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of government-supported R&D reveals a wider diversity of situations, however. The effect of
R&DTC is less often significant, sometimes superseded by other forms of public support to R&D.
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I Introduction

Since the early 2000’s, the European Union (EU) has been seeking to become "the most competitive

and dynamic knowledge-based economy in the world".1 This involves increasing investments in R&D up

to 3% of the EU Gross Domestic Product (GDP). Although this objective has not been reached yet,

it remains a "guiding light" for the current Horizon Europe programme.2 So far, the main policy

tools to achieve it have been national R&D tax incentives and, specifically, R&D tax credits (R&DTC).

EU discussions on a harmonized corporate tax base – of which the latest outcome is the "Business

in Europe: Framework for Income Taxation" (BEFIT) initiative – have evoked the implementation

of a "super-deduction" that would allow EU-based firms to deduce more than 100% of their R&D

expenditures from their tax base. This EU-wide deduction may supersede or complement existing

national schemes. EU policy circles see this type of incentive as an obvious solution to boost R&D

investment, hoping it will yield positive returns in terms of innovation and, ultimately, growth.

In this paper, we examine whether these expectations have strong foundations by re-investigating

the R&D-innovation-productivity nexus in eight EU countries (Austria, Belgium, Czech Republic,

France, the Netherlands, Italy, Spain and the UK3) from a macro-dynamic perspective. We also ex-

amine whether and how the availability of R&D tax incentives in a given country affect the dynamics

of innovation and growth. From a policy perspective, we address two oft-mentioned challenges in

the literature: (i) the dearth of cross-country comparisons on the one hand, and (ii) the fact that most

studies limit themselves to the effect of tax incentives on R&D expenditures on the other. From a

methodological perspective, we introduce dynamics, under the form of an autoregressive (AR) com-

ponent, in econometric models derived from essentially static production function frameworks.

The first model is an adaptation of Mairesse and Mohnen (2002)’s "accounting framework" for

innovativeness (also called "innovativity" in Mohnen et al. (2006)) and the second an adaptation of

the CDM model (Crépon et al., 1998, Lööf et al., 2017). The former explicitly applies to various

levels of analysis (from firm to country) and the latter, while primarily applied to firm-level data,

has also proven worthy with industry-level data (Bourlès et al., 2013, Amable et al., 2016) and micro-

aggregated data (Bartelsman et al., 2017). In order to introduce dynamics in the CDM model, though,

we follow Bond and Guceri (2017) and focus on the productivity equation of the model, linking it

directly to R&D (rather than to patents) in an "extended production function" approach à la Griliches

(1979). In each country, we estimate these two models on industry-level panels that cover a period

starting in the late 1970s / early 1980s (depending on the country) and ending in 2017.

We use panel autoregressive distributed lags (ARDL) specifications to estimate our econometric

1In the words of the EU Parliament (2000): http://www.europarl.europa.eu/summits/lis1_en.htm, Part I, Point 5.
2See for instance: https://sciencebusiness.net/framework-programmes/news/member-states-asked-sign-pact-higher-

rd-investment.
3While the UK is not part of the EU anymore, it was a fully-fledged EU Member state over the period which we study.

We discuss the implications of Brexit in Appendix A.
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models on these heterogeneous panels, where the time dimension is longer than the individual one.

We first run benchmark estimations in which we consider R&D intensity as a whole. We then conduct

more detailed estimations in which we disentangle the respective effects of private R&D and of R&D

that receives public support (with and without R&DTC). In our benchmark analysis, we identify

positive long-run elasticities of innovation (measured by patenting intensity) and of productivity

with respect to R&D intensity in almost all selected countries. The R&D conducted under an R&DTC

either reinforces an already positive elasticity or makes it significantly positive if it was not before.

However, disentangling the respective effects of private and publicly-supported R&D reveals

a wider diversity of situations. Purely private business R&D (hereafter, BRD) appears as the main

driver of innovation and productivity in some countries, whereas government-supported R&D (here-

after, GRD) is the main driver in others. The availability of R&DTC is no longer systematically asso-

ciated with more innovation or a higher productivity. Other public policy instruments embedded in

GRD may prove as effective.

The main policy implication we derive from these results is that a "super-deduction" on R&D of

the type proposed in BEFIT may be a little premature. Its effectiveness may depend more, in the

end, on the taking into account of country-level industrial specialization than on the generosity of

the scheme. A complementary analysis conducted within industries across countries suggest that

targeting specific industries at the EU level may also be a good idea to improve the effectiveness and

accuracy of such a policy.

The paper is organized as follows: In Section II, we present some economic justifications for the

existence of R&DTC schemes as well as the rationale for the super-deduction proposed at the EU

level. In Section III, we illustrate, using the selected EU countries, the complexity and sheer diversity

of R&DTCs schemes. Readers already well versed in the intricacies of EU policy may want to directly

go to Section IV where, after briefly replacing our study within the related literature, we present our

data and econometric analysis. We summarize our findings and discuss their policy implications in

Section V. We conclude in Section VI, the final section.

II R&DTC schemes in the EU

II.1 Economic justification for the existence of R&DTC

R&D tax incentives and related R&D policies are rooted in the belief that, in modern economies,

innovation is the main source of growth, a belief largely grounded in endogenous growth theory (e.g.,

Romer (1990)). This belief has led to the widespread conviction, in EU policy circles, that innovation

may be the only option to get the EU economy out of stagnation and back on the path of growth. The

rationale is that innovation-induced economic growth will result in increased wealth, employment

and well-being. EU policy makers are therefore searching for the conditions that are more likely
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to make firms increase their innovation effort. A widespread recommendation consists in creating

the conditions of increased competition between firms (or in “letting the market decide"), as the

increased competitive pressure would supposedly lead firms to innovate in order to survive or to

gain advantages over their competitors.

A potential problem with this recommendation is that markets left to their own devices are likely

to generate less R&D,4 and therefore less innovation, than it would be desirable for the society as a

whole (Arrow, 1962). Among economists, this is known as a “market failure". As far as investment

in R&D is concerned, there are at least two reasons for such a failure.

One reason is that knowledge created through R&D, just like any type of knowledge, is largely

immaterial and presents some characteristics of a “public good": It cannot be completely appropri-

ated by its creators, and the related ideas can be - more or less rapidly, depending on their complexity

- copied and used by other firms. Intellectual property rights (e.g., patents) may alleviate this prob-

lem, but do not completely solve it (e.g., a patent is effective only for a limited period of time and/or

over specific geographical areas).

A second reason is that innovation is a very risky and uncertain endeavour, and that investment

in R&D is not a safe investment. Firms may therefore face serious difficulties in finding financial

support for their R&D projects, as banks and investors may be unwilling to lend money to projects

that they cannot easily monitor (or the outcomes of which they cannot clearly see). This may result in

the abandonment of projects that firms would be eager to pursue had they the required funds. If the

assumption that innovation is conducive to economic growth and to social well-being is correct, then

the two above-mentioned reasons call for public intervention in order to spur firms’ R&D effort. This

type of public intervention will generally take the form of R&D subsidies or of R&D tax incentives

such as R&DTCs.

II.2 Towards a “super-deduction" on R&D in the EU?

So far, we have examined justification for the existence of R&DTCs in general. In practice, tax

credits can take a multiplicity of forms, and may vary hugely across EU Member states. At one end

of the spectrum, there are states where no tax credit exists (e.g., Germany) and, at the other, states

where R&DTCs have been implemented for a long time (e.g., France), possibly experiencing changes

along the way. The question of whether this variety should be harmonized at the EU level seems to

have finally found, in EU policy circles at least, a positive answer with the proposal, in October 2016,

of a revamped CCCTB (actually the re-launch of a 2011 proposal). This initiative, now superseded

by the broader 2021 BEFIT proposal, suggested the implementation of a “super-deduction" on R&D

4Although alternative innovation channels do exist (see, e.g., Bozeman and Link (1983) for a thorough examination of
these issues), R&D is generally considered as the primary input to the innovation process.
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expenditures:5

“To support innovation in the economy, this re-launch initiative will introduce a super-deduction for R&D

costs into the already generous R&D regime of the proposal of 2011. The baseline rule of that proposal on the

deduction of R&D costs will thus continue to apply; so, R&D costs will be fully expensed in the year incurred

(with the exception of immovable property). In addition, taxpayers will be entitled, for R&D expenditure up to

EUR [20 M], to a yearly extra super-deduction of 50%. To the extent that R&D expenditure reaches beyond

EUR [20 M], taxpayers may deduct 25% of the exceeding amount." (European Commission (2016), pp.

9-10)

This super-deduction is, in effect, a very generous R&DTC scheme, as was clearly stated in the

associated press release:6 “The CCCTB will support innovation in Europe by allowing the costs of R&D

investment to be tax deductible. All companies that invest in R&D will be allowed to deduct the full cost of

this investment plus an additional percentage of the costs, depending on how much they spend. The full cost of

R&D will be 100% deductible, while an additional 50% deduction will be offered for R&D expenses of up to

EUR 20 million. An additional 25% deduction will be allowed for R&D spending over EUR 20 million".

The press release illustrated this scheme with the following example. An EU-based company that

spends EUR 30 million on R&D in a given fiscal year will be allowed to deduct: (i) the full amount

of its R&D expenditures (i.e., EUR 30 million) from its taxable income, plus (ii) an additional 50%

of the first EUR 20 million (i.e., EUR 10 million) plus (iii) an additional 25% of the remaining R&D

expenditures above the EUR 20 million threshold (i.e., EUR 2.5 million as 25% of the remaining EUR

10 million). In total, this hypothetical company will be able to deduct EUR 42.5 million from its

CCCTB, which goes to show that “super-deduction" is indeed an appropriate term for this R&DTC

scheme.7

The “super-deduction" seems to have been added to the 2016 CCCTB proposal to serve multiple

objectives. The first was probably to make the proposal more appealing to reluctant Member states,

as it offers them a channel through which they may maintain their international attractiveness– more

specifically towards high-technology and innovative firms. Second, the variety of R&DTC regimes

that currently prevails throughout the EU may result in a specific form of tax competition, geared

towards R&D: high-tech and R&D intensive firms may be willing to settle down in countries/re-

gions where the tax regime favours R&D more. This in turn could cause uneven increases in R&D

investments across EU regions (with R&D expenditures rising in some States and stagnating in oth-

ers), which plays against the “3% of GDP" objective for R&D investment in Europe. By introducing a

certain degree of harmonization in R&DTCs, a “super-deduction" would lessen this threat.8 Finally,

5The 2011 proposal already included a specific regime for R&D-conducting firms. The R&D regime in the 2016 proposal
is more generous and constitutes a somewhat more radical proposal.

6http://europa.eu/rapid/press-release_MEMO-16-3488_en.htmtext
7The scheme is even more generous for “small starting companies" (i.e., start-ups, primarily), which will be allowed to

deduct a further 100% of their R&D expenditures, within the limit of EUR 20 million. Thus, a start-up that invests EUR 5
million in R&D will be allowed to deduct EUR 10 million from its CCCTB.

8The super deduction would not totally rule out national R&D tax incentives, though. The principles stated in the 2011
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the “super-deduction" could also be a way - insofar as tax credits are effective science and technology

policy instruments - to foster higher investment in R&D despite post-pandemic budget cuts in the

Horizon Europe programme.

The EU ECON committee adopted the report on the 2016 CCCTB proposal on February, 28th,

2018 (with some amendments), followed by the Parliament on March 15th, of the same year. The

CCCTB, and its associated super deduction on R&D, was then submitted to the Council of the Eu-

ropean Union for validation. On May 18th 2021, while the CCCTB was still waiting for validation,

the European Commission (EC) adopted a new communication on business taxation in which it pro-

poses a new framework dubbed BEFIT, destined to replace and extend the 2016 CCCTB proposal. At

such, it will likely incorporate a (possibly updated) super-deduction on R&D. The BEFIT initiative

is currently handled by the Economic and Monetary Affairs Committee of the European Parliament

and under technical examination by the Council of the European Union.9

Whatever the outcome of this long legislative process, if a super-deduction on R&D expenditures

is finally implemented as part of BEFIT, it will not make a clean slate - at least not in the short run -

of all the R&DTCs that currently exist within EU Member states. This specific EU context therefore

makes our projected empirical analysis on EU Member states, with harmonized industry-level data,

particularly relevant. Before detailing the precise aims, scope and methodology of our empirical

analysis, though, we need to further sketch and illustrate the sheer variety of R&D tax incentives that

exist throughout Europe - variety to which we have only hinted at in the present section.

