
THEMA Working Paper n°2025-15 
CY Cergy Paris Université, France 

Recovering Scheduling Preferences
 in Dynamic

Departure Time Models

Zhenyu Yang, Pietro Giardina, Nikolas Gerolimnis, 
André de Palma

October 2025



Recovering Scheduling Preferences in Dynamic

Departure Time Models

Zhenyu Yang1†, Pietro Giardina1†, Nikolas Gerolimnis1,
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*Corresponding author(s). E-mail(s): andre.de-palma@cyu.fr;
Contributing authors: zhenyu.yang@epfl.ch;

pietro99giardina@gmail.com; nikolas.geroliminis@epfl.ch;
†These authors contributed equally to this work. Listing order is random.

Abstract

We aim to infer commuters’ scheduling preferences from their observed arrival
times, given an exogenous traffic congestion pattern. To do this, we employ a
structural model that characterizes how users balance congestion costs against
the penalties for arriving early or late relative to an ideal time. In this framework,
each commuter selects an arrival time that minimizes her overall trip cost by
considering the within-day congestion pattern along with her individual schedul-
ing preference. By incorporating the distribution of these preferences and desired
arrival times across the population, we can estimate the likelihood of observ-
ing arrivals at specific times. Using synthetic data, we then apply the maximum
likelihood estimation (MLE) method to recover the parameters of the joint distri-
bution of scheduling preferences and desired arrival times. Our numerical results
demonstrate the effectiveness of the proposed method.

Keywords: Bottleneck, Scheduling preferences, Traffic flow; Travel demand
management

JEL Classification: C25 , R41 , D12
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1 Introduction

Travel demand management (TDM) schemes play a crucial role in mitigating urban
congestion by shaping when, how, and by which mode individuals travel. Urban mobil-
ity can be understood as a complex system governed by the interactions of three main
actors: travelers, who decide on departure time, route, and mode; governments, which
design, regulate, and price infrastructure through policies such as tolls, emissions
standards, and access restrictions; and service providers, who adapt transportation
supply in response to demand and capacity constraints. The objectives of these actors
often diverge, and insufficient coordination both within and across these groups gen-
erates systemic inefficiencies ranging from congestion and underutilized capacity to
inequitable access (see the discussion on policy analysis in the recent textbook: [1] ).

Implementing effective TDM strategies requires a solid understanding of travel-
ers’ behavior and their responsiveness to policy interventions. Because traffic emerges
from countless individual decisions made across large and interconnected networks,
modelling tools are essential for guiding policymakers. Simple analytical models are
valuable for generating key policy insights, while large-scale simulation models are
needed to capture the systemic and network-wide dimensions of transportation.

Transport modelling initially relied on static frameworks, which assume that con-
gestion levels remain constant over time, typically by treating peak and off-peak
periods as two independent equilibria. Despite this restrictive assumption, static mod-
els remain widely used in practice [2]. The first major challenge to this approach came
from [3], whose bottleneck model provided a dynamic framework for analyzing peak-
period congestion. This approach was later formalized by [4] and further extended by
[5]. In the bottleneck framework, travelers trade off congestion delays against sched-
ule delay penalties from arriving earlier or later than their preferred arrival time.
Building on this foundation, [6] extended the model to incorporate elastic demand,
simple network structures, and user heterogeneity (see [7] and [8], for a comprehensive
review).

The behavioral decision of interest in this paper is the choice of departure time,
and hence arrival time, under the assumption that travel times are exogenous. This
assumption is reasonable in large-scale networks, where the decisions of individual
travelers have negligible effects on aggregate traffic conditions. Much of the literature
has focused on single-route settings or simplified “toy” networks to study equilibrium
outcomes. At equilibrium, since there is a continuum of agents and time is continuous,
the generalized cost of using any departure time is equalized across travelers, provided
they share identical preferences. However, this is a heroic simplification: in practice,
even for a given O–D pair, not all users face the same cost.

In this context, the α–β–γ model [9] has become a standard framework for ana-
lyzing scheduling preferences. In this model, α denotes the value of travel time, β
represents the penalty per unit of early arrival, and γ the penalty per unit of late
arrival. The generalized cost of a trip therefore consists of three components: travel
time weighted by α, the penalty for early arrival weighted by β, and the penalty for
late arrival weighted by γ. Travelers are assumed to choose their departure (and hence
arrival) time to minimize this total cost relative to their preferred arrival time t∗,
which may vary across individuals as do the behavioral parameters α, β, and γ.
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Large-scale simulation platforms such as METROPOLIS 1 and 2 [10–12] have
incorporated departure-time choice into integrated travel behavior models. These tools
simulate users’ learning processes and day-to-day adaptations until a stationary state is
reached in which anticipated and experienced travel times converge. The calibration of
such models relies critically on behavioral parameters, particularly α, β, and γ. Supply-
side parameters, such as road capacity or destination penalties, can be estimated
from observed traffic and infrastructure data. In contrast, demand-side scheduling
parameters remain difficult to estimate, as they typically require survey data [9, 13].

To the best of our knowledge, [14] represents the only attempt to estimate β/α
and γ/α directly from congestion data. Their approach assumes that any road behaves
like a single bottleneck: at equilibrium, the slope of the travel time function identifies
β/(α − β) for early arrivals and −γ/(α + β) for late arrivals. By contrast, most sub-
sequent studies have relied on stated-preference surveys. For example, Small (1987)
estimated a continuous logit model on survey data from 527 U.S. commuters, find-
ing β/α ≈ 0.61 and γ/α ≈ 2.38. This author exploited the fact that departure times
constitute an ordered set of alternatives. In a study among seven different cities with
survey and traffic data, similar trends have been observed [15]. These estimates have
since become standard benchmarks in the literature (see [8]).

While stated-preference surveys have been widely used, they are costly, time-
consuming, and limited in scale. Revealed-preference (RP) data—such as traffic
counts, travel times, and mode shares—are increasingly abundant thanks to advances
in sensing and data collection technologies, including smartphone navigation plat-
forms. This raises a crucial research question: can commuters’ scheduling preferences
be reliably inferred from large-scale RP data without relying on surveys? Address-
ing this question is critical for designing adaptive and data-driven TDM strategies in
complex urban environments.

The objective of this paper is to develop a methodology to infer distributions
of travelers’ scheduling preferences (β, γ) and desired arrival times t∗ in dynamic
departure-time models from observed arrival and travel-time data. Our approach tar-
gets specific population groups, possibly defined by socio-economic attributes and trip
purposes, and relies exclusively on attainable RP data, offering a scalable and cost-
efficient alternative to survey-based methods. Specifically, the contributions of this
study are threefold. First, we propose a structural model that links observed arrival
times to scheduling preferences and congestion patterns, characterizing the optimal
arrival time as a function of β, γ, and t∗. Second, we formulate a likelihood-based
estimation framework using maximum likelihood estimation (MLE) to recover the
distribution of scheduling parameters directly from RP data. Third, we validate the
approach using synthetic data, demonstrating that the method accurately recovers
underlying behavioral parameters and can therefore be applied to real-world demand
analysis.

The literature has often introduced heterogeneity by assuming that it is observ-
able, typically by segmenting travelers into discrete classes with distinct estimated
parameters. In this paper, we adopt a related but more flexible approach, allow-
ing behavioural parameters to vary continuously across individuals. By contrast, [9]
treated heterogeneity as unobserved, estimating distributions of scheduling parameters
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from revealed choices. Our contribution lies in extending the observable-heterogeneity
tradition toward continuous estimation, while preserving tractability for estimation
purposes.

The rest of the paper is structured as follows. Section 2 characterizes the optimal
arrival-time choice problem, given an arbitrary travel-time profile and scheduling pref-
erences. Section 3 formulates the maximum likelihood estimation framework. Section
4 presents numerical experiments based on synthetic data, and on fields data, while
Section 5 concludes.

2 Analysis on the travel cost of individuals

In this section, we examine the optimal departure problem for individual users under
exogenous congestion. First, we introduce the travel cost function assumed for individ-
uals in Section 2.1, when the congestion is exogenous and represented by a travel time
profile function. The travel cost function turns out to admit multiple local optima, and
we analyze the global minimum given the scheduling preference and travel time profile
in Section 2.2. Based on the analysis, Section 2.3 characterizes the optimum explicitly
for the travel cost function assuming a representative type of travel time profiles.

