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Abstract

In this paper we analyse the segmentation of society into risk-sharing coalitions voluntarily

formed by agents di¤ering with respect to risk under a unanimous acceptance rule, in the absence

of �nancial markets. We obtain a partition belonging to the core of the membership game. It

is homophily-based: the less risky agents congregate together and reject more risky ones into

other coalitions, etc. There is perfect risk sharing within a coalition but not at the society

level. The distribution of risk a¤ects the number and the size of these coalitions. A more risky

society is not necessarily more segmented than a less risky one. Finally, the empirical evidence

on imperfect risk-sharing when agents rely on informal insurance schemes can be understood

when the endogenous partition of society with respect to risk is taken into account.
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1 Introduction.

In many developing economies, people face large �uctuations of their income (see, in particular,

Townsend, 1994, for ICRISAT villages in India or Dubois, Jullien and Magnac, 2008, for Pakistan

villages). Nonetheless, the idiosyncratic part of income risk is relatively large suggesting that insur-

ance against shocks is feasible (see Townsend 1995 or Dercon 2004 for reviews of empirical evidence

about the idiosyncratic nature of income shocks). We should thus expect risk-averse households to

group together to mutualize risk. If risk is fully insured, the theory tells us that individual con-

sumption is determined by aggregate consumption (see Borch 1962, Arrow, 1964, Wilson, 1968).

However, this proposition has been subject to many empirical rebuttals. In developing economies,

it has been found that households are able to protect consumption against adverse income shocks

but full insurance is not achieved (see, among many others, Townsend, 1994, Kazianga and Udry

2005)12. Moreover, empirical works emphasize the local nature of risk sharing (see for instance Der-

con et alii 2006, Arcand and Fafchamps 2006, Barr and Genicot 2008, and the survey of Fafchamps,

2008, on the role of families and kinship networks in sharing risk)3. Therefore the issue with respect

to risk sharing is to understand why there are limits to insurance and not perfect risk sharing within

a given society. Why risk-bearing arrangements do not encompass the whole society?

The standard explanation is that complete risk sharing is prevented due to limited commit-

ment. Risk-sharing arrangements are seen as self-enforcing contracts immune to either individual

deviations (Kocherlakota, 1996, Ligon, Thomas and Worrall, 2002) or group deviations (see Dubois

2002, Genicot and Ray, 2003). Since individuals can defect on these contracts, it makes sense not

to cover a too risky agent through a common risk-sharing agreement.

In the present paper, we o¤er an alternative explanation based on the endogenous formation

of risk-sharing groups. There is no full risk sharing because individuals who di¤er with respect to

their exposure to risk select themselves into groups in which they mutualize risk. We stress that

society segmentation into various risk-sharing groups plays a crucial role in providing di¤erentiated

insurance schemes to agents unequally a¤ected by risk. The limits of communities themselves

cannot be considered exogenous to risk bearing.

Formally, we study a society comprised of many individuals characterized by idiosyncratic risks.

1Ray (1998), Dubois (2002), Dercon (2004) or Townsend (2005) are excellent surveys of the literature.
2For developped economies also, empirical evidence does not support the full insurance hypothesis (Mace, 1991,

Cochrane 1991, Altonji, Hayashi and Kotliko¤, 1996, Attanasio and Davis 1996).
3 In particular, Arcand and Fafchamps (2006) studying a dataset from Senegal and Burkina Faso, emphasize that

membership in community-based organizations is very common in these countries. Essentially, a community-based

organization is created by producers in order to provide services to the members of the group. Among these services,

a community-based organization provides insurance.
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The level of risk associated with an individual (measured by the variance of the distribution from

which is drawn the idiosyncratic shock) is speci�c to this individual. Individuals have the possibility

to form a group in order to mutualize risk. We consider that individuals commit to share the

random component of their income equally with members of their risk-sharing group.4 We then

examine the segmentation of society into such risk-sharing groups. We show that the resulting

�core partition�exists and is unique (under mild assumption). It turns out that the key dimension

of the coalition formation process is risk heterogeneity measured by ratios of variance between

individuals. This leads the core partition to be homophily-based: coalitions gather together agents

similar with respect to the variance of the idiosyncratic shock. Within each coalition belonging to

the core partition, there is complete risk sharing but not within the whole society: risk-premiums

paid by individuals di¤er between coalitions.

We study the impact of speci�c variance schedules on the core partition and show thanks to

these cases how the number and the size of coalitions belonging to the core partition are a¤ected

by the distribution of risk within society

Turning then to the comparison of two societies identical with respect to the number of indi-

viduals (and thus risks), one being more �risky�than the other, we compare their core partitions

and prove that the more risky one is not necessarily more segmented than the less risky one, nor

that the aggregate risk premium associated with risk-sharing in the more risky society is always

higher than the one associated with the less risky society.

Finally, we discuss the empirical implications of this partitioning of society and prove how the

empirical evidence can be explained when the grand coalition does not form, that is when society

is segmented into more than one risk-sharing coalition.

The relationship between risk and group formation has already been studied by various authors.

In particular, Genicot and Ray (2003) develop a group formation approach where one risk-sharing

coalition forms in the presence of possible self defection. However they do not study the partition of

society into possibly multiple coalitions. Our work is also closely related to Taub and Chade (2002)

who study in a dynamic setup whether the current core partition is immune to future individual

defections. Our focus is di¤erent as we build a setup that allows us to characterize a relationship

between the risks characteristics of a society and the membership, size of risk-sharing groups and

the extent of risk coping. Recent works have developed network formation models where informal

insurance is essentially characterized by bilateral relations (see Bramoullé and Kranton 2007, and

4Given our setup, it turns out that, conditional on group membership, such an insurance scheme leads to con-

sumption allocations consistent with Pareto optimal allocations which can be obtained by e¤ective state-contingent

markets.
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Bloch, Genicot and Ray, 2008). Our coalition formation approach allows for multilateral transfers

between individuals which are supported by empirical evidence (see Dercon et alii 2006 for the case

of group-based funeral insurance or Arcand and Fafchamps 2008 for insurance services rendered by

community-based organizations). Finally, our paper is also related to Henriet and Rochet (1987)

who build a model of endogenous formation of mutuals using a cooperative game theoretic approach.

The modelling strategy is di¤erent from ours as they assume a continuum of agents, the existence of

some congestion costs and a binomial distribution of shock. Further, they focus on formal insurance

activity and do not address the issue of mutualization of risk under informal insurance schemes.