III The complexity of R&DTCs illustrated for selected EU Member states

We now turn to the examination of R&DTC schemes in eight EU Member states: Austria, Bel-

gium, Czech Republic, France, Italy, The Netherlands, Spain and the United Kingdom. This selection

was partly imposed by data constraints10 (see Section IV) but nevertheless gives a fair representation

of the EU, as it includes: (1) four members of the Inner Six (Belgium, France, Italy and the Nether-

lands), i.e. the founding members of the European Economic Community (EEC) in 1957, (2) two

western European States that joined the European Community (successor to the EEC) in the 1970s

(the United Kingdom, UK) and 1980s (Spain), (3) a western European State that joined the EU (succes-

sor to the European Community) in the 1990s (Austria) and (4) a former Communist State of Eastern

Europe that joined the EU in 2004 (Czech Republic). The situation of the UK is unique among these

CCCTB proposal still prevailed in the 2016 proposal: “A company which does not qualify or does not opt for the system
provided for by the CCCTB Directive remains subject to the national corporate tax rules, which may include specific tax
incentive schemes in favour of Research & Development." (European Commission (2011), p. 6)

9See https://www.europarl.europa.eu/legislative-train/theme-an-economy-that-works-for-people/file-befit and
https://www.europarl.europa.eu/legislative-train/carriage/befit/report?sid=8101 to follow the progress of the EU
"legislative train" on BEFIT.

10These countries are those for which we were able to gather complete industry-level panel datasets, spanning a time
period that goes from the mid-1970s/early 1980s to the late 2010s, and containing information on R&D, innovation and
productivity.
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countries: the UK was an EU Member state over the observation period (late 1970’s to late 2010’s)

but has officially left the EU in January 2021, at the end of the 4-year process known as Brexit. The

possible implications of Brexit for the R&DTC-innovation-productivity relationship are discussed in

Appendix A.

In the present section, we highlight how the R&DTC schemes that exist in these countries may

differ along multiples dimensions. We do not detail the specifics of each scheme, which would be

beyond the scope of our study,11 but focus instead on some key dimensions that we illustrate with

some aspects of the above-mentioned schemes.

III.1 R&D expenditures

FIGURE 1 ABOUT HERE

Before comparing R&DTCs per se, it is useful to have a look at the state of investment in R&D in

the EU. Figure 1 displays gross R&D expenditures as a percentage of GDP for each of our selected

countries over the period 1981-2019. For the sake of comparison, Figure 1 also displays, as a bench-

mark, R&D expenditures in Germany (the only EU country that reached the 3% of GDP objective at

the national level without implementing any R&DTC over the period) as well as the OECD average

and the EU 27 average (the latter being available only from 1995 onwards). A first striking feature

is that, across the whole period, R&D expenditures in Germany remain consistently above both the

OECD average and the EU 27 average. They are also higher than in any of our selected countries for

most of the period, being caught up by the Austrian ones from 2012 onwards. By 2017, both coun-

tries had reached the afore-mentioned “3% of GDP" objective, and even gone beyond this symbolic

threshold, which was approached (but not attained) by Belgium in 2019. At that date, the remaining

countries were all neatly below, and the EU27 average had only reached 2% of GDP. This may explain

why Germany never felt the need to introduce an R&DTC. The question of whether Austria (and, to

a lesser extent, Belgium) would have caught up with Germany in the absence of tax credit remains

open, though. At the other end of the spectrum, R&D expenditures have remained consistently low

(below 1.5% of GDP) throughout the period in Italy and Spain, both countries being far below the

OECD average and the EU 27 average. Interestingly, Czech Republic (which is observed from 1995

onwards) started with a level of R&D expenditures akin to that of Italy and Spain, but managed to

get close to the EU 27 average by the end of the period.

In the remaining countries, R&D expenditures more or less follow the OECD slowly ascending

trend, while remaining below the OECD average throughout. Overall, they oscillate between the

EU 27 average (which reached 2% of GDP in 2019) and the OECD average (which is higher than

the EU average and around 2.5% of GDP in 2019). Among these countries, France is the one where

11For exhaustive comparisons, see Straathof et al. (2014), Deloitte (2014), Ernst&Young (2014). OECD (2010) also pro-
vides, for the year 2009, a useful comparative table that encompasses our selected countries.
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R&D expenditures are the highest, going above the OECD average in the 1990s and remaining close

in the 2000’s and 2010’s. Overall, Figure 1 suggests that our selected countries all have an interest

(in the light of the Lisbon Agenda and subsequent Europe 2020 and Horizon Europe objectives) in

raising their R&D expenditures. This may explain the reliance on R&DTCs as policy instruments to

achieve this objective. Nevertheless, while all these countries have implemented R&DTC schemes,

these differ widely in their timeline, tax rate and tax base. We will now provide a broad picture of

these divergences, relying on factual information gathered by crossing the references mentioned in

Footnote 11 : Deloitte (2014), Ernst&Young (2014), OECD (2010) and, last but not least, Straathof et

al. (2014).

III.2 Differences in R&DTC schemes

Regarding timeline, France was first, among the selected countries, in introducing an R&DTC.12

This was done in 1983. The credit was incremental, based on the yearly variation (increase) in R&D

expenditures, and remained so until 1998, with various changes in rates and ceiling across the pe-

riod, as well as a brief attempt at a co-existing volume-based tax credit from 1987 to 1990. In 1999,

the R&DTC was renewed for a final period of five years, and it was made permanent in 2004, with a

volume-based component introduced in parallel to the main incremental component. A major reform

made the R&DTC completely volume-based in 2008. Compared to France, the remaining countries

are latecomers: Spain introduced its first “real" R&DTC in 1995, Belgium and the Netherlands intro-

duced theirs in 1998, Italy and the UK did so in 2000 and Czech Republic in 2005. Perhaps for this

reason, these countries experimented less with their R&DTCs, and did not go through several phases

with radical changes in their tax credit schemes. That said, in Italy, the R&DTC was introduced re-

gionally at first, with a tax rebate varying across regions, and only became a harmonized national

scheme in 2006. Last but not least, the case of Austria is rather specific, as an R&DTC co-existed with

an “R&D tax allowance" (focusing on the outcome of R&D activities) from 1988 to 2010. In order

to make the Austrian tax scheme simpler and more consistent, the tax allowance was suppressed in

2010, effectively leaving the tax credit as the sole instrument.

As mentioned earlier, eligibility conditions for an R&DTC may vary widely across countries,

which results in tax bases (or, in the case of tax credit, the base for a tax rebate) varying along mul-

tiple dimensions. First, tax credits can be incremental (i.e., based on the yearly variation in R&D

expenditures) or volume-based (i.e., based on the yearly volume of R&D expenditures, possibly

with respect to a year of reference). The latter form of tax credit makes it easier for firms to obtain tax

rebates, but whether it gives them a strong incentive to increase R&D expenditures remains doubt-

ful. Nonetheless, R&DTCs are currently volume-based (or primarily volume-based) in all selected

12Giraud et al. (2014) present a detailed timeline of the French R&DTC in their report to the French Ministry of Higher
Education and Research.
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countries except in Italy, where an incremental tax credit prevails. The French R&DTC that existed

between 1983 and 1999 was also primarily incremental13 (it coexisted with a volume-based tax credit

between 1987 and 1990). In the Czech Republic, a small incremental component may be added to the

main R&DTC, which is volume-based. Overall, the current prevalence of volume-based tax credits

would likely facilitate a possible harmonization, and indeed the super-deduction conceived in the

2016 CCCTB proposal is volume-based.

The tax base can also vary with firm size and with the industry in which a firm operates. Thus,

the rate of the R&DTC in Italy during 2000-2014 was of 20 to 30% for SMEs (depending on regions),

versus 15 to 25% for medium-sized firms and 10 to 20% for large ones. In the UK,14 the R&DTC

introduced in 2000 was originally available to SMEs only and a different regime for larger companies

was introduced in parallel in 2002. The former could deduce 50% of their R&D personnel expenses

from their taxable profit, whereas the latter could deduce 25%. In 2008, these amounts could be as

high as 75% of R&D personnel expenses for SMEs and 30% for large firms. In the Netherlands, the

amount of the 1998 tax credit was of 40% of “knowledge workers" wages in SMEs versus 17% in large

firms. In 2004, it was raised to 42% for SMEs and reduced to 14% for large firms.

By contrast, in France, the current R&DTC does not formally distinguish between SMEs and large

firms,15 but the amount of the tax credit varies with respect to the investment in R&D. It is equal to

30% for investments below EUR 100 million and 5% for investments above this threshold. In effect,

since SMEs typically invest lower amounts in R&D, they will benefit from the higher tax credit - but

this scheme also let large firms benefit from the same rate (provided their investment remains below

the threshold), which is not the case in the UK or in the Netherlands. Not only may this feature of

the French tax credit give large firms an incentive to under-invest, it may also make harmonization

more difficult.

R&DTC regimes may also be industry-specific, either targeting certain industries or excluding

some industries. For instance, prior to 1992, agricultural and textile firms could not benefit from

the French R&DTC. In the UK, since 2008, pharmaceutical firms doing vaccine research can deduce

about 40 to 50% of their R&D personnel expenses from their taxable profit. This is, in effect, a specific

regime, distinct from both the SME regime and the large company regime. In the super-deduction

proposed with the 2016 CCCTB (and presumably with its successor), a specific regime for newly-

created small firms would apply, as stated in Footnote 7.

Another dimension in which tax bases vary is the existence of a ceiling to the R&DTC. Most coun-

tries impose a ceiling, and among our selection all have, at some stage, imposed one, except for Czech

13For instance, from 1985 onwards, the tax rebate was equal to 50% of the variation of a firm’s R&D expenditures between
year t and t − 1.

14See for instance https://forrestbrown.co.uk/rd-tax-credits-explained/ for a business-oriented presentation of the
British R&DTC scheme

15In the sense that the applied rates and threshold are the same for SMEs and large firms. The main difference is that
refund is immediate for SMEs, whereas it occurs after 3 years for large firms.
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Republic. In France, the tax credit introduced in 1983 had a ceiling of FF 3 million (approximately

EUR 0, 9 million16), which was raised up to 5 million (about EUR 1.3 million) in 1985 and 10 million

(about EUR 2.5 million) in 1987. A ceiling still existed in the early 2000’s, but was finally suppressed

in 2008, probably because it kept on rising (from EUR 8 million in 2004 to EUR 10 million in 2006 and

EUR 16 million in 2007). The super-deduction included in the 2016 CCCTB proposal does not impose

a ceiling: R&D expenditures are fully deductible from the consolidated corporate tax. A threshold of

EUR 20 million exists, however, for additional deductions: an additional 50% deduction is available

under the threshold, whereas the additional deduction is of “only" 25% beyond the threshold.

Last but not least, the contents of R&D expenditures that entitle firms to a tax rebate vary hugely

across countries. In the Netherlands, the expense base for the R&DTC is restricted to R&D wages (and

social contributions). In Belgium, it primarily consisted in R&D wages as well, but has been extended

to include capital assets. Investments in R&D are eligible to the tax credit provided they have no

harmful effect on the environment (a condition which does not exist in the other four countries). In

the remainder of our selected countries, the expense base includes all R&D expenditures (reported

as such in a firm’s accounts). Of all these countries, France may be the one where the definition

of R&D expenditures is the broadest. For instance, they include external R&D conducted in any

European Economic Area (EEA) country. The expense base may also include items that are beyond

the actual expenses. Thus, 200% of the wages (and overheads) of young Ph.D. graduates employed

in a private firms are tax-deductible, provided that the firm hires them on long-term contracts. In

the 2016 CCCTB proposal, the super-deduction was supposed to bear on all R&D costs incurred in a

given year, with the exception of immovable property. Its precise form in the BEFIT proposal is still

unclear a the time of this writing.