2.1 Arrival times and travel costs

Consider a road user commuting between an origin and a destination. The travel time
between the origin-destination (OD) pair fluctuates across the time of the day. Let
T ∈ R be the set of all possible arrival times. We describe the experienced travel time
with a function tt : T → R+. Namely, tt(t) denotes the experienced travel time for
travelers arriving at time t. To hedge against time-varying congestion, the user may
be motivated to arrive early and later at the destinations to avoid the rush hours. To
capture such trade-offs, we follow the bottleneck literature by considering that each
user chooses an arrival time t at their destination that minimizes their individual
travel cost 1. The travel cost by arriving at any time t ∈ T is defined as

C(t) = αtt(t) + β[t∗ − t]+ + γ[t− t∗]+, (1)

where t∗ is the desired arrival time at the destination, α is the value of travel time, and
β and γ are respectively the unit penalty of arriving early and late at the destination.
Without loss of generality, from now on, we normalize the value of α to 1.

An implied assumption here is that the experienced travel time solely depends
on the arrival time, which enables the definition of tt(t). The main reason for this
assumption is that tt(t) can be empirically observed with various sensor data, while
departure times or t∗ are not easily observed. The travel time profile is assumed to be
exogenous, which is not affected by an individual user’s choices. In addition, we impose
a mild assumption regarding the travel time profile function to facilitate our analysis.

1When tt′(t) < 1 for all t ∈ T , there is a one-to-one correspondence between any arrival time t and the
departure time td = t − tt(t) because ∂td/∂t > 0 in this case. Then the arrival time choice problem is
equivalent to the departure time choice problem in [6].
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Assumption 1. The travel time profile function tt : T → R+ is continuous and
bounded.

2.2 Minimum of the travel cost function

We characterize the arrival time choices for each individual user with given scheduling
preferences parameterized by β, γ, and the desired arrival time t∗. Recall that each
user chooses the arrival time to minimize the individual travel cost. We define the
minimal travel cost Copt as Copt = mint∈T C(t).

To facilitate our discussion, we introduce two technical terms regarding the con-
ditional minima of the travel cost function C(t): the minimal early arrival cost
Copt

e = mint≤t∗ C(t) and the minimal late arrival cost Copt
l = mint≥t∗ C(t). Also, we

define some special time intervals that relate to our analysis below.

Definition 1 Given any travel time profile function tt and unit penalty of early and late
arrivals β and γ, an interval [tei , t

e
f ] with tef ≥ tei is termed an early arrival (EA) interval

when the following condition holds:

tt(t) ≥ tt(tei ) + β(t− tei ),∀t ∈ [tei , t
e
f ]. (2)

An interval [tli, t
l
f ] with tlf ≥ tli is termed a late arrival (LA) interval when the following

condition holds:
tt(tlf ) + γ(tlf − t) ≤ tt(t), ∀t ∈ [tli, t

l
f ]. (3)

Intuitively, congestion increases (respectively, decreases) rapidly with the arrival
time within each EA (LA) interval, such that the time savings from arriving earlier
(later) outweigh the cost of early arrival. We are particularly interested in the intervals
that are not contained by others.

Definition 2 An EA (respectively, LA) interval is critical if it is not strictly contained within
any other EA (respectively, LA) interval.

Figure 1 exemplifies the critical EA(CEA) and LA(CLA) intervals for a general
travel time profile tt. As we can observe, there are two CEA intervals, CEA1 and CEA2,
and two CLA intervals, CLA1 and CLA2 in this figure. The first CEA interval CEA1

overlaps with the first CLA interval CLA1, while the second CEA and CLA intervals,
CEA2 and CLA2, are disjoint. The dashed lines are identified as the indifference curves,
whereby users exhibit indifference to arriving at any time within the CEA or CLA
intervals, provided that the indifference curves coincide with the travel time profile.
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Fig. 1: An example of CEA and CLA intervals for a given travel time profile.

To characterize the minima of the travel cost function, we first obtain the following
lemmas.

Lemma 1. Any two critical early arrival (CEA) intervals or two critical late arrival
(CLA) intervals are disjoint.

Proof See Appendix A. □

Lemma 1 can be interpreted in this way: if two such intervals overlapped, they
could be merged into a strictly larger interval that still satisfies the defining inequality.
But ’critical’ intervals are, by definition, maximal ones not contained in others. Hence,
overlaps cannot occur. Intuitively, CEA/CLA intervals are “time windows where it
pays to shift arrivals”. Overlap would mean redundancy, so only disjoint maximal
windows exist. By Lemma 1, each desired arrival time t∗ can fall into at most one
CEA (CLA) interval, which leads to the following lemma.

Lemma 2. Under Assumption 1, given any travel time profile tt, early arrival penalty
β, and desired arrival time t∗, the minimal early arrival cost is

Copt
e =

{
C(tei ), if ∃[tei , tef ] ∈ E such that t∗ ∈ [tei , t

e
f ],

tt(t∗), otherwise,
(4)

where E denotes the set of all critical early arrival (CEA) intervals.

Proof See Appendix B. □

Lemma 2 shows that the minimum of the travel cost function before t∗ is achieved
at the left boundary of a CEA interval if it contains t∗. If t∗ is not inside any CEA
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interval, the best option is to arrive exactly at t∗. Intuitively, if arriving early is “worth
it”, the very first point where this becomes beneficial is best. Otherwise, one should
aim to be on time.

In parallel, we can prove the following lemma concerning late arrivals. The proof
is similar to the proof for Lemma 2 and therefore omitted here.

Lemma 3. Under Assumption 1, given any travel time profile tt, γ, and t∗, the
minimal late arrival cost is

Copt
l =

{
C(tlf ), if ∃[tli, tlf ] ∈ L such that t∗ ∈ [tli, t

l
f ],

tt(t∗), otherwise,
(5)

where L denotes the set of all critical late arrival (CLA) intervals.

Lemma 3 shows that the minimal late arrival cost after t∗ is either at the right
endpoint of a CLA interval containing t∗, or at t∗ otherwise. By symmetry with Lemma
2, in CLA intervals, waiting longer reduces cost, so the best is the far-right point of
the CLA interval. Otherwise, being on time dominates. Intuitively, arriving late only
pays off if congestion is dropping quickly enough. Then, the best is to push the arrival
as far as possible within that profitable zone.

Lemmas 2 and 3 respectively reveal the early and late minimal travel costs Copt
e

and Copt
l for any desired arrival time t∗. Then we can further identify the (globally)

minimal travel cost Copt by comparing Copt
e and Copt

l . In particular, we proceed with
the analysis based on whether the desired arrival time t∗ falls into a CEA interval or
a CLA interval given β and γ.

Proposition 1. Let E(t∗) and L(t∗) denote the sets of CEA and CLA intervals that
contain t∗, respectively. Under Assumption 1, given any tt, β, γ, and t∗, when at least
one of E(t∗) and L(t∗) is empty, the optimal travel cost Copt, is given by

Copt =


tt(t∗), if E(t∗),L(t∗) = ∅,
Copt

e , if E(t∗) ̸= ∅,L(t∗) = ∅,
Copt

l , if E(t∗) = ∅,L(t∗) ̸= ∅.
(6)

Proof See Appendix C. □

Proposition 1 shows that when the desired arrival time t∗ does not fall into any
CEA or CLA intervals, it is optimal to arrive on time. When t∗ falls into a CEA interval
but not any CLA interval, then the corresponding minimal travel cost is Copt = Copt

e ,
and it is optimal to arrive early. When t∗ falls into a CLA interval but not any CEA
interval, then the corresponding minimal travel cost is Copt = Copt

l , i.e., it is optimal
to arrive late. This follows directly from Lemmas 2 and 3: if both minima reduce to
tt(t∗), being on time wins. If only one improves on tt(t∗), that dominates. Intuitively,
without a “beneficial window”, one has no reason to shift. But if congestion makes
one side cheaper, one should shift that way.
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Finally, the case when t∗ falls into both a CEA interval and a CLA interval is
discussed in the following proposition.

