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Abstract

An incumbent firm and a buyer agree on a price-quantity schedule before the
buyer negotiates with a rival firm. The rival’s efficiency and the share of the demand
he can address are unknown when the schedule is chosen. Incomplete information
yields inefficient exclusion. We link the slope and the curvature of the optimal
tariff to the distribution of the uncertainty, and investigate whether foreclosure is
complete or partial. When the buyer’s disposal costs are finite, he might buy more
than needed with the sole purpose of qualifying for rebates. Contingent tariffs allow
to overcome the opportunism problem.
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1 Introduction

Nonlinear pricing, an ubiquitous business conduct, keeps attracting the attention of com-
petition agencies.1 The firms under scrutiny had market power, and antitrust enforcers
were concerned that quantitative rebates might have discouraged buyers from switching
part of their requirements towards as efficient competitors (for fear of losing rebates). As
a result, efficient competitors might have been driven out of the market or marginalized,
and, in any case, prevented from selling the efficient quantity.

The nonlinear pricing literature has investigated second-order price discrimination
under monopoly or oligopoly, see Wilson (1993). The monopolist’s pricing problem has
first been studied when consumers differ through a single unobserved characteristic (e.g.
Mussa and Rosen (1978) and Maskin and Riley (1984), then extended in a multidimen-
sional settings (Armstrong (1996), Rochet and Choné (1998) and Armstrong (1999)).
Nonlinear pricing under oligopoly is studied in Armstrong and Vickers (2001), Marti-
mort and Stole (2009), and Armstrong and Vickers (2010). The literature on competitive
price discrimination has mainly explored simultaneous competition and often focused on
symmetric equilibria.

In contrast, the present article considers a dominant firm on a market where a smaller
firm is present and may challenge its position, at least to a certain extent. We adopt

1Among recent antitrust cases, Virgin/British Airways (Commission Decision 2000/74/EC of 14 July
1999), and in the U.S. Virgin v. British Airways, 69 F. Supp. 2d 571, 581, 582 (S.D.N.Y. 1999) as well
as 257 F.3d 256 (2nd Cir. 2001), Concord Boat (United States Court of Appeals for the 8th Circuit - 207
F.3d 1039, 8th Cir. 2000), Michelin II (Commission decision of 20 June 2001 COMP/E-2/36.041/PO),
Lepage’s/3M (324 F.3d 141, 2003), Prokent-Tomra (COMP/E-1/38.113, 2006), and Intel (COMP/C-3
/37.990, 2009).
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the basic incumbency setting with three players: an incumbent, a strategic entrant (or
a competitive fringe), and a buyer.2 We assume that the dominant firm and a large
buyer commit on a price schedule prior to any negotiation with the competitor. As
observed by Aghion and Bolton (1987) in the context of exclusive contracts, “when a
buyer and a seller sign a contract, they have a monopoly power over the entrant. They
can jointly determine what fee the entrant must pay in order to trade with the buyer.”
This insight applies under both complete and incomplete information. Nonlinear pricing
by a dominant firm under complete information is now well understood.3

Our focus is on incomplete information.4 We consider two dimensions of uncertainty.
First, as in Aghion and Bolton (1987), the entrant’s cost –or more generally, the surplus
he creates with the buyer– is unknown to the buyer and the incumbent when they agree
on a price schedule. Second, while we allow the buyer to split his purchases between
suppliers, we assume that only a fraction of his requirements can be supplied by the
entrant. This fraction constitutes the second characteristic of the entrant that is unknown
to the buyer-incumbent pair.

As noticed by competition authorities, it is often unrealistic to assume that a buyer
can shift all of his requirements within a relevant time period from the dominant supplier
to a competitor. This can be due to demand-side or supply-side considerations. It may be
the case that competitors are capacity constrained and cannot serve all of the demand
of large customers. It may also be the case that the incumbent’s product is a “must-
stock” for retailers because only a fraction of final consumers is ready to experiment
with competing products (regardless of their price). In both cases, within a relevant
time horizon, the entrant can address only a fraction of the buyer’s demand, which
constitutes the maximum scale of entry. The incumbent faces no competition for the
complementary part of his requirements. Ex ante, the size of the “captive market”, and
consequently that of the “contestable market,” are uncertain.

The last important ingredient of our framework is the existence of disposal costs. We
allow the buyer to purchase more than his requirements and assume that he can dispose of
excess units at some cost. This gives rise to a problem of buyer opportunism. The buyer
and the incumbent negotiate a price schedule that places competitive pressure on the
entrant and forces him to sell at a low price. We show that this “rent-shifting” strategy
involves marginal prices below marginal costs, and may even involve negative marginal
prices. A negative marginal price allows the buyer to extract rents from the entrant, but
also gives him an ex post incentive to buy more than he needs from the incumbent. While
this opportunistic behavior is anticipated ex ante, it constrains the choice of the price
schedule by the buyer-incumbent pair. The possibility of buyer opportunism depends on
the magnitude of disposal costs, as the buyer has to get rid of units she does not consume

2Such a framework has been used to model incumbency and/or a dominance at least since Spence
(1977, 1979) and Dixit (1979, 1980).

3Marx and Shaffer (1999) looks at two-part tariffs with a focus on below cost pricing, Marx and
Shaffer (2004) studies how equilibrium is affected when certain classes of tariffs are forbidden, Marx
and Shaffer (2007) focuses on the order of negotiation (Is it better for the buyer to negotiate first with
the incumbent or with the entrant?), and Marx and Shaffer (2010) shows how bargaining powers affect
profits and when break-up fees are used.

4Incomplete information differs from asymmetric information. For instance, in Majumdar and Shaffer
(2009), a dominant firm resorts to nonlinear pricing to discriminate a buyer who is informed about the
size of demand and who also sells a good provided by a competitive fringe –a situation with asymmetric
information.
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nor resale. Buyer opportunism is maximal under free disposal and does not exist when
disposal costs are infinite.

The contributions of our analysis are threefold. First, we solve a multidimensional
screening problem where the number of instruments is smaller than the dimension of
unobserved heterogeneity, and we do so for general distributions of the heterogeneity.
Second, the generality of the analysis allows to assess the robustness of the Aghion-
Bolton framework and to reveal new properties, such as the curvature of optimal price
schedules and partial foreclosure. Third, we explain how conditioning the tariff on the
quantity purchased from the competing supplier (when feasible) allows to eliminate buyer
opportunism, and thus to achieve the same outcome as if disposal costs were infinite. We
now explain each of these contributions in more details.

First, we contribute to the nonlinear pricing literature. In our framework, the type of
the entrant has two components: the surplus he creates with the buyer and the maximum
scale of entry. However, to screen out the entrant’s types, the incumbent has only
one instrument, namely a price-quantity schedule. This configuration, which generates
extensive pooling, has received little attention.5 Here, the structure of the model makes
it possible to characterize the set of implementable allocations, and to construct the
solution with few restrictive assumptions on the distribution of the uncertainty. As
explained below, the equilibrium pattern of the pooling regions reflects the barriers to
entry and to expansion created by the optimal tariff.

Second we link the curvature of optimal price schedules and the form of inefficient
exclusion (partial versus full foreclosure) to two structural parameters of the model: the
entrant’s bargaining power and to the elasticity of entry. The former parameter is zero
in the case of a competitive fringe and is, in general, positive in the case of strategic
entrants. The latter parameter expresses how entry at a given scale is sensitive to the
competitive pressure exerted by the incumbent. It is an key statistics summarizing
the two-dimensional distribution of the entrant’s characteristics. Our findings can be
summarized as follows.

When the size of the contestable demand is known to the buyer and the incumbent
(only the entrant surplus is unknown), the pricing problem involves a standard tradeoff
between rent extraction and efficiency, and is a mere reformulation of the Aghion-Bolton
analysis. Some efficient competitors are foreclosed, and the extent of inefficient exclusion
decreases with the entrant’s bargaining power and the elasticity of entry. The optimal
schedule is a two-part tariff, inefficient exclusion arises in the form of full foreclosure only:
no partial foreclosure is observed. These results readily extend under two-dimensional
uncertainty, provided that the two unknown parameters are statistically independent or,
equivalently, that the elasticity of entry remains constant with the size of the contestable
market. We now turn to cases where the elasticity of entry varies with the size of the
contestable market.

When the elasticity of entry increases with the size of the contestable share of the
demand, the optimal policy of the buyer-incumbent pair is to reduce the competitive pres-
sure exerted on the entrant as the scale of entry increases, which cannot be achieved with
two-part tariffs. Optimal tariffs are shown to be concave for high quantities. Here again,

5A notable exception is Laffont, Maskin, and Rochet (1987) who solve an example with uniform
distributions.
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inefficient exclusion arises, in the form of full foreclosure only. Solving the efficiency-rent
tradeoff à la Aghion-Bolton separately for any given level of the contestable demand (i.e.
solving the “relaxed problem”) yields the optimal tariff.

When the elasticity of entry decreases in or is non monotonic with the contestable
demand, the solution to the relaxed problem is not incentive compatible as entrants
with a large contestable demand would mimic entrants with a smaller one at the relaxed
allocation. The incentive compatibility constraints translate into convex parts of the
tariff and into partial foreclosure at the optimum. Some efficient entrants sell a positive
quantity but are prevented from achieving the maximum scale of entry and serving all
of the contestable share of demand. When the elasticity of entry first decreases, then
increases as the maximum scale of entry rises, the buyer and the incumbent want to be
soft with entrants with small and large contestable markets and to be aggressive with
entrants with intermediate contestable markets. This tension generates highly nonlinear
tariffs that induce many entrants to choose the same quantity, as is the case with so-called
“retroactive rebates” challenged by European competition agencies in recent cases.

Finally, we contribute to the literature on market-share rebates.6 Specifically, we
allow the buyer and the incumbent to condition the negotiated price schedule on the
number of units purchased from the entrant, and we show that this instrument allows
them to overcome the problem of buyer opportunism. When the price-quantity schedule
only depends on the number of units purchased from the incumbent, placing competitive
pressure on the buyer may involve negative marginal prices, which, in turn, trigger buyer
opportunism if the buyer can freely dispose of excess units and, to a lesser extent, if
disposal costs are finite. Our analysis, however, straightforwardly extends to the case
where the tariff also depends on the number of units purchased from the entrant. We
show that the same quantity allocations are implementable under conditional rebates.
There is a huge difference, though: conditional tariffs allow to exert competitive pressure
on the buyer without resorting to negative marginal prices (i.e. to negative price for
marginal units sold by the incumbent). Competitive pressure can instead come from
the implicit price of marginal units sold by the entrant. Thus, conditional rebates, when
feasible, allow to eliminate buyer opportunism and to achieve the same outcome as under
infinite disposal costs.

