different than 0 and 1) and self-loops (delinquents have a

link with themselves).

To illustrate Proposition 2, consider the following symmetric undirected network with

four delinquents (i.e. n = 4):

4 21

3
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The adjacency matrix is then given by:

G =




0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0




We assume φ = 0.3.7 and that (α1, α2, α3, α4) = (0.1, 0.2, 0.3, 0.4). It is then straightforward

to see that, using Proposition 1, we obtain:




y∗1
y∗2
y∗3
y∗4


 =




bα,1(g, φ)

bα,2(g, φ)

bα,3(g, φ)

bα,4(g, φ)


 =




0.66521

0.60377

0.68068

0.59958




so that the total activity level is given by:

y∗ = y∗1 + y
∗
2 + y

∗
3 = bα(g, φ) = 2.549

Individual 3 has the highest weighted Bonacich and thus provides the highest crime effort.

If we look at the formula in Definition 2, it says that the delinquent that the planner wants

to remove is:

di∗(g, φ) = bα(g, φ)− b[−i]α (g, φ)

Let us remove delinquent 1. The network becomes:

4 2

3

7The spectral radius of this graph is: 2.17 and thus the condition φµ1(G) < 1 is satisfied since 2.17×0.3 =
0.651 < 1.
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Using the same decay factor, φ = 0.3, we obtain:



y∗2
y∗3
y∗4


 =



bα,2(g

[−1], φ)

bα,3(g
[−1], φ)

bα,4(g
[−1], φ)


 =




0.31868

0.3956

0.4




so that the total effort is now given by:

y∗[−1] = y∗2 + y
∗
3 + y

∗
4 = b

[−1]
α (g, φ) = 1.114

Thus, player 1’s contribution is

bα(g, φ)− b[−1]α (g, φ) = 2.549− 1.114 = 1.435 (9)

Doing the similar exercise for individuals 2, 3, 4, we obtain:

bα(g, φ)− b[−2]α (g, φ) = 1.244

bα(g, φ)− b[−3]α (g, φ) = 1.146

bα(g, φ)− b[−4]α (g, φ) = 0.988

Criminal 1 is the key player since his/her contribution to total crime is the highest one.

Let us now check if the formula (8) works, i.e.,

d1∗(g, φ) = bα(g, φ)− b[−1]α (g, φ) = 1.435

From (8), we have:

d1∗(g, φ) =
bα,1(g, φ)

∑j=4
j=1mj1(g, φ)

m11(g, φ)

Let us go back to the initial network with four individuals. It is easily verified that (with

φ = 0.3):

M = (I− φG)−1 =




1.5317 0.65646 0.65646 0.45952

0.65646 1.3802 0.61101 0.19694

0.65646 0.61101 1.3802 0.19694

0.45952 0.19694 0.19694 1.1379




so that

m11(g, φ) = 1.5317
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and

j=4∑

j=1

mj1(g, φ) = m11(g, φ) +m21(g, φ) +m31(g, φ) +m41(g, φ)

= 1.5317 + 0.65646 + 0.65646 + 0.45952

= 3.3041

Therefore,

d1∗(g, φ) =
bα,1

∑j=3
j=1mj1(g, φ)

m11(g, φ)
(10)

=
0.66521× 3.3041

1.5317
= 1.435

When comparing (9) and (10), we see that the values are the same and thus:

d1∗(g, φ) = bα(g, φ)− b[−1]α (g, φ) = 1.435

3.3 The invariant assumption on G[−i]: Theoretical issues

In our theoretical framework, when the key player is i is removed from G, the remaining

network becomes G[−i] where the ith row and ith column in G has been removed. In other

words, we have an invariant assumption on the reduced network G[−i], i.e. we assume that,

when the key player is removed, the other criminals in the network do not form new links.

Also G is exogenous, which means that G is not correlated with the error term ǫ. However,

in our framework, G is allowed to be correlated with X and the network-specific fixed effect

ηr. The invariant assumption can be justified using some model of network formation. The

formation of links G = [gij] can depend on X in the following way:

Pij = f(xi, xj) + vij,

gij =

{
1 if Pij > 0

0 otherwise
,

where Pij is the propensity to form link ij and f(xi, xj) is a function of xi and xj, the ith and

jth rows ofX. A possible parametric specification of f(xi, xj) can be f(xi, xj) = a+b|xi−xj|.
If the estimated b is negative, it implies a link is likely to form between i and j if they share

similar observable characteristics (say, family, income, etc.).
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In that case, in order to justify the existed key player theory, i.e., the invariant property of

G[−i], we need to have the network formation process, i.e., the link of i and j depends only on

the characteristic of individuals i and j, but not on others such as a k �= i, j. In this model,

the formation of a link is based on mutual consent (as in Jackson and Wolinsky, 1996) and

is not affected by other individuals in the network. In other words, each link formed by two

individuals only depends on the characteristics of these two individuals but not on any other

one. Indeed, when a key player i is removed, all his/her links are also removed, but since the

formation of link is created pairwise there is no reason for the remaining individuals to create

new links. They would have done it before. As a result, the invariant assumption of G is

justified in this framework. This way of modelling link formation would correspond to what

Bramoullé and Fortin (2009) called pairwise independent link formulation, i.e. separable

utility framework in pairs.8 As a result, in the case of pairwise independence, the invariance

property of G could be justified by this setting of utility.

3.4 Is the key player always the more active criminal?

Definition 2 specifies a clear relationship between d(g, φ) and b(g, φ). Holding bi(g, φ) fixed,

the intercentrality di(g, φ) of player i decreases with the proportion mii(g, φ)/bi(g, φ) of i’s

Bonacich centrality due to self-loops, and increases with the fraction of i’s centrality amenable

to out-walks. As a result, it should be clear from Definition 2 that the key player is very

likely to be the criminal with the highest Bonacich centrality (i.e. the most active criminal in

the network) but not necessary. In the example provided in Section 3.2, the key player was

criminal 1 but was not the most active criminal, i.e. the criminal with the highest Bonacich

centrality. Criminal 3 was in fact the most active criminal. We would like know to develop

further this idea by providing more intution of why, in some cases, the key player does not

have the highest Bonacich centrality and thus is not the most active criminal in the network.

For that, we now provide another example where it is not the case. Consider the network g

in the following figure with eleven criminals.

8This means that ui(g) =
∑

j

vi(gij) and

Pij = vi(gij = 1)− vi(gij = 0).

If the network is undirected, one needs to impose an additional symmetry assumption (Bramoullé and Fortin,

2009).
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We distinguish three different types of equivalent actors in this network, which are the

following:

Type Criminals

1 1

2 2, 6, 7 and 11

3 3, 4, 5, 8, 9 and 10

From a macro-structural perspective, type−1 and type−3 criminals are identical: they all

have four direct links, while type −2 criminals have five direct links each. From a micro-

structural perspective, though, criminal 1 plays a critical role by bridging together two closed-

knit (fully intraconnected) communities of five criminal each. By removing delinquent 1, the

network is maximally disrupted as these two communities become totally disconnected, while

by removing any of the type−2 criminals, the resulting network has the lowest aggregate

number of network links.

We identify the key player in this network of criminals. If the choice of the key player were

solely governed by the direct effect of criminal removal on aggregate crime, type−2 criminals

would be the natural candidates. Indeed, these are the ones with the highest number of

direct connections. But the choice of the key player needs also to take into account the

indirect effect on aggregate delinquency reduction induced by the network restructuring that

follows the removal of one delinquent from the original network. Because of his communities’

bridging role, criminal 1 is also a possible candidate for the preferred policy target.

In order to focus on the role of location in the network, in this example, we assume that

criminals are ex identical so that α = ln (where ln is an n−dimensional vector of ones) and

thus b1 (g, φ) = (I− φG)−1 ln and y∗i = b1,i (g, φ) while di(g, φ) = b1(g, φ) − b[−i]1 (g, φ). We

take φ = 0.2. The following table computes, for criminals of types 1, 2 and 3, the value

of delinquency centrality measures bi(g, φ) (or equivalently efforts y∗i ) and intercentrality
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measures di(g, φ) for different values of φ. In each column, a variable with a star identifies

the highest value.9

Table 1a: Key player versus Bonacich centrality in a bridge network

Player Type 1 2 3

yi = bi 8.33 9.17∗ 7.78

di 41.67∗ 40.33 32.67

First note that type−2 delinquents display the highest Bonacich centrality measure.

These delinquents have the highest number of direct connections. Besides, they are directly

connected to the bridge delinquent 1, which gives them access to a very wide and diversified

span of indirect connections. Altogether, they are the most central delinquents (in terms of

Bonacich centrality). Second, the most active delinquents are not the key players. Because

indirect effects matter a lot (φ = 0.2), eliminating delinquent 1 has the highest joint direct

and indirect effect on aggregate delinquency reduction. Indeed, when φ is not too low,

delinquents spread their know-how further away in the network and establishing synergies

with delinquents located in distant parts of the social setting. In this case, the optimal

targeted policy is the one that maximally disrupts the delinquency network, thus harming

the most its know-how transferring ability.

In Table 1a, we have shown that the key player is not the most active criminal (i.e.

not the highest Bonacich centrality). To further understand this result, let us analyze the

characteristics of all criminals in terms of network position, as well as those of the network

described in Figure 1. For that, we will first use some measures of centrality other than

Bonacich. Indeed, over the past years, social network theorists have proposed a number of

centrality measures to account for the variability in network location across agents (Wasser-

man and Faust, 1994).10 While these measures are mainly geometric in nature, our theory

provides a behavioral foundation to the Bonacich centrality measure (and only this one) that

coincides with the unique Nash equilibrium of a non-cooperative peer effects game on a social

network. The Bonacich centrality is an index of connectivity since it counts the number of

any path stemming from a given node, not just the optimal paths. Let us now calculate

for the network given by Figure 1 the other individual centrality measures, namely: degree,

9We can compute the highest possible value for φ compatible with our definition of centrality measure

(i.e. the inverse of the largest eigenvalue of G), which is equal to φ̂ = 2
3+
√
41
≃ 0, 213.

10See Borgatti (2003) for a discussion on the lack of a systematic criterium to pick up the “right” network

centrality measure for each particular situation.
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closeness, betweenness centralities as well as the clustering coefficient. Their mathematical

definitions are given in Appendix 4. We obtain:

Table 1b: Characteristics of criminals in a network

where the most active criminal is not the key player

Player type 1 2 3

Degree centrality 0.4 0.5 0.4

Closeness centrality 0.625 0.555 0.416

Betweenness centrality 0.555 0.2 0

Clustering coefficient 0.33 0.7 1

Even if player 1 is not the most active criminal (she has the lowest degree centrality

and the lowest clustering coefficient), it is now even easier to understand why she is the key

player: she has the highest closeness and betweenness centralities. Observe that criminal 3

has a betweenness centrality equals to zero because there are no shortest path between two

criminals that go through her.

Let us now examine the characteristics of the network described in Figure 1 where the

key player is not the most active criminal. We will consider standard network characteristics,

which are all defined in Appendix 4. We obtain the following results:

Table 1c: Characteristics of the network

in which the most active criminal is not the key player

Network Characteristics

Average Distance 2.11

Average Degree 4.36

Diameter 4

Density 0.211

Asymmetry 0.125

Clustering 0.805

Degree centrality 7.78× 10−3

Closeness centrality 0.323

Betweenness Centrality 0.47556

Assortativity −3.49× 10−16
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We see from Table 1c that the network described in Figure 1 has a low average distance

and low diameter (small-world properties), a very high clustering (0.805) and a weak dissor-

tativity. Furthermore, it is not very dense nor asymmetric while having average values of

centralities measures.

To summarize, the individual Nash equilibrium efforts of the delinquency-network game

are proportional to the equilibrium Bonacich centrality network measures, while the key

player is the delinquent with the highest intercentrality measure. As the previous example

illustrates, these two measures need not to coincide. This is not surprising, as both mea-

sures differ substantially in their foundation. Whereas the equilibrium-Bonacich centrality

index derives from strategic individual considerations, the intercentrality measure solves the

planner’s optimality collective concerns. In particular, the equilibrium Bonacich centrality

measure fails to internalize all the network payoff externalities delinquents exert on each

other, while the intercentrality measure internalizes them all. More formally, the measure

d(g, φ) goes beyond the measure b(g, φ) by keeping track of all the cross-contributions that

arise between its coordinates b1(g, φ), ..., bn(g, φ).