2 The Model.

2.1 Society.

We consider a society I formed of N agents, indexed by i = 1; :::; N . There is no production in this

society and agents are endowed with quantities of a consumer good. The individual endowment yi

allotted to individual i has a deterministic component wi and is a¤ected by an idiosyncratic risk

"i :

yi = wi + "i + �

"i is normally distributed with variance �2i : "  N (0; �2i ). � denotes a common shock normally
distributed with variance �2� . Without loss of generality, we index individuals as follows: for i and

i0 = 1; ::; N with i < i0 then �2i < �2i0 . We will thus say that a lower indexed individual is a �less

risky agent�(strictly speaking, individual risk is associated with the law of motion of "i).

Given these di¤erences among individuals, we de�ne �i � �2i
�2i�1

for i 2 I: �i is called the �risk
ratio�between agents i� 1 and i. Then it will be useful in the sequel to use the following

De�nition 1 Any society I can be characterized by a risk-ratio schedule � = f�2; �3; :::; �Ng with
�i � �2i

�2i�1
for i 2 I:

Each individual has the same CARA utility function

Ui = �
1

�
e��ci (1)

where ci denotes private consumption and � a positive parameter measuring the absolute risk

aversion. It is identical for all individuals. ci may di¤er from yi if agent i enters some risk-

sharing group. We will provide more detail in the next subsection. It is assumed that there are

no �nancial markets allowing any agent to insure himself against his idiosyncratic risks. Finally

there is perfect information in the following sense: a priori the various idiosyncratic variances are
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common knowledge and the realised individual shocks are also perfectly and universally observed

when they occur.

2.2 Risk-Sharing Groups.

Individuals have an incentive to belong to a risk-sharing group: a group provides insurance by

pooling some resources and redistributing these resources among its members.

Here we consider the following insurance scheme: agent i pays the full value of his realized

idiosyncratic shock "i in a common fund. The common fund is then equally redistributed among

members of the group. Formally, consider a group S � I, formed of a �nite number n � N of

agents. S is a subset of I whose membership is left unde�ned at this stage. The consumption of

agent i belonging to S is equal to:

ci = wi +

P
k2S "k
n

+ � (2)

where n is the cardinal of S.

This insurance scheme deserves attention because it leads to allocations that are Pareto optimal

and consistent with the existence of complete markets. Precisely, according to the First Welfare

Theorem, allocations obtained with complete markets are Pareto optimal when, for any individual

i, the lagrange multiplier associated with her budget constraint equals the inverse of her weight in

the social value function of the Pareto program (see Ljungqvist and Sargent, 2004, p. 216). Given

that we assume a CARA utility function and a risk aversion parameter identical among individuals,

we can check that our insurance rule leads to allocations that are optimal and identical to the one

obtained with complete markets.5

This insurance rule is di¤erent from credit as transfers paid at a date t do not depend on history,

for instance agents who had su¤ered from bad shocks in the past and who received transfers do not

have to reimburse them while they bene�t from a good shock.

The expected utility of individual i in group S; Vi(S); applying this insurance rule is:

Vi(S) = �E
�
1

�
e��wi��

P
k2S "k
n

���
�
:

As we assume a CARA utility function and normal distribution for each idiosyncratic shock, the

Arrow-Pratt approximation is exact:

Vi(S) = �
1

�
e
��

h
wi� �

2n2

P
k2S �

2
k�

�
2
�2�

i
(3)

5Let us stress that our risk-sharing groups are not equivalent to mutuals studied by Henriet and Rochet (1987).

They consider a mutual as an insurance company that provides full insurance, the premium is the same for all clients

and expected pro�ts are nil. With respect to our insurance rule, an agent i in group S pays the premium "i; he

receives t such that the ex post budget constraint for the group is binding: nt =
P

k2S "k.
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We de�ne the certainty-equivalent income for individual i in group S; denoted by !i (S) ; as:

!i (S) = wi �
�

2

X
k2S

�2k
n2
� �

2
�2� (4)

The risk premium for any individual i in group S; denoted by �(S), is equal to �
2

P
k2S

�2k
n2
+ �

2�
2
� :

It is immediate to remark that it is the same for every member of S.

Hence, the formation of a group relies on the following trade-o¤. Accepting a new member has

two opposite e¤ects: on the one hand, everything else equal, the higher its size, the lower the risk

premium; on the other hand, accepting an individual increases the sum of individual risks leading

members to pay a higher risk premium. Therefore when assessing the net bene�t of accepting a

given individual, characterized by a certain variance, an insider has to weigh these two e¤ects. But

clearly, given the choice between two agents, any insider prefers the one with the lesser variance.

Remark that the risk premium is a non linear function of the size nj .

We de�ne the individual gain for agent i from membership to group S rather than to group S0

as follows:

�(S0)� �(S)

It amounts to the reduction in the risk premium represented by being a member of S rather

than a member of S0. In other words, an agent prefers joining a group (provided she is accepted in

this group) in which her certainty-equivalent income is higher.

Suppose an agent i forming its own risk sharing group, i.e. S0 = fig, this di¤erence becomes:

�(fig)� �(S):

Considering two individuals i and i0 > i; i; i0 2 S, i0 bene�ts more than i from being in S rather

than being alone, as we get:

�(fi0g)� �(S) = �

2

 
�2i0 �

X
k2S

�2k
n2

!
> �(fig)� �(S) = �

2

 
�2i �

X
k2S

�2k
n2

!
(5)

In other words, the riskier an agent, the more he bene�ts from belonging to a given group (rather

than remaining alone): individual gains from a group are di¤erentiated and actually increasing with

the riskiness of the agent. This is the core characteristics of a group functioning under our insurance

rule.

More generally, given two di¤erent risk-sharing groups di¤ering by their membership, and there-

fore, the exposure to risk of their members, the gains for joining either of them for a given agent

di¤er. The desire of each agent is to join the group which generates for him the highest gain.
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3 Risk-sharing and the segmentation of society.

From above, it is immediate that the characteristics and in particular the size of a group matters for

its members. In particular, as agents have di¤erent needs for risk sharing, and expose the members

of the group to which they may belong to idiosyncratic risks, the membership of a group is a matter

of concern. This leads to the question of the endogenous segmentation of society into risk-sharing

groups.

We consider that a group is a coalition or club of individuals and a partition of the society is a

set of coalitions. More formally,

De�nition 2 A non-empty subset Sj of I is called a coalition and P = fS1; :::; Sj ; :::; SJg for

j = 1; :::; J is called a partition of I if (i)
JS
j=1

Sj = I and (ii) Sj
T
Sj0 = ; for j 6= j0:

According to this de�nition, any individual belongs to one and only one coalition. The size of

the j � th coalition, Sj � I, is denoted by nj . We will use interchangeably the terms �coalition�
and �risk-sharing coalition�.

To address the issue of segmentation of society into risk-sharing coalitions, we consider the

following sequence of events:

1. Agents form risk-sharing coalitions and a partition of society is obtained.

2. Individuals commit to pay transfers according to the insurance rule of Equation (2) in each

coalition.

