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Abstract

Road congestion and deteriorating infrastructure impose substantial

economic and social costs, with estimates reaching up to 1% of GDP

in highly congested economies. At the same time, public finances are

increasingly constrained, and reliance on the “user-pays” principle has

grown, prompting greater use of tolling schemes and private participation

in financing, operating, and maintaining road networks. This paper ex-

amines the interaction between road maintenance, capacity, and pricing

decisions in contexts where different operators share responsibilities. We

analyze whether private maintenance and tolling strategies converge to-

ward socially optimal outcomes, and under what conditions misalignments

occur. Policy implications for optimal pricing, investment incentives, and

the design of capacity and maintenance are discussed.
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1 Introduction

Traffic congestion imposes significant economic costs, with national estimates

suggesting losses of up to 1% of GDP in highly congested countries ([28]). At

the same time, public dissatisfaction with deteriorating road conditions remains

widespread.

Moszoro and Soto [26] propose the Mean Speed (MS) score as a novel indica-

tor of road quality, constructed from average travel speeds between major cities

using Google Maps data. This metric captures the expeditiousness of road net-

works and provides a robust, easily replicable alternative to traditional measures

such as the World Bank’s Rural Access Index and the World Economic Forum’s

Quality of Road Infrastructure survey, which rely on costly data collection or

subjective perceptions. Empirical validation shows that the MS score is strongly

correlated with GDP per capita, road density, and perceived road quality, while

outperforming existing measures in explanatory power. As such, the MS score

offers policy makers a reliable proxy for evaluating road infrastructure, guiding

welfare analysis, and prioritizing investment decisions.

With strained public finances and growing acceptance of the "user-pays"

principle, policy makers have increasingly turned to strategies that involve di-

rect user charges–such as tolls–and greater private-sector participation in road

financing, construction, operation, and maintenance. This raises a central ques-

tion: to what extent do private operators adopt maintenance and tolling policies

that align with socially optimal outcomes?

Climate change adds another layer of complexity. Most scientists agree that

global warming is largely driven by human activity, and its consequences–

heat waves, droughts, floods, and severe storms ([21])–are particularly acute

in urban areas, where infrastructure is dense and often fragile. Rapid urban-

ization in Asia and Africa, coupled with the expansion of heat islands and im-

permeable surfaces, amplifies vulnerability (United Nations Human Settlements

Programme 2020; [18]). Beyond immediate disruptions, climate change accel-

erates the deterioration of transport infrastructure, raising maintenance and

adaptation costs. Meanwhile, global emissions of greenhouse gases (CO2, CH4,

N2O) continue to rise despite reductions in Europe and the United States, as

demographic and economic growth in emerging countries outweighs gains from

mitigation efforts. The ongoing decline in the world population will also need to

be taken into account in decisions regarding the construction and maintenance

of infrastructure (see, [23]).

Investment and maintenance are closely related but conceptually distinct

stages of infrastructure policy. Investment decisions involve capacity choice:

whether to build new infrastructure or upgrade existing assets. Maintenance

decisions involve preserving and optimizing the service life of those assets.

Typically, the decision to invest in new capacity precedes the decision to

maintain it. Once an asset is built, maintenance must follow to sustain perfor-

mance and value. In the case, decisions are sequential.

Alternatively, economic appraisal (such as the World Bank’s HDM-4, HDM-

5 models on road use costs, see [43]) treats investment and maintenance together
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by evaluating life-cycle costs, including construction, periodic maintenance, and

rehabilitation. Thus, optimal decisions require simultaneous consideration of

both dimensions. In this case, decisions are simultaneous.

However, the World Bank emphasizes that sustainable capacity choice can-

not be separated from maintenance planning: the two must be integrated into a

single life-cycle framework (see the review in [7]). We wish in the paper compare

sequential and simultaneous capacity and maintenance decisions.

In this paper, we focus on two key feedback mechanisms. First, maintenance

and capacity decisions jointly determine travel time (or generalized transport

cost). Second, transport costs directly affect social welfare, measured as the

sum of consumer surplus and firm profits net of maintenance and construction

costs. We integrate these feedbacks in a perfect competition framework.

The literature establishes a clear conceptual distinction between maintenance–

understood as asset preservation, planned interventions, and structural upkeep–

and operation, which refers to activities such as toll collection, routine manage-

ment, and emergency repairs ([24]; [11]). This distinction is fundamental, as the

long-term sustainability of infrastructure depends as much on adequate main-

tenance strategies as on its initial construction.

Yet, empirical evidence suggests that investment levels remain insufficient.

According to the European Commission ([12]), “Most EU countries have a share

of total transport infrastructure investment below 1% of GDP. It is a safe as-

sumption that this does not cover the investment needs (also due to the main-

tenance requirements) in most countries.” Complementing this assessment, the

European Construction Industry Federation (FIEC) estimates that annual road

maintenance costs are around 252, corresponding to roughly 1% of the

initial investment. Critically, postponing maintenance for three years may in-

crease rehabilitation costs by a factor of three to six, thereby underscoring the

intertemporal inefficiency of underinvestment.

From an economic evaluation perspective, the valuation of travel time sav-

ings continues to constitute a cornerstone of cost—benefit analysis ([27], and

[33]). However, the concept of the value of time is not without controversy. In

France, official valeurs tutélaires are employed in appraisal exercises, rather than

econometrically estimated values. This methodological choice raises questions

of legitimacy and consistency, particularly in light of critiques such as those

formulated by [25], who argues that the valuation of time is often overstated or

misapplied.

Against this backdrop, a central issue emerges: what are the costs of road

construction and maintenance, and to what extent do these costs, when weighed

against the associated benefits, provide a robust justification for infrastructure

investment and upkeep? Addressing this question requires not only accurate

cost assessment but also a critical reflection on the methodological foundations

of benefit valuation, including the contested role of travel time savings.