4 Data description

Our analysis is made possible by the use of a unique database on friendship networks from

the National Longitudinal Survey of Adolescent Health (AddHealth).

The AddHealth database has been designed to study the impact of the social environment

(i.e. friends, family, neighborhood and school) on adolescents’ behavior in the United States

by collecting data on students in grades 7-12 from a nationally representative sample of

roughly 130 private and public schools in years 1994-95. Every pupil attending the sampled

schools on the interview day is asked to compile a questionnaire (in-school data) contain-

ing questions on respondents’ demographic and behavioral characteristics, education, family

background and friendship. This sample contains information on roughly 90,000 students.

A subset of adolescents selected from the rosters of the sampled schools, about 20,000 indi-

viduals, is then asked to compile a longer questionnaire containing more sensitive individual

and household information (in-home and parental data). Those subjects of the subset are

interviewed again in 1995—96 (wave II), in 2001—2 (wave III), and again in 2007-2008 (wave

IV).11 For the purposes of our analysis, we focus on wave I because the network information

is only available in the first wave.

11The AddHealth website describes survey design and data in details.

http://www.cpc.unc.edu/projects/addhealth
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From a network perspective, the most interesting aspect of the AddHealth data is the

information on friendships. Indeed, the friendship information is based upon actual friends

nominations. Pupils were asked to identify their best friends from a school roster (up to five

males and five females).12 We assume that friendship relationships are reciprocal, i.e. a link

exists between two friends if at least one of the two individuals has identified the other as

his/her best friend.13 By matching the identification numbers of the friendship nominations

to respondents’ identification numbers, one can obtain information on the characteristics of

nominated friends. More importantly, one can reconstruct the whole geometric structure

of the friendship networks. For each school, we thus obtain all the network components of

(best) friends.14

The in-home questionnaire contains an extensive set of questions on juvenile delinquency,

that are used to construct our dependent variable. Specifically, the AddHealth contains

information on 15 delinquency items.15 The survey asks students how often they participate

in each of these activities during the past year.16 Each response is coded using an ordinal

scale ranging from 0 (i.e. never participate) to 1 (i.e. participate 1 or 2 times), 2 (participate

3 or 4 times) up to 3 (i.e. participate 5 or more times). To derive quantitative information

on a topic using qualitative answers to a battery of related questions, we calculate an index

of delinquency involvement for each respondent.17 It ranges between 0.09 and 9.63, with

mean equals to 0.94 and standard deviation equals to 1.09.

12The limit in the number of nominations is not binding (even by gender). Less than 1% of the students

in our sample show a list of ten best friends.
13We considered non-reciprocal friendship networks below.
14Note that, when an individual i identifies a best friend j who does not belong to the same school, the

database does not include j in the network of i; it provides no information about j. Fortunately, in the large

majority of cases (more than 93%), best friends tend to be in the same school and thus are systematically

included in the network.
15Namely, paint graffiti or signs on someone else’s property or in a public place; deliberately damage

property that didn’t belong to you; lie to your parents or guardians about where you had been or whom you

were with; take something from a store without paying for it; get into a serious physical fight; hurt someone

badly enough to need bandages or care from a doctor or nurse; run away from home; drive a car without its

owner’s permission; steal something worth more than $50; go into a house or building to steal something; use

or threaten to use a weapon to get something from someone; sell marijuana or other drugs; steal something

worth less than $50; take part in a fight where a group of your friends was against another group; act loud,

rowdy, or unruly in a public place.
16Respondents listened to pre-recorded questions through earphones and then they entered their answers

directly on laptop computers. This administration of the survey for sensitive topics minimizes the potential

for interview and parental influence, while maintaining data security.
17This is a standard factor analysis, where the factor loadings of the different variables are used to derive

the total score.

20



Because of the theoretical model (Section 3), we focus only on networks of delinquents,

thus excluding the individuals who report never participating in any delinquent activity

(roughly 40% of the total). Also, we do not consider networks at the extremes of the

network size distribution to avoid the possibility that in these edge networks the strength of

peer effects as well as the removal of the key player can have extreme values (too low or too

high) that may be a matter of concern. Excluding individuals with non valid information,

we obtain a final sample of 1,297 criminals distributed over 150 networks. The minimum

number of individuals in a delinquent network is 4 while its maximum is 77. The mean and

the standard deviation of network size are roughly 9 and 12 pupils, respectively.18

Table A.1 in Appendix 1 provides the descriptive statistics and definitions of the variables

used in our study.19 Among the adolescents selected in our sample of delinquents, 32% are

female and 19% are blacks. An average, criminal adolescent feel that adults care about

them but have some troubles getting along with the teachers. Slightly less than 70% of our

adolescents live in a household with two married parents, although about 30% come from a

single parent family. The most popular occupation of the father is a manual one (roughly

30%) and 17% of them have parents who works in a professional/technical occupation. The

average parental education is high school graduate. Almost 40% of our adolescents live in

suburban areas. The performance at school, as measured by the mean mathematics score

is slightly above the average. On average, our criminals consider themselves slightly more

intelligent than their peers and their level of physical development appear to be slightly

higher when compared to other boys/girls of the same age.20 Our analysis in the following

sections will shed lights on the characteristics of the most harmful individuals, that is on

those pupils that, if removed, would lead to the highest crime reduction in their own groups.

5 Peer effects and network centrality

Let us now begin the test of our theoretical framework (Section 3) by providing an appropri-

ate estimate of peer effects in crime (φ̂). We first present our empirical model and estimation

strategy. We use the architecture of networks to identify peer effects as described in Bra-

moullé et al. (2009) but we consider the case of non-row normalized G and we highlight

18On average, delinquents declare having 2.26 friends with a standard deviation of 1.52.
19Information at the school level, such as school quality and teacher/pupil ratio, is unnecessary given our

fixed effects estimation strategy.
20When reading these summary information, one need to keep in mind that we deal here with juvenile

delinquency, where some of the offences recorded as crimes (such as paint graffiti or lie to the parents) are

quite minor.
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the methodological improvements that are achieved in our context. Our estimation method

follows the 2SLS and GMM strategies proposed by Lee (2007) and refined by Liu and Lee

(2010) to capture the impact of centrality in networks. To be more specific, we will begin

by explaining the empirical issues than hinder the identification of peer effects and show to

what extent it is possible to tackle each of these issues with the AddHealth dataset.

5.1 Empirical model

Let r̄ be the total number of networks in the sample (150 in our dataset), nr be the number of

individuals in the rth network, and n =
∑r̄

r=1 nr be the total number of sample observations.

The empirical model corresponding to (4) can be written as:21

yi,r = φ
nr∑
j=1

gij,ryj,r + x
′
i,rβ +

1

gi,r

nr∑
j=1

gij,rx
′
j,rγ + η

∗
r + ǫi,r, (11)

for i = 1, · · · , nr and r = 1, · · · , r̄, where xi,r = (x1i,r, · · · , xmi,r)′, η∗r = ηr − pf , and ǫi,r’s are

i.i.d. innovations with zero mean and variance σ2 for all i and r.

5.2 Identification strategy

The identification of peer effects (φ in model (11)) raises different challenges.

Reflection problem In linear-in-means models, simultaneity in behavior of interacting

agents introduces a perfect collinearity between the expected mean outcome of the group and

its mean characteristics. Therefore, it is difficult to differentiate between the effect of peers’

choice of effort and peers’ characteristics that do impact on their effort choice (the so-called

reflection problem; see Manski, 1993). Basically, the reflection problem arises because, in

the standard approach, individuals interact in groups, that is individuals are affected by

all individuals belonging to their group and by nobody outside the group. In other words,

groups completely overlap. In the case of social networks, instead, this is nearly never true

since the reference group has individual-level variation. Take individuals i and k such that

gik = 1. Then, individual i is directly influenced by gi.=
∑n

j=1 gijyj while individual k is

directly influenced by gk.=
∑n

j=1 gkjyj, and there is little chance for these two values to be

the same unless the network is complete (i.e. everybody is linked with everybody). Formally,

as shown by Bramoullé et al. (2009), social effects are identified (i.e. no reflection problem) if

I, G and G2 are linearly independent where G2 keeps track of indirect connections of length

21We include contextual effects in the empirical model to account for ex ante heterogeneity.
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2 in g.22 In other words, if i and j are friends and j and k are friends, it does not necessarily

imply that i and k are also friends. Because of these intransitivities, G2X, G3X, etc. are

not collinear with GX and they act as valid instruments. Intuitively, G2X represents the

vector of the friends’ friends attributes of each agent in the network. The architecture of

social networks implies that these attributes will affect her outcome only through their effect

on her friends’ outcomes. Even in linear-in-means models the Manski’s (1993) reflection

problem is thus eluded.23 Peer effects in social networks are thus identified and can be

estimated using 2SLS (Lee 2007; Lin, 2009). In Appendix 2 we detail in a more technical

way the identification of model (11). In particular, we highlight the difference between the

case with row-normalized G (Bramoullé et al., 2009) and our case with non row-normalized

G.

Endogenous network formation/correlated effects Although this setting allows

us to solve the reflection problem, the estimation results might still be flawed because of the

presence of unobservable factors affecting both individual and peer behavior. It is indeed

difficult to disentangle the endogenous peer effects from the correlated effects, i.e. from

effects arising from the fact that individuals in the same network tend to behave similarly

because they face a common environment. If individuals are not randomly assigned into

networks, this problem might originate from the possible sorting of agents. If the variables

that drive this process of selection are not fully observable, potential correlations between

(unobserved) network-specific factors and the target regressors are major sources of bias.

Observe that the particularly large information on individual (observed) variables should

reasonably explain the process of selection into groups. However, a number of papers have

treated the estimation of peer effects with correlated effects (e.g., Clark and Loheac 2007;

Lee 2007; Lin 2010; Lee et al. 2010). This approach is based on the use of network fixed

effects and extends Lee (2003) 2SLS methodology. Network fixed effects can be interpreted

as originating from a two-step model of link formation where agents self-select into different

networks in a first step and, then, in a second step, link formation takes place within networks

based on observable individual characteristics only. An estimation procedure alike to a panel

within group estimator is thus able to control for these correlated effects. One can get rid

22For example, complete networks do not satisfy this condition. In our dataset, where 150 networks are

considered (see above in the data section), none of them are complete and all satisfy the condition that

guarantees the identification of social effects.
23These results are formally derived in Bramoullé et al. (2009) (see, in particular, their Proposition 3) and

used in Calvó-Armengol et al. (2009) and Lin (2010). Cohen-Cole (2006) presents a similar argument, i.e.

the use of out-group effects, to achieve the identification of the endogenous group effect in the linear-in-means

model (see also Weinberg et al., 2004; Laschever, 2009).
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of the network fixed effects by subtracting the network average from the individual-level

variables.24 As detailed in the next section, this paper follows this approach.

Correlated individual effects Finally, one might question the presence of problem-

atic unobservable factors that are not network-specific, but rather individual-specific. In this

respect, the richness of the information provided by the AddHealth questionnaire on ado-

lescents’ behavior allow us to find proxies for typically unobserved individual characteristics

that may be correlated with our variable of interest. Specifically, to control for differences

in leadership propensity across adolescents, we include an indicator of self-esteem and an

indicator of the level of physical development compared to the peers, and we use mathe-

matics score as an indicator of ability. Also, we attempt to capture differences in attitude

towards education, parenting and more general social influences by including indicators of the

student’s school attachment, relationship with teachers, parental care and social inclusion.

To summarize, our identification strategy is based on the assumption that any troubling

source of heterogeneity (if any), which is left unexplained by our unusually large set of

observed characteristics can be captured at the network level, and thus taken into account

by the inclusion of network fixed effects.

To be more precise, we allow link formation (as captured by our matrix G) to be cor-

related with observed individual characteristics,25 contextual effects (G∗X) and unobserved

network characteristics (captured by the network fixed effects). The presence of other re-

maining unobserved effect is very unlikely in our case given our set of controls that includes

behavioral factors and, most importantly, because we deal with quite small networks (see

Section 4).