3. Idiosyncratic shocks are realized. Agents then consume their after-transfer income.

We solve this coalition-formation game by looking at a core partition de�ned as follows:

De�nition 3 A partition P� =
n
S�1 ; :::; S

�
j ; :::; S

�
J

o
belongs to the core of the coalition-formation

game if:

@$ � I such that 8i 2 $; Vi($) > Vi(P�)

where Vi(P�) denotes the utility for agent i associated with partition P�:

According to this de�nition, a core partition is such that no subset of agents is willing to

secede. It amounts to say that coalitions are formed according to a unanimity rule: (i) no one can

be compelled to stay in a given group and (ii) to be accepted in a group, there must be unanimous

consent by all existing members of this group.
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Two remarks are important at this stage. First, we assume full commitment. That is, no

agent is able to renege on her chosen coalition once the state of nature is realized. This is a key

di¤erence with for instance Genicot and Ray (2003). Second, if at each date there was a draw in

the distribution law of shocks and no storage technology, the problem at the coalition formation

stage would be the same, and the solution to the game would remain identical over time6.

3.1 The core partition.

Then we are able to o¤er the following:

Proposition 1 A core partition P� =
n
S�1 ; :::; S

�
j ; :::; S

�
J

o
exists and is characterized as follows:

i/ It is unique if

8z = 2; :::; N � 1; �z+1 � �z
�z+1 � 1

� � 1

z + 1
: (6)

ii/ It is consecutive, that is, if i and ei both belong to S�j then 8i0; i > i0 > ei; i0 2 S�j .
iii/ For any two individuals i 2 S�j and i0 2 S�j0 such that �2i < �2i0, the risk premium �(S�j ) < (=

)�(S�j0) if j < (=)j
0:

Proof. See Appendix.

We �rst prove the existence of a core partition of I. Based on voluntary agreements, agents are

able by themselves to form coalitions so as to share risk. No institutional constraint is involved.

The fact that there is no �nancial markets does not mean that there is no way to get insured against

risk.7 Remark that the partition is Pareto-optimal as we are focusing on the core. But we hasten

to add that this result depends on the risk-sharing rule we consider.

The �rst result, i=, provides a su¢ cient condition for the core partition to be unique. The

condition on uniqueness depends on the rank of individuals. If the risk ratios are increasing with

the index z, this condition is always met. The condition may appear stringent when �z > �z+1;8z =
2; :::; N � 1. The expression �1

z+1 is an increasing function of z which equals
�1
3 when z = 2; �1N

when z = N � 1; and tending to 0 when N is su¢ ciently large.8

Turning to the characteristics of the core partition, the second result, ii=, is about consecutivity.

Coalitions belonging to the core partition are homogeneous in the following sense: they include

6This is congruent with the formal setting of the risk sharing issue developed in Townsend (1994).
7Admittedly, the result does not rule out the existence of singletons within the core partition. Singletons are

degenerate risk-sharing coalitions.
8Let us stress that the core partition is generically unique (see for instance Farrell and Schotchmer, 1985) but we

need to provide a su¢ cient condition for uniqueness in order to proceed our comparative static exercises.
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agents who are �close�in terms of exposure to risk. Take an individual who has to choose between

two individuals in order to form a risk-sharing coalition. It is easy to check that he always prefers

the less risky of the pair. This implies that if an agent i is willing to form a coalition with some

other agent i0, then all agents with a lower risk than i0 are also accepted by i in the coalition.9

The third result, iii=; is in line with consecutivity. Take individual characterized by �21: He

is accepted by any possible coalition and chooses the group that incurs the lowest risk premium.

More risky individuals may not be accepted by agents characterized by low risks to pool resources

in a same group and pay higher risk premium in other coalitions.

Given the consecutivity property, from now on, we adopt the following convention that for any

S�j and S
�
j0 ; j

0 > j when �2i < �2i0 ; 8i 2 S�j ;8i0 2 S�j0 : Another way to express consecutivity is to say
that a core partition can be characterized by a series of �pivotal agents�, that is agents who are

the most risky agents of the coalition they belong to:

De�nition 4 Given the coalition S�j of size nj in the core-partition, the pivotal agent, de�ned

by the integer pj 2 f1; :::; Ng ; associated with S�j and the next agent pj + 1 are characterized by
variances �2pj and �

2
pj+1

; respectively, such that:

�(S�j nfpjg) � �(S�j ) and �(S
�
j [ fpj + 1g) > �(S�j )

Hence,

�2pj � [2nj � 1]
X

k2Sjnfpjg

�2k
(nj � 1)2

(7)

and

�2pj+1 > [2nj + 1]
X
k2Sj

�2k
nj2

: (8)

A pivotal agent, associated with the j � th coalition S�j ; is by the consecutivity property, the

most risky agent belonging to this club. He is the ultimate agent for which the net e¤ect of his

inclusion in the club is bene�cial for all other (less risky) agents belonging to the club. Even though

he increases the numerator of risk premium paid by all agents in the club (as he is more risky than

any of them), thus in�icting a loss to their welfare, his addition also increases its denominator.

Actually, his inclusion decreases the risk premium paid by each member of the coalition S�j : But if

this coalition were to include the next agent, pj+1; as he is more risky than pj ; the net e¤ect of his

inclusion would be negative for all other agent of S�j : Therefore they prefer not to let him in. On

the whole, the pivotal agent pj generates the lowest possible risk premium paid by each member of

the coalition S�j :

9The consecutivity property is also obtained in Henriet and Rochet (1987) but it is with respect to probability of

accident and not with respect to the variance of shocks.
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Let us remark that the de�nition of a pivotal agent depends neither on the level of the variance

nor on the degree of risk aversion. The conditions (7) and (8) can be rewritten as:

1 � [2nj � 1]
(nj � 1)2

X
k2Sjnfpjg

pj�1Y
z=k+1

1

�z
(9)

and

1 >
[2nj + 1]

n2j

X
k2Sj

pjY
z=k+1

1

�z
(10)

respectively. What matters in the formation of a coalition, is the heterogeneity of the exposure

to risk measured by risk ratios. Consider the less risky agent, characterized by �21: If he forms a

coalition, it is necessarily with a more risky agent. The best choice for him is agent 2 who adds the

lesser increase in the common risk premium:

�(f1; 2g) = �

8
(�21 + �

2
2) =

��21
8
(1 + �2)

< �(f1; ig) = �

8
(�21 + �

2
i ) =

��21
8
(1 +

i
�
k=2

�k);8i > 2:

This formula makes clear that agent 1 prefers to form a coalition with agent 2 than with any other

agent in society, because he is relatively closer to him in terms of risk. Eventually, what matters

for agent 1, is the sequence of risk ratios, that is the individual variances relative to his own. This

reasoning can then be generalized to any n-agent coalition so as to obtain the core partition.