The detailed road map of the paper follows. In section 2 we consider a stan-

dard model to evaluate road capacity with and without pricing. We use a closed

(but exact) form) to model congestion in a dynamics framework (congestion de-

pends on the time of the day). We then consider capacity and maintenance
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sequential choices (first capacity is determined and then maintenance level is

chosen). We briefly summarize the main self-financing results in the context

of a dynamic model. In Proposition 1, we provide the optimal capacity and

maintenance levels and the optimal free flow travel time. In section 3 we con-

sider the standard sequential choice and revisit the self-financing results with

optimal road pricing (see Lemma 3). Optimal maintenance and capacity levels

are provided in Proposition 2. In section 4, we explore the situation where road

capacities and maintenance are computed simultaneously. This is not common

practice. We show the self-financing results does not hold in the case; we also

evaluate and qualify the social saving of the simultaneously choice (see Propo-

sition 4). In section 5, we introduce a standard model of perfect competition

where good are shipped form firms to consumers (iceberg cost), and evaluated

how the social welfare depend on travel time (here considered as an exoge-

nous variable). In Section 6 we revisit the standard (sequential) computation

of capacity and maintenance in this competitive economy (see Proposition 5).

Section 7 concludes. The appendix outlines the foundations of our stationary

approach to maintenance (see Proposition 6). Two proofs are relegated to the

Appendix.

2 Quality of road and maintenance

The quality of road infrastructure is a decisive factor in shaping travel times,

vehicle operating costs, and the long-term efficiency of the transport system.

Road deteriorate both from natural causes, such as weather, and from traffic-

related wear, requiring maintenance policies that balance usage and investment.

The seminal analysis of Newbery [27] established the principles of optimal

maintenance. In parallel papers, other authors including [17] and [37] explored

conditions for cost recovery and self-financing. Building on these literature, we

develop a framework that links road quality, maintenance, and capacity decisions

to user travel times and social welfare, with demand taken as exogenous. We

examine in particular cost recovery. This provides the basis for examining how

planners can sustain road quality over time and design efficient maintenance

strategies.

Users, travelling on the road, can be car drivers (with passenger) or truck

drivers (with some load).

2.1 Problem setting and welfare function

The travel time for a road user is a function of the quality of the road, :

 =  ()  0 0 ()  0 with:     24

where  is the minimum trip time (at maximum speed and with no conges-

tion).

The quality of pavements and roadside facilities  () declines over time,

exogenously through exposure to environmental conditions (parameter ) and
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endogenously through use. Sustaining quality requires appropriate maintenance

(parameter ), as explained below.

The quality increases with maintenance and decrease with usage and time

(see [10]). We denote by  the historical time, and have the following dynamics:

 ()


=

µ
 ()− 

 ()


−  ()

¶
  (0) = 

where  () is usage,  the road capacity and  () the capacity at time . We

derive this equation from a cumulative-usage formulation, in which cumulative

usage serves as the primary explanatory variable for road-quality deterioration.

The parameter,  corresponds to natural deterioration (to to with weather con-

ditions, in particular), and parameter  corresponds to deterioration given usage

 (). 1

In practice, maintenance is not a continuous variable and the differential

equation is not linear and should be solved analytically. Here we consider a

stationary state. Constant Quality can be sustained by steady maintenance,

denoted by , when car usage is fixed, i.e. time independent. The steady

state level of quality  is unique and explicit:

 =
1


max

½µ
 − 





¶
 0

¾
 (1)

We obtain exactly equation (1) when usage and maintenance are time-

invariant (stationary environment). Damage is linear in normalized flow, natural

deterioration is proportional to  at rate . Quality is bounded below by zero

(non negativity constraint). In Appendix 2 we consider a model with cumulative

usage and degradation (more standard approach). We show that the solutions

boils down to 1.

With to too low or no maintenance, ( 6 



),  = 0. The maintenance

to insure that usage does not deteriorate the quality of the road is: 



. We

consider below low enough maintenance costs, so road quality is positive. Let

denote by max the maximum road quality (i.e. the quality of a new road).

Then (assuming that quality is smaller than maximum quality max):

 =
1



µ
 − 





¶
∈ (0 max)  (2)

with





   max + 




(3)

Two remarks justify the proposed modelling framework. First, road ca-

pacity should be understood as the number of lanes (or total surface area),

while the relevant factor for deterioration is the axle load. For simplicity, we

adopt a linear degradation process, although the literature (see [16]) typically

1For a application, power 4 function (wheight par axel) provides a more realistic approxi-

mation. Incidentally, for the rail, power 2 is used.
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employs a fourth-power relationship between axle load and pavement damage.

The analysis extends naturally to such a non-linear specification. Capacity and

maintenance interact: for a given traffic volume, a wider road (ceteris paribus)

experiences slower deterioration. Second, this framework enables planners to

compare continuous maintenance strategies (e.g., routine patching) with pe-

riodic resurfacing, to quantify their economic trade-offs, and to capture the

interplay between capacity, traffic, and pavement life. Incorporating the fourth-

power law yields a more realistic assessment of heavy-vehicle impacts and op-

timal cost recovery. (Periodic maintenance strategies are often used as well,

particularly in the context of rail maintenance : see [19]). In this presentation,

we abstract from the detailed timing of interventions, smoothing these processes

to focus on average yearly maintenance costs, average (stationary) road quality,

and the annualized financial cost of construction.

The (yearly average) maintenance cost is assumed to be  ·, where  is

the unit maintenance cost.

In our problem usage is given by the number of trips. It is exogenous and

constant, and equal to  , so  =  .

2.2 The travel time function

The total travel time is assumed to be the sum of free flow travel time (first

term), which depends on quality and on congestion (second term), as follows:

 = Φ
¡


¢
+ 

µ




¶
 (4)

with

Φ
¡


¢
= min • 

µ
max −

max

¶
 (5)

where min =  · ·  , where  is the value of time and  is the free flow

travel time for a perfect quality of the road (in this case travel time is propor-

tional equal to or slightly less than the inverse of the legal maximum speed) and

 is the number of users (inelastic demand). Let max be the quality of a new

road. We impose the following conditions:  (•)  0 ; 0 (•)  0 00 (•)  0;

for  = max  (0) = 1 and for  = 0  (1) = 1 + ∆max2  1. The

function  (•) captures the (convex) increase in free flow travel time due to the
deterioration of the quality of the road.

