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I Introduction

Competition and trade policies, AI and robotics drive efficiency gains but may also create adverse

predistribution effects.1 This questions the celebrated Diamond and Mirrlees (1971a,b) production effi-

ciency theorem which advises against distorting the production sector for redistributive purposes. How

then should production policies (i.e., policies that regulate the production sector, such as competition

policies, trade agreements, technology policies, taxation of intermediate goods, and public production)

be designed? Should they be designed to maximize aggregate output only, or should they also consider

predistributive effects?

We show that the answer depends only on the nature of the income tax system. If the latter is

flexible enough to target income from each production factor independently, then production policies

that increase aggregate output can lead to a Pareto improvement. This result holds irrespective of the

predistributive effects of these policies. The key lies in the feasibility of tax adjustments that replicate

the effects of changes in factor prices on behavior and utility. Combing any production policy reform

with such “price-replicating” tax adjustments leaves both taxpayers’ utility levels and factor supplies

unchanged. This combination ensures a Pareto improvement whenever the production policy increases

aggregate output. A flexible tax system is also the key assumption to obtain Diamond and Mirrlees

(1971a,b) production efficiency theorem; other assumptions are not relevant and can be relaxed. We are

then able to generalize production efficiency to economies with market failures,2 without optimal tax

policies and with any degree of substitution between production factors. As a caveat, though, we argue

that our generalized production efficiency theorem can, in practice, become an impossibility theorem

due to the tax system’s lack of flexibility in many countries. In this case, we propose the policymakers

an empirically implementable formula that captures the welfare impact of any (small) production policy

change, in GE. This formula sums the impact of the policy on aggregate production and its predistributive

effects due to the imperfect targeting of the tax system.3 We show that empirical estimates of the markup

and of the log derivative of inverse demand with respect to the magnitude of the production policy4 can

be used to directly infer the desirability of adjusting production policies and to quantitatively determine

their impact.

Let us illustrate this with an example. In Scandinavian countries, a dual income tax system sepa-

rately targets labor and capital. Pick up one of these countries and imagine a (small) tariff cut (or any

other production policy or technological change) which would improve GDP but increases the inequal-
1Predistributive effects refer to the way policies influence the distribution of income before taxes and transfers are applied

(Hacker, 2011, Rodrik and Stantcheva, 2021).
2We also show that taxation corrects for rent-seeking and that carbon emissions are taxed in a Pigouvian way. The income

tax system always mitigates market failures.
3Naturally, this formula can also be used to determine the optimal production policy.
4Examples of these estimates are in De Loecker et al. (2020)) and Bertrand and Kramarz (2002), Biscourp et al. (2013)).
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ity between labor and capital prices (typically, wage rate and interest rate). Despite these detrimental

predistributive effects, the policymaker should validate the tariff cut while the tax authority implements

a small GE-neutralizing tax reform along the labor price-replicating and the capital price-replicating

directions. We prove that the combined effect of the tariff cut and of the GE-neutralizing tax reform is a

Pareto-improvement. This principle can be regarded as some form of Tinbergen (1952) rule: production

policies should not be concerned with redistribution, as that role falls within the area of tax policy.

Imagine now the tariff cut creates non-proportional changes in low-skilled and high-skilled labor

prices (wages). The aforementioned dual tax system is then not flexible enough to implement the re-

quired GE-neutralizing tax reform. The latter would imply modifying the marginal tax rates on both

low and high-skilled labor incomes. This is not feasible with a tax which, by definition, puts all labor

incomes together under the same tax schedule. The generalized production efficiency theorem fails and

gives way to a general incidence formula that can be implemented to obtain, in our example, the welfare

impact of the tariff change. This new incidence formula is obtained thanks to the GE-neutralizing tax

reforms, which, even though they cannot be implemented, let us solve analytically a complex fixed point

problem linked to the combination of endogenous supplies of factors, endogenous factor prices and

distortionary policies (here, a tariff cut). This incidence formula incorporates familiar sufficient statis-

tics from the tax literature (extended to account for multiple income sources and cross-base responses),

along with a new statistic, called GE-multiplier. The GE-multiplier couples the behavioral responses

well-known from PE analysis with the GE-forces. More precisely, it adjusts for market failures (i.e. it

addresses the discrepancies between the social and private returns of production factors) as well as for

the imperfect targeting.5

Interestingly, the two implementable tools this paper introduces, GE-neutralizing tax reforms and

GE-multipliers, can be used in other contexts. First, turning to optimal income tax formulas with multi-

ple income sources, this paper shows that GE-multipliers are the only new statistics needed when shifting

from a framework with fixed returns to one with endogenous returns. Second, we develop a test to deter-

mine whether a given tax system is Pareto efficient, under perfect competition.6 If it is not, the test iden-

tifies potential tax reforms that could achieve a Pareto improvement. We demonstrate that the conditions

for Pareto-improving tax reforms obtained with fixed factor returns in PE remain valid with endogenous

returns as soon as the GE-neutralizing tax reform can also be implemented. We show that combining

a Pareto-improving tax reform in PE – i.e. a reform that weakly decreases tax liabilities for income

bundle where the revealed marginal social welfare weights are negative – with a GE-neutralizing tax
5Scheuer and Werning (2016) shows that Diamond-Mirrlees model, assuming sufficiently targeted tax instruments, nests

the Mirrlees model.
6Under perfect competition and at PE, see Werning (2007), Lorenz and Sachs (2016) and Bierbrauer et al. (2023) for the

identification of Pareto improving tax reforms with labor income and see Spiritus et al. (2024), Bergstrom and Dodds (2025)
and Bierbrauer et al. (2024) for multiple income sources.
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reform is Pareto-improving in GE.7 We also show that non-negative revealed marginal welfare weights

are sufficient for establishing the non-existence of (local) Pareto-improving reform direction.

We obtain our results in a general framework where taxpayers, endowed with heterogeneous char-

acteristics, choose their factor supplies – such as effective labor units in a creative job, effective la-

bor units as an entrepreneur, or saving in distinct assets – and allocate their resulting after-tax income

to consumption. The production sector is modeled in reduced-form through inverse factor demand

functions. Whenever factors are imperfect substitutes, their prices are endogenous. Production poli-

cies impact factor prices though the inverse demand functions. To confirm the robustness of our find-

ings with this reduced-form production sector, we micro-found several production sector interventions:

pro-competitive policies reducing oligopolistic rents, taxation of intermediate goods (including AI and

robots), carbon taxation, commodity taxation (Atkinson and Stiglitz, 1976) as well as trade liberaliza-

tion, and public consumption, both examined in (Diamond and Mirrlees, 1971a,b). We show that each

aligns with our reduced-form method and that whether production interventions should be designed

solely to increase production depends entirely on the availability of tax reforms that neutralize predis-

tributive effects. Hence our approach with a reduced-form production sector includes many established

results in the literature based on micro-founded production functions, which we discuss in more details

in the literature review.

Outline The next section discusses related literature. The model is presented in Section III. We char-

acterize the tax incidence in GE and the price-replicating directions of tax reforms. In Section IV, we

present the generalized production efficiency principle along with an incidence formula for assessing

the impact of any production policy on welfare. We also briefly explain how various micro-founded

production policies can be seamlessly and easily integrated into our reduced-form representation of the

production sector. The method is presented more formally, for each policy, in Appendix B. In Section

V, we introduce new key statistics, including GE-multipliers, and explain how to empirically implement

them. In Section VI, we provide conditions for the existence of Pareto-improving tax reforms with mul-

tiple incomes and GE. In Section VII, we derive optimal tax formulas in GE under tax systems which are

unrestricted (multidimensional and nonlinear), schedular and comprehensive. All proofs are gathered in

Appendix A.

II Related literature

Our paper contributes to several strands of literature. The first examines whether production distor-

tion is optimal. At one extreme, if lump-sum transfers are available, as in the Second Welfare Theorem,
7Intuitively, the revealed welfare weights are computed from the optimal tax formula, without imposing restriction on the

tax system functional form so that it is optimized along the price-replicating directions. As a result, the GE-multipliers are
equal to zero so that conditions found in PE are valid in GE.
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or if linear taxes are available on all goods and factors, as in Diamond and Mirrlees (1971a,b) and

Dixit and Norman (1980), then optimal redistribution can be done without distorting production. In

such cases, production efficiency implies the optimality of zero taxes on intermediary goods and factors

as well as free trade. We make explicit that Diamond and Mirrlees (1971a,b) insights do not require a

(fully) optimal tax system but only one that can be reformed in order to neutralize predistributive effects.

Our generalized production efficiency theorem does also not rely on perfect competition and it extends

to settings with market failures. Importantly, we hope our contribution to be pedagogically relevant for

policies. Indeed policymakers often struggle to grasp concepts like avoiding distortions in the produc-

tion sector and ensuring the economy operates at its production frontier, as it relies on quite abstract

notions. Our paper provides a pedagogical and practical test based on the nature of the tax system. Is

the tax system flexible? If yes, the production authority can focus solely on boosting GDP, ignoring

detrimental predistributive effects. If the answer is no, the policymaker can take decision based on our

(implementable) incidence formula.

At another extreme, many articles assume two goods and two (privately known) labor types with

only income taxation available, as in Naito (1999), Guesnerie (1998), Spector (2001), Gaube (2005),

Naito (2006), Slavik and Yazici (2014) and Jacobs (2015). These articles exclude a flexible tax system

since they assume a labor income tax unable to discriminate between the different types of labor. The

same level of income drives the same tax rate, even when earned by different labor types. We argue

that this lack of tax flexibility does explain the departure from production efficiency in these articles.

Indirect tax instruments (that distort production efficiency), such as tariffs on low-skill labor intensive

goods, production subsidies for low-skill labor intensive goods, or commodity taxes on high-skill labor

intensive goods (Naito, 1999), become optimal to complement imperfect targeting. These indirect tax

instruments manipulate the high-skilled-to-low-skilled wage ratio (Stolper and Samuelson, 1941), cre-

ating a positive first-order welfare effect while relaxing incentive compatibility constraints. However,

Saez (2004) argues that in a long-run model where workers freely choose occupations, skilled workers

can take unskilled jobs, eliminating this first-order effect on welfare and restoring production efficiency.

Following our reasoning, the long run model of Saez (2004) assumes an income tax system distinguish-

ing each type of labor. By definition, it therefore incoporates its price-replicating directions for each

income source, which explains production efficiency.

Second, our results naturally extend to commodity tax problems as well as to the taxes on interme-

diate goods and factors, see (Boadway, 2012, Chapter 3) and references therein. Atkinson and Stiglitz

(1976) demonstrate that when the government imposes optimal nonlinear income taxation and the utility

function is weakly separable between goods and leisure, commodity taxation is unnecessary. In such

cases, the government should keep the commodity markets efficient. They prove their results using a
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fixed-priced model with perfect substitution between different types of production factors, such as low

and high-skilled labor. Naito (1999) shows that violating the efficiency of commodity markets can be

desirable when workers of different skills are imperfect substitutes in production, and factor prices are

endogenous. We demonstrate that the no-commodity taxation of Atkinson and Stiglitz (1976) remains

robust to endogenous factor prices, whenever the GE-neutralizing tax reforms can be implemented.

Taxes on intermediate goods and factors are particularly relevant to the debate on the taxation of

robots and AI, which can be seen as specific types of intermediate goods. Costinot and Werning (2022),

Guerreiro et al. (2021), Thuemmel (2023), and Beraja and Zorzi (2024) offer insightful derivations of

optimal robot tax formulas. We stress that their recommendations to tax or not robots depend solely

on the features of the income tax system, rather than on its optimality or on the absence of market

failures. We extend this literature by considering when GE-neutralizing tax reforms are available and

when they are not, for any type of production policy, i.e. not only indirect taxes but also policies such

as: Changes in the M&A regulation, reforms restricting the use of pollutants in production and science

policy reforms that aim at making new technology more or less affordable.8 Our findings also apply

to the trade liberalization debate, as discussed in Diamond and Mirrlees (1971a,b), Dixit and Norman

(1980, 1986), Antràs et al. (2017), Hosseini and Shourideh (2018) and Costinot and Werning (2022), as

well as to the pricing of factors for public firms compared to the private sector, as in Little and Mirrlees

(1974) and Naito (1999).

Third, we complement the optimal tax literature. Diamond and Mirrlees (1971a,b), Saez (2004)

and Saez and Zucman (2023) show that price adjustments in GE do not modify optimal tax formulas.

Our paper highlights that whether optimal tax formulas are affected by GE price adjustments depends

on perfect competition and on whether the tax system allows for improvements along price-replicating

directions. This explains why two seemingly unrelated questions–whether production policies should

be designed solely to maximize total production and whether the endogeneity of factor prices modifies

optimal tax formulas–are often framed within the same “production efficiency” result. Under perfect

competition, when the optimal tax system also optimizes along all price-replicating directions, as in

Diamond and Mirrlees (1971a,b), in the long-run model of Saez (2004) and in Saez and Zucman (2023),

production policies should be designed solely to enhance aggregate production, and tax formulas are

unaltered by the endogeneity of factor prices. In contrast, Stiglitz (1982), Naito (1999), Rothschild and

Scheuer (2013, 2014, 2016), Ales et al. (2015), Ales and Sleet (2016), Sachs et al. (2020), Schulz et

al. (2023) and Janeba and Schulz (2023) assume that different types of workers supply distinct types of
8 Examples include the merger guidelines introduced by the Biden Administration in July 2023 (weblink); simplification

of the administrative burden of the EU plant health rules to face phytosanitary threats (Regulation (EU) 2016/2031, weblink);
the EU Chips Act aiming at strengthening Europe’s semiconductor ecosystem (Regulation (EU) 2023/1781, weblink); the Tai-
wanese Statute for Upgrading Industry (SUI), introduced in 1991, which actively helped SMEs acquiring licensed technologies
(Chang and Robin, 2012).
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labor, which are imperfect substitutes, while the tax system depends only on the sum of all incomes,

i.e. is comprehensive. Due to its comprehensive nature, the optimal income tax system cannot optimize

along its price-replicating directions which depend on the income obtained from each specific factor.

This is excluded with a comprehensive tax system. As a result, in the previously cited articles, GE

effects alter the PE optimal tax formulas.9

Fourth, this paper also complements the literature on optimal redistribution where individuals can

self-select into different sectors (e.g., Gomes et al. (2017)) and sector-specific returns depend on the

aggregate effort supply via GE effects (Rothschild and Scheuer, 2013, 2014, Scheuer, 2014, Rothschild

and Scheuer, 2016). These papers analyze how GE effects modify the optimal income tax schedule

using a mechanism design approach. By assuming weakly separable preferences between effort and

consumption, they reduce the multidimensional screening problem to a one-dimensional one. They first

solve an “inner” problem, which involves solving a Mirrlees (1971) optimal tax problem for fixed levels

of aggregate effort in each sector. This yields optimal income tax formulas that incorporate multipliers

corresponding to new feasibility constraints, ensuring that aggregate effort in each sector matches pre-

determined levels. They then solve the “outer” problem, optimizing over the fixed sector-specific effort

levels, and demonstrate how GE effects influence the multipliers of the feasibility constraints, leading

to a difference between the optimal income tax schedule in GE and in PE. We borrow from Rothschild

and Scheuer (2014) by representing all types of market failures, flexibly, through inverse demand func-

tions. In addition, we incorporate the role of production policies. Our use of a tax perturbation approach

eliminates the need for weakly separable preferences. This also allows us to express how GE effects

modify tax reform analyses in an intuitive way through our GE-multipliers. When the tax system dis-

tinguishes incomes from each factor, it can be reformed along all price-replicating directions so that the

GE-multipliers shape the tax system solely to address market failures. When such failures are absent, as

in Scheuer (2014) with a tax system distinguishing salary from entrepreneurial incomes, there is no need

to pre-distribute income through factor prices, i.e. our GE-multipliers are nil. In contrast, when wage

and entrepreneurial income are comprehensively taxed, factor prices play a predistributive role and their

adjustments (captured by our GE-multipliers) increase or decrease optimal marginal income tax rates

along the income distribution. This arises from the fact that incomes are not predominantly generated

by the same factors at different income levels. For instance, in Rothschild and Scheuer (2013, Figure II)

and Sachs et al. (2020, Figure 4), the impact of GE price adjustments on the optimal marginal tax rates

are positive at low labor income levels and negative at high labor income levels.