Given the consecutivity property of the core partition, the coalition S�j is fully de�ned by the

two agents whose indices are pj�1 + 1 and pj : In other words, the core partition is de�ned by the

set of pivotal agents. Then we are able to o¤er the following:

Proposition 2 The core partition is characterized by a set of J pivotal agents indexed by pj sat-

isfying (7) - (8) for j = 1; :::; J � 1 and �2pJ = �2N :

Remark that the last coalition is peculiar. Its pivotal agent is per force agent N who satis�es

condition (7) and not condition (8). We refer to this ultimate coalition as the �residual�risk sharing

coalition.

Finally, Proposition 2 highlights that, depending on the risk-ratio schedule, our insurance rule

may lead to various risk-sharing groups. We could obtain the grand coalition belonging to the core

if the risk heterogeneity was su¢ ciently small. Further, the core partition depends on the assumed

insurance rule. Remark that, building on Theorem 2 of Baton and Lemaire (1981), the insurance

rule that gives to individual i the following level of consumption:

ci = wi +

P
k2S "k
n

+ � +
�

2n
(

P
k2S �

2
k

n
� �2i )
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would lead to the grand coalition in the core of the coalition formation game for any risk-ratio

schedule. Indeed, this rule yields the following certainty-equivalent income

!i (S) = wi �
�

2

�2i
n
� �

2
�2�

which monotonously decreases with the size of the risk sharing group. Hence, every individual i

wishes to form a club encompassing the whole society.

3.2 Particular risk-ratio schedules.

We have just emphasized the importance of the risk-ratio schedule � characterizing a society I

in the endogenous determination of the core partition of this society in di¤erentiated risk-sharing

coalitions. In this subsection, we explore the link between patterns of the risk-ratio schedule and

the characteristics of the core partition. This allows us to better understand how heterogeneity

a¤ects the way individuals congregate so as to share risk. Formally, we want to assess the impact

of � on the series of pivotal agents, i.e. on the number and size of risk-sharing coalitions.

We restrict the analysis to risk-ratio schedules with simple monotonicity properties: either the

series of �i increases, decreases or remains constant. We then o¤er the following

Proposition 3 If the risk-ratio schedule � = f�2; �3; :::; �Ng is such that:

� �i = �; 8i 2 I; then n�j = n;8j = 1; :::; J � 1;

� �i � �i+1; 8i 2 I; then n�j � n�j+1;8j = 1; :::; J � 1;

� �i � �i+1; 8i 2 I; then n�j � n�j+1;8j = 1; :::; J � 1.

Proof. See Appendix.

This proposition makes clear that risk heterogeneity a¤ects the core partition, that is the way

agents collectively cope with risk. To understand this proposition, we have to keep in mind that

each individual makes his decision about membership with several principles in mind that we have

previously uncovered. First, he wants to join the least risky coalition, that is a coalition whose

members have a lower variance than himself; second, he wants to be joined by the less risky agents

among those who are more risky than himself; third, when selecting (approving the admission of)

members in his coalition, he cares about the risk ratios. Consecutivity, the ordering of coalition-risk

premia, and the impact of risk ratios in determining the pivotal agent of any coalition are the key

elements for understanding how a core partition relates to the risk ratio schedule.

First, consider that the risk ratios are constant and equal to �. From (9) and (10), we see

that inequalities determining the pivotal agent are identical for any club Sj : It turns out that
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coalitions in the core partition have the same size. In fact, it amounts to say that with constant risk

ratios individuals, while deciding to form a risk-sharing group, individuals face the same trade-o¤

whatever the level of their exposure to risk.

Second, consider that the risk ratios are increasing with the rank of individuals. Again, agent 1

selects the pivotal agent of the �rst club p1. Consider now the problem facing the agent following

the pivotal agent, p1 + 1. He has to select the pivotal agent p2. The condition determining this

agent implies higher values of the risk ratios than the condition determining p1 (remember that

the absolute values of variances of the �rst agents do not matter). Hence, pondering the bene�t

of increasing size and cost of higher risk bearing potential members, he chooses a pivotal agent

corresponding to a lower size. Repeating the argument, we �nd that the succeeding club sizes

decrease.

Third, the case where the risk ratios are decreasing with the rank of individuals is easily un-

derstood by using a similar argument. The less risky agent of the second club has to form the

coalition he wants to enter among less (relatively) risky candidates than agent 1. Hence, pondering

the bene�t of increasing size and cost of higher risk bearing potential members, he chooses a pivotal

agent corresponding to a higher size.

3.3 Comparing stochastic distributions and risk sharing groups.

Are more risky societies more segmented in smaller / more numerous risk sharing coalitions? Is it

possible to compare the extent of insurance among two societies di¤ering with respect to their risk?

These are the issues our coalition formation setup allows us to address. Consider two societies,

I and I0 with a similar number of agents, and characterized by di¤erent risk ratio schedules, �

and �0: Hence the core partitions di¤er. Formally, we shall compare the two core partitions of two

di¤erent societies using the following

De�nition 5 Let us consider P� =
n
S�1 ; :::; S

�
j ; :::; S

�
J

o
the core partition in society I and P 0� =�

S0�1 ; :::; S
0�
k ; :::; S

0�
J 0
	
the core partition in society I0. We say that I is weakly less segmented than I0

if for any i = 1; :::; N; i 2 Sj in P� and i 2 S0k in P 0� we have k � j.

This de�nition is based on the risk-premium ordering property stressed in Proposition 1. It

amounts to say that the number of clubs where the risk premium is lower than the risk premium

any individual i currently pays in his club is higher in the more segmented society. This de�nition

captures the idea that in a more segmented society any individual i has less possibility to mutualize

risk with less risky individuals. It turns out that when society I is weakly less segmented than I0

the number of risk-sharing coalitions is lower in I.
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Proposition 4 For two societies I and I0, I being characterized by � = f�2; �3; :::; �Ng and I0

being characterized by �0 = f�02; �03; :::; �0Ng; such that �i < �0i whatever i = 2; :::; N; then society I

is weakly less segmented than I0:

Proof. See Appendix.

This Proposition highlights the crucial impact of risk heterogeneity on the allocation of risk in

any society. The higher is risk heterogeneity the lower is the chance for any individual to mutualize

risk with less risky individuals.

Let us provide an intuition for the proof of Proposition 4 by taking the special case where

�i = �i+1 = �; �0i = �0i+1 = �0 and � < �0 whatever i = 2; :::; N . Consider agent 1 in society

I. Taking into account that the decision for membership only depends on the risk ratios, and

pondering the trade-o¤ between the bene�t of size and the cost of higher marginal relative risk,

agent 1 is willing to be included in a larger risk sharing coalition in society I than in society I0.