III.3 “L’exception française"

In all countries, there may sometimes be changes in R&DTC schemes, but they essentially corre-

spond to minor adjustments (typically, a change in the share of R&D expenditures that can be claimed

back by R&D-doing firms). By contrast, France has experimented, since the early 1980’s, with several

well-distinct sub-periods of R&DTC. They correspond to changes that may radically alter the design

of the tax credit scheme. In this respect, France stands somewhat apart in our selection of EU Member

states.

The French R&DTC was originally introduced in 1983 as an experiment. It was an incremental

scheme (see Sub-Section III.2) set for a fixed period of time (five years), at the end of which its rel-

evance was examined, and the decision to proceed or not with the scheme was taken. This lasted

from 1983 to 1998, and the 1999-2003 period was the final five-year renewal period of the original

16We did all conversions of French francs to euros using the online tool of the French National Statistical Institute (INSEE)
which takes long-term inflation into account.
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R&DTC. In 2004, a new R&DTC scheme was introduced, on a permanent basis. This new scheme re-

mained primarily incremental (as the original scheme had been), but now comprised a volume-based

component. Finally, a major reform made the R&DTC completely volume-based in 2008. This com-

paratively tumultuous history was worth mentioning in a specific sub-section, since we will have to

take it into account in our empirical analysis, to which we turn in the next section.

IV Empirical analysis

There exists a large literature on the evaluation of R&DTCs, the bulk of which uses micro-data

to estimate the effect of specific tax credit schemes on R&D expenditures within countries. These

studies rely primarily on structural approaches in IV settings and more rarely on quasi-experimental

methods like differences-in-differences (DID). A detailed review of this literature would go far be-

yond the scope of the present paper. The interested reader will find a very thorough one in the 122

pages-long report on R&D tax incentives addressed by Straathof et al. (2014) to the EC and a less

systematic but more recent one in Bloom et al. (2019).

Our study finds its own place in this already abundant literature, as we exploit panels of 11 to 13

industries observed for 22 to 37 years across our 8 selected EU countries to address two challenges

highlighted in the above-mentioned reviews. The first is the dearth of cross-country comparisons

on the effectiveness of R&D tax incentives. There are good reasons for this. On the one hand, har-

monized innovation survey micro-data does not necessarily provide precise information on tax in-

centives, and cross-country comparisons that use this type of data ideally require an international

team of researchers. These constraints explain why a comparative study like Czarnitzki and Lopes-

Bento (2012) had to focus on a broad measure of public R&D subsidies (and not on tax incentives)

and on an ad-hoc selection of countries (the Flanders region of Belgium, Germany, Luxembourg and

South-Africa). On the other hand, macro-econometric studies like Bloom et al. (2002) generally rely

on country-level data (a panel of 9 countries observed over 18 years, in the case of these authors),

and can only estimate an averaged effect of R&DTCs across all countries.

Since our primary interest lies in comparing EU countries, we address this first challenge head-on.

Industry-level panel data is particularly well suited to international comparisons, especially when

the number of industries and/or years is large enough to allow for within-country estimations, as is

the case with our panels, which we present in detail in Sub-Section IV.1.

The second challenge is that most studies focus on the impact of R&DTCs on R&D expenditures,

and not on innovation, let alone productivity. Still, this would be the ultimate goal, given the abun-

dant literature suggesting that growth is driven by innovation, which in turns depends on investment

in R&D. Again, we are able to tackle this challenge head-on, because our panel provides us with a

good proxy for innovation output (patenting intensity) and with a rigorously-constructed measure

of productivity (an index of Total Factor Productivity growth).
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An obvious shortcoming of industry-level data, compared for instance to firm-level data, is that

it does not provide precise information on the specifics of a given tax credit scheme. However, we

have collected precise information on the timeline of R&DTCs in each selected country, and we can

use this information for econometric identification and statistical inference. Exploiting the rich time-

series dimension of our panel, what we measure is thus the impact of doing R&D when an R&DTC is

available, compared to doing R&D in periods when it is not. This is similar in spirit to measuring the

effect of a time-varying event from a certain date onwards in pure time-series data. Our methodology

is detailed in Sub-Section IV.2. The above-mentioned shortcoming is, in our opinion, more than

offset by what our panel allows us to do, i.e., capture the long-run dynamics of R&D, innovation

and productivity across a relevant selection of EU countries, with and without R&DTC, prior to the

possible implementation of a harmonized R&DTC.

IV.1 Data and variables

Our primary data source was the EU-KLEMS database (Stehrer et al., 2019), originally compiled

by the Groningen Growth and Development Centre (GGDC) and currently run by the Vienna Insti-

tute for International Economic Studies (WIIW). We exploit the latest update of the 2019 release,17

which covers the years 1995 to 2017, matched with previous releases18 to cover the period ranging

from the late 1970s to 1995. We completed this data with information from linked OECD and EU-

ROSTAT databases on patents and R&D. This compilation of data yielded, for every country covered

in this study, a panel of 11 to 13 industries, the time dimension of which can vary from one country

to the other. Within a given country, some variables are available over a longer period of time than

others. However, constructing appropriate panels for the econometric analysis imposes a consistent

time window, so our econometric models are de facto estimated over strongly balanced panels. We

explain this balancing further at the end of this sub-section.

Our key variables are (i) R&D intensity, which can be decomposed into Business R&D inten-

sity and Government R&D intensity, (ii) patenting intensity and (iii) Total Factor Productivity (TFP),

which is sometimes called Multi-Factor Productivity (MFP) in the literature. We measure R&D in-

tensity as the ratio of R&D capital stock19 to the number of hours worked each year in each industry.

Focusing on the stocks of R&D capital which corresponds, respectively, to strictly private investment

and to publicly-supported R&D, we similarly compute Business R&D intensity (hereafter BRD) and

Government R&D intensity (hereafter GRD).

Patenting intensity is defined as the number of patents divided by the number of hours worked.

The number of patents is the number of patent applications to the European Patent Office (EPO) by

sector of economic activity (EUROSTAT, Sciences & Technology database). A concordance matrix be-

17available at https://euklems.eu/
18available at http://euklems.net
19The stock of R&D capital is computed and provided by the EU-KLEMS linked database, derived from OECD ANBERD.
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tween the International Patent Classification (IPC) and the NACE industry classification then allows

patent applications to be distributed across industries for a given country (Schmoch et al., 2003). The

division by hours worked yields a continuous aggregate indicator of innovation intensity. We use

patenting intensity as a proxy for innovation broadly speaking. We are well aware that patents are

not the only output of the innovation process, and that much innovation can occur without patenting.

Our rationale for using patenting as a proxy for innovation is that we are conducting an industry-

level (not a firm-level) analysis, and more innovative industries are likely to produce more patents on

average. Thus, the intensity of patenting in an industry reflects the intensity of innovation, broadly

defined, that occurs within this industry.

Finally, our measure of TFP is the TFP index computed at the industry level by the EUKLEMS

team on the basis of VA and expressed in base 100 for the year 2010. As explained earlier, we will

investigate the potential effect of R&DTCs by comparing periods without tax credits to periods that

saw the implementation of an R&DTC. We therefore add to our main variables dummy variables

that indicate whether an R&DTC is implemented in year t in the country to which industry i be-

longs. All of our selected countries except France have experienced a single phase of R&DTC that

was still ongoing at the end of the observation period. Therefore, for all countries except France, a

single dummy variable will suffice. France first introduced an R&DTC in 1983. The R&DTC scheme

subsequently went through four well-distinct sub-periods (as explained in Sub-Section III.3). To take

this into account, we will rely, in France, on four TC dummy variables instead of a single one.

Since our panels of industries all have a long time dimension, our variables of interest may display

a behavior that is more typical of time series than of panel data. In particular, we need to check their

stationarity, since non-stationary variables would lead to invalid econometric inference. To do so, we

conduct unit root tests (adapted for panel data) on the natural logarithm of our raw variables, prior

to the construction of the balanced panels. In the raw data, some variables are observed over a longer

period of time than others, whereas the building of the estimation panels imposes a common time

frame to all variables in a given country. In this context, it is generally wiser to perform unit root

tests on the raw variables than after building the panels, because doing so lets the econometrician

exploits the full time dimension of each variable to estimate the autoregressive models that yield the

test statistic. We perform Im-Pesaran-Shin (IPS) tests (Im et al., 2003), the test statistic of which is

built as the average of the usual Augmented Dickey-Fuller (ADF) test statistic computed for each

time series in each xit variable. We compute the ADF test statistics using Autoregressive Distributed

Lags (ADL) models with drift and trend. We implement a version of the IPS test that allows the errors

of the underlying ADL models to be serially correlated. To further account for possible cross-section

dependence between individual time series in the panels, we also implements CIPS tests, i.e. IPS tests

in which the ADF regressions are augmented with the cross-section averages of lags and lagged first-

differences of the individual series (Pesaran, 2007). CIPS are especially useful before implementing
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ARDL models (see Sub-Section IV.2).

The results of all these tests are displayed in Table 1, with the IPS tests in the upper panel and

the CIPS tests in the lower panel. The IPS tests show that all our (log-)variables are at most I(1) in

all countries, with the log of patenting intensity being I(0) in all countries. The more demanding

CIPS tests lead us to the same conclusion. Overall, all panel unit root tests thus reveal that our

variables are either I(0), i.e. stationary, or I(1). They therefore meet the prerequisite for the estimation

of cointegrating relationships with panel ARDL models, which are at the heart of our econometric

modeling, as will be explained in Sub-Section IV.2.

TABLE 1 ABOUT HERE

We further describe, in Appendix B, the construction and balancing of the panels that we will

use for our econometric estimations. We first present the list of industries in Appendix B, Table

A.1. We initially gathered information on 13 industries, namely 11 industries covering the whole of

the manufacturing sector, plus the energy industry (E-D, "Electricity, Gas and Water Supply") and

the construction industry (F, "Construction"). Unfortunately, the number of patents applications is

not available in the latter two industries. Therefore, econometric models that involve the patenting

intensity variable (see Sub-Section IV.2) can only be estimated on panels with the 11 manufactur-

ing industries in the individual dimension. Models that do not involve patenting intensity, though,

(again, see Sub-Section IV.2) can be estimated on the 13 industries (11 manufacturing industries plus

the "Electricy, Gas and Water Supply" and "Construction" industries).

In addition, to ensure a consistent time windows for our econometric models, we have to define

the starting year of a given panel as the first year in which all relevant variables are observed. In

some countries, this may be as early as the late 1970’s/early 1980’s, whereas in other the starting year

is in the mid-1990’s. Furthermore, at the time of this writing, the number of patents applications is

not available in the source dataset after 2014, which means that models involving patenting intensity

have to be estimated on panels which end in that specific year, even though some variables (such as

VA or TFP) are observed up to 2017. Taken together, these constraints make for strongly balanced

panels of 11 to 13 industries, observed over 20 years for Austria, Belgium and Czech Republic and

over 35 years for the remaining countries. We summarize the structure of these balanced panels

in Appendix B, Table A.2, which also contains information about the timeline of R&DTC’s in each

selected country. We can notice that, once an R&DTC has been triggered in a given country, it lasts

until the end of our observation period. Only in France does it undergo some significant formal

changes over time, hence the use of four TC dummy variables in this country’s models.

Last but not least, Table A.3 in Appendix B provides summary statistics (averaged over industries

and time) for our variables. This table displays a sharp contrast, in terms of innovation effort and

output, between Austria, Belgium, France, Netherlands and the UK on the one hand, and Italy and
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Spain on the other, with Czech Republic standing somewhat in the middle. Countries in the first

group all have both a high R&D intensity and a high patenting intensity. By contrast, Italy and Spain

are lagging behind on both innovation indicators, although they display a higher level of produc-

tivity, which might explain their lower investment on innovation. Indeed, if their economies have

been more dynamic (since the reference year of 2010) than those of the first group of countries, there

was less need for sustaining growth through innovation. By contrast, the five aforementioned in-

novative countries all needed to invest in innovation (and to be innovative) in order to sustain an

otherwise sluggish economy. In Czech Republic, we observe higher R&D intensities than in most

other countries, but a lower patenting intensity. This may be explained by the fact that this country

relied heavily on adaptive R&D in the catching-up process experienced during its transition from a

former Communist state to an independent democratic country in 1993 and a new EU Member state

in 2004. It relatively high average level of productivity over the period is probably further evidence

of this catching-up process.