[6] note that road segments deteriorate over time. Importantly, these au-

thors provide causal evidence showing that increasing pavement roughness sig-

nificantly reduces average vehicle speed, thereby increasing travel time. Specif-

ically, a one standard deviation increase in the International Roughness Index

(IRI) leads to an 11% decrease in average speed. [30] developed deterioration

models using serviceability indicators (such as PSI and IRI) and found that

vehicle operating costs escalate more than proportionally as road conditions

worsen–illustrating the convex nature of the relationship between quality de-

terioration and its economic consequences (here travel time).

6



For analytical tractability, we shall use a quadratic specification:



µ
max −

max

¶
= 1 + 05

µ
max −

max

¶2
∆max 0 (•)  0 00 (•)  0 (6)

which accounts for the convex impact of quality deterioration.

Congestion, expressed by  (•)  0 with 0 (•)  0 is an homogenous func-

tion of degree zero in  (usage) and  (capacity). For the standard dynamic

bottleneck model (see Vickrey 1969 and Arnott 1990 and 1993 and the review

in [22]), congestion depends on the time of the day and congestion occur at

bottlenecks. We consider a reduced form for the equilibrium user cost (with no

toll); it is given by :  () =  (), with  = (B +G) BG, where B is

the unit cost of early arrival and G is the unit cost of late arrival. Note that

the congestion cost is independent of the value of time . The social congestion

cost is therefore equal to  () = 2.

These authors show that half of the cost is schedule delay cost, while the

other half is congestion cost. In particular, the optimal user cost (when roads

are optimally tolled) is:



µ




¶
=



2




=
1

2


µ




¶


The social welfare function, if we restrict the benefit to the transportation

only (as done in standard transportation economics) is (without road pricing)


¡
 

¢
= B − min • 

µ
max −

max

¶
− 

2


− −  (7)

where B is the individual benefit to travel. and  is the unit (annualized)

construction cost and  Is the (annualized) maintenance cost.

With optimal pricing, the user cost (with toll redistributed as an lump sum)

is halved, so the welfare is:


¡
 

¢
= B − min • 

µ
max −

max

¶
− 

2

2
− −  (8)

We assume that initially the planner (or the local authority) decide the

construct of the roads (determined the road capacity). Then with usage and

meteorologic condition, the road deteriorates. The planner then decide the

maintenance level. We discuss here a stationary state regime, i.e. a situation

with constant road quality.

Road capacity differ with or without road pricing, as discussed below.

3 Sequential capacity and maintenance

3.1 Optimal road capacity for new roads

Consistent with the standard approach in the literature, we assume that road

capacity is exogenously given and that maintenance considerations are disre-
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garded, which also reflects the situation observed in practice.

3.1.1 With road pricing

To compute the optimal capacity–and to decide whether additional capacity

should be added–we assume that roads when built are in perfect condition,

so that  = max and  ((max −) max) = 1. This assumption cor-

responds to evaluating the decision regarding the initial size of a newly built

road.

For an optimally tooled road, the optimal capacity satisfies:

 (max )


= 

2

22
−  = 0

So the optimal road capacity, denoted by  is given by: = 
p
 (2),so

the user cost (schedule and congestion cost) is  (2) = 
p
2, and the

optimal capacity construction cost is: = 
p
 (2) Note that for the optimal

capacity the sum of total congestion cost and total toll cost is:  = 
√
2.

At the optimum, congestion is eliminated, and the corresponding reduction

in user costs is transformed into toll revenue. The toll revenue, –equal to

half of the total (social) user cost–is:  = 2
¡
2

¢
.

So, for the optimal value of the capacity, we have

 =
1

2

2


= 

r


2


This shows that the optimal toll revenue  equals the optimal mainte-

nance cost . This is a self-financing result (proved in the static congestion

literature) is adapted here for the closed form of a dynamic model: if roads are

tolled optimally and capacity is set at its optimal level, toll revenues exactly

cover construction costs (see Arnott et al, 1990 and 1993, for the case of elastic

demand).

Observe that the sum of user’s cost, construction cost minus toll revenue is

equal to , since toll revenue just covers capacity cost.

One should note that in a network, more capacity does not necessarily imply

less congestion if roads are not tolled. This was shown the first time in the

seminal article of Wardrop [40]. So more capacity does not imply less congestion,

even if demand is inelastic.

3.1.2 Optimal capacity without road pricing and comparison

Without toll pricing, the optimizing problem for the capacity is:




µ

2


+ 

¶
,

which leads to a minimized value of:  = 
p
. Therefore, the congestion

and schedule delay cost is: 2 = 
√
. With tolling (compared with the
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no toll regime, the relative capacity is reduced by about 29%.

 − 


=


q



−

q

2


q




= 1−
√
05 ≈ 29 2 9%

The sum of user’s cost, construction cost is 2 +  = 2
√
. The

congestion and construction saving with tolling (and with optimized capacities)

is: µ

2


+ 

¶
− 1
2

2


=

Ã
2−

r
1

2

!

p
 ≈ 1292 9

p


So the total relative cost saving when road are tolled and capacity is optimized

(compared with the no toll regime) is about 65% :³


2


+ 

´
− 1

2


2

³


2


+ 

´ ≈ 64 6 55%

This saving account for a reduction in the capacity and a reduction in congestion

(here congestion is totally cleared out with the toll). We have proved:

Proposition 1 Consider dynamic congestion and the capacity choice (ignoring

maintenance). Capacities are optimized in the toll and no toll regime. Then the

relative capacity reduction is about 29 29% and the cost saving is about 64 65%,

when the road is tolled, compared to the non toll regime.

With tolls, congestion is totally cleared (it is a pure deadweight loss) and

the capacity is smaller. These two benefits add.

3.2 Optimal maintenance (with or without pricing)

Now we assume that roads have been built and we compute the optimal level

of maintenance. The fact that the road are tolled or not plays no role here.

Observe that the optimal maintenance does not depend on the tolling regime.