As we have seen, the agent following the �rst pivotal agent faces the same trade-o¤ as agent 1.

Hence the second club is of the same size than the �rst club, and consequently is of a larger size in

society I than in society I0. Repeating the argument, we �nd that the number of non-residual clubs

is (weakly) reduced in the core partition of society I compared to the core partition of society I0.

The case of decreasing and increasing �s can similarly be dealt with.

Moreover, Proposition 4 stresses the fact that it is impossible to determine a non-ambiguous

relationship between risk and social segmentation. We shall use the second-order stochastic domi-

nance (SS-Dominance hereafter) criterion. Taking two societies I and I0 such that for any agent, "i

SS -Dominates "0i, I will be considered as more risky than I
0. Take two societies I and I0 satisfying

condition on risk ratio schedules of Proposition 4. Proposition 4 is valid eventhough �2i > �02i ;

8i = 1; :::; N or �2i < �02i ; 8i = 1; :::; N . In other words, I is weakly less segmented than I0 either
when I is more risky than I0 or when I0 is more risky than I.

3.4 Stochastic distributions, social segmentation and risk premiums.

There is another dimension for the assessment of the impact of higher risk: it is the resource cost

of dealing with risk. More precisely, even if an increase in risk does not lead to a more segmented

society, it may still lead to a higher insurance cost paid by society as a whole.

To get a better understanding of this issue, we �rst de�ne the aggregate risk premium.

13



De�nition 6 The aggregate risk premium associated with the core partition P is de�ned as:

�(P) = 1

N

NX
i=1

�i =
1

N

0@J+1X
j=1

nj�(Sj)

1A (11)

=
1

N

�

2

0@J+1X
j=1

1

nj

X
k2Sj

�2k

1A+ �

2
�2�

The aggregate risk premium is an indicator of the willingness to pay for risk coping, at the

society level. Given the partition of society in risk sharing coalition, it is a¤ected by the partition

since it shapes the individual risk premia (see above).

Intuitively, more individual risk should lead to a higher aggregate risk premium. An increase

in risk heterogeneity, by means of an increase in someone�s variance leads to higher individual risk

premia, hence higher average risk premium. This is obviously true if the coalition formation is

taken as given. Then it is true that if for each agent, her variance increases, then the individual

risk premia increase as well as the average risk premium. However this is not necessarily true when

agents form their risk-sharing coalitions. It may happen that the change in the whole core-partition

leads to di¤erent risk-sharing arrangements, the outcome of which is to decrease the average risk

premium.

This counter-intuitive result is proven in the following

Proposition 5 For two societies I and I0 such that any "i SS-Dominates "0i for every i = 1; :::; N ,

then society I may be characterized by a higher average risk premium than I0

�(P 0) < �(P): (12)

where P (resp. P 0) is the core partition associated with I (I0).

Proof. See Appendix.

Proposition 5 highlights the fact that if endogenous formation of risk sharing group is taken

into consideration than we cannot claim that all individuals pay a higher risk premium in a riskier

society. We get such a result using Proposition 4 that stresses an ambiguous relationship between

social segmentation and second-order stochastic dominance. We consider the case where society

I0 is less segmented than I eventhough agents face more risk (higher idiosyncratic variances) in I0

than in I. Hence, in society I0, risk may be allocated in larger coalitions. In other words, in society

I0, individuals have the possibility to mutualize risk on a larger scale. This leads that the sum of

these risk premia may be lower in the more risky society and some individuals will pay lower risk

premium in this society.
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4 Segmentation and empirical issues.

The aim of this section is to study empirical implications of endogenous group formation. In

particular, considering the regression usually run to test for optimal risk sharing (Townsend, 1994),

we want to examine the in�uence of group formation on the values of estimated coe¢ cients.

If there is optimal risk sharing then individual consumption of any agent i is determined by

aggregate consumption and does not depend on the individual income of agent i. Formally, given a

society I, consider the regression of individual consumptions on individual incomes and aggregate

consumption expressed as follows:

cit = �i + �icIt + �iyit + uit; (13)

where cit is consumption of individual i, cIt is society I average consumption, yit is income of

individual i, and uit is an error term.

Optimal risk sharing implies �i = 1 and �i = 0, for all i. As was said in the introduction,

this theory is rejected for village economies.10 Can this rejection be related to the fact that the

grand coalition does not form? In other words, does the partition of the population in multiple

risk-sharing groups play a role? Suppose the village is a closed society (which is more or less the

case as far as insurance is concerned). It may not be the right cluster of agents with respect to risk.

In other words, the grand coalition may not form in this society because it is too diverse in terms

of risk. Within the village, there may be such an heterogeneity with respect to risk that agents

willingly form smaller risk-sharing coalitions. Villagers may group into smaller �neighborhoods�or

districts within the village, according to their particular exposure to risk.

Let us take into account endogenous group formation and consider the core partition P� =n
S�1 ; :::; S

�
j ; :::; S

�
J

o
of a society I. Hence for an agent i belonging to S�j we have ci = yi+

P
z2S�j

"z

n�j
+�.

The OLS estimates of b�i and b�i are given by the following formulas:
b�i = cov (ct; cit) var (yit)� cov (yit; cit) cov (ct; yit)

var (ct) var (yit)� [cov (ct; yit)]2b�i = cov (yit; cit) var (ct)� cov (ct; cit) cov (ct; yit)
var (yit) var (ct)� [cov (ct; yit)]2

Therefore, in our setup when the core partition forms, these estimates for individual i belonging

10The evidence provided by Townsend on three Indian villages has been the subject of close scrutiny. Grimard

(1997) rejects perfect risk-sharing using panel data for the Ivory Coast. Ogaki and Zhang (2001), based on Indian

and Pakistanese data, reject perfect risk-sharing across villages but do not reject it within villages.
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to S�j are equal to:

b�i =
�
�2� +

P
k2Sj

�2k
njN

��
�2� + �

2
i

�
�
�
�2� +

�2i
nj

��
�2� +

�2i
N

�
�
�2� + �

2
i

� �
�2� +

P
m2I �

2
m

N2

�
�
h
�2� +

�2i
N

i2
b�i =

�
�2� +

�2i
nj

��
�2� +

P
m2I �

2
m

N2

�
�
�
�2� +

P
k2Sj

�2k
njN

��
�2� +

�2i
N

�
�
�2� + �

2
i

� �
�2� +

P
m2I �

2
m

N2

�
�
h
�2� +

�2i
N

i2
Membership has thus a direct impact on values of b�i and b�i. If the grand coalition forms, that

is if S�j = I, we have b�i = 1 and b�i = 0. However if society is partitioned into di¤erent risk sharing
groups, then we have b�i 6= 1 and b�i 6= 0. Running regression (13) without taking into account social
segmentation would lead to a dismissal of the theory of optimal risk sharing eventhough individuals

are fully insured within their coalitions. Having information on the right groupings of individuals

and considering the following regression

cit = �i + �ic
�
jt + �iyit + uit

with c�jt the average consumption within S
�
j instead of regression (13) would lead to support optimal

risk sharing. Indeed, it is easy to check that b�i = 1 and b�i = 0.
However, running regression (13) is not without merits. Indeed in some cases, it allows us to

get some information about the core partition, that is the segmentation of society into risk-sharing

groups, provided agents are left free to set their risk sharing arrangements as they wish.