It is also worth noting that the high patenting intensity in the most innovative countries conceals

a certain heterogeneity, as evidenced by the high dispersion (the standard deviation of the variable is

much larger than its average value). Thus, innovation output in these countries is likely to be driven

by a few innovative industries, with little patenting among the remaining industries. Conversely,

the lower patenting intensity in Czech Republic may not reflect the situation of all industries in

the country today. This observation will justify (in Sub-Section V.3) a cross-European, by-industry

investigation to complement our main analysis.

In order to get a better grasp of the dynamics and heterogeneity of innovation within each of our

selected countries, we also present the two most important innovation variables (R&D intensity as a

whole and patenting intensity) by industry for each selected country in Figures A.1 and A.2 in Ap-

pendix B. In all countries except Czech Republic, we observe an increasing trend in R&D intensity.

At the end of the period, R&D intensity is at its highest in Belgium, France, and the Netherlands

closely followed by the UK. It is at its lowest in Czech Republic. Although the increasing trend

concerns most industries, we notice that, in each selected country, a couple of industries are more

R&D-intensive than the rest. These are primarily “Chemicals and Chemical products" and “Elec-

tric, Electronic and Optical Equipment", with some country-specific R&D champions like “Transport

equipment" in France and Italy and “Coke, Petroleum and Nuclear fuel" in France, Spain and the UK.

Rather reassuringly for the R&D-innovation relationship, we observe that patenting intensity

follows the same increasing trend as our measure of R&D intensity, although a slight decline may

be observed in two UK industries (“Chemicals and Chemical products" and “Transport equipment").

At the end of the period, patenting intensity is at its highest in Belgium, the Netherlands and France,

like R&D intensity was. We also notice that, in each country, the most R&D-intensive industries (such

as the “Electric, Electronic and Optical Equipment" industry) are also the most patent-intensive ones,
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which, again, is reassuring for the R&D-innovation relationship that is at the heart of the Horizon

Europe strategy.

IV.2 Methodology

IV.2.a Introducing dynamics in a static framework

To study the R&D - innovation - productivity nexus, there exist some canonical structural econo-

metric models that all derive from a production function framework. Most of the time, these models

are estimated on cross-sectional micro-data (such as innovation surveys data), or on panels with a

short time dimension. Hence, they are usually specified as essentially static (i.e., without any AR

component). We first present bare-bones versions of two of these static models, adapted to our re-

search question and data, and build on them to introduce innovation dynamics.

The innovation production function

The first canonical model is that of the innovation production function, which gives a theoret-

ical and empirical representation of the R&D - innovation relationship. As explained in Mairesse

and Mohnen (2002), this model provides both an econometric and an interpretative (or “accounting")

framework that can be applied to various spatial units (firms, industries, countries) and makes sense

at each level of analysis. It allows researchers to assess “innovativeness" (or “innovativity") by re-

lating a measure of innovation output (based for instance on the counting of patents) to a measure

of R&D effort (e.g., stock of R&D capital or R&D intensity). In this respect, it can be linked to the

empirical literature initiated by Hall et al. (1986), and pursued, e.g., in van Ophem et al. (2002) and

Gurmu and Pérez-Sebastian (2008).

Adapted to our problematic, and applied to our industry-level panels within each of the eight

selected EU countries, Hall et al. (1986)’s model could be specified, for industry i and year t, as:

ln PIit =
p

∑
k=0

β1k ln RDit−k +
p

∑
k=0

β2k(ln RDit−k × TCt−k) + ui + vt + wit (1)

where PI denotes patenting intensity, RD denotes R&D intensity and TCt is a dummy variable equal

to 1 if an R&DTC exists in year t and to 0 otherwise. In interaction with the log-R&D intensity, it

captures the effect of doing R&D when an R&DTC is available. The model also includes an industry-

specific effect ui, a time-specific effect vt and a transitory error term wit. Model (1) relates the log-

patenting intensity to current and past log-R&D intensity. If k = 0, then Model (1) is a purely simulta-

neous specification of the innovation production function. If k>0, the model has one of more lags of

log-R&D intensity alongside its current value. Models involving only lagged values (and no current

value) of log-R&D intensity might also be considered.

CDM and the extended production function

The second canonical model is the structural model of the R&D - innovation - productivity rela-

tionship referred to as CDM (from the initials of Crépon et al. (1998), who first introduced the model).
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This (generally) multiple-equation model can be thought of as an extension of the innovation produc-

tion function to the full R&D - innovation - productivity nexus, with an additional equation dedicated

to productivity. Its estimation involves methods that aims at controlling for the potential endogeneity

of the innovation and R&D variables.

While most often applied to firm-level data, CDM has also been successfully applied to industry-

level data (e.g., Bourlès et al. (2013); Amable et al. (2016)). Bourlès et al. (2013) estimate a reduced-

form version of CDM, while Amable et al. (2016) estimate two- and tree-equations versions. Adapted

from this literature to our problematic and data, this model, in its simplest static form, could be

specified with one productivity equation and one patenting equation:

ln TFPit = α ln PIit−1 + u1i + v1t + w1it

ln PIit−1 =
p

∑
k=2

β1k ln RDit−k +
p

∑
k=2

β2k(ln RDit−k × TCt−k) + u2i + v2t + w2it (2)

where TFP is the TFP index provided by EU-KLEMS. The upper equation (the “productivity equa-

tion") relates this index to the lagged value of patenting intensity, ln PIit−1, thus taking into account

possible delays between the introduction of an innovation and its payoff in terms of productivity

(Amable et al. (2016)). The lower equation (the “patenting equation") similarly relates ln PIit−1 to

lagged values of R&D intensity, again emphasizing the delay between investment in R&D and its

outcome (Hall et al. (1986); Amable et al. (2016)). All in all, the patenting equation is quite similar to

Model (1) without the current value of R&D intensity.20

It is worth noting that the productivity equation includes more implicit controls than meet the eye

because, in the EU-KLEMS data, TFP is calculated following a classic growth accounting approach,

using a VA-based measure of aggregate output and controlling for capital and labour aggregate in-

puts.21 This approach ensures that our measure of productivity is net of the effect of the usual capital,

materials and labour inputs, the influence of materials being taken into account through the use of

a VA-based measure of output. In addition, the productivity equation includes an industry-specific

effect u1i and a time-specific effect v1t.

For our purpose, it may be more interesting to consider the following reduced form of Model (2),

obtained by substituting ln PIit−1 into the TFP equation, setting γjk = α × β jk with j = 1, 2:

ln TFPit =
p

∑
k=2

γ1k ln RDit−k +
p

∑
k=2

γ2k(ln RDit−k × TCt−k) + ui + vt + wit (3)

This model, which can be useful for instance if one lacks an appropriate measure of patenting or

innovation output, corresponds to what is known since Griliches (1979) as the extended production

function. Following Eberhardt et al. (2013) and Bond and Guceri (2017), we will rely on this extended

20Amable et al. (2016) introduce an AR component in the patenting equation, but not in the productivity equation. We
will introduce dynamics later on, and therefore keep, for the time being, to a static version of the model.

21See, e.g., Adarov and Stehrer (2019), for details of the calculation.
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production function specification to introduce dynamics. Hence, in what follows, we will focus on

Models (1) and (3).

Our panels fall within the "small n, large t" category, since even in the shortest ones the maximum

number of industries (13) is well below the minimum number of years (22). Their asymptotics are

therefore quite different from those of panels with small t (Blackburne and Frank, 2007, Blackburne

and Bumpass, 2014). In panels with large t, the assumption that the parameters of the models are

homogeneous (and that only the FE differ across groups) is often found to be inappropriate (Pesaran

and Smith, 1995, Pesaran et al., 1999, Im et al., 2003). The literature concerned with these panels

(often refered to as "heterogenous panels") suggests relying on panel autoregressive distributed lags

(ARDL) models to identify econometric relationships.22 Besides allowing parameters to vary across

groups, panel ARDL models present another practical advantage: their estimation does not call for

instruments. Modifying the order of the ARDL model generally suffices to deal with endogenous

regressors (Pesaran and Shin, 1999). There exist various consistent estimators, which can be tested

against each other using Hausman tests. We now explain how we use these models to investigate the

R&D - innovation - productivity relationship in the absence/presence of R&DTC in our study.

IV.2.b Implementing panel ARDL models: benchmark analysis

Panel ARDL models allow researchers to distinguish between long-run and short-run relation-

ships between variables. Generally, the parameters of interest in a model are those that describe

the underlying long-run relationship (if it exists) and the speed of adjustment to the long-run rela-

tionship. Following what is generally done in the literature, we first specify a long-run relationship

for both our models. For the innovation production function, we start with the simplest possible

specification of Model (1):

ln PIit = θ1i ln RDit + θ2i(ln RDit × TCt) + ωit (4)

and for the extended production function, the simplest possible specification of Model (3):

ln TFPit = θ1i ln RDit−2 + θ2i(ln RDit−2 × TCt−2) + ωit (5)

We then specify the dynamic relationships using ARDL(p, q) models in which p and q are determined

using Akaike’s Information Criterion (AIC). For the innovation production function, this yields

ln PIit =
p

∑
j=1

λij ln PIit−j +
q

∑
j=0

δ1ij ln RDit−j +
q

∑
j=0

δ2ij(ln RDit−j × TCt−j) + ui + πi.t + ϵit (6)

and for the extended production function, this leads to

ln TFPit =
p

∑
j=1

λij ln TFPit−j +
q

∑
j=2

δ1ij ln RDit−j +
q

∑
j=2

δ2ij(ln RDit−j × TCt−j) + ui + πi.t + ϵit (7)

22In Appendix C, we discuss issues that arise when one tries to introduce dynamics in Models (1) and (3) using tech-
niques designed for (micro-level) homogeneous panels.
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where all parameters are allowed to vary across industries and where ui is an industry-specific con-

stant. In practice, Model (7) will simplify somewhat because AIC will lead us to set p = 1, i.e. to

specify Model (7) as an ARDL(1, q). Both models include a deterministic time trend πi.t because, as

explained in sub-section IV.1, lnPIit is stationary around a deterministic time trend according to both

IPS and CIPS tests, while lnTFPit is trend-stationary according to IPS tests and I(1) to CIPS tests. In

fact, all of our variables are either stationary or I(1), as has been said in Sub-Section IV.1. The pres-

ence of some I(1) variables is not a limitation, because, just like their pure time series counterparts

(Pesaran and Shin, 1999), panel ARDL models can accomodate both I(0) and I(1) variables (Pesaran

and Smith, 1995, Pesaran et al., 1999, Blackburne and Frank, 2007).

When a panel ARDL model includes I(1) variables, researchers aim at identifying a cointegrat-

ing relationship, which is best evidenced by putting the ARDL models into their Error Correction

Models (ECM) form. The cointegrating relationship can be interpreted as the underlying long-run

relationship of the model. In our study, we write the ECM specification of the innovation production

function as:

∆ ln PIit = ϕi[ln PIit−1 + θ′1i ln RDit + θ′2i(ln RDit × TCt)]

+
p

∑
j=1

αij∆ ln PIit−j +
q

∑
j=0

γ1ij∆ ln RDit−j +
q

∑
j=0

γ2ij∆(ln RDit−j × TCt−j) + ui + πi.t + ϵit.
(8)

Similarly, but keeping in mind, as stated above, that Model (7) will be specified as an ARDL(1, q) in

our empirical application, we write the ECM specification of the extended production function as:

∆ ln TFPit = ϕi[ln TFPit−1 + θ′1i ln RDit + θ′2i(ln RDit × TCt)]

+
q

∑
j=2

γ1ij∆ ln RDit−j +
q

∑
j=2

γ2ij∆(ln RDit−j × TCt−j) + ui + πi.t + ϵit.
(9)

Specifying the extended production function as an ARDL(1, q) implies that there is no lag of ∆lnTFPit

in the right hand-side of Model (9).

