
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 

 
 
 
 
 
 
 
 

THEMA Working Paper n°2025-11 
CY Cergy Paris Université, France 

 
 
 
 
 

  
Measuring Differences of Opinion: 

Axiomatic Foundation, Utility,  
and Truthtelling 

 
 
 

 
 Linus Thierry Nana Noumi, Roland Pongou, 

Bertrand Tchantcho 
 

 
 
 
 
 

July 2025 

 

  
 



(version 18/07/2025)

Measuring Differences of Opinion: Axiomatic Foundation,
Utility, and Truthtelling

LINUS THIERRY NANA NOUMI
CY Cergy Paris Université, CNRS, Thema

ROLAND PONGOU
Department of Economics, University of Ottawa

BERTRAND TCHANTCHO
CY Cergy Paris Université, CNRS, Thema and Ermass, University of Yaounde 1

Understanding how individuals and groups differ in their opinions and pref-
erences is central to analyzing disagreement, measuring polarization, designing
institutions, and predicting collective outcomes. Yet comparing preferences re-
quires more than observing how each person ranks alternatives—it requires a
method for comparing preference orderings themselves. This paper develops a
formal framework to infer how individuals might rank different preference order-
ings based solely on their observed preferences. We introduce a set of natural and
behaviorally plausible axioms—Independence (I), Disagreement Aversion (DA),
and Symmetry (S)—and show that they uniquely characterize a class of hyper-
preference relations and their associated utility representations. We apply this
framework to the study of aggregation mechanisms, deriving necessary and suf-
ficient conditions on utility structures that induce truthful preference reporting
in equilibrium and guarantee efficiency. Our results yield new insights into strate-
gyproof mechanism design under deep preference heterogeneity and clarify when
differences of opinion can be meaningfully and reliably measured.

KEYWORDS. Preference, Hyperpreference, Hyperutility, Strategy-proofness, Effi-
ciency.

JEL CLASSIFICATION. D01, D04, D71, D78.

Disagreement is a fundamental feature of social and economic life. Individuals and
groups routinely differ in their preferences—over risk, fairness, effort, or public

policy—and such divergence shapes outcomes within households, firms, and societies.
A couple may disagree on how to balance work and caregiving; a manager and an

employee may evaluate risk or innovation differently; citizens may prioritize liberty,
equality, or security in conflicting ways. Standard economic models accommodate

heterogeneity in preferences, typically representing behavior through complete and
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transitive orderings over a set of alternatives. This first-order framework provides a
powerful foundation for analyzing choice, welfare, and strategic behavior.

Yet in many important settings, individuals are called upon not only to express their
own preferences but also to evaluate the preference orderings of others—whether

proposed by peers, institutions, or collective mechanisms. For example, a voter may
prefer outcome A to B, but still regard a social ranking that places B above A as more
reasonable or fair than one that places B above several other preferred options. Such
second-order evaluations—what is generally termed hyperpreferences—are central to

understanding compromise, polarization, legitimacy, war, and cooperation. As
observed by Sen (1977) and Jeffrey (1974), a richer structure is needed to represent how

individuals compare preference orderings themselves.
Despite their practical relevance, higher-order preferences remain theoretically

underdeveloped and empirically elusive. Existing models lack a general framework for
measuring the extent and structure of disagreement, or for inferring higher-order

preferences from observed behavior. This limits our ability to evaluate how far apart
agents are in their objectives, how such gaps affect collective outcomes, and how

institutions can be designed to reconcile divergent views.
This paper develops a formal theory of preference (or opinion) divergence that fills this
gap. We ask: How can we represent and measure disagreement in preferences—both in

magnitude and in structure—and under what conditions can hyperpreferences be
inferred from first-order preferences? Our framework enables meaningful comparisons

of disagreement, illuminates the informational requirements for identifying
second-order judgments, and offers new foundations for the design of strategyproof
aggregation mechanisms and institutions in pluralistic environments. To clarify the

motivation and scope of our approach, we begin with two illustrative examples.

Example 1. Suppose a manager (M) must rank three candidates, a, b, and c, for a job open-
ing. M settles on the order a≻M b≻M c. A colleague (E), who has a vested interest in the
hiring outcome (e.g., due to task interdependence), believes that b≻E c≻E a would have
been the ideal ranking. How dissatisfied is E with M’s decision? Would E be less displeased
if M had instead chosen b≻M a≻M c? To answer this, it is not enough to know E’s direct
preference; we must understand how E evaluates alternative rankings, that is, E’s hyper-
preference.

Example 2. Consider a public decision where the government must rank several invest-
ment projects: the construction of a regional hospital (a), the development of urban trans-
portation (b), subsidies for small businesses transitioning to clean energy (c), and fund-
ing for higher education (d). A parent whose child needs specialized medical care might
rank these projects as a ≻P d ≻P b ≻P c, whereas the government announces the order
b≻G a≻G d≻G c. Even if the hospital is second, its position may signal a meaningful di-
vergence. Can this individual formally assess how far the government’s priorities are from
their own? Would they have preferred a different ordering? Suppose the government con-
sults citizens to guide public investments: under what conditions will individuals truthfully
reveal their preferences? In each case, evaluating how the collective outcome aligns with
personal priorities requires a second-order structure.
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These examples illustrate a central insight: first-order preferences alone are insufficient
to explain how agents judge other indiviuduals’ priorities or evaluate collective

outcomes. When individuals reason consequentially—whether selfishly or
altruistically—they use their own preferences to assess social decisions.

Hyperpreferences capture these second-order evaluations.
A key challenge, however, is that eliciting hyperpreferences directly is cognitively and

practically infeasible. While individuals can rank a dozen alternatives, ranking the
entire space of possible orderings—whose size grows superexponentially—is

overwhelmingly complex. As Sen (1977) observed, it is unrealistic to assume that
agents possess fully articulated hyperpreferences.

This motivates the need for a theory that derives hyperpreferences from more tractable
primitives. A natural starting point is the Kendall tau (or Kemeny) distance, which

counts the number of pairwise disagreements between two rankings (Kendall, 1938,
Kemeny, 1959, Kemeny and Snell, 1962). This distance offers a simple metric for how
an individual’s ranking deviates from another ranking. Laffond et al. (2020) provide a

characterization of hyperpreference rules compatible with such distance-based
representations.

Yet these approaches typically assume that preferences are transitive and complete,
and they do not distinguish between types of disagreement or account for the varying
salience of different trade-offs. Our framework generalizes this approach to allow for

more nuanced modeling of divergence in both structure and magnitude, thereby
enabling a richer analysis of preference heterogeneity and its implications.

This paper proposes a framework for deriving an individual’s hyperpreference from
their first-order preference over a finite set of alternatives, under natural behavioral
assumptions. Formally, let A be a finite set of alternatives, B(A) the set of all binary

relations over A (representing all possible first-order preference relations), and W(A)

the set of all weak orders over A. The set of hyperpreference relations over A is denoted
H(A)=W(B(A)), which is the set of weak orders over the set B(A). A hyperpreference

rule on B(A) is a mapping E that assigns to any first-order preference R0 ∈ B(A) a
hyperpreference relation E(R0) ∈H(A) over A. Any utility representation of E(R0) is

called a hyperutility function. We introduce a formal theory of hyperpreference based
on a class of rules we call separable hyperpreference rules, characterized by three

behavioral axioms:

• Independence (I): the evaluation of disagreements over a given pair of alternatives
is independent of other agreements or disagreements elsewhere. That is, a conflict
on a vs. b is treated identically regardless of how the two rankings compare on other
elements and therefore regardless of the preference an individual holds.1

• Disagreements aversion (DA): the less disagreement there is with one’s ideal prefer-
ence, the more one is preferred. That is, the hyperpreference E(R0) ranks R before

1In other words, if the disagreement between two binary relations R and Q over a pair of alternatives
{a, b} is the same as the disagreement of two other binary relations S and T over {a, b}, an individual who
holds preferences R assesses the disagreement with Q over {a, b} the same way as if this individual holds
preferences S and assesses the disagreement with T over {a, b}.
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R′ whenever the set of disagreements between R0 and R is a subset of those be-
tween R0 and R′.

• Symmetry (S): two disagreements of the same type over the same pair of alterna-
tives are judged equally.

The independence axiom is a well-known property of rational choice. It is also called
the cancellation axiom by some authors (Kraft et al., 1959, Fishburn, 1970, Krantz et al.,

1971). Our formalization is an extension of this notion to the context of
hyperpreference relations. We show that together with the disagreements aversion

axiom, it implies an extension of the well-known independence of irrelevant alternatives
axiom to the hyperpreferences context. The latter concept has been formalized and

studied in various contexts related to utility theory (see, e.g., Von Neumann and
Morgenstern (1944) for the expected utility theory, and Galanter (1962) and Fishburn

(1994) for the subjective utility theory). The Disagreement Aversion axiom can be
interpreted as a consequence of a consequentialist perspective: individuals evaluate

collective decisions based on their substantive outcomes and thus tend to favor social
priority (or aggregation mechanisms that yield outcomes) proximate to those they

most prefer. It is also well known in the literature as the betweenness axiom when the
preferences are linear orders (see, e.g., Lainé et al. (2016), Laffond et al. (2020)). The
symmetry axiom seems natural in the sense that it requires to treat the same type of

disagreement in the same way.
These axioms, inspired by classical rational choice theory and utility representation

frameworks, allow us to construct a unique class of hyperpreference rules (Theorems 1
and 5). They lead to hyperutility functions that assign differential weights to types of

disagreements between preferences. For instance, incomparability between two
options may be treated differently than indifference. We further provide a condition
under which hyperpreferences are preserved under changes in weights (Theorem 6).