Finally, we extend a rich literature that identifies distinct conditions for the Pareto efficiency of a tax

system. In PE, assuming perfect competition, Werning (2007), Lorenz and Sachs (2016) and Bierbrauer
9See also Kaplow (2024).
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et al. (2023) show that negative revealed welfare weights indicate a Pareto inefficiency in the observed

tax system, when taxpayers earn a single income. Bierbrauer et al. (2023) show that negative revealed

welfare weights at some income levels are equivalent to their “revenue function” being increasing around

that level, in which case a two-brackets tax reform is Pareto-improving. Spiritus et al. (2024), Bergstrom

and Dodds (2025) and Bierbrauer et al. (2024) extend the analysis to multiple income sources in PE. This

paper extends these insights by identifying Pareto-improving tax reforms with multiple incomes in GE,

under perfect competition.

III The Economic Environment

III.1 Taxpayers

We consider an economy with a unit mass of taxpayers and a production sector that produces a

numeraire good using n factors with n ≥ 2. Taxpayers are endowed with varying characteristics sum-

marized by an n̂-dimensional vector θ = (θ1, ..., θn̂), with n̂ ≥ n. These types are distributed over a

closed and convex type space Θ ⊂ Rn̂ according to a continuously differentiable density function f(·)

which is positive over Θ and a CDF F (·).

Each taxpayer supplies xi ≥ 0 units of the ith factor and her supply is denoted by x = (x1, ..., xn).

For instance, a taxpayer can supply effective units of labor x1 in a routine job, effective units of labor x2

in a creative job, effective units of labor x3 as entrepreneur, investment units in capital x4, investment

units in a specific asset x5, etc. Each supply of factor xi incurs an effort or a utility cost that depends on

the individual type θ.10

The income generated by supplying factor xi is denoted by yi = pi xi. For the taxpayers, pi

represents the private return on the ith factor they supply and is taken as given. For the firm, it is the

price of this factor. These factor prices are summarized in the vector p = (p1, ..., pn). For instance, if

x1 represents effective labor, then p1 denotes the wage per unit of effective labor, and y1 stands for labor

income. Similarly, if x2 corresponds to savings, p2 represents the gross return on savings, y2 signifies

capital income, and so forth. The various sources of income are concisely represented by the vector

y = (y1, ..., yn).

The preferences of a type-θ taxpayer are represented by the utility function (c,x;θ) 7→ U (c,x;θ),

which is assumed to be twice continuously differentiable over Rn+1
+ × Θ, increasing in the after-tax

income c (with partial derivative denoted Uc > 0) and decreasing in the supply of each factor (with

partial derivative denoted Uxi < 0). The government enforces taxes based on a tax system that depends

10Our framework can also encompass economies with different sectors, occupations, or industries, as in Rothschild and
Scheuer (2013, 2014, 2016), Scheuer (2014) and Gomes et al. (2017), where each xi stands for the amount of labor supplied
in each sector i = 1, ..., n. In Rothschild and Scheuer (2013), Scheuer (2014) and Gomes et al. (2017), workers can supply
labor only in one sector. In our model, this consists in assuming that U (c,x;θ) = −∞ if more than one supply of factor is
positive.

7



on all sources of income, denoted as: T : y = (y1, ..., yn) 7→ T (y) = T (y1, ..., yn). After-tax income,

hereafter refereed to as consumption, is: c =
∑n

i=1 yi − T (y1, ..., yn).

The marginal rate of substitution between the supply of the ith factor xi and consumption for a

taxpayer with type θ, at any bundle (c,x), is given by:

Si(c,x;θ)
def≡ −Uxi(c,x;θ)

Uc(c,x;θ)
. (1)

We assume that the utility function U (c,x;θ) is weakly concave in (c,x) and that the indifference sets

are convex in (c,x) for all utility levels and all types θ. This implies that matrix
[
Si
xj

+ Si
c Sj

]
i,j

is

positive definite, as shown in Appendix A.1.11 A θ-taxpayer chooses her supply of factors x to solve:

U(θ)
def≡ max

x=(x1,...,xn)
U

(
n∑

i=1

pk xk − T (p1 x1, ..., pn xn) ,x;θ

)
. (2)

We assume (relying on usual assumptions presented in Appendix A.2) that, for each taxpayer of

type θ ∈ Θ, these programs admit a single solution with supplies of factors denoted by X(θ)
def≡

(X1(θ), ..., Xn(θ)) and incomes denoted by Y(θ)
def≡ (Y1(θ), ..., Yn(θ)) where Yi(θ) = pi Xi(θ).

By aggregating the individual factor supplies of Xi(θ), we obtain its total quantity, Xi, used in the

production process, i.e. Xi
def≡
∫
W Xi(θ) dF (θ). The utility achieved by θ-taxpayers is U(θ) =

U (C(θ),X(θ);θ) where C(θ)
def≡
∑n

i=1 Yi(θ) − T (Y(θ)) is their consumption. The first-order

conditions are:

∀i ∈ {1, ..., n} : Si (C(θ),X(θ);θ) = pi (1− Tyi(p1 X1(θ), ..., pn Xn(θ))) . (3)

For each kind i = 1, ..., n of income, the marginal rate of substitution between the supply of factor xi

and consumption is equal to the marginal net-of-tax rate of the ith income times the ith factor price.

III.2 Production sector

The production sector can be made of different firms with potential vertical relations and horizontal

competition. Firms’ market power, rent-seeking behaviors, and production externalities, among other

phenomena, can prevail. As in Rothschild and Scheuer (2014), the production side is presented in

reduced form, with a highly flexible specification to describe how private returns depend on factors

(X1, ...,Xn) through twice-differentiable inverse demand functions:12

∀i ∈ {1, ..., n} : pi = Pi (X1, ...,Xn;α) , (4)

where α = (α1, ..., αL) ∈ A ⊂ RL is a vector of policies of dimension L, a concept we will elaborate

on later. The production function is given by the national accounting equation:

∀(X1, ...,Xn;α) : F(X1, ...,Xn;α)
def≡

n∑
i=1

Pi(X1, ...,Xn;α) Xi. (5)

11Ai,j is a term of matrix A for which the row is i and the column is j.
12Appendix B shows the robustness of the results, obtained from this reduced-form production function, using micro-

founded examples that feature multiple production sectors and taxation of several commodities.
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The GDP on the left-hand side equals the sum of incomes derived from each factor on the right-hand

side.

A specific case arises under perfect competition where the price, equivalently the private return of

factor i, pi, coincides with the marginal productivity of the ith factor, equivalently the social return of

factor i, FXi :

∀i ∈ {1, ..., n}, ∀ (X1, ...,Xn,α) : Pi(X1, ...,Xn;α) = FXi(X1, ...,Xn;α). (6)

Prices are then endogenous whenever factors are imperfect substitutes.

Profits may occur under imperfect competition or under perfect competition if the production func-

tion exhibits decreasing returns to scale. In such a case, to retrieve the national accounting equation (5),

let Xn+1(θ) denote the share of profits received by taxpayers of type θ with Xn+1 =
∫
ΘXn+1(θ) dF (θ) =

1 and aggregate profits earned by all taxpayers being equal to pn+1Xn+1 = pn+1. This additional pro-

duction factor Xn+1(θ) can be interpreted as an “entrepreneurial factor” which is inelastically supplied

(McKenzie (1959), and Mas-Colell et al. (1995, pp. 134-135)). Equation (5) then still holds, provided

that in the right-hand side of (5), i is summed from 1 to n+ 1 instead of n.

III.3 Production policy reforms

Production policies refer to interventions that impact the productive processes of firms. These poli-

cies, represented by the vector α = (α1, ..., αL) ∈ A ⊂ RL, are designed to influence how firms operate

and interact on the markets. As a result, they affect aggregate production and the prices of factors.

While these policies do not directly change individual taxpayer behavior at fixed factor prices, shifts in

factor prices can indirectly influence taxpayers’ income decisions. Our analysis of production policies

extends to examining the impact of various shocks that alter the production set, such as technological

advancements or expanded trade opportunities.

A typical example of a production policy is competition policy. This policy aims to promote com-

petition among firms by preventing monopolistic practices, reducing barriers to entry, and encouraging

market efficiency. By altering the competitive landscape, competition policy can lead to increased ag-

gregate production and changes in factor prices (see e.g. Buccirossi et al. (2013), Bourlès et al. (2013)),

as firms adjust their behavior in response to more competitive pressures. However, despite its impact on

production, this type of policy does not directly influence the consumption choices, labor supply deci-

sions or any other decisions that affect the various sources of individual income, differentiating it from

policies that target final goods or personal income. While competition policy is a typical example of a

production policy, other measures, such as intermediate goods taxation, taxes on robots and AI, public

production, trade policies, and business and environmental regulations, also fall within this category.

Footnote 8 provides several examples.
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To describe how the production sector is affected by marginal changes in the strength of the ℓth

production policy,13 we differentiate the national accounting equation (5) with respect to the direction

of the ℓth production policy αℓ:

Fαℓ
=

n∑
j=1

Xj
∂Pj

∂αℓ
=

n∑
j=1

Yj
∂logPj

∂αℓ
. (7)

where ∂logPj/∂αℓ is the log impact on jth factor price of a (small) change in the magnitude of the ℓth

production policy, assuming there has been no change in factor supplies.

We denote µ ⪋ 0 as the magnitude of any production policy reform (and later as the magnitude of

any tax reform), with each policy variable in the production policy vector α(µ) = (α1(µ), . . . , αL(µ))

being a function of µ. By summing over all policy dimensions αℓ, we obtain the aggregate marginal

changes in production as follows:

L∑
ℓ=1

Fαℓ
α′
ℓ(0) =

L∑
ℓ=1

n∑
j=1

Yj
∂logPj

∂αℓ
α′
ℓ(0). (8)

III.4 Government

The government’s resource constraint is:14

E ≤ B
def≡
∫
Θ
T (Y(θ)) dF (θ) (9)

where B represents tax revenue and E ≥ 0 denotes an exogenous public expenditure requirement.

To assess the impact of reform, we use either the Pareto criterion or a welfare function

W
def≡
∫
Θ
Φ (U(θ);θ) dF (θ). (10)

where Φ : (u,θ) 7→ Φ(u,θ) may be concave and type-dependent, is increasing in individual utility u

and twice continuously differentiable. This specification includes many different social objectives. The

objective is utilitarian when Φ(U,θ) = U and weighted utilitarian when Φ(U ;θ) = γ(θ) U . One ob-

tains maximin when γ(θ) equal zero for every taxpayer except those with the lowest utility level. When

Φ(U,θ) does not depend on type and is concave in U , one has Bergson-Samuelson preferences. We

note that the utility function U (·, ·;θ) is only one possible cardinal representation of type-θ taxpayers’

preferences. Other representations are obtained using an increasing transformation of U (·, ·;θ) such as

Φ(U (·;θ);θ). Therefore, the right-hand side of (10) can also be interpreted as a utilitarian objective

following a recardinalization of individual utility.
13There is here a slight abuse of notation since α denotes the vector of production policy and refers here to the direction of

the production policy reforms.
14According to the national accounting equation (5), the production function F represents the production net of the budgetary

costs of production sector policies.

10



The government’s Lagrangian is a linear combination of tax revenue B and welfare W written as:

L
def≡ B +

1

λ
W , (11)

where the Lagrange multiplier λ > 0 represents the social value of public funds. We choose to express

the Lagrangian in monetary units instead of utility units.

III.5 Equilibrium

We employ two distinct equilibrium concepts: partial equilibrium (PE) with exogenous prices and

general equilibrium (GE) with endogenous prices. The GE is defined by:

Definition 1 (General Equilibrium (GE)). Given a tax schedule y 7→ T (y) and production policies α, a

GE is a set of prices p = (p1, ..., pn), of factor supplies X(θ) for each type θ of taxpayers and aggregate

factors (X1, ...,Xn) such that:

i) Factor supplies X(θ) maximize θ-taxpayers utility according to (2), taking prices p as given.

ii) Prices are given by inverse demand functions (4), where aggregate factors sum up individual factor

supplies according to:

Xi
def
≡
∫
Θ
Xi(θ) dF (θ). (12)

The PE takes prices as given and thereby omits part ii) of Definition 1, as follows.

Definition 2 (Partial Equilibrium (PE)). Given a tax schedule y 7→ T (y) and a set of prices p =

(p1, ..., pn), a PE is a set of factor supplies X(θ) for each type θ of taxpayers that maximize θ-taxpayers

utility according to (2), taking prices as given.

We assume PE and GE exist and are unique.

III.6 Tax system and tax reforms

The tax schedule y 7→ T (y) is assumed to be twice continuously differentiable. A tax reform re-

places the prevailing tax schedule y 7→ T (y) by a new one y 7→ T (y)−µ R(y), µ being the magnitude

of the tax reform and the twice-continuously differentiable function R(·) specifying its direction.15 For

a given income vector y, the change in the tax burden due to the reform is therefore given by µ R(y).

We add the superscript “PE” to variables evaluated in PE. If a variable has no “PE” superscript, it is

evaluated in GE. Additionally, we indicate the direction of the considered reforms as superscripts on the

variables: R(·) for a tax reform in direction R(·), and R(·),α(·) for a tax reform in direction R(·) com-

bined with a production policy reform in direction α(·). The magnitude of the reforms is not indicated,

15While optimizing over the highly multidimensional set of tax functions, we can compute partial derivatives along any
direction R(·) of tax reforms, allowing for optimization with respect to µ for each tax reform direction.
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as we consistently use µ to represent it. Note that, in PE, when a tax reform affects factor prices, we take

the determination of prices through the mapping µ 7→ (p
R(·),α(·),PE
1 (µ), ..., pRR(·),α(·), PEn(µ)) as

given. At the GE, on the other hand, the mapping µ 7→ (p
R(·),α(·)
1 (µ), ..., p

R(·),α(·)
n (µ)) is endogenous

and determined by (4).