Proposition 2. Suppose that there exists a CEA interval [tei , t
e
f ] and a CLA interval

[tli, t
l
f ] such that t∗ ∈ [tei , t

e
f ] and t∗ ∈ [tli, t

l
f ]. Under Assumption 1, there exists a

desired arrival time threshold

t̄∗ =
tt(tlf )− tt(tei ) + βtei + γtlf

β + γ
, (7)

such that 
Copt

e < Copt
l , if t∗ < t̄∗,

Copt
e = Copt

l , if t∗ = t̄∗,

Copt
e > Copt

l , if t∗ > t̄∗.

(8)

Proof See Appendix D.
□

Proposition 2 demonstrates that, when the desired arrival time t∗ falls into both
a CEA interval and a CLA interval, there exists a threshold of desired arrival time t̄∗

such that it is optimal to arrive early and late before and after the interval, respectively.
Graphically, the indifference curves of early and late arrivals, respectively, intersect
with each other at t̄∗, as shown in Figure 1. Early and late costs are exactly equal at
t̄∗. As t∗ increases, early arrival costs rise (penalty β applies), late arrival costs fall
(penalty γ applies). Therefore, one side dominates before and the other after. Thus,
if someone’s preferred arrival time is earlier than the ’crossover,’ she will lean toward
arriving early; if later, arriving late is cheaper. The threshold is like a pivot point.
Note that the threshold t̄∗ is not necessarily in the CEA interval or the CLA interval
when one of the intervals contains the other.

So far, we are able to identify the global minima of the travel cost function given
any user’s t∗, and CEA and CLA intervals. However, usually we do not know each
user’s CEA and CLA intervals but her β or γ. Thus, we continue to analyze how
each user’s β and γ affect her CEA and CLA intervals, as formalized in the following
proposition.

Proposition 3. Let [tei , t
e
f ] and [tli, t

l
f ] be a CEA interval and a CLA interval, respec-

tively, under some β and γ. Under Assumption 1, tei and tef are weakly increasing and

decreasing in β, respectively, and tli and tlf are weakly increasing and decreasing in γ,
respectively.

Proof See Appendix E. □

We show in Proposition 3 that, when β (respectively, γ) increases, each CEA
(respectively, CLA) interval will shrink. That is, a larger β means early arrivals are
more painful, so the range of profitable early arrivals shrinks. Similarly, for γ and late
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arrivals. Intuitively, if someone hates being early (high β), the window where “arriving
early to dodge congestion” makes sense becomes narrower. The intuition applies to
late arrivals as well. Proposition 3 directly leads to the following corollary.

Corollary 1. Under Assumption 1, given any desired arrival time t∗, there exists
an threshold β0 of early-arrival penalty such that t∗ is not in any CEA interval, i.e.,
E(t∗) = ∅, if and only if β > β0. Also, there exists an threshold of late-arrival penalty
γ0 such that t∗ is not in any CLA interval, i.e., L(t∗) = ∅, if and only if γ > γ0.

Corollary 1 shows that for each t∗, there is a threshold β0 (or γ0) beyond which
no CEA (or CLA) interval contains t∗. This follows from Proposition 3: as β increases
to infinity, eventually no early window is worthwhile. The same logic applies to γ. By
Corollary 1, we can conveniently check if a user’s t∗ falls into any of her CEA or CLA
intervals by knowing her β or γ, respectively.

−5 −1 1 50
t

tt(t)

(a) Travel time profile

β

t

-5

tei(
β)

0 β0

t∗

βmax

(b) Values of tei (β) under different β

Fig. 2: An example with an idealized travel time profile function on the impact of β
on the left endpoint tei (β) of a CEA interval.

Figure 2 exemplifies the threshold in an idealized case. The travel time profile
function is tt(t) = (5−|t|)2 for any t in [−5,−1] and [1, 5]. The left endpoint tei (β) of the
CEL interval is linearly increasing in β when β < βmax. When β = 0, the time interval
[−5, 5] is a CEA interval, and thus any t∗ ∈ [−5, 5] falls into the CEA interval. When
β > βmax, there is no CEA interval. When β ∈ (0, βmax), the CEA interval exists
and its left endpoint tei is always smaller than −1, and the right endpoint is always
greater than −1. Thus, if t∗ ∈ [−5,−1], the threshold β0 is such that tei (β0) = t∗;
if t∗ ∈ [−1, 5], the threshold β0 is such that tef (β0) = t∗. The threshold γ0 can be
analogously analyzed for late arrivals.
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2.3 Convex-concave-convex travel time profiles

Now, we continue our analysis by considering a representative congestion pattern in
which the travel time profile exhibits a convex–concave–convex shape, as described by
the following assumption.

Assumption 2. The travel time profile function tt is unimodal and twice differen-
tiable. Furthermore, there exists an interval Dconc = [k0, k1] such that tt′′ ≤ 0 in
Dconc, and tt′′ ≥ 0 in Dconv = T \ Dconc.

Fig. 3: Example of a travel time profile under Assumption 2. The shaded zones show
the parts of its domain in which the function is convex or concave.

Under Assumption 2, congestion will monotonically increase during the day up
until a certain time, and then monotonically decrease afterwards, as shown in Figure
3. Additionally, it requires the derivative of the travel time to be unimodal both before
and after the peak. This assumption is moderate because we allow for different sizes
of Dconc and Dconv such that the curve can approximate most real travel time profiles
in practice.

In this case, we can explicitly characterize the endpoints of the CEA and CLA
intervals, as formalized below.

Proposition 4. Under Assumptions 1 - 2, there exist at most one CEA interval
[tei , t

e
f ] and at most one CLA interval [tli, t

l
f ] such that tt′(tei ) = β and tt′(tlf ) = γ.

Proof See Appendix F. □

Proposition 4 characterizes the left and right endpoints of the CEA and CLA
intervals, respectively (if they exist), under unimodal, smooth travel time profiles
described by Assumption 2. The unimodal shape ensures derivative crosses β (or γ) at
most once. Thus, only one critical interval of each type exists. With a single congestion
peak, there’s at most one useful “early zone” and one “late zone”. The slope conditions
capture exactly when congestion growth/decline offsets penalties.
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Fig. 4: Critical early and late arrival intervals for a travel time profile under Assump-
tion 2 given β and γ.

By definitions of CEA intervals, at the right endpoint tef of the CEA interval, the
line tangent to the travel time function at tef (that is, the green solid line in Figure 4)

intersects with the travel time profile. Symmetrically, at tli, the red solid line intersects
with the travel time profile. Also, the red and the green solid lines intersect at t̄∗, as
defined in Proposition 2.

By Proposition 2, if both the CEA interval [tei , t
e
f ] and the CLA interval [tli, t

l
f ] exist

under Assumption 2, we can futher identify two intervals Ẽ, and L̃ of the desired arrive
time t∗: Ẽ = [tei , ť

e
f ], L̃ = [ťli, t

l
f ], where ť

e
f = min{tef , t̄∗}, and ťli(γ) = max{tli, t̄∗}. That

is, it is optimal to arrive early and late if a user’s t∗ falls into Ẽ and L̃, respectively.

Corollary 2. Under Assumptions 1 - 2, given any tt, β, γ, and t∗, the optimal travel
cost Copt, is given by

Copt =


Copt

e , if t∗ ∈ Ẽ,

Copt
l , if t∗ ∈ L̃,

tt(t∗), otherwise,

(9)

where Ẽ = [tei , ť
e
f ], L̃ = [ťli, t

l
f ] with ťef = min{tef , t̄∗}, and ťli = max{tli, t̄∗}.

Corollary 2 is a direct combination of Propositions 1- 4. By Corollary 2, under
Assumptions 1–2, the optimal arrival cost is early, late, or on-time depending on
whether t∗ falls inside the unique reduced CEA/CLA zones. Intuitively, the framework
gives a clean rule: each user’s optimal arrival strategy depends entirely on whether
her desired time sits in the ’profitable’ early or late windows.

Let βmax = maxt tt
′(t) and γmax = −mint tt

′(t), respectively. When a traveler has
a large early arrival penalty, i.e., β > βmax, the set Ẽ is empty, and therefore it is
never optimal to arrive early regardless of γ and t∗. Symmetrically, when γ > γmax,
it is never optimal to arrive late regardless of β and t∗.