Additionally, we demonstrate that the three axioms are logically independent, thereby
illustrating how relaxing or modifying each of them gives rise to distinct families of
hyperpreference rules (Proposition 1). One of the paper’s results is that Kendall tau
distance arises as a special case of this more general class of separable rules. More
importantly, our framework allows for incomplete or even intransitive preferences,
which are common in real-world settings involving partial judgments, conflicting

values, or uncertainty. It also allows for non-uniform weights across disagreements,
capturing differential sensitivity to conflicts.

Beyond its conceptual contributions, our framework provides practical guidance for
designing institutions and aggregation mechanisms in contexts marked by deep

preference heterogeneity. We apply the theory to characterize when aggregation rules
satisfy two core properties: efficiency, where no collective outcome can be improved

upon (Theorem 7); and strategy-proofness, where truth-telling is a dominant strategy,
ensuring that reported preferences accurately reflect individual views (Theorem 8).

These results have broad relevance: in domains ranging from organizational
decision-making to democratic governance, understanding when individuals are
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willing to report their preferences truthfully is central to anticipating cooperation,
dissent, and reform.

Our analysis contributes to efforts that seek to move beyond classical impossibility
theorems in social choice theory (Arrow, 1951, Gibbard, 1973, Satterthwaite, 1975). We
show that robust normative outcomes are attainable when second-order reasoning is

integrated in a structured and behaviorally grounded way. Specifically, we identify
precise conditions on hyperutility parameters under which desirable aggregation

properties emerge, offering a new class of possibility results in the spirit of recent work
by Maskin (2020), Dasgupta and Maskin (2020), Bahel and Sprumont (2020), Pongou

and Tchantcho (2021), Pongou and Sidie (2024).
Taken together, these findings illuminate the design of mechanisms that foster both

truth-telling and efficiency in heterogeneous environments. Since accurate
measurement of opinion differences depends on truthful reporting, our results also

clarify the conditions under which such differences can be meaningfully and reliably
assessed.

Our paper can be viewed as a contribution to the literature at the intersection of utility
theory and game theory. This line of inquiry has its roots in foundational works by
authors such as Bernoulli (1738), Bentham (1890), Von Neumann and Morgenstern

(1944), and later developments by Fishburn (1967, 1992) and Krantz et al. (1971),
among others. Over time, it has evolved into a broad and diverse field with multiple

strands, including informational approaches to welfare economics and decision theory
(see, e.g., Fleurbaey (2003), Fleurbaey and Hammond (2004), Fleurbaey (2018), Pivato
and Tchouante (2023, 2024), Kleine et al. (2024), Yamazaki (2024), and the references

therein).
The remainder of the paper is organized as follows. Section 1 introduces the basic

definitions and notational conventions used throughout the paper. Section 2
formalizes the axiomatic foundations of our model. Section 3 presents the main

theoretical results. Section 4 explores applications of the framework to the design of
strategy-proof and efficient aggregation mechanisms. Section 5 concludes the paper.

1. GENERALITIES

Consider a finite choice set A containing at least two elements. Elements of A are
called alternatives or options.

A preference, priority, or opinion2 on A is a binary relation on A, that is, a subset of the
Cartesian product A×A=A2. A weak order on A is any complete, reflexive and

transitive binary relation on A.3 If in addition, a weak order is antisymmetric, it is said
to be a linear order. We denote by W(A) and L(A) (W and L if no confusion is possible)

2The words preference, priority, and opinion will be used interchangeably throughout the paper.
3A binary relation ≽, where, a≽ b (resp. a≻ b) means (a, b) ∈≽ (resp.(a, b) ∈≽ and (b, a) /∈≽ ) is
reflexive if for all a ∈A, a≽ a,
transitive if for all a, b, c ∈A, if a≽ b and b≽ c then a≽ c,
complete if for all a, b ∈A, a≽ b or b≽ a,
antisymmetry if for all a, b ∈A, if a≽ b then we can not have b≻ a.
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the set of weak orders and linear orders on A, respectively. Additionally, we denote by
P(A) (or simply P if there is no confusion) the set of all the pairs of the elements of A; a

pair of elements being a subset of two distinct elements of A:
P(A) = {{a, b} ⊆A : a ̸= b}.

For any subset C of A, we denote by R|C the restriction of the binary relation R on C ;
that is, R|C =R ∩ (C ×C). For any pair of binary relations (R,R′), we will often write

(R,R′)|{a,b} for (R|{a,b},R′|{a,b}) if there is no confusion.
For a given binary relation R and a pair {a, b} of alternatives in A, we write:

• a≻R b (or ab) if (a, b) ∈R and (b, a) /∈R.

• a∼R b (or (ab)) if (a, b) ∈R and (b, a) ∈R.

• a ∗R b (or a ∗ b) if R does not compare alternatives a and b.

The notations above allow to greatly simply the representation of a binary relation, as
shown in the example below.

EXAMPLE. R= {(a, b), (b, c), (a, c)}, R0 = {(a, b), (a, c)(b, c), (c, b)} andR′ = {(a, b), (b, a), (a, c)}
can be also written as R = {ab, ac, bc} = {a ≻ b, a ≻ c, b ≻ c}, R′ = {(ab), ac, b ∗ c} = {a ∼
b, a≻ c, b ∗ c} and R0 = {ab, ac, (bc)}= {a≻ b, a≻ c, b∼ c}. ♢

We assume that all binary relations considered in this study satisfy the reflexivity
property, which is a natural property in the preference theories. It follows that if we
denote by |X| the cardinality of a given set X , any binary relation can be seen as an

element of the set

B =

{
R⊂

⋃
{a,b}∈P

Bab : |R ∩Bab|= 1,∀{a, b} ∈ P

}
, where Bab = {ab, ba, (ab), a ∗ b}.4

We denote by N = {c ∗ d : {c, d} ∈ P} the total uncomparison. For any pair {a, b} of
alternatives, Xab = {ab} ∪N \ {a ∗ b} and Iab = Iba = {(ab)} ∪N \ {a ∗ b}.

Two binary relations (or opinions) are said to be in disagreement if they differ on at
least one pair of alternatives. A disagreement, in this context, refers to the pair of

distinct relational outcomes assigned to a given pair of alternatives. The set of
disagreements is thus the collection of all such differing relational evaluations between

the two binary relations. We formalize this notion in the following definition.

DEFINITION 1. Let R and R′ be two binary relations on A and {a, b} ∈ P .

(i) The disagreement between R and R′ on the pair {a, b} is denoted Dab(R,R′) and
referred to empty set if R|{a,b} =R′|{a,b}, and

{
R|{a,b},R′|{a,b}

}
otherwise.

(ii) The disagreement set betweenR andR′ is defined asD(R,R′) = {Dab(R,R′) : {a, b} /∈A(R,R′)};
where A(R,R′) is the set of pairs {a, b} on which R and R′ agree.

4It is important to note that B is not consistent with a classical union symbol ∪; that is, we can have
R,R′ ∈ B but R ∪R′ /∈ B. For example: R = ab, R′ = ba, R ∪R′ = {ab, ba} /∈ B, but its equivalent in B is
R′′ = (ab).
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In the same vein Ã(R,R′) is the complement of A(R,R′), that is the set of pairs on
which R an R′ disagree.

EXAMPLE. IfR= {(ab), ac, bc} andR′ = {a ∗ b, ac, b ∗ c}, thenA(R,R′) = {{a, c}}, Dab(R,R′) =
{(ab), a∗b}, Dac(R,R′) = ∅, Dbc(R,R′) = {bc, b∗c}, andD(R,R′) = {{(ab), a ∗ b},{bc, b ∗ c}}.

♢

Our objective is to characterize a rule that allows the inference of an individual’s
hyperpreference from their underlying preference relation. To this end, we begin by

introducing the concept of a hyperpreference relation, along with the associated
definitions and notions.

DEFINITION 2. (i) A hyperpreference relation on A is defined as a weak order over
the set B of all binary relations on A.

(ii) A hyperpreference rule on B is a mapping that assigns to each binary relation on
A a hyperpreference relation over A.

A weak order here refers to a complete and transitive binary relation over B, meaning
that the individual is able to compare any two binary relations and form consistent

judgments about their relative desirability. A hyperpreference rule associates to every
individual preference (represented by a binary relation) a complete and transitive

ranking over the space of all such relations.

DEFINITION 3. Let E be a hyperpreference rule and U a real value function defined on
B2. U is said to be a hyperutility function (or representation) of E if for all R0,R,R′ ∈ B,

R≻E(R0) R′ ⇔ U(R0,R)>U(R0,R
′).

In the same manner, u is the dis-utility function of E if for all R0,R,R′ ∈ B,

R≻E(R0) R′ ⇔ u(R0,R)< u(R0,R
′).