Deterrence effects So far, we have dealt with issues that are common to the identi-

fication of any kind of peer effects. There is, however, something that is specific to crime:

How deterrence effects (pf in our theoretical model) are measured? The identification of de-

terrence effects on crime is an equally difficult empirical exercise because of the well-known

potential simultaneity and reverse causality issues (Levitt, 1997), which cannot be totally

solved using our network-based empirical strategy. Network fixed effects also prove useful in

this respect. Because in our sample, networks are within schools, the use of network fixed

24Bramoullé et al. (2009) also deal with this problem in the case of a row-normalized G matrix. In their

Proposition 5, they show that if the matrices I, G, G2 and G3 are linearly independent, then by subtracting

from the variables the network component average (or the average over neighbors, i.e. direct friends) social

effects are again identified and one can disentangle endogenous effects from correlated effects. In our dataset

this condition of linear independence is always satisfied.
25As highlighted in Section 3.3, observe, however, that the link formation process between two individuals

should not involve the characteristics of any third individual. This assumption is tested below.
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effects also accounts for differences in the strictness of anti-crime regulations across schools

(i.e. differences in the expected punishment for a student who is caught possessing illegal

drug, stealing school property, verbally abusing a teacher, etc.). As mentioned above, they

account for any kind of school level heterogeneity. As a result, instead of directly estimating

deterrence effects (i.e. to include in the model specification observable measures of deter-

rence, such as local police expenditures or the arrest rate in the local area), we focus our

attention on the estimation of peer effects in crime, accounting for network fixed effects.

5.3 Econometric methodology

Let Yr = (y1,r, · · · , ynr,r)′, Xr = (x1,r, · · · , xnr,r)′, and ǫr = (ǫ1,r, · · · , ǫnr ,r)′. Denote the

nr × nr sociomatrix by Gr = [gij,r], the row-normalized Gr by G∗r, and an nr-dimensional

vector of ones by lnr . Then model (11) can be written in matrix form as:

Yr = φGrYr +X
∗
r δ + η

∗
rlnr + ǫr,

where X∗
r = (Xr, G

∗
rXr) and δ = (β′, γ′)′.

For a sample with r̄ networks, stack up the data by defining Y = (Y ′1 , · · · , Y ′r̄ )′, X∗ =

(X∗′
1 , · · · , X∗′

r̄ )
′, ǫ = (ǫ′1, · · · , ǫ′r̄)′, G = D(G1, · · · , Gr̄), ι = D(ln1 , · · · , lnr̄) and η∗ = (η∗1, · · · , η∗r̄)′,

where D(A1, · · · , AK) is a block diagonal matrix in which the diagonal blocks are mk × nk
matrices Ak’s. For the entire sample, the model is

Y = Zθ + ι · η∗ + ǫ, (12)

where Z = (GY,X∗) and θ = (φ, δ′)′.

We treat η∗ as a vector of unknown parameters. When the number of networks r̄ is large,

we have the incidental parameter problem. Let J = D(J1, · · · , Jr̄), where Jr = Inr− 1
nr
lnr l

′
nr .

The network fixed effect can be eliminated by a transformation with J such that

JY = JZθ + Jǫ. (13)

Let M = (I − φG)−1. The equilibrium outcome vector Y in (12) is given by the reduced

form equation

Y =M(X∗δ + ι · η∗) +Mǫ. (14)

It follows thatGY = GMX∗δ+GMιη∗+GMǫ. GY is correlated with ǫ because E[(GMǫ)′ǫ] =

σ2tr(GM) �= 0. Hence, in general, (13) cannot be consistently estimated by OLS.26 If G is

26Lee (2002) has shown the OLS estimator can be consistent in the spatial scenario where each spatial

unit is influenced by many neighbors whose influences are uniformly small. However, in the current data,

the number of neighbors are limited, and hence that result does not apply.

25



row-normalized such that G·ln = ln, where ln is n-dimensional vector of ones, the endogenous

social interaction effect can be interpreted as an average effect. With a row-normalized G,

Lee et al. (2010) have proposed a partial-likelihood estimation approach for the estimation

based on the transformed model (13). However, for this empirical study, we are interested

in the aggregate endogenous effect instead of the average effect. Hence, row-normalization

is not appropriate. Furthermore, we are also interested in the centrality of networks that

are captured by the variation in row sums in the adjacency matrix G. Row-normalization

could eliminate such information. If G is not row-normalized as in this empirical study,

the (partial) likelihood function for (13) could not be derived, and alternative estimation

approaches need to be considered.

In this paper, we estimate (13) by the 2SLS and generalized method of moments (GMM)

approaches proposed by Liu and Lee (2010). The conventional instrumental matrix for the

estimation of (13) is Q1 = J(GX
∗, X∗) (finite-IVs 2SLS). For the case that the adjacency

matrix G is not row-normalized, Liu and Lee (2010) have proposed to use additional instru-

ments (IVs) JGι so that QK = (Q1, JGι) (many-IVs 2SLS). The additional IVs JGι are

based on the row sums of G (i.e. the indegrees of a network) and thus use the information

on centrality of a network. Those additional IVs could help model identification when the

conventional IVs are weak and improve upon the estimation efficiency of the conventional

2SLS estimator based on Q1. The number of such instruments depends on the number of

networks. If the number of networks grows with the sample size, so does the number of IVs.

The 2SLS could be asymptotic biased when the number of IVs increases too fast relative

to the sample size (see, e.g., Bekker, 1994; Bekker and van der Ploeg, 2005; Hansen et al.,

2008). Liu and Lee (2010) have shown that the proposed many-IV 2SLS estimator has a

properly-centered asymptotic normal distribution when the average group size needs to be

large relative to the number of networks in the sample. As detailed in Section 4, in this

empirical study, we have a number of small networks. Liu and Lee (2010) have proposed a

bias-correction procedure based on the estimated leading-order many-IV bias (bias-corrected

2SLS). The bias-corrected many-IV 2SLS estimator is properly centered, asymptotically nor-

mally distributed, and efficient when the average group size is sufficiently large. It is thus

the more appropriate estimator in our case study.

The 2SLS approach can be generalized to the GMM with additional quadratic moment

equations (finite-IVs GMM, many-IVs 2SLS, bias-corrected 2SLS). While the IV moments

use the information of the main regression function of (14) for estimation, the quadratic

moments explore the correlation structure of the reduced form disturbances. Liu and Lee

(2010) have shown that the many-IV GMM estimators can be consistent, asymptotically
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normal, and efficient when the sample size grows fast enough relative to the number of

networks. Liu and Lee (2010) have also suggested a bias-correction procedure for the many-

IV GMM estimator based on the estimated leading order many-instrument bias. The bias-

corrected many-IV GMM estimator is shown to be more efficient than the corresponding

2SLS estimator. Appendix 3 details the derivation and asymptotic properties of both the

2SLS and GMM estimators.

5.4 Estimation results

Table 2a collects the estimation results of model (11) when using the different estimators

discussed in the previous section.

As explained above, for the estimation of φ, we pool all the networks together by con-

structing a block-diagonal network matrix with the adjacency matrices from each network

on the diagonal block. Hence we implicitly assume that the φ in the empirical model is

the same for all networks. The difference between networks in controlled for by network

fixed effects. Indeed, the estimation of φ for each network might be difficult (in terms of

precision) for the small networks. Furthermore, it is a crucial empirical concern to control

for unobserved network heterogeneity by using network fixed effects.

For equation (6) to be well-defined, φ needs to be in absolute value smaller than the

inverse of the largest eigenvalue of the block-diagonal network matrix G (Proposition 1). In

our case, the largest eigenvalue of G is 5.59. Furthermore our theoretical model postulates

that φ ≥ 0. As a result, we can accept values within the range [0, 0.179). Table 2 shows

that all our estimates of φ are within this parameter space. As explained above, in our case

study with small networks in the sample, the preferred estimator is the bias-corrected one.

The GMM generalization improves upon the precision of the 2SLS estimates. Let us thus

focus on the bias-corrected many-IV GMM estimator and interpret the results in terms of

magnitude. We find that a standard deviation increase in the aggregate level of delinquent

activity of the peers translate into a roughly 11 percent increase of a standard deviation

in the individual level of activity. This is a strong effect, especially given our long list of

controls.

[Insert Table 2a here]
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5.5 Directed networks

So far, we have only considered undirected networks, i.e. we have assumed that friendship

relationships are reciprocal, gij,r = gji,r. Our data, however, make it possible to know exactly

who nominates whom in a network. Indeed, 20 percent of relationships in our dataset are

not reciprocal.

In order to see how robust is our analysis, we now exploit the directed nature of the

network data. Of course, the interpretation of centrality is now different since centrality

contributions only flow in one direction on the directed links. We would like to see if our

results change significantly under such a specification.

We follow the approach of Wasserman and Faust (1994, pages 205-210) who define the

Katz-Bonacich centrality measure for directed networks. As they put it: “Centrality indices

for directional relations generally focus on choices made, while prestige indices generally

examine choices received, both direct and indirect”. Since the Katz-Bonacich index falls

into the category of prestige indices (see pages 206-208), the links in the directed network

are defined by the choices received, i.e. when someone is nominated as a friend by someone

else rather than when he/she nominates a friend.

In the language of graph theory, in a directed graph, a link has two distinct ends: a

head (the end with an arrow) and a tail. Each end is counted separately. The sum of

head endpoints count toward the indegree and the sum of tail endpoints count toward the

outdegree. Formally, we denote a link from i to j as gij,r = 1 if j has nominated i as his/her

friend, and gij,r = 0, otherwise. The indegree of student i, denoted by g+i,r, is the number of

nominations student i receives from other students, that is g+i,r =
∑

j gij,r. The outdegree of

student i, denoted by g−i,r, is the number of friends student i nominates, that is g−i,r =
∑

j gji,r.

We consider only the indegree to define the Katz-Bonacich centrality measure. Observe that,

by definition, the adjacency matrix Gr = [gij,r] is now asymmetric.

From a theoretical point of view, the symmetry of G does not play any explicit role for

the result established in Proposition 1. We can therefore define the Katz-Bonacich centrality

measure bα (g, φ) exactly as in (3).

Turning to the empirical analysis, Table 2b reports the results of the estimation of model

(11) when the directed nature of the network data is taken into account (i.e., with this

alternative specification of G). When the estimated effect of φ is calculated, we find that it

is still statistically significant and slightly higher in magnitude. Therefore the results do not

change substantially.

[Insert Table 2b here]
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6 Who is the key player? Counterfactural Study

Let us now calculate empirically who is the key player in each our real-world networks. We

set out a counterfactual study, which is now described.

6.1 Description of the procedure

With the estimates obtained from the bias-corrected many-IV GMM estimation procedure,

for a network r, αr = G
∗
rXrγ +Xrβ + η

∗
rlnr + ǫr can be estimated by

α̂r = (Inr − φ̂Gr)Yr

As bαr(g, φ) = (Inr − φ̂Gr)−1α̂r = Yr, the nr × 1 vector of Bonacich centrality of network r

is given by Yr. As a result, the initial level of aggregate crime effort is given by

Bαr(g, φ) = l
′
nr(Inr − φ̂Gr)−1α̂r = l′nrYr

To identify the key player, we proceed exactly as in the theoretical model (see Section 3.2).

For that, we calculate the crime reduction for removal of each player, one at a time, in

the network. The key player is the one associated with the largest crime reduction. Let

êr = (Inr − φ̂Gr)Yr − G∗rXrγ̂. When a player i is removed, we drop the ith row of Xr and

êr to get X̃r and ẽr, and drop the ith row and column of Gr to get G̃r. Let G̃∗r be the

row-normalized G̃r. Then the aggregate crime effort with a player i being removed is

B[−i]αr (g, φ) = l′nr(I(nr−1) − φ̂G̃r)−1(G̃∗rX̃rγ̂ + ẽr) = l′nr Ỹr

where Ỹr is the vector of criminal activities in network r when the criminal i has been

removed.27 As in the theoretical model (see (8)), the key player i is given by:

argmax
i
(Bαr(g, φ)−B[−i]αr (g, φ)) = argmin

i
B[−i]αr (g, φ) (15)

6.2 The invariant assumption on G[−i]: Empirical issues

As observed in Section 3.2, in the calculation of the key player (in the formula (8) or,

equivalently, in the simulations (15)), it is assumed that, when the key player is removed,

27Note that in this exercise the predicted Bonacich centralities and crime rates are the same because the

definition of αr in equation (6) (αr = ar − pf + ηr + εr) includes the fixed-network effects (ηr − pf) and the

error term εr. A less tractable set up where the equality is not necessarily true would imply to replace αr

by ar in equation (6).