So far, we have established the optimal arrival time choices of an individual given
exogenous travel time profile function tt, and scheduling preferences characterized by
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β, γ, and t∗. When we consider a population with heterogeneous β, γ, and t∗, the
resulting arrival time choices are distributed. When the distribution of β, γ, and t∗

among the population is given, we can further derive the distribution of observed
arrival times among the population. Obviously, heterogeneity does not add much to
the complexity of our analysis. This analysis will essentially yield a structural model
describing the heterogeneous arrival time choices in peak hours in the following section,
which can be calibrated by the maximum likelihood estimate method.

3 Maximum Likelihood Estimation

In this section, we begin by introducing the Maximum Likelihood Estimation (MLE)
problem in Section 3.1. Then, in Section 3.2, we explicitly characterize the distribution
of the optimal arrival times, characterized by its probability density function (PDF),
when the distribution of β, γ, and t∗ among the population is given.

3.1 Problem Statement

We consider an authority aiming to ascertain the preferences of a population of travel-
ers who exhibit heterogeneous scheduling preferences for commuting between an origin
and destination (OD) pair. A transportation authority would like to know the distribu-
tion of their scheduling preferences, which are characterized by a vector δ = (β, γ, t∗),
but it is quite challenging to conduct a survey on that. However, the authority has the
data regarding (1) the experienced travel time profile tt for travelers arriving at dif-
ferent times of the day, and (2) the observations of arrival times for a certain number
of travelers. Our goal is to estimate the distribution of δ, as shown in Figure 5.

Input

Output 

Arrival times and experienced travel 
times of N travelers from one OD pair
• Possibly obtained from navigation 

platforms

Distribution of the scheduling 
preferences across the population 

Arrival time 

Travel time 

! "

Fig. 5: The main objective of this paper

Formally, let Θ denote the set of all possible parameter vectors that characterize a
distribution of δ across the population, and t = (tn)n∈N denote the observed arrival
time samples, where N is the set of travelers in the observations. We aim to find a
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vector θ∗ ∈ Θ that maximizes the likelihood of the observed data t, i.e.,

θ∗ = argmin
θ∈Θ

∏
t

L(θ; tn), (10)

where L(θ; tn) is the likelihood of observing arrival time tn when the distribution of
σ is parametrized by θ.

3.2 Likelihood

Given the joint distribution of β, γ, and t∗ characterized by θ, the likelihood of
observing an arrival at time t is the probability density of topt:

L(θ; t) = ftopt(t;θ), (11)

where ftopt is the probability density of observed arrival times. When the joint prob-
ability density fδ of δ = (t∗, β, γ) is known, we are able to derive the expression of
ftopt as below.

Each observed arrival can be either on-time, early, or late, of which the probabilities
are discussed separately as follows. Let Ftopt(t) denote the CDF of the observed arrival
times. We have

Ftopt(t) = F o
topt(t) + F e

topt(t) + F l
topt(t), (12)

where F o
topt(t), F

o
topt(t), and F o

topt(t) are probabilities of observing arrivals at any time
topt < t and the arrives being on-time, early, or late, respectively. Namely, F o

topt(t) =

P(topt < t;Copt
l = Copt

e ), F e
topt(t) = P(topt < t;Copt

l > Copt
e ), and F l

topt(t) = P(topt <
t;Copt

l < Copt
e ). For simplicity, we consider in the following discussion that the travel

time profile function tt satisfies Assumption 2.

3.2.1 On-time Arrivals

By Corollary 2, an arrival at time t is on-time (i.e., Copt
l = Copt

e ) if and only if the

observed user’s desired arrival time t∗ does not fall into intervals Ẽ and L̃. Thus, the
probability of observing arrivals at any time topt < t and the arrivals being on-time is
given by

F o
topt(t) = P(topt ≤ t, t∗ /∈ Ẽ(β, γ) ∪ L̃(β, γ)), (13)

Using Corollary 1, we can conclude that under Assumptions 1 - 2, given any t∗, there
exists a threshold β0(t

∗) of β such that t∗ /∈ Ẽ(β, γ) when β > β0(t
∗), and a threshold

γ0(t
∗) such that t∗ /∈ L̃(β, γ) when γ > γ0(t

∗). Therefore we have

F o
topt(t) = P(t∗ ≤ t, β > β0(t

∗), γ > γ0(t
∗))

=

∫ t

0

∫ ∞

β0(τ)

∫ ∞

γ0(τ)

fσ(τ, b, g) dg db dτ.
(14)
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Note that the corresponding probability density is fo
topt(t) = ∂F o

topt(t)/∂t. Therefore,
the probability density is

fo
topt(t) =

∫ ∞

β0(t)

∫ ∞

γ0(t)

fσ(t, b, g) dg db. (15)

3.2.2 Early Arrivals

By Corollary 2, an observed arrival at time t is early (i.e., Copt = Copt
e ) when the

observed user’s preference parameters β and γ are such that her desired arrival time
t∗ falls into the interval Ẽ(β, γ). Then we have

F e
topt(t) = P(topt ≤ t, Copt = Copt

e )

= P(topt ≤ t, t∗ ∈ Ẽ(β, γ))
(16)

Equivalently, the event topt ≤ t and Copt = Copt
e occurs if and only if the left endpoint

tei (β) of Ẽ(β, γ) is not greater than time t (i.e., tei (β) ≤ t), and t∗ falls into interval
Ẽ(β, γ). Recall that by Assumption 2, the travel time profile function tt is convex
when t ≤ k0 or t ≥ k1, and concave when t ∈ [k0, k1]. We proceed with our analysis
in two cases separately:

Case 1: t ≤ k0, i.e., tt
′′(t) ≥ 0 and tt′ > 0. By Proposition 3, the left endpoint tei (β)

of Ẽ is weakly increasing in β when β ≤ βmax. In this case, there exists a threshold
β̄ = tt′(t) of β such that tei (β) is not greater than time t, i.e., tei (β) ≤ t, when β is not
greater than tt′(t). We have

F e
topt(t) = P(β ≤ tt′(t), t∗ ∈ Ẽ(β, γ))

=

∫ tt′(t)

0

∫ ∞

0

∫ ťef (b,g)

tei (b)

fσ(τ, b, g)dτdgdb.
(17)

Case 2: t > k0. When β ≤ βmax, the interval Ẽ exists, of which the left-end point
tei (b) is always not greater than t. Then we have

F e
topt(t) = P(β ≤ βmax, t

∗ ∈ Ẽ(β, γ))

=

∫ βmax

0

∫ ∞

0

∫ ťef (b,g)

tei (b)

fσ(τ, b, g)dτdgdb.
(18)

Again, the probability density fe
topt(t) = ∂F e

topt(t)/∂t can be expressed as

fe
topt(t) =

{
tt′′(t)

∫∞
0

∫ ťef (tt
′(t),g)

tei (tt
′(t)) fσ(τ, tt

′(t), g)dτdg, if t ≤ k0,

0, otherwise.
(19)

Note that we have tei (tt
′(t)) = t when t ≤ k0 by definition. Moreover, since β is

nonnegative, we have fσ(τ, β, g) = 0 when β = tt′(t) < 0. Then we can simplify the
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above expression of fe
topt(t) as

fe
topt(t) = [tt′′(t)]+

∫ ∞

0

∫ ťef (tt
′(t),g)

t

fσ(τ, tt
′(t), g)dτdg (20)

3.2.3 Late Arrivals

The analysis for the late arrivals is similar to that for the early arrivals. Similarly, we
have

F l
topt(t) = P(topt ≤ t, Copt = Copt

e )

= P(topt ≤ t, t∗ ∈ L̃(β, γ))
(21)

Equivalently, the event topt ≤ t and Copt = Copt
l occurs if and only if the right

endpoint tlf (β) of L̃(β, γ) is not greater than time t, and t∗ falls into interval L̃(β, γ).
Again, we have

F l
topt(t) = P(γ ≤ −tt′(t), t∗ ∈ L̃(β, γ))

=

∫ −tt′(t)

0

∫ ∞

0

∫ ťli(b,g)

tlf (g)

fσ(τ, b, g)dτdbdg,
(22)

if t ≥ k1; otherwise

F l
topt(t) = P(γ ≤ −tt′(t), t∗ ∈ L̃(β, γ))

=

∫ γmax

0

∫ ∞

0

∫ ťli(b,g)

tlf (g)

fσ(τ, b, g)dτdbdg.
(23)

Note that the corresponding probability density is f l
topt(t) = ∂F l

topt(t)/∂t. Again, we
have

f l
topt(t) =

−tt′′(t)
∫∞
0

∫ ťli(b,−tt′(t))

tlf (−tt′(t))
fσ(τ, b,−tt′(t))dτdg, if t > k1,

0, otherwise.
(24)

Therefore, we obtain that

f l
topt(t) = [−tt′′(t)]+

∫ ∞

0

∫ ťli(b,−tt′(t))

t

fσ(τ, b,−tt′(t))dτdb. (25)

3.2.4 Independent β, γ and t∗

Without loss of much generality, we can further consider that β, γ, and t∗ are
independently distributed for simplicity.
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Assumption 3. The variables β, γ, and t∗ are independently distributed among the
population.