In this case, the capacity,  . The welfare is given (up to an additive constant,

) by


¡


¢
= −Φ ¡

¢−  + 

where Φ () represents the uncongested travel time (see 5).

The optimal level of maintenance satisfies:

 ( )


=

min

max
• 0

µ
max −

max

¶
1


−  = 0

Note that a solution of the first-order condition is a maximum of the welfare

function is convex in .
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For the quadratic specification:


¡
 

¢
= −Φ2

¡


¢−  +  (9)

with

Φ2
¡


¢
= min •

"
1 + 05

µ
max −

max

¶2
∆max

#
(10)

Then, after substitution of  we obtain

 ( )


=
1



min

(max)
2
•
µ
max − 1



µ
 − 





¶¶
∆max −  (11)

For minimum quality, we require:

 ( )



¯̄̄̄
=

=  −   0

that is maintenance unit cost should be small enough:

 
1



min

max
•∆max :=  (12)

If this condition is not meet, road are not maintained and free flow travel time

is: min • (1 + 05max).
If   , we have a strictly positive optimal maintenance level which sat-

isfies  ( )  = 0 (see(11)). Therefore, the optimal level of mainte-

nance for the sequential case is:


 = 




+ ( − ) 2

(max)
2

∆max • min 

Recall the condition 3 (

 

  max + 

). The LHS condition is

clearly satisfied if   . The RHS condition (quality less that the maximum

quality) is satisfied if   0. So we assume that

0     (13)

The expression can be rewritten alternatively as (recall 12):


 = 




+

µ
1− 



¶
max (14)

Note that maintenance increases (via two channels), when the number of users

increases. The other comparative statics is left to the reader.

For the optimal maintenance, road quality is:


 =

1



µ

 − 





¶
=

µ
1− 



¶
max  0

10



Note that the capacity clears out, and so he tolling regime is thus irrelevant

at this stage. Then:

max −


max
=

µ




¶
∈ (0 1) 

So with no pricing, any value of the capacity and optimal maintenance, the

uncongested user travel time, denote by Φ() is

Φ2(
) = min •

"
1 +

∆max

2

µ




¶2#
  ∈ (0 ) ,  given by 12 (15)

We have proved when capacities are priced or not:

Proposition 2 Consider the travel time function (10). The quality is given

by (2). Condition (13) holds. Assume dynamic congestion cost and quadratic

quality model. Capacity and maintenance are chosen sequentially. The optimal

maintenance, is given by equation (14) and the uncongested user travel time is

given by equation (15).

Note that Φ()min ∈ (1  (1)). The welfare function without optimal
pricing, after replacement of the optimal capacity and the optimal maintenance

level is :


¡
 

¢
= B − min •

"
1 + 05

µ




¶2
∆max

#

−max
µ
1− 



¶
− 2

p
 − 

r



.

This expression will be useful in the next section.

4 Simultaneous capacity andmaintenance choices

In practice, the decisions to build a road and to maintain it are often made

separately, as they typically fall under the authority of different governmental

bodies. In the United States, state departments of transportation usually over-

see the construction of state and federal highways, while maintenance responsi-

bilities are divided among state, county, and municipal agencies depending on

road ownership. In Georgia, road construction may be managed by the Georgia

Department of Transportation or by local governments, while maintenance is

handled by the entity that owns the roadway–GDOT for state highways, county

governments for county roads, and municipal governments for city streets. As

another example, according to the World Bank (see, e.g. [41] and [42]) pol-

icy makers in Argentina often underfunded maintenance relative to investment.

11



Typically, construction and maintenance most often depend on different depart-

ments, and rely of different funding.

Here we explored a new (hypothetical) situation where these construction

and maintenance decisions are made in tandem and harmonized.

We study the minimization problem. Let ( () = − ( )), then

the (unique) planner faces the problem:

min


 () :=  + +  (16)

with:

 = Φ2
¡


¢
+ 

2


  (17)

where Φ2 (
) is given by (10) and  is given by (2).

We treat       min max ∆max as positive parameters. The

decision variables are  and .

4.1 Welfare function with respect to maintenance

Let  = Φ2(
)+ 2+ +, the first-order condition of maintenance

 is



=

Φ


· 




+ 

By substitution we obtain:

max − = ; =:
  (max)2

min∆max
 (18)

Thus the optimal stationary flow level implied by the-FOC is = (max − )

and (2):

 =  (max −) +



 (19)

The final expression for maintenance depend on the optimal capacity, dertem-

ined below.

4.2 Welfare function with respect to the capacity

Differentiate  = Φ2(
)+ 2+ + with respect to  we obtain the

first-order condition:




=

Φ


· 




+





µ

2



¶
+  = 0

which leads to

∗ = 

s
 + 


 (20)

12



Therefore the optimal level of maintenance is:


 = (1− 


)max + 

s


 + 
 (21)

No that the first term is the same as for the sequential decision; the second

term differs because the capacity is now larger. So both the maintenance cost

and the capacities are larger in the simultaneous case. In other words, this

suggests that in the sequential case (standard) capacity and maintenance case

are too small compared to the simultaneous case.

Recall that with no pricing the optimal capacity in the sequential case is :

 = 
p
 so both expressions coincides when maintenance cost  is zero.

When maintenance is taken into account in the road capacity decision, the

optimal capacity in the simultaneously case is larger than the optimal capacity

the standard sequential case:   ∗:

∗


=


q

+



q




=
p
1 +   1

The same qualitative results can be proved with pricing.

Without pricing, the optimal construction cost is: ∗ = 
p
( + )  and

the social congested time cost is:

2

∗
= 

s


 + 

We can now revisit the self-financing theorem with road pricing, in the si-

multaneous choice of capacity and maintenance.