The preceding definition is an extension of the notion of utility representation to
hyperpreferences. Assume that R0 is the preference relation of an individual on the

choice set A. Then U(R0,R) is the utility that this individual derives from the
implementation of the ranking R. Indeed, if this individual prefers the ranking R over

the ranking R′, then the utility that he derives from R should be greater than the utility
that he derives from R′, and vice versa.

Before moving to the section devoted to our axioms, we need the following definition of
concatenation (or accumulation) of subsets which permits to define the accumulation

of disagreements and compere them to the accumulation of dis-utilities; this is
essential for a hyperpreference rule to be separable.

DEFINITION 4. Let A and B be subsets of a set E. We define the concatenation of A and
B, denoted A⊔B, as the multi-set that contains each element of A and each element of
B, preserving their multiplicities.

EXAMPLE. If A= {a, b, c, d} and B = {a, c, e} then, A⊔B = {a, b, c, d, a, c, e}. ♢
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2. AXIOMS

This section presents three intuitive and normative axioms that a hyperpreference rule
is expected to fulfill.

Let E be a hyperpreference rule on B. We now introduce the aforementioned axioms.

AXIOM 1. Independence (I)
There does not exist a sequence (Q1,R1, S1, T1), (Q2,R2, S2, T2), ..., (Qp,Rp, Sp, Tp) in B4

such that for all k ∈ {1,2, ..., p}, Qk ≽E(Rk) Sk and Rk ≽E(Sk) Tk, with at least one of both
relations being strict, and

⊔p
k=1D(Qk,Rk) =

⊔p
k=1D(Sk, Tk).

AXIOM 2. Disagreements aversion (DA)
For all preferences R,T,T ′ ∈ B, if D(R,T )⫋D(R,T ′) then T ≻E(R) T ′.

AXIOM 3. Symmetry (S)
For all preferences R,T,T ′ ∈ B, if for all {a, b} ∈ Ã(T,T ′), R|{a,b} ∈ {(ab), a ∗ b} and

Dab(T,T
′) = {ab, ba} then T ∼E(R) T ′.

Often called cancellation, the independence axiom means that each disagreement is
assessed in the same way any time that it occurs, independently of the pair of
preferences on which it occurs. Indeed, consider Q1,R1, S1, T1 ∈ B such that

Q1 ≽E(R1) S1 and R1 ≻E(S1) T1. Based solely on disagreements, the behavior of an
individual whose hyperpreference respects these conditions can be interpreted as:

• Q1 ≽E(R1) S1: disagreement between Q1 and R1 is less disappointing than the one
between R1 and S1.

• R1 ≻E(S1) T1: disagreement between R1 and S1 is strictly less disappointing than
the one between S1 and T1.

Assuming that disappointment is a transitive relation, we can conclude that the
disagreement between Q1 and R1 is strictly less disappointing than the disagreement

between S1 and T1. In this case, since disappointment only depends on the level of
disagreement, we can not have the same disagreement between Q1 and R1 as the one
between S1 and T1. That is what the Independence axiom generalizes. In other words,

the marginal cost or disutility of a disagreement is constant; so, accumulating (or
concatenating) the disagreements should be similar to accumulating marginal costs

and therefore, if the concatenation of disagreements in two different situations are the
same, it will be the same for the sum of marginal costs.

The axiom of Disagreements aversion refers to the comparison of the disagreements
between binary relations. Indeed, the disagreements aversion axiom formalizes an

aversion to disagreements in the sense that fewer disagreements increase satisfaction.
In this sense, it leads to another property of rationality introduced by Laffond et al.

(2020) called "self consistency", which states that the hyperpreference derived from R,
ranks R before any other else binary relation; in this case any hyperpreference is single

peaked and each individual has a consequentialist hyperpreference.
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Finally, the symmetry axiom ensures that, for all alternatives a and b, if an individual is
indifferent between a and b or cannot compare them, then this individual will be
equally indifferent ranking a above b and ranking b above a; that is disagreements

{ab, a ∗ b} and {ba, a ∗ b} are assessed in the same way, {ab, (ab)} and {ba, (ab)} too. To
sum up, since a∼ b⇔ b∼ a and a ∗ b⇔ b ∗ a, the hyperpreference rule respects the

natural indifference properties of ∼ and ∗; in the sense that each time we are faced with
a two-alternative situation {a, b}, ab∼E((ab)) ba and ab∼E(a∗b) ba.

3. MAIN FINDING

In this section, we present our main finding, which is that a hyperpreference rule
satisfies I, DA and S if and only if its utility representation is additively separable with

respect to the disagreements between the binary relations that form its arguments.
This result provides an easy way to infer an individual’s hyperpreference relation from

her preferences.
We now define the notion of a separable hyperpreference rule.

DEFINITION 5. Let E : B −→W(B) be a hyperpreference rule on B. E is said to be sep-
arable if for all pair {a, b} ∈ P , there exists strictly positive real numbers α{a,b}, β{a,b},
λ{a,b}, γ{a,b} such that for all R0,R,R′ ∈ B,

R≽E(R0) R′ ⇔
∑

{a,b}∈P
wab(R0,R)≤

∑
{a,b}∈P

wab(R0,R
′)

where wab(R0,R) =



α{a,b} if Dab(R0,R) ∈ {{ab, (ab)},{ba, (ab)}}
β{a,b} if Dab(R0,R) ∈ {{ab, a ∗ b},{ba, a ∗ b}}
λ{a,b} if Dab(R0,R) = {(ab), a ∗ b}
γ{a,b} if Dab(R0,R) = {ab, ba}
0 if Dab(R0,R) = ∅

We refer to wab as a weight function on the pair {a, b}.
The real numbers α{a,b}, β{a,b}, λ{a,b}, and γ{a,b} represent weights or dis-utilities

assigned to different types of disagreements between two binary relations on the pair
{a, b} of alternatives:

• A disagreement of the type {a≻R b, a∼R′
b} is assigned the weight α{a,b}.

• A disagreement of the type {a≻R b, a ∗R
′
b} is assigned the weight β{a,b}.

• A disagreement of the type {a∼R b, a ∗R
′
b} is assigned the weight λ{a,b}.

• A disagreement of the type {a≻R b, b≻R′
a} is assigned the weight γ{a,b}.

The comparison between γ{a,b}, α{a,b}, β{a,b}, and λ{a,b} is not predetermined.
If there is no disagreement on the pair {a, b}, meaning that Dab(R0,R) = ∅, it is natural

to set the disagreement weight to zero.



10

A hyperpreference rule E is said to be separable if, for any given preference R0, it
assigns a weak order E(R0) on B and this weak order compares two binary relations R
and R′ by simply evaluating the sum of the disagreement weights between R0 and R,

and comparing it to the sum of disagreement weights between R0 and R′. We refer to a
minimizing weighted rule as a hyperpreference rule that assigns a non-negative weight

to each potential disagreement and aggregates these weights additively to evaluate
binary relations. The total weight is interpreted as a disutility to be minimized. Below,

we present the necessary and sufficient conditions for a hyperpreference rule to be
considered a minimizing weighted rule.

THEOREM 1. Let E be a hyperpreference rule on B. E satisfies (I) and (DA) if and only if it
is a minimizing weighted rule.

The proof in Appendix need the following lemmas whose proofs are also in the
appendix.

LEMMA 2. Let E be a hyperpreference rule. If E satisfies (I), then it also satisfies the fol-
lowing property of acyclicity across preferences (AAP)5: there does not exist a sequence of
preferences R1,R2, ...,Rp in B such that R1 ≻E(R2) R3, R2 ≻E(R3) R4,...,Rp−1 ≻E(Rp) R1

and Rp ≻E(R1) R2.

Proof in Appendix

LEMMA 3. Let E be a hyperpreference rule. If E satisfies (I), then it also satisfies the fol-
lowing property: Disagreement consistency (DC):
For all R,R′, T,T ′ ∈ B, if D(R,R′) =D(T,T ′) then ,R′ ≽E(R) T ⇔ T ′ ≽E(T ) R.

PROOF. By contradiction, assume that there exist R,R′, T,T ′ ∈ B such that D(R,R′) =

D(T,T ′) and R′ ≽E(R) T and R≻E(T ) T ′.

left-hand right-hand

R′ ≽E(R) T,R≻E(T ) T ′ D(R,R′) and D(T,T ′)

Since D(R,R′) =D(T,T ′), the contradiction of the independence axiom is obvious.

Before moving to the next lemma, it is important to recall that a weak order ⊵ on the set
of pairs of binary relations is compatible with (B,{E(R)}R∈B) if for all R,R′, T ∈ B,

{R,T}▷ {R,T ′}⇔ T ≻E(R) T ′

(B,{E(R)}R∈B) is also said to be ⊵-compatible. If such order ⊵ exists, (B,{E(R)}R∈B)

is said to be order compatible.

5The acyclicity was introduced by Laffond et al. (2020) in the context where preferences on the set of
alternatives are linear orders, and then it was called "acyclicity across orders (AAO).
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LEMMA 4. Let E be hyperpreference rule. If E satisfies (AAP), (DC) and (DA), then there ex-
ists a compatible order ⊑ on P(B) such that for all R,R′, T,T ′ ∈ B, if D(R,R′) =D(T,T ′)

then {R,R′} ≃ {T,T ′} and if D(R,R′)⫋D(T,T ′) then {R,R′}⊏ {T,T ′}.