29



the other criminals in the network do not form new links (i.e. invariance of G[−i], i.e. G[−i] is

just G where the ith row and the ith column have been removed). In Section 3.3, we propose

a simple network formation model that could justify this assumption. In this model, the link

between i and j in network r only depends in the observable characteristics of i and j but

not on the characteristics of the other criminals in the network (including i’s friends other

than j). In this section, we would like to test this model with our data.

Let us first consider undirected networks. For a network r with nr criminals, if Gr is

undirected, we have nr(nr−1)/2 distinct links in the network. Consider the following model:

gij,r = |xi,r − xj,r|β +
(
min
k �=i,j

|xi,r − xk,r|
)
γ1 +

(
min
k �=i,j

|xj,r − xk,r|
)
γ2 + η

∗
r + ǫi,r (16)

for i = 1, · · · , nr − 1, j = i + 1, ..., nr and r = 1, · · · , r̄, and where the notations are the

same as for model (11). We will test the null hypothesis that γ1 = γ2 = 0, that is the link

between i and j does not depend on individual k (whether k is a direct friend of i or not).

For directed networks, for a network r with nr criminals, if Gr is directed, we have

nr(nr − 1) distinct links in the network and we test the following model:

gij,r = |xi,r − xj,r|β +
(
min
k �=i,j

|xi,r − xk,r|
)
γ + η∗r + ǫi,r (17)

for i, j = 1, · · · , nr, i �= j and r = 1, · · · , r̄, and where the notations are the same as for

model (11). We will test the null hypothesis that γ = 0.

Because of multicolinarity problems between the different xs, it should be clear that

model (17) is less problematic than model (16) and we will therefore focus our discussion on

the former. Here, we do not claim any causality. We are just looking at correlations and see

if the network formation model proposed in Section 3.3 is not rejected by the data.

Tables 3a and 3b display the estimation results for the undirected and directed networks,

respectively. It is clear from these tables that, for most variables, the formation of a link

(i.e. friendship) between two criminals i and j is primarly affected by the observable char-

acteristics of i and j but not by the characteristics of any other criminal k �= i, j belonging

to the same network, that is β is significant while γ (or γ1 and γ2 in the case of undirected

networks) is not. Furthermore, since the sign of β is nearly always negative, there seems to

be homophily in the friendship formation in these criminal networks, that is the closer two

persons are in terms of characteristics, the more likely they will be friends.

[Insert Table 3a and 3b here]
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6.3 Individual characteristics of key players

Once we have identified the key player for each network, we can draw his/her “profile” by

comparing the characteristics of these key players with those of the other criminals in the

network.28 Table 4 displays the results only for the variables whose differences in means

between these two samples are statistically significant. Table A.2 in Appendix 4 contains

the summary statistics of all the characteristics of the key players, as well as the ones of

their best friends. Compared to other criminals, “key” criminals belong to families whose

parents are less educated and have the perception of being socially more excluded. They

also feel that parents care less about them and have more troubles getting along with the

teachers. Furthermore, the typical key player is more likely to be a male and have friends

who are older and less attached to religion than other criminals. He/she is also more likely

to come from residential areas with industrial properties of various types, although her/his

friends are less likely to come from these kind of neighborhoods.

[Insert Table 4 here]

An interesting and important question that we seek to investigated empirically is whether

the key player is always the player with the highest crime level (or equivalently with the

highest Bonacich centrality in the network). We have shown in theoretical section that, in

some cases, it is not the case (see Section 3.4) because the two measures (Bonacich versus

inter-centrality) differ substantially in their foundation. Whereas the equilibrium-Bonacich

centrality index (defined in (3)) derives from strategic individual considerations, the inter-

centrality measure (defined in (8)) solves the planner’s optimality collective concerns. In

particular, the equilibrium Bonacich centrality measure fails to internalize all the network

payoff externalities delinquents exert on each other, while the intercentrality measure inter-

nalizes them all.

For each of our 150 networks, we investigate whether the key player is also the most

active criminal in the network (i.e. has the highest Bonacich centrality). We find that in

40 out of 150 networks (27%), it is not the case. This interesting (and unexpected) result

is important for policy purposes since it means that, in some cases, we should not always

target the most criminals in a network.

In Table 5, we compare the characteristics of key players who are the most active crimi-

nals in the network with key players who are not. As in Table 4, Table 5 only shows variables

28Since the results on key players for directed networks are relatively similar, we will not discuss them.

They are available upon request.
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whose differences in means between these two samples are statistically significant. As com-

pared to other key players, we find that key players who are not the most active criminals are

more attached to religion, are less likely to have single parents, to be socially integrated and

have less troubles getting along with your teachers. They are also less physically developed

and are less “able” individuals (to the extent to which mathematics score is a good proxy

for individual ability). Now, looking at differences in the characteristics of their friends, it

appears that key players who are not the most active criminals in the network have friends

who have parents with higher education, who are less likely to be in manual occupations and

a higher proportion of their friends feel that parents care very much about them. Compared

to the key players who are the most active criminals in their network, their friends are also

more religious. Our findings suggest that differences in the family background of the friends

of key players may be important factors explaining the observed differences in crime between

different types of key players. They can act as important protective factors. On the other

hand, we are not able to detect relevant differences in neighborhood attributes to conclude

that also neighborhood quality acts as a protective factor.

[Insert Table 5 here]

We would like now to investigate whether the characteristics of key players differ by types

of crime. For that, we split the reported offences between petty crimes and more serious

crimes. The first group (type-1 crimes or petty crimes) encompasses the following offences:

(i) paint graffiti or sign on someone else’s property or in a public place; (ii) lie to the parents

or guardians about where or with whom having been; (iii) run away from home; (iv) act

loud, rowdy, or unruly in a public place; (v) take part in a group fight; (vi) damage properties

that do not belong to you; (vii) steal something worth more than $50. The second group

(type-2 crimes or more serious crimes) consists of (i): taking something from a store without

paying for it; (ii) hurting someone badly enough to need bandages or care from a doctor or

nurse; (iii) driving a car without its owner’s permission; (iv) stealing something worth more

than $50; (v) going into a house or building to steal something; (iv) using or threatening to

use a weapon to get something from someone; (vii) selling marijuana or other drugs; (viii)

getting into a serious physical fight.

We obtain a sample of 1099 petty criminals distributed over 132 networks and a sample

of 545 more serious criminals distributed over 75 networks. Petty crime networks have a

minimum of 4 individuals and a maximum of 73 (with mean equals to 8.33 and standard

deviation equals to 10.74), whereas the range for more serious crime networks is between 4

and 38 (with mean equals to 7.27 and standard deviation equals to 6.64).
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We estimate the following modified version of model (11):

yi,r,l = φl
nr∑
j=1

gij,ryj,r,l + x
′
i,r,lβl +

1

gi,r,l

nr∑
j=1

gij,r,lx
′
j,r,lγl + η

∗
r + ǫi,r,l (18)

where l denotes the type of crime committed by individual i in network r (l = 1, 2), and the

rest of the notations defined in model (11) applies. The estimation of this model provides

type of crime-specific peer effects. The results are contained in the last two columns of Table

2. All estimates are within the acceptable parameter space [0, 0.180) for type-1 crimes and

[0, 0.219) for type-2 crimes. In terms of magnitude, it appears that the impact of peer effects

on crime are much higher for more serious crimes than for petty crimes. Indeed, we find

that a standard deviation increase in the aggregate level of delinquent activity of the peers

translate into a roughly 8 percent and 14.5 increase of a standard deviation in the individual

level of activity for petty crimes and more serious crimes, respectively.

We then repeat our counterfactual studies for these different types of networks. Although

the results of this exercise need to taken with caution because of the small sample size of

students committing the more serious offences, we report our findings in Tables 6− 10.

Table 6 and 7 have the same structure as Table 4 but draw a profile of the key player

for petty and more serious crimes. As compared to other criminals, a key player committing

petty crimes is more likely to be a male, less likely to be black, is more able than other

criminals, more likely to feel that that parents do not care very much about him/her and

has troubles getting along with teachers. His/her friends have parents who are less likely to

be office or sales workers and in the farm or fishery sector. They come more frequently from

suburban areas and have less troubles getting along with the teachers than friends of other

types of criminals.

The portrait of a key player committing serious crimes has different features. Even

though he/she is more likely to be a male, he/she is more physically developed compared

to the boys of his/her age, feels to be part of the school but has troubles getting along

with teachers. He/she is also more likely to reside in suburban areas and less likely in urban

residential areas. Neither key players committing serious crime nor their friends have parents

working in the military or security sector. The typical key player committing serious crimes

has friends who are older, less likely to come from industrial residential areas and his/her

parents are less likely to be in the farm or fishery sector.

[Insert Tables 6 and 7 here]

Table 8 instead compares the characteristics of key players for different types of crime.
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We find only few significant differences in individual characteristics while differences in their

friends’ characteristics seem to be more important. Key players committing serious crime

are more likely to be black and have friends who are blacks and feel that adults care about

them more than key players committing petty crimes. This last aspect is not true for their

friends. Also, as compared to friends of key players committing petty crimes, key players’

friends in serious crimes are more able, have more troubles with teachers, are more likely

to have parents in office or sales occupations and less likely to have parents occupied in the

military or security sector. A larger proportion of them comes from urban residential areas.

[Insert Table 8 here]

Finally, Tables 9 and 10 have the same structure as Table 5 and uncover the difference in

characteristics for different types of crimes between key players who are the most criminals

and those who are not. When the offences are splitted by type of crimes, we still find some

networks where the most “harmful” criminal is not the individual with the highest Bonacich

centrality (30% for petty crimes and 25% for serious crimes). Key players committing petty

crimes who are not the most active criminals are less physically developed compared to more

active key players, more religious and have less troubles getting along with the teachers.

Interestingly, they have also less educated parents and their parents are less likely to be

managers.

For serious crimes, the picture takes again different aspects. Key players in serious crimes

who are not the most active criminals are individuals coming from households with more

numerous members and are less likely to be of a race different from white and black. They

also come from better quality neighborhoods, are more likely to live in suburban residential

areas while their friends are more likely to reside in urban residential areas. For serious

crimes, we also find that differences in parenting between friend groups might be important.

Although less active key players have friends who are less likely to have two married parents

and more likely to come from single parent families, almost all of these friends feel that

parents care about them very much.

[Insert Tables 9 and 10 here]

6.4 Key players and network topology

As in Section 3.4, let us now investigate the characteristics of these key players in terms of

other network centrality measures (i.e. other than Bonacich centrality).
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So far, we have used the Bonacich centrality measure to capture the importance of net-

work structure. The reason is that this measure has a precise behavioral foundation, as it

stems from our theoretical model. However, it counts the number of any path connecting

one node to the others, not the optimal ones. Let us then consider two other traditional

measures of centrality in network analysis that are based on optimal paths, i.e. closeness and

betweenness centralities, and a measure of cohesion of the sub-network around each node,

i.e. the clustering coefficient. They are all defined in Appendix 4 and used in the theory

section (3.4.)

Table 11 provides information on the distributions of these measures for the key players

in our networks and compares them with the Bonacich centrality (which is equal to the crime

level of each individual). Looking at the first measure, betweenees centrality, one can first

notice that at least 50% of our key players has a betweenness centrality equal to zero (i.e.

the median is equal to 0), meaning that there are few shortest paths that go through them.