After a tax reform in the direction R(·) with magnitude µ, a type-θ taxpayer solves:16

UR(·),PE(θ;µ,p)
def≡ max

x
U

(
n∑

i=1

pi xi − T (p1 x1, ..., pn xn) + µ R(p1 x1, ..., pn xn),x;θ

)
. (13)

Applying the envelope theorem to (13) leads to:

dU =

[
R(y) dµ+

n∑
i=1

(1− Tyi) xi dpi

]
Uc(C(θ),X(θ);θ).

Let

g(θ)
def≡ ΦU (U(θ);θ)

λ
Uc(C(θ),X(θ);θ) (14)

denote the marginal welfare weights for taxpayers of type θ. We therefore get:

d Φ(U(θ);θ)

λ
=

[
R(y) dµ+

n∑
i=1

(1− Tyi) yi
dpi
pi

]
g(θ). (15)

Tax incidence in PE vs GE

When moving from the usual PE environment to GE, the behavioral responses and impact in terms

of well-being that prevail in PE are amplified by price adjustments, which in turn modify taxpayers’

factor supplies and their corresponding incomes. We now describe the effects on factor supplies, and

their corresponding incomes, at GE of a tax reform in the direction R(·), a production policy reform in

the direction α(·), or both reforms together.

We first define the standard statistics at the PE: compensated responses and income effects for θ-

taxpayers. The compensated responses of their ith income with respect to the jth marginal net-of-tax rate

is denoted ∂Yi(θ)/∂τj while the income effect on their ith income is ∂Yi(θ)/∂ρ.17

16We assume that the second-order condition associated holds strictly, meaning that the matrix[
Si
xj

+ Si
cSj + pi pj Tyiyj

]
i,j

is positive definite at c = C(θ), x = X(θ), and y = Y(θ), for each type θ ∈ Θ

and that for each type θ ∈ Θ, the program (2) admits a unique global maximum. These properties, further discussed in
Appendix A.2, eliminate the need to assume smooth individual responses to tax reforms. Instead, we apply the implicit
function theorem to the taxpayers’ first-order conditions (3)

17Formally, we use compensated tax reforms of direction R(y) = yj − Yj(θ) and magnitude τj to calculate ∂Yi(θ)/∂τj
that captures only substitution effects. The reform and the responses of θ-taxpayers, around income Yj(θ), are said to be
compensated since the j th marginal net-of-tax rate τj is modified while the level of tax is unchanged at y = Y(θ). We use
lump sum tax reforms of direction R(y) = 1 and magnitude ρ to calculate ∂Yi(θ)/∂ρ that captures income effects. Strictly
speaking, these responses do not just depend on the type θ, but also on the Hessian of the tax function. When the tax function
is non-linear, the responses to a tax reform generate changes in the marginal tax rates, which further induce compensated
responses to these changes in marginal tax rates, etc. (Jacquet et al., 2013). The behavioral responses encapsulate this “circular
process” through the endogeneity of the marginal tax rates.
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The response to a change in µ at GE includes PE responses, along with the additional behav-

ioral responses to factor price adjustments observed in GE. Formally, as shown in Appendix A.3,

∀i ∈ {1, ..., n}, the ith factor supply of a θ-agent is modified by:

∀θ ∈ Θ :
∂X

R(·),α(·)
i (θ;µ)

∂µ
=

∂X
R(·),PE
i (θ;µ,p)

∂µ
+

n∑
j=1

∂Xi(θ;p)

∂log pj

∂log p
R(·),α(·)
j

∂µ︸ ︷︷ ︸
Responses to price changes

, (16a)

which can be rewritten in terms of income responses as:

∀θ ∈ Θ :
∂Y

R(·),α(·)
i (θ;µ)

∂µ
=

∂Y
R(·),PE
i (θ;µ,p)

∂µ
+

n∑
j=1

∂Yi(θ;p)

∂log pj

∂log p
R(·),α(·)
j

∂µ︸ ︷︷ ︸
Responses to price changes

, (16b)

where:

pi
∂XR,PE

i (θ, µ)

∂µ
=

∂Y R,PE
i (θ, µ)

∂µ
=

n∑
j=1

∂Yi(θ)

∂τj
Ryj (Y(θ))︸ ︷︷ ︸

Compensated responses

+
∂Yi(θ)

∂ρ
R(Y(θ))︸ ︷︷ ︸

Income effects

. (16c)

Equation (16c) describes that, at PE, after a small tax reform of magnitude dµ, taxpayers’ decisions

are modified, because of changes in the n marginal tax rates by Ryj (Y(θ))dµ (for j = 1, ..., n) or

because of a change in the level of tax by R(Y(θ))dµ. These PE responses are encapsulated into the

first term on the right-hand side of (16a) and (16b). The second term in the right-hand side of (16a)

and (16b) highlights that tax and production policy reforms impact the supply of the ith factor Xi (and

income Yi) by a θ-agent not only through changes in its own price pi but also through variations in the

prices of all other factors j ̸= i. Responses across different income sources are at play in this new term.

Similarly, the impact on taxpayers’ well-being at GE includes the impact at PE, along with the

additional behavioral responses to factor price adjustments observed in GE. Formally, from (15), we

have ∀θ ∈ Θ:

1

λ

∂Φ
(
UR(·),α(·)(θ;µ);θ

)
∂µ

=

R(Y (θ)) +

n∑
j=1

(1− Tyj (Y (θ)) Yj(θ)
∂log p

R(·),α(·)
j

∂µ

 g(θ). (16d)

Price-replicating tax reforms

We now characterize a family of tax reforms that is pivotal to our results. These reforms have as

directions:

∀j ∈ {1, ..., n} : Rpj (y)
def≡ (1− Tyj (y1, ..., yn)) yj . (17)

We show, in Appendix A.4, that:
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Proposition 1. Price-replicating direction of tax reform. The impact, measured at PE, on taxpayers’

factor supplies and utility of a tax reform in the direction Rpj (y)
def
≡ (1 − Tyj (y1, ..., yn)) yj with

magnitude µ is identical to the effect of a log-change in the jth factor price at GE. Formally,

∀i :
∂XRpj ,PE

i (θ;µ,p)

∂µ
=

∂Xi(θ;p)

∂log pj
and

∂URpj ,PE(θ;µ,p)

∂µ
=

∂U(θ;p)

∂log pj
. (18)

Intuitively, the mapping

(x1, . . . , xn) 7→
n∑

i=1

pi xi − T (p1 x1, . . . , pn xn) + µ R(p1 x1, . . . , pn xn)

between factor supplies and after-tax income is the same for all taxpayers. Any tax reform or change

in factor prices affects taxpayers’ program (2) solely through alterations in this mapping. Importantly,

this mapping is perturbed identically by a log-change in the price of the jth factor and by a tax reform

in the direction Rpj (·) defined in (17), which we refer to as the “jth price-replicating direction” because

it replicates the impact of a log-change in the jth factor price. Consequently, each taxpayer’s program is

affected identically by a log-change in the price of the jth factor (at GE) and by a reform in the direction

Rpj (·) (at PE), which explains why both impact taxpayers’ factor supplies and well-being in the same

way.

III.7 Price adjustments

In PE with exogenous factor prices (e.g., fixed wages), the effects of a tax change on a specific

income of a given agent can be readily derived as a function of behavioral elasticities. However, the main

challenge in GE is that this initial response influences prices, which subsequently affects the income

decisions of all other agents. These agents may adjust their efforts to earn different types of income,

shift income from one source to another, and so forth. Similarly, a change in production policies impact

factor prices which subsequently impact factor supplies which in turn feeds back into prices, and so on.

These ripple effects are synthesized in Figure 1. Determining the GE effects of these infinite sequences

caused by tax or production policy reforms is a complex task. Our key towards this characterization is

a reduced-form production side that we capture in inverse demand functions. According to Definition 1

and inverse demand functions (4), after a tax or production policy reform of magnitude µ and direction,

respectively R(·) or α(·), the prices (p
R(·),α(·)
1 (µ), ..., p

R(·),α(·)
n (µ)) verify the following fixed-point

conditions:

∀µ,∀i ∈ {1, ..., n} p
R(·),α(·)
i (µ) = Pi

(
XR(·),α(·)
1 (µ), ...,XR(·),α(·)

n (µ)
)

(19)

where the ith aggregate factor XR(·),α(·)
i (µ) is defined from individual ith factor XR(·),α(·)

i (θ, µ) thanks

to (12). Let Ξ denote the matrix where the term in the ith line and jth column is the inverse factor’s
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X1, ...,Xn

p1, ..., pn

Demand, Eq. (4), ΞSupply, Eq. (2), ΓTax reforms at PE Production policies α

Figure 1: The GE adjustments following a tax or a production policy reform.

demand elasticity of the ith price pi with respect to the aggregate supply of the jth factor Xj :

Ξi,j
def≡ Xj

Pi

∂Pi

∂Xj
. (20a)

We denote Γ the matrix of factor supply elasticities, where the term Γi,j in the ith row and jth column

corresponds to the elasticity of the aggregate supply of the ith factor with respect to the price of the jth

factor,

Γi,j
def≡ 1

Xi

∫
Θ

∂Xi(θ;p)

∂log pj
dF (θ) =

1

Xi

∫
Θ

∂X
Rpj (·),PE
i (θ;µ,p)

∂µ
dF (θ) (20b)

where the second equality follows from Proposition 1. We denote In the n-identity matrix and assume

that the matrix In−Ξ ·Γ is invertible so that, when we log-differentiates (19), we can apply the implicit

function theorem to ensure that equilibrium prices are differentiable with respect to µ.18 We denote the

vector of log-price changes resulting from the production policy reform, assuming no changes in factor

supplies, as:

∂logPα(·)

∂µ

def≡

(
L∑

ℓ=1

∂P1

∂αℓ
α′
ℓ(0), ...,

L∑
ℓ=1

∂Pn

∂αℓ
α′
ℓ(0)

)T

. (21)

Thanks to these definitions, in the following lemma proofed in Appendix A.5, we present an equation

that formalizes the process of price adjustments.

Lemma 1. Price adjustments process in GE. Following a tax reform in direction R(·) or a production

policy reform in direction α(·), the price adjustments at GE are given by:

∂log pR(·),α(·)

∂µ
= (In − Ξ · Γ)−1 · Ξ · ∂logXR(·),PE

∂µ
+ (In − Ξ · Γ)−1 · ∂logPα(·)

∂µ
, (22)

where the required elements are: the matrix of aggregate factor supply elasticities Γ, the matrix of

inverse demand elasticities Ξ, the vector of factor supply responses calculated at the PE – the latter being

common sufficient statistics in PE tax models – and the vector of log-price changes (absent changes in

factor supplies) resulting from the production policy reform.

Lemma 1 is analytically key, as it characterizes the GE price adjustments process and identifies

the specific parameters and estimates involved. Notably, in (22), from (12), ∂ log p
R(·),PE
i /∂µ = 0

18Under perfect competition and when the production function is linear, i.e. F(X1, ...,Xn) =
∑n

i=1 Xi, matrix Ξ is nil.
Therefore, In − Ξ · Γ is invertible. Therefore, by continuity, this invertibility remains satisfied as long as the elasticities
of substitution between factors are sufficiently high and competition is not too imperfect. Moreover, using the contracting
mapping theorem, the existence and uniqueness of the GE can be shown under the assumption that for all out-of-equilibrium
price p and factor vectors X1, ...,Xn., matrices Ξ ·Γ have all eigenvalues with a modulus below a bound strictly lower than 1.
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which leads to ∂ logXR(·),PE/∂µ = ∂ logYR(·),PE/∂µ. Each ith row of these vectors measures how

aggregate factor supply or income i reacts to a tax reform of magnitude µ, in the direction R, at the PE.

Formally, from (16c), these measures are:

pi
∂XR,PE

i (θ, µ)

∂µ
=

∂YR,PE
i (θ, µ)

∂µ
=

∫
Θ


n∑

j=1

∂Yi(θ)

∂τj
Ryj (Y(θ))︸ ︷︷ ︸

Compensated responses

+
∂Yi(θ)

∂ρ
R(Y(θ))︸ ︷︷ ︸

Income effects


dF (θ). (23)

In Figure 1, we illustrate the process of price adjustments in GE. After a tax reform, the initial

taxpayers’ responses in PE impacts the supplies of production factors (through the matrix of supply

elasticities Γ) which modifies prices (through the matrix of inverse demand’s elasticities Ξ). These price

changes again impact the supplies of factors, creating an ongoing loop of interdependence between

prices of factors and their supplies. The two terms on the right-hand sides of Equation (22) are these

responses in supplies and demands that drive the infinite sequence of factor price adjustments. Equation

(23) focuses on the supply responses already present in PE, which are highlighted in blue in Figure 1.

IV Production Efficiency

In this section, we present three theorems that state our main findings pertaining to what we call the

generalized production efficiency principle. These findings highlight how (i) the characteristics of the

existing tax system and (ii) potential tax reforms lead to drastically different policy recommendations.

We will enunciate the principle in Sub-Section IV.2, but first, in Sub-section IV.1, we outline the key

economic and fiscal parameters that any government should carefully assess before implementing policy

interventions. In Subsection IV.3, we provide a decision-tree to evaluate whether a production policy

reform, efficient in increasing aggregate output, can also lead to a Pareto improvement based on the

assumptions satisfied. In Subsection IV.4, we discuss the applicability of our framework across various

micro-founded examples, showing how they extend or complement existing results in the literature,

such as those on intermediate goods taxation (e.g. taxing robots), trade regulation, business-focused

environmental regulation and competition policies.

IV.1 Economic and fiscal parameters at a glance

Assumption 1. Fully flexible tax system. The tax authority can reform the tax system in the jth price-

replicating direction, Rpj (·) (defined in (17)), for all j = 1, ..., n.

Under Assumption 1, the tax authority is able to differentiate the income derived from each indi-

vidual factor for every taxpayer. Moreover, the structure of the tax system enables reforms along all

price-replicating directions.
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Assumption 1 does not hold with comprehensive income tax systems, where total income is taxed

under a single (potentially nonlinear) schedule, y 7→ T (y) = T c(y1+ · · ·+ yn). With a comprehensive

income tax system, Equation (17) implies that the jth price-replicating direction takes the form:

Rpj (y) =
(
1− T c′(y1 + ...+ yn)

)
yj , (24)

which does not depend solely on total income y1 + ... + yn. Therefore, any reform along a price-

replicating direction Rpj (·) would no longer be consistent with a comprehensive tax system, which

therefore excludes such reforms.

In contrast, schedular tax systems, which are the sum of several (possibly non-linear) income-

specific functions, y 7→ T (y) = T s
1 (y1) + ... + T s

n(yn), enable reforms along all price-replicating

directions Rpj (·). With these systems, Equation (17) implies that the jth price-replicating direction is:

∀j ∈ {1, ..., n} : Rpj (y) =
(
1− T s′

j (yj)
)
yj . (25)

Hence, reforming a schedular tax system along price-replicating directions preserves its schedular na-

ture.

As noted by Hourani et al. (2023), schedular tax systems prevail in Costa Rica, Denmark, Finland,

Greece, Hungary, Iceland, Israel, Italy, Latvia, Lithuania, Netherlands, Norway, Poland, Slovenia, Spain,

Sweden and Turkey. In contrast, tax systems in Switzerland, the United Kingdom and the United States

are similar to comprehensive systems (Hourani et al., 2023, Table A1).