Proof in Appendix
Another feature of this characterization is its implication for the Independence of
Irrelevant Alternative (IIA) axioms; the latter requires that if an alternative a is not

involved in any disagreement between preference R and R′, then for all preference T ,

R≻E(T ) R′ ⇔R|A\{a} ≻E(T |A\{a}) R′|A\{a}.

COROLLARY 1. The independence and disagreements aversion axioms imply the IIA ax-
iom.

This is because the independence and disagreements aversion axioms imply additivity,
which implies the IIA. Our main finding is deduced from the above theorem.

THEOREM 5. Let E be a hyperpreference rule. E satisfies (DA), (I) and (S) if and only if it is
separable.

PROOF. Thank to the theorem 1, E satisfies (DA) and (I) if and only if it is a minimizing
weighted rule. In this case, α{a,b} = α′

{a,b} and β{a,b} = β′
{a,b} for all {a, b} ∈ P if and only

if E satisfies (S); α′
{a,b} and β′

{a,b} as defined in the proof of the theorem 1.

The following remark gives the condition under which the restriction of a separable
hyperpreference rule to the set of transitive and complete preference relations yields

the Kendall Tau rule or the Kemeny rule.

REMARK 1. When the Kendall Tau distance or the Kemeny distance between two linear
orders is obtained by counting the number of pairwise inversions required to transform
one order into another dK(R,R′) = |R \R′|, this extends to the set of weak orders as
dK(R,R′) = 1

2 (|R \R′|+ |R′ \R|). In this case a disagreement of the type {ab, (ab)} can
be weighted 1

2 and a disagreement of the type {ab, ba} can be weighted 1. In this sense,
when α{a,b} =

1
2 and γ{a,b} = 1 for each pair {a, b}, we obtain the Kemeny rule on the set

of complete and transitive preferences on A.

We would like to show that (DA), (I) and (S) form a parsimonious set of axioms in the
sense that these axioms are pairwise independent from each other. Indeed, we show

that each of these axioms is necessary for this characterization; that is (S) and (I) do not
imply (DA); (DA) and (I) do not imply (S) and, (DA) and (S) do not imply (I). We have the

following proposition.

PROPOSITION 1. There is logical independence between (I), (DA) and (S).
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Proof in Appendix.
To conclude this section, we provide the needed condition on the transformation of

weight functions to induce the same hyperpreference rule. We show that given a
continuous real-valued function f , to be sure that for any separable hyperpreference
rule and any weight function, a transformation of weights via f does not change the
hyperpreference rule, it is necessary and sufficient that f be a positive homothetic

transformation. This result is stated below.

THEOREM 6. Let f be a continuous real-valued function. For any weight function w =

(wab), w and f(w) = (f(wab)) induce the same separable hyperpreference rule if and only
if f is a positive linear transformation on R+.

Proof in Appendix.
This means that a transformation of the weights by a function f preserves the
hyperpreference rule if and only if f is a positive linear transformation, that is,
f(x) = k · x for all x≥ 0, with k > 0. We now turn to the application of separable

hyperpreference rules in the analysis of strategy-proofness and efficiency in
aggregation mechanisms.

4. AN APPLICATION TO AGGREGATION MECHANISMS: STRATEGY-PROOFNESS AND

EFFICIENCY

Beyond its conceptual contributions, our framework offers practical guidance for
designing institutions and aggregation mechanisms that are compatible with

strategy-proofness, where truth-telling is a dominant strategy, and efficiency, where
collective rankings cannot be improved upon.

As an illustration, imagine a scenario in the public decision-making process
concerning investments in a community. In this scenario, each individual affected by

economic policies must evaluate their utility based on the policies implemented in key
sectors such as education (option a), health (option b), and agriculture (option c).

Consider three representative members of the community, each possessing distinct
interests and requirements:

• Resident 1 (a parent of a student): Values education as they aspire for a brighter
future for their children. Their preference order is: a≻ b≻ c.

• Resident 2 (a farmer): Values agriculture since their economic livelihood relies on it.
Their preference order is: c≻ b≻ a.

• Resident 3 (an elderly individual with health concerns): Values health as it repre-
sents their pressing need. Their preference order is: b≻ a≻ c.

These individual priorities may give rise to the Condorcet paradox when decisions are
made using the simple majority rule. As a result, the decision-maker may opt for an
alternative rule that reliably yields an outcome maximizing the overall utility of the

residents, i.e. an efficient decision. To ensure such efficiency, the decision-maker must
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first verify that each resident (assumed to act rationally) reports their true priorities.
This requires the rule to be strategy-proof, thereby preventing outcomes where an

individual can benefit at the expense of the collective welfare. This naturally raises the
following question:

Under what conditions do agents truthfully reveal their preferences?

We will answer this question in a situation where we assume that the different options
compete like in a tournament. A tournament is a setting where multiple candidates
contest in pairs, voters vote over each pair of candidates, and votes are aggregated
using a general rule to form a social ranking. We discuss conditions under which

certain well-known aggregation rules are strategy-proof and Pareto-efficient when
agents (or voters) have separable hyperutility functions. We follow the model

developed in Pongou and Tchantcho (2021), but differ from it in that in our model, a
voter may have different sensitivities to disagreements between pairs of alternatives.

Consider a finite set N of n≥ 3 voters. Each voter i has a preference relation Ri which is
a weak order on the set of alternatives. Denote by RN = (Ri)i∈N the corresponding

preference profile. An aggregation rule is a function f which transforms a preference
profile RN into a binary relation f(RN ) on the set of alternatives.

Given a pair {a, b} of alternatives, if neither a≻f(RN ) b nor b≻f(RN ) a, we say that a and
b are not comparable by f(RN ). We denote by Rab = {i ∈N :Ri|{a,b} = ab} the set of

voters who prefer a to b, and by R(ab) = {i ∈N :Ri|{a,b} = (ab)} the set of voters who are
indifferent between a and b; we obtain a partition of N into three subsets Rab, R(ab),

and Rba. We refer to R= (Rab,R(ab),Rab) as a tripartition of N . Such a tripartition R is
said to be winning for a on the pair {a, b} if f(RN )|{a,b} = ab.

An aggregation rule is said to be unanimous if each time that all members of N are
unanimous over a comparison between two alternatives a and b, this comparison is

adopted. Formally, if Rab = ∅, (Rab,R(ab),Rba) cannot be winning for a;
(Rab,R(ab),Rba) is winning for a whenever Rab =N ; no alternative wins if R(ab) =N .

An aggregation rule is said to be monotonic if for all preference profiles RN , if TN is
obtained by increasing the set of members who prefer a and reducing those who do not
prefer a, then, if R is winning for a, then T is too. Formally for all profiles RN and TN ,

and all pair {a, b}, if R is winning for a and Rab ⊆ Tab and Tba ⊆Rba, then T is also
winning for a. It also means that if R is not winning for a and Rab ⊇ Tab and Tba ⊇Rba,

then T is not winning for a.
We impose the following condition: for any pair {a, b}, the tripartition R cannot be

winning for both a and b simultaneously. In our model, this condition translates the
classical properness condition in voting games, which states that the complement of a

winning coalition is a losing coalition.
An aggregation rule is said to be strategy-proof (or non-manipulable) if no agent can
improve his hyperutility by changing strategically his true first-order preference and
consequently the social preference.6 Formally, f is said to be strategy-proof if there

does not exist an individual i ∈N and a preference profile RN and Q ∈W(A) such that
f(RN\{i},Q)≻E(Ri) f(RN ). It is said to be Pareto-efficient if it is not possible to

6This is equivalent to truthful reporting of preferences being a pure strategy Nash equilibrium.
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change the result in a way that increases the satisfaction (hyperutility) of a voter
without decreasing that of another voter.

We assume that each agent has a separable hyperutility function, and that for any given
pair {a, b} of alternatives γ{a,b} is the higher level of weight7, the utility function of an

individual on the pair {a, b} is such that U i
ab(R

i, f(RN )) = γ{a,b} −wab(R
i, f(RN )); that

is,

U i
ab(R

i, f(RN )) =



0 if Dab(R
i, f(RN )) = {ab, ba}

γ{a,b} − α{a,b} if Dab(R
i, f(RN )) ∈ {{ab, (ab)},{ba, (ab)}}

γ{a,b} − β{a,b} if Dab(R
i, f(RN )) ∈ {{ab, a ∗ b},{ba, a ∗ b}}

γ{a,b} − λ{a,b} if Dab(R
i, f(RN )) = {a ∗ b, (ba)}

γ{a,b} if Dab(R
i, f(RN )) = ∅

and U i(Ri, f(RN )) =
∑

{a,b}∈P U i
ab(R

i, f(RN )) =
∑

{a,b}∈P [γ{a,b} −wab(R
i, f(RN ))].

The idea behind the definition of U i
ab(R

i, f(RN )) is that individual reaches the worst
level of utility each time that the social result is the opposition of his preference. Since

other else disagreement is less strict than the total opposition, it seems natural to
assume that the provided utility is greater than the former which is stated at zero. In the

same vein, individual is full satisfied when the social comparison coincides with the
individual one and therefore, utility is maximal and equal to what is lost in the worst

scenario. This definition of the hyperutility function firstly reflects the symmetry axiom
and secondly is consistent with the axiom of disagreements aversion which states that

any additional disagreement reduces the hyperutility and the individual first-order
preference is the pick of his hyperpreference and so the total agreement leads to full
satisfaction and maximizes the hyperutility. The fact that dis-utilities are compute

separably is a consequence of the independence axiom. We have the following result:

THEOREM 7. All unanimous aggregation rules are Pareto-efficient if and only if for all
pair {a, b} of alternatives, α{a,b} ≥ λ{a,b} and γ{a,b} > β{a,b}.