The article is organized as follows. For ease of exposition, we assume first that disposal
costs are infinite, thus abstracting away from the issue of buyer opportunism. Section 2
introduces the model. Section 3 explains how the negotiation between the buyer and the
entrant, which takes place under complete information, is affected by the incumbent’s
price schedule. Section 4 focuses on the negotiation between the buyer and the incumbent.
This negotiation takes place under incomplete information. It introduces the notion of
virtual surplus and of elasticity of entry before characterizing the construction of the
optimal price schedule. This section also relates the shape of the optimal negotiated
price schedule to the primitive of the model. Section 5 introduces finite disposal costs.
It extends the previous results, discusses the opportunism of the buyer and shows how a
market-share tariff could overcome it. Section 6 we discuss some extensions of the model

6Inderst and Shaffer (2010) assume complete information and study a setting with a dominant firm,
a competitive fringe and two retailers. They show that market-share rebates are used by the dominant
firm to dampen (intra- and inter-brand) competition. Calzolari and Denicolo (2009) address the issue
in a duopoly setting (simultaneous game, symmetric firm).
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as well as antitrust implications.

2 The model

A buyer, B, may purchase from two firms, E and I. We call firm I the incumbent and
firm E the entrant although the game under study does not involve a genuine entry
decision.7 This terminology is convenient to convey the idea that firms are asymmetric.
The asymmetry is twofold: the incumbent is first to negotiate a tariff with the buyer;
the incumbent can serve all the demand while the entrant can serve only a fraction of it.
We call this fraction the “contestable” part of the demand.

Figure 1: Timing of the game

The timing, sketched in Figure 1, reflects the incumbency advantage of the dominant
firm. It is a four stage game which unfolds as follows. First, the buyer and the incumbent
negotiate a price-quantity schedule. Formally, if the buyer eventually purchases qI units
from the incumbent, he will pay T (qI). In Section 5, we solve the game when the buyer
and the incumbent can condition the tariff on the quantity, qE , supplied from the entrant,
i.e. they use a tariff of the form T (qE , qI). The characteristics of the incumbent’s good
are common knowledge: its constant marginal cost of production is cI and the buyer’s
gross benefit per unit is vI . Next, the entrant and the buyer observe the characteristics
of the new product: its marginal cost of production cE , the size of sE of the contestable
demand and the gross (per unit) benefit, vE , for the buyer. Then, the buyer and the
entrant, both knowing the terms of the agreement between the buyer and the incumbent,
agree on a price and a quantity.8 This negotiation takes place under complete information
and is assumed to be efficient. Finally, the buyer purchases from the incumbent. The
buyer’s total demand is inelastic, and normalized to one: qE + qI ≤ 1.

The assumption that firm E can address at most a fraction, sE , of the buyer’s demand
embodies two interpretations: a supply-side variant in which firm E has capacity sE and
a demand-side variant where the buyer does not value units of good E in excess of sE .
In both cases, the buyer never purchases more than sE from the entrant: qE ≤ sE .

Given vE and vI the buyer’s gross benefit per unit of goods E and I, and the quantities
qE ≤ sE and qI purchased respectively from the entrant and the incumbent, the buyer’s
gross profit is:

V (qE , qI) =

{
vEqE + vIqI , if qE + qI ≤ 1
−∞ otherwise. (1)

The above specification assumes infinitely large disposal costs: failing to consume all
of the purchased units is infinitely costly, and hence all the purchased units are indeed

7In particular it does not feature a sunk entry cost incurred by firm E.
8We assume that the buyer and the incumbent cannot renegotiate their agreement once uncertainty

is resolved. Otherwise they would agree on a tariff under complete information and appropriate all the
surplus (see the end of this section). The contribution of the current paper is, on the contrary, to study
the form of the price schedule negotiated under incomplete information.
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consumed. This assumption is maintained in Section 3 and 4, and relaxed in Section 5,
where finite disposal costs are introduced.

We note ωE = vE−cE ≥ 0 the unit surplus generated by good E, and ωI = vI−cI ≥ 0
the unitary surplus of good I. At the time of agreeing on the price schedule, the size of
the contestable demand, sE , and the surplus per unit of good E, ωE , are uncertain. We
denote by [sE , s̄E ] and by [ωE , ω̄E ] the supports of the random variables sE and ωE . The
cumulative distribution function of sE , denoted by G, is assumed to admit a positive and
continuous density function g. The distribution of ωE conditional on sE is denoted by
F (.|sE) and is assumed to admit a positive and continuous density function, f(.|sE).

Efficiency benchmark. The total surplus is W (qE , qI) = ωEqE + ωIqI if qE + qI ≤ 1
and −∞ otherwise. The first best allocation maximizes W under the constraint qE ≤
sE . Efficiency requires qE + qI = 1, because W increases with both quantities as long
qE +qI ≤ 1. Hence, at the the first best, the quantity purchased from the entrant satisfies

ωI + max
qE≤sE

(ωE − ωI)qE , (2)

and hence is given by

q∗E(sE , ωE) =

{
sE if ωE ≥ ωI

0 otherwise. (3)

Entry, if efficient, should occur at maximum scale. Hence the maximal value of total
surplus is ωEsE + ωI(1− sE) when ωE ≥ ωI , and ωI when ωI ≥ ωE .

Second best. The negotiation between the buyer and the entrant, studied in Section 3,
takes place under complete information and is assumed to be efficient. The buyer and
the entrant maximize their joint surplus, which they share according to their outside
options and relative bargaining power. Ex ante, the buyer and the incumbent design the
price schedule to maximize their expected joint surplus, equal to the total surplus minus
the profit left to the entrant, denoted by ΠE :

EΠBI = E {W (qE , qI)−ΠE} . (4)

The sharing of the expected joint surplus between the buyer and the incumbent, and
hence the respective bargaining power of each party, play no role in the following analysis.

Complete information. Suppose the entrant is efficient and the buyer and the in-
cumbent know the surplus per unit of good E, ωE > ωI . Then they agree on a two-part
tariff with slope slightly above vI −ωE , thus offering a surplus slightly below ωE for each
unit of good I. As units of good E create a slightly higher surplus and the negotiation
between the buyer and the entrant is efficient, the buyer purchases all contestable units
from the entrant. The incumbent sells the remaining units: the allocation is socially
efficient. To sell units to the buyer, the entrant must match the incumbent’s offer, and
thus is left with negligible profit. The buyer and the incumbent therefore appropriate
the entire surplus, ωEsE + ωI(1− sE).

As the slope vI − ωE does not depend on sE , the above analysis holds when the
buyer and the incumbent do not know the size of the contestable market.9 The complete

9The fixed part of the tariff determines the sharing of the surplus between the buyer and the incum-
bent. When sE in unknown, the same is true for the expected surplus, ωEE(sE) + ωI [1− E(sE)].
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information environment is studied with more general demand functions in Marx and
Shaffer (1999) and Marx and Shaffer (2004).

3 Negotiation between the buyer and the entrant

In subsection 3.1, we describe the negotiation between the buyer and the entrant, which
takes place under complete information: the parties maximize their joint surplus, know-
ing the incumbent’s price schedule T , and share this surplus according to their relative
bargaining power and outside options. In subsection 3.2, we provide a number of exam-
ples showing how the quantity purchased from the entrant depends on the shape of the
tariff. Finally, in Subsection 3.3, we formally characterize the set of all implementable
allocations.

3.1 Maximization of the joint surplus

After having purchased qE units from the entrant, the buyer chooses qI to solve

UB(qE) = max
qI

V (qE , qI)− T (qI). (5)

Anticipating the above decision regarding qI , the buyer and the entrant choose qE to
maximize their joint surplus

SBE(cE , sE , vE) = max
qE≤sE

UB(qE)− cEqE , (6)

The price schedule T (.) is, on the contrary, key in the definition of this surplus as UB(qE)
depends on T (.). The buyer and the entrant share SBE according to their respective
bargaining power and outside options. The entrant’s outside option is normalized to
zero. As to the buyer, he may source exclusively from the incumbent, so his outside
option is UB(0). It follows that the surplus created by the relationship between B and
E is given by

∆SBE(cE , sE , vE) = SBE(cE , sE , vE)− UB(0).

Denoting by β ∈ (0, 1) the entrant’s bargaining power vis-à-vis the buyer, the entrant
gets ΠE and the buyer gets ΠB given by

ΠE = 0 + β ∆SBE

ΠB = UB(0) + (1− β) ∆SBE .

If β = 0, the entrant has no bargaining power and may be seen as a competitive fringe
from which the buyer can purchase any quantity at price cE . On the contrary, the case
β = 1 happens when the entrant has all the bargaining power vis-à-vis the buyer.

Now we observe that the quantity purchased from the incumbent, solution to (5), is ex
post efficient, i.e. maximizes the joint surplus of the buyer-incumbent pair given qE . In
other words, the total quantity purchased by the buyer exactly meets his demand: qE +
qI = 1. On the one hand, the buyer does not purchase more than his total requirements,
because disposal costs are assumed to be infinite; hence the solution to problem (5)
satisfies qI ≤ 1 − qE for all qE . On the other hand, buying less than 1 − qE from the
incumbent would destroy surplus as vI > cI . Lemma A.1 in appendix formally shows
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that the buyer and the incumbent, when choosing the tariff T , have both the ability and
the incentive to make sure that, for any qE , the buyer will purchase at least 1− qE from
the incumbent after having purchased qE from the entrant. We may thus conclude that
qE + qI = 1 at the second-best optimum.

Replacing qI with 1 − qE in (5) and noting that the joint surplus of the buyer and
the entrant depends on cE and vE only through ωE , we can write

SBE(sE , ωE) = vI + max
qE≤sE

(ωE − vI)qE − T (1− qE).

As the buyer’s outside option is UB(0) = vI − T (1), the surplus from the trade between
the buyer and the entrant is

∆SBE(sE , ωE) = max
qE≤sE

(ωE − vI)qE − T (1− qE) + T (1). (7)

For any sE , the function ∆SE(sE , .) is the upper bound of a family of affine functions of
ωE , and hence is convex in ωE . It follows that ∆SE(sE , ωE) is differentiable with respect
to ωE , except possibly at countably many points. By the envelope theorem, its derivative
with respect to ωE is qE(sE , ωE), solution to (7).10 Hence, the function qE(sE , ωE) is
nondecreasing in ωE . We have:

∆SBE(sE , ωE) =

∫ ωE

ωE

qE(sE , x) dx. (8)

Moreover, it follows from (7) and (8) that qE and ∆SBE are nondecreasing in sE . The
buyer purchases more units from the entrant as the surplus per entrant’s unit, ωE , and
the size of the contestable demand, sE , rise.

3.2 Examples: Concave, linear, convex tariffs

The problem of the buyer-entrant pair’s is not necessarily concave. Specifically, the
objective in (7) is convex (concave) if and only if T is concave (convex). In any case, the
price schedule is relevant only in the interval [1− s̄E , 1], because the entrant cannot sell
more than s̄E . This section provides three illustrative examples.