If we consider a large population and assume that limN!1
�2N
�21

<1; we obtain (see Appendix
for a proof of this approximation)

b�i ' 1

nj
and b�i ' 1� 1

nj

It is therefore obvious that all agents in the same club S�j are characterized by the same value ofb�i and b�i. Then, the larger is a club, the lower (higher) is the value of b�i (b�i) for its members. This
implies that individuals in a larger club are able to share risk more e¢ ciently as their individual

consumptions depend less from their individual income.

Moreover, for a given income distribution, we show that individual consumption is more depen-

dent of individual income, the deeper is risk heterogeneity between two succeeding individuals, i.e.

higher �i. This comes from Proposition 3: when �i Q �i+1 for i = 1; :::; N � 1; then b�i R b�i0 for
i 2 S�j and i

0 2 S�j0 ; j
0 > j and b�i Q b�i0 for i 2 S�j and i

0 2 S�j0 , j
0 > j: This is due to the result

that the more heterogenous individuals are with respect to idiosyncratic shocks, the less they are

willing to share risk within the same coalition.
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Finally, a more segmented society weakly leads to a higher b�i and a lower b�i re�ecting the fact
that the extent of insurance is done on a lower scale. Moreover, computing

NX
i=1

�i gives us the

number of clubs of the core partition.

5 Conclusion

Non-�nancial risk sharing arrangements are widely-used in developing economies. In the absence

of proper and well-functioning �nancial markets, agents rely on informal insurance schemes, often

based on a social or geographical (the �village�) proximity. Hence it is legitimate to ask how are

designed the risk sharing mechanisms in a society and what are their properties and consequences.

In the present paper, considering a society without �nancial markets and relying on a particular

insurance rule, we have studied the endogenous formation of risk-sharing coalitions. Agents can

form any possible group but commit to stay in the group once they choose to belong to.

We have obtained a characterization of the optimal segmentation of society with respect to risk,

depending on the di¤erentiated idiosyncratic risks born by individuals. It is unique (under mild

assumptions), and consecutive: a coalition integrates agents of relatively similar risks. There is

perfect risk sharing within a coalition. However, there is no full insurance across society. In other

words, the amplitude of risk sharing cannot be studied without precisely taking into account the

memberships of risk-sharing groups and their di¤erences.

Then we have discussed the role of risk heterogeneity on the segmentation of society. Focusing

on three special cases, we characterize the relationship between the number, the size and the

membership of risk-sharing coalitions (i.e. the properties of the segmentation) and the distribution

of risk across society.

Turning to the comparison of di¤erent societies, we prove some counter-intuitive results. In

particular, a more risky society may turn out to be less segmented than a less risky one. This

gives additional support to the claim that the way risk-sharing groups are formed is crucial for the

understanding of the extent of collective risk-sharing.

Finally, we provided a discussion of the empirical evidence on imperfect risk-sharing in informal

societies. We prove how the segmentation of society into multiple risk-sharing coalitions can provide

an explanation of some empirical puzzles. This has practical implications for empirical researchers

working on the subject: the relevant borders of risk-sharing groups for obtaining an exact picture

of risk-sharing schemes must be precisely and carefully assessed.

The present research proves how coalition theory tools can be applied to study the functioning
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of an economy in the presence of uncertainty when agents are risk-averse. It can be extended along

several lines, where these tools are also of potential interest.

First, other insurance rules than the one we have studied here could be analyzed, in particular

when the whole income is taxed so as to fund the insurance scheme. It is likely to generate more

complex arrangements and no so clear-cut results as in the present setting. More generally, various

studies have proven that many devices are used to collectively attain some insurance: coopera-

tive networks (Fafchamps and Lund, 2003), altruism (Foster and Rosenzweig, 2001), marriages

(Rosenzweig and Stark, 1989), state contingent loans (Udry, 1994).

Second, the assumption of full-commitment (the impossibility of individual defection) could be

relaxed so as to assess the impact of defection on the number and the size of risk-sharing coalitions.

Third, the introduction of risk-sharing coalitions, maybe enacted by an entrepreneur, in the

context of �nancial markets, is of clear interest. Even in economies with �nancial markets, some

form of coalitions exist: they may take the form of insurance companies, informal risk sharing

arrangements, or even publicly organized welfare institutions. We think that coalition theory is a

relevant tool to investigate these issues.

Finally, the link between risk-sharing and growth could be studied when agents are both able

to accumulate some production factors and voluntarily form coalitions. This could shed some light

on the relationship between risk-sharing and risk-taking over the long term. 11

11Jaramillo, Kempf and Moizeau (2005) study the relationship between coalition formation and growth, when

agents are unequally endowed in a primitive stage, in an endogenous growth model, but not taking into account

uncertainty.
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6 Appendix.

6.1 Proof of Proposition 1.

Existence. Given the value of Vi (Sj) ; if for the two groups Sj and Sj0 , we have:

Vi (Sj) � Vi
�
Sj0
�
() �2

2
�
n2j

� X
k2Sj

�2k �
�2

2
�
n2j0
� X
k2Sj0

�2k

then we have:

Vi0 (Sj) � Vi0
�
Sj0
�
;8i0 2 I:

This implies that the common ranking property is satis�ed, that is:

8i; k 2 I; Vi (Sj) � Vi
�
Sj0
�
, Vk (Sj) � Vk

�
Sj0
�
:

According to Banerjee et al. (2001), the common ranking property implies that a core partition

exists.

Proof of (i): Uniqueness.