Proof in Appendix.
We also provide below a necessary and sufficient condition for all monotonic rules to

be strategy-proof.

THEOREM 8. All monotonic aggregation rules are strategy-proof if and only if for all pair
{a, b} of alternatives, α{a,b} = λ{a,b}.

The proof in Appendix.
The following results are the generalizations of Theorems 7 and 8 to a situation where

agents may have different sensitivities on disagreement over pairs of alternatives.

7This seem natural in the context of social decision, since it is the dis-utility associated to the higher level
of disagreement.
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COROLLARY 2. All unanimous aggregation rules are Pareto-efficient if and only if for all
pair {a, b} of alternatives and for all individual i, αi

{a,b} ≥ λi{a,b} and γi{a,b} > βi
{a,b}.

COROLLARY 3. All monotonic aggregation rules are strategy-proof if and only if for all
pair {a, b} of alternatives and for all individual i, αi

{a,b} = λi{a,b}.

These findings offer new insights into the design of mechanisms that promote both
truth-telling and efficiency. Since truthful preference reporting is essential for

accurately assessing differences in opinion, our analysis also clarifies the conditions
under which such differences can be meaningfully and reliably measured.

5. CONCLUSION

Disagreement over values, priorities, and trade-offs is a defining feature of economic
life. While standard models allow for heterogeneity in first-order preferences, they offer

limited tools for analyzing how individuals evaluate alternative preference
orderings—especially those proposed by others or produced through collective

decision-making. This paper develops a formal theory of preference divergence that
introduces and operationalizes the concept of hyperpreferences: second-order

judgments about how well one preference ranking diverges from another.
We show how hyperpreferences can be inferred under reasonable axioms, and we

provide a systematic method for measuring the structure and magnitude of
disagreement between preferences. Our approach extends distance-based methods,

such as the Kendall tau and Kemeny distances, by allowing richer distinctions between
types of disagreement. This enables a more nuanced account of how individuals assess

social decisions—not only in terms of personal gain, but also in terms of fairness,
compromise, and alignment with broader priorities.

Beyond its conceptual contributions, the framework developed in this paper has
practical implications for the design of institutions and aggregation mechanisms in

settings marked by deep preference heterogeneity. Whether in organizational
structures or democratic systems, identifying the conditions under which individuals
truthfully report their preferences is critical for anticipating cooperation, dissent, and
reform. Our analysis provides necessary and sufficient conditions for truth-telling and
efficiency under familiar aggregation rules, offering concrete guidance for mechanism

design. Since the accurate measurement of opinion differences depends on truthful
reporting, the results also clarify when such differences can be meaningfully and

reliably assessed.
More broadly, this work opens a new direction for modeling interpersonal and

institutional disagreement. By formalizing how individuals compare rankings—not just
alternatives—it offers a foundation for future research on legitimacy, deliberation, and

the design of systems that can productively navigate pluralism.

APPENDIX

proof of theorem 1

proof of lemma 2
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PROOF. We proceed by contradiction. Assume that E satisfies (I) and there exists
a sequence of preferences R1,R2, ...,Rp in B such that R1 ≻E(R2) R3, R2 ≻E(R3)

R4,...,Rp−1 ≻E(Rp) R1 and Rp ≻E(R1) R2. We have

left-hand right-hand

R1 ≻E(R2) R3,R2 ≻E(R3) R4 D(R1,R2) and D(R3,R4)

R2 ≻E(R3) R4,R3 ≻E(R4) R5 D(R2,R3) and D(R4,R2)

... ... ...

Rp−2 ≻E(Rp−1) Rp,Rp−1 ≻E(Rp) R1 D(Rp−2,Rp−1) and D(Rp,R1)

Rp−1 ≻E(Rp) R1,Rp ≻E(R1) R2 D(Rp−1,Rp) and D(R1,R2)

Rp ≻E(R1) R2,R1 ≻E(R2) R3 D(Rp,R1) and D(R2,R3)

By concatenating all the left-hand of the disagreements together and all the right-hand
together, we obtain the same multi-set; indeed each used disagreement appears one
time on the left-hand and one time on the right-hand. That is a contradiction to the
Independence axiom.

proof of lemma 4

PROOF. Assume that E satisfies (AAP),( DC) and (DA). Because of (AAP) and (DA)8,
thanks to Laffond et al. (2020) in their lemma 3, (B,{E(R)}R∈B) is order compatible9;
so there exists a weak order ⊵ on P(B) such that for all R,T,T ′ ∈ B,

T ≻E(R) R′ ⇔{R,T}▷ {R,T ′}

Let ⊑ (with the indifference part ≃) be the weak order on P(B) obtained by rank-
ing all pairs of preferences with the same disagreement equivalently, ensuring that
(B,{E(R)}R∈B) remains ⊑-compatible. This order is constructed using the following
procedure.
Let R,R′, T,T ′ ∈ B such that D(R,R′) =D(T,T ′). For all P,P ′ ∈ B \ {R,R′, T,T ′},

• if {R,R′}⊵ {P,P ′}▷ {T,T ′} (resp. {R,R′}▷ {P,P ′}⊵ {T,T ′}) then, consider
{R,R′} ≃ {T,T ′} ⊑ {P,P ′} (resp. {R,R′} ≃ {T,T ′}⊏ {P ′, P}).

• if {R,R′}⊵ {R,P}▷ {T,T ′} (resp. {R,R′}▷ {R,P}⊵ {T,T ′}) then, consider
{R,R′} ≃ {T,T ′} ⊑ {R,P} (resp. {R,R′} ≃ {T,T ′}⊏ {R,P}).

• if {R,R′}⊵ {T,P}▷ {T,T ′} (resp. {R,R′}▷ {T,P}⊵ {T,T ′}) then, consider
{T,P}⊏ {R,R′} ≃ {T,T ′} (resp. {T,P} ⊑ {R,R′} ≃ {T,T ′}).

8Disagreements aversion implies self consistency
9Authors shown the compatibility in the context of hyperpreference on the set of linear orders, but the

proof doesn’t use the fact that preferences are linear orders; therefore it is also true for any form of (first-
order) preference relations on the set of alternatives.
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• the case {R,R′} ⊵ {R,T} ▷ {T,T ′} (resp. {R,R′} ▷ {R,T} ⊵ {T,T ′}) is impossi-
ble; else, R′ ≽E(R) T and R ≻E(T ) T ′ (resp. R′ ≻E(R) T and R ≽E(T ) T ′) because
(B,{E(R)}R∈B) is ⊵-compatible; this contradicts the (DC) property.

We have for all R,R′, T,T ′ ∈ B,

{
(R,R′)≃ (T,T ′) if D(R,R′) =D(T,T ′)

(R,R′)⊏ (T,T ′)⇔ (R,R′)▷ (T,T ′) else .

We are going to show that (B,{E(R)}R∈B) is ⊑-compatible; that is for all R,T,T ′ ∈ B,

T ≻E(R) T ′ ⇔{R,T}⊏ {R,T ′}

We proceed by contradiction.
Assume that there exist R,T,T ′ ∈ B such that T ≻E(R) T ′ and {R,T ′} ⊑ {R,T}.
T ≻E(R) R′ ⇔{R,T}▷ {R,T ′}; so{

T ≻E(R) R′

{R,T ′} ⊑ {R,T}
⇔

{
{R,T}▷ {R,T ′}
{R,T ′} ⊑ {R,T}

So there exists {P,P ′} ∈ P(B) such that D(P,P ′) = D(R,T ′) and {P,P ′} ⊵ {R,T} ▷
{R,T ′}; but in this case, the obtained order is {R,T} ⊏ {P,P ′} ≃ {R,T ′}, that contra-
dicts the fact that {R,T ′} ⊑ {R,T}; so (B,{E(R)}R∈B) is ⊑- compatible.
Now, let R,R′, T,T ′ ∈ B such that D(R,R′) ⫋ D(T,T ′). Let Q ∈ B such that D(R,R′) =

D(T,Q), so Q ̸= T ′.

D(R,R′) =D(T,Q)⇒{R,R′}⋍ {T,Q} and D(T,Q)⫋D(T,T ′)⇒{T,Q}⊏ {T,T ′}

By the transitivity of ⊑, we have {R,R′}⊏ {T,T ′}.

Proof of theorem 1

PROOF. Let E be a hyperpreference rule satisfying (I) and (DA).
⇒) Thank to lemma 2 and 3, E satisfies (AAP) and (DC). Then, the conditions of lemma 4
are satisfied. Using the weak order ⊑ obtained in the lemma 4, a pair of binary relations
can be identify in the relation ⊑ by its set of disagreements.
Let F be the set of feasible disagreements between two given binary relations; that is D ∈
F if and only if either D = ∅ or there exists R,R′ ∈ B such that R ̸=R′ and D =D(R,R′).