We consider first the case where the tariff T is concave on the relevant range, [1−s̄E , 1],
and hence the objective in (7) is globally convex. The maximum is reached either at
qE = 0 or at qE = sE . The buyer purchases qE = sE from the entrant if and only if

(ωE − vI)sE − T (1− sE) + T (1) ≥ 0

or ωE − vI ≥ pe(sE), where pe(sE) is the average price of the last sE units sold by the
incumbent:

pe(sE) =
T (1)− T (1− sE)

sE
. (9)

10For any sE , the set of solutions to problem (7) is included in the subgradient of the convex function
∆SBE(sE , .). At points where ∆SBE(sE , .) is differentiable, the subgradient consists of a single point,
namely the derivative of ∆SBE with respect to ωE : the solution of (7) is unique. At points where
∆SBE(sE , .) has a convex kink, the subgradient is an interval, see Rockafellar (1997).
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Supplying all contestable units from the entrant (qE = sE) is efficient for the buyer-
entrant’s pair if and only if the joint surplus thus created, ωEsE , exceeds the net surplus
foregone by not purchasing the corresponding units from the incumbent, (vI−pe(sE))sE .
Geometrically, the effective price pe(qE) is the slope of the chord that connects the points
(1, T (1)) and (1− qE , T (1− qE)), see the left panel of Figure 2.

Figure 2: The buyer and the entrant choose qE under a concave tariff

The right panel of Figure 2 represents the curve with equation ωE = vI − pe(sE) in
the (sE , ωE)-plan. This curve is decreasing by concavity of the tariff. Below the curve
(shaded area), the entrant is inactive, qE = 0. Above the curve, the buyer supplies all
contestable units from the entrant, qE = sE , and hence the quantity isolines, i.e. the sets
of types for which the quantity is constant, are vertical.

The above analysis holds in particular when the tariff is affine or, equivalently, when
the incumbent’s effective price pe(qE) is constant. This case is represented on Figure 3.
Setting the effective price at pe amounts to offering the surplus vI−pe per unit of good I.
To serve the buyer, the entrant has to match this offer. Hence, entrants with ωE above
(below) vI − pe serve all of the contestable demand (are inactive). The efficient quantity,
q∗E , obtains when p

e is constant and equal to cI .

When the price schedule T is strictly convex, the program (7) is concave and has a
unique solution, which may or may not be interior. For ωE higher than vI − T ′(1− sE),
the solution of (7) is qE = sE : the entrant serves all of the contestable demand. For
ωE lower than vI − T ′(1), the solution is qE = 0: the entrant is inactive. For ωE

between these two values, the solution is interior, and is given by the first-order condition
ωE − vI + T ′(1 − sE) = 0: the entrant is active, but serves less than the contestable
demand. The right panel of Figure 4 represents in the (sE , ωE)-plan the curve with
equation ωE = vI−T ′(1−sE), which is increasing by convexity of the tariff. The quantity
isolines are “L”-shaped, with the vertical part above the curve and the horizontal part
below.
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Figure 3: The buyer and the entrant choose qE under a linear tariff

Figure 4: The buyer and the entrant choose qE under a convex tariff

3.3 Implementable quantity functions

The buyer and the entrant negotiate under complete information and choose a quan-
tity qE that depends on the entrant’s characteristics, (sE , ωE). A quantity function
qE(sE , ωE) from [sE , s̄E ] × [ωE , ω̄E ] to [0, 1] is implementable if and only if there exists
a tariff T such that qE is solution to (7) for all (sE , ωE).

In this section, we show that any implementable quantity function qE(sE , ωE) may
be represented by a boundary line in the (sE , ωE)-plan such that qE = sE above the
boundary and qE does not depend on sE below the boundary. Such boundary lines have
equations of the form ωE = Ψ(sE), where Ψ is called a boundary function. We demon-
strate below the existence of a one-to-one map between quantity functions qE(sE , ωE)
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and boundary functions Ψ(sE). To solve the two-dimensional problem, it turns out to be
convenient to work with boundary functions rather than directly with quantity functions.

As qE is nondecreasing in ωE , there exists, for any sE > 0, a threshold Ψ(sE) such
that the buyer supplies all contestable units from the entrant, qE(sE , ωE) = sE , if and
only if ωE > Ψ(sE). We define the boundary function Ψ(sE) associated to the quantity
function qE(sE , ωE) by

Ψ(sE) = inf{x ∈ [ωE , ω̄E ] | qE(x, sE) = sE},

with the convention Ψ(sE) = ω̄E when the above set is empty. Because the quantity
function qE(sE , ωE) is nondecreasing in sE and constant below the boundary, we have:

qE(sE , ωE) =

{
min{ x ≤ sE | Ψ(y) ≥ ωE for all y ∈ [x, sE ]} if Ψ(sE) > ωE ,
sE if Ψ(sE) ≤ ωE .

(10)

For type A (resp. B) on Figure 5, we have Ψ(sE) < ωE (resp. Ψ(sE) > ωE) and the
solution of the problem (7) is unique and equal to s2

E . In contrast, type C is indifferent
between s2

E and s3
E and, by convention, is assumed to choose s3

E . In other words, when (7)
has multiple solutions, equation (10) selects the highest.

The quantity qE is continuous (discontinuous) when crossing increasing (decreasing)
parts of the boundary ωE = Ψ(sE). Alternatively put, the constraint qE ≤ sE in
problem (7) is binding (slack) on decreasing (nondecreasing) parts of the boundary. In
Appendix B.1, we explain how to recover the price schedule T from the boundary function
Ψ, thus proving the sufficient part, and thus prove next result.

Lemma 1. A quantity function qE(., .) is implementable if and only if there exists a
boundary function Ψ(.) defined on [0, 1] such that (10) holds.

Pooling areas and foreclosure (partial versus complete) The pooling sets, i.e.
the sets on which the quantity qE(sE , ωE) is constant, can be one- or two-dimensional.
As shown on Figure 5, one-dimensional pooling sets can be of two types: (i) vertical
lines above points on the boundary line where that line decreases; (ii) “L”-shaped unions
of vertical lines above and horizontal lines at the right of points where the boundary
line increases. There always exists a two-dimensional pooling area, namely the region
where the quantity is zero. Other two-dimensional pooling sets exist in regions where
the boundary line increases and has a vertical part, see e.g. Figures 13a and 13b.

Increasing parts of the boundary function thus translate into horizontal pooling
segments or two-dimensional pooling areas, and hence into partial foreclosure: 0 <
qE(sE , ωE) < sE for some types located below the boundary. In such regions, the con-
straint qE ≤ sE is slack: increasing sE does not allow the competitor to enter at a larger
scale and qE does not depend on sE .

Shape of the boundary line and curvature of the tariff As formally stated in
Lemma B.1, flat parts of the boundary line correspond to linear parts of the tariff (see
Figure 3) and increasing parts of the boundary line correspond to convex parts of the
tariff (see Figure 4). In both cases, the constraint qE ≤ sE in the buyer-entrant pair’s
problem (7) is not binding.
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Figure 5: Implementable quantity function (isolines)
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In contrast, the curvature of the tariff may change along decreasing parts of the
boundary: the tariff is concave near local maxima of the boundary line and convex near
local minima, see equation (B.3) in appendix and Figures 8a, 8b, 9a, and 9b. Local
maxima of the boundary line thus correspond to inflection points of the tariff. An
example is the point A3 on Figures 12a and 12b.

Finally, it is worthwhile noticing that upward and downward discontinuities in the
boundary line have different interpretations in terms of price schedule. Upward discon-
tinuities of the boundary line correspond to convex kinks in the tariff, see Figures 13a
and 13b. Downward discontinuities of the boundary correspond to upward discontinuities
of the tariff, see Figures 14a and 14b.

4 Designing the price schedule

The buyer and the incumbent design the price schedule so as to maximize their joint
surplus, given by (4). Using qI = 1 − qE and replacing ΠE with the value derived in
Section 3.1, we can rewrite their common objective as

EΠBI = ωI + E {(ωE − ωI)qE − β∆SBE} . (11)

To solve the buyer-incumbent pair’s problem, we rely on the duality, exposed in
Section 3, between the incumbent’s price schedule, T , and the quantity purchased from
the entrant, qE . We look for the quantity function qE , then we recover the price schedule
T from this function.11 Section 4.1 expresses the problem in terms of qE , by introducing
the notion of virtual surplus. The maximization of the virtual surplus, ignoring incentive
compatibility, gives rises to a relaxed problem. Section 4.2 presents cases where the
solution of the relaxed problem is incentive compatible. etc.

4.1 Virtual surplus and elasticity of entry

Expanding (11), we write the joint expected surplus of the buyer-incumbent pair as:

EΠBI = ωI +

∫
sE

∫ ω̄E

ωE

{(ωE − ωI)qE − β∆SBE} dF (ωE |sE) dG(sE).

Using (8) and integrating the rent term β∆SBEf by parts with respect to ωE , for each
sE , yields

EΠBI = ωI +

∫
sE

∫ ω̄E

ωE

S v(qE ; sE , ωE) dF (ωE |sE) dG(sE), (12)

where, following Jullien (2000), we have defined the “virtual surplus” S v as

S v(qE , sE , ωE) =

[
ωE − ωI − β

1− F (ωE |sE)

f(ωE |sE)

]
qE .

The virtual surplus is the total surplus W (qE , 1 − qE) adjusted for the informational
rents βqE (1− F (ωE |sE)) /f(ωE |sE) induced by the self-selection constraints. The vir-
tual surplus depends linearly on the quantity qE . Hereafter, the bracketed term in the
above equation is called “virtual surplus per unit” and denoted by sv.

11In fact, the tariff will be determined only up to an additive constant, which reflects the sharing of
the expected surplus between the buyer and the incumbent.
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As observed in Section 3.2, setting a constant effective price pe amounts to offering
the surplus vI − pe per unit of good I. Entrants with ωE above (below) this value serve
all of the contestable demand (are inactive). The fraction of active entrants, for a given
size of the contestable demand, sE , is thus 1 − F (vI − pe|sE). Decreasing the effective
price, i.e. increasing the offered surplus, places more competitive pressure on the entrant,
and hence reduces the fraction of active entrants. This leads us to define the elasticity
of entry by

ε(ωE |sE) =
ωEf(ωE |sE)

1− F (ωE |sE)
. (13)

The virtual surplus per unit can be rewritten as sv = ωE(1−β/ε)−ωI . Throughout the
paper, we maintain the following assumption.

Assumption 1. For any given size of the contestable demand sE, the elasticity of entry,
ε(ωE |sE), is nondecreasing in ωE and its limit at ω̄E is greater than one.

Assumption 1 holds in particular when the hazard rate f(ωE |sE)/ (1− F (ωE |sE))
is nondecreasing in ωE , a usual assumption in the nonlinear pricing literature. It is
also true in the limit case where the elasticity does not depend on ωE ; this happens
when ωE , conditionally on sE , follows a Pareto distribution, given by 1 − F (ωE |sE) =

(ωE/ωE)−ε(sE): the elasticity of entry is then constant in ωE and equal to ε(sE).
The variations of the elasticity of entry with sE are related to the statistical link

between the random variables sE and ωE . The relationship is stated in Lemma 2, proved
in Appendix C.1.

Lemma 2. The elasticity of entry, ε(ωE |sE), does not depend on sE if and only if the
random variables sE and ωE are independent.