Models (8) and (9) constitute our benchmark models. In these models, the cointegrating rela-

tionship is featured between square brackets, θ′1i and θ′2i are the long-run parameters associated with

R&D in the absence/presence of an R&DTC and ϕi is the speed-of-adjustment parameter. These three

parameters are the primary parameters of interest, derived from the ARDL(p, q) specification23 with:

ϕi = −(1 −
p

∑
j=1

λij), θ′1i =
∑

q
j=0 δ1ij

−(1 − ∑
p
j=1 λij)

, and θ′2i =
∑

q
j=0 δ2ij

−(1 − ∑
p
j=1 λij)

.

If a long-run relationship does exist, ϕi, written as above, is expected to be significantly negative.

Often dubbed "speed-of-adjustment", it can be interpreted as a measure of how fast the model returns

to the long-run relationship after deviating from it.

23The short-run parameters, i.e. the αij’s, γ1ij’s and γ2ij’s, also derive from the ARDL specification. The derivation can be
found elsewhere with slightly different notation, e.g. in Blackburne and Frank (2007). For the sake of concision, we focus
here on the parameters of interest.
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Models (8) and (9) can be estimated either exactly as they are specified above, i.e. with an unre-

stricted trend, or in a specification that integrates the trend parameter in the cointegrating relation-

ship (restricted trend). In our applications, we allow for both specifications (i.e. with unrestricted

or restricted trend), carefully choosing the one where the trend is more significant and/or where the

likelihood is higher (when relying on Maximum Likelihood.)

To estimate Models (8) and (9), we implement the three main estimators dedicated to panel ARDL

models, i.e. dynamic fixed effects (DFE), Mean Group (MG) and Pooled Mean Group (PMG), using

the xtpmg software component developed by Blackburne and Frank (2007). With the DFE estima-

tor, all coefficients except ui are held constant across industries. Due to the potential endogeneity

between the FE and the lagged dependent variable, the DFE is prone to the same bias as the FE

estimators reviewed in IV.2.a. With the MG estimator (Pesaran and Smith, 1995), all coefficients are

allowed to vary across industries. MG consists in estimating as many separate time-series regressions

as there are industries in the panel (i.e., 11 or 13) and in calculating the coefficient means (standard

errors can be computed with the Delta method). The PMG estimator (Pesaran et al., 1999) occupies a

middle ground between DFE and MG. With PMG, the long-run coefficients are held constant across

industries, whereas ϕi and the short-run coefficients are allowed to vary. The model thus obtained is

non-linear in its parameters and identification is ensured by Maximum Likelihood. In our empirical

application, we implement all three estimators and select the most appropriate using Hausman tests,

as recommended in the literature.

IV.2.c Disaggregating R&D into Business R&D and Government R&D

We estimate our benchmark models expecting to find a long-run relationship between R&D in-

tensity and the relevant outcome variable (patenting intensity in Model (8) and TFP in Model (9)).

However, even if we identify the expected relationship (e.g., a positive association between R&D and

outcome, which may vary when an R&DTC is available), we still need to go beyond the benchmark.

Indeed, relying only on R&D intensity as a whole may result in an aggregation problem if private

investment in R&D (Business R&D) and publicly-supported R&D (Government R&D) have differ-

ent effects. We therefore need to disentangle the respective effects of BRD and GRD (Business and

Government R&D intensities, as defined in Sub-Section IV.1).

To take this further step, we could simply replace ln RDit with ln BRDit and ln GRDit in our

benchmark models, interacting each new variable with the TCt indicator. We follow a subtler ap-

proach, in which the availability of an R&DTC comes in addition to other public support to R&D.24

In this approach, one envisions the TC as an addition to public costs (which it actually is) rather than

as a somewhat artificial addition to private R&D effort. Thus, the TCt indicator will be introduced in

interaction with ln GRDit only, and not with ln BRDit. This leads to the following specification of the

24We are deeply indebted to an anonymous reviewer for directing us towards this subtler approach.
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innovation production function:

∆ ln PIit = ϕi[ln PIit−1 + θ′1i ln BRDit + θ′2i ln GRDit + θ′3i(ln GRDit × TCt)] +
p

∑
j=1

αij∆ ln PIit−j

+
q

∑
j=0

γ1ij∆ ln BRDit−j +
q

∑
j=0

γ2ij∆ ln GRDit−j +
q

∑
j=0

γ3ij∆(ln GRDit−j × TCt−j) + ui + πi.t + ϵit.

(10)

The same holds for the extended production function, in which we also take into account the pos-

sibility that the knowledge generated by private investment in R&D may have both a direct effect on

TFP and an effect that is mediated through patenting, which acts as a kind of multiplier.25 So, BRDit

will be introduced on its own and in interaction with PIit, which leads to the following generalization

of the extended production function:

∆ ln TFPit = ϕi[ln TFPit−1 + θ′1i ln BRDit + θ′2i ln GRDit + θ′3i ln(BRDit × PIit)] + θ′4i(ln GRDit × TCt)]

+
q

∑
j=2

γ1ij∆ ln BRDit−j +
q

∑
j=2

γ2ij∆ ln GRDit−j +
q

∑
j=2

γ3ij∆ ln(BRDit−j × PIit−j)

+
q

∑
j=2

γ4ij∆(ln GRDit−j × TCt−j) + ui + πi.t + ϵit.

(11)

As in our benchmark analysis, we allow for the possibility of an unrestricted or restricted time

trend in both models, carefully basing our final choice on significance level and contribution to the

likelihood (for likelihood-based estimators). Identifying distinct effects of BRD and GRD shall yield

more nuanced policy implications.

V Findings and discussion

For the sake of clarity, all our tables of results follow the same structure, for both the innovation

production function and the extended production function. We split each table in three parts: the

first, indexed with the letter a, contains the results obtained on the shorter panels, in Austria, Belgium

and Czech Republic. The second, indexed with the letter b, presents those obtained on the longer

panels for countries with a single period of R&DTC, i.e. Italy, Netherlands, Spain and the UK. The

third and final part, indexed with the letter c, presents the results obtained for France.

France had to be set apart from the other long panels because in this country, as explained in Sub-

Sections III.3 and IV.1, we had to rely on four dummy variables to account for distinct sub-periods

in the R&DTC scheme: (i) TC1 covers 1983-1998, which is the sub-period of the original incremental

tax credit, renewed every five years; (ii) TC2 covers 1999-2003, the final five years of the original tax

credit, with uncertainty regarding its renewal; (iii) TC3 covers 2004-2007, the sub-period in which the

25We are indebted to the same reviewer for suggesting this specification.

20



tax credit, now primarily incremental with a volume-based component, was made permanent; (iv)

TC4 covers 2008 to the end of the panel, the sub-period in which the tax credit has become wholly

volume-based. With these details in mind, we can now turn to our results.

V.1 Benchmark ARDL estimates

We first present the results obtained with our benchmark ARDL models, focusing our comments

on the long-run parameters, θ′1 (associated with R&D intensity) and θ′2 (associated with R&D inten-

sity when an R&DTC is available), as well as on the speed-of-adjustment parameter, ϕi. We provide

estimates of the former in the upper part (labelled "Long run (ECT)") of each table of results, and

an estimate of the latter (averaged over all cross-sections) in the lower part (labelled "Short run"),

together with the averages of the other short-run coefficients. All tables feature a line for a restricted

trend coefficient in the "Long run (ECT)" part and a line for an unrestricted trend coefficient in the

"Short run" part. Depending on which type of trend is retained for a given country, we complete the

corresponding line and fill in the other with a blank sign (‘’–"). The estimates obtained for the inno-

vation production function are displayed in Tables 2a to 2c, while those obtained for the extended

production function are displayed in Tables 3a to 3c. To obtain these estimates, we experimented with

the three main estimators presented in IV.2.b and ran Hausman tests to retain the most appropriate

one in each country.

V.1.a Benchmark estimates of the innovation production function

Looking first at the innovation production function, we identify a long-run relationship between

R&D intensity and patenting intensity in all selected countries. The estimate of ϕi is always signifi-

cantly negative, as expected, ranging from -0.24 in the UK (Table 2b) to close to -1 in the three coun-

tries with shorter panels (Table 2a).26 The exact nature of the long-run relationship varies somewhat

across countries, but it always entails some positive association between R&D and patenting.

In five countries out of eight (Austria, Italy, the Netherlands, Spain and the UK), the elasticity of

patenting with respect to R&D, measured by θ′1, is significantly positive. In addition, the estimate of

θ′2 reveals that the R&D conducted in an R&DTC period is positively associated with patenting in all

five countries but Austria, where we observe a slightly negative association. Thus, the availability

of an R&DTC tends to strengthen the positive association bewteen R&D and patenting, except in

Austria where it has a dampening effect. In the later country, though, the TCt dummy variable

actually indicates a change in the tax credit that occurred in 2010 rather than the introduction of a tax

credit. As explained in Sub-Section III.2, until 2010 the Austrian R&DTC co-existed with an “R&D tax

allowance" that was conditioned on the outcome of R&D activities. This allowance was suppressed

26The estimate of about -1.49 obtained in Belgium should not be taken as face value. It is rather an econometric artifact
stemming from the comparatively short time dimension of the panel, ϕi being also drawn close to −1 in the other two
shorter panels.

21



in 2010, effectively leaving the tax credit as the sole instrument. The negative sign of θ′2 may then

simply reflect the change from a more demanding scheme, partly conditioned on innovation output,

to a less demanding one (a pure R&DTC with no incentive to achieve actual innovations).

TABLE 2a ABOUT HERE

TABLE 2b ABOUT HERE

TABLE 2c ABOUT HERE

In the remaining three countries (Czech Republic, Spain and France), we do not find any sig-

nificant association between R&D and patenting outside of the period of availability of an R&DTC.

When an R&DTC is available, the association between R&D and patenting becomes significant and

positive in all three countries. In France, this positive association endures throughout the various

phases of the tax credit, captured by the four dummy variables described in the introduction to the

present section.

Overall, our findings regarding the relationship between R&D and innovation (as measured by

patenting intensity) are rather encouraging. First, we do find that more R&D (with or without the

availability of an R&DTC) tends to be associated with more innovation, which is not always easy to

ascertain with panel data. Second, we find that, leaving the specifics of Austria aside, the availability

of an R&DTC either strengthens this association or make it become significant.

This is in line with the findings reviewed in Straathof et al. (2014), who consider that “[o]verall,

studies on the effectiveness of R&D tax incentives tend to find a positive impact on innovation."

(p.38). Indeed, Ernst and Spengel (2011) find that R&D tax incentives have a positive effect on patent-

ing in Europe. However, they do not use cross-country comparisons, but relies on a database pooling

patents applied for at the EPO level, from various European countries. Similarly, Westmore (2013),

using a panel of OECD countries (with the country as the relevant unit of analysis) finds that R&D

incentives are positively associated with patenting at the OECD level. But, again, the nature of the

data precludes cross-country comparisons. Compared to these studies, the relationship between

R&D and innovation may be more difficult to identify with industry-level panel data. This is why,

without being unduly optimistic, we do find our results encouraging: not only do we identify the

aforementioned relationship in several countries, we also observe that the availability of an R&DTC

may actually consolidate it.

V.1.b Benchmark estimates of the extended production function

Moving on now to the extended production function, we find – in Tables 3a to 3c – results that are

as unequivocal and encouraging as those found with the innovation production function. First, we

identify a long-run relationship between R&D intensity and productivity growth in all countries. The

estimate of ϕi is always significantly negative, as expected, ranging from −0.25 in the Netherlands to
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−0.51 in Italy. Second, we find a positive association between R&D intensity and TFP in all countries

except Czech Republic, i.e. in seven countries out of eight, with a long-run elasticity (θ′1i) ranging

from 0.08 in Spain and France to 0.69 in Italy. Third, θ′2i is significantly positive in six of these seven

countries, and non-significant in the seventh (the UK). In other words, the availability of an R&DTC

reinforces the observed positive association between R&D and TFP.27

TABLE 3a ABOUT HERE

TABLE 3b ABOUT HERE

TABLE 3c ABOUT HERE

Standing as the only exception in our findings is Czech Republic, where we do not observe any

significant association between R&D and TFP, and an unexpected negative effect of R&D conducted

in a period of R&DTC. This may be due to structural reasons, and more specifically to the economic

catching-up that followed the fall of the Iron Curtain and preceded the entry in the EU. Indeed, it

is likely that the R&D conducted during that period was mostly adaptive, aiming at upgrading the

country’s economy, prior to any possible gain in productivity.