4.3 Back to self-financing

With toll revenue, we find (with an analogous computation as above):

∗∗ = 

s
 + 2



so the construction cost is: ∗∗ = 
p
( + 2) . Since the toll revenue

again half of the social cost, we have:
q

+


 =
1

2

2

∗
=
1

2


2


q

+


=


2


s


 + 


13



and so the maintenance cost are now higher than in the sequential case. There-

fore with simultaneous decisions self-financing theorem breaks down. Mainte-

nance cost minus toll revenue is now equal to

 () = 
p
( + 2)  − 

2


s


 + 
 0 if   0

We have  (0) = 0 and  ()  0 if   0, since 0 ()  0. So revenues

from road optimal road pricing are insufficient to cover maintenance costs. We

have proved

Lemma 3 Consider a simultaneous computation of capacity and maintenance.

The optimal capacity and the optimal level of maintenance are give by (20)

and (21), respectively. They are both larger compared with the sequential case.

Toll revenues from optimal road pricing do not cover construction cost in the

simultaneous case.

4.3.1 Travel time and welfare

Back-substitution for optimal maintenance and optimal free flow travel time we

obtain

 = min

Ã
1 +

∆max

2

µ




¶2!
+  

s


 + 
 (22)

Therefore the uncongested travel time (first term in the above expression)

is the same as in the sequential case (See Proposition 1). The second term

(the congested travel time) is smaller since the capacity is now larger. As a

consequence the total travel time  is smaller than in the sequential case.

So the optimal total cost is (after replacement):

(

 ) = min

Ã
1 +

∆max

2

µ




¶2!
+max

µ
1− 



¶
+2

p
( + )

The -FOC has two channels: an indirect congestion channel via () and

a direct “scale” channel via 2. Both scale with −2, which is why the
solution is a simple quadratic in . The uncongested travel time is the same as

in Proposition 1.

We can verify that the sequential optimization is less efficient than the si-

multaneously optimization;

(

 )  (


 )

⇔  +    +  +
1



µ


2

¶2
1



So we have proved (see also Lemma 3):

14



Proposition 4 Consider the travel time function (10). The quality is given

by (2). Condition (13) hold. Assume dynamic congestion cost and quadratic

quality model. Capacity and maintenance are chosen simultaneously. Then (A)

the uncongested travel time is the same and the congested costs is smaller than

in the simultaneous case compared with the sequential choice. (B)The optimal

capacity and the level of maintenance are larger than in the sequential case.

(C) The total welfare is higher in the simultaneous compared with the sequential

choice. Road capacity is not fully financed by road pricing.

The exact value of the saving for the simultaneous optimization is of interest.

Let chose for example  as the parameter of interest. The social saving  ()

(using a simultaneous procedure rather than the sequential decision) is

 () =
p



Ã
2
√
 + 

r
1


− 2
p

 + )

!
> 0

After a long but routine computation, a clean result can be obtained:.

 ( ())


 0 iff  



3

So the saving is decreasing with the congestion parameter  iff the congestion

parameter (and therefore the level of congestion) is small enough (  3).

5 Perfect Competition with Iceberg Costs

It has been recognized since a long time that economic development is closely

related to transportation (see the entertaining article of [5], and its references).

Our scope now is to link transport decisions to economic development, i.e. to

bridge the gap between transportation and economic development, in the con-

text of capacity and maintenance choices.

This section lays the groundwork for the subsequent analysis of capac-

ity and maintenance decisions, taking into account their broader economic

consequences–extending beyond the conventional focus on the value of time.

Readers familiar with the topic may wish to proceed directly to the main (stan-

dard) results. We refer the reader Helpman and Krugman [20],who apply iceberg

costs in competitive (and monopolistic) settings (see also, Behrens and Picard,

[4], in economic geography). However, these contributions have thus far over-

looked the roles of congestion and maintenance.

Gibbons et al. (2019) provide evidence that new road infrastructure in the

UK raises firm entry, employment, and productivity, although the benefits are

spatially uneven (see [15]). The link between maintenance and econoomic ac-

tivites is also studied by Gerlter et al (2024) , who find that better road main-

tenance supports job creation, transitions from informal to formal employment,

and local welfare gains (see [13]).

We revisit perfect competition when goods are shipped from the firm (work-

place) to spatially distributed consumers and the shipping technology features
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an iceberg cost driven by travel time. Firms are price takers and set the factory-

gate price equal to marginal cost. With labour as the only input and a unit

labour requirement normalized to one, the factory-gate marginal cost equals the

competitive wage , so that  = .

Let  denote the shipping travel time per unit from the workplace to

the consumer, and let  be the firm’s value of time (VOT) per unit shipped

(in currency per unit time). We map the time cost into an iceberg factor by

expressing time in resource units relative to :

( ) ≡ 


 ( ≥ 0) (23)

so that shipping one delivered unit requires producing (1+) units at the source.

The delivered price seen by consumers is then

del( ) = (1 +  •  ) =
³
1 +





´
 =  +   (24)

Hence the iceberg representation based on travel time is equivalent to an additive

time cost  , while keeping the firm price-taking and the factory-gate price

pinned down by .

Equilibrium with linear demand. For inverse demand  () =  − 

(   0), the competitive equilibrium satisfies  () = del( ), delivering

∗( ) =
− ( +  )


if    +  and ∗ = 0 otherwise. (25)

Comparative statics are immediate:

∗ ( )


= −


 0
∗


= −


 0

∗


= − 1


 0

Since marginal cost is constant and firms are price takers, pass-through of the

time cost to the delivered price is complete: del =  . Operating profits

remain zero; the resource dissipation in transport equals  ∗ ( ). The
resource dissipation in transport increases or decreases with travel time since

with larger travel time there is more resources dissipation, but larger travel time

decrease production: two opposing forces:

 ∗ ( )


= 

µ
− ( + 2 ∗  )



¶
≶ 0

Welfare analysis. Let  ≡  denote the per-unit real resource cost im-

plied by travel time. With linear inverse demand  () =  −  and com-

petitive factory-gate marginal cost , the equilibrium quantity is ∗() =
(−  − )  (for    + ).
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Total welfare equals willingness-to-pay minus real resource costs of produc-

tion and shipping:

 () =

Z ∗()

0

(− )  − ∗() −  ∗() (26)

Using the equilibrium condition  − ∗() =  +  , we obtain the compact

form

 () =
1

2
 (∗())2 =

1

2

(−  − )
2


 (27)

which is strictly decreasing and convex in  (=  ), and thus in  .