F =

D ⊂
⋃

{a,b}∈P
Fab : |D ∩ Fab| ≤ 1,∀{a, b} ∈ P


where Fab = {{ab, ba},{ab, (ab)},{ba, (ab)},{ab, a ∗ b},{ba, a ∗ b}{(ab), a ∗ b}} is the set of
feasible disagreements on the pair {a, b}.
We define the (opposite) dual weak order ≽ of ⊑ on F as follows:

D(R,R′)≻D(T,T ′)⇔{T,T ′}⊏ {R,R′}
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≽ such as defined is also compatible with (P(B),{E(R)}R∈B) in the sense that

D(R,T )≺D(R,T ′)⇔ T ≻E(R) T ′

Recall that ≽ is a weak order on the finite set F . We are going to show that there exists a
real value function w on the set F such that for all D1,D2 ∈ F ,

w(D1)>w(D2)⇔D1 ≻D2 and for all D ∈ F, w(D) =
∑
d∈D

w(d)

For that, we need to show that ≽ satisfies the independence property of Fishburn (1992).
That is, there does not exists a finite sequence (A1,B1), (A2,B2), ..., (Ap,Bp) in F × F

such that for all k ∈ {1,2, ..., p}, Ak ≽ Bk, with at least one relation being strict, and⊔p
k=1Ak =

⊔p
k=1Bk.

Our aim is to show that for such a sequence, there exists k such that changing Ak ≽Bk

to Bk ≻Ak (resp. Ak ≻Bk to Bk ≽Ak ) does not have impact on the compatibility with
(P(B),{E(R)}R∈B).
If such a sequence exists, since Ak,Bk ∈ F , there exist Qk,Rk, Sk, Tk ∈ B such that Ak =

D(Qk,Rk) and Bk = D(Sk, Tk). Reversing the relation of the index k may have impact
on the compatibility if and only if there exists Uk ∈ B such that {Qk,Rk} ⊏ {Rk,Uk} ⊑
{Sk, Tk} or {Qk,Rk} ⊑ {Rk,Uk} ⊏ {Sk, Tk} (resp. {Qk,Rk} ⊏ {Uk, Sk} ⊑ {Sk, Tk} or
{Qk,Rk} ⊑ {Uk, Sk}⊏ {Sk, Tk} ).
Case 1: If there exists k ∈ {1,2, ..., p} such that such Uk doesn’t exist, we change Ak ≽
Bk to Bk ≻ Ak (resp. Ak ≻ Bk to Bk ≽ Ak ) and it doesn’t change something on the
compatibility with (B,{E(R)}R∈B).
Case 2: If there exists k ∈ {1,2, ..., p} such that Uk exists and Uk /∈ {Qk,Rk, Sk, Tk}

• If {Qk,Rk}⊏ {Rk,Uk} ⊑ {Sk, Tk}(resp. {Qk,Rk} ⊑ {Rk,Uk}⊏ {Sk, Tk}), change to
{Sk, Tk} ⊑ {Qk,Rk}⊏ {Rk,Uk} (resp. {Sk, Tk}⊏ {Qk,Rk} ⊑ {Rk,Uk}).

If {Qk,Rk} ⊏ {Uk, Sk} ⊑ {Sk, Tk}(resp. {Qk,Rk} ⊑ {Uk, Sk} ⊏ {Sk, Tk}), change
to
{Uk, Sk} ⊑ {Sk, Tk} ⊏ {Qk,Rk} (resp. {Uk, Sk} ⊏ {Sk, Tk} ⊑ {Qk,Rk}) and it does
not impact on the compatibility.

Case 3: If for all k, Uk exists and Uk ∈ {Qk,Rk, Sk, Tk}, then we obtain a sequence

(Q1,R1, S1, T1), (Q2,R2, S2, T2), ..., (Qp,Rp, Sp, Tp) in B ×B ×B ×B such that for each

k ∈ {1,2, ..., p}, we have one of the following cases.

{Qk,Rk} ⊑ {Rk, Sk} ⊑ {Sk, Tk}⇔Qk ≽E(Rk) Sk,Rk ≽E(Sk) Tk

{Qk,Rk} ⊑ {Qk, Sk} ⊑ {Sk, Tk}⇔Rk ≽E(Qk) Sk,Qk ≽E(Sk) Tk

{Qk,Rk} ⊑ {Rk, Tk} ⊑ {Sk, Tk}⇔Qk ≽E(Rk) Tk,Rk ≽E(Tk) Sk

{Qk,Rk} ⊑ {Qk, Tk} ⊑ {Sk, Tk}⇔Rk ≽E(Qk) Sk,Qk ≽E(Tk) Sk
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with at least one of both relations being strict and
⊔p

k=1D(Qk,Rk) =
⊔p

k=1D(Sk, Tk).
In this case, we obtain a contradiction of the independence axiom. Thus, each time
that there exists such a sequence, we can break it at the way to have ≽ on F , which
is a weak order such that such a sequence (Ak,Bk)k doesn’t exist; that is, ≽ satisfies
the independence axiom as defined in Fishburn (1992). In this case, thanks to Fishburn
(1992), the aforementioned functionw exists. w being additive, for all A,B ∈ F , if A∩B =

∅ and A∪B ∈ F , then w(A∪B) =w(A) +w(B).
Firstly, since ∅ ∈ F and ∅ ∩ ∅= ∅ ∪ ∅= ∅, we have 2w(∅) =w(∅)⇒w(∅) = 0.
Secondly, for all R,R′ ∈ B,

R ̸=R′ ⇒D(R,R) = ∅⫋D(R,R′)

⇒D(R,R′)≻D(R,R)

⇒ 0 =w(∅)<w(D(R,R′))

Since,

• any element of F distinct to ∅ is a collection of elements of the Fab (with {a, b} ∈ P)

• ≽ is a (opposite) dual of ⊑ and

• (B,{E(R)}R∈B) is ⊑-compatible

let’s identify the weights as follows: for all {a, b} ∈ P ,

α{a,b} =w({(ab), ab}) α′
{a,b} =w({(ab), ba})

β{a,b} =w({ab, a ∗ b}) β′
{a,b} =w({ba, a ∗ b})

λ{a,b} =w({(ab), a ∗ b}) γ{a,b} =w({ab, ba}) w(∅) = 0;

For each {a, b} ∈ P(A), we definewab forR,R′ ∈ B as follows: wab(R,R′) =w(Dab(R,R′)).
As consequence we have w(D(R,R′)) =

∑
{a,b}∈P wab(R,R′).

∑
{a,b}∈P

wab(R,T )<
∑

{a,b}∈P
wab(R,T ′)⇔D(R,T ′)≻D(R,T )

⇔{R,T}⊏ {R,T ′}

⇔ T ≻E(R) T ′

⇐) Conversely, assume that for each pair {a, b} ∈ P , there exists α{a,b}, α
′
{a,b}, β{a,b},

β′
{a,b}, λ{a,b}, γ{a,b} ∈R++ such that for all R,T,T ′ ∈ B,

T ≻E(R) T ′ ⇔
∑

{a,b}∈P
wab(R,T )<

∑
{a,b}∈P

wab(R,T ′)
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where

wab(R,R′) =



0 if Dab(R,R′) = ∅
α{a,b} if Dab(R,R′) = {ab, (ab)}
α′
{a,b} if Dab(R,R′) = {ba, (ab)}

β{a,b} if Dab(R,R′) = {ab, a ∗ b}
β′
{a,b} if Dab(R,R′) = {ba, a ∗ b}

λ{a,b} if Dab(R,R′) = {(ab), a ∗ b}
γ{a,b} if Dab(R,R′) = {ab, ba}

• Disagreements aversion (DA). Let R,T,T ′ ∈ B such that D(R,T )⫋D(R,T ′)
D(R,T )⫋D(R,T ′)⇒ Ã(R,T ′) = Ã(R,T )∪D; with D ̸= ∅ and Ã(R,T )∩D = ∅

w(R,T ′) =
∑

{a,b}∈Ã(R,T )

wab(R,T ′) +
∑

{a,b}∈D

wab(R,T ′)

=
∑

{a,b}∈Ã(R,T )

wab(R,T ) +
∑

{a,b}∈D

wab(R,T ′)

since T and T ′ coincide on Ã(R,T )

=w(R,T ) +
∑

{a,b}∈D

wab(R,T ′)>w(R,T ), since
∑

{a,b}∈D

wab(R,T ′)> 0

We conclude that T ≻E(R) T ′

• Independence (I). By contradiction, assume that there exists a sequence

(Q1,R1, S1, T1), (Q2,R2, S2, T2), ..., (Qp,Rp, Sp, Tp) in B4

such that Qk ≽E(Rk) Sk and Rk ≽E(Sk) Tk with at least one of both relations being
strict, k,∈ {1,2, ..., p} and

⊔p
k=1D(Qk,Rk) =

⊔p
k=1D(Sk, Tk).