To put it in a nutshell, we find that R&D conducted when an R&DTC is available reinforces an

already-existing positive association between R&D and TFP in six countries out of the eight we study.

Interpreting this result as the sole effect of an R&DTC would certainly be stretching the truth, since

other productivity-improving factors may co-occur. Nevertheless, it is reasonable to interpret it as

evidence that R&DTC’s may improve productivity in a majority of European countries. Our findings,

and this conclusion, are in line with those reached by Minniti and Venturini (2017) for the USA, after

conducting an ARDL-based analysis fairly similar to ours on a panel of US industries.

V.2 ARDL estimates with BRD and GRD

In the previous sub-section, we have identified a positive association between R&D intensity on

the one hand, and innovation and productivity on the other. Availability of an R&DTC generally

tends to strengthen this positive association. As stated in Sub-Section IV.2.c, we now disentangle the

respective effects of private investment in R&D (measured by BRD) and publicly-supported R&D

(measured by GRD). To achieve this, we now present the results obtained by estimating Models (10)

and (11), which involve both BRD and GRD in the regressors, instead of a single measure of R&D

intensity. Our tables of results follow the same structure as the one we adopted for our benchmark

analysis. Tables 4a to 4c pertain to the innovation production function, while tables 5a to 5c refer

to the extended production function. We indicate, in each table, to which variable each long-run

coefficient θ′ji refers.

27In France, this is true only during the second sub-period of the R&DTC, other sub-periods having no significant effect.
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V.2.a Estimates of the innovation production function with BRD and GRD

As in our benchmark analysis, we start by commenting the estimates of Model (10), the innova-

tion production function. Our main interest now lies in (i) identifying which channel (BRD, GRD

or both) is conducive to more innovation and (ii) examining how the availability of an R&DTC af-

fects publicly-supported R&D (GRD). As before, we successfully identify long-run relationships: The

speed-of-adjustment coefficient, ϕi, is significantly negative in all countries, ranging from −0.28 in

the UK to about −1 in Belgium (see Footnote 26). However, looking at Tables 4a to 4c reveals four

distinct types of long-run relationships. First, in Austria, private R&D (BRD) is the only type of R&D

associated with a higher level of patenting. The long-run coefficient of GRD, θ′2i, is not significant,

whereas its interaction with the TC dummy variable, captured by θ′3i, is significantly negative, as in

our benchmark analysis and presumably for the same reasons.

Second, there are two countries, the Netherlands and the UK, where the long-run elasticities of

patenting intensity with respect to BRD and GRD, measured by θ′1i and θ′2i respectively, play in op-

posite directions: BRD is positively associated with patenting intensity, whereas GRD is negatively

associated with this measure of innovation output. The positive effect of BRD seems to dominate the

negative effect of GRD: The magnitude of θ′1i is at least twice that of θ′2i (in absolute value), which

explains why we observe a positive elasticity of patenting with respect to R&D intensity as a whole

in our benchmark analysis. The coefficient of the interaction between GRD and the TC dummy vari-

able, θ′3i, is significantly negative in the Netherlands (which increases the negative effect of GRD on

patenting) and non significant in the UK. We may thus reasonably conclude that, according to our

findings, private investment in R&D drives innovation in the Netherlands and the UK. The availabil-

ity of an R&DTC has, at best, no significant influence on the innovation process and may have, at

worst, a deterrant influence.

TABLE 4a ABOUT HERE

TABLE 4b ABOUT HERE

TABLE 4c ABOUT HERE

In a third group of countries, made up of Belgium, Italy and Spain, the long-run elasticities of

patenting intensity with respect to BRD and GRD (θ′1i and θ′2i, respectively) again play in opposite

directions, but this time BRD is negatively associated with patenting whereas GRD is positively as-

sociated with it. The magnitude of θ′2i is slightly larger (in absolute value) than that θ′1i in Italy and

Spain, and is about the same in Belgium. Since our benchmark estimates display a positive elasticity

of patenting intensity with respect to R&D as a whole in these three countries, we can reasonably con-

clude that the positive effect of GRD dominates here. The coefficient of the interaction term between

GRD and the TC dummy variable, θ′3i, is non significant in Belgium and Spain, but significantly pos-

itive in Italy, thus reinforcing the positive effect of GRD on patenting in this country. Overall, in this
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group of countries, we may conclude that R&D with public support is the main driver of innovation.

The availability of an RDTC may reinforce this positive association.

To a certain extent, France is also part of this group of countries, as a positive elasticity of patent-

ing with respect to GRD balances, and possibly dominates, a negative elasticity of patenting with

respect to BRD. However, the existence of several phases of R&DTC (i.e., successive schemes), cap-

tured by four dummy variables instead of a single one, makes matters more complex and calls for a

specific discussion. First, in order to avoid collinearity issues, we had to exclude TC1 from the model

and to interact GRD with TC2, TC3 and TC4 exclusively. TC2 refers to the final incremental scheme

proposed from 1999 to 2003. During those years, firms could reasonably believe that it would be the

last opportunity to obtain tax rebates thanks to mere increments of their R&D expenditures. Thus

TC2 can be interpreted as capturing the effect of this final opportunity with respect to those offered

by the continuing incremental scheme that existed from 1983 to 1998.28 TC3 refers to the 2004-2007

experimental scheme that combined a primarily incremental component with a volume-based com-

ponent, while TC4 refers to the wholly volume-based scheme which existed from 2008 to the end of

our observation period. TC3 and TC4 can be interpreted as capturing the respective effects of these

schemes with respect to the above-mentioned continuing incremental scheme of 1983-1998.

Introducing TC2, TC3 and TC4 in interaction with GRD in the model leads to Specification (I) in

Table 4c. With this specification, we observe, as previously mentioned, a positive elasticity of patent-

ing with respect to GRD which balances, and possibly dominates, a negative elasticity of patenting

with respect to BRD. The interaction terms involving GRD and the TC2 and TC4 dummy variables

are significantly positive, adding to the positive elasticity of patenting with respect to GRD. The in-

teraction between GRD and TC3, however, is not significant. We suspected that this was caused by

the inclusion of several dummy variables in the model and estimated Specification (II) as a sensitivity

analysis. In Specification (II), we merged TC3 and TC4 in a single TC34 dummy variable, which cap-

tures the availability of a partly or wholly volume-based scheme. With this alternative specification,

the long-run elasticities of BRD and GRD both become non significant, but the interactions of GRD

with TC2 and TC34 are both significantly positive. Based on all these findings, we may conclude that

innovation in France is driven by publicly-supported R&D, especially when a (generous) R&DTC is

available. In this respect, the situation in France is quite similar to the one observed in Belgium, Italy

and Spain, despite the relative complexity of the French R&DTC history.

Finally, Czech Republic stands out with a fourth type of long-run relationship, in which patenting

is not associated with BRD nor GRD, outside of the period when an R&DTC becomes available. When

the R&DTC is available, a positive association between patenting and GRD appears, as evidenced by

the sign and significance of θ′3i, the coefficient of the interaction between GRD and the TC dummy.

28Since our observation period starts in 1980 in France, and since the ARDL model involves up to 3-year lags, the years
preceding 1983, when there was no R&DTC, cannot be taken into account in the estimation.
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This finding, which is consistent with our benchmark estimation, leads us to conclude that in Czech

Republic, innovation is primarily driven by publicly-supported R&D conducted under an R&DTC.

The existence of a tax credit seems to be a prerequisite for innovation.

V.2.b Estimates of the extended production function with BRD and GRD

We now turn to a commentary on the estimates of Model (11), the extended production func-

tion. We first want to determine whether TFP is primarily driven by BRD, GRD or both. When GRD

appears as a driver of productivity, we will examine how the availability of an R&DTC affects this

relationship. When BRD appears as a driver, we will examine the relative importance of its direct

effect and of its effect mediated through patenting. As before, the speed-of-adjustment coefficient,

ϕi, is significantly negative in all countries (ranging from −0.09 in France to about −0.43 in Austria),

which allows us to focus on long-run relationships. The estimates displayed in Tables 5a to 5c reveal

that the unequivocal relationship identified in our benchmark estimations (an overall positive elas-

ticity of TFP with respect to R&D as a whole, strengthened by the existence of an R&DTC) actually

conceals a diversity of situations.

TABLE 5a ABOUT HERE

TABLE 5b ABOUT HERE

TABLE 5c ABOUT HERE

In a majority of countries, consisting of Austria, Belgium, France, the Netherlands and Spain, we

identify a positive long-run elasticity of TFP with respect to BRD (measured by θ′1i) and a negative

long-run elasticity of TFP with respect to GRD (measured by θ′2i). The magnitude of θ′1i is much larger

than that of θ′2i (in absolute value), which explains why we observe a positive long-run elasticity of

TFP to R&D intensity as whole in our benchmark estimates. Looking further into this group reveals

more diversity. First, Belgium is the only country among these five where we observe a multiplying

effect of patents (i.e. where elasticity θ′3i is significant and, in this case, positive). Second, and more

importantly, we observe a positive association between TFP and GRD when an R&DTC is available

(i.e., a significant effect of the interaction between GRD and the TC indicators) in Belgium, France

and the Netherlands,29 but neither in Austria nor in Spain. Overall, we can conclude that although

private investment in R&D is the main driver of productivity in this group of countries, a certain

diversity prevails as regards the use and effect of R&DTC.

Outside the above-mentioned five countries, we observe three distinct long-run relationships. In

Italy (Table 5b), the long-run elasticity of TFP with respect to GRD (measured by θ′2i) is significantly

positive, and so is the interaction of GRD with the TC dummy (captured by θ′4i). By contrast, the direct

29In France, to avoid multicollinearity issues, we used only two dummy variables, TC2 and TC34, rather than three,
much like in Specification (II) of the innovation production function. Both their interactions with GRD are positively
associated with TFP.
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long-run elasticity of TFP with respect to BRD (measured by θ′1i) is not significant, and neither is the

indirect elasticity (which takes patenting into account), θ′3i. We can therefore conclude that publicly-

supported R&D is the primary driver of productivity in Italy, and that this positive relationship is

reinforced when an R&DTC is available.

In the UK (also in Table 5b), the direct effect of BRD on TFP (measured by θ1i) is significantly

negative, but its interacted effect through patenting (measured by θ3i) is significantly positive. In

addition, the long-run elasticity of TFP with respect to GRD (measured by θ2i) is significantly pos-

itive, but the interaction of GRD with the TC dummy variable (captured by θ4i) has not significant

effect. We may therefore conclude that in the UK, TFP is driven by a mix of patent-inducing private

investment in R&D and of publicly-supported R&D without tax credit.

Finally, our findings for Czech Republic (Table 5a) confirm our benchmark estimates: we do not

observe any significant association between TFP and BRD or GRD,30 but we identify a negative effect

of GRD conducted during a period of R&DTC. Again, this may be due to the economic catching-up

already described in Sub-Section V.1.a.

V.3 Targeting innovative industries

Although our benchmark estimates suggest that R&D conducted when an R&DTC is available

may favour innovation and productivity, disentangling the respective effects of public and private

R&D reveals a certain diversity behind this apparent uniformity. We now discuss another possible

deconstruction of our benchmark estimates. Indeed, the conclusions to which they point out may

be driven by some industries more than others. This is an issue that sometimes arise in policy dis-

cussions, but that has not been formalized much in the literature. Among the welcome exceptions,

Antonelli (2020) brings forwards theoretical arguments in favour of aiming R&DTC at firms or in-

dustries where “input additionality"31 is larger than 1, i.e., firms or industries which use R&DTC not

simply to maintain their R&D activities but also to generate new ones. In the same vein, Akcigit et al.