Relative to the frictionless benchmark  = 0, the welfare loss decomposes

into a resource rectangle and a distortion triangle. It is the sum of transport

cost ( ∗()) and deadwheight (quantity) loss (05
¡
0 −∗()

¢
).

∆total ≡ (0)− () =
(− )  − 1

2
( )

2


 (28)

where 0 = ( − ) is the quantity when  = 0. Equivalently, the pure

deadweight “triangle” is 1
2
2 = 1

2
( )

2, while the rectangle ∗() =
 (−− ) captures real resources dissipated in transport. Observe
that the welfare loss increases with travel time 

∆total


=
(−  −  ) )


 0

Endogenous wage under perfect competition. So far the wage  was

taken as given. We now pin it down by labour-market clearing. With iceberg

costs ( ) = ( ) , producing one delivered unit requires 1 + ( ) =

1 + 

 units at the workplace, so labour demand per delivered unit equals

1 + 

 .

Let labour supply be upward sloping: () with 0  0. Market clearing

requires ³
1 +





´
 = () (29)

On the product market, price equals delivered marginal cost, hence  () =

del =  +  . For linear inverse demand  () = −  we obtain

 = − −  (30)

Equations (29)—(30) jointly determine () for any given  .

Comparative statics (general case). Define the equilibrium by  (  ) =¡
1 + 



¢
−(+ )


− () = 0. Assuming   0 (standard stability),

the Implicit Function Theorem gives

∗


= −


 (31)
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Because  =



−(+ )


− ¡1 + 


¢


− 

2

−(+ )


 we have

  0 whenever demand is interior (   +  ). Hence 
∗  0

if   0, i.e. equilibrium wages rise with shipping time. Intuition: longer 

raises the labour requirement per delivered unit (via the iceberg factor), shifting

labour demand up and bidding up ; at the same time, higher delivered marginal

cost reduces , partially offsetting the effect. The net effect on  is positive, as

expected, under standard slopes.

Closed form with linear labour supply. Let () =  with   0. Com-

bining (29) and (30) yields a single equation in :³
1 +





´ − ( +  )


=  (32)

This quadratic has a unique economically relevant root ∗( ) ∈ (0 − )
for    . Differentiating (32) implicitly verifies

∗


 0 under   0, and

recovers the special case of a perfectly elastic labour supply (→∞) in which
 is pinned at its outside option and our earlier results obtain.

Let ³
1 +





´ − ( +  )


−  = 0

The solution is:

∗ ( ) =
− 2 +

p
2 + 4 (−  )

2 (1 + )
(33)

Delivered price and quantities. Given ∗( ), the delivered price is del( ) =
∗( ) +  , and

∗( ) =
− del( )


=

− (∗( ) +  )


 (34)

which declines in  both directly (via  ) and indirectly (via 
∗( )).

Welfare with endogenous . All welfare expressions from the previous sub-

section remain valid after replacing  by ∗( ). Because ∗


 0, the welfare

loss from travel time is larger than under an exogenous wage: higher wages am-

plify the delivered marginal cost and further reduce ∗. So:

 ( ) =
1

2
 (∗( ))2 =

1

2
(− (∗( ) +  ))

2
(35)

and

 ( )


= − 1


(− (∗( ) +  ))

µ
∗( )


+ 

¶
 0

i.e. with larger travel time costs,  , welfare decreases because wage increase

and iceberg transport cost of good increase.
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Spatial interpretation. If travel time depends on distance  and congestion,

we may write  =  () (e.g.,  0()  0). Then the delivered price to a

consumer at distance  is

del() =  +   () (36)

which rises with . Higher  (due to longer distances or congestion) shrinks

the market area served from a given workplace and lowers total traded quantity.

Any reduction in  (infrastructure, logistics, or congestion management) shifts

the supply schedule downward in delivered-price space and increases ∗.
Under perfect competition with competitively set wages, transportation fric-

tions that scale with travel time enter as an iceberg factor ( ) = ( ) .

They do not create markups but raise delivered prices one-for-one with the firm’s

VOT times shipping time, depressing quantities and welfare.

6 Capacity and Maintenance in Competition

We consider here the standard optimization (sequential choice) and treat the

case of no pricing (pricing and simultaneous choices can be treated analogously).

We consider a competitive economy with the following elements (recall for

clarify): Linear inverse demand  () =  − , with    0. Factory-gate

price: Equal to the inelastic wage . Value of time: Each firm values time at

  0, so the delivered price is ( ) =  +  . Travel time (capacity

channel):

 = min + 
2


   0

where  is traffic,  is capacity, and min is free-flow time. Construction cost:

 with   0. Maintenance (quality channel): Road quality satisfies

 =
1



¡
 − 



¢
    0

with stationary maintenance expenditure  (cost ). Quality impact on

free-flow time:

Φ() = min

"
1 +

∆max

2

µ
max −

max

¶2#


where max is maximal quality, ∆max  0 scales deterioration.

Proposition 5 Consider the sequential procedure without pricing: first choose

capacity  for a new road with  = max, then choose stationary maintenance

. Under the setup above, we obtain:

1. Capacity. The welfare FOC for  reduces to a depressed cubic with (at

most) two positive roots. When two roots exist, the larger maximizes wel-

fare. A sufficient existence condition is 421
3
2  27 with

1 =
q






√
 2 = − (+ 

min)  0
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The optimal capacity ∗ increases with usage  , the value of time  , and
the congestion index , and decreases with construction cost .

2. Maintenance. Given ∗, the optimal stationary maintenance level is

∗ =


∗
+  (max − ) 

where

 =
  (max)2

min∆max
  =




· 1

− (+  )


Maintenance rises with  (through 
∗ ) and with the value of time 

(since a higher  raises the return to reducing  ).

3. Welfare. With perfect competition (no markups), welfare is strictly de-

creasing and convex in  . Therefore, an increase in  raises the mar-

ginal value of reducing  , which weakly increases both ∗ and ∗.