Moreover, in practice, incomes arise from various sources, such as labor and capital. Labor incomes

can be categorized into routine tasks, manual tasks, and conceptual activities, while capital incomes

encompass dividends, interest, capital gains, capital losses, rents, imputed rents, and more. The tax

authority is capable of observing the different types of capital income. However, labor incomes are

indistinguishable by type. As a result, Assumption 1 holds only when the different types of labor are

perfect substitutes. In cases where this condition does not apply, a partial observability scenario may

prevail: the government observes only the sum of the first m incomes, ȳ
def≡ y1 + · · · + ym, while fully

observing all other income types.19 The tax system can then be an unrestricted function of incomes,

(ȳ, ..., yn) 7→ T (ȳ, ym+1, ..., yn), or a mixed tax system, as T (y) = T c(ȳ) +
∑n

i=m+1 Ti(yi). The

marginal tax rates for each income from the m ≤ n factors are equal,

For j = 1, ...,m:
∂T (ȳ, ym+1, ..., yn)

∂yj
= Tȳ. (26)

Partial observability leads us to the following formal assumption:20

19Partial observability includes cases where several total incomes from different subsets of factors are observed, but separate
incomes from each of these factors are not distinguished.

20One might think that combining a schedular and a comprehensive tax system, such as y 7→ T c(y1 + ... + yn) +
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Assumption 2. Partially flexible tax system. The tax authority can reform the tax system in the so-called

comprehensive direction:

Rȳ(y)
def
≡ (1− Tȳ(ȳ, ym+1, ..., yn)) ȳ, (27)

where:

ȳ
def
≡ y1 + · · ·+ ym (28)

and in the jth price-replicating direction, Rpj (·) (defined in (17)), for all j = m+ 1, ..., n.

In this case, we also need the following assumption.

Assumption 3. Partial predistributive effects of production policy. Production policies do not alter the

factor price ratios j = 1, ...,m, with m ≤ n.

In Appendix A.6, we give examples of primitives that satisfy Assumption 3. In this paper, we will

offer precise policy recommendations for cases when either Assumption 1 or, both Assumptions 2 and 3

are satisfied, as well as when they are not. Therefore, these assumptions are the keys to sound decision-

making for policymakers.

IV.2 Generalized Production Efficiency Principle

Now that Assumptions 1 and 2 have highlighted the relevant characteristics to study in a tax sys-

tem, we identify when a tax reform can improve everyone’s situation despite a production policy that

increases aggregate output but also has adverse pre-distribution effects. To this end, we first present

two lemmas that demonstrate how taxpayers’ factor supplies and utility levels can be unaltered when

a production policy reform is combined with a so-called neutralizing tax reform. These lemmas are

demonstrated in Appendix A.7.

Lemma 2. Fully flexible tax system and GE-neutralizing tax reform. If Assumption 1 is satisfied, the

tax authority can combine any production policy reform in direction α(µ) = (α1(µ), ..., αL(µ)) with

a GE-neutralizing tax reform so that taxpayers’ factor supplies X(θ) = (X1(θ), ..., Xn(θ)) and utility

levels U(θ) are unaltered. These tax reforms have the following GE-neutralizing directions:

RN (·)
def
≡ −

n∑
j=1

γ
α(·)
j Rpj (·)︸ ︷︷ ︸

Price adjustments replication

(29a)

where the scaling factors γα(·)
j are given by:

∀j ∈ {1, ..., n} : γ
α(·)
j

def
≡

L∑
ℓ=1

∂logPj

∂αℓ
α′
ℓ(0). (29b)

T s
1 (y1) + ... + T s

n(yn), would satisfy Assumption 1. However, in the corresponding j th price-replicating direction,

Rpj (y) =
(
1− T c′(y1 + ...+ yn)− T s′

j (yj)
)
yj , the T c′(y1 + ... + yn)yj component is compatible with neither the

schedular nor the comprehensive part of this mixed tax system. Assumption 1 is therefore not satisfied. In contrast, this tax
system can be reformed in direction Rȳ(y) defined in Assumption 2.
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Neutralizing tax reforms aim at annihilating the effects of any production policy reform on tax-

payers’ welfare and their incentives to supply factors. To achieve this, their neutralizing directions

incorporate the jth price-replicating directions defined in (17).

Although the tax authority does not distinguish between certain types of income, it can still imple-

ment the GE-neutralizing tax reform (29) if Assumptions 2-3 are satisfied instead of Assumption 1.

Lemma 3. Partially flexible tax system and GE-neutralizing tax reform. If the economy satisfies

Assumptions 2 and 3, for any production policy reform with direction α(µ) = (α1(µ), ..., αL(µ)),

the GE-neutralizing reform defined by (29a) and (29b) is implementable. Therefore, combining the

production policy reform and this GE-neutralizing tax reform leaves unaltered taxpayers’ factor supplies

X(θ) = (X1(θ), ..., Xn(θ)) and utility levels U(θ).

Combining any production policy with the corresponding neutralizing tax reform yields a Pareto

improvement, as stated in the following theorems, which are demonstrated in Appendix A.8.

Theorem 1. Generalized Production Efficiency – Part I. If Assumption 1 holds, production policies

that increase aggregate output, combined with the neutralizing tax reform in the direction defined in

(29), result in a Pareto improvement. Conversely, reducing the use of production policies that decrease

aggregate output also leads to a Pareto improvement when combined with a GE-neutralizing tax reform.

Theorem 1 describes the tax reforms the tax authority should take when, for instance, a reform of

the competition policy is implemented that reduces barriers to entry (improving production efficiency),

impacts factor prices and alters the pre-distribution in the economy. Given that the government can

reform the tax system in all price-replicating directions Rpj (·), introducing (small) GE-neutralizing

tax reforms leads to a Pareto improvement. The tax system allows the government to counteract all

predistributive losses arising from the competition policy reform. Importantly, the tax system does not

need to be optimal; it simply needs to enable reforms in the neutralizing direction to be effective (thereby

counterbalancing the production policy’s impact on welfare and taxpayers’ behavioral responses).

When the tax authority is limited to reforming the tax system in a subset of price-replicating direc-

tions, and production policy reforms do not modify the factor price ratios corresponding to the other

factors, Theorem 2 highlights that combining an efficient production policy reform with a neutralizing

tax reform also results in a Pareto improvement.

Theorem 2. Generalized Production Efficiency – Part II. If Assumptions 2 and 3 hold, production poli-

cies that increase aggregate output, combined with the GE-neutralizing tax reform with the neutralizing

direction defined in (29), re-expressed as:

RN (·) = −
L∑

ℓ=1

α′
ℓ(0)

∂logPȳ

∂αℓ
Rȳ(·)−

n∑
j=m+1

L∑
ℓ=1

α′
ℓ(0)

∂logPj

∂αℓ
Rpj (·),
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result in a Pareto improvement. Conversely, reducing the use of production policies that decrease ag-

gregate output also leads to a Pareto improvement when combined with this neutralizing tax reform.

According to the generalized production efficiency principle (Theorems 1 and 2), the choice of pro-

duction policies, such as competition policy, should be guided solely by efficiency considerations if

either all price-replicating directions, Rpj (·), of tax reforms are feasible, or production policies pre-

serve price ratios of the first m factors, and only the price-replicating comprehensive directions Rȳ(·),

Rpm+1(·), ..., Rpn(·) are feasible. Another way of putting it is that the design of any production policy

needs not include pre-distribution concerns when the neutralizing tax reforms can be implemented. We

also connect our results to the Tinbergen (1952) rule which states that first-best policy requires the same

number of instruments as it has objectives. A concordant interpretation, but in a second-best world,

emerges here with tax policies used to achieve redistribution while production policies’ aim is improv-

ing aggregate production efficiency. Importantly, generalized production efficiency does not require

perfect competition, contrasting with the existing tax literature which classically assumes perfect com-

petition, such as Diamond and Mirrlees (1971a,b), Naito (1999), Saez (2004), Rothschild and Scheuer

(2013, 2016), Jacobs (2015), Sachs et al. (2020), Costinot and Werning (2022) or Schulz et al. (2023).

Moreover, our framework generalizes the usual approach, which assumes an optimal tax schedule and

an economy operating on the production possibility frontier, as in Diamond and Mirrlees (1971a,b). We

significantly extend these insights by demonstrating that generalized production efficiency applies even

with suboptimal tax systems that can be reformed through the neutralizing tax reform, and when the

economy operates in the interior of the production possibility set.

Underlying Mechanisms

To get an intuitive understanding of generalized production efficiency, we clarify the underlying

mechanisms. This complements the proofs in Appendix A.8, which takes care of all formal details.

When an economy undergoes changes in its production policies so that for some ℓ ∈ {1, ..., L} :

α′
ℓ(0) ̸= 0, Theorem 1 and 2 suggest that the policymaker assesses whether its current tax system

meets Assumption 1 or 2. When it is the case, the GE effects on factor supplies and welfare, stemming

from production policies, are offset by a tax reform with a GE-neutralizing direction, RN (·), defined

in (29). This direction is calculated based on the opposites of the (rescaled) price-replicating directions

defined in (17).

Consequently, any possible deteriorating impact in terms of welfare being nullified, a Pareto im-

provement is guaranteed if and only if tax revenue is not deteriorated. The impact of the production

policies on each price is calculated with fixed factor supplies as:
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∀j ∈ {1, ..., n} :
∂log p

RN (·),α(·)
j

∂µ
=

L∑
ℓ=1

∂logP
α(·)
j

∂αℓ
α′
ℓ(0). (31)

Therefore, the impact on tax revenue is modified by
∑n

j=1

∑L
ℓ=1Xj(∂Pj/∂αℓ)α

′
ℓ(0), which is equal to

the aggregate marginal changes in production
∑L

ℓ=1Fαℓ
α′
ℓ(0), based on (8). One has a Pareto improve-

ment if and only if
∑L

ℓ=1Fαℓ
α′
ℓ(0) > 0, meaning that production policies must (solely) be designed to

boost aggregate production as the tax system ensures a Pareto-improvement.

If Assumptions 1 and 2 are violated, the policymakers have to check for welfare improvements by

comparing efficiency effects with predistributive effects, as follows.

Theorem 3. Incidence formula for production policy reform. If Assumption 1 is violated and either

Assumption 2 or Assumption 3 is not verified, to determine the welfare impact of any production policy

reform in direction α(·), we compare its efficiency effects with its pre-distribution effects, as follows:

∂L α(·)

∂µ
=

L∑
ℓ=1

Fαℓ
α′
ℓ(0)︸ ︷︷ ︸

Production efficiency effect

+

L∑
ℓ=1

n∑
j=1

∂L Rpj (·)

∂µ

∂Pj

∂αℓ
α′
ℓ(0)︸ ︷︷ ︸

Pre-distributive effects

, (32)

where the first term is the way the production policy reform modifies efficiency and the second term is

the pre-distributional impact created by this reform.

Theorem 3 shows that the effects of a production policy reform can be decomposed into two parts:

the effects on productive efficiency with unchanged factor supplies, and the fact that price changes

induced by a production policy trigger behavioral responses that have identical consequences to tax

reforms in the price-replicating directions Rpj .

When a competition policy reform (or any other multidimensional reform of the production sector)

αℓ, for ℓ = 1, ..., L is optimal, the net impact in terms of efficiency and pre-distribution is null, resulting

in (32) being equal to zero. In this equation, proved in Appendix A.9, the production efficiency effect∑L
ℓ=1Fαℓ

α′
ℓ(0) represents the aggregate marginal changes in production (as defined in (8)), which, de-

pending on its sign, may lead to either an improvement or deterioration in the government’s Lagrangian

(11). A competition policy reform (or any other multidimensional reform of the production sector)

µ 7→ (α1(µ), ..., αL(µ)) is production efficient if:

L∑
ℓ=1

Fαℓ
α′
ℓ(µ) > 0.

The policymaker should assess these production efficiency effects in conjunction with the predistributive

effects, captured in the second term of (32), to evaluate the overall impact of any production policy

reform. We show that these a priori complex predistributive effects are equal, for every change in the

policy, to a sum across all factors prices. This sum consists in the reform’s impact on prices, hence on
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Is Assumption 1 verified?
Can the government reform the tax system in all the
jth price-replicating directions Rpj (·) for j = 1, ..., n?

Yes No

Is Assumption 2 verified ?
Can the government reform the tax system in the price-replicating

directions Ry(·) and Rpj (·) for all j = m+ 1, ..., n?

Yes No

Is Assumption 3 verified?
Does the production policy alter the

factor price ratio pj/pk for all (j, k) ∈ {1, ...,m}?

A production policy that increases aggregate output
leads to a Pareto improvement if combined with
the neutralizing tax reform RN (·).

No Yes

A production policy that increases aggregate output
also yields predistributive effects since the
neutralizing tax reform RN (·) cannot be implemented.

Figure 2: Decision Tree

the inverse demands for factors, (∂Pj/∂αℓ) α′
ℓ(0), times an expression ∂L Rpj (·)/∂µ that makes all

the technical difficulties linked to the shift from PE to GE vanish. Together, these terms capture the

pre-distributional consequences of the competition policy. In the next section, we detail the calculation

of the effects on the Lagrangian of a tax reform in the price-replicating directions, ∂L Rpj (·)/∂µ.

It is worth noting that Theorems 1, 2 and 3 apply irrespective of perfect competition. They remain

valid in the presence of market failures, rent-seeking, externalities in production, or other imperfections

in factor markets. Furthermore, as already emphasized, Theorems 1 and 2 do not require the tax system

to be optimal.

IV.3 Decision Tree

Figure 2 presents a decision tree that guides in evaluating whether a given production policy reform–

efficient in terms of increasing aggregate production but potentially detrimental to pre-distribution–can

be Pareto-improving. The generalized production efficiency, which is summarized in the bottom-left

box, applies when either Assumption 1 holds (see Theorem 1) or when both Assumptions 2 and 3 are

verified (see Theorem 2). If Assumption 2 is violated, Theorem 3, summarized in the bottom-right box,

becomes applicable.
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IV.4 Micro-founded examples

We derived generalized production efficiency, along with our incidence formula without relying

neither on perfect competition nor on specific micro-foundations. This was achieved using a reduced-

form description of the production sector that specifies only the inverse demand functions, Pi(·). This

approach has a powerful advantage by ensuring our results remain robust to variations in the under-

lying micro-foundations behind these inverse demand functions. To illustrate the broad applicability

of our reduced-form approach to various policy contexts, we provide a comprehensive exploration of

micro-founded examples in Appendix B. We investigate policies impacting the production sector un-

der different contexts, such as competition policy, taxation of intermediate goods, robots and AI, trade

liberalization, public production, and firms’ environmental regulations.

In these examples, we specify the different sectors and their production functions, the market-

clearing conditions for final goods, factors and intermediate inputs, as well as the production policy

being analyzed. We derive the resulting decentralized allocation and construct a hypothetical production

coordinator’s program, whose solution replicates this allocation. This formulation bridges the micro-

founded model and the reduced-form framework through the inverse demand functions and the general

production function in (5). It allows us to demonstrate the validity of the generalized production effi-

ciency principle and the incidence formula for each micro-founded example.