If the elasticity of entry increases (decreases) with sE, then ωE first-order stochasti-
cally decreases (increases) with sE.

The buyer and the incumbent maximize the expected virtual surplus, given by (12),
over all implementable quantity function qE . To solve this problem, we first ignore the
implementability conditions derived in Section 3.3 and maximize (12) over all quantity
functions. This is what we call the “relaxed problem”. We denote by qr

E its solution. If qr
E

is implementable, then it is the solution of the complete problem. To avoid uninteresting
corner solutions, we assume hereafter that the entrant may a priori be more or less
efficient than the incumbent.

Proposition 1. Assume ωE < ωI < ω̄E. The solution of the relaxed problem is given by

qr
E(sE , ωE) =

{
0 if ωE ≤ ω̂E(sE)
sE otherwise,

where ω̂E(sE) is the unique solution to

ω̂E(sE)− ωI

ω̂E(sE)
=

β

ε(ω̂E(sE)|sE)
. (14)

Proof. By linearity, the solution to the relaxed problem is sE (zero) when the virtual
surplus per unit, sv, is positive (negative). The equation sv = 0 is equivalent to (14).
The virtual surplus per unit is negative for ωE = ωI and positive for ωE = ω̄E , hence
the existence of ω̂E . The left-hand side of (14) increases in ω̂E , and the right-hand side
is nonincreasing by Assumption 1, which yields uniqueness.
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The threshold ω̂E(sE) summarizes the tradeoff between efficiency and rent extraction
at a given level of sE . Equation (14) shows an analogy with the textbook monopoly
pricing formula. The buyer-incumbent pair indeed has a monopoly power over entry,
or more precisely over the quantity produced by the smaller rival. The buyer and the
incumbent jointly act like a monopoly towards the rival, setting ω̂E to extract rent at the
cost of reducing the probability of entry. When the threshold ω̂E is higher, the efficiency-
rent tradeoff pushes towards less entry. The higher ε, the more reactive the entrant: the
buyer and the incumbent cannot easily extract rents and cannot place strong competitive
pressure on the entrant, hence a lower ω̂E , and more entry.

The buyer has two tools to extract surplus from the entrant. First, his bargaining
power 1−β. Second, the tariff negotiated with the incumbent which determine both the
size of the surplus created by the entry and the outside option of the buyer. They are very
different in nature. First, the former is exogenous and the latter is endogenous. Second,
whereas β does not directly impact the efficiency (if entry creates a positive surplus its
sharing is irrelevant), the price schedule can deter efficient entry. Equation (14) shows
that they are related. The larger the bargaining power of the buyer (i.e. the lower
β) and the lower the threshold ω̂E(sE); the efficiency-rent tradeoff pushes towards more
entry. In the limit case where the buyer has all the bargaining power vis-à-vis the entrant
(β = 0), there is no tradeoff, and hence no inefficient exclusion: ω̂E(sE) coincides with
the efficient threshold ωI . On the contrary, the lower the bargaining power of the buyer
and the higher ω̂E(sE); the efficiency-rent tradeoff pushes towards less entry.

Figure 6: ERT line (dashed) and solution to the relaxed problem (here not imple-
mentable)

Hereafter, we call the curve with equation ωE = ω̂E(sE) in the (sE , ωE)-plan the ERT
line.12 As shown on Figure 6, the solution to the relaxed problem is zero below this line
and sE above. In the represented case, the quantity function qr

E is not implementable,
because implementable functions are nondecreasing in sE and qr

E decreases from sE to
zero when crossing increasing parts as the ERT line. For example, the type represented
at point B, who sells qr

E = 0 and earns zero rent, would have an incentive to mimic
12The acronym ERT stands for Efficiency Rent Tradeoff.

16



type A, who sells all of the contestable demand and earns a positive rent. The relaxed
quantity function, shown on Figure 6, is not consistent with the pattern of implementable
quantity allocations, represented on Figure 5.

4.2 Nondecreasing elasticity of entry

In this section we assume that the elasticity of entry does not decrease with the size of
the contestable demand, sE . We consider first the case where ε(ωE |sE) does not depend
on sE , i.e. sE and ωE are independent. Then we examine the case where ε(ωE |sE)
increases with sE , i.e. ωE first-order stochastically decreases with sE . In both cases, the
solution of the relaxed problem is incentive compatible and is therefore the solution of
the buyer-incumbent pair’s problem.

Proposition 2. When the elasticity of entry, ε(ωE |sE), does not depend on sE, the
second best can be achieved through a two-part tariff with slope: vI− ω̂E. The equilibrium
features inefficient exclusion. Partial foreclosure is not present.

Proof. The ERT threshold given by (14) does not depend on sE , because the elasticity ε
does not. The solution of the relaxed problem, given by Proposition 1, is implementable
with a constant boundary function Ψ(sE) = ω̂E , see Figure 7a.

The second best tariff is obtained as follows. From (8), the gain from trade between
the buyer and the entrant is given by ∆SBE(sE , ωE) = (ωE − ω̂E)sE for ωE > ω̂E . By
definition of ∆SBE , we have: ∆SBE(sE , ωE) = (ωE − vI)sE + T SB(1) − T SB(1 − sE),
hence

T SB(1)− T SB(1− sE) = (vI − ω̂E)sE .

The effective price, defined by (9), is constant and equal to vI − ω̂E . The second best
allocation is achieved by a two-part tariff, see Figure 7b.

To make sure that the competitor serves all of the contestable demand if ωE ≥ ω̂E

and is inactive otherwise, the buyer and the incumbent set the effective price at vI − ω̂E .
The smaller the elasticity of entry, ε, the larger the ERT threshold, ω̂E , the smaller the
slope of the two-part tariff, the stronger the competitive pressure put on the entrant.
The slope of the optimal price schedule is negative whenever vI is lower than ω̂E . In
such a case, the buyer would be better off purchasing more than 1 − sE units from the
incumbent. Yet the buyer cannot take advantage of the negative marginal price offered
by the incumbent because doing so would leave him with unconsumed units and disposal
costs are assumed to be infinite (see Section 5 for finite disposal costs).

As pictured in Figure 7a, the tradeoff between efficiency and rent extraction results in
some efficient entrants being fully foreclosed in equilibrium. Inefficient foreclosure arises
due to incomplete information as in Aghion and Bolton (1987). The fraction of efficient
types that are inactive increases with the entrant’s bargaining power vis-à-vis the buyer
as ω̂E increases with β.

From now on, we consider cases where the elasticity of entry is not constant with sE .
This implies that a two-part tariff is no longer optimal. In this section, we start with the
case where the elasticity increases with sE .

Proposition 3. When the elasticity of entry ε(ωE |sE) increases with sE, the effective
price, pe(qE), increases with qE. The price schedule is concave in a neighborhood of
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Figure 7a: Second best with ε(ωE |sE)
constant in sE

Figure 7b: Optimal price schedule
(case vI > ω̂E)

qI = 1. It is globally concave if ω̂E is concave or moderately convex in sE. The equilibrium
features inefficient exclusion. Partial foreclosure is not present.

Proof. When ε(ωE |sE) increases with sE , the ERT threshold, ω̂E , given by (14), de-
creases with sE , and the solution of the relaxed problem is implementable. Its associated
boundary function has equation Ψ(sE) = ω̂E(sE), see Figure 8a.

By the same reasoning as in Section 4.2, the surplus gain from the trade between the
buyer end the entrant, ∆SBE(sE , ωE), equals (ω − ω̂E(sE))sE above the ERT line and
zero below, and the second best tariff is given by

T (1)− T (1− sE) = (vI − ω̂E(sE))sE .

In other words, the effective price pe(sE) is set at vI − ω̂E(sE), and is thus increasing
in sE . To prove that T is concave in a neighborhood of qI = 1, we compute T (qI) =
T (1) + (vI − ω̂E(1− qI))(qI − 1), then T ′(qI) = (vI − ω̂E(1− qI)) + ω̂′E(1− qI)(qI − 1)
and T ′′(qI) = 2ω̂′E(1 − qI) − ω̂′′E(1 − qI)(qI − 1). The term ω̂′E , which is negative for
any qI , tends to make the tariff concave. Assuming that ω̂′′E(0) is not infinite, we get
T ′′(1) = 2ω̂′E(0) < 0, hence the concavity at the top.

As shown on Figures 8a and 9a, the entrant is either inactive (qE = 0) or serves
all the contestable demand (qE = sE). For a given ωE the jump from zero to sE can
never occur if ωE is not large enough. The jump occurs when sE is large enough for
intermediate values of ωE . Finally, if ωE is large enough, qE = sE for any sE . On the
other hand, for a given sE , qE = 0 if ωE is small (below ω̂E(sE)) while qE = sE when
ωE is large (above ω̂E(sE)).

Some efficient entrants are foreclosed. As the elasticity of entry increases with sE ,
the ERT results in a lower ω̂E as sE increases. Consequently, the optimal effective price
pe(qE) = vI − ω̂E(qE) increases with qE : the larger the contestable market-share, the
lower the competitive pressure. If vI ≥ ω̂E(sE), the effective price is positive for any
quantity, as shown on Figures 8a and 8b. If vI < ω̂E(sE), the effective price is negative
for small values of qE , as represented on Figures 9a and 9b.
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Figure 8a: Second best with ε(ωE |sE)
increasing in sE

Figure 8b: Optimal price schedule
(case sE = 0 and vI >
ω̂E(0))

Figure 9a: Second best with ε(ωE |sE)
increasing in sE

Figure 9b: Optimal price schedule
(case sE = 0 and vI <
ω̂E(0))

4.3 The general case

As explained at the end of Section 4.1, solving the problem separately for each sE gen-
erally yields non implementable quantity functions. We must therefore consider the
complete problem, which consists in maximizing the expected virtual surplus∫∫

sv(sE , ωE)qE(sE , ωE) dF (ωE |sE) dG(sE)

over all implementable quantity functions qE . In this section, we show that the prob-
lem can be solved separately for each ωE provided some monotonicity constraints are
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satisfied.13 The heart of the construction is the characterization of horizontal pooling
intervals.

Consider an implementable quantity function qE . For any ωE , the function of one
variable qE(., ωE) is nondecreasing on [0, 1], being either constant or equal to the identity
map: qE = sE . By convention, we call regions where it is constant “odd intervals”, and
regions where qE = sE “even intervals”.

We are thus led to consider any partition of the interval [0, 1] into “even intervals”
[s2i, s2i+1) and “odd intervals” [s2i+1, s2i+2), where (si) is a finite, increasing sequence
with first term zero and last term one.14 We associate to any such partition the function
of one variable that coincides with the identity map on even intervals, is constant on odd
intervals, and is continuous at odd extremities. We denote by K the set of the functions
thus obtained.

For any implementable quantity function qE , the functions of one variable, qE(., ωE),
belong to K for all ωE . Conversely, any quantity function such that qE(., ωE) belong to
K for all ωE is implementable if and only if even (odd) extremities do not increase (de-
crease) as ωE rises. Even (odd) extremities constitute decreasing (increasing) parts of the
boundary line. We call the conditions on the extremities the “monotonicity constraints”.
The problem is to maximize the expected virtual surplus under these constraints.