Let fβ(β), fγ(g), and ft∗(t
∗) denote the probability density functions of β, γ, and

t∗, respectively. By Equation (12), we have ftopt(t) = fo
topt(t) + fe

topt(t) + f l
topt(t).

Therefore, under Assumption 3, we obtain

ftopt(t) = ft∗(t)

∫ ∞

β0(t)

fβ(b)

∫ ∞

γ0(t)

fγ(g) dg db

+ [tt′′(t)]+fβ(tt
′(t))

∫ ∞

0

fγ(g)

∫ ťef (tt
′(t),g)

t

ft∗(t)dτdg

+ [−tt′′(t)]+fγ(−tt′(t))

∫ ∞

0

fβ(b)

∫ ťli(b,−tt′(t))

t

ft∗(t)dτdb.

(26)

So far, we have explicitly characterized the distribution of the optimal arrival times
topt by the above PDF ftopt(t;θ) under any distribution of δ = (β, γ, t∗) parameterized
by θ. Apparently, the MLE problem defined in (11) is a nonlinear and nonconvex
optimization problem, which is difficult to solve exactly in general. To this end, we
develop our own solution methods as detailed below.

4 Methods for solving the MLE problem

In this section, we elaborate on the methods developed to solve the MLE problem
defined in (10) efficiently. Aside from being nonlinear and nonconvex in general, the
likelihood in the objective function of Problem (10) is expressed in a convoluted way
such that it is difficult to derive the gradient explicitly. We resort to gradient-free
optimization techniques for computational stability, as detailed in Section 4.1. We
further explain how the likelihood is evaluated within the proposed solution framework
in Section 4.2.

4.1 Optimization framework

Since the likelihood function in our MLE problem involves numerous integrals, with
some upper limits lacking closed-form expressions, direct gradient-based approaches
such as implicit differentiation methods (e.g., [16]) are not applicable. To address this
challenge, we employ a two-step optimization strategy, described as follows.

We adopt a two-step framework to solve the problem. First, we conduct a grid
search to find an initial solution for the optimizer. Second, we employ the Nelder-Mead
optimizer [17] which avoids computing gradients. The Nelder–Mead optimizer is a
derivative-free numerical algorithm that minimizes a function by iteratively updating
a simplex of points to explore and converge toward the optimum. As shown in Figure
6, the contour plot shows the objective function

∏
t L(θ; tn) of Problem (10), i.e.,

the likelihood, under different µβ and µγ . The initial point is first found through the
grid search, depicted in purple. Then the Nelder-Mead optimizer further maximizes
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Fig. 6: An example of the realization of the optimization framework.

the objective function and converges to the optimum. We are typically able to reach
convergence, with relative errors around 5%, in about 150 iterations. That is, the
proposed optimization framework achieves a sufficiently precise convergence in this
example. 2

4.2 Computation of the likelihood

The objective function of Problem (10), comprised of the likelihood in (26), is com-
putationally expensive. When applying the Nelder–Mead method to maximize the
likelihood, each iteration requires evaluating the likelihood function in (26) at multiple
parameter values. Since the likelihood in our setting involves several integrals—some
with non-closed-form upper and lower limits—this procedure demands efficient and
accurate computation of these integrals since the likelihood of thousands of points
has to be estimated; otherwise, the optimization would become prohibitively slow or
numerically unstable. We therefore develop specialized techniques for the evaluation
as follows.

We begin by precalculating the value of βmax, γmax, which depend solely on the
travel time profile function tt. Under assumption 2, tt is twice differentiable. The coef-
ficients are thus computed by running a gradient descent optimizer on the derivative
of the travel time function.

Next, we explain how to compute the upper limits ťef (β, γ) and ťli(β, γ) of the
integrals in Equations (19) and (25), respectively, and the lower limits β0(t) and γ0(t)
of the integral in Equation (15).

2The resulting code is available at github.com/Piripuz/Reverse ADL Vickrey.
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4.2.1 Upper limit

Given any β ≤ βmax and γ ≤ γmax, we need to update the value of ťef (β, γ) and ťli(β, γ)

in (26). Recall that ťef (β, γ) and ťli(β, γ) are defined in a convoluted way: to compute

ťef (β, γ) and ťli(β, γ), we need to obtain t̄∗, tef and tli first, as described in Corollary 2.

First, as defined in Equation (7), the term t̄∗ explicitly depends on tei and tlf . By

Proposition 4, we have tt′(tei ) = β and tt′(tlf ) = γ. Equivalently, tei = argmint(tt(t)−
βt) and tlf = argmint(tt(t) + γt). Thus, tei and tlf can be found by running a simple
gradient descent optimizer on the functions tt(t)− βt and tt(t) + γt.

Second, by Definitions 1, the endpoints tef and tli on the other sides depend on tei and

tlf as follows: tt(tef ) = tt(tei )+β(tef − tei ), tt(t
l
i) = tt(tef )+γ(tlf − tli). Therefore, given tei

and tlf , we can solve tef and tli using the bisection method. Then we are ready to obtain

ťef (β, γ) and ťli(β, γ) by letting ťef (β, γ) = min{tef , t̄∗}, and ťli(β, γ) = max{tli, t̄∗}.

4.2.2 Lower limit

Given any t ∈ T , we need to update the value of β0(t) and γ0(t) in (26). Recall
that, by Corollary 1, there exists a threshold β0(t

∗) of β such that t∗ /∈ Ẽ(β, γ) when
β > β0(t

∗), and a threshold γ0(t
∗) such that t∗ /∈ L̃(β, γ) when γ > γ0(t

∗).
To find such thresholds, we employ a bisection algorithm: progressively increasing

the value of β, γ until t∗ is no longer in a CEA (respectively, CLA) interval, we find
meaningful initial conditions. Note that by bisection, we are then able to estimate the
coefficients with arbitrary precision.

Using the above-mentioned computation techniques, we perform numerical exper-
iments in the following sections to demonstrate the effectiveness of our methods.

5 Numerical experiment with synthetic data

In this section, we conduct numerical experiments to evaluate the proposed method
using synthetic data. The procedure is organized as follows. First, we prepare the input
for the experiment in Section 5.1, including the specification of a theoretical travel
time function in Section 5.1.1 and the distributions of the parameters β, γ, and t∗ in
Section 5.1.2. Next, we generate a synthetic dataset by sampling β, γ, t∗, explicitly
minimizing the resulting travel cost function, and obtaining observations of arrivals
in Section 5.2. We then compare the sampled data with the theoretical predictions in
Section 5.2.2. Finally, we evaluate the performance of the MLE method in recovering
the true parameters of the distributions in Section 5.3.

5.1 Input data

5.1.1 Travel Time Function

The travel time profile function adopted in this section is a synthesis of two Gaussian
distributions. To better represent the asymmetry for early and late arrivals, two dif-
ferent variances will be considered before and after the peak. The considered function
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is

tt(t) =

e
− (x−µ)2

σl , if x ≤ µ,

e−
(x−µ)2

σr , if x > µ,
(27)

The chosen travel time function is bounded and continuous, with a differen-
tiable derivative, and it satisfies the convexity and concavity conditions specified in
Assumption 2. Hence, the function fulfills both Assumptions 1 and 2.

We plot the function in Figure 7. The parameter σl, regulating the steepness before
the peak, is higher than the parameter σr, which regulates the steepness after the peak.

Fig. 7: Theoretical travel time function ttg(t) as defined in (27).

5.1.2 Distribution of the preference parameters

For simplicity, we assume that β, γ, and t∗ are normally distributed, with β and γ
sharing the same variance:

β ∼ N (µβ , σ), γ ∼ N (µγ , σ), t∗ ∼ N (µt, σt).