This approach allows us to clarify, in each micro-founded examples, which production policies that

increase aggregate output can be recommended. We therefore bridge generalized production efficiency

(Theorems 1 and 2) with key policy implications, including the reduction of sector-specific markups, not

taxing intermediate goods, no indirect taxation on commodities, free trade, managing public firms using

producer prices in the private sector, etc. Importantly, with these reduced-form examples, we demon-

strate that previous results in the literature, which all build upon Diamond and Mirrlees (1971a,b) and

rely on micro-founded production functions, can easily be recovered and extended within our framework

as special cases. We also reproduce other results from the literature where the production efficiency the-

orem of Diamond and Mirrlees (1971a,b) does not apply. These departures, including Naito (1999,

2004), Koizumi (2020), Guerreiro et al. (2021), Costinot and Werning (2022) and Thuemmel (2023),

arise because neither Assumption 1 nor the combination of Assumptions 2 and 3 are verified. There-

fore, production policies must also account for their predistributive role, as specified by Equation (32)

in Theorem 3 and summarized in Figure 2.

V New Key Statistics and their Implementation

In this section, we detail two key statistics. The first is the welfare impact of the price-replicating

tax reform ∂L Rpj
/∂µ which appears in (32). This statistic allows us to obtain the impact on the
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Lagrangian of all GE changes in factor prices. It relies on a second statistic, the GE-multiplier, that

gives the welfare impact of price adjustments implied by any tax reform. In this section, we extend our

results from Lemma 2 and Theorem 3 to the case where both tax and production policy reforms occur

simultaneously. We conclude the section with a practical guide to the empirical implementation of our

statistics.

V.1 GE-Multipliers

The following proposition, proved in Appendix A.9, details the calculation of ∂L Rpj
/∂µ which

appears in Equation (32). It also introduces the GE-multipliers to unlock the gate from the PE to the GE

framework.

Proposition 2. GE-multipliers. In GE, the impact of a tax reform along the jth price-replicating direc-

tion Rpj (y)
def
≡ (1− Tyj (y1, ..., yn))yj is:

∂L Rpj (·)

∂µ
=

∫
Θ

−(1− g(θ))Rpj (Y(θ))︸ ︷︷ ︸
Mechanical effects

+
n∑

i=1

(Tyi(Y(θ)) + ηi)
∂Yi(θ)

Rpj (·),PE

∂µ︸ ︷︷ ︸
Responses of incomes at PE

dF (θ),

(33)

with:
∂Yi(θ)

Rpj (·),PE

∂µ
=

n∑
j=1

∂Yi(θ)

∂τj
R

pj
yj (y)︸ ︷︷ ︸

Compensated responses

+
∂Yi(θ)

∂ρ
Rpj (y)︸ ︷︷ ︸

Income effects

,

where ηi denote the GE-multipliers which are defined as:

∀i ∈ {1, ..., n} : ηi
def
≡ FXi − pi

pi︸ ︷︷ ︸
Ajust for market failures

+

n∑
j=1

∂L Rpj

∂µ

Ξj,i

Yi
.︸ ︷︷ ︸

Adjust for imperfect targeting

(34)

If the tax system is optimized along the price-replicating direction Rpj (·), ∀j ∈ {1, ..., n}, Equation

(33), which provides the welfare impact of a tax reform of magnitude µ in the price-replicating direction

Rpj (·), is equal to zero, ∀j ∈ {1, ..., n}. If the tax system is not optimized along the price-replicating

directions, we have ∂L Rpj (·)/∂µ ̸= 0 for at least one j ∈ {1, ..., n}. The welfare impact can be decom-

posed into two elements detailed in (33). First, independently of any behavioral change, the tax reform

impacts the Lagrangian through changes in tax liabilities Rpj (Y(θ)). It creates the usual mechanical ef-

fects on government revenue and social welfare, 1− g(θ). Second, the tax reform affects tax revenue as

taxpayers adjust their incomes, represented by ∂Yi(θ)
Rpj (·),PE/∂µ for i = 1, . . . , n, via compensated

responses and income effects (already presented in Equation (16c)). In PE, these behavioral responses

impact the Lagrangian solely through their impact on tax revenues. This is why the marginal tax rates

Tyi appear as factors in the PE responses ∂Y R(·),PE
i (θ)/∂µ to tax reforms. In GE, however, the effect of
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price adjustments must also be considered. Specifically, the ith GE-multiplier ηi captures the impact on

the Lagrangian of price adjustments resulting from a one unit increase in the ith aggregate income in PE.

Consequently, in the right-hand side of (33), the PE responses ∂Y R(·),PE
i (θ)/∂µ to tax reforms should

also be multiplied by the GE-multipliers ηi.21

The GE-multiplier ηi, associated to factor i, consists of two elements in (34): a corrective term for

market failures and a corrective term for imperfect targeting , as stated in (34). The corrective term for

market failure (FXi − pi)/pi assesses whether the social return of factor i, FXi , differs from its private

return, pi, indicating the absence of perfect competition. If FXi − pi is strictly positive, the corrective

term is positive and, ceteris paribus, depending on the sign of the response of income Yi, it increases

or decreases the Lagrangian, in (33). In a perfectly competitive setting, this term equals zero and (34)

simplifies to the corrective term for imperfect targeting:

∀i ∈ {1, ..., n} : ηi =
n∑

j=1

∂L Rpj

∂µ

Ξj,i

Yi
. (35)

The right-hand side of (35) measures the welfare impact of the suboptimality of the tax system along

the price-replicating directions. To understand why this term arises, we can recall Proposition 1, which

emphasizes that tax reforms in the price-replicating direction Rpj impacts taxpayers’ factor supply,

consumption and utility similarly, at PE, to the effect of a log-change in the price of factor j. There-

fore, when a tax reform generates a unit increase in the ith aggregate income at the PE, this generates

a relative change in the jth price equal to Ξj,i/Yi. This, in turn, impacts taxpayers’ factor supplies

and welfare as much as a tax reform in the price-replicating direction Rpj (·). Therefore, the term∑n
j=1(∂L Rpj

/∂µ) (Ξj,i/Yi) captures the impact on the Lagrangian of these price changes. When the

tax system is optimized in the price-replicating directions, we have ∂L Rpj
/∂µ = 0 ∀j ∈ {1, ..., n},

the tax system fully neutralizes the prices’ impact on taxpayers. Let us stress that optimizing along the

price-replicating directions does not require the tax system to be optimal, which would impose signifi-

cantly stricter conditions. Notably, the GE-multipliers ηi depend neither on the direction R(·) nor on the

size µ of the reform. The distinct expressions that can be taken by the GE-multipliers are summarized,

in Table 1.

In economies satisfying Assumption 2, the tax authority is never able to optimize the tax system in

the price-replicating directions Rpj , for j = 1, ...,m, since it cannot separately observe the related in-

comes. Therefore,
∑n

j=1(∂L Rpj
/∂µ) (Ξj,i/Yi) ̸= 0, for j = 1, ...,m. In contrast, the tax system may

be optimized along the price-replicating directions Rpj (·) for all j = m+ 1, ..., n. We can then extend

our insights if, on top of Assumption 2, we assume inverse demands functions are weakly separable,
21The role of GE-multipliers ηi in our tax perturbation approach is akin to the role of consistency constraint multipliers in

Rothschild and Scheuer (2013, 2014)’s mechanism design approach.
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Is the tax system optimized with respect to all the jth

price-replicating directions Rpj (·) for j = 1, ..., n?

Yes No

Perfect competition?
Yes ηi = 0 ηi =

∑n
j=1

∂L R
pj

∂µ
Ξj,i

Yi

No ηi =
FXi

−pi
pi

ηi =
FXi

−pi
pi

+
∑n

j=1
∂L R

pj

∂µ
Ξj,i

Yi

Table 1: GE-multipliers

taking the form:

∀j ∈ {1, ...,m} : Pj (X1, ...,Xn;α) = Qj (X1, ...,Xm) P (A (X1, ...,Xm) ,Xm+1, ...,Xn;α) (36a)

∀j ∈ {m+ 1, ..., n} : Pj (X1, ...,Xn;α) = Pj (A (X1, ...,Xm) ,Xm+1, ...,Xn;α) . (36b)

This assumption can be micro founded, for instance, under perfect competition and a weakly separable

production function of the form F (X1, ...,Xn;α) = F (A (X1, ...,Xm) ,Xm+1, ...,Xn;α). Under such

assumptions, we obtain that for the n − m + 1 last incomes, the GE-multipliers are solely determined

by market failures (see Appendix A.10):

∀i ∈ {m+ 1, ..., n} : ηi =
FXi − pi

pi︸ ︷︷ ︸
Ajust for market failures

(37)

Additionally, when the inverse demand elasticities are weakly separable, Assumption 3 is verified, since

Equations (36a) imply the following price ratios:

∀(i, j) ∈ {1, ...,m} :
pi
pj

=
Qi (X1, ...,Xm)

Qj (X1, ...,Xm)

do not depend on production policies.

V.2 Considering Both Tax and Production Policy Reforms

To make our results applicable to more real-world scenarios, we extend the economic environment

further by considering an economy where both production policy reforms and tax reforms coexist.

Neutralizing price effects from both reforms

With Equation (29a), we constructed the neutralizing direction of a tax reform which neutralizes

the price effects of any production policy reform in direction α(·) on utility and behavior. We now

extend this by constructing tax reforms that neutralize not only the price effects from any production

policy reform in direction α(·) but also the price effects from any tax reform R(·). With some abuse of

notation, we label this direction RN (·) as in (29a) and, in Appendix A.7, we show the following lemma.
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Lemma 4. GE-neutralizing tax reform with tax reform and production policy reform.

Under Assumption 1, the tax authority can combine any initial tax reform in the direction R(·) and any

production policy reform in direction α(µ) = (α1(µ), ..., αL(µ)) with a GE-neutralizing tax reform so

that the effects on taxpayers’ factor supplies X(θ) = (X1(θ), ..., Xn(θ)) and utility levels U(θ) are

those induced, in PE, by the initial tax reform in direction R(·). These tax reforms have the following

neutralizing directions:

RN (·)
def
≡ R(·)︸︷︷︸

Initial tax reform

−
n∑

j=1

γ
R(·),α(·)
j Rpj (·)︸ ︷︷ ︸

Price adjustments replication

(38a)

where the scaling factors are written as γR(·),α(·)
j given by:

∀j ∈ {1, ..., n} : γ
R(·),α(·)
j

def
≡

n∑
i=1

Ξj,i

Yi

∂YR(·),PE
i

∂µ
+

L∑
ℓ=1

∂logPj

∂αℓ
α′
ℓ(0). (38b)

Lemma 4 builds upon Lemma 2, which addressed the interplay between any production policy re-

form and a GE-neutralizing tax reform. It extends this result to encompass the combination of a tax

reform and a production policy reform, alongside the relevant GE-neutralizing tax reform. Intuitively, in

GE, the impact on taxpayers’ utility and factor supplies resulting from the combination of a tax reform

in the direction R(·)−
∑n

j=1 γ
R(·),α(·)
j Rpj (·), defined in (38a), and a production policy reform α(·) can

be decomposed into three main components. First, the PE effects of the tax reform in the direction R(·).

Second, the PE effects of the tax reforms
∑N

j=1 γ
R(·),α(·)
j Rpj (·). Third, the tax reform in the direction

RN (·) and the production policy reform in the direction α(·), which imply prices changes ∂pR
N ,α(·)

j /∂µ

at the GE. According to Proposition 1, the PE effects of the tax reforms, −
∑N

j=1 γ
R(·),α(·)
j Ryj (·) (the

second component), neutralize the responses to price changes, ∂pR
N ,α(·)

j /∂µ (the third component),

whenever γR(·),α(·)
j = ∂p

RN (·),α(·)
j /∂µ for all j ∈ {1, . . . , n}. As shown in Appendix A.7, this condi-

tion is satisfied when:

∀j ∈ {1, . . . , n} : γ
R(·),α(·)
j =

n∑
i=1

Ξj,i

Yi

∂YR(·),PE
i

∂µ
+

L∑
ℓ=1

∂logPj

∂αℓ
α′
ℓ(0) =

∂log p
RN (·),α(·)
j

∂µ
. (39)

Incidence of Tax and Production Policy Reforms

Now, we can extend Theorem 3 and state the welfare impact of both tax reforms and production

policy reforms. The proof is in Appendix A.9.

Theorem 4. Incidence formula for tax and production policy reforms The welfare impact of any tax

reform in direction R(·) and of any production policy reform in direction α(·) on the government’s
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Lagrangian are given by:

∂L R(·),α(·)

∂µ
=

∫
Θ

−

(1− g(θ)) R(Y(θ))︸ ︷︷ ︸
Mechanical effects

−
n∑

i=1

(Tyi(Y(θ)) + ηi)
∂Yi(θ)

R(·),PE

∂µ︸ ︷︷ ︸
Responses of incomes at PE


dF (θ)

+
L∑

ℓ=1

Fαℓ
α′
ℓ(0)︸ ︷︷ ︸

Production efficiency effects

+
L∑

ℓ=1

n∑
j=1

∂L Rpj (·)

∂µ

∂Pj

∂αℓ
α′
ℓ(0)︸ ︷︷ ︸

Predistributive effects

, (40)

where the GE-multipliers ηi are defined in (34).

Beside the production efficiency and predistributive effects of production policy reforms already

in (32), mechanical effects and responses of incomes in PE appear in the first line of (40). These

effects are quite similar to those described in Lemma 2, except that, there, direction R(·) was the price-

replicating one, Rpj (·). Their interpretation and empirical implementation follow suit, simply with

different directions. If the tax and production policy reforms are chosen optimally, the right-hand side

of (40) is nil. In the real world, we expect this right-hand side to be often either positive or negative.

V.3 Empirical Implementation

The welfare impact of any production policy reform can be computed by implementing Equation

(32), in conjunction with (33), (34) and (17). Similarly, the welfare impact of a tax reform, or a com-

bination of tax and production policy reforms, can be evaluated using (40). Regardless of the type of

reform, the tax authority can weigh the predistributive effects against the production efficiency effects.

Communicating these effects clearly is crucial to help the public understand the trade-offs involved and

fosters informed debate.

The predistributive effect of (32) or (40) is calculated with ∂L Rpj (·)/∂µ. Either the tax system

is fully optimized along all price replication directions, in which case ∂L Rpj (·)/∂µ = 0 and ηi =

(FXi − pi)/pi for all i = 1, ..., n, according to (34), or this involves implementing the terms in Equation

(33). The mechanical effects rely on the welfare weights g(θ) usually calibrated either from normative

assumptions (Saez and Stantcheva, 2016) or from survey data (Kuziemko et al., 2015, Capozza and

Srinivasan, 2024). The term Rpj , defined in (17), simply requires the observed marginal tax rate. We

also need estimates of compensated responses ∂Yi(θ)/∂τj and income effects ∂Yi(θ)/∂ρ, empirically

obtained using quasi-natural experiments (see, e.g., Saez et al. (2012), Neisser (2021)).22

22One common problem in the sufficient statistics approach is that these statistics may depend on the tax system. In our
tax incidence analysis, one therefore needs sufficient statistics close to those estimated under the considered tax schedule.
Moreover, both compensated responses and income effects are defined with prices held constant. This aligns with the empirical
literature, which examines variations in taxpayer response to tax reforms under the assumption that price changes are consistent
across all taxpayers
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To calibrate the demand-side parameters, we need to estimate three key components: (i) the market

failure corrections, (FX i − pi)/pi, which measure the extent to which factor prices deviate from their

marginal social value; (ii) the elasticities of inverse demand Ξi,j with respect to factor supplies; and (iii)

the log-derivatives of inverse demand with respect to changes in the magnitude of the production policy,

∂Pi/∂αℓ.