Lemma 3. Let a(.) be a continuous function on [0, 1]. Then the problem

max
r∈K

∫ 1

0
a(s)r(s) ds

admits a unique solution r∗ characterized as follows. For any interior even extremity s2i
E ,

the function a equals zero at s2i
E and is negative (positive) at the left (right) of s2i

E . For
any interior odd extremity s2i+1

E , the function a is positive at s2i+1
E and satisfies∫ s2i+2

E

s2i+1
E

a(s) ds = 0. (15)

If a(1) > 0, then r∗(s) = s at the top of the interval [0, 1]. If a(1) < 0, then r∗ is constant
at the top of the interval.

Applying Lemma 3 with a(sE) = sv(sE , ωE) for any given ωE , we find that the vir-
tual surplus is zero at candidate even extremities: sv(x2i(ωE), ωE) = 0 and is negative
(positive) at the left (right) of these extremities. In other words, candidate even extrem-
ities belong to decreasing parts of the ERT line. Thus, as regards even extremities, the
monotonicity constraints are never binding.

Lemma 3 also implies that the virtual surplus is positive at odd extremities. These ex-
tremities therefore lie above the ERT line. By the first-order condition (15), the expected
virtual surplus is zero on horizontal pooling intervals:

E(sv|H) = 0, (16)
13If the monotonicity constraints are violated, two-dimensional pooling occurs, as explained in Ap-

pendix C.4.
14 For notational consistency, we denote the first term of the sequence by s0 = 0 if the first interval is

even and by s1 = 0 if the first interval is odd. Similarly, we denote the last term by s2n = 1 if the last
interval is odd and by s2n+1 = 1 if the last interval is even.
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where H is a horizontal pooling interval with extremities s2i+1
E and s2i+2

E . The virtual
surplus on a pooling interval is first positive, then negative as sE rises, and its mean
on the interval is zero. The segment [AB] on Figure 10b is an example of horizontal
pooling interval (in fact the horizontal part of an “L”-shaped pooling set). Unfortunately,
the first-order condition (16) does not imply that candidate odd extremities x2i+1(ωE)
are nondecreasing with ωE : odd extremities could decrease with ωE in some regions,
generating two-dimensional pooling. In Appendix C.3, we check that the monotonicity
constraints regarding the odd extremities hold under fairly mild conditions, as stated in
Proposition 4 below.

Proposition 4. Maximizing the expected virtual surplus separately for each ωE gives
rise to a boundary line whose decreasing parts coincide with the ERT line and increasing
parts generate horizontal pooling segments with zero expected virtual surplus, as expressed
by equation (16). This construction yields the solution of the complete problem in the
following circumstances:

1. the conditional density f(ωE |sE) is nondecreasing in ωE;

2. the hazard rate, f/(1− F ), is nondecreasing in ωE and (C.1) holds;

3. the elasticity of entry is nondecreasing in ωE (Assumption 1) and (C.3) holds.

The conditions (C.1) and (C.3) depend on the entrant’s bargaining power vis-à-vis
the buyer, β, and the range of values for the elasticity of entry, ε. These conditions are
not very restrictive. They allow for large variations of ε as the maximum scale of entry,
sE , varies. For instance, if the rival’s bargaining power, β equals one, the elasticity of
entry may vary freely between ε = 1.2 and ε̄ = 3.98, or between ε = 5 and ε̄ = 26.64. If
β equals .75, then the elasticity of entry may vary freely between ε = 1.2 and ε̄ = 5.99,
or between ε = 5 and ε̄ = 33.59.

When none of the assumptions set out in Proposition 4 is satisfied, two-dimensional
pooling may occur. The treatment of two-dimensional pooling is presented in Ap-
pendix C.4.

To construct the optimal boundary, we proceed as follows. We first draw the ERT line
ωE = ω̂E(sE). We start with sE = 1 and then consider lower and lower values of sE . For
sE = 1, we know that Ψ(1) = ω̂E(1). If the ERT line decreases at sE = 1, the boundary
coincides with the ERT line, as long as it remains decreasing. When the ERT line starts
increasing (possibly at sE = 1), we know that there is horizontal pooling. Equation (16)
provides a unique candidate value for Ψ(sE). This candidate is the solution provided
that it increases with sE and remains above ω̂E(sE). If the candidate boundary hits the
ERT line at some value of sE , it must be on a decreasing part of that line and, from
that value on, the optimal boundary coincides with the ERT line (as long as ω̂E remains
decreasing).

The ERT threshold ω̂E(sE) is smaller than ω̄E . The above construction shows that
the optimal boundary is located below the maximal value of ω̂E(sE). Hence, above this
maximum, the quantity is efficient: qE(sE , ωE) = sE = q∗E(sE) for all sE : there is no
distortion at the top of the distribution of ωE .
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Figure 10a: Non implementable qr
E Figure 10b: ERT line ω̂E(sE) (dashed). Op-

timal boundary ωSB
E (solid)

4.4 Decreasing elasticity of entry

We now turn to the case where the elasticity of entry is decreasing with sE (ωE first-order
stochastically increases with sE). A two-part tariff cannot be optimal.

Proposition 5. Assume that ε(ωE |sE) decreases with sE, then the optimal tariff is
convex. The equilibrium outcome exhibits inefficient exclusion, in the form of both full
and partial foreclosure.

Proof. When ε(ωE |sE) decreases with sE , then ω̂E is monotonically increasing and there-
fore it is not implementable. As seen in Section 4.3, the optimal boundary line ωSB

E is
increasing and given by Proposition ??. To obtain the optimal tariff, we follow the lines
of Section ??. For all sE ∈ [sE , s̄E ], let s′E > sE then the solution of (7) is interior for the
type (s′E , ω

SB
E (sE)) and the solution is qE = sE . Therefore T ′(1− sE) = vI −ωSB

E (sE) or

T ′(qI) = vI − ωSB
E (1− qI)

now, ∂ωSB
E (1− qI)/∂qI = (ωSB

E )′(1− qI) > 0 as ωSB
E is increasing, which proves that T is

convex.

As depicted in Figure 11a, when the entrant’s type lies in the hatched triangle below
the boundary line and above the horizontal line ωSB

E (0), the entrant produces a quantity
strictly lower than sE . That is, entry is partially foreclosed. Here, the price schedule
plays the role of a barrier to expansion in addition to a barrier to entry. Some efficient
types of entrant are active but prevented to serve all the contestable demand (they face
a barrier to expansion). Otherwise, and as in sections 4.2 and ??, some efficient types
remain inactive (they face a barrier to entry).

For a given ωE , qE can be null for all sE (whenever ωE is lower than ωSB
E (0)), when ωE

is intermediate, qE = sE when sE is small and qE is constant when sE is above a threshold
(formally (ωSB

E )−1(ωE). Finally, if ωE is large enough (formally above ωSB
E (s̄E)), then
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Figure 11a: Second best with
ε(ωE |sE) decreasing
in sE

Figure 11b: Optimal price schedule
(sE = 0 and vI > ω̂E(1))

qE = sE for all sE . Fixing sE and letting ωE increase from ωE to ω̄E , qE is null until ωE

reaches ωSB
E (0), then qE increases with ωE , and finally qE = sE for all ωE above ωSB

E (sE).
A small market share of E can, therefore, reflect either a small sE (this is the case

for an efficient enough E who sells at full capacity) or a large sE with partial foreclosure
(this is the case when E is sufficiently efficient to enter but not enough to break the ωSB

E

line and sell at full capacity).
Qualitatively these situations are very different. In the first one, E is frustrated

because he had to abandon a fraction of his surplus to the buyer. However, depending
on the interpretation of sE , either he cannot produce more or the buyer is not interesting
in buying more from the entrant. In the second case (partial foreclosure), E is similarly
deprived of some surplus, but in addition he is also frustrated because he cannot sell all
the units that the buyer would like to acquire in the absence of T .

As ε(ωE |sE) is decreasing, the buyer-incumbent pair would like to extract more sur-
plus from a large entrant and hence put more competitive pressure on him. Yet, a large
entrant can always mimic a smaller one. To take an example, the efficiency rent tradeoff
would imply that for some ωE it would be optimal to ask a a type with a large sE to
sell nothing while a type with a small sE to sell at full capacity. Obviously this is not
possible with only T as an instrument.

In Figure 11b, the optimal price schedule is increasing because it is drawn under
the assumption that vI is larger than ωSB

E (sE) for all sE . If, however, ωSB
E becomes

larger than vI for sE large enough, then the slope of T is negative for the small qI (as
qI = 1− sE).

4.5 Non monotonic elasticity of entry

We now turn to a case where the elasticity of entry in non monotonic with the size of
the contestable demand, sE . This encompasses many situations but a particular case,
namely the U-shape elasticity, illustrates the nonlinearity of the price schedule.
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Assume that the elasticity of entry is first decreasing, then increasing with sE . That
is, when the size of the contestable market is small or large, the elasticity is rather high
while it is low when the size of the contestable demand is average. According to (??) a
U-shape elasticity leads to an inverted U-shape ω̂E .

Figure 12a: 2nd best with U shaped
ε(ωE |sE) in sE

Figure 12b: Optimal price schedule
(sE = 0 and s̄E = 1)

We rely on Figures 12a and 12b to explain the shape of the optimal price schedule
in this instance. Between A1 and A3, ωSB

E is increasing, therefore (as already seen in
Section 4.4) the quantity negotiated between the buyer and the entrant is given by the
first order condition: T ′(1− sE) = vI − ωSB

E (sE) (i.e. T ′(qI) = vI − ωSB
E (1− qI)) and T

is convex. In particular at A2, vI = ωSB
E (sE) and T ′ = 0. Between A3 and A5, we can

recover T by using the pooling condition: in the grey area qE is constant along horizontal
lines. For exemple, if the entrant is at A4 the buyer-entrant pair is indifferent between
buying s2

E or s1
E . That is (abstracting from the fact that on the Figure ωE = vI for A2

and A4):
(ωE − vI)s1

E − T (1− s1
E) = (ωE(s2

E)− vI)s2
E − T (1− s2

E)

As T (1−s1
E) is known, one can infer T (1−s2

E). Rewriting the above expression, it comes
that

T (1− s2
E) = T (1− s1

E) + (ωE(s2
E)− vI)(s2

E − s1
E)

In particular, using the fact that for A2 and A4 ωE = vI , it comes that T (1 − s1
E) =

T (1 − s2
E) as shown on Figure 12b. It is readily confirmed that T ′′ = 0 at A3, i.e. T

has an inflexion point. After A5, the same indifference condition applies but s1
E = 0.

Therefore T (1− s2
E) = T (1) + (ωE(s2

E)− vI)s2
E .