However, if we consider the upper tail of this distributions, that is we look at the key players

with the highest betweenees centrality, we see that a larger portion of them are key players

who are not the most active criminals. Indeed, above the 90th percentile of the distribution

of the whole sample, 10% of the key players are not the most active criminals while it is

4.5% for the key players who are the most active criminals. This finding suggests that,

even though some criminals do not commit much crime, they can be key players because

they have a crucial position in the network in terms of betweenness centrality (for example,

in the network described in Section 3.4, individual 1 who bridges two otherwise separated

networks is not the most active criminal but is the key player and has the highest betweenness

centrality). When looking at the closeness centrality, the results are quite different. Indeed,

plenty of key players are quite central (median equals to 0.5). We also find that more active

key players tend to be more concentrated in the upper tail of the closeness distribution than

less active key players (11% in the upper 90% tail versus 5%). Finally, the results on the

clustering coefficient suggest that the most active criminals are more likely to operate in

tighter networks of best friends (4.5% in the upper 95% tail versus 2.5% for key players who

are not the most active criminals).

[Insert Table 11 here]

In Tables 12 and 13, we perform the same analysis for petty and serious crimes, respec-

tively. Interestingly, we find that, for serious crimes, key players have high betweenness

centrality while this is less the case for petty crimes. Indeed, if we look at p75 (lower 75%

of the distribution), we see that among key players, at least 75% of them has a betweenness
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centrality less than 0.05 for petty crime while, for more serious crimes, this value is 0.67.

Moreover, for petty crimes, the most active key players seem also to be the more central

ones in terms of all measures considered while, for serious crimes, the most central players

in terms of betweenness tend to be the less criminal ones. This evidence suggests that, for

serious crimes, network position is an important determinant of key players.

[Insert Tables 12 and 13 here]

Finally, in Tables 14, 15 and 16, we investigate the role of network characteristics29

in explaining the differences between key players who are the most active criminals and

those who are not. In terms of statistical significance, the differences are not pronounced.

We only find that, for serious crimes, the average degree is significantly higher for most-

active key players. If we only look at the qualitative evidence, then we see that, for all

crimes, the network diameter, network betweenness and the average distance are smaller

for most-active key players. An interesting suggestive result is that networks tend to be

dissortative (“popular” criminals are associated with less “popular” ones) for petty crimes

while assortative (“popular” criminals are associated with “popular” ones) for most-active

key players committing more serious crimes.

[Insert Tables 14, 15 and 16 here]

7 Policy implications

We would like to discuss now some policy implications of our results. As noted by Manski

(1993, 2000) and Moffitt (2001), it is important to separately identify peer or endogenous

effects from contextual or exogenous effects. This is because endogenous effects generate a

social multiplier while contextual effect don’t. In the context of crime, this means that a spe-

cial program targeting some individuals will have multiplier effects: the individual affected

by the program will reduce its criminal activities and will influence the criminal activities

of his/her peers, which, in turn, will affect the criminal activities of his/her peers, and so

on. On the other hand, if only contextual effects are present, then there will be no social

multiplier effects from any policy affecting only the “context” (for example, improving the

quality of the teachers at school). Therefore, the identification of these two effects is of para-

mount importance for policy purposes. Another important policy issue in the estimation of

29They are all defined in Section 3.4.
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social interactions is the separation between peer effects and confounding effects. Indeed,

the formation of peer group is not random and individuals do select into groups of friends.

It is therefore important to separate the endogenous peer effects from the correlated effects

(Manski, 1993), i.e. the same criminal activities may be due to common unobservable vari-

ables (such as, for example, the fact that individuals from the same network like bowling

together) faced by individuals belonging to the same network rather than peer effects. This

is also very important for crime policies since, for example, if the high-crime rates are due

to the fact that teenagers like to bowling together, then obviously the implications are very

different than if it is due to peer effects.

The first aim of this paper was to clearly identify the peer effects from the contextual

affects and from the correlated effects. For that, we first developed a theoretical model

where all these effects were clearly separated. We then estimated the results of the model by

using the recent econometric techniques, which utilizes the structure of the network as well

as network fixed effects to identify each of these effects. We find that, indeed, peer effects

are important in criminal activities for teenagers in the United States, indicating that any

policy targeting some criminals will have multiplier effects.

Once this has been showed, policy issues can be seen from a different perspective. Indeed,

in the standard crime literature without social interactions (Becker, 1968; Garoupa, 1997;

Polinsky and Shavell, 2000), punishment is seen as an effective tool for reducing crime. But

punishment is random and not targeted to individuals that generate the highest multiplier

effects. To address this issue, we have developed a theoretical framework where a key player

has been identified. A key player is someone that needs to be removed in order to reduce

as much as possible total crime in the network. The way a key player is calculated is

precisely using the multiplier effects due to endogenous peer effects. Consider the key player

removal policy. Indeed, when a delinquent is removed from network r, the intercentrality

measures of all the delinquents that remain active are reduced, that is, dj,r(g
[−i∗]
r , φ) ≤

dj,r(gr, φ), for all j �= i∗, which triggers a decrease in delinquency involvement for all of them.

Moreover, when delinquent i∗ is removed from the delinquency network, the corresponding

ratio of aggregate delinquency reduction with respect to the network centrality reduction is

an increasing function of the intercentrality measure di,r(g, φ) of this delinquent. Formally,

∂

∂di,r(gr, φ)

[
y∗r(gr)− y∗[−i]r

bα,r(gr, φ)− bα,r(g[−i]r , φ)

]
> 0

where bα,r(gr, φ) =
∑i=n

i=1 bαi,r(gr, φ). In words, the target policy displays amplifying effects,

and the gains following the judicious choice of the key player (the one with highest inter-
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centrality measure) go beyond the differences in intercentrality measures between this player

and any other delinquent in the network.

To fully assess the relevance of the key player delinquency policy, let us compare the

relative returns of a network targeted policy with that of a random target policy. For each

criminal i in the crime network gi, define:

ηi,r(gr) = nr
y∗r(gr)− y∗r(g[−i])∑nr
j=1 [y

∗
r(gr)− y∗r(g[−j])]

.

This is the ratio of returns (in delinquency reduction) when i is the selected target versus a

random selection with uniform probability for all delinquents in the network.

Denote by dr(gr, φ) the average of the intercentrality measures in network r, and by

σdr(gr, φ) the standard deviation of the distribution of this intercentrality measures. It is

then straightforward to show that

ηi∗,r(gr) ≥ 1 +
σdr(gr, φ)

dr(gr, φ)
.

where i∗ is the key player in gr for a given φ. The relative gains from targeting the key

player instead of operating a selection at random in the delinquency network increase with

the variability in intercentrality measures across delinquents as captured by σdr(gr, φ). In

other words, the key player prescription is particularly well-suited for networks that display

stark location asymmetries across nodes. In these cases, it is more likely than the relative

gains from implementing such a policy compensate for its relative costs.

The second aim of this paper was precisely to determine the key player in each of our

adolescent networks. Because of its multiplier effects, it is important to know what are

his/her characteristics, to which network does he/she belongs and if he/she has a different

profile for different types of crime. We find that, compared to other criminals, key players

are more likely to be a male, have less educated parents, are less attached to religion and feel

socially more excluded. They also feel that adults care less about them, are less attached

to their school and have more troubles getting along with the teachers. We also find that,

even though some criminals are not very active in criminal activities, they can be key players

because they have a crucial position in the network in terms of betweenness centrality.

We should, however, be careful when talking about real-world policies. Policy makers

should not use “literally” our results and target individuals who have the characteristics of

the key players we have identified in our data. We believe that it will help them better

understand the way the crime market operates and how individuals interact with each other.

We also hope that the results of this paper will allow policy makers to think differently about
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crime and that, in the context of financial crisis and budget deficits, there is an alternative

to “brute force” and that targeting some specific individuals can have dramatic effects on

crime reduction.
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Appendix 1: Data appendix 
 

Table A.1: Description of Data (1,297 individuals, 150 networks) 
 

 Variable definition Mean St.dev Min Max 
      
Delinquency index In the text  0.94 1.09 0.09 9.63 
Delinquency index of best friends Aggregate value of the delinquency 

index over direct friends. 2.17 2.30 0.09 20.23 
Delinquency index (type-1 crime) In the text 1.15 1.15 0.20 7.31 
Delinquency index of best friends (type-1 
crime) 

Aggregate value of the delinquency 
index over direct friends. 2.65 2.55 0.20 20.47 

Delinquency index (type-2 crime) In the text 1.25 1.36 0.28 12.55 
Delinquency index of best friends (type-2 
crime) 

Aggregate value of the delinquency 
index over direct friends. 2.57 2.48 0.28 17.52 

Individual socio-demographic variables      
Female Dummy variable taking value one 

if the respondent is female. 0.32 0.47 0 1 
Religion practice Response to the question: "In the 

past 12 months, how often did you 
attend religious services", coded as 
4= never, 3= less than once a 
month, 2= once a month or more, 
but less than once a week, 1= once 
a week or more. Coded as 5 if the 
previous is skipped because of 
response “none” to the question: 
“What is your religion?”  

2.35 1.48 1 5 

Student grade Grade of student in the current 
year. 9.15 1.59 7 12 

Black or African American Race dummies. “White” is the 
reference group. 0.19 0.39 0 1 

Other races “ 0.07 0.25 0 1 
Mathematics score Score in mathematics at the most 

recent grading period, coded as4= 
D or lower, 3= C, 2=B, 1=A. 

2.29 1.10 1 4 

Self esteem Response to the question: 
"Compared with other people your 
age, how intelligent are you", coded 
as 1= moderately below average, 
2= slightly below average, 3= about 
average, 4= slightly above average, 
5= moderately above average, 6= 
extremely above average. 

3.97 1.16 1 6 

Physical development Response to the question: "How 
advanced is your physical 
development compared to other 
boys/girls your age", coded as 1= I 
look younger than most, 2= I look 
younger than some, 3= I look about 
average, 4= I look older than some, 
5= I look older than most 

3.45 1.23 1 5 

Family background variables      
Household size Number of people living in the 

household.  4.46 1.26 2 11 
Two married parent family Dummy taking value one if the 

respondent lives in a household 
with two parents (both biological 
and non biological) that are 
married. 

0.66 0.48 0 1 

Single parent family Dummy taking value one if the 
respondent lives in a household 
with only one parent (both 
biological and non biological). 

0.27 0.44 0 1 

Parent education Schooling level of the (biological 
or non-biological) parent who is 
living with the child, distinguishing 
between "never went to school", 
"not graduate from high school", 
"high school graduate", "graduated 
from college or a university", 
"professional training beyond a 
four-year college", coded as 1 to 5. 
We consider only the education of 
the father if both parents are in the 
household. 

3.08 1.17 0 5 



Parent occupation manager Parent occupation dummies. 
Closest description of the job of 
(biological or non-biological) 
parent that is living with the child is 
manager. If both parents are in the 
household, the occupation of the 
father is considered. “none” is the 
reference group 

0.15 0.36 0 1 

Parent occupation professional/technical ” 0.17 0.38 0 1 
Parent occupation office or sales worker ” 0.11 0.31 0 1 
Parent occupation manual ” 0.29 0.45 0 1 
Parent occupation military or security ” 0.01 0.08 0 1 
Parent occupation farm or fishery ” 0.01 0.12 0 1 
Parent occupation other ” 0.17 0.37 0 1 
Protective factors      
School attachment Response to the question: "You feel 

like you are part of your school 
coded as 1= strongly agree, 2= 
agree, 3=neither agree nor disagree, 
4= disagree, 5= strongly disagree.  

2.10 0.94 1 5 

Relationship with teachers Response to the question: “How 
often have you had trouble getting 
along with your teachers?” 0= 
never, 1= just a few times, 2= about 
once a week, 3= almost everyday, 
4=everyday 

1.38 1.03 0 4 

Social inclusion Response to the question: "How 
much do you feel that adults care 
about you, coded as 5= very much, 
4= quite a bit, 3= somewhat, 2= 
very little, 1= not at all 

4.28 0.82 2 5 

Parental care Dummy taking value one if the 
respondent reports that the 
(biological or non-biological) 
parent that is living with her/him or 
at least one of the parents if both 
are in the household cares very 
much about her/him 

0.83 0.37 0 1 

Residential neighborhood variables      
Residential building quality Interviewer response to the 

question "How well kept is the 
building in which the respondent 
lives", coded as 4= very poorly kept 
(needs major repairs), 3= poorly 
kept (needs minor repairs), 2= 
fairly well kept (needs cosmetic 
work), 1= very well kept. 