Market failure corrections can be set to zero under the assumption of perfect competition, in which

case (FXi−pi)/pi = 0. Alternatively, one can account for deviations arising from externalities or market

power. In the latter case, empirical estimates of mark-ups from the industrial organization literature, such

as those provided by De Loecker et al. (2020), can be used to infer the wedge between the price of a

factor and its marginal productivity. These wedges generate profits which correspond to the income

derived from an inelastically supplied entrepreneurial factor which is allocated among taxpayers, as

discussed in McKenzie (1959) and Mas-Colell et al. (1995, pp. 134–135).

The matrix of elasticities of inverse demands with respect to factor supplies, Ξ, can be calibrated

structurally. For instance, in a two-factor economy with labor (indexed by L) and capital (indexed by

K), under perfect competition, the matrix Ξ is obtained from the substitution elasticity σ between labor

and capital, and from the income shares in GDP αL and αK . In this case, the matrix takes the following

form: 
∂ logPL

∂ logXL

∂ logPL

∂ logXK

∂ logPK

∂ logXL

∂ logPK

∂ logXK

 =


−αL

σ

αL

σ

αK

σ
−αK

σ
.


At the macroeconomics level, Antràs (2004) estimates an elasticity of substitution between labor and

capital, σ, lower than 0.5 for the US. In the meta-analysis, Knoblach et al. (2020) obtain a long-run

elasticity for the aggregate economy in the range of 0.45 − 0.87. Finally, estimates of the sensitivity

of the inverse demand to the magnitude of the production policy can be drawn from empirical studies

such as Bertrand and Kramarz (2002) and Biscourp et al. (2013), which estimates the effect of entry

regulation on retail prices in France.

VI Pareto-improving tax reforms

We develop, in this section, an approach for the identification of Pareto-improving tax reforms in the

presence of multiple incomes and GE adjustments. We provide necessary and sufficient conditions for

the existence of Pareto-improving directions of tax reform, with multidimensional nonlinear tax systems

and GE effects. We show how to test whether a given tax system can be Pareto improved and whether a

given tax reform is Pareto-improving. As a preamble to this exercise, we must establish the optimal tax

system when there is no restriction on its form.
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For this purpose, we denote ΘY the income space, ∂ΘY its smooth boundary. Let ∂Ŷi(y)/∂τj ,

∂Ŷi(y)/∂ρ and ĝ(y) denote the mean values of ∂Yi(θ)/∂τj , ∂Yi(θ)/∂ρ and g(θ), respectively, among

taxpayers with earnings Y(θ) = y. The following proposition, proved in Appendix A.11, characterizes

the optimal tax system without any restriction on its form.

Proposition 3. Optimal (unrestricted) tax systems. When the tax system for multiple incomes has no

restriction on its form, the optimal tax system has to verify the Euler-Lagrange equation:

[
1− ĝ(y)−

n∑
i=1

(Tyi(y) + ηi)
∂Ŷi(y)

∂ρ

]
h(y) = −

n∑
j=1

∂

[
n∑

i=1
(Tyi(y) + ηi)

∂Ŷi(y)

∂τj
h(y)

]
∂yj

, (41)

∀y ∈ ΘY , and it satisfies the boundary conditions:

∀y ∈ ∂WY :
∑

1≤i,j≤n

(Tyi(y) + ηi)
∂Ŷi(y)

∂τj
h(y)ϕj(y) = 0 (42)

where ϕ(y) = (ϕ1(y), ..., ϕn(y)) is the outward unit vector normal to the boundary at y, where the

GE-multipliers are given by (34) with ∂L Rpj (·)/∂µ = 0 for all j = 1, ..., n. Under perfect competition,

ηi = 0, for all i = 1, ..., n.

The Partial Differential Equation (41) is a divergence equation that must hold for any income y.

Equations (42) are boundary conditions that must hold at any income y ∈ ΘY in the boundary of ΘY .

Proposition 3 extends to a context with GE effects and market failures the optimal tax formulas of Mir-

rlees (1976), Golosov et al. (2014), Spiritus et al. (2024), Boerma et al. (2022) and Golosov and Krasikov

(2024). The aforementioned tax formulas describe the optimal tax system which is unconstrained on its

form, across a large spectrum of economic environments (e.g., with any type of market failure or under

perfect competition, with factors which are imperfect substitutes or not). Since the system is optimized

and not restricted at all on its form, we have ∂L Rpj
/∂µ = 0 for all j. The tax system is optimized along

the price-replicating directions defined in (17). Hence, according to (34), GE-multipliers are given by

(35) to correct for market failures, if any. Under perfect competition, GE-multipliers are nil.

We develop a test to determine whether a given tax schedule is Pareto efficient. If it is not, the test

identifies potential tax reforms that could achieve a Pareto improvement. To do so, based on (41), one

needs to calculate revealed marginal welfare weights, as detailed in Appendix A.11. The literature on

the inverse tax problem solves for these weights for which an observed tax system satisfies the first-order

conditions of an optimal tax problem, with a single source of income, see, for instance, Bourguignon and

Spadaro (2012), Bargain et al. (2014), Lorenz and Sachs (2016), Jacobs et al. (2017), Hendren (2020),

Bierbrauer et al. (2023).

In GE, the following lemma highlights that, with multiple incomes and under perfect competition,

revealed marginal welfare weights incorporate only PE components, which inherently make their calcu-

lation straightforward.
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Lemma 5. Revealed marginal social welfare weights in GE. In GE, with multiple incomes, revealed

marginal social welfare weights depend solely on statistics evaluated in PE. These weights are expressed

as:

g̃(y)
def
≡ 1−

n∑
i=1

Tyi(y)
∂Ŷi(y)

∂ρ
+

1

h(y)

n∑
j=1

∂

[
n∑

i=1
Tyi(y)

∂Ŷi(y)

∂τj
h(y)

]
∂yj

, (43)

where h(·) denotes the joint income density.

Lemma 5 comes as a surprise if one starts out with the basic intuition that, the revealed marginal

welfare weights should reflect GE effects. However, the revealed welfare weights are computed from the

optimal tax formula, assuming that the tax system has no restriction on its form and that competition is

perfect. Therefore, from Equation (34), the GE-multipliers are zero, causing the revealed marginal social

welfare weights in GE to coincide with the ones in PE. As a result, the endogeneity of factor prices can

be ignored when evaluating the revealed welfare weights. They can be inferred from data using (43) and

usual estimations of compensated responses ∂Ŷi(y)/∂τj , of income responses ∂Ŷi(y)/∂ρ and income

density h(y).

In PE, Lorenz and Sachs (2016), Hendren (2020) and Bierbrauer et al. (2023) show that negative

revealed welfare weights indicate a Pareto inefficiency in the observed tax system, when taxpayers earn

a single income (n = 1). Bierbrauer et al. (2023) show that negative revealed welfare weights at some

income levels are equivalent to their “revenue function” being increasing around that level, in which case

a two-brackets tax reform is Pareto-improving.23 Spiritus et al. (2024, Proposition 2) and Bergstrom and

Dodds (2025) extend this result to multiple incomes. With complex and fully flexible tax systems, and

following Spiritus et al. (2024, Proposition 2), we can then state that

Lemma 6. Pareto improving tax reforms in PE. In PE, a tax reform is Pareto-improving if

• tax liabilities are (weakly) decreased for income bundles y where the revealed marginal social

welfare weights are negative, ĝ(y) < 0,

• taxes liabilities are unchanged for income bundles y where the revealed marginal social welfare

weights are non-negative, ĝ(y) ≥ 0,

• the additional tax revenue generated is used to fund a lump-sum transfer.

In Appendix A.12, we show that combining Lemmas 4 and 6 yields the following proposition.

Theorem 5. Pareto improving tax reforms in GE. Under Assumption 1 and perfect competition, if a

tax reform in direction R(·) is Pareto-improving in PE (i.e., from Lemma 6, if g̃(y) < 0 for some income
23Bierbrauer et al. (2023)’s approach no longer works with multiple incomes because one cannot adjust the vector of

marginal tax rates at one point without having to change it elsewhere.
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bundles y then R(y) ≥ 0 and if g̃(y) ≤ 0 then R(y) = 0), implementing, for every income bundle y

such that g̃(y) < 0, a small GE-neutralizing tax reform in the direction:

RN (·) = R(·)−
n∑

j=1

∂log pR
N

j

∂µ
Rpj (·), (44a)

where the scaling factors γR(·)
j are:

∀j ∈ {1, ..., n} : γ
R(·)
j

def
≡

n∑
i=1

Ξj,i

Yi

∂X
R(·),PE
i (θ;µ,p)

∂µ
= p

RN (·)
j µ, (44b)

is Pareto-improving in GE.

This theorem provides a Pareto-efficiency test and Pareto-improving tax reforms. From Lemma

5, we know the simplicity of empirically implementing g̃(y), making it straightforward to verify the

sufficiency condition g̃(y) < 0. In particular, according to Lemma 4 (with α(µ) = 0), a tax reform in

direction RN (·) defined by Equation (44a) exerts, in GE, the same impact on taxpayers’ factor supplies

and utilities than the Pareto-improving tax reform R(y) in PE. Since the latter is Pareto-improving, the

former achieves Pareto improvement only if the change in price does not reduce tax revenue.24

There is a closed analogy between Theorems 1 and 5. Both theorems emphasize how an efficient

production policy reform (Theorem 1) or a Pareto-efficient tax reform at PE is Pareto efficient in GE,

provided it is combined with the GE-neutralizing tax reform (described in Lemma 4). Both theorems

require the tax system to be sufficiently flexible, as specified in Assumption 1 to ensure the imple-

mentability of the neutralizing tax reform.

The following proposition, proofed in Appendix A.13, establishes that positive welfare weights are

both necessary and sufficient for the non-existence of a Pareto-improving direction in GE.

Proposition 4. Pareto efficient tax systems in GE. Under perfect competition, if g̃(y) ≥ 0 almost

everywhere for income bundles y within the interior of the income bundle space, then there is no Pareto-

improving direction neither at the PE, nor at the GE.

It is noteworthy that, as in Bierbrauer et al. (2023) with a single income, Proposition 4 does not

exclude the existence of a Pareto-improving reform which would be non-infinitesimal, i.e. a Pareto

improvement resulting from a large magnitude µ.

VII Optimal Income Tax Systems and GE-multipliers

In this section, we extend the analysis to a Mirrleesian tax model of income taxation extended with

several incomes. Proposition 3 characterizes the optimal tax function when the tax system is exhaustive
24In Appendix A.12, we show that both reforms have the same budgetary effects. Intuitively, rewriting tax liabilities as

T (Y(θ)) =
∑n

j=1 pj Xj(θ)− C(θ), the difference between the effects on tax revenue of a reform in the direction RN (·) at
the GE and a reform in the direction R(·) at the PE is therefore equal to

∑n
j=1 Xj dpj =

∑n
j=1 Yj dpj/pj . This difference is

zero under perfect competition.
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and there is no restriction on its form. In the presence of numerous income types and sources of income,

the lack of restrictions on the form of the tax system results in an optimal tax formula expressed as a par-

tial differential equation. However, in practice, policymakers and institutions may imposed constraints

on the degree of complexity of the tax system. We argue that realistic tax codes combine many functions

(schedules), each of them depending on a single argument (tax base). The imposition of such a realistic

restriction on the tax system takes our exploration a step further, revealing that with numerous types and

income sources, the optimal tax system must now conform to a system of ordinary differential equa-

tions, adopting the ABC form introduced by Diamond (1998) and Saez (2001). This transformation not

only enhances the mathematical tractability of the optimal tax model but, critically, introduces a more

realistic framework leading to intuitive optimal tax formulas.

VII.1 Schedular tax systems

In this subsection, we investigate the case where the tax system is schedular, i.e. is the sum of n

income-specific functions Ti(·), so that:

T (y1, ..., yn) =
n∑

i=1

Ti(yi).

We introduce the possibility that for some incomes, say those for i > n′, with 1 ≤ n′ ≤ n, the

corresponding tax schedule is linear i.e. Ti(yi) = ti yi where ti is a real number. Let then denote

hi(·) the density of the ith income and Hi(·) the corresponding CDF. For any i = 0, ..., n, we denote

Z(θ)|Yi(θ)=yi
the mean of Z(θ) among types θ for which Yi(θ) = yi. The notation εi(yi) refers

to the compensated elasticity of the ith income with respect to its own marginal net-of-tax rate. The

corresponding uncompensated elasticity is denoted εui (yi). These means of elasticities are calculated

among θ-taxpayers who earn their ith income equal to yi:

εi(yi)
def≡ 1− T ′

i (yi)

yi

∂Yi
∂τi

∣∣∣∣
Yi(θ)=yi

and : εui (yi)
def≡ 1− T ′

i (yi)

yi

∂Y u
i

∂τi

∣∣∣∣
Yi(θ)=yi

. (45)

We thus get the following proposition, which is demonstrated in Appendix A.14.

Proposition 5. Optimal schedular tax systems. When the tax system is schedular, the GE-multipliers

η1, ..., ηn are given by

∀i ∈ {1, ..., n} ηi =
FXi − pi

pi︸ ︷︷ ︸
Ajust for market failures

. (46a)

at the optimum, which has also to verify:
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a) When the ith schedule is nonlinear, i.e. for i = 1, ..., n′:

T ′
i (yi) + ηi
1− T ′

i (yi)
εi(yi) yi hi(yi) +

∑
1≤k≤n,k ̸=i

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂τi

∣∣∣∣
Yi(θ)=yi

hi(yi)

=

∫ ∞

z=yi

{
1− g(θ)|Yi(θ)=z −

n∑
k=1

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂ρ

∣∣∣∣
Yi(θ)=z

}
dHi(z). (46b)

b) When the ith schedule is linear, i.e. for i = n′ + 1, ..., n:

ti + ηi
1− ti

∫
W

εui (θ) Yi(θ) dF (θ) +

∫
W

n∑
k=1,k ̸=i

(
T ′
k(Yk(θ)) + ηk

) ∂Y u
k (θ)

∂τi
dF (θ)

=

∫
W

[1− g(θ)]Yi(θ) dF (θ). (46c)

In the GE-multipliers, the corrective term adjusting for imperfect targeting disappears in (34), al-

lowing to obtain (46a) directly. This arises from the fact that, according to (25) and (A.24) in Appendix

A.14, the price-replicating directions Rpj (·) are part of a schedular tax system. Consequently, an opti-

mal schedular tax system optimizes along all price-replicating directions, i.e. ∂L Rpj
/∂t = 0, hence is

fully flexible.

To grasp the economic intuitions behind (46b), consider a small increase in the ith marginal tax rate

around income yi and a uniform increase in tax liabilities for all taxpayers with their ith income above

yi. Given the other tax schedules, the tax schedule specific to the ith income is optimal only if these

reforms do not imply any first-order effects on the Lagrangian. In Equation (46b), the costs and gains

resulting from these reforms– which are detailed below– are equated.