The chosen distribution trivially satisfies assumption 3, and therefore we can directly
employ Equation (26). This specification of the distributions naturally determines the
parameter vector

θ = (µβ , µγ , µt, σ, σt)
T ∈ R5.

In the following, the values of θ will be chosen in order to adhere as much as possible
to the existing literature [18], while preserving the identifiability of the developed
model.

5.2 Generating arrivals

To generate input data on the observed arrival times, we sample a population of size
N , where each individual’s parameters β, γ, and t∗ are drawn from a prior distri-
bution selected in Section 5.1.2. This yields a dataset of triples {βi, γi, t

∗
i }i, where
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i = 1, · · · , N . For each sampled user i, we simulate her actual arrival time ti by
minimizing her travel cost function, i.e., ti = argmint C(t;βi, γi, t

∗
i ).

5.2.1 Algorithm of minimizing the travel cost function

Under Assumption 2, the travel cost function admits at most three local optima. Two
of them occur before and after the desired arrival time t∗, while the third is located at
t∗. By Equation (1), the travel cost function is not differentiable at t∗, but differentiable
at the other two local optima.

Fig. 8: Travel cost function with β = 0.6 and γ = 0.8.

To address this, we calculate the three local optima separately. The first two are
obtained using gradient descent methods, initialized at an early time (e.g., t = 0) and
a late time (e.g., t = 24). We then compare the values of the objective function at
these two local optima with the value achieved at t = t∗.

Figure 8 shows the travel cost function and illustrates the optimization process.
The squares represent the optimizer initialization, and the dots indicate the minima to
which the optimizers converge. The optimizer initialized in green converges to the early
minimum, while the one in red converges to the late minimum. By comparing these
minima with the cost of arriving on time, the global minimizer of the cost function is
identified.

5.2.2 Comparing Sampled arrivals with theoretical likelihood

Finally, the generated arrivals for the sampled users are illustrated in Figure 9. The
parameters for the distributions are θ0 = (µβ , µγ , µt, σ, σt)

T = (0.6, 2.4, 9.5, 0.1, 1)T ,
and the travel time function ttg defined in (27) has coefficients µ = 9.5, σl = 0.9,
and σr = 0.2. The dashed lines indicate the points where the derivative of the travel
time function equals the mean of the scheduling delay preferences, which, as expected,
correspond to the regions of higher density.
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Fig. 9: Histogram displaying the distribution of N = 10, 000 sampled arrival times,
plotted over the result of the likelihood function in Expression (26).

We show in Figure 9 that the theoretical density closely matches the sampled
one, demonstrating both the precision of the theoretical analysis and the accuracy of
the numerical methods. In addition, the use of high-performance frameworks enables
the estimation to be carried out within reasonable times, without requiring many
computational resources.

5.3 Performance of the MLE methods

Next, we investigate the performance of the method by performing a complete
simulation-estimation cycle and plotting contour plots of slices of the likelihood func-
tion. Our primary interest lies in understanding how the parameters that maximize
the likelihood deviate from the true value θ used to generate the dataset.

Due to the high dimensionality of the parameter space (five dimensions), direct
visualization is infeasible. However, by fixing a subset of parameters—typically at
their true values used in data generation—it is possible to examine two-dimensional
slices of the likelihood function with respect to selected parameters. As the sample size
increases, the minimum of these slices is expected to approach the global minimum of
the full likelihood function.

Figure 10 illustrates the likelihood surface for a moderate value of σ = 0.1. The
used parameters are θ ≜ (µβ , µγ , µt, σ, σt)

T = (0.6, 1.4, 9.5, 0.3, 1)T , and the sample
size of the population is n = 1000. The function is smooth and displays a well-defined
minimum at the true parameter values, indicating favorable convergence properties
even with a relatively small dataset. Also, for reliable computational convergence, it
is ideal that the likelihood surface be sufficiently smooth and exhibit limited local
minima, even if it is not convex.
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Fig. 10: Contour plots representing convergence on the means µβ , µγ and on the
variances σ, σt, with an average value of the variance σ. Parameters used for these
plots are θ = (0.6, 1.4, 9.5, 0.1, 1)

From now on, we focus on the parameters µβ and µγ , which govern the mean of
the scheduling preference distribution. These parameters yield the most interpretable
behavior when visualized. Among the full parameter set, the variance parameter σ is
observed to have the greatest influence on the shape of the likelihood landscape.

Fig. 11: Contour plot of a two-dimensional slice of the likelihood function, with a
higher value of the variance. The used parameters are here θ = (0.6, 1.4, 9.5, 0.03, 1)

When σ is reduced to 0.03 (Figure 11), the surface becomes relatively flat across a
wide range of values for µβ and µγ , except in a narrow region near the true minimum.
This behavior is consistent with the underlying data-generating process: for small
variances, the observed arrival times concentrate near the extremes (early or late),
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and shifting the mean parameters has little effect on the likelihood unless the peak
aligns precisely with the observed data. Consequently, large flat regions can emerge in
the likelihood surface.

Conversely, with high variance σ = 1 (Figure 12), the minimum becomes
broader and shallower, potentially deviating from the true parameter values. This is
attributable to increased dispersion in observed arrival times and diminished sensitiv-
ity of the likelihood function to changes in mean parameters. In such cases, a larger
dataset is required to recover the true parameters with comparable accuracy.

Fig. 12: Contour plot of a two-dimensional slice of the likelihood function when the
variance is set to σ = 1.

We compare the obtained θ from MLE with the true value. For datasets of 1,000
observations, the MLE method yields relative estimation errors typically below 5% for
moderate and low variance settings (σ = 0.3 and 0.03), and up to 10% under high vari-
ance (σ = 1). These results are consistent across different parameter configurations.
While the absolute accuracy of the estimates may appear modest, it is important to
note the dimensionality of the problem and the presence of variance parameters, for
which higher estimation error is often acceptable. The likelihood surfaces observed
suggest that, with careful initialization and adequate data, reliable parameter recovery
is feasible.

6 Numerical simulation with Field Data

In this section, we test the effectiveness of our methods in scenarios from real-world
traffic data. First, we describe in Section 6.1 the input data regarding the travel time
profile function and distribution of the preference parameters, emphasizing the data
processing for the PeMS data in Section 6.1.1. Then we discuss the generation of
arrival times on different days with different congestion patterns in Section 6.2. Last,
we examine the effectiveness of our method on different days in Section 6.3.
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6.1 Input data

6.1.1 Travel Time Profile Function

Fig. 13: Experienced travel time on Highway 101 in the direction North on February
13, 2017, processed based on PeMS data.

In contrast to the assumed travel time profile function in Section 5.1.1, now we turn
to travel time profiles in the real world by resorting to the California Performance
Measurement System (PeMS) data. The dataset is collected from nearly 40,000 loop
detectors in California, in which traffic flow and occupancy are collected at 30-second
intervals, and later aggregated and presented on 5-minute intervals [19]. Specifically,
data about the first six months of 2017 will be used in this study.

The original PEMS data captures the simultaneous travel time in road segments,
but not the experienced travel time by travelers at different times of the day. To
approximate the experienced travel time, we discretely integrate the reported speeds
over different road segments [20]. As an example, Figure 13 shows the processed data
on the 13th of February, 2017.

Based on the approximated experienced travel time at discrete time intervals, we
continue to generate a travel time profile function by fitting the discrete data points
3. In particular, we assume that the travel time profile function admits a format of
the Skewed Super-Gaussian (SSG) function, i.e.,

tt(t;µ, σ, a, b, c) =
e−|t−µ|b

σ

1

1 + e−a(t−µ)
+ c. (28)

3Alternatively, we can obtain a continuous travel time profile function through interpolation. However,
the specification of function types allows us to constrain the function to some particular shapes, such as
the bounds on convexity specified in assumption 2, which tends to be robust with outliers and noisy data.
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Fig. 14: Experienced travel times data for the 13th of February, 2017, plotted along-
side with a fitted Skewed Super-Gaussian function.

It is similar to the usual super-gaussian, to which we add a logistic multiplicative term
to take into account the possible asymmetry of travel time data 4.

We use the Levenberg-Marquardt algorithm [21] to fit the data to the above-
mentioned function. Figure 14 shows the fitted function on actual data. We can
observe that the function precisely approximates the vast majority of the data points,
while retaining the characteristics mentioned in Assumption 2. Namely, the function
is concave in the middle while convex in both ends.