Here we assume consecutivity. Let us de�ne pj the most risky agent of the consecutive group

Sjnfpjg with size nj satisfying the two following inequalities:

�2pj � [2nj + 1]
X

k2Sjnfpjg

�2k
n2j

and

�2pj+1 > [2nj + 3]
X
k2Sj

�2k
(nj + 1)2

:

Let us consider the consecutive group Sj whose lowest-individual-risk agent is i. Given the de�nition

of the most risky agent, we can introduce the two following functions: �(n) = n
2n+1 and �(i; n) =

1
n

i+n�1P
k=i

�2k

�2i+n
with n = 1; :::; N � i+ 1. Let us denote n�(i) + 1 the size of group Sj such that:

�(n�(i)) � �(i; n�(i))

and

�(n�(i) + 1) > �(i; n�(i) + 1)

It is easy to check that �(n) is an increasing function of n and �(1) = 1
3 : Given �(i; 1) = 1 > �(1);

if �(i; n) is decreasing with respect to n whatever i 2 I and n � N � i, then n�(i) is unique as

�(n) � �(i; n) for n � n�(i) and �(n) > �(i; n) for n > n�(i):
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The function �(i; n(i)) is decreasing if and only if:

��(i; n) � �(i; n(i) + 1)��(i; n(i)) = 1

n+ 1

�2i+n +
i+n�1P
k=i

�2k

�2i+n+1
� 1

n

i+n�1P
k=i

�2k

�2i+n
< 0()

 (i; n) = n�2i+n �
�
(n+ 1)

�2i+n+1
�2i+n

� n
� i+n�1X

k=i

�2k

!
< 0:

Let us consider the function  (i; n). It is negative for all i, n � N � i if

 (i; 1) = �2i+1 �
�
2
�2i+2
�2i+1

� 1
��

�2i
�
� 0 and � (i; n) �  (i; n+ 1)�  (i; n) � 0:

De�ning �i+1 =
�2i+1
�2i

; the inequality  (i; 1) � 0 is equivalent to

�
�2i+1��2i
�2i

�
�
�
�2i+2��2i+1
�2i+1

�
�
�2i+2��2i+1
�2i+1

� =
�i+1 � �i+2
�i+2 � 1

� 1 (14)

Moreover, 8n � 1, � (i; n) � 0 is equivalent to

� (i; n) = ((n+ 1)�i+n+1 � (n+ 2)�i+n+2 + 1)(�2i+n +
 
i+n�1X
k=i

�2k

!
) � 0,

�i+n+1 � �i+n+2
�i+n+2 � 1

(n+ 1) � 1:

De�ning z � i+ n+ 1, we can rewrite this inequality as follows:

�z � �z+1
�z+1 � 1

(z + 1)(
z � i
z + 1

) � 1

As 0 � (z�i)
(z+1) � 1; we deduce that if for all z = 3; :::; N�1;

�z��z+1
�z+1�1 (z+1) � 1; then4 (i; n) � 0:

Given equation (14), we deduce that if for all z = 2; :::; N � 1; �z��z+1�z+1�1 (z + 1) � 1 then

4 (i; n) � 0 and  (i; 1) � 0; 8i = 1; :::; N:
Hence, when for all z = 2; :::; N � 1; �z��z+1�z+1�1 (z + 1) � 1; we deduce that there is a unique size

nj for the club Sj :

Proof of (ii): Consecutivity.

By contradiction, let us consider a core-partition P� characterized by some non consecutive
groups, that is, there exist individual i;ei 2 S�j and i0 2 S�j0 with i < i0 < ei:

Suppose �rst that �(S�j ) � �(S�j0). As i < i0 < ei () �2i < �2i0 < �2ei , we have �(S�j0) >
�((S�j0nfi0g) [ fig), which leads to

8z 2 (S�j0nfi0g) [ fig; Vz((S�j0nfi0g) [ fig) > Vz(P�):
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Second, assume that �(S�j0) � �(S�j ). We have �(S
�
j ) > �((S�j nfeig) [ fi0g), which leads to

8z 2 (S�j nfeig) [ fi0g; Vz((S�j nfeig) [ fi0g) > Vz(P�):

Hence a contradiction with the fact that P� is assumed to be a core-partition.
Proof of (iii): Risk premium ordering.

Consider the �rst group S�1 . Let us de�ne the group $j =
n
1; ::::; n�j

o
which is consecutive,

comprised of the lowest-individual-risk agents and has the same size as group S�j . From the de-

�nition of the core-partition, we know that, 8$ � I; 8z 2 S�1 and $, Vz(S
�
1) � Vz($) and in

particular 8z 2 S�1 and $j , 8j = 2; :::; J , Vz(S�1) > Vz($j ) which means that 8$j ; �(S�1) < �($j ):

Moreover, given the consecutivity property, it is easy to show that �($j ) < �(S�j ); 8j > 1: Hence,
�(S�1) < �(S�j ): Considering the population In(S�1 [S�2 [ :::[S�j ), the same argument can be applied
for S�j+1 leading to the result �(S

�
1) < �(S�2) < �(S�3) < ::: < �(S�j ) < ::: < �(S�J�1):

This completes the proof.

6.2 Proof of Proposition 3.

Let us �rst denote Sc(i) any consecutive group whose less risky individual is i. We will denote bybn(i) the size of Sc(i) such that bn(i) = argmaxVi(Sc(i)) in the subset Inf1; 2; :::; i � 1g; for a risk
ratio schedule �: Hence, bn(i) satis�es inequalities characterizing a pivotal agent:

�(bn(i)� 1) � �(i; bn(i)� 1) (15)

and

�(bn(i)) > �(i; bn(i)) (16)

From Proof of Proposition 1, we know that �(n) is an increasing function of n and, under some

condition, �(i; n) decreases with respect to n. We can rewrite �(i; n) as follows: 1
n

i+n�1P
k=i

�2k

�2i+n

�(i; n) =
1

n

i+n�1X
v=i

i�1+nY
z=v+1

1

�z

�(i; n) is a function of i such that:

(i) When �z = �; 8z 2 I; then �(i; n) = �(i0; n) 8i; i0:
(ii) When �z � �z+1; 8z 2 I; then �(i; n) � �(i0; n) for i < i0:

(iii) When �z � �z+1; 8z 2 I; then �(i; n) � �(i0; n) for i < i0:

Hence, items (i), (ii), (iii) and inequalities (15) and (16) lead to Proposition 3.
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6.3 Proof of Proposition 4.

We will denote Sc(i) the consecutive club whose lowest risky agent is individual i: Let us denote

by bn( ij�) the size of Sc(i) such that bn( ij�) = argmaxVi(Sc(i)); for a risk ratio schedule �:
We �rst o¤er the following Lemma

Lemma 1 For two societies I and I 0 characterized respectively by � = f�2; �3; :::; �Ng and �0 =
f�02; �03; :::; �0Ng with �z < �0z for z = 2; :::; N; we have bn( ij�) � bn( ij�0):
Proof. Let us denote �(

�!
� i;n) � �(i; n) = 1

n

i+n�1P
v=i

i�1+nQ
z=v+1

1
�z
with

�!
� i;n = (�i+1; �i+2; :::; �i+n�1):

Hence for two vectors
�!
� i;n and

�!
�0 i;n where �0z > �z; 8z = i + 1; :::; i + n � 1; we have �(�!� i;n) >

�(
�!
�0 i;n); 8i 2 I and 8n = 1; :::; N � i + 1: Given inequalities (15) and (16) and that �(

�!
� i;n) >

�(
�!
�0 i;n); it is thus easy to deduce that the optimal size of the consecutive group beginning with

agent i is larger under � = f�2; �3; :::; �Ng than under �0 = f�02; �03; :::; �0Ng: Hence, Lemma 1.