(2022) develop a theoretical reasoning, complemented by empirical estimations, which leads them to

conclude that there is indeed room for improvement in R&DTC policies. They suggest for instance

conditioning R&D tax incentives on innovation performance (which may vary across industries, and

even across firms).

Being aware of this literature, we thought that identifying which European industries are likely

to make potential targets for conditional R&DTC would nicely complement our study. To do so, we

needed long-run estimates of the innovation production function and/or of the extended production

function by industry rather than by country. In our empirical analysis, the MG and PMG estimators

30Due to collinearity issues, we were not able to include BRD and GRD simultaneously in the Czech ARDL model. We
included either one or the other, which led to Specifications (I) and (II) in Table 5a. As one can easily see in this table, both
specifications yield similar results, and in particular identical estimates for the interaction between GRD and TC.

31Defined in Antonelli (2020) as the flow of additional R&D activities carried out by the recipient of public funding with
respect to the amount of funding received.
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let the short-run estimates of ARDL models vary across industries. In order to obtain the required

long-run estimates by industry, we turned around the position of countries and industries, using

panels of countries to estimate, within each industry, ARDL versions of the innovation production

function and of the extended production function.

Using a balanced panel of 5 countries (France32, Italy, Netherlands, Spain and UK) observed

over 35 years,33 we were able to estimate the ARDL innovation production function in 11 industries

and the extended production function in 13 industries.34 We were not able to identify a long-run

relationship between R&D and patents with the innovation production function, because the speed

of adjustment ϕi was systematically insignificant. In contrast, with the extended production function,

ϕi was significant in every industry. Table A.4 in Appendix B displays these estimates of ϕi, as well as

the estimates of θ′1 and θ′2, the long-run elasticities of R&D intensity and of R&D intensity interacted

with the TC dummy variable, respectively.

Table A.4 reveals that the estimate of ϕi ranges from −0.33 in the "Food Products" industry to

−0.56 in the "Rubber & Plastic" industry. We observe a significantly positive long-run elasticity of

TFP with respect to R&D intensity in a majority of industries (10 out of 13). Regarding the effect

of R&D conducted when an R&DTC is available, which is our main variable of interest in this ex-

periment, we find a significantly positive estimate of θ′2 in only four industries: "Food Products",

"Metals and Fabricated Metal Products", Machinery and equipment" and "Other Manufacturing". In

three industries ("Textile, Apparel and Leather", "Chemicals and Chemical Products" and "Electricity,

Gas and Water Supply" industries), the estimate is negative. In the remaining six industries, it is not

significant.

While these estimates should be taken with great caution (due, in particular, to the short size

of the panels), they point out to four industries where R&D conducted in an R&DTC period has a

potentially positive effect on TFP growth. While the R&DTC may not be the sole factor that drives

this results, it can be interpreted as evidence that these industries are the ones where an R&DTC

would be likely to have most impact. There is of course a wide gap, which we do not intend to

bridge, between this exploratory findings and any policy advice. Our rough estimates are not enough

to justify targeting these industries rather than others. What they do suggest, though, is that some

industries may do better than others with the extra R&D expeditures they derive from tax credits.

In this respect, targeting some (carefully identified) industries rather than others, as suggested in

Antonelli (2020) and Akcigit et al. (2022), makes sense and should be considered when implementing

an R&DTC. At the EU level, this logic could be extended to serve the objectives of the European Green

32For the purpose of this analysis, the four sub-periods of the French R&DTC were all merged into one, obviously at the
cost of some loss of information.

33We first experimented with a balanced panel involving all 8 countries during 20 years, but the estimations proved
unfeasible on this panel, probably due to the short time dimension, in addition to the small n.

34As explained in Sub-Section IV.1, the patents variable is not available in the "Electricy, Gas and Water Supply" and
"Construction" industries.
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Deal, for instance by targeting industries where an R&DTC is most likely to generate eco-innovations.

The recent project of rebuilding Europe’s own defense capacity, evoked as a consequence of the war

in Ukraine and of a possible disengagement of the USA, could also benefit from similar targeting.

V.4 Policy implications

At first glance, our benchmark estimates suggest that national R&DTC may be associated with

more innovation and a higher level of productivity in almost all the countries covered in our study.

However, disentangling the respective effects of private and public R&D reveals a greater diversity

of situations: In some countries, innovation and productivity are primarily driven by Business R&D

(BRD), whereas, in others, Government R&D (GRD) appears as the primary driver. In the latter case,

the availability of an R&DTC may add to the baseline effect of GRD, but this is not systematic.

More specifically, regarding the effect on innovation, we find that GRD conducted during a period

of R&DTC acts as a complement to baseline GRD in Italy, and as a substitute in Czech Republic and in

France. In Belgium and Spain, where innovation is primarily driven by GRD, we do not observe any

significant effect of R&DTC. In Austria and the Netherlands, where innovation is primarily driven

by BRD, GRD coupled with an R&DTC has a deterring effect. Finally, in the UK, where BRD is also

the primary driver of innovation, there is no significant effect of R&DTC.

As regards productivity, we observe a positive association with GRD conducted under an R&DTC

scheme in Belgium, France and the Netherlands, three countries where BRD appears as the primary

driver of TFP. This finding suggests that, in these countries, this specific form of public support adds

to private R&D effort to sustain productivity. In Austria and Spain, where BRD is also the primary

driver of productivity, we do not find any evidence of an influence of R&DTC. In Italy, where the

primary driver of productivity is GRD, we observe a complementary positive effect of R&DTC. In

the UK, where TFP is driven by a mix of BRD (mediated through patenting) and GRD, we do not

observe any significant effect of R&DTC. Finally, in Czech Republic, the availability of an R&DTC is

negatively associated with productivity, probably due to the reasons already detailed in Sub-Section

V.1.b.

Even if we leave aside the UK, that is not a member of the EU anymore, this diversity of situations

is enough to raise a doubt on the timeliness of a common EU R&DTC. Overall, when distinguishing

between publicly-supported and private R&D, national schemes seem to be associated with an in-

crease in innovation in three countries out of eight, and with an increase in productivity in four

countries. Other national policy instruments – the effect of which is encompassed in GRD – may also

play a significant role in fostering innovation and productivity. The divergences we observe within

our group of eight countries may be an indication of even more contrast at the level of the EU 27.

In the light of these findings, a common EU tax credit of the type included in the BEFIT proposal

appears as a slightly premature suggestion.
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Our tentative analysis on a panel of industries across countries reinforces this conclusion. Indeed,

even when considering R&D intensity as a whole (i.e., without distinguishing R&D with public sup-

port from private R&D), we find a positive association between the existence of an R&DTC and

productivity in only four industries out of thirteen. This finding is in line with the word of cau-

tion expressed in van Pottelsberghe de la Potterie (2008): Harmonized R&D policy rules at the EU

level should take country-level industrial specialization into account. Thus, an EU-level R&DTC that

would target industries where investment in R&D is likely to generate new R&D activities and ac-

tual innovations in several countries (in effect, the most innovative EU industries) may prove more

effective than a general one, no matter how generous. Properly identifying these EU "innovation

champions" and their reaction to an R&DTC calls for further investigation (probably at a more dis-

aggregated level) and perhaps for some policy experimentation.

Before concluding, a remark on the UK is in order. This country was an EU Member state during

the whole of our observation period (1980-2017) but left the EU in 2021, which places it in a rather

unique situation. If an initiative like BEFIT were to become a reality, British firms would not benefit

from the super-deduction on R&D, except for those firms that would choose to relocate in the EU.

Therefore, the UK would have to rely on its own national R&D policies to spur its innovation effort.

Since we find, in our empirical analyses, that innovation and productivity in the UK do not corre-

late with the existence of an R&DTC, this country should probably not rely on this type of policy

instrument anyway for the future of its science and innovation policy. Public-private partnerships in

research appear as credible alternatives, but probably imply sustained commitment to the EU Hori-

zon programme (and its successors), as suggested in Appendix A. Other partnerships (with the USA,

for instance) can be considered, but having one of the world’s most research-intensive areas at one’s

doorstep and leaving it untapped would not be a sound strategy (Wellcome Trust, 2020).

VI Conclusion

Using industry-level panel data for 8 EU countries (Austria, Belgium, Czech Republic, France,

Italy, the Netherlands, Spain and the UK), we have re-examined the effect of R&D on innovation and

productivity in the absence/presence of an R&DTC. To conduct this re-examination, which makes

sense in the context of a proposed EU-wide “super deduction" on R&D expenditures, we imple-

mented two canonical models: the innovation production function, linking R&D intensity to patent-

ing intensity, and the extended production function, linking R&D intensity to productivity. While

these models are primarily static in the existing literature, we introduced dynamics by including an

AR component in each model.

Our panels having a long time dimension and a comparatively small number of industries we

used ARDL specifications and relevant estimators to identify long-run relationships (i) between R&D

intensity and patenting and (ii) between R&D intensity and TFP. Overall, we find R&D intensity
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as a whole to be positively associated with both innovation and productivity growth. The R&D

specifically conducted when an R&DTC is available either reinforces an already-existing positive

association or makes the positive association possible where none existed before.

These benchmark findings however conceal a diversity of situations which appear when we dis-

entangle the respective effects of purely private business R&D (BRD) and government-supported

R&D (GRD). The former appears as the main driver of innovation and productivity in some coun-

tries, whereas the latter is the main driver in others. The availability of R&DTC is no longer system-

atically associated with more innovation or a higher productivity. Other public policy instruments

embedded in GRD may prove as effective.

The main policy implication we derive from these results is that a "super-deduction" on R&D of

the type proposed in BEFIT may be a little premature. Its effectiveness may depend more, in the

end, on the taking into account of country specifics, particularly industrial specialization, than on

the generosity of the scheme. Targeting specific industries with a potentially high return on R&D in

terms of productivity across the EU may be a good idea, as suggested by our complementary analysis

conducted in 13 industries on a 5-country, 35-year panel.
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Figure 1: R&D expenditures in % of GDP for selected EU countries, 1981-2019

Source: OECD
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Table 1: Unit root tests on all key variables, by country

CZ: Czech Republic, NL: Netherlands, BRD: Business R&D, GRD: Government R&D
N: number of industries, T: years. In order not to overburden the table, N and T are not provided for: (i)

first-differenced variables, as they are simply the N and T-1 of level variables; (ii) Business and Government
R&D intensities, because they are identical to those of total R&D intensity; (iii) CIPS tests, as they are identical
to the N and T featured in IPS tests.
In some countries, records of R&D stock start after records of productivity and patenting, which explains the

shorter time dimension for the R&D intensity variables in these countries.
Significance levels: a p-value < 0.01, b p-value < 0.05, c p-value < 0.10.
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Table 2a: Innovation production function - benchmark ARDL estimates - Austria, Belgium and
Czech Republic

AT: Austria, BE: Belgium, CZ: Czech Republic
Significance levels: a p-value < 0.01, b p-value < 0.05, c p-value < 0.10.
Standard errors in parentheses.
Coefficients θ′1i and θ′2i are the long-run coefficients of ln RDit and ln RDit x TCt, respectively; ϕi is the speed-

of-adjustment.
Hausman tests systematically discard the DFE estimator in favour of the PMG and MG estimators.
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Table 2b: Innovation production function - benchmark ARDL estimates - Italy, the Netherlands,
Spain and the UK

IT: Italy, NL: Netherlands, SP: Spain, UK: United Kingdom
Significance levels: a p-value < 0.01, b p-value < 0.05, c p-value < 0.10.
Standard errors in parentheses.
Coefficients θ′1i and θ′2i are the long-run coefficients of ln RDit and ln RDit x TCt, respectively; ϕi is the speed-

of-adjustment.
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Table 2c: Innovation production function - benchmark ARDL estimates - France

Significance levels: a p-value < 0.01, b p-value < 0.05, c p-value < 0.10.
Standard errors in parentheses.
Coefficient ϕi is the speed-of-adjustment.
Hausman tests systematically discarded the DFE estimator in favour of the PMG and MG estimators.
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Table 3a: Extended production function - benchmark ARDL estimates - Austria, Belgium and
Czech Republic