1.60 0.87 1 4 

Residential area suburban Residential area type dummies: 
interviewer's description of the 
immediate area or street (one block, 
both sides) where the respondent 
lives. “Rural area” is the reference 
group.  

0.38 0.49 0 1 

Residential area urban - residential only ” 0.23 0.42 0 1 
Residential area industrial properties 
 - mostly wholesale 

” 
0.00 0.00 0 1 

Residential area other type ” 0.05 0.21 0 1 
 
 



Appendix 2: Identification of network models with non
row-normalized adjacency matrices

Consider the following model

yr = φ0Gryr + β0Xr + γ0G
∗
rXr + ηrlnr + ǫr

= [Gryr, Xr, G
∗
rXr, lnr ]ϑ+ ǫr, (19)

where G∗r is the row-normalized Gr and ϑ = (φ0, β
′
0, γ

′
0, ηr)

′. To achieve model identification,

we needs that the deterministic part of the right hand side variables, [E(Gryr), Xr, G
∗
rXr, lnr ],

have full column rank, where

E(Gryr) = β0GrXr +GrMr(β0φ0Gr + γ0G
∗
r)Xr + ηrGrMrlnr . (20)

First, we consider the case that Gr is row-normalized such that Gr = G
∗
r. In this case,

(20) can be simplified as

E(Gryr) = β0G
∗
rXr +G

∗
rMrG

∗
rXr(φ0β0 + γ0) +

ηr
1− φ0

lnr .

To illustrate the challenges in identification, we consider three cases. (1) β0 = γ0 = 0.

This is the case when there is no relevant exogenous variables in the model. In this case,

E(Gryr) =
ηr
1−φ0

lnr . Hence, the model is not identified because [ ηr
1−φ0

lnr , Xr, G
∗
rXr, lnr ] does

not have full column rank. (2) β0φ0+γ0 = 0. In this case, E(Gryr) = G
∗
rXrβ0+

ηr
1−φ0

lnr . The

model can not be identified due to perfect collinearity. This corresponds to the case where

the endogenous effect and exogenous effect exactly cancel out. Lee et al. (2010) have shown,

in this case, the reduced form of (19) becomes a simple regression model with (spatially)

correlated disturbances. In the reduced form, there are neither endogenous nor contextual

effects. Interactions go through unobservables (disturbances) instead of observables. (3)

β0φ0+γ0 �= 0. For this case, Bramoullé et al. (2009) and Lee et al. (2010) have derived some

sufficient conditions for model identification. The identification can still be hard to achieve

when the network is dense. For example, the "reflection problem", where the endogenous

effects can not be identified from the contextual effects due to perfect collinearity, exists in the

model of Manski (1993), which has the linear-in-mean specification such that Gr =
1
nr
lnr l

′
nr .

WhenGr =
1

nr−1
(lnr l

′
nr−Inr) and networks are of the same size such that nr = n/r̄, the model

still can not be identified (see Moffitt, 2001). On the other hand, whenGr =
1

nr−1
(lnr l

′
nr−Inr)

and there are variations in network sizes, Lee (2007) has shown the model can be identified

because the endogenous effect is stronger in small networks than in large networks. However,

the identification can be weak when the all networks are large.
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Row-normalization of Gr has some limitations. First, as in the structural model in this

paper, one may be interested in the aggregate influence rather than average influence of the

peers. Second, for some network structures, it is impossible to row normalize the adjacency

matrix Gr. For example, for an asymmetric Gr, where agent i’s outcome affects peers’

outcomes but he/she is not affected by peers, the ith row of Gr would be all zeros. It would

be impossible to normalize the ith row of Gr to sum to one. Finally, normalization may

eliminate some useful information of the network structure.

Indeed, GrMrlnr is the measure of centrality in Bonacich (1987). The ith entry ofGrMrlnr
is the (weighted) sum of direct and indirect connections of agent i with others in the net-

work. When Gr is not row-normalized, the entries of GrMrlnr in general is not all the

same. The variation of this centrality measure in a network provides useful information for

model identification. Even for the case that β0 = γ0 = 0, with non-row-normalized Gr,

[E(Gryr),Xr, G
∗
rXr, lnr ] = [ηrGrMrlnr ,Xr, G

∗
rXr, lnr ] can still have full column rank. Hence,

the model can be identified.

Under a certain regularity condition, say supn ||φ0G||∞ < 1, Mr =
∑∞

j=0(φ0Gr)
j. It

follows that GrMrGrXr =
∑∞

j=0(φ0Gr)
jG2rXr, GrMrG

∗
rXr =

∑∞

j=0(φ0Gr)
jGrG

∗
rXr and

GrMrlnr =
∑∞

j=0(φ0Gr)
jGrlnr . Hence, from (20) we can use terms like Grlnr as IVs for

the endogenous effect in addition to the “traditional” IVs like G2rXr and/or GrG
∗
rXr to help

model identification and improve estimation efficiency (Lee et al. ,2010).
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Appendix 3: Estimators and related properties

2SLS Estimation From the reduced form equation (14), Z̄ =E(Z) = [GM(X∗δ0 + ι ·
η∗), X∗]. The best (in terms of efficiency) instrumental matrix for JZ in (13) is given by

f = JZ̄ = J [GMX∗δ0 +GMιη
∗, X∗], (21)

which is an n×(2m+1) matrix. However, this instrumental matrix is infeasible as it involves

unknown parameters δ0 and η∗. Note that f can be considered as a linear combination of

the IVs in Q0 = J(GMX
∗, GMι,X∗). Furthermore, as M = (I − φ0G)−1 =

∑∞
j=0 φ

j
0G

j+1

when φ0µ1(G) < 1, GMX∗ and GMι can be approximated by linear combinations of

(GX∗, G2X∗, · · · ) and (Gι,G2ι, · · · ) respectively, and, hence, Q0 can be approximated by

a linear combination of Q∞ = J(GX∗, G2X∗, · · · , Gι,G2ι, · · · , X∗).

For estimation of (13), let QK = J(GX∗, Gι,X∗) be an n × K submatrix of Q∞. As

ι has r̄ columns, the number of IVs in QK is large if the number of groups r̄ is large. In

general, more valid IVs would improve the efficiency of the estimator. However, the IV-based

estimator could be asymptotically biased in the presence of many IVs.

Let PK = QK(Q
′
KQK)

−1Q′K, the many-IV 2SLS estimator is θ̂2sls = (Z ′PKZ)
−1Z ′PKY .

Let e1 denote the first column of an identity matrix. Liu and Lee (2010) have shown that,

under some regularity assumptions, if K/n→ 0 then
√
n(θ̂2sls − θ0 − b2sls) d→ N(0, σ20H̄

−1),

where b2sls = σ20tr(PKGM)(Z ′PKZ)
−1e1 = Op(K/n). The term b2sls is a bias due to the

presence of many IVs. When K2/n → 0, the bias term
√
nb2sls converges to zero so that√

n(θ̂2sls − θ0) d→ N(0, σ20(limn→∞
1
n
f ′f)−1). Hence, the sequence of IV matrices {QK} gives

the asymptotically best IV estimator as the variance matrix attains the efficiency lower

bound for the class of IV estimators.

To correct for the many-instrument bias in θ̂2sls, we can adjust the many-IV 2SLS esti-

mator by the estimated leading order bias. The bias-corrected many-IV 2SLS is given by

θ̂c2sls = (Z ′PKZ)
−1Z ′PKY − b̂2sls, where b̂2sls is a consistent estimator of b2sls.

30 Liu and Lee

(2010) have shown that, if K/n→ 0, then
√
n(θ̂c2sls − θ0) d→ N(0, σ20(limn→∞

1
n
f ′f)−1).

Note that the number of IVs K is proportional to the number of groups r̄. Hence,

K2/n → 0 implies r̄2/n = r̄/m̄ → 0, where m̄ is the average group size. So for asymptotic

efficiency of the many-IV 2SLS estimator, the average group size needs to be large relative

to the number of groups. On the other hand, K/n→ 0 implies r̄/n = 1/m̄→ 0. So for the

bias-corrected many-IV 2SLS to be properly centered and asymptotically efficient, we only

need the average group size to be large.

30For the explicit form of b̂2sls (and that of b̂gmm in the next Section), see Liu and Lee (2010).
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GMM Estimation The 2SLS approach can be generalized to the GMM with addi-

tional quadratic moment equations. While the IV moments use the information of the main

regression function of the reduced form equation for estimation, the quadratic moments ex-

plore the correlation structure of the reduced form disturbances. Let ǫ(θ) = J(Y −Zθ) with

θ = (φ, δ′)′. The IV moments g1(θ) = Q
′
Kǫ(θ) are linear in ǫ at θ0. The quadratic moment

is given by g2(θ) = ǫ
′(θ)Uǫ(θ) where U = JGMJ − tr(JGM)J/tr(J). At θ0, E[g2(θ0)] = 0,

becauseE(ǫ′JUJǫ) = σ20tr(JU) = 0.31 The vector of combined linear and quadratic empirical

moments for the GMM estimation is given by g(θ) = [g′1(θ), g
′
2(θ)]

′.

In order for inference based on the following asymptotic results to be robust, we do not

impose the normality assumption for the following results. For any n× n matrix A = [aij ],

let As = A + A′ and vecD(A) = (a11, · · · , ann)′. In general, µ3 and µ4 denote, respectively,

the third and fourth moments of the error term. The variance matrix of g(θ0) is given by

Ω = Var[g(θ0)] =

(
σ20Q

′
KQK µ3Q

′
Kω

µ3ω
′QK (µ4 − 3σ40)ω

′ω + σ40∆

)
,

where ω = vecD(U) and ∆ = 1
2
vec(U s)′vec(Us). By the generalized Schwarz inequality, the

optimal many-IV GMM estimator is given by θ̂gmm = argmin g′(θ)Ω−1g(θ).

The optimal weighting matrix Ω−1 involves unknown parameters σ20, µ3 and µ4. In prac-

tice, with consistent initial estimators σ̃2, µ̃3 and µ̃4, Ω can be estimated as Ω̃ = Ω(σ̃2, µ̃3, µ̃4).

Let D2 = E[ ∂
∂θ′
g2 (θ0)] = −σ20tr(U sGM)e′1 and B−122 = (µ4 − 3σ40)ω

′ω + σ40∆−
µ2
3

σ2
0

ω′PKω. Liu

and Lee (2010) have shown that, if K3/2/n → 0 and then the feasible optimal many-IV

GMM estimator θ̂gmm = argminθ∈Θ g
′(θ)Ω̃−1g(θ) has the asymptotic distribution

√
n(θ̂gmm − θ0 − bgmm) d→ N(0, [σ−20 ( lim

n→∞

1

n
f ′f)−1 + lim

n→∞

1

n
D̄′
2B22D̄2]

−1), (22)

where bgmm = (σ−2Z ′PKZ + Ď′
2B22Ď2)

−1tr(ΨK)e1 = O(K/n), Ď2 = D2 − µ3
σ2
0

ω′PKZ, and

D̄2 = D2 − µ3
σ2
0

ω′f .

As the asymptotic bias bgmm is O(K/n), the asymptotic distribution of the GMM es-

timator will be centered at θ0 only when K2/n → 0. With the consistently estimated

leading order bias b̂gmm, Liu and Lee (2010) have shown that, if K3/2/n → 0, the feasible

bias-corrected many-IV GMM estimator θ̂cgmm = θ̂gmm − b̂gmm has the asymptotic normal

distribution as given in (22).

The asymptotic variance matrix of the many-IV GMM estimator can be compared with

that of the many-IV 2SLS estimator. As D̄′
2B22D̄2 is nonnegative definite, the asymptotic

31Liu and Lee (2010) have shown that the quadratic moment g2(θ) = ǫ′(θ)Uǫ(θ) is the best (in terms of

efficiency of the GMM estimator) under normality.
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variance of the many-IV GMM estimator is relatively smaller than that of the 2SLS estimator.