Lemma 2 Let us denote pSc(i) the pivotal agent of any consecutive club Sc(i): For any society I,

any i0 < i we have pSc(i) > pSc(i0):

Proof. We know that �2pSc(i) satis�es

�2pSc(i) �
�
2ncj � 1

� pSc(i)�1X
k=i

�2k
(ncj � 1)2

(17)

and

�2pSc(i)+1 >
�
2ncj + 1

� pSc(i)X
k=i

�2k
ncj
2
: (18)

Let us consider the consecutive club Sc(i0) = fi0; :::; pSc(i)+1g. By assumption on the individuals
ordering, we have

pSc(i)X
k=i

�2k
ncj

>

pSc(i)X
k=i0

�2k
n0cj

for any i0 < i

Hence as 2n
0+1
n0 < 2n+1

n for any n0 > n; we thus have

�2pSc(i)+1 >
�
2ncj + 1

� pSc(i)X
k=i

�2k
ncj
2
>
�
2n0cj + 1

� pSc(i)X
k=i0

�2k
n0cj

2
; for any i0 < i:

We easily deduce that pSc(i) > pSc(i0) for any i0 < i:

Let us now de�ne p�j (�) the pivotal agent of club Sj in the core partition associated to �:

Let us consider individual 1. Using Lemma 1, for � = f�2; �3; :::; �Ng and �0 = f�02; �03; :::; �0Ng
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with �z < �0z for z = 2; :::; N; we deduce that p�1(�) � p�1 (�
0) : Using Lemma 2, we thus deduce

that p�2(�) � p�Sc(p1(�)+1)(�) > pSc(p1(�0)+1)(�). Using again Lemma 1 allows us to say that

pSc(p1(�0)+1)(�) � p�Sc(p1(�0)+1)(�
0) � p�2(�

0): Hence p�2(�) � p�2(�
0): Iterating this reasoning until

j = J allows us to say that p�j (�) � p�j (�
0) for any j = 1; :::; J: Hence for any i = 1; :::; N we thus

deduce that the number of pivotal agents associated with � such that p�j (�) � i compared to the

number of pivotal agents associated with �0 such pj (�0) � i is higher for � than �0: This ends

proof of Proposition 4.

6.4 Proof of Proposition 5.

Let us consider the two following societies. In society I0, there are N individuals characterized with

�02i = 1. Hence, P 0 = fI 0g. In society I, n1 individuals are characterized with �21 and n2 individuals
are characterized with �22 such that 1 > �22 > �21. Let us choose �

2
1 and �

2
2 such that P = fS�1 ; S�2g

with S�1 (respectively S
�
2) comprised of the n1 (respectively n2) individuals with �

2
1 (respectively

�22). Hence, �
2
1, �

2
2; n1; n2 and x are such that

n1�
2
1 + x�

2
2

(n1 + x)2
>
n1�

2
1

(n1)2
for all x 2 f1; :::; n2g

which is equivalent to

�22 > �21
2n1 + x

n1

As the RHS is an increasing function of x, a su¢ cient condition for this inequality to hold is

�22 > �21
2n1 + n2

n1
:

Thus, given both core partitions, we deduce that

�(P) = �

2

1

N

�
n1
n1�

2
1

(n1)2
+ n2

n2�
2
2

(n2)2

�
+
�

2
�2� and �(P 0) =

�

2

1

N
+
�

2
�2�

In order to have �(P) > �(P 0); �21 and �22 must be such that:

�21 + �
2
2 > 1

Clearly there exist �21 and �
2
2 that satisfy the following inequalities:

1 > �21; 1 > �22; �
2
1 + �

2
2 > 1; �

2
2 > �21

2n1 + n2
n1

:

For example, take �21 <
n1

3n1+n2
which satis�es 1 > �21: As �

2
1 > 0; we have 1 > 1� �21: Notice that

�21 <
n1

3n1+n2
is equivalent to 1� �21 > �21

2n1+n2
n1

. So that for any �22 such that 1 > �22 > 1� �21, the
four inequalities are satis�ed.
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6.5 Regression coe¢ cients �i and �i.

If our model is true, we have obtained that

�i =

�
�2� +

P
k2Sj

�2k
njN

��
�2� + �

2
i

�
�
�
�2� +

�2i
nj

��
�2� +

�2i
N

�
�
�2� + �

2
i

� �
�2� +

P
m2I �

2
m

N2

�
�
h
�2� +

�2i
N

i2

�i =

�
�2� +

�2i
nj

��
�2� +

P
m2I �

2
m

N2

�
�
�
�2� +

P
k2Sj

�2k
njN

��
�2� +

�2i
N

�
�
�2� + �

2
i

� �
�2� +

P
m2I �

2
m

N2

�
�
h
�2� +

�2i
N

i2
Let us suppose that limN!1

�2N
�21

<1: This implies that

lim
N!1

�2N
N�21

= 0

As
P
m2I �

2
m

N2�2i
� �2N

�21N
8i = 1; :::; N; we thus easily deduce that when limN!1

�2N
�21

<1; then

lim
N!1

P
m2I �

2
m

N2�2i
= 0;8i = 1; :::; N

Let us start with �i: Dividing by �2i ; it can be expressed as follows

�i (Sj) =

�
�2�
�2i
+ 1

nj

��
�2�
�2i
+

P
m2I �

2
m

�2iN
2

�
�
�
�2�
�2i
+

P
k2Sj

�2k

�2i njN

��
�2�
�2i
+ 1

N

�
�
�2�
�2i
+ 1
��

�2�
�2i
+

P
m2I �

2
m

�2iN
2

�
�
h
�2�
�2i
+ 1

N

i2
As limN!1

P
m2I �

2
m

N2�2i
= 0;8i = 1; :::; N;

�i '

�
�2�
�2i
+ 1

nj

��
�2�
�2i

�
�
�
�2�
�2i
+

P
k2Sj

�2k

�2i njN

��
�2�
�2i

�
�
�2�
�2i
+ 1
��

�2�
�2i

�
�
h
�2�
�2i

i2
Hence,

�i (Sj) '
1

nj
�
P
k2Sj �

2
k

�2i njN

which leads to

�i (Sj) '
1

nj
:

The expression of �i is obtained using a similar reasoning.
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