AT: Austria, BE: Belgium, CZ: Czech Republic
Significance levels: a p-value < 0.01, b p-value < 0.05, c p-value < 0.10.
Coefficients θ′1i and θ′2i are the long-run coefficients of ln RDit and ln RDit x TCt, respectively; ϕi is the speed-

of-adjustment.
Hausman tests systematically discard the DFE estimator in favour of the PMG and MG estimators.
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Table 3b: Extended production function - benchmark ARDL estimates - Italy, the Netherlands,
Spain and the UK

IT: Italy, NL: Netherlands, SP: Spain, UK: United Kingdom
Significance levels: a p-value < 0.01, b p-value < 0.05, c p-value < 0.10.
Standard errors in parentheses.
Coefficients θ′1i and θ′2i are the long-run coefficients of ln RDit and ln RDit x TCt, respectively; ϕi is the speed-

of-adjustment.
Hausman tests systematically discard the DFE estimator in favour of the PMG and MG estimators.
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Table 3c: Extended production function - benchmark ARDL estimates - France

Significance levels: a p-value < 0.01, b p-value < 0.05, c p-value < 0.10.
Standard errors in parentheses.
Coefficient ϕi is the speed-of-adjustment.
Hausman tests systematically discarded the DFE estimator in favour of the PMG and MG estimators.
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Table 4a: ARDL estimates of innovation production function with Business and Government R&D
(Austria, Belgium and Czech Republic)

AT: Austria, BE: Belgium, CZ: Czech Republic
Significance levels: a p-value < 0.01, b p-value < 0.05, c p-value < 0.10.
Standard errors in parentheses.
Coefficient ϕi is the speed-of-adjustment.
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Table 4b: ARDL innovation production function estimates with Business and Government R&D
(Italy, The Netherlands, Spain and the UK)

IT: Italy, NL: Netherlands, SP: Spain, UK: United Kingdom
Significance levels: a p-value < 0.01, b p-value < 0.05, c p-value < 0.10.
Standard errors in parentheses.
Coefficient ϕi is the speed-of-adjustment.
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Table 4c: ARDL estimates of innovation production function with Business and Government R&D
(France)

Significance levels: a p-value < 0.01, b p-value < 0.05, c p-value < 0.10.
Standard errors in parentheses.
Coefficient ϕi is the speed-of-adjustment.
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Table 5a: ARDL estimates of extended production function with Business and Government R&D
(Austria, Belgium and Czech Republic)

AT: Austria, BE: Belgium, CZ: Czech Republic
Significance levels: a p-value < 0.01, b p-value < 0.05, c p-value < 0.10.
Standard errors in parentheses.
Coefficient ϕi is the speed-of-adjustment.
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Table 5b: ARDL estimates of extended production function with Business and Government R&D
(Italy, the Netherlands, Spain and the UK)

IT: Italy, NL: Netherlands, SP: Spain, UK: United Kingdom
Significance levels: a p-value < 0.01, b p-value < 0.05, c p-value < 0.10.
Standard errors in parentheses.
Coefficient ϕi is the speed-of-adjustment.
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Table 5c: ARDL estimates of extended production function with Business and Government R&D
(France)

Significance levels: a p-value < 0.01, b p-value < 0.05, c p-value < 0.10.
Standard errors in parentheses.
Coefficient ϕi is the speed-of-adjustment.
Hausman tests systematically discard the DFE estimator in favour of the PMG and MG estimators.
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Appendices

A Implications of Brexit

Well before the June 2016 referendum on Brexit, a panel of 150 leading academic economists (in-

cluding 12 Nobel laureates) had warned that leaving the EU would likely result in a drop of invest-

ment in the UK, harming both innovation and job growth.35 Nearly a decade after the referendum,

and four years after the Brexit became effective, the economic situation of the UK certainly does not

appear as catastrophic as it could have been. Where most economists expected, in accordance with

the academic literature, a V-shaped recession (i.e. a short and brutal contraction followed by a slower

recovery), what has been observed is a slow decline in production (Faccini and Palombo, 2021). This

pattern has been shown to arise when uncertainty concerns future (rather than current) fundamen-

tals, such as future productivity growth (Faccini and Palombo, 2021, Broadbent et al., 2024).

Regarding the magnitude of this decline, Millard et al. (2024) estimate that the long-run GDP level

of the UK is 4% below the level it would have reached had Brexit not happened, while Portes (2023)

estimate the negative impact of Brexit on current UK GDP at around 2 or 3%. Millard et al. (2024) link

this decline in GDP to negative productivity effects entailed by the increased costs of trading between

the UK and the EU post-Brexit. Recent studies such as Jones (2022) and Bui et al. (2023) indeed

document a post-Brexit stagnation or decline in productivity in the UK. Bui et al. (2023) specify that

the decline in productivity concerns the UK outside London – in their study, the productivity in

London remains similar to what it would have been without Brexit, but the productivity gap between

London and the rest of the UK is widening. Jones (2022) examine the possibilities to find a remedy

for this predicament in innovation.

According to our findings, R&DTC are not the best tool to spur innovation and productivity in

the UK. Our findings are in line with the conclusions reported in Jones (2022), which suggests that

the UK R&DTC has been ineffective in fostering innovation. Worse, being untargeted, this form of

public support to R&D also prevents the successive British governments to align the spending with

their strategic priorities, should they decide to set some.36 These findings and conclusions suggest

that post-Brexit UK should not be overly concerned with the loss of the possibility to benefit from an

EU-wide R&DTC, should it come into being.

Our findings suggest that, in order to spur innovation and regain productivity, the UK should

rather turn to other forms of public support to R&D, such as public-private cooperation in research.

This is where Brexit may have harmful consequences, if the UK fails to remain associated with EU in-

stitutions such as the European Research Council and the EU Horizon programme (the way Norway

and Switzerland do), as these were until recently the main source of funding for such cooperation

35See Craft (2016) for a summary of their argument.
36This is, in a nutshell, an application of the argument developed in Antonelli (2020)
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(Wellcome Trust, 2020, Jones, 2022). This issue is all the more serious since alternative strategies

appear sketchy at best (Jones, 2022).

B Additional tables and figures

Table A.1: List of industries (NACE, 2 digits)
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Table A.2: Balanced panel construction

  Note: The starting year of each balanced panel is the year in which all variables first become available together
in the source dataset. The end year may go up to 2017 for models that do not involve patenting (although
missing values in some variables in the latter years may constrain it in practice to 2016 or 2015). For models
that involve patenting, the end year is constrained to 2014 (the "patents" series are not available in the source
dataset after 2014 at the time of this writing). The time span of each panel is constrained by the variable with
the shortest time span and may thus vary in practice from 20 to 35 years. Similarly, the number of industries
is 13 for models that do not involve patenting, and 11 for models that involve patenting, because the "patents"
variable is not available in industries D-E ("Electricity, Gas and Water Supply") and "F" ("Construction"). Fi-
nally, in France, the years following the introduction of the first RDTC are divided into 4 well-distinct phases.

Table A.3: Summary statistics (averaged over industries and years).

  
Standard errors in parentheses. TFP index is measured in base 100 for year 2010.
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Table A.4: ARDL long-run estimates of extended production function by industry (over panels of
5 countries and 35 years)

  

Significance levels: a p-value < 0.01, b p-value < 0.05, c p-value < 0.10.
Standard errors in parentheses.
Coefficients θ1i and θ2i are the respective long-run coefficients of lnRDit and ∆(lnRDitxTCt), ϕi is the speed-

of-adjustment.
"Estimator" indicates which estimator was selected by the Hausman tests.
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Figure A.1: R&D intensity by industry for each selected EU country
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Figure A.2: Patenting intensity by industry for each selected EU country

 

   

56



C Alternative econometric approaches and their weaknesses

Estimating Models (1) to (3) in Section IV.2.a, where there is no dynamics yet, is not as straightfor-

ward as it seems, if only because R&D intensity may be endogenous. Specifying the industry effects

as fixed effects (FE) and using the within estimator to estimate Models (1) and (3) may correct for

unobserved heterogeneity, but not for endogeneity. Moreover, the within estimator is likely to yield

the type of "unsatisfactory" results highlighted in Griliches and Mairesse (1998). Implementing the

FE-2SLS estimator, using the lags of the R&D variables as instruments, could be a possible solution

to address both heterogeneity and endogeneity (Semykina and Wooldridge, 2010). However, when

applied to production function models, this estimator is likely to yield very unsatisfactory results,

just like the first-differenced GMM estimator (Mairesse and Hall, 1996).

Blundell and Bond (2000) provide a sensible explanation for this (level variables are weak instru-

ments for differenced variables) and suggest to rely instead on the system GMM (SGMM) estimator,

which has since then become the go-to solution to circumvent the above-mentioned issues. In addi-

tion, SGMM allows researchers to explicitly model dynamics, which is what we are aiming to do here.

Thus, we could simply add an AR(p) component in Model (1) to capture the dynamics of patenting:

ln PIit =
p

∑
k=1

αk ln PIit−k +
q

∑
k=0

β1k ln RDit−k +
q

∑
k=0

β2k(ln RDit−k × TCt−k) + ui + vt + wit (12)

Similarly, a dynamic version of the extended production function could be obtained by adding the

lagged dependent variable in Model (3):37

ln TFPit = α1 ln TFPit−1 +
q

∑
k=2

γ1k ln RDit−k +
q

∑
k=2

γ2k(ln RDit−k × TCt−k) + ui + vt + wit (13)

In both dynamic models, the error term wit can further be split into two components, wit = µit + mit,

where µit is allowed to be AR(1):

µit = ρµit−1 + ϵit (14)

In Model (12) (Model (13)), the coefficients of primary interest are the β1k’s and β2k’s (the γ1k’s and

γ2k’s), which provide a measure of the elasticity of patenting (TFP) with respect to R&D intensity, in

the absence/presence of an R&DTC.

Although the estimation of Models (12) and (13) with SGMM is possible in theory, it faced, in the

context of our study, a number of practical hurdles which led us to abandon this path of research after

some preliminary investigations. First, the comparatively small size of our panels, together with the

fact that the SGMM estimator relies on generated instruments, seriously limits the number of regres-

sors that can be included in Models (12) and (13). As explained in Blundell and Bond (2000, 1998)

37Including only one lag of the dependent variable, instead of several as we did in Model (12), follows what is usually
done in the literature (Bourlès et al., 2013, Bond and Guceri, 2017). It also has empirical relevance: when we implement
the extended production function as an ARDL model (see IV.2.b), the information criterion for lags selection point out to
models with one lag of lnTFPG.
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and Arellano and Bover (1995), the SGMM estimator consists in (i) adding a differenced equation to

tackle FE, thus building a system of equations, and (ii) using the lagged differences as instruments

for the variables in levels in addition to the lagged levels as instruments for the differenced equation.

The number of generated instruments can be quite large if one uses all the available lags offered in

a panel, which can be a problem in finite samples, and specifically in relatively small panels such as

the ones considered in the present study. In the absence of clear guidance from the literature, it is not

uncommon to estimate the models with the full set of generated instruments, gradually restricting it

to a minimal number of lags. Even then, the variance matrix of the moments may become singular,

which makes the Hansen overidentification test unreliable (a rather frequent problem according to

Roodman (2009a,b)).

Second, it is well known from the literature that the SGMM estimator is most appropriate - and

performs well - on "large n, small t" panels, i.e. panels with a large individual dimension and a short

time dimension (Blundell and Bond, 2000, Roodman, 2009a). In heterogeneous macro panels with

large t such as ours, the long time dimension may result in overfitting and the assumption of pa-

rameter homogeneity, required for instrumentation in SGMM, becomes an issue (Pesaran and Smith,

1995). In addition, SGMM require stationary variables whereas panel ARDL can handle I(1) vari-

ables, as mentioned in Section IV.2.b. Last but not least, SGMM assume cross-section independence,

which is not required in ADRL models, provided that appropriate tests (such as the CIPS tests we

implement in Section IV.1) are performed beforehand.
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