See proof in the Appendix 2

The limiting cases are discussed below:

If  → 0, then ( )→  and capacity reverts to the “transport-only”

optimum from the previous section; the maintenance rule simplifies with → 0.

If  → 0, congestion vanishes so capacity becomes irrelevant and only the

free-flow time and maintenance channel matter.

If  → 0, maintenance is costless, so  → max and free-flow time is

minimized.

If  → ∞, capacity is prohibitively costly, so the equilibrium tends to the

minimal feasible .

This demonstrated how capacity and maintenance decisions can be consis-

tently embedded within an economic framework by introducing iceberg costs

into a model of perfect competition. Travel time, expressed as an iceberg factor

proportional to the firm’s value of time, translates directly into higher deliv-

ered prices, lower equilibrium quantities, and welfare losses that are strictly

increasing and convex in travel time. When wages are endogenized through

labour-market clearing, these effects are amplified: longer shipping times raise

labour demand per delivered unit, bid up wages, and further increase delivered

marginal costs.

By integrating transport frictions with product and labour market equilibria,

the analysis provides a more satisfactory economic foundation for studying ca-

pacity and maintenance choices. This approach extends beyond the conventional

valuation of time by explicitly linking infrastructure performance, congestion,

and maintenance policies to welfare outcomes and market equilibrium.

7 Conclusions

Future research could extend the competitive model developed here to a dynamic

duopoly (or oligopolist) framework in which road capacity and maintenance are
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chosen strategically, recognizing that reconstruction is an infrequent, capital-

intensive decision, whereas preservation activities can be adjusted flexibly over

time. Embedding these asymmetric adjustment speeds in a multi-stage game

would clarify how competing operators balance short-term pricing with long-

term quality management, and how such interactions affect welfare, investment

incentives, and regulatory outcomes.

A promising avenue for future research is to extend the analysis to a strate-

gic setting in which toll and maintenance decisions are determined within a

game-theoretic framework. In the literature on congestible facilities, duopolis-

tic competition between roads has been modelled extensively, both as one-stage

toll-setting games and as two-stage capacity—toll games in which capacity is

chosen in the first stage and tolls in the second. However, such literature omits

maintenance.

In [8] the authors model road competition as a two-stage game where roads

set capacity and tolls sequentially. They show how capacity decisions made first

can influence toll competition. In [9] the authors analyze a two-stage game in

which competing firms choose capacities and subsequently compete in prices

under network externalities and congestion. Recent growth in the literature

applying game-theoretic methods to transportation can be attributed, at least

in part, to processes of deregulation and intensified competition. We refer the

reader to the recent monograph of Small, Verhoef and Lindsey ( [32]◦

When the strategic variables are capacity and tolls, it is natural to assume

that capacity is fixed in the initial stage, with tolls adjusted subsequently. By

contrast, the appropriate sequencing is less obvious when maintenance and tolls

are the decision variables. Major reconstruction or rehabilitation projects oc-

cur infrequently and involve large, sunk costs, whereas pavement preservation

and other maintenance activities can be scheduled more flexibly over time. Toll

changes, on the other hand, can be implemented rapidly or gradually depend-

ing on tolling technology, user acceptance, and institutional or regulatory con-

straints.

Incorporating these asymmetries in decision timing into a dynamic or multi-

stage duopoly model could help clarify how firms balance short-term pricing

flexibility with long-term infrastructure quality management. Such an approach

would provide richer insights into the joint optimization of tolls and maintenance

under competition, with implications for welfare, investment incentives, and

regulatory policy.

In [35] the authors shows that when different governmental authorities com-

pete in setting road charges and choosing capacity, this strategic interaction

can lead to inefficient outcomes, such as under- or over-investment in capacity

and suboptimal toll levels, compared to coordinated decision-making. In Eval-

uating Urban Transport Improvements: Cost—Benefit Analysis in the Presence

of Agglomeration and Income Taxation Venables [36] develops a theoretical ur-

ban equilibrium model to demonstrate that transport improvements can expand

city size, thereby amplifying agglomeration economies and boosting productiv-

ity for both new and existing urban workers. When these productivity gains are

factored into cost—benefit analysis–and combined with distortionary income
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taxation–the resulting welfare benefits of transport investments are substan-

tially greater than those captured by conventional appraisal methods. Agglom-

eration forces and taxation effects remain to be explicitly incorporated into the

proposed model. Here we show that the market structure in the economy plays

also a key role.

Future research should address several open questions at the interface of

pavement quality, vehicle dynamics, and user costs. An important issue is

whether vehicle-induced pavement damage is a monotonic function of speed,

or if non-linear thresholds exist. Similarly, the relationship between pavement

roughness, as captured by the International Roughness Index (IRI), and vehicle

operating costs–including fuel consumption, wear, and maintenance–requires

more systematic investigation. Another area of inquiry is whether road capac-

ity itself depends on IRI, as surface conditions may directly affect traffic flow

and safety margins. Finally, identifying which pavement quality measure most

effectively captures the combined impacts on driving speed, accident risks, fuel

and other user costs, and vehicle damage would provide a more reliable basis

for both engineering standards and economic evaluation of infrastructure in-

vestments (see[43] and ([34]). Potholes exert a significant influence on overall

road quality and performance Ben-Edigbe’s study [3], based on traffic surveys

in Nigeria, shows that adverse road surface conditions such as potholes and edge

subsidence reduce optimum speeds by about 50%, demonstrating that such con-

ditions significantly disrupt otherwise uninterrupted traffic flow.

When the value of time is proxied by the average net wage, the benefits are

often insufficient to cover the full costs of infrastructure (construction and main-

tenance). By contrast, if time is valued at the gross wage, including employer

contributions and production taxes, and if firms are treated at the level of their

opportunity cost of time, the resulting benefit—cost ratio is more likely to cover

both investment and maintenance costs. While this distinction is not explicitly

discussed in the literature, it provides a plausible methodological hypothesis

consistent with cost—benefit logic.