Thus, the many-IV GMM estimator with additional quadratic moments improves efficiency

upon the 2SLS estimator.
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Appendix 4: Individual centrality measures and network
characteristics

The simplest index of connectivity of individual i is the number of direct friends divided

by the maximum possible number of friends individual i can have (i.e. n − 1 individuals if

everyone is directly connected to individual i), i.e. degree centrality:

δi(g) =
gi
n− 1

=

∑n
j=1 gij

n− 1
(23)

The standard measure of closeness centrality of individual i is given by:

ci(g) =
n− 1∑
j d(i, j)

(24)

where d(i, j) is the geodesic distance (length of the shortest path)32 between individuals

i and j. As a result, the closeness centrality of individual i is the inverse of the sum of

geodesic distances from i to the n− 1 other individuals (i.e. the reciprocal of its “farness”)

divided by n − 1, which is the maximum possible distance between two individuals in the

network . Compared to degree centrality, the closeness measure takes into account not only

direct connections among individuals but also indirect connections. However, compared to

the Bonacich centrality, the closeness measure assumes a weight of one to each indirect

connection, whereas the Bonacich centrality uses weights that depend on the strength of

social interaction within the network.

The betweenness centrality measure of agent i in a network g can be defined as:

fi(g) =
1

(n− 1) (n− 2) /2

nκ∑

j,l

ajl,i
ajl

(25)

where j and l denote two given agents in gκ, ajl,i is the number of shortest paths between

j and l through i in gκ, ajl is the number of shortest paths between j and l in gκ and

(n− 1) (n− 2) /2 is the total number of links in a complete network. Note that betweenness

centrality, as the degree and closeness centrality measures, is a parameter-free index.

The clustering coefficient of individual i in network g is given by:

ψi(g) =

∑
l∈Ni(g)

∑
k∈Ni(g)

glk

ni(g) [ni(g)− 1]
for all i ∈ N ′ ≡ {i ∈ N | ni(g) ≥ 2} (26)

32The length of a shortest path is the smallest k such that there is at least one path of length k from i

to j. Therefore we can find the length by computing G, G2, G3, ..., until we find the first k such that the

(i, j)th entry of Gk is not zero.
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whereNi(g) = {j �= i | gij = 1} is the set of i’s direct contacts and ni(g), it size (or cardinality

of this set). ψi(g) gives us the percentage of an individual’s links who are linked to each

other. This is an indication of the percentage of transitive triads33 around individual i. It

thus measures the probability with which two of i’s friends are also friends.

Unit centralities in a network can have large or small variance. Network, where one

unit (or a low number of units) has (have) much higher centrality than other units is highly

centralised. On the other hand, if unit centrality measures do not differ significantly, the

centrality of a network is low.

From these individual measures we can compute the corresponding measures at the net-

work level using the definition provided by Freeman (1979). In our notation, the Freeman

(1979)’s general network index for a given network gκ is

CA(gκ) =

∑nk
i=1(C

A
max − CAi )

max
∑nk

i=1(C
A
max − CAi )

where CAmax is the highest (theoretical) value of the selected unit measure CA in a network

of equal size. The network index is thus a number between 0 and 1, being 0 if all units have

equal value, and 1, when one unit completely dominates all other units. Our four indivudual

measures, then lead to four network properties, namely degree, closeness and betweenness

network centrality and network clustering. Let us finally revise other widely used network

characteristics.

The average distance of a network (also known as the average path length) is defined as

the average number of steps along the shortest paths for all possible pairs of network nodes

(i.e.
∑

i

∑

j

d (i, j) / [n(n− 1)]).

The average degree is the total number of links divided by n (i.e.
∑

i gi/n).
34 The diam-

eter of a network is the largest (shortest) distance between any two nodes in the network. It

thus provides an upper-bound measure of the size of the network. Network density is simply

the fraction of ties present in a network over all possible ones (it is the average degree divided

by n−1). It ranges from 0 to 1 as networks get denser. Network asymmetry is measured us-

ing the variance of connectivities (i.e. (maxi gi/mini gi)/(n−1)). We normalize it, so that it

reaches 1 for the most asymmetric network in the sample. Network redundancy or clustering

is the fraction of all transitive triads over the total number of triads. It measures the proba-

bility with which two of i’s friends know each other. Finally, network assortativity measures

33A triad is the subgraph on three individuals, so that when studying triads, one has to consider the

threesome of individuals and all the links between them. A triad involving individuals i, j, k is transitive if

whenever i→ j and j → k, then i→ k.
34Remember that gi =

∑n

j=1 gij is the degree (i.e. the number of direct friends) of criminal i.
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the correlation patterns among high-degree nodes. If high-degree nodes tend to be connected

to other high-degree nodes, then the network is said to be positive assortative. The degree

of assortativity of the network g is computed as:
∑

i

∑

j

(gi −m) (gj −m) /
∑

i

(gi −m)2,

where m is the average degree (i.e.
∑

i gi/n).
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Table 2a: Model (11) Estimation Results for Undirected Networks 
 

 Total crimes  Type 1 Crimes Type 2 Crimes 
    
2SLS  finite IVs   0.067 (3.233) 0.06 (3.043) 0.097 (2.534) 
2SLS  large IVs   0.047 (2.549) 0.031 (1.733) 0.068 (1.997) 
bias-corrected 2SLS 0.072 (3.945) 0.053 (2.901) 0.128 (3.677) 
    
GMM finite IVs   0.056 (4.12) 0.042 (3.136) 0.097 (3.773) 
GMM large IVs   0.045 (3.518) 0.03 (2.27) 0.072 (2.899) 
bias-corrected GMM 0.052 (4.043) 0.036 (2.783) 0.08 (3.239) 
    

Notes: Estimation has been performed using Matlab. T-tests are reported in parentheses. 
 
 
 
 
 

Table 2b: Model (11) Estimation Results for Directed Networks 
 

  Total crimes  Type 1 Crimes  Type 2 Crimes 
      
2SLS  finite IVs    0.097 (3.044) 0.089 (3.047)  0.189 (2.992) 
2SLS  many IVs    0.059 (2.521) 0.055 (2.381)  0.098 (2.191) 
bias-corrected 2SLS  0.090 (3.854) 0.080 (3.470)  0.172 (3.833) 
      
GMM finite IVs    0.089 (4.252) 0.074 (3.672)  0.188 (4.716) 
GMM many IVs    0.072 (3.944) 0.059 (3.281)  0.114 (3.255) 
bias-corrected 
GMM 

 0.088 (4.862) 0.072 (4.032)  0.144 (4.131) 

      
Notes: Estimation has been performed using Matlab. T-tests are reported in parentheses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3a: Model (16) Estimation results for undirected networks 
Dependent variable=1 if students i and j are friends and =0 otherwise 

 β γ 1 γ2  
    
Female -0.0195*** -0.0068 0.1518*** 
 (0.0048) (0.0539) (0.0512) 
Religion practice -0.0058*** -0.0013 0.0107 
 (0.0020) (0.0167) (0.0168) 
Student grade -0.0386*** 0.0435* -0.0084 
 (0.0020) (0.0242) (0.0180) 
Black or African 
American 

-0.0744*** 0.0328 0.0340 

 (0.0093) (0.0756) (0.0262) 
Other races -0.0201 -0.0133 -0.0242 
 (0.0127) (0.0335) (0.0442) 
Mathematics score -0.0067** -0.0177 0.0194 
 (0.0027) (0.0246) (0.0293) 
Self esteem -0.0026 -0.0022 0.0082 
 (0.0025) (0.0167) (0.0120) 
Physical development 0.0003 -0.0167 0.0295 
 (0.0018) (0.0201) (0.0198) 
Household size -0.0019 0.0001 0.0049 
 (0.0019) (0.0117) (0.0144) 
Two married parent 
family 

-0.0113 -0.0890 0.0473 

 (0.0074) (0.0908) (0.0908) 
Parent education -0.0038 0.0097 0.0131 
 (0.0024) (0.0111) (0.0122) 
Single parent family 0.0145** 0.1121 -0.1426* 
 (0.0065) (0.0776) (0.0768) 
Residential building 
quality 

-0.0027 -0.0146 -0.0056 

 (0.0023) (0.0164) (0.0211) 
School attachment -0.0031 -0.0336** 0.0226 
 (0.0031) (0.0163) (0.0175) 
Relationship with 
teachers 

-0.0035 0.0018 0.0015 

 (0.0022) (0.0204) (0.0133) 
Social inclusion -0.0101*** -0.0044 0.0035 
 (0.0025) (0.0222) (0.0183) 
Parental care 0.0006 -0.0011 -0.0108 
 (0.0048) (0.0379) (0.0409) 
Constant  0.2130*** 

(0.0097)   
Observations  15093 
Number of networks  150 
R-squared  0.048 

 
Note. Obervations are all pairwise combinations of students across networks for total crime. A linear probability model is 
estimated via least squares with network fixed effects. Regressions also include parental occupation dummies and 
residential area dummies. Parameter estimates and bootstrapped standard errors (in parentheses) are reported. *** p<0.01, 
** p<0.05, * p<0.1 



Table3b: Model (17) Estimation results for Directed Networks 
Dependent variable=1 if students i and j are friends and =0 otherwise 

 β (1) β (2)  γ (2) 
    
Female -0.0183*** -0.0181*** 0.0524* 
 (0.0027) (0.0021) (0.0275) 
Religion practice -0.0039*** -0.0037*** -0.0121 
 (0.0010) (0.0012) (0.0084) 
Student grade -0.0236*** -0.0235*** -0.0030 
 (0.0009) (0.0009) (0.0118) 
Black or African 
American 

-0.0434*** -0.0446*** 0.0013 

 (0.0041) (0.0052) (0.0275) 
Other races -0.0188*** -0.0137* -0.0480** 
 (0.0070) (0.0082) (0.0216) 
Mathematics score -0.0041** -0.0040** 0.0065 
 (0.0017) (0.0018) (0.0146) 
Self esteem -0.0023 -0.0026** 0.0067 
 (0.0014) (0.0011) (0.0078) 
Physical development -0.0001 -0.0001 0.0042 
 (0.0012) (0.0010) (0.0099) 
Household size -0.0016 -0.0020 0.0073 
 (0.0010) (0.0012) (0.0061) 
Two married parent 
family 

-0.0070 -0.0074 -0.0319 

 (0.0048) (0.0045) (0.0428) 
Parent education -0.0021* -0.0026** 0.0081 
 (0.0011) (0.0012) (0.0077) 
Single parent family 0.0106** 0.0104** 0.0661 
 (0.0051) (0.0045) (0.0456) 
Residential building 
quality 

-0.0025* -0.0023 -0.0046 

 (0.0015) (0.0015) (0.0119) 
School attachment -0.0015 -0.0015 -0.0021 
 (0.0017) (0.0016) (0.0099) 
Relationship with 
teachers 

-0.0029** -0.0035*** 0.0159 

 (0.0013) (0.0013) (0.0138) 
Social inclusion -0.0064*** -0.0059*** -0.0051 
 (0.0015) (0.0016) (0.0136) 
Parental care 0.0007 0.0012 -0.0025 
 (0.0040) (0.0044) (0.0257) 
Constant 0.1352*** 0.1338*** 

(0.0059)  (0.0054) 
Observations 30186 30186 
Number of networks 150 150 
R-squared 0.024 0.027 

 
Notes. Obervations are all pairwise combinations of students across networks for total crime. Specification (1) includes 
only characteristics of direct friends. Specification (2) adds characteristics of indirect friends (full model (17)). A linear 
probability model is estimated via least squares with network fixed effects. Regressions also include parental occupation 
dummies and residential area dummies. Parameter estimates and bootstrapped standard errors (in parentheses) are reported. 
*** p<0.01, ** p<0.05, * p<0.1 



 Table 4: Who is the Key Player? 
-Significant Differences- 

All crimes 
 

 All Criminals Key Player Criminals  
 Mean St. dev Mean St. dev t-test 

      
Individual characteristics      
Female 0.51 0.50 0.32 0.47 0.0000 
Parent education 3.24 1.08 3.08 1.17 0.1025 
Parent occupation military or security 0.02 0.15 0.007 0.08 0.0577 
Residential area other type 0.01 0.11 0.05 0.21 0.0459 
School attachment 1.92 0.92 2.10 0.94 0.0265 
Relationship with teachers 1.04 1.00 1.38 1.03 0.0002 
Social inclusion 4.48 0.74 4.28 0.82 0.0102 
Parental care 0.93 0.26 0.83 0.38 0.0350 
      