6.1.2 Distribution of the preference parameters

Again, we assume that β, γ, and t∗ are independent and they both conform to some
Gaussian distribution, with β and γ sharing the same variance, as introduced in Section
5.1.2.

It is worth noting that the means of β and γ are carefully chosen in accordance with
the shape of the real travel time profile. If the means of β and γ are extremely high
(e.g., higher than βmax and γmax, respectively), then users are extremely reluctant
to schedule displacement from their desired arrival time. The congestion would not
actually affect their arrival times. In this case, it is therefore difficult to infer the actual
preference since we can only observe their choices of being on time regardless of the
congestion.

Thus, we focus on the case when the means of β and γ are intermediate, such that
they are sufficiently smaller than βmax and γmax, respectively. Then we can observe
sufficient early and late arrivals as input. Also, we notice that in practice, βmax and
γmax for many real travel time profiles can be relatively small [18]. This indicates

4An example of such flexibility is provided in Appendix G.
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that our method is more effective in estimating the preferences of populations with
relatively low scheduling displacement penalty. We will discuss later in Section 7 about
possible remedies for future work.

6.2 Generating arrivals of multiple days

In this section, we consider the case when the input data contains the arrivals of a
population across multiple days with different travel time profiles.

To do so, we still first sample a population with different β, γ, and t∗ from Gaussian
distributions, as described in Section 5.2. Then we optimize the cost function for each
individual in the population on each day, with the corresponding travel time profiles.

Fig. 15: Travel time profiles and sampled arrivals on different days.
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Figure 15 shows the variations of sampled arrival times between two different
days, with the population being fixed. In the top row, data points of real experi-
enced travel time are shown in red, alongside the fitted function. In the bottom row,
histograms of n = 10000 sampled arrival times for the two days are shown. Note
that the parameters for sampling the synthetic datasets are the same: for both plots,
bmθ = (0.05, 0.08, 8.5, 0.02, 0.1). We notice that the sampled arrivals shown on the
bottom row differ significantly: the wider peak of the travel time relative to April 28th
implies that, for this day, on-time, early, and late arrivals coexist. On the other hand,
a narrower peak entails closer CEA and CLA intervals and, as a consequence, having
arrival time observations from different days contributes to the variety of choices and
can potentially improve the performance of the estimation method.

Again, the histogram of sampled arrival times is plotted in Figure 16 and compared
with the theoretical likelihood. It shows that the theoretical density (that is, the value
of the likelihood function) still closely follows the empirical distribution of the samples,
which is consistent with the results from Section 5.2.2.

Fig. 16: Empirical density of sampled arrival times, plotted with the value of
the theoretical likelihood function. The travel time profile function is fitted to
data relative to Friday, April 28th, and the parameters used for plotting are θ =
(0.05, 0.08, 9.0, 0.02, 0.2).

6.3 Performance of the MLE methods

First, we demonstrate that the likelihood function is indeed minimized by the true
parameters of the distribution of behavioral parameters. Given a dataset of arrival
times, we plot the likelihood under different combinations of µβ and µγ in the left
subfigure and δt and δ in the right subfigure, respectively. The rest of the parameters
are fixed to their true value. We can observe that the true parameter lies in a minimum
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of the contour, and that the likelihood function is reasonably well behaved around it.
This confirms the effectiveness of the MLE method to recover the true parameter.

Fig. 17: Contour plots that represent how the likelihood varies on two-dimensional
slices of its domain. These plots refer to travel times data relative to Friday, April
28th, and the parameters used for plotting are θ = (0.05, 0.08, 9.0, 0.02, 0.2).

To further examine the performance of our method, we employ our estimation
method on 120 different days randomly sampled from the first six months of 2017,
and obtain the estimated distribution for the preference parameters for each day.
Figure 18 shows the boxplot of the statistics regarding the gap between the estimated
parameters and the true parameter. It shows that the method precisely estimates
the means of all the parameters: the scheduling parameters and the desired arrival
times. Meanwhile, a small bias (around 1% of error) is found in the estimation of the
variances. We postulate that this is due to the structure of the problem: when the
optimizer converges to a local minimum of the likelihood, the local minimum typically
presents high values of the variance, since increasing the variance yields satisfactory
results regardless of the values of the means µβ , µγ , and µt.

7 Conclusion

This paper has proposed a structural framework to infer the distribution of commuters’
scheduling preferences using only RP data, thereby avoiding the limitations of SP
surveys (see [22]). A key contribution lies in the detailed analysis of the generalized cost
function, which remains non-trivial even under quasi-concave travel time profiles. This
analysis establishes a geometric connection between early and late arrival intervals
and the slope of the travel time function, offering both a behavioral interpretation of
commuters’ scheduling choices and a tractable basis for estimation. Building on this,
we derived a closed-form likelihood expression and developed an optimization method
capable of recovering the global minimum of the likelihood. This allows the joint
estimation of the distribution of schedule preference parameters and the distribution
of desired arrival times.
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Fig. 18: Boxplot of relative errors of 120 iterations of the evaluation framework of the
developed method. The errors are computed by subtracting the result of the iteration
from the original parameters, and normalizing the result by computing their ratios
with typical values of the parameters.

The framework has been validated on synthetic datasets, where it accurately
recovers population-level parameters, and further tested on empirical traffic data.
While these results confirm its potential for real-world applications in travel behav-
ior analysis and transport planning [23], discrepancies remain—particularly in the
estimation of desired arrival times. These can be partly explained by the flatter
slopes of observed travel time profiles compared with those implied by the benchmark
parameters reported in the literature.

To address this issue, several extensions have been identified. One option is to pre-
serve the core theoretical structure while introducing richer forms of heterogeneity,
interpreting literature-based parameters as population-level means within more flexi-
ble, possibly nonparametric, distributions. This line of work naturally lends itself to
Bayesian approaches ([24]). A second extension relaxes the assumption of determin-
istic travel times by treating perceived travel times as stochastic, thereby capturing
both day-to-day variability and perceptional noise. (For a discussion of the relation-
ship between deterministic formulations and the stochastic-master equation-approach,
see [25]). A third possibility involves incorporating unobserved heterogeneity (see [4]),
which leads to probabilistic choice models whose first-order conditions generate more
realistic slopes consistent with empirical evidence.
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Finally, the proposed methodology is designed to be integrated into simulation
platforms such as METROPOLIS, which require robust estimates of behavioral param-
eters for calibration (see, for example, [26]). Overall, this work provides a foundation
for inferring scheduling preferences from large-scale RP data and opens new avenues
for reconciling theoretical models with empirical observations.

Declarations

This work is partially funded by the Swiss National Science Foundation (SNSF) under
the project MOTVS: Human-oriented ubiquitous mobility, reference “1000267”. This
work was supported by funding from the French National Research Agency (ANR)
under the France 2030 program, reference “ANR-24-PEMO-0003”. The authors would
like to thank Lucas Javaudin, Nathalie Picard, and Robin Lindsey for discussions.

Appendix A Proof for Lemma 1

Suppose that there are two CEA intervals [tei , t
e
f ] and [te

′

i , t
l′

f ] overlapping with each

other, i.e., te
′

i ≤ tlf and tei ≤ tl
′

f . Then for any t in the overlapped part [te
′

i , t
l
f ], the

condition still holds:
tt(t) ≥ tt(tei ) + β(t− tei ). (A1)

Thus, the interval [tei , t
l′

f ] is an EA interval and it strictly contains [tei , t
l
f ] and [te

′

i , t
l′

f ].
This contradicts the definition of CEA intervals. The proof for CLA intervals is similar
and therefore omitted here.

Appendix B Proof for Lemma 2

Recall that the minimal early arrival cost Copt
e is defined as Copt

e = mint≤t∗ C(t).
(1) We start with cases when there exists some CEA interval [tei , t

e
f ] such that t∗ ∈

[tei , t
e
f ]. To show that Copt

e is achieved at tei , it is equivalent to show that C(t) ≥ C(tei )
for any t ≤ t∗. We proceed to show that C(t) ≥ C(tei ) in two cases when t ∈ [tei , t

∗]
and t < tei , respectively.