As reflected in the first term on the left-hand side of (46b), an increase in the ith marginal tax rate

around yi implies direct compensated responses, ∂Yi(θ)/ ∂τi, of the ith income which is proportional

to the mean compensated elasticity εi of the ith income with respect to its own marginal net-of-tax

rate (as emphasized in Equation (45)). A first difference with the one income ABC tax formula is

that all behavioral responses have to be averaged across taxpayers who earn the same ith income yi.

Composition effects then take place (Jacquet and Lehmann, 2021). A second difference arises due

to the GE price adjustments. Under imperfect competition, the optimal tax formulas include the GE-

multipliers η1, ..., ηn given by (46a). Under perfect competition, these multipliers are nil, as in e.g.

Saez (2001). A third difference occurs because a rise in the ith marginal tax rate triggers (compensated)

cross-base responses of all other tax bases ∂Yk(θ)/∂τi for k ∈ {1, ..., n} \ {i} (see the second term on

the left-hand side of (46b)). For example, taxpayers can report some of their ith income as kth income,

with k ̸= i, when the ith marginal tax rate rises (i.e. the ith marginal net of tax rate τi declines), a

phenomenon known as income shifting. The compensated increase in the kth income due to income-

shifting, i.e. ∂Yk(θ)/∂τi < 0, can partly offset the loss due to the compensated responses of the ith
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income. Conversely, positive cross-base responses (∂Yk/∂τi > 0), as in the two-period framework of

Lefebvre et al. (2024), can exacerbate the loss due to compensated responses of the ith income.

As usual, on the right-hand side of (46b), a rise in the tax liability above income yi implies mechan-

ical gains in terms of tax revenue and mechanical welfare losses that are emphasized by the aggregation

of 1 − g(θ)|Yi(θ)=z for all z ≥ yi. It also creates income effects ∂yi(θ)/∂ρ on the right-hand side of

(46b). Again, compared to the one income optimal income tax formula, welfare weights and incomes

responses have first to be aggregated for all income earners with income above y. Second, if competi-

tion is imperfect, income responses may be attenuated or exacerbated by GE price adjustments. Third,

income response matters for all income sources yk for k = 1, ..., n.

From (46c), we see that, when the tax schedule on the ith income is restricted to be linear, with no

restriction on the other tax schedules, similar intuitions than under nonlinear tax schedule apply. There

are however several particularities. First, under a linear tax schedule, income effects and compensated

effects can be combined and are equivalent to uncompensated responses, as can been verified using

the Slutsky Equation (A.6c) in Appendix A.3. Replacing the sum of income and compensated effects

by the uncompensated ones implies fewer terms in the right-hand side of (46c) compared to (46b).

Second, in the optimal linear tax formula (46c), integrals emphasize that means of sufficient statistics

over the whole population need to be estimated instead of means of sufficient statistics at each income

level. Third, as expected from the optimal linear tax formula (see e.g. Piketty and Saez (2013)), the

mean of welfare weights and uncompensated elasticities are income-weighted. Conversely, the mean

of uncompensated cross-base responses ∂Y u
k (θ)/∂τi for k ̸= i are not income-weighted since they are

expressed in derivatives rather than elasticities.

Finally, we provide an order of magnitude of how important GE effects are from a back-to-the

envelope calculation. For this exercise, assume there are no cross-base or income responses and fix

the right-hand sides of (46b)-(46c). For simplicity, assume there is neither cross-base response nor

income responses and fix the right-hand sides of (46b)-(46c). Let T ′PE
i denote the optimal marginal

tax rate from the right-hand sides of (46b)-(46c), when the GE-multipliers are erroneously ignored. The

optimal marginal tax rates that take into account GE price adjustments are related to T ′PE
i and to the

GE-multipliers by:25

T ′
i = T ′PE

i − ηi (1− T ′PE
i )

For example, if T ′PE
i = 0, the optimal marginal tax rate is equal to minus the GE-multipliers. In the

absence of a redistributive motive, the marginal tax rate deviates from zero only to correct for market
25Put differently T ′

i , T ′PE
i and ηi are related by:

T ′
i + ηi
1− T ′

i

=
T ′PE
i

1− T ′PE
i

where these ratios are equal to the right-hand side of (46b) or (46c).
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inefficiencies in a Pigou (1920) way. Marginal tax rates then vary one to one with the value of the GE-

multiplier. However, if the redistributive motive is high enough (which implies larger T ′PE
i ), the effect

of the GE-multiplier on the optimal marginal tax rate is of a smaller order of magnitude. To illustrate

this point, Table 2 shows that the higher the marginal tax rate at the PE (i.e. the higher the redistributive

motive) in the first column, the lower the effect of GE-multiplier (in the top row) on optimal tax rates.

ηi
-0.10 -0.05 0 0.05 0.10

T ′,PE
i

20% 28% 24% 20% 16% 12%
40% 46% 43% 40% 37% 34%
60% 64% 62% 60% 58% 56%
80% 82% 81% 80% 79% 78%

Table 2: How much GE-multipliers matter?

VII.2 Comprehensive tax systems

Building upon Haig (1921) and Simons (1938), we now turn our attention to comprehensive tax

schedules, wherein the tax function depends on the sum of all incomes, so-called comprehensive tax

base. Formally, the tax schedule takes the form

T (y) = T0 (y1 + ...+ yn)

where y0
def≡ y1 + ... + yn and Y0(θ) = Y1(θ) + ... + Yn(θ). We denote h0(·) the density of tax base

and H0(·) the associated CDF. Since marginal tax rate on all incomes is equal to T ′
0(y1 + ..., yn), the

compensated responses with respect to the marginal net of tax rate is given by:

∀i ∈ {0, ..., n} ∂Yi
∂τ0

=

n∑
j=1

∂Yi(θ)

∂τj
, (47)

the compensated elasticity of the comprehensive tax base is:

ε0(y0) =
1− T ′

0(y0)

y0

∑
1≤i,j≤n

∂Yi(θ)

∂τj

∣∣∣∣
Y0(θ)=y0

(48)

which is positive,26 and the income response of the comprehensive tax base are given by:

∂Y0(y0)

∂ρ
=

n∑
k=1

∂Yk(θ)

∂ρ

∣∣∣∣
Y0(θ)=y0

. (49)

This elasticity depends on every compensated response ∂Yi(θ)/∂τj to changes in every net-of-marginal

tax rate τj for i, j ∈ {1, ..., n}. The following proposition, which is proved in Appendix A.15, charac-

terizes the optimal comprehensive income tax schedule.

26Since the matrix
[
∂Yi(θ)
∂τj

]
i,j

is positive definite, the comprehensive tax base’s compensated elasticity is positive.
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Proposition 6. Optimal comprehensive tax systems. When the tax system is comprehensive, the GE-

multipliers η1, ..., ηn are given by (34) at the optimum which has also to verify:

T ′
0(y0)

1− T ′
0(y0)

ε0(y0) y0 h0(y0) +
∑

1≤k≤n

ηk
∂Yk(θ)

∂τ0

∣∣∣∣
Y0(θ)=yi

h0(y0) (50)

=

∫ ∞

z=y0

{
1− g(θ)|Y0(θ)=z − T ′

0(z)
∂Y0(z)

∂ρ
−

n∑
k=1

ηk
∂Yk(θ)

∂ρ

∣∣∣∣
Y0(θ)=z

}
dH0(z).

This optimal income tax formula differs from the usual ABC formula since there are several types

of income and more importantly, by the presence of GE-multipliers ηk which adjust for market fail-

ures and imperfect targeting. As shown in Appendix A.15, under a comprehensive tax system, the

price-replicating directions of tax reforms (given by (24) in the appendix) do not belong to the set of

comprehensive tax schedules. Hence the optimal comprehensive tax function does not optimize along all

price-replicating directions. This occurs since only the sum of all incomes y0 determines tax liabilities.

Hence the optimal tax system has to solve (50).

To better understand how GE price adjustments affect the optimal comprehensive tax schedule, we

consider a simple economy with two production factors n = 2 and perfect competition. In this case, as

shown in Appendix A.15, the price-replicating directions simplify to Rp1(y1, y2) = (1−T ′
0(y1+y2)) y1

and Rp2(y1, y2) = (1 − T ′
0(y1 + y2)) y2. The optimal comprehensive tax system optimizes along all

comprehensive tax directions, including (1−T ′
0(y1+y2)) (y1+y2) = Rp1(y1, y2)+Rp2(y1, y2), but does

(generically) not optimize along Rp1 or Rp2 separately. Optimizing along (1−T ′
0(y1+y2)) (y1+y2) =

Rp1(y1, y2) + Rp2(y1, y2) leads to ∂L Rp1/∂µ + ∂L Rp2/∂µ = 0 by Gateaux differentiability of the

Lagrangian with respect to the tax reforms. Denoting σ the elasticity of substitution between the two

production factors, one obtains:

η1 = − 1

σ Y1

∂L Rp1

∂µ
, η2 = − 1

σ Y2

∂L Rp2

∂µ
. (51)

Therefore, these two GE-multipliers have opposite signs. Let Yk(y0) denote the mean kth income earned

by taxpayers with comprehensive tax base y0. Define:

ε0k(y0)
def≡ 1− T ′

0(y0)

Yk(y0)

∂Yk(θ)

∂τ0

∣∣∣∣
Y0(θ)=y0

as the elasticity of the mean of the kth income, with respect to the net-of-marginal tax rate τ0 of the y0

tax base, among taxpayers earning y0. Fixing the right-hand side of (50), Equation (51) indicates that

the GE price adjustments affect the optimal marginal tax rate at y0 in proportion to:∑
1≤k≤n

ηk
∂Yk(θ)

∂τ0

∣∣∣∣
Y0(θ)=yi

=
1

σ (1− T ′
0(y0))

∂L Rp1

∂µ

[
Y2(y0)

Y2
ε02(y0)−

Y1(y0)

Y1
ε01(y0)

]
.

The impact of GE adjustments on the optimal marginal tax rates at taxable income y0 relies on the sign

of ∂L Rp1/∂µ which is the same across the taxable income distribution. Conversely, the term in square
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brackets may vary with taxable income. This term compares the two elasticities with respect to the net-

of-marginal tax rate, scaled by the ratios of average kth income at taxable income y0 over aggregate kth

income Yk. In particular, if the two elasticities are identical, as in Rothschild and Scheuer (2013) or in

Sachs et al. (2020), then the effect of GE price adjustments on optimal marginal tax rates may be positive

at low taxable income levels y0 and negative at high taxable income levels, as in Figure 2 of Rothschild

and Scheuer (2013) and Figure 4 of Sachs et al. (2020). In our framework, this outcome occurs when

∂L Rp1/∂µ > 0 and if taxpayers with low (high) taxable income y0 earn relatively more (less) income

2 and relatively less (more) income 1 than in the overall population.

We derive optimal tax formulas for two polar cases: a schedular tax schedule (Proposition 5) and

a comprehensive tax schedule (Proposition 6). In practice tax systems can also fall between these two

cases. For instance, a partial observability scenario may prevail where the tax authority observes only

the sum of m < n incomes y = y1+ ...+ ym, while separately observing the remaining income sources

ym+1, ..., yn. This situation can occur when the first m income sources correspond to different types

of labor (e.g., routine, manual, conceptual), while the remaining ones represent returns from various

forms of investment. Other intermediate cases can also be considered. In all such situations, optimal tax

formulas can be derived by combining the key determinants of the optimal schedular system (Proposition

5) with those of the optimal comprehensive system (Proposition 6).

VIII Conclusion

A key takeaway from this paper is that the tax system deserves particular attention when assessing the

impact of changes in production policy. In multidimensional settings with market failures, we identify

the conditions under which production policies that increase aggregate output can be Pareto-improving

despite their negative pre-distributional effects. When the tax system can be adjusted through GE-

neutralizing tax reforms, government intervention in the production sector is unnecessary.

Moreover, we provide formulas that quantify the impact of any tax and/or production policy re-

form using standard empirical statistics, along with a key empirical measure for GE effects: the GE-

multipliers. These GE-multipliers highlight the importance of empirical research estimating mark-up,

elasticities of substitution between factors and the impact of regulation on prices. We then leverage the

same statistics to characterize optimal multidimensional, schedular, and comprehensive nonlinear tax

systems.

Another key insight of this paper is the practical identification of Pareto-improving tax reforms and

Pareto-efficient tax systems, showing that this identification relies on the same condition than in PE.
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Generalized Production Efficiency:
Online Appendix

In this appendix, we gather all proofs and demonstrate how the reduced-form production sector can
be micro-founded to connect with many applications (and results) found in the tax literature as well as
new ones.

A Proofs

A.1 Convexity of the Indifference Set

Let C (·,x;θ) denote the reciprocal of U (·,x;θ). Taxpayers of type θ who supply factors x obtain
consumption c = C (u,x;θ) to enjoy utility u = U (c,x;θ). Using (1), we obtain:

Cu(u,x;θ) =
1

Uc (C (u,x;θ),x;θ)
Cxi(u,x;θ) = Si (C (u,x;θ),x;θ) (A.1)

For each type θ ∈ W and each utility level u, we assume that the indifference set x 7→ C (u, x1,... , xn)
is strictly convex. The ith partial derivative of x 7→ C (u, x1, ..., xn;θ) being Si(C (u, x1, .., xn;θ),
, x1, ..., xn;θ), the Hessian is matrix:[

Si
xj

+ Si
cSj
]
i,j

=

[
−

Uxixj + SjUcxi + SiUcxj + SiSjUcc

Uc

]
i,j

Therefore, Matrix
[
Si
xj

+ Si
cSj
]
i,j

is positive definite if the indifference curves are strictly convex.

The first-order condition associated to (2) are given by:

0 = pi (1− Tyi(y)) Uc

(
n∑

i=1

pk xk − T (p1 x1, ..., pn xn) ,x;θ

)

+ Uxi

(
n∑

i=1

pk xk − T (p1 x1, ..., pn xn) ,x;θ

)
.

Therefore, using (3), the matrix of the second-order condition is:[
Uxixj + SjUcxi + SiUcxj + SiSjUcc − pi pj UcTyiyj

]
i,j

= −Uc

[
Si
xj

+ Si
cSj + pi pj Tyiyj

]
i,j

.

Hence, for taxpayers of type θ, the second-order condition holds strictly if and only if the matrix[
Si
xj

+ Si
cSj + pi pj Tyiyj

]
i,j

is positive definite, i.e. if and only if the indifference set x 7→ C (U(θ),x;θ)

is strictly more convex than the budget set x 7→
∑n

k=1 pk xk − T (p1 x1, ..., pn xn) at x = X(θ).

A.2 Assumptions for the Implicit Function Theorem

To apply the implicit function theorem to the first-order condition associated to the individual maxi-
mization program, we assume that:

(i) The initial tax schedule y 7→ T (y) is twice continuously differentiable.

(ii) The second-order condition associated to the individual maximization program (13) holds strictly,
i.e. the matrix

[
Si
xj

+ Si
cSj + pi pj Tyiyj

]
i,j

is positive definite at c = C(θ), x = X(θ) and at

y = Y(θ), for each type θ ∈ W ,

1



(iii) for each type θ ∈ W , program (13) admits a unique global maximum.