Thus, an inverted U-shape ωSB
E is associated to a price schedule which is convex at

the end (small values of sE), concave in the middle and either concave or convex for the
small values of qI . In addition to characterizing the shape of T , Figures 12a and 12b
are also helpful to show what happens when vI is first above ωSB

E then below and finally
above. Under this assumption, T is reminiscent to a retroactive rebate. The buyer has
a strong incentive to buy up to A2 as T is decreasing.
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Notice that every point on T is used by the buyer depending on the type of the
entrant. For example, at A2, the tariff

(
1− s1

E , T (1− s1
E)
)
is used for all (sE , ωE) on the

isoline qE = s1
E which is depicted in bold on Figure 12a. The choice of the buyer is similar

between A1 and A3. A point (qI , T (qI)) before A3 is chosen by the buyer whenever the
type of the entrant is sE = 1− qI and ωE ≥ ω̂E(1− qI). That is, along vertical isolines
like qE = s2

E starting from A4 on Figure 12a.

5 Disposal costs, buyer opportunism, and conditional tariffs

We have assumed so far that the buyer incurs an infinite cost if he does not consume all
of the purchased units. The magnitude of disposal costs, however, varies substantially
across industries (e.g. chips for microprocessors, tyres for trucks, or heavy pieces of
machineries) and might depend on the existence of a second-hand market for the raw
input.15 In Section 5.1 we show how the previous analysis extends to the case of finite
disposal costs. In Section 5.2, we link infinite disposal costs to market-share tariffs.

5.1 Finite disposal costs and opportunism

This section is devoted to the case where disposal costs are finite. We note γ the cost of
purchased units in excess of consumption. We treat γ as an exogenous parameter. When
γ = 0, the buyer can freely dispose of units he does not need. When γ > 0, the buyer
pays a cost γ for each non-consumed purchased units. Finally, γ < 0 would mean that
the buyer can resale, as it is, the good bought from the incumbent, for example on a
second hand market. Admittedly, −cI < γ otherwise this second hand market would be
profitable.

As previously, the buyer’s total consumption is inelastic, and normalized to one:
xE + xI ≤ 1. Thus, having purchased quantities qE ≤ sE and qI from the buyer and the
incumbent, the buyer chooses consumption levels so as to maximize

V (qE , qI) = max
(xE ,xI)∈X

vExE + vIxI − γ(qE − xE)− γ(qI − xI), (17)

where the set X is defined by the constraints xE ≤ qE , xI ≤ qI , and xE + xI ≤ 1: the
buyer cannot consume more than he has purchased and more than his total requirement,
normalized to one. In appendix D.1, we extend Lemma A.1 to the case of finite disposal
costs, thus showing that the buyer’s total purchases are not lower than his total demand.

The buyer, however, could purchase more than his requirement, as disposal costs
are now assumed to be finite, with the sole purpose of benefiting from a rebate offered
by the incumbent. We call such a behavior opportunistic. The expression of V given
in (17) shows that if the slope of T (qI) is lower than −γ for a given qI it can create
buyer’s opportunism. Imagine the buyer already bought qE and that T ′(1 − qE) < −γ,
then he buys more than 1 − qE (to reduce the total price paid at the incumbent) while
consuming only xI = 1 − qE . These excess purchases are costly from the point of view
of the incumbent because of production costs.

15Depending on the industry, the seller can verify more or less easily what the buyer does with the
purchased goods. Disposal costs can also be seen as costs to avoid the monitoring of the incumbent.
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We first establish an optimality result that holds irrespective of the informational
structure, i.e. whether or not the buyer and the incumbent know the entrant’s charac-
teristics when signing the contract.

Proposition 6. There is no buyer opportunism at equilibrium: the buyer does not buy
more than its total requirements, qE + qI ≤ 1.

Proof. We show in Appendix D that the buyer and the incumbent are better off using a
tariff with slope greater than or equal to −γ.

Lemma A.1 in appendix shows that, in equilibrium, qE+qI ≥ 1. Combining this result
with Proposition 6, we conclude that the buyer purchases the exact quantity necessary
to meet its requirements: qE + qI = 1, and consumes all purchased units: xE = qE ,
xI = qI . Hence, the buyer incurs no disposal costs. It follows that the expressions (7)
and (11), respectively for the surplus created by the trade between the buyer and the
entrant, ∆SBE , and the expected profit of the buyer-incumbent pair, EΠBI , still hold.
The buyer-incumbent’s with γ finite is the same as with γ = +∞ with the additional
constraint that T ′(qI) > −γ. Consequently, and regardless of the informational structure,
the expected profit of the buyer-incumbent coalition is weakly lower when the disposal
costs are finite than when they are infinite.

Throughout this section, we say that the entrant is super-efficient if ωE ≥ vI + γ. It
follows from Proposition 6 and from the buyer-entrant problem (7) that, in equilibrium,
whatever the informational structure, a super-efficient entrant serves all the contestable
demand: qE(sE , ωE) = sE for all ωE > vI . Indeed, for such an entrant, the function
(ωE − vI)qE − T (1− qE) is nondecreasing on (0, sE).

Proposition 6 prompts us to extend the notion of admissibility to the case with finite
disposal cost. We say that a quantity function is admissible if it can be obtained as
solution to (7), where T is a tariff satisfying T ′ ≥ −γ for all q. Lemma 1 must be
adapted as follows.

Lemma 4. A quantity function qE(., .) is admissible if and only if there exists a boundary
function Ψ(.) defined on [0, 1], with ωI ≤ Ψ(sE) ≤ vI +γ for all sE, such that (10) holds.

The new condition on the boundary, Ψ(sE) ≤ vI + γ, expresses that super-efficient
entrants serve all of the contestable demand: qE = sE . The sufficient part of the lemma
is proved in Section D. The analysis with infinite disposal costs (Sections ?? and ??)
carries over without any change when there are no super-efficient entrants: ω̄E ≤ vI + γ.

Inefficient entry never occurs at the second best (Appendix D.3 extends Proposi-
tion ?? to the case of finite disposal costs.

Under perfect information, only super-efficient entrants earn a positive profit. The
equilibrium configuration can be obtained with a constant effective price, pe(q) = max(vI−
ωE ,−γ). Super-efficient entrants earns β(ωE−vI−γ)sE . Other entrants earn zero profit.

Under one-dimensional uncertainty (ωE unknown), the expression (??) applies to
entrants that are not super-efficient. For those entrants, it must be replaced with sE .
If the incumbent’s cost function is affine or concave, the second-best quantity is sE for
ωE ≥ min(ω̂E , vI + γ), where ω̂E is given by (14), and zero otherwise. The second best
can be achieved with a two-part tariff, by setting the constant effective price schedule at
pe(q) = max(vI − ω̂E ,−γ). Efficient entrants with vI − ce

I(sE) < ωE ≤ min(ω̂E , vI + γ)
are excluded.
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Under two-dimensional uncertainty, the construction of the optimal quantity is mod-
ified as follows: First apply the procedure exposed in Section ??, then replace Ψ with
min(Ψ, vI + γ).

5.2 Conditional tariffs

Proposition 6 extends to the case where the tariff T can be made conditional on the
quantity purchased from the entrant. Applying the same reasoning as in Appendix D to
each value of qE , one may show that the buyer and the incumbent are better off using
a tariff T (qE , qI) such that the marginal price of an extra unit of good I, TqI (qE , qI), is
greater than or equal to −γ, and that the buyer purchases the quantity necessary to meet
its requirement: qE + qI = 1. These properties, however, do not imply that the effective
price be greater than −γ and that super-efficient entrants serve all of the contestable
demand. Indeed, the effective price is now given by [T (0, 1)− T (qE , 1− qE)]/qE , which
can be lower than −γ, and the objective of the buyer-entrant coalition, (ωE − vI)qE −
T (qE , 1− qE), is not necessarily monotonic for super-efficient entrants.

Proposition 7. Conditioning the tariff on the quantity purchased from the entrant allows
the buyer and the incumbent to earn the same profit as if disposal costs were infinite.

Proof. The set of admissible quantity functions with conditional tariffs does not depend
on γ ∈ [0,+∞]. Moreover, with γ = +∞ this set is the set of quantity functions
implementable with unconditional tariffs.
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6 Discussion

The chief concern of antitrust enforcers as regards abuses of dominant position is inef-
ficient exclusion. In its guidelines on exclusionary conducts by dominant undertakings,
the European Commission advocates the “as-efficient competitor test”, which consists in
checking that efficient rivals are not foreclosed. This test is presented as a first step in
the legal assessment: if the test is violated, the dominant firm may have the burden of
justifying its pricing policy, for instance by putting forward efficiency considerations.

We study nonlinear pricing by a dominant firm who competes with a smaller rival,
focusing on exclusionary effects. We exclude any efficiency reasons for the dominant firm
to use nonlinear pricing as well as any predation purposes. We examine the consequences
of the incumbent’s monopoly power over the rival, in the spirit of Aghion and Bolton
(1987). In our model, the common distinction in the antitrust doctrine between exploita-
tive and exclusionary abuses is blurred because it is the exploitation of the incumbency
advantage, combined with incomplete information which yields inefficient exclusion.16

That is, the two aspects are intertwined in the tradeoff between rent extraction and
efficiency.

The exploitative part of the mechanism is sometimes called “rent-shifting”: the ex-
istence of the tariff enhances the buyer’s bargaining position vis-à-vis the entrant by
altering her outside option in the negotiation. Under incomplete information, the buyer
and the incumbent adjust the competitive pressure placed on the entrant to solve the
efficiency-rent tradeoff. Our analysis places no a priori restriction on the shape of the
incumbent’s tariff. Depending on the distribution of the uncertainty, tariffs, in equilib-
rium, may be locally increasing or decreasing, and locally convex, linear or concave. The
exclusionary part comes from the fact that in equilibrium, efficient competitors may be
barred from serving the demand (complete foreclosure) or prevented to expand (partial
foreclosure).17 In any case, those who enter are forced to grant favorable conditions to
attract buyers.

The competitive pressure placed on the rival firm translates into the amount of rebates
that the buyer gives up by supplying units from the rival, hence the importance of the
incumbent’s “effective price” emphasized by the European Commission.18 At the second
best, the effective price is always below the incremental cost, because the buyer and the
incumbent only want to shift rents from a rival more efficient than the incumbent. If the
Commission could enforce its “as-efficient competitor test”, then any exploitative attempt
would be eliminated and hence there would be no exclusion of efficient rivals.

Yet, in practice, enforcing the as-efficient competitor test is by no means trivial; cost
measurements are imprecise in nature. To our knowledge, the Intel decision contains the

16Under complete information, only the exploitative abuse is at play as the second-best allocation is
efficient, as observed at the end of Section 2.

17In several cases, Virgin/British Airways, Michelin, and Intel (See references in footnote 1). The
defendant argued that his market share declined during the year under scrutiny. This could happen in
our model, for a given sE , if ωE increases but remain below ωSB

E . The rival remains partially foreclosed
but less and less when ωE increases.