Finally, we wish to point out that the literature on capacity and maintenance

often fails to adopt a sufficiently broad perspective. These decisions span several

time scales, as sketched below. (1) The benefits of expanding road capacity

depend on several factors: Mode choice: some users may shift from public

transport to car travel.(2) Induced demand: shorter travel times may encourage

additional car use. (3) Demographic growth: population tends to increase over

the lifetime of road infrastructure.(4) Spatial dynamics: improved accessibility

may attract new residents and firms. While items (1) and (2) can be modeled

through activity- or mode-choice frameworks, items (3) and (4) can be captured

with origin—destination (O—D) matrices.

A promising avenue for future research is to integrate a maintenance model

with a dynamic traffic model ([14]). In such a framework, the traffic model would

generate daily flows (and their composition) on the different roads, while its

inputs would be road capacities and quality levels, both determined by mainte-

nance decisions. This approach would allow us to test the conjectures advanced

in this article on an actual transport network.
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8 Appendices

8.1 Appendix 1: Setup and travel time mapping

Let () ∈ R+ denote the quality of a road segment at time . A representative

user’s door-to-door travel time is

() = (()) 0() (37)

Here  is the physical lower bound (free-flow, no congestion).

Cumulative usage and degradation

Let () be traffic flow (vehicles per hour) and  the practical capacity

(veh/h). Define a cumulative usage (or damage) index

() =

Z 

0



µ
()



¶
d  0(·)  0 (38)

with the “fourth-power” choice () =  ( ' 4) being common in pavement
engineering. See an analogous approach (but for rail) in [19].

Assume marginal quality loss per unit cumulative usage is constant   0,

so that dd = −. By the chain rule,
d()

d
= −  

µ
()



¶
 (39)

Natural deterioration and maintenance

Add (i) natural deterioration at rate   0 and (ii) maintenance effort

() ≥ 0 that instantaneously raises  (in reduced form). The reduced-form

continuous-time dynamics are

d()

d
= () − () −  

µ
()



¶
 (0) = 0 ≥ 0 (40)

Linear-in-usage specialization

To match the linear specification used in your note, set () = . Then

d()

d
= ()− ()− 

()


 (41)

Steady state and conditions for equivalence with your formula

We seek a stationary quality level st under constant usage () ≡ st and

constant maintenance () ≡ st.

Proposition 6 (Stationary quality) Suppose:  0,   0. Usage is time-

invariant: () ≡ st. Maintenance is time-invariant: () ≡ st. The linear-

in-usage degradation holds: () = . Quality is constrained to be nonnegative:

() ∈ R+.
Then the unique stationary solution of (41) is

st = max

½
0
1



µ
st − 

µ
st



¶¶¾
 (42)
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Proof. Under (A1)—(A4), (41) is a linear ODE with constant coefficients and

constant right-hand side. The unconstrained fixed point solves 0 = st−st−
(st), giving st = (st − (st)). Under (A5), we project onto R+,
yielding (42). Uniqueness follows from linearity and   0 (global asymptotic

stability). ¤
With () =  (  1), the steady state becomes

st = max

½
0
1



¡
st − 

¢ ¡
st

¢¾
 (43)

with the same stability logic. In the paper we consider  = 1.

Transition dynamics

When (A2)—(A4) hold with constants st st, the closed-form solution of

(41) is

() = st +
¡
0 −st

¢
− (−0) (44)

Thus () converges monotonically to st at rate .

From quality to travel time To link  to congestion-sensitive travel time,

let the effective capacity be an increasing function of quality, eff() =  ()

with  0()  0. A parsimonious choice is linear scaling () = max on

[0max] (cap at () ∈ [0 1]). Then a BPR-style travel time is

() = 

"
1 + 

µ
()

eff(())

¶#
   0  ∈ [3 5] (45)

Under constant (st st), combine (44) and (45) to obtain an explicit time path

() as () relaxes to st.

Maintenance policies beyond constants If maintenance occurs in dis-

crete interventions {} of sizes {∆},
d

d
= −−  

³


´
for  6=  (+ ) = (− ) +∆ (46)

Between interventions, () decays exponentially; at each  it jumps up by

∆. A stationary cycle exists when the average uplift per period equals average

losses, reproducing the steady formula with st interpreted as the long-run

average maintenance rate.

Empirical note: We need to estimate: : natural deterioration (weather-

ing, oxidation, aging). : marginal damage per unit usage; larger for heavier

axles. With axle-load sensitivity,  implicitly scales  in () =  .2 ():

effective maintenance (resurfacing, sealing, rehabilitation), in quality units per

unit time.

2Engineering practice often uses a “fourth-power law”, i.e.,  ≈ 4, reflecting axle-weight

effects.
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8.2 Appendix 2 Proof (sketch) of Proposition 5.

(i) Capacity. With  = max,  = min + 2 and delivered price

( ) = +  , quantity is 
∗( ) = [− (+  )]. Welfare is

 () =
1

2
(− (+  ))

2 − 

FOC:
1


(− (+  ))  

2

2
= 

Substitute  = min + 2 and define

1 =

s








√
 2 = − (+ 

min)

to obtain a depressed cubic in . Two positive roots exist when 421
3
2  27;

the larger maximizes welfare. Comparative statics follow: ∗ rises with  ,  ,

, and falls with .

(ii) Maintenance. For given ,  = Φ()+ 2, with Φ() as in the

setup. Maximizing
1

2
(− (+  ))

2 − 

gives FOC
1


(− (+  )) (− ) 


= 

With



= −

min∆max

(max)2
(max −)

1




let  =
  (max)2

min∆max
and  = 


· 1
−(+ ) . The FOC implies 

 = max−
, hence

∗ =



+ (max −)

(iii) Welfare. For fixed ,  ( ) = 1
2
(− (+  ))

2
is strictly de-

creasing and convex in  . Thus higher  increases the marginal value of

reducing  , raising both ∗ and ∗.
(iv) Limiting cases. The statements follow directly: when  → 0, the

pricing channel vanishes, recovering the transport-only model; when  → 0,

congestion disappears; when  → 0, maintenance is costless, so roads are always

at max; when  →∞, capacity is not expanded.
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