In this case we have for all k ∈ {1,2, ..., p},∑
{a,b}∈P

wab(Qk,Rk)≤
∑

{a,b}∈P
wab(Sk,Rk)≤

∑
{a,b}∈P

wab(Sk, Tk)

with at least one of the inequality being strict; and therefore∑
{a,b}∈P

wab(Qk,Rk)<
∑

{a,b}∈P
wab(Sk, Tk)

Let u be the real value function defined on F for all R,R′ ∈ B as follows:

u(Dab(R,R′)) =wab(R,R′) and u(D(R,R′)) =
∑

d∈D(R,R′)

u(d)

As defined, we have ∑
{a,b}∈P

wab(R,R′) =
∑

d∈D(R,R′)

u(d)
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⇕

p∑
k=1

∑
{a,b}∈P

wab(Qk,Rk)<

p∑
k=1

∑
{a,b}∈P

wab(Sk, Tk)

⇕

p∑
k=1

∑
d∈D(Qk,Rk)

u(d)<

p∑
k=1

∑
d∈D(Sk,Tk)

u(d)

⇕∑
d∈

⊔p
k=1 D(Qk,Rk)

u(d)<
∑

d∈
⊔p

k=1 D(Sk,Tk)

u(d)

Since
⊔p

k=1D(Qk,Rk) =
⊔p

k=1D(Sk, Tk), we have a contradiction.

proof of proposition 1

PROOF. • The hyperpreference rule obtaining by using discrete distance satisfies (I),
(S) but not (DA).

• The minimizing weighted hyperpreference rule with α{a,b} ̸= α′
{a,b} satisfies (DA)

and (I) but not (S).

• Consider R,R′, T,T ′ ∈ B such that they coincide on any pair {c, d} ∈ P(A) \
{{a, b},{a, c},{b, c}} and

R|{a,b,c} = {ab, ac, bc}, R′|{a,b,c} = {(ab), ac, bc}

T |{a,b,c} = {ab, a ∗ c, bc}, T ′|{a,b,c} = {(ab), a ∗ c, bc}

Consider a weak order ≽ on the set of pairs of binary relations such that:
for all Q,K ∈ B, Q ̸= K ⇒ {Q,Q} ∼ {K,K} ≻ {Q,K} and ...{R,R′} ≻ {R,T} ∼

{R′, T ′}...≻ {T,T ′}... (1).
Complete the relation ≽ such that it satisfies the following conditions:

– for all Q,K,K′ ∈ B, D(Q,K) ⫋ D(Q,K′)⇒ {Q,K} ≻ {Q,K′} (for Disagreements
aversion)

– for allQ,K,K′ ∈ B, if for all {a, b} ∈ Ã(K,K′), Q|{a,b} ∈ {(ab), a∗b} andDab(K,K′) =

{ab, ba} then {Q,K} ∼ {Q,K′} (for Symmetry)
Remember that the part of ≽ given in (1) doesn’t contradict these latter conditions.

Consider a hyperpreference rule E defined for all Q,K,K′ ∈ B by:

K ≻E(Q) K′ ⇔{Q,K} ≻ {Q,K′}
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This hyperpreference rule satisfies (DA) and (S) but not (DC) because D(R,R′) =

D{T,T ′} and R′ ≻E(R) T and R≻E(T ) T ′. Thank to the lemma 3 it doesn’t satisfy (I).

Proof of Theorem 6

PROOF. For a separable hyperpreference rule E with a weight function
w = (wab){a,b}∈P . We denote by w(R0,R) =

∑
{a,b}∈P wab(R0,R), ∀R0,R ∈ B.

Recall that for all R0,R,R′ ∈ B,

R≻E(R0) R′ ⇔
∑

{a,b}∈P
wab(R0,R)<

∑
{a,b}∈P

wab(R0,R
′)

⇔
∑

{a,b}∈P
[wab(R0,R)−wab(R0,R

′)]< 0

Remark that for all {a, b} ∈ P , ±(γ{a,b} − λ{a,b}) does not appear in the calculation of
w(R0,R)−w(R0,R

′) =
∑

{a,b}∈P [wab(R0,R)−wab(R0,R
′)] because we can not have at

the same time Dab(R0,R) = {ab, ba} and Dab(R0,R
′) = {(ab), a ∗ b}.

⇒) Assume that f is a positive linear transformation. We show that w and w′ = f(w)

induce the same hyperpreference rule.
Because of positive linearity of f , there exists k > 0 such that for all R0,R,R′ ∈ B,
w′(R0,R)−w′(R0,R

′) = k(w(R0,R)−w(R0,R
′)) . Thus w(R0,R)−w(R0,R

′)> 0 if and
only if w′(R0,R) − w′(R0,R

′) > 0 and obviously w′ induce the same hyperpreference
with w.
⇐) Assume that for any hyperpreference rule and any weight function w, w′ = f(w) is
also a weight function for the same hyperpreference rule.
First part: we show that for all positive real values x, y, z, t,

x− y = z − t⇒ f(x)− f(y) = f(z)− f(t)

We proceed by contradiction by assuming that there exist x, y, z, t ∈R+ such that x−y =

z − t and f(x)− f(y)> f(z)− f(t) (with no loss of the generality).
If x, y, z, t ∈R++, consider a separable hyperpreference rule E such that

β{a,b} = x,α{a,b} = y,α{a,c} = z,λ{a,c} = t

Consider the preferences R0 = {ab, (ac) and e ∗ d for all {e, d} /∈ {{a, b},{a, c}}}, R = N

and R′ = {(ab), ac and e ∗ d for all {e, d} /∈ {{a, b},{a, c}}}. We have
D(R0,R) = {{ab, a ∗ b},{(ac), a ∗ c}}⇒w(R0,R) = β{a,b} + λ{a,c} = x+ t;
D(R0,R

′) = {{ab, (ab)},{(ac), ac}}⇒w(R0,R
′) = α{a,b} + α{a,c} = y+ z;

w(R0,R)−w(R0,R
′) = (x− y)− (z − t) = 0⇒R∼E(R0) R′.

Since w and w′ = f(w) are both weight functions of E , we also have,

w′(R0,R)−w′(R0,R
′) = (f(x)− f(y))− (f(z)− f(t))> 0⇒R≻E(R0) R′

which is a contradiction.
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If x= 0 and y, z, t ∈R++ then, consider R0 = {ab, (ac), e ∗d;∀{e, d} /∈ {{a, b},{a, c}}}, R=

Xab and R′ = {(ab), ac and e ∗ d for all {e, d} /∈ {{a, b},{a, c}}}. We have
D(R0,R) = {{(ac), a ∗ c}}⇒w(R0,R) = λ{a,c} = t;
D(R0,R

′) = {{ab, (ab)},{(ac), ac}}⇒w(R0,R
′) = α{a,b} + α{a,c} = y+ z;

w(R0,R)−w(R0,R
′) = (0− y)− (z − t) = 0⇒R∼E(R0) R′.

Since f(0) = 0, we also have,

w′(R0,R)−w′(R0,R
′) = (−f(y))− (f(z)− f(t))> 0⇒R≻E(R0) R′

which is a contradiction. We do the same for z = 0 and x, y, t ∈R++.
If y = 0 and x, z, t ∈R++ then, consider R0 = {ab, (ac), e ∗d;∀{e, d} /∈ {{a, b},{a, c}}}, R=

N and R′ = {ab, ac and e ∗ d for all {e, d} /∈ {{a, b},{a, c}}}. We have
D(R0,R) = {{ab, a ∗ b},{(ac), a ∗ c}}⇒w(R0,R) = β{a,b} + λ{a,c} = x+ t;
D(R0,R

′) = {{(ac), ac}}⇒w(R0,R
′) = α{a,c} = z;

w(R0,R)−w(R0,R
′) = (x)− (z − t) = 0⇒R∼E(R0) R′.

Since w and w′ = f(w) are both weight functions of E , we also have,

w′(R0,R)−w′(R0,R
′) = (f(x))− (f(z)− f(t))> 0⇒R≻E(R0) R′

which is a contradiction. We do the same for t= 0 and x, y, z ∈R++

If x= y = 0 or x= z = 0, we obviously have x− y = z− t⇒ f(x)− f(y) = f(z)− f(t) since
f(0) = 0.
Second part: we show that for all positive rational number r, f(r) = rf(1).
Thank to the first part, for all positive real numbers x and y such that x≥ y,

x− y ≥ 0 then x− y = (x− y)− 0⇒ f(x)− f(y) = f(x− y), since f(0) = 0

For all x, y ∈R+, f(x) = f(x+ y− y) = f(x+ y)− f(y)⇒ f(x+ y) = f(x) + f(y).
So for all x ∈R+, p ∈N,

f(px) = f(x+ x+ ...+ x︸ ︷︷ ︸
p times

) = f(x) + f(x) + ...+ f(x)︸ ︷︷ ︸
p times

= pf(x).

Let p ∈ N and p ̸= 0; f(1) = f(pp ) = f(p× 1
p ) = pf(1p )⇒ f(1p ) =

f(1)
p . Let (p, q) ∈ N2, q ̸= 0,

f(pq ) = pf(1q ) =
p
q f(1); thus for all r ∈Q+, f(r) = rf(1).