18When the tariff only depends on the quantity purchased from the incumbent, the effective price is
simply the average price of the last units offered by the incumbent. The computation must be adapted
when the tariff also depends on the quantity purchased from the entrant, as buying more from the entrant
(as opposed to buying less from the incumbent) can in itself affect the effective price.
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first and, to date, the sole attempt to implement the test in an antitrust case.19

The incumbent can take advantage of its position only if he can commit on the
price schedule (either under complete or incomplete information). In practice, it seems,
therefore, crucial to check this point. In two recent cases20 the European Commission
stressed that the dominant firm used a long reference period to calculate the rebates (one
year). That is both cases, the dominant firm was able to commit on a price schedule for
the whole year.

Finally, our analysis also explains how low disposal costs limit the ability of the
dominant firm to exploit its position. When the rival is expected to be much more
efficient than the incumbent, the price schedule can exhibit decreasing parts. These
lower prices for larger quantity allow the buyer to be opportunistic by purchasing more
than his needs simply to cash in on the tariff.21 As these non consumed units have to be
dispose of at a cost, the price schedule can be decreasing but at rate no larger than the
disposal cost.

To counter this opportunistic behavior of the buyer, the incumbent has two strategies:
first she could monitor the buyer, making sure that he purchases only up to his needs.
Second, the dominant firm may want to condition her prices on quantities purchased
from rivals. We show that resorting to a market-share tariff is equivalent to impose an
infinite disposal cost to the buyer.
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Appendix

A The buyer’s total purchases are not lower than his total
demand

This section presents an optimality result that holds irrespective of the information struc-
ture, i.e. whether the buyer and the incumbent know the entrant’s characteristics at the
time of contracting. It is in the buyer’s and incumbent’s common interest to agree on a
price schedule that induces the former to purchase at least 1− qE units from the latter,
once he has purchased qE from the entrant, for any value of qE . Hence, in equilibrium,
the buyer’s total purchases are equal to, or exceed, his total demand.22

Lemma A.1. The buyer and the incumbent are better off using a tariff with slope T ′

smaller than or equal to vI . Consequently, we may assume, with no loss of generality,
that the buyer does not buy less than its total requirements: qE + qI ≥ 1.

Proof: We start from any price schedule T . Let T̃ be defined by

T̃ (qI) = inf
q≤qI

T (q) + vI(qI − q). (A.1)

The tariff T̃ is derived from the tariff T as follows. When the incumbent offer q units at
price T (q), she also offers to buy more units than q, say qI > q, at price T (q)+vI(qI−q).
The additional units are offered at the monopoly price vI . By construction, the slope of
T̃ is lower than or equal to vI .

Let ŨB(qE) denote the buyer’s net utility after he has purchased qE units from the
entrant under the price schedule T̃

ŨB(qE) = max
qI

V (qE , qI)− T̃ (qI). (A.2)

As T̃ ≤ T , we have: ŨB ≥ UB. Suppose that, under T̃ , it is optimal for the buyer to
purchase q̃I from the incumbent if he has purchased qE from the entrant. By construction
of T̃ , there exists qI ≤ q̃I such that T̃ (q̃I) equals or is arbitrarily close to T (qI)+vI(q̃I−qI).
We have:

ŨB(qE) = V (qE , q̃I)− T̃ (q̃I) = V (qE , q̃I)− T (qI)− vI(q̃I − qI)

= V (qE , qI)− T (qI), (A.3)

which implies ŨB(qE) ≤ UB(qE), and hence ŨB(qE) = UB(qE) for all qE . As the problem
of the buyer-entrant pair depends only on the functions UB(.) and ŨB(.), they agree on
the same quantity qE and the entrant earns the same profit under T and T̃ for all
(cE , sE , vE).

We now examine the quantity purchased from the incumbent. Suppose that the
buyer, having purchased qE from the entrant, chooses to purchase qI from the incumbent

22Lemma A.1 is stated and proved under infinite disposal costs. Appendix D.1 extends the result to
the case of finite disposal costs.
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under the original price schedule T . As T̃ (qI) ≤ T (qI), the buyer may choose to purchase
the same quantity from the incumbent under the new tariff T̃ :

UB(qE) = ŨB(qE) = V (qE , qI)− T (qI) ≤ V (qE , qI)− T̃ (qI).

Yet, under the tariff T̃ , if qI < 1−qE , the buyer may as well choose to purchase 1−qE from
the incumbent. Indeed, by definition of T̃ , we have T̃ (1− qE) ≤ T (qI) + vI(1− qE − qI)
and hence

UB(qE) = ŨB(qE) = V (qE , qI)− T (qI)

≤ V (qE , qI) + vI(1− qE − qI)− T̃ (1− qE)

= V (qE , 1− qE)− T̃ (1− qE). (A.4)

As vI > cI , the change from qI to 1− qE > qI increases the total surplus:

W (qE , 1− qE) = V (qE , 1− qE)− cEqE − cI(1− qE)

= V (qE , qI)− cEqE − cIqI + (vI − cI)(1− qE − qI) (A.5)
≥ W (qE , qI).

In sum, the change from T to T̃ does not alter the entrant’s profit and does not decrease
the total surplus. We conclude from (4) that the change does not decrease the expected
payoff of the buyer-incumbent coalition.

B Implementation

B.1 Recovering the tariff from the boundary line

We prove here the sufficient part of Lemma 1. Starting from any boundary function
Ψ defined on [0, 1], we define the quantity function qE(sE , ωE) by equation (10), and
the profit function ∆SBE(sE , ωE) by equation (8). We observe that the functions thus
defined qE(sE , ωE) and ∆SBE(sE , ωE), are nondecreasing in both arguments, and the
latter function is convex in ωE . Next, we notice that the expression

(ωE − vI)qE(sE , ωE)−∆SBE(sE , ωE)

is constant on qE-isolines. Indeed, both qE(., ωE) and ∆SBE(., ωE) are constant on hor-
izontal isolines (located below the boundary Ψ). On vertical isolines (above the bound-
ary), ∆SBE(sE , .) is linear with slope sE , guaranteing, again, that the above expression
is constant. We may therefore define T (q), up to an additive constant, by

T (1)− T (1− q) = (vI − ωE)q + ∆SBE(sE , ωE), (B.1)

for any (sE , ωE) such that q = qE(sE , ωE). Equation (B.1) unambiguously defines T (1)−
T (1 − q) on the range of the quantity function qE(., .). This range contains zero, but
may have holes when ω̄E is finite and Ψ is above ω̄E on some intervals. Specifically, if
Ψ is above ω̄E on the interval I = [s1

E , s
2
E ], then qE does not take any value between s1

E

and s2
E . In this case, we define T by imposing that it is linear with slope vI − ω̄E on the

corresponding interval: T (1− s1
E)− T (1− q) = (vI − ω̄E)(q − s1

E) for q ∈ I.
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We now prove that the buyer and the entrant, facing the above defined tariff T , agree
on the quantity qE(sE , ωE). We thus have to check that

∆SBE(sE , ωE) ≥ (ωE − vI)q′ + T (1)− T (1− q′) (B.2)

for any q′ ≤ sE . When q′ is the range of the quantity function, we can write q′ =
qE(s′E , ω

′
E) for some (s′E , ω

′
E), with q′ ≤ s′E . Observing that q′ = qE(q′, ω′E) and using

successively the monotonicity of ∆SBE in sE and its convexity in ωE , we get:

∆SBE(sE , ωE) ≥ ∆SBE(q′, ωE)

≥ ∆SBE(q′, ω′E) + (ωE − ω′E)q′,

which, after replacing T (1) − T (1 − q′) with its value from (B.1), yields (B.2). To
check (B.2) when q′ is not in the range of the quantity function (q′ belongs to a hole
[s1

E , s
2
E ] as explained above), use (B.2) at s1

E and the linearity of the tariff between s1
E

and q′.

B.2 Shape of the boundary function and curvature of the tariff

Lemma B.1 relates the shape of the boundary function Ψ to the curvature of the price
schedule T .

Lemma B.1. The following properties hold:

1. If Ψ is increasing (resp. constant) around sE, then the tariff is strictly convex (resp.
linear) around 1− sE.

2. If Ψ decreases and is concave around sE, then the tariff is concave around 1− sE.

3. If Ψ decreases and is convex around sE and sE is close to a local minimum of Ψ,
then the tariff is convex around 1− sE.

4. If Ψ has a local maximum at sE, then the tariff has an inflection point at 1− sE.

Proof. First, suppose that Ψ is nondecreasing on a neighborhood of sE . Let s′E slightly
above sE . Then qE = sE is an interior solution of the buyer-entrant pair’s problem (7) for
s′E and ωE = Ψ(sE). It follows that the first order condition Ψ(sE)−vI +T ′(1−sE) = 0
holds, implying property 1 of the lemma. The property holds when Ψ has an upward
discontinuity at sE , in which case the tariff has a convex kink at 1 − sE . To illustrate,
Figures 13a and 13b consider the case where the boundary line is a nondecreasing step
function with two pieces.

Next, suppose that the boundary line decreases around sE . Here we assume that Ψ is
twice differentiable. We denote by [σ(sE), sE ] the set of value s′E such that qE(s′E , ωE) =
σ(sE), where ωE = Ψ(sE). The buyer-entrant surplus ∆SBE(sE , ωE) is convex and hence
continuous in ωE . It can be computed slightly below or above Ψ(sE). At (sE ,Ψ(sE)),
the buyer and the entrant are indifferent between quantities sE and σ(sE):

∆SBE(sE ,Ψ(sE)) = [Ψ(sE)− vI ]σ(sE)− T (1− σ(sE)) = [Ψ(sE)− vI ]sE − T (1− sE).
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Figure 13a: Convex kink in the
price schedule

Figure 13b: Two-step increasing
boundary line

Differentiating and using the first-order condition at σ(sE) yields

T ′(1− sE) = −Ψ′(sE)[sE − σ(sE)]−Ψ(sE) + vI .

Differentiating again yields

T ′′(1− sE) = Ψ′′(sE)[sE − σ(sE)] + Ψ′(sE)[2− σ′(sE)]. (B.3)

In the above equation, the two bracketed terms are nonnegative (use σ′ ≤ 0), and the
slope Ψ′ is negative by assumption, which yields item 2 of the lemma. Around a local
minimum of Ψ, Ψ′ is small, and the first term is positive, hence property 3. Property 4
follows from items 1 and 2.

Finally note that when Ψ has a downward discontinuity at sE , the tariff has an
upward discontinuity at 1 − sE . To illustrate, Figures 14a and 14b consider the case
where the boundary line is a nonincreasing step function with two pieces.

C Derivation of the optimal quantity function

C.1 Elasticity of entry and distribution of (sE, ωE)

In this section, we prove Lemma 2.

Proof. The elasticity of entry varies with sE in the same way as the hazard rate h given
by

h(ωE |sE) =
f(ωE |sE)

1− F (ωE |sE)
.