Friends’ characteristics      
Religious practice 2.25 1.21 2.46 1.25 0.0606 
Student grade 8.97 1.47 9.18 1.49 0.1010 
Residential area other type 0.02 0.12 0.004 0.04 0.0017 
      
N.obs. 1147  150   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 

 
Table 5: Key Player versus Bonacich centrality 

-Significant Differences- 
All crimes 

 
 Key Player 

Most Active 
Criminal 

Key Player 
Not the Most Active 

Criminal 
 

 Mean St. dev Mean St. dev t-test 
      
Individual characteristics      
Religion practice 2.47 1.53 2 1.26 0.0591 
Mathematics Score 2.41 1.08 1.97 1.10 0.0349 
Physical development 3.55 1.27 3.17 1.08 0.0704 
Single parent family 0.30 0.46 0.17 0.38 0.0995 
Residential area suburban 0.34 0.47 0.50 0.51 0.0798 
Relationship with teachers 1.51 1.02 1.02 0.97 0.0097 
Social inclusion 4.20 0.81 4.50 0.82 0.0501 
      
Friends’ characteristics      
Religion practice 2.58 1.30 2.13 1.02 0.0294 
Other races 0.08 0.24 0.02 0.10 0.0241 
Parental education 3.07 1.03 3.39 0.83 0.0585 
Parent occupation manual 0.35 0.43 0.23 0.37 0.0936 
Residential building quality 1.51 0.69 1.77 0.84 0.0897 
Residential area suburban 0.44 0.45 0.30 0.42 0.0777 
Parental care 0.91 0.25 0.99 0.04 0.0009 
      
N.obs. 110  40   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 



 
Table 6: Who is the Key Player? 

-Significant Differences- 
Petty crimes 

 
 All Criminals Key Player Criminals  
 Mean St. dev Mean St. dev t-test 

      
Individual characteristics      
Female 0.52 0.50 0.42 0.49 0.0272 
Blacks or African American 0.22 0.41 0.16 0.37 0.1009 
Mathematics score 2.13 0.98 2.40 1.07 0.0057 
Relationship with teachers 1.04 0.98 1.28 1.05 0.0155 
Social inclusion 4.48 0.74 4.21 0.85 0.0006 
Parental care 0.94 0.25 0.80 0.40 0.0004 
      
Friends’ characteristics      
Parent occupation office or sales worker 0.10 0.22 0.05 0.18 0.0111 
Parent occupation farm or fishery 0.02 0.12 0.008 0.09 0.0994 
Residential area suburban 0.35 0.41 0.43 0.47 0.0559 
Relationship with teachers 1.08 0.81 0.94 0.80 0.0715 
      
N.obs. 967  132   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 

 
 

Table 7: Who is the Key Player? 
-Significant Differences- 

More serious crimes 
 

 All Criminals Key Player Criminals  
 Mean St. dev Mean St. dev t-test 

      
Individual characteristics      
Female 0.42 0.49 0.32 0.50 0.0818 
Physical development 3.33 1.07 3.6 1.26 0.0876 
Parent occupation military or security 0.01 0.11 0.00 0.00 0.0141 
Residential area suburban 0.29 0.45 0.45 0.50 0.0100 
Residential area urban-residential only- 0.31 0.46 0.19 0.39 0.0119 
School attachment 2.03 0.98 2.25 1.07 0.0978 
Relationship with teachers 1.24 1.06 1.52 1.39 0.0939 
      
Friends’ characteristics      
Student grade 8.85 1.45 9.16 1.47 0.0890 
Parent occupation military or security 0.006 0.05 0.00 0.00 0.0030 
Parent occupation farm or fishery 0.02 0.10 0.006 0.04 0.1098 
Residential area other type 0.03 0.14 0.007 0.06 0.0303 
      
N.obs. 470  75   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 

 



 
 

Table 8: Key Player for Petty and Serious Crimes 
-Significant Differences- 

 
 Key Player 

Petty Crime 
Key Player 

More Serious Crime 
 

 Mean St. dev Mean St. dev t-test 
      
Individual characteristics      
Black or African American 0.16 0.37 0.30 0.46 0.0318 
Social inclusion 4.21 0.85 4.44 0.79 0.0543 
      
Friends’ characteristics      
Black or African American 0.17 0.37 0.32 0.46 0.0146 
Mathematics score 2.10 0.88 2.44 0.93 0.0130 
Parent occupation office or sales worker 0.05 0.18 0.12 0.24 0.0560 
Parent occupation military or security 0.02 0.14 0.00 0.00 0.0472 
Residential area urban-residential only- 0.21 0.39 0.31 0.43 0.1039 
Relationship with teachers 0.94 0.80 1.16 0.90 0.0913 
Social inclusion 4.51 0.61 4.33 0.77 0.0825 
      
N.obs. 132  75   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 
 



 
Table 9: Key Player versus Bonacich centrality 

-Significant Differences- 
Petty crimes 

 
 

 Key Player 
Most Active 

Criminal 

Key Player 
Not the Most Active 

Criminal 
 

 Mean St. dev Mean St. dev t-test 
      
Individual characteristics      
Religion practice 2.40 1.39 1.90 1.16 0.0368 
Physical development 3.60 1.22 3.13 1.03 0.0251 
Parent education 3.27 1.06 2.82 1.10 0.0342 
Parent occupation manager 0.20 0.40 0.05 0.22 0.0065 
Relationship with teachers 1.46 1.04 0.85 0.96 0.0016 
      
Friends’ characteristics      
Parent occupation office or sales worker 0.07 0.21 0.02 0.09 0.0826 
Residential area suburban 0.47 0.48 0.33 0.45 0.1057 
      
N.obs. 93  39   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 
 
 
 

Table 10: Key Player versus Bonacich centrality 
-Significant Differences- 

More Serious crimes 
 

 
 Key Player 

Most Active 
Criminal 

Key Player 
Not the Most Active 

Criminal 
 

 Mean St. dev Mean St. dev t-test 
      
Individual characteristics      
Other races 0.09 0.29 0.00 0.00 0.0240 
Household size 4.43 1.25 5.16 1.71 0.0993 
Residential building quality 1.80 1.00 1.42 0.61 0.0526 
Residential area suburban 0.39 0.49 0.63 0.49 0.0789 
Residential area other type 0.07 0.26 0.00 0.00 0.0445 
      
Friends’ characteristics      
Two married parent family 0.69 0.42 0.49 0.40 0.0788 
Single parent family 0.25 0.37 0.43 0.41 0.0988 
Residential area urban-residential only- 0.37 0.46 0.15 0.28 0.0167 
Parental care 0.88 0.28 0.97 0.09 0.0406 
      
N.obs. 56  19   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 
 



Table 11: Key Players and network topology 
All crimes 

 
 Betweenness Clustering Closeness Bonacich 
percentiles         

p50 0  0  0.50  2.16  
p75 0.50  0  0.67  3.32  
p90 0.67  0.27  0.75  4.70  
p95 0.73  0.50  0.83  5.58  

min 0  0  0.17  0.13  
max 1  1  1  9.63  
         

 (1) (2) (1) (2) (1) (2) (1) (2) 
         

>p90 4.5% 10% 10% 10% 11% 5% 14% 0% 
>p95 4.5% 5% 4.5% 2.5% 4.5% 5% 6.4% 0% 
         
         

(1) Key Players Most Active Criminals; (2) Key Players Not the Most Active Criminals 



 
Table 12: Key Players and network topology 

Petty crimes 
 
 
 Betweenness Clustering Closeness Bonacich 
percentiles         

p50 0  0  0.50  2.18  
p75 0.05  0  0.60  3.80  
p90 0.53  0.33  0.75  5.18  
p95 0.67  1  0.80  5.75  

min 0  0  0.13  0.20  
max 1  1  1  7.31  
         

 (1) (2) (1) (2) (1) (2) (1) (2) 
         

>p90 13% 2.5% 7.5% 0% 8.6% 7.6% 13% 2.6% 
>p95 3.2% 0% 2.1% 0% 6.4% 5.1% 6.5% 0% 
         
         

(1) Key Players Most Active Criminals; (2) Key Players Not the Most Active Criminals 
 

 
 
 
 
 

Table 13: Key Players and network topology 
More serious crimes 

 
 
 Betweenness Clustering Closeness Bonacich 
percentiles         

p50 0  0  0.50  2.45  
p75 0.67  0  0.75  4.53  
p90 0.67  0.33  0.75  5.61  
p95 0.69  0.33  1  6.48  

min 0  0  0.20  0.34  
max 1  1  1  12.55  
         

 (1) (2) (1) (2) (1) (2) (1) (2) 
         

>p90 1.8% 16% 3.6% 5.3% 5.3% 16% 12.5% 0% 
>p95 1.8% 10% 3.6% 5.3% 3.6% 10% 5.4% 0% 
         
         

(1) Key Players Most Active Criminals; (2) Key Players Not the Most Active Criminals 
 
 



Table 14: Key Players and network topology 
All crimes 

 
 

 Key Player 
Most Active Criminal 

Key Player 
Not the Most Active Criminal 

 

 Mean St. dev Mean St. dev t-test 
      
Network characteristics      
Diameter 3.84 2.33 4.20 2.75 0.4701 
Average distance 2.05 0.82 2.16 0.96 0.5183 
Average degree 1.81 0.46 1.80 0.43 0.9043 
Density 0.42 0.12 0.42 0.14 0.9074 
Asymmetry 0.67 0.25 0.64 0.24 0.4750 
Network clustering 0.10 0.20 0.10 0.18 0.9328 
Network degree 0.13 0.10 0.11 0.09 0.3421 
Network closeness 0.54 0.26 0.50 0.23 0.3511 
Assortativity 9.30×10-18 1.58×10-16 6.03×10-17 3.28×10-16 0.2037 
Network betweeness- 3.36 3.51 4.14 5.01 0.3723 
      
N.obs. 110  40   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 15: Key Players and network topology 
Petty crimes 

 
 

 Key Player 
Most Active Criminal 

Key Player 
Not the Most Active Criminal 

 

 Mean St. dev Mean St. dev t-test 
      
Network characteristics      
Diameter 3.91 2.25 3.84 2.43 0.8817 
Average distance 2.06 0.78 2.03 0.81 0.8484 
Average degree 1.82 0.47 1.75 0.38 0.3719 
Density 0.42 0.13 0.43 0.12 0.5053 
Asymmetry 0.65 0.24 0.67 0.22 0.6335 
Network clustering 0.10 0.19 0.09 0.19 0.7937 
Network degree 0.12 0.10 0.12 0.08 0.9292 
Network closeness 0.53 0.25 0.53 0.22 0.9894 
Assortativity -1.54×10-17 3.24×10-17 -4.39×10-17 6.14×10-17 0.6836 
Network betweeness 3.69 4.39 3.27 3.30 0.5497 
      
N.obs. 93  39   
 

 
 
 
 

Table 16: Key Players and network topology 
More serious crimes 

 
 

 
Key Player 

Most Active Criminal 

Key Player 
Not the Most Active 

Criminal 
 

 Mean St. dev Mean St. dev t-test 
      
Network characteristics      
Diameter 3.91 2.01 3.42 1.46 0.2616 
Average distance 2.07 0.73 1.92 0.61 0.3710   
Average degree 1.79 0.41 1.66 0.21 0.0849 
Density 0.42 0.13 0.46 0.10 0.1624 
Asymmetry 0.65 0.23 0.69 0.21 0.5318 
Network clustering 0.09 0.17 0.09 0.19 0.9753 
Network degree 0.12 0.10 0.13 0.08 0.7559 
Network closeness 0.52 0.24 0.53 0.22 0.8513 
Assortativity 7.64×10-18 1.37×10-16 -1.24×10-17 1.22×10-16 0.5535 
Network betweeness 3.63 3.62 2.72 2.12 0.1933 
      
N.obs. 56  19   
 