Third part: we show that for all positive real x, f(x) = xf(1) and f(1)> 0.
Let x ∈R+; there exists some sequence of positive rationals (xn) such that xn → x.
Thank to the second part, for all n ∈N, f(xn) = xnf(1). Since f is a continuous function,
f(x) = limf(xn) = f(1)× limxn = xf(1). f(1) > 0 because for all weight function, f(w)
is also a weight function and so f transforms a non negative number to another non
negative number.
To conclude, f is defined for all x ∈R+ by f(x) = kx, with k = f(1)> 0.
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Proof of Theorem 7

PROOF. ⇒) Assume that for all {a, b} ∈ P , α{a,b} ≥ λ{a,b} and γ{a,b} > β{a,b}.
Let f be a unanimous aggregation rule. Let RN be a preference profile, {a, b} a pair
of alternatives and i a voter. Remind that f(RN )|{a,b} ∈ {ab, a ∗ b, ba} and for all i ∈
N, Ri|{a,b} ∈ {ab, (ab), ba}.

• If f(RN )|{a,b} = ab, then Rab ̸= ∅ since f is unanimous. So changing f(RN )|{a,b}
to another value should penalize voters belonging to Rab. Indeed, for all i ∈ Rab,
U i
ab(R

i, f(RN )) = γ{a,b} >max{γ{a,b} − β{a,b},0}.

• Symmetrically we obtain the case f(RN )|{a,b} = ba.

• If f(RN )|{a,b} = a ∗ b.
– if R(ab) =N then, changing f(RN )|{a,b} to ab increase utility of a voter if and only

if α{a,b} < λ{a,b}, which is a contradiction of the assumption. It is the same if
f(RN )|{a,b} is changed to ba.

– if R(ab) = ∅ then Rab ̸= ∅ ̸= Rba and utility of each voter is γ{a,b} − β{a,b},
so changing value of f(RN )|{a,b} to f(RN )|{a,b} ∈ {ab, ba}, some should have
U i
ab(R

i, f(RN )) = γ{a,b} and other U i
ab(R

i, f(RN )) = 0 and it should not penalize
any voter if and only γ{a,b} = β{a,b}, which is a contradiction of the assumption.

– if R(ab) ̸= ∅ ≠Rab and Rba = ∅, changing f(RN )|{a,b} to f(RN )|{a,b} = ab should
not penalize voter of R(ab) if and only if λ{a,b} > α{a,b}, which is a contradiction
of the assumption. changing f(RN )|{a,b} to ba should penalize each voter in Rab.

– if R(ab) ̸= ∅, Rab ̸= ∅, Rba ̸= ∅, changing f(RN )|{a,b} to f(RN )|{a,b} = ab should
not penalize voters belonging to Rba if and only if γ{a,b} = β{a,b}; it should not pe-
nalize voters belonging to R(ba) if and only if λ{a,b} >α{a,b}, which is a contradic-
tion of the assumption. By the same reasoning we treat th case where f(RN )|{a,b}
is changed to f(RN )|{a,b} = ba.

Because of separability of utility function, we have the result.
⇐) Assume that there exists {a, b} ∈ P such that α{a,b} < λ{a,b} or γ{a,b} = β{a,b}.

• If α{a,b} < λ{a,b}, let f be a simple majority rule, i.e x≻f(RN ) y⇔ |Rxy|> |Ryx|.
Consider a preference profile RN such that for all i ∈N , Ri = (X \ {ab}) ∪ {(ab)};

where X = abc... is a linear order. Then f(RN ) = (X \ {ab})∪ {a ∗ b} and
U i(Ri, f(RN )) = γ{a,b} − λ{a,b} +

∑
{x,y}∈P\{{a,b}} γ{x,y}.

If f(RN ) is change to f(RN ) =X then the utility of each voter should be
U i(Ri, f(RN )) = γ{a,b} − α{a,b} +

∑
{x,y}∈P\{{a,b}} γ{x,y}. Since α{a,b} < λ{a,b},

there is improvement of the utility of players without penalize any other voter.

• if γ{a,b} = β{a,b}, consider the 3
4 -majority rule, that is x ≻f(RN ) y ⇔ |Rxy| ≥ 3

4n.
Consider the preference profile RN such that |Rab|= |Rba| if n is even and |Rab|=
|Rba| + 1 if n is odd, and R(ba) = ∅ and for all {x, y} ∈ P \ {{a, b}}, for all i, j ∈ N ,
Ri|{x,y} =Rj |{x,y} ̸= (xy). In this case, since n≥ 3, f(RN )|{a,b} = a ∗ b and utility of
each voter is i, U i(Ri, f(RN )) = γ{a,b} − β{a,b} +

∑
{x,y}∈P\{{a,b}} γ{x,y}.
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Changing f(RN )|{a,b} to ab should improve the utility of all player i ∈ Rab to∑
{x,y}∈P γ{x,y} and does not change the one of any player in Rba since β{a,b} =

γ{a,b}.

Because of separability, we have the result for all pair of alternatives.

Proof of Theorem 8

PROOF. ⇒) Assume that for all pair {a, b} ∈ P , α{a,b} = λ{a,b}. Let f be a monotone
aggregation rule. Let RN be a preference profile.
Let {a, b} ∈ P and i be a voter. We denote by T i another binary relation that differs to Ri

on the pair {a, b}.

• If f(RN )|{a,b} = ab then {l ∈N :Rl|{a,b} = ab} is a winning coalition.
– If Ri|{a,b} = ab, then U i

ab(R
i, f(RN )) is maximal and there is no possible improve-

ment of utility.

– If Ri|{a,b} = ba, then U i
ab(R

i, f(RN )) = 0.

* if T i|{a,b} = (ba), by monotonicity of f , f(T i,RN−i)|{a,b} = ab and

U i
ab(R

i, f(T i,RN−i)) = 0.

* if T i|{a,b} = ab, by monotonicity of f , f(T i,RN−i)|{a,b} = ab and

U i
ab(R

i, f(T i,RN−i)) = 0.

– If Ri|{a,b} = (ba), then U i
ab(R

i, f(RN )) = γ{a,b} − α{a,b}.

* if f(T i,RN−i)|{a,b} = ab, then U i
ab(R

i, f(T i,RN−i)) = γ{a,b} − α{a,b}.

* if f(T i,RN−i)|{a,b} = ba, then U i
ab(R

i, f(T i,RN−i)) = 0≤ U i
ab(R

i, f(RN )).

* if f(T i,RN−i)|{a,b} = a∗b, then U i
ab(R

i, f(T i,RN−i)) = γ{a,b}−λ{a,b} = γ{a,b}−
α{a,b}.

• If f(RN )|{a,b} = ba we proceed as above.

• If f(RN )|{a,b} = a ∗ b
– If Ri|{a,b} = ab, then U i

ab(R
i, f(RN )) = γ{a,b} − β{a,b} and T i|{a,b} ∈ {ba, (ab)}.

Therefore f(T i,RN−i)|{a,b} ∈ {ba, a ∗ b} because of monotonicity.
So U i

ab(R
i, f(T i,RN−i)) ∈ {0, γ{a,b} − β{a,b}} and no improvement of utility.

– If Ri|{a,b} = (ba), then U i
ab(R

i, f(RN )) = γ{a,b} − λ{a,b}.

* if f(T i,RN−i)|{a,b} = a ∗ b then, no change on the utility.

* if f(T i,RN−i)|{a,b} ∈ {ab, ba}, then U i
ab(R

i, f(T i,RN−i)) = γ{a,b} − α{a,b} =

γ{a,b} − λ{a,b}.

In any case, no individual cannot improve his utility by changing his preference.
We obtain that nobody cannot manipulate on the pair {a, b}. Thank to the separability
of hyperutility, we conclude that there is no possible manipulation.
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⇐) Assume that there exists {a, b} ∈ P such that α{a,b} ̸= λ{a,b}.
Let f be the simple majority rule. Remark that the simple majority is a monotone ag-
gregation rule. A = {a, b, c, ...}, let X = abc... be a linear order on A. If α{a,b} < λ{a,b},
consider the preference profile

Ri = (X \ {ab})∪ {(ab)}

Rj =X

Rk = (X \ {ab})∪ {ba}

Rl =R1 for all l ∈N \ {i, j, k}

Consider T i =Rj . Then f(RN ) = (X \ {ab})∪ {a ∗ b} and

U i(Ri, f(RN )) = γ{a,b} − λ{a,b} +
∑

{x,y}∈P\{{a,b}}
γ{x,y}

f(T i,RN−i) =X and U i(Ri, f(T i,RN−i)) = γ{a,b} − α{a,b} +
∑

{x,y}∈P\{{a,b}} γ{x,y}
α{a,b} < λ{a,b} ⇒ U i(Ri, f(RN ))< U i(Ri, f(T i,RN−i)) and i can manipulate by chang-
ing Ri to T i.
If α{a,b} > λ{a,b}, consider the preference profile

Ri = (X \ {ab})∪ {(ab)}

Rj =X

Rl =Ri for all l ∈N \ {i, j}

Consider T i = (X \ {ab})∪ {ba}. Then f(RN ) = (X \ {ab})∪ {ab} and

U i(Ri, f(RN )) = γ{a,b} − α{a,b} +
∑

{x,y}∈P\{{a,b}}
γ{x,y}

f(T i,RN−i) = (X \ {ab})∪ {a ∗ b} and

U i(Ri, f(T i,RN−i)) = γ{a,b} − λ{a,b} +
∑

{x,y}∈P\{{a,b}}
γ{x,y}

α{a,b} > λ{a,b} ⇒ U i(Ri, f(RN ))< U i(Ri, f(T i,RN−i)) and i can manipulate by chang-
ing Ri to T i.
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