We have ∫ ωE

ωE

h(x|sE) dx = − ln[1− F (ωE |sE)].
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Figure 14a: Upward jump in the
price schedule

Figure 14b: Two-step decreasing
boundary line

If the elasticity of entry does not depend on (increases with, decreases with) sE , the
same is true for the hazard rate, and hence also for the cdf F (ωE |sE), which yields the
results.23

C.2 Proof of Lemma 3

Proof Letting I(r) =
∫ 1

0 a(x)r(x) dx, we have

I(r) =
∑
i

∫ x2i+1

x2i

xa(x) dx+
∑
i

x2i+1

∫ x2i+2

x2i+1

a(x) dx,

where the index i in the two sums goes from either i = 0 or i = 1 to either i = n− 1 or
i = n, in accordance with the conventions exposed in Footnote 14. Differentiating with
respect to an interior even extremity yields

∂I

∂x2i
= a(x2i).[x2i−1 − x2i].

The first-order condition therefore imposes a(x∗2i) = 0. The second-order condition for a
maximum shows that a must be negative (positive) at the left (right) of x∗2i.

Differentiating with respect to an interior odd extremity yields

∂I

∂x2i+1
=

∫ x2i+2

x2i+1

a(x) dx.

The first-order condition therefore imposes
∫ x∗2i+2

x∗2i+1
a(x) dx. The second-order condition

for a maximum imposes that a is nonnegative at x∗2i+1.
23The variable ωE first-order stochastically decreases (increases) with sE if and only if F (ωE |sE)

increases (decreases) with sE .
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If a(1) > 0, then it is easy to check that r∗(x) = x at the top, namely on the interval
[x∗2n, x

∗
2n+1] with x∗2n being the highest zero of the function a and x∗2n+1 = 1. If the

function a admits no zero, it is everywhere positive and hence r∗(x) = x on the whole
interval [0, 1].

If a(1) < 0, then r∗ is constant at the top, namely on the interval [x∗2n−1, x
∗
2n], with

x∗2n = 1 and
∫ 1
x∗2n−1

a(x) dx = 0. If the integral
∫ 1
y a(x) dx remains negative for all y, then

r∗ is constant and equal to zero on the whole interval [0, 1].

C.3 Monotonicity constraints for odd extremities

We now investigate the monotonicity constraint regarding the odd extremities s2i+1
E (ωE),

i.e. we check whether it is nondecreasing in ωE .

A(s2i+1
E , ωE) =

∫ s2i+2
E

s2i+1
E

sv(s, ωE)f(ωE |s)g(s) ds = 0

This can also be written as∫ s2i+2
E

s2i+1
E

[(ωE − ωI)f(ωE |s)− β(1− F (ωE |s))] g(s) ds = 0

or ∫ s2i+2
E

s2i+1
E

[ωE(1− β/ε)− ωI ] f(ωE |s)g(s) ds = 0

Recall that the elasticity of entry, ε, may vary with the maximum scale of entry, s, in
the above integral. A more compact way to express the same condition is

C.3.1 Nondecreasing hazard rate in ωE

When the hazard rate is nondecreasing, the corresponding condition is weaker:

β ≤ 4ε ∗ ε̄/(∆ε)2. (C.1)

C.3.2 Nondecreasing elasticity in ωE

The function A is nonincreasing in s2i+1
E as the virtual surplus is nonnegative at this

point:
∂A

∂s2i+1
E

(s2i+1
E , ωE) = −sv(s2i+1

E , ωE)f(ωE |s2i+1
E )g(s2i+1

E ) ≤ 0.

Differentiating with respect to ωE , we get

∂A

∂ωE
(s2i+1

E , ωE) =

∫ s2i+2
E

s2i+1
E

[
(ωE − ωI)f ′(ωE |s) + f(ωE |s) + βf(ωE |s)

]
g(s) ds,

where we denote by f ′ the derivative of f in ωE . When f is nondecreasing in ωE , or
f ′ ≥ 0, we have ∂A/∂ωE ≥ 0, and hence the odd extremities are nondecreasing in ωE .

36



We now want to extend this result under the general assumption that the elasticity
of entry is nondecreasing in ωE . Using the monotonicity of ε in ωE , we have:

∂ε(ωE |sE)

∂ωE
(s2i+1

E , ωE) =
∂

∂ωE

[
ωEf(ωE |sE)

1− F (ωE |sE)

]
≥ 0

hence f ′ ≥ −(1 + ε)f/ωE . Using ωE ≥ ωI , we find that

∂A

∂ωE
≥
∫ s2i+2

E

s2i+1
E

[
ωI

ωE
− ε

(
1− β

ε
− ωI

ωE

)]
f(ωE |s)g(s) ds.

Recalling (16), we can rewrite the above inequality as

∂A

∂ωE
≥ E

(
1− β

ε

∣∣∣∣H)− cov
(
ε, 1− β

ε

∣∣∣∣H) .
This inequality holds as an equality when the elasticity of entry is constant in ωE . We
now look for a sufficient condition for the right-hand side to be nonnegative for any
distribution of ε. Noting m = E(ε|H) the expectation of ε on H, the condition can be
rewritten as

E
[
(ε−m− 1)

(
1− β

ε

)∣∣∣∣H] ≤ 0.

The function (ε − m − 1)(1 − β/ε) is convex in ε. We denote by [ε, ε̄] the support of
the distribution of ε. For given values of ε, ε̄ and m = E(ε|H), the expectation of this
convex function is maximal when the distribution of ε has two mass points at ε and ε̄,
associated with the respective weights ε̄−m

ε̄−ε and m−ε
ε̄−ε . We thus need to make sure that

(ε̄−m)(ε−m− 1)

(
1− β

ε

)
+ (m− ε)(ε̄−m− 1)

(
1− β

ε̄

)
≤ 0, (C.2)

for any m ∈ [ε, ε̄]. The above function is the sum of two quadratic functions of m. The
first is convex with roots ε − 1 and ε̄; the second is concave with roots ε and ε̄ − 1.
Both quadratic functions have zero derivative at m = (ε+ ε̄− 1)/2. The sum of the two
functions is concave as ε < ε̄.

When ε̄ ≤ ε+ 1, the concave quadratic function is negative on the interval [ε, ε̄], and
hence the inequality (C.2) holds on that interval. When ε̄ > ε+ 1, we need to make sure
that the maximum value of the concave quadratic function is lower than the minimum
value of the convex quadratic function. This is is the case if and only if(

1− β

ε̄

)
(∆ε− 1)2 ≤

(
1− β

ε

)
(∆ε+ 1)2.

or, equivalently
β ≤ ε̄

1 + (1 + ∆ε)2/4ε
. (C.3)
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Figure 15a: Non monotonic odd ex-
tremities

Figure 15b: Two-dimensional pool-
ing area: qE = ŝ on D.

C.4 Two-dimensional pooling

D Finite disposal costs

D.1 The buyer’s total purchases are not lower than his total demand

In this section, we extend Lemma A.1 to the case of finite disposal costs. Using the
definition of V , equation (17), and applying the envelope theorem, we get

∂V

∂qI
(qE , qI) = −γ + µ = vI − ν,

where µ and ν are the respective Lagrange multipliers for the constraints xI ≤ qI and
xE +xI ≤ 1 in the buyer’s problem (1). It follows that the derivative of V with respect to
qI equals vI when qI < 1− qE (as ν must be zero in this case) and −γ when qI > 1− qE
(recall that xE = qE , and hence xI must be smaller than qI if qI > 1− qE , which yields
µ = 0). In any case, this partial derivative does not exceed vI .

The proof of Lemma A.1 follows the same route as in Section A. The only needed
modification in the proof consists in replacing equality (A.3) with the inequality

V (qE , q̃I)− T (qI)− vI(q̃I − qI) ≤ V (qE , qI)− T (qI),

where we have used ∂V/∂qI ≤ vI . This inequality is enough to guarantee UB(qE) =
ŨB(qE) for all qE . Equations (A.4) and (A.5) continue to hold as equalities because
∂V/∂qI = vI in the region where qI is below 1− qE .

D.2 The slope of the tariff is above −γ

In this section, we prove Proposition 6
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Starting from any tariff T , we define T̂ as

T̂ (qI) = inf
q≥qI

T (q) + γ(q − qI).

Starting from any quantity level q, the incumbent offers the incumbent the opportunity
to buy less units than q, qI ≤ q, in return for the payment T (q) + γ(q− qI). This option
allows the buyer to avoid disposal costs, and is relevant only if γ is finite. The slope of
the new tariff is larger than or equal to −γ.

Let Û(qE) the buyer’s net utility after he has purchased units qE units from the
entrant under the price schedule T̂ :

ÛB(qE) = max
qI

V (qE , qI)− T̂ (qI). (D.1)

As T̂ ≤ T , we have: ÛB ≥ UB. Suppose that, under T̂ , it is optimal for the buyer to
purchase q̂I from the incumbent if he has purchased qE from the entrant. By construction
of T̂ , there exists qI ≥ q̂I such that T̂ (q̂I) equals or is arbitrarily close to T (qI)+γ(qI−q̂I).
Using the definition of V , we get:

ÛB(qE) = V (q̂I , qE)− T̂ (q̂I)

= V (q̂I , qE)− γ(qI − q̂I)− T (qI)

≤ V (qI , qE)− T (qI).

It follows that ÛB(qE) ≤ UB(qE), and hence ÛB(qE) = UB(qE). The buyer and the
entrant agree on the same quantity qE as their choice only depends on UB and ÛB,
which coincide. The entrant’s profit, β∆SBE is the same under T and T̂ .

Suppose that the buyer has purchased qE from the entrant and let qI be the optimal
quantity purchased from the incumbent under tariff T . As T̂ (qI) ≤ T (qI), the buyer may
always choose to purchase the same quantity from the incumbent (q̂I = qI) under the
tariffs T̂ and T :

UB(qE) = ŨB(qE) = V (qE , qI)− T (qI) ≤ V (qE , qI)− T̂ (qI).

Yet consider the special case where qI > 1 − qE . We know from Footnote ?? that
V (qE , qI) is nonincreasing and linear in qI with slope −γ on (1 − qE , qI). By definition
of T̂ (1− qE), we get

V (qE , qI)− V (qE , 1− qE) = −γ[qI − (1− qE)] ≤ T (qI)− T̂ (1− qE)

or
UB(qE) = Û(qE) = V (qE , qI)− T (qI) ≤ V (qE , 1− qE)− T̂ (1− qE).

It follows that the buyer may purchase q̂I = 1 − qE from the incumbent. The change
from qI to q̂I does not decrease the total surplus. On the contrary, it avoids production
and disposal costs:

V (qE , q̂I)− cEqE − CI(q̂I) ≥ V (qE , qI)− cEqE − CI(qI).

In sum, the change from T to T̂ does not alter the entrant’s profit and does not decrease
the total surplus. We conclude from (11) that the change does not decrease the expected
payoff of the buyer-incumbent coalition.
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D.3 Inefficient entry never arises in equilibrium

In this section, we extend Proposition ?? to the case of finite disposal costs.

D.4 Proof of lemma 4

Conversely, assume that Ψ(sE) ≤ vI + γ, and define the quantity function by (10), the
profit function ∆SBE(sE , ωE) by equation (??) and the tariff by (B.1). Differentiating
the latter equation with respect to ωE below the boundary – a region where qE increases
with ωE– yields T ′(q) = vI − ωE ≥ −γ.
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