Case 1: t ∈ [tei , t
∗]. Recall that the trip cost at any t ∈ [tei , t

∗] can be written as
C(t) = tt(t) + β(t∗ − t). Using Inequality (2) from Definition 1 of CEA intervals, i.e.,
tt(t) ≥ tt(tei )+β(t−tei ), ∀t ∈ [tei , t

e
f ], we obtain that C(t) ≥ tt(tei )+β(t−tei )+β(t∗−t) =

C(tei ), ∀t ∈ [tei , t
e
f ]. Thus, we have C(t) ≥ C(tei ) for any t ∈ [tei , t

∗].
Case 2: t < tei . We prove that C(t) ≥ C(tei ) for any t < tei by contradiction. Suppose

that there exists some t′ < tei such that C(t′) < C(tei ). Define a set

T = {t ∈ [t′, tei ] | tt(t′) + β(t− t′) = tt(t)},

and let t′′ = max(T ). Apparently, C(t) = C(t′) for any t ∈ T . Next, we will prove
that the interval [t′′, tef ] is a CEA interval, which contains [tei , t

e
f ], contradicting the

definition of a critical early arrival interval.
To do so, we prove that the following condition holds by Definition 1: tt(t′′)+β(t−

t′′) ≤ tt(t),∀t ∈ [t′′, tef ].
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First, we show that tt(t′′) + β(t− t′′) ≤ tt(t) holds for any t ∈ [tei , t
e
f ]. Recall that

[tei , t
e
f ] is a CEA interval, and therefore by definition the following inequality holds:

tt(tei ) + β(t − tei ) ≤ tt(t),∀t ∈ [tei , t
e
f ]. Given that C(t′) < C(tei ) by assumption and

C(t′′) = C(t′) by definition, we have C(t′′) < C(tei ). Thus, we have tt(t
′′)+β(t− t′′) <

tt(tei ) + β(t− tei ), ∀t ∈ [tei , t
e
f ]. That is, tt(t

′′) + β(t− t′′) < tt(t),∀t ∈ [tei , t
e
f ].

Second, we show that tt(t′′) + β(t − t′′) ≤ tt(t) holds for any t ∈ [t′′, tei ]. Let
f(t) = tt(t) + β(t′′ − t) − tt(t′′), which is continuous. We have shown above that
tt(t′′) + β(tei − t′′) < tt(tei ), i.e., f(t

e
i ) < 0. Also, we have f(t′′) = 0 by definition.

Suppose that there exists some t ∈ (t′′, tei ) such that tt(t) + β(t′′ − t) > tt(t′′),
i.e., f(t) < 0. By the continuity of f(t), there must be some t′′′ ∈ (t, tei ) such that
f(t′′′) = 0, i.e., tt(t′′′) + β(t′′ − t′′′) = tt(t′′). Therefore, we have t′′′ ∈ T and t′′′ > t′′,
which contradicts the condition that t′′ = max(T ). Thus, we must have tt(t′′) + β(t−
t′′) ≤ tt(t) holds for any t ∈ [t′′, tei ].

(2) Now we turn to discuss the case when t∗ does not fall into any CEA intervals.
Again, we prove by contradiction. Suppose that there exists some t′ < t∗ such that
C(t′) < C(t∗). Redefine a set T = {t ∈ [t′, t∗] | tt(t′) + β(t − t′) = tt(t)}, and still
let t′′ = max(T ). Since C(t′) < C(t∗), we have tt(t′) + β(t∗ − t′) < tt(t∗). Using that
tt(t′′)+β(t− t′′) = tt(t′)+β(t− t′) = tt(tt′), we have tt(t′′)+β(t∗− t′′) < tt(t∗). Also,
the following equation naturally holds: tt(t′′) + β(t′′ − t′′) = tt(t′′). By continuity and
contradiction, we are able to show that tt(t′′) + β(t − t′′) ≤ tt(t),∀t ∈ [t′′, t∗]. That
is, [t′′, t∗] is an EA interval. And there always exists some CEA interval that contains
[t′′, t∗]. Therefore, t∗ would fall into some CEA interval, which contradicts. The proof
is completed.

Appendix C Proof of Proposition 1

(1) When both E(t∗) and L(t∗) are empty, we have Copt
e = tt(t∗) by Lemma 2 and

Copt
l = tt(t∗) by Lemma 3. Therefore, the corresponding minimal travel cost is Copt =

tt(t∗). Namely, it is optimal to arrive on time.
(2) When t∗ falls into a CEA interval but not any CLA interval, we have Copt

e ≤
tt(t∗) by Lemma 2 while Copt

l = tt(t∗) by Lemma 3. Then we can immediately conclude

that Copt
e ≤ Copt

l and therefore the corresponding minimal travel cost is Copt = Copt
e .

(3) Similarly, we can prove that the minimal travel cost is Copt = Copt
e when t∗

falls into a CLA interval but not any CEA interval.

Appendix D Proof of Proposition 2

Since [tei , t
e
f ] and [tli, t

l
f ] are respectively a CEA interval and a CLA interval, by

Propositions 2 and 3, the mimimal early and late arrival costs, Copt
e and Copt

l are
achieved at tei and tlf , respectively, i.e, Copt

e = C(tei ) = tt(tei ) + β(t∗ − tei ), and

Copt
l = C(tlf ) = tt(tlf ) + γ(tlf − t∗).
Note that by the expression of the desired arrival time threshold t̄∗ in Equation

(7), we have tt(tei ) + β(t̄∗ − tei ) = tt(tlf ) + γ(tlf − t̄∗). Since Copt
e = tt(tei ) + β(t∗ − tei ),

and Copt
l = tt(tlf ) + γ(tlf − t∗), we have Copt

e = Copt
l when t∗ = t̄∗.
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Furthermore, it is straightforward to see that ∂Copt
e /∂t∗ > 0 and ∂Copt

l /∂t∗ < 0,

which leads to that ∂(Copt
e −Copt

l )/∂t∗ > 0. Thus, we have Copt
e > Copt

l when t∗ > t̄∗,

and Copt
e < Copt

l when t∗ < t̄∗. The proof is completed.

Appendix E Proof of Proposition 3

Given any β, by the definition of CEA intervals in inequality (2) we have

tta(t) ≥ tta(t
i
e(β)) + β[t− tei (β)], ∀t ∈ [tei (β), t

e
f (β)].

Consider some β′ < β. Then we have β′[t− tei (β)] < β[t− tei (β)], and therefore

tta(t) ≥ tta(t
i
e(β)) + β′[t− tei (β)], ∀t ∈ [tei (β), t

e
f (β)].

Thus, [tei (β), t
e
f (β)] is a EA interval under β′, which is always contained by a CEA

[tei (β
′), tef (β

′)], i.e., tei (β
′) ≤ tei (β) and tef (β

′) ≥ tef (β). The discussion regarding CLA
intervals is similar and therefore omitted. The proof is completed.

Appendix F Proof of Proposition 4

By Lemma 2, the left endpoint of a CEA interval is a minimizer of the cost function,
i.e., C(tei ) = mint≤t∗ C(t) with C(t) = tt(t) + β(t∗ − t). Under Assumption 2, the
function tt is twice differentiable. Thus, by the optimality condition, we have tt′(tei ) =
β, and tt′′(tei ) ≥ 0.

By Assumption 2, when t < k1, tt(t) is convex and increasing in t. Then tt′(t) is
monotonically increasing in t when t < k1. Thus, there is at most one t < k1 such that
tt′(t) = β. When t ∈ [k1, k2], tt(t) is concave and therefore tt′′(t) ≤ 0. When t > k2,
tt(t) is concave and decreasing in t, i.e., tt′(t) ≤ 0. Therefore, there is at most one
t ∈ T such that tt′(t) = β and tt′′(t) ≥ 0. Namely, there is at most one CEA interval.
Similarly, we can show that there is at most one CLA interval, which is omitted here.
The proof is completed.

Appendix G The flexibility of the Skewed
Super-Gaussian function

Figure G1 displays the flexibility of the obtained function: By varying the parameter
a, the skewness of the function can be modified. On the other hand, changing the
parameter b allows for increasing or decreasing the flatness of the function peak.
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Fig. G1: Skewed Super-Gaussian function, with varying shape parameters but con-
stant values for µ and σ. The plots show how the different parameters act on the
asymmetricity and flatness of the function. Notably, the subsequent convexity and
concavity of the function are preserved.
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