Part (i) ensures that first-order conditions (3) are continuously differentiable in incomes y. It rules
out kinks in the tax function, thereby bunching.27 Parts (i) and (ii) together enable one to apply the
implicit function theorem to first-order conditions (3) to ensure that each local maximum of

x 7→ U

(
n∑

k=1

pk xk − T (p1 x1, ..., pn xn) + µ R(p1 x1, ..., pn xn), x1, ..., xn;θ

)
is differentiable in type θ, in price p and in the tax perturbation’s magnitude µ of tax reforms. Part
(iii) rules out the existence of multiple global maxima. This prevents any incremental tax reform from
causing a jump in the taxpayer’s choice from one maximum to another. Part (iii) also ensures the
allocation changes in a differentiable way with the magnitude of the tax reform and with types.

A.3 Proof of Equations (16a), (16b) and (16c)

The first-order conditions associated to (13) are ∀i ∈ {1, ..., n}:

Si

(
n∑

i=1

pi xi − T (p1 x1, ..., pn xn) + µ R(y),x;θ

)
= pi (1− Tyi(p1 x1, ..., pn xn) + µ Ryi(y)) (A.2)

Differentiating these first-order conditions at µ = 0 and using (A.2) leads to ∀i ∈ {1, ..., n}:
n∑

k=1

[
Si
xk

+ Si
c Sk + pi pk Tyiyk

]
dxk =

[
pi Ryi − Si

c R
]
dµ (A.3)

+
n∑

j=1

[
1i=j(1− Tyj )− pi xj Tyiyj − Si

c (1− Tyj ) xj
]
dpj .

Equation (A.3) can be rewritten in matrix form as:[
Si
xj

+ Si
cSj + pipjTyiyj

]
i,j

· dxT =
[
pi Ryi(Y(θ))− Si

c R(Y(θ))
]T
i
dµ (A.4)

+
[
(1− Tyj )

(
1i=j − xj Si

c

)
− pi xj Tyiyj

]
i,j

· dpT .

where superscript T denotes the transpose operator[Ai,j ]
T
i,j = [Aj,i]i,j and “·” denotes the matrix prod-

uct. Matrix
[
Si
xj

+ Si
cSj + pipjTyiyj

]
i,j

is the Hessian matrix associated to the maximization program

(13). It is therefore symmetric and semi-positive definite. Since the second-order condition associated to
the individual maximization program is assumed to hold strictly, matrix

[
Si
xj

+ Si
cSj + pi pj Tyiyj

]
i,j

is positive definite, and is therefore invertible. Let Hi,j denote the term in the ith row and jth column of
the inverse of the Hessian matrix. We obtain by inverting (A.4):

dxi =
n∑

k=1

Hi,k

[
pk Ryk(Y(θ))− Sk

c R(Y(θ))
]
dµ (A.5)

+
n∑

j=1

{
n∑

k=1

Hi,k

[
(1− Tyj )

(
pj 1k=j − yj Sk

c

)
− pk yj Tykyj

]} dpj
pj

27In reality, most real world tax schedules are piecewise linear. Theoretically, one should observe bunching at convex
kinks and gaps at concave kinks. Empirically, most convex kinks do not cause significant bunching, with the exception of
the self-employed in the United States at the first kink point of the EITC (Saez, 2010). Moreover, no gap is observed at
concave kinks. These discrepancies between theoretical predictions and empirical evidence can be reconciled by assuming
that taxpayers do not optimize with respect to the exact tax schedule but with respect to some smooth approximation of it, e.g.
y 7→

∫
T (y + u) dΨ(u) where u is an n-dimensional random shock on incomes with joint CDF Ψ, which sastifies part i).

2



Under a compensated tax reform of the jth marginal tax rate at income y = Y(θ) where R(y) =
yj − Yj(θ), one has R(Y(θ)) = 0 and Ryk(Y(θ)) = 1k=j . Hence, according to (A.5) compensated
responses are given by:

∂Xi(θ)

∂τj
= pj Hi,j ,

∂Yi(θ)

∂τj
= pi pj Hi,j (A.6a)

with ∂Yi(θ)
∂τj

=
∂Yj(θ)
∂τi

since the Hessian matrix is symmetric.
Under a lump-sum tax reform where R(y) = 1, one has R(Y(θ)) = 1 and Ryk(Y(θ)) = 0. Hence,

according to (A.5), income effects are given by:

∂Xi(θ)

∂ρ
= −

n∑
k=1

Hi,k Sk
c ,

∂Yi(θ)

∂ρ
= −pi

n∑
k=1

Hi,k Sk
c . (A.6b)

Under an uncompensated tax reform of the jth marginal tax rate at income y = Y(θ) where R(y) =
yj , one has R(Y(θ)) = Yj(θ) and Ryk(Y(θ)) = 1k=j . Hence, according to (A.5) uncompensated
responses are given by the Slutsky equations:

∂Xu
i (θ)

∂τj
=

∂Xi(θ)

∂τj
+ Yj(θ)

∂Xi(θ)

∂ρ
,

∂Y u
i (θ)

∂τj
=

∂Yi(θ)

∂τj
+ Yj(θ)

∂Yi(θ)

∂ρ
(A.6c)

From (A.5), the factor supply responses to log-price changes can be written as:

∂Xi(θ)

∂log pj
=

n∑
k=1

Hi,k

[
(1− Tyj )

(
pj 1k=j − yj Sk

c

)
− pk yj Tykyj

]
(A.6d)

At the GE, the prices µ 7→ (pR1 (µ), . . . , p
R
n (µ)) are affected by any tax or production policy reform

of magnitude µ. Therefore, substituting dpj =
(
∂p

R(·),α(·)
j /∂µ

)
dµ into (A.5) results in the following

taxpayer responses:

∂X
R(·),α(·)
i (θ, µ)

∂µ
=

n∑
k=1

Hi,k

[
pk Ryk(Y(θ), 0)− Sk

c R(Y(θ), 0)
]

+
n∑

j=1

{
n∑

k=1

Hi,k

[
(1− Tyj )

(
pj 1k=j − yj Sk

c

)
− pk yj Tykyj

]} ∂log p
R(·),α(·)
j

∂µ
.

Using (A.6a), (A.6b) and (A.6d), we obtain:

∂X
R(·),α(·)
i (θ, µ)

∂µ
=

n∑
k=1

∂Xi(θ)

∂τk
Ryk(Y(θ)) +

∂Xi(θ)

∂ρ
R(Y(θ)) +

n∑
j=1

∂Xi(θ;p)

∂log pj

∂log pRj
∂µ

(A.7)

which, eventually, leads to (16a), (16b) and (16c).

A.4 Proof of Proposition 1

We take dµ = dpj/pj . According to (17), we get that for any k ̸= j, Rpj
yk(Y(θ)) = −yj Tykyj , so:[

pk R
pj
yk(Y(θ))− Sk

c R(Y(θ))
]
dµ =

[
−(1− Tyj )xj Sj

c − pk xj Tykyj
]
dpj .

Moreover, we get from (17) that Rpj
yj (Y(θ)) = 1− Tyj − yj Tyjyj , so:[

pk R
pj
yj (Y(θ))− Sj

c R(Y(θ))
]
dµ =

[
1− Tyj − (1− Tyj )xj Sj

c − pk xj Tykyj
]
dpj

3



Therefore, Equation (A.5) ensures that

∀i ∈ {1, ..., n}, ∀j ∈ {1, ..., n} :
∂XRpj ,PE

i (θ;µ,p)

∂µ
=

∂Xi(θ;p)

∂log pj
.

Finally, we directly obtain the equality:

∂URpj ,PE(θ;µ,p)

∂µ
=

∂U(θ;p)

∂log pj
.

by plugging Equation (17) into Equation (15).

A.5 Proof of Lemma 1

Let ∂logXR(·),α(·)/∂µ
def≡ (∂ logXR(·),α(·)

1 /∂µ, ..., ∂ logXR(·),α(·)
n /∂µ)T denote the column vec-

tor of factor supply’s aggregate responses at GE and let ∂log pR(·),α(·)/∂µ
def≡ (∂ log p

R(·),α(·)
1 /∂µ, ...,

∂ log p
R(·),α(·)
n /∂µ)T denote the column vector of factor price responses at GE. Summing (16a) over all

types and using (20b) leads to the supply responses equation:

∂logXR(·),α(·)

∂µ
= Γ · ∂log pR(·),α(·)

∂µ
+

∂logXR(·),PE

∂µ
(A.8)

The demand response equation is therefore given by:

∂log pR(·),α(·)

∂µ
= Ξ · ∂logXR(·),α(·)

∂µ
+

∂logPα(·)

∂µ
(A.9)

where ∂logPα(·)/∂µ
def≡ (∂ logP

α(·)
1 /∂µ, ..., ∂ logP

α(·)
n /∂µ)T denotes the column vector of log-

derivatives of inverse demands with respect to production policy reforms, holding factor supplies fixed.
Plugging (A.8) into (A.9) leads to:

∂log pR(·),α(·)

∂µ
= Ξ · Γ · ∂log pR(·),α(·)

∂µ
+ Ξ · ∂logXR(·),PE

∂µ
+

∂logPα(·)

∂µ
,

which eventually leads to (22), whenever Matrix In − Ξ · Γ is invertible.

A.6 Examples of primitives that satisfy Assumption 3

Assumption 3 specifies that the production policy reform α(·) does not affect the ratio of prices
between factors j = 1, ...,m. This is satisfied when the inverse demand elasticities take a weakly
separable form, as in Equations (36a)-(36b). In this case, the price ratio pi/pj for 1 ≤ i, j ≤ m depends
neither on the other factors Xm+1, ...,Xn nor on production policies α:

∀i, j ∈ {1, ...,m} :
pi
pj

=
Qi (X1, ...,Xm)

Qj (X1, ...,Xm)
.

Equations (36a)-(36b) are for instance verified in the case of perfect competition and a weakly separable
production function of the form:

F (X1, ...,Xn;α) = F (A (X1, ...,Xm) ,Xm+1, ...,Xn;α) .

We note that the above restrictions on the demand elasticities are only one relevant possibility for sat-
isfying Assumption 3, as one only needs that the considered production policy reform does not modify
the ratio of prices between different factors j = 1, ...,m.
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A.7 Proof of Lemmas 2, 3 and 4

We first consider the general case with a tax reform in the direction R(·) combined with a production
policy reform in the direction α(·), as considered in Lemma 4. We then adapt the proof of Lemma 4 to
the specific cases considered in Lemmas 2 and 3.

According to (16a), (16c) and (16d), combining a production policy reform in the direction α(·)
with a tax reform in the direction RN (·) def≡ R(·) −

∑n
j=1 γ

R(·),α(·)
j Rpj (·) defined in (38a), impacts

taxpayers’ supplies and utilities through:

∀i ∈ {1, ..., n} :
∂X

R(·),α(·)
i (θ;µ)

∂µ
=

∂X
R(·),PE
i (θ;µ,p)

∂µ
−

n∑
j=1

∂X
Rpj (·),PE
i (θ;µ,p)

∂µ
γ
R(·),α(·)
j

+
n∑

j=1

∂Xi(θ;p)

∂log pj

∂log p
RN (·),α(·)
j

∂µ
.

and :
∂UR(·),α(·)(θ;µ)

∂µ
=

∂UR(·),PE(θ;µ,p)

∂µ
−

n∑
j=1

∂URpj (·),PE(θ;µ,p)

∂µ
γ
R(·),α(·)
j

+

n∑
j=1

∂U(θ;p)

∂log pj

∂log p
RN (·),α(·)
j

∂µ
.

According to Proposition 1, if:

∀j ∈ {1, ..., n} : γ
R(·),α(·)
j =

∂log p
RN (·),α(·)
j

∂µ
(A.10)

we get that:

∀i ∈ {1, ..., n} :
∂X

R(·),α(·)
i (θ;µ)

∂µ
=

∂X
R(·),PE
i (θ;µ,p)

∂µ
.

and :
∂UR(·),α(·)(θ;µ)

∂µ
=

∂UR(·),PE(θ;µ,p)

∂µ
.

i.e. the combination of the production policy reform in the direction α(·) with a tax reform in the
direction RN (·) has the same effects on taxpayers’ factor supplies and utility levels at the GE as does a
tax reform in the direction R(·) at the PE.

Let denote γR(·),α(·) = (γ
R(·),α(·)
1 , ..., γ

R(·),α(·)
n )T . Using (22) in Lemma 1, Condition (A.10) can

be rewritten in matrix form as:

(In − Ξ · Γ) · γR(·),α(·) = Ξ · ∂logXRN (·),PE

∂µ
+

∂logPα(·)

∂µ

= Ξ · ∂logXR(·),PE

∂µ
Ξ · Γ · γR(·),α(·) +

∂logPα(·)

∂µ

= Ξ · ∂logYR(·),PE

∂µ
− Ξ · Γ · γR(·),α(·) +

∂logPα(·)

∂µ

where the second equality holds because of Equation (20b) and Proposition 1 and the third equality
holds because ∂ logXR(·),PE/∂µ = ∂ logYR(·),PE/∂µ according to (23). Rearranging terms leads
to:

γR(·),α(·) = Ξ · ∂logYR(·),PE

∂µ
+

∂logPα(·)

∂µ
(A.11)

which corresponds to Equation (38b), thereby ending the proof of Lemma 4.

5



In the absence of an initial tax reform (i.e. when R(·) ≡ 0), Equation (A.11) leads to (29b), thereby
ending the proof of Lemma 2.

Finally, under Assumption 3, a production policy reform does not change the price ratio between
the m first factors. This implies that ∂log(Pj/Pk)/∂αℓ = 0 for all ℓ ∈ {1, ..., L} and all (j, k) ∈
{1, ...,m}. Since for all (j, k) ∈ {1, ...,m}, one has ∂log(Pj/Pk)/∂αℓ = ∂logPj/∂αℓ−∂logPk/∂αℓ,
Assumption 3 implies:

∀ℓ ∈ {1, ..., L} :
∂logP1

∂αℓ
= ... =

∂logPm

∂αℓ

def≡ ∂logPy

∂αℓ
. (A.12)

Under Assumption 2, the government cannot reform the tax system in the price-replicating directions
Rp1(·), ..., Rpm(·), but can reform the tax system in the price-replicating directions Rpm+1(·), ..., Rpn(·)
and Ry(·). However, Equation (A.12) implies that the GE-neutralizing reform RN (·), given by (29a) and
(29b), can be re-expressed solely in terms of available price-replicating directions Rpm+1(·), ..., Rpn(·)
and Ry(·) since:

RN (·) = −
n∑

j=1

(
L∑

ℓ=1

∂logPj

∂αℓ
α′
ℓ(0)

)
Rpj (·)

= −

(
L∑

ℓ=1

∂logPj

∂αℓ
α′
ℓ(0)

)
m∑
j=1

Rpj (·)−
n∑

j=m+1

(
L∑

ℓ=1

∂logPj

∂αℓ
α′
ℓ(0)

)
Rpj (·).

According to (27), since the tax system depends on y1, ..., ym only though y = y1 + ...+ ym according
to Assumption 2, one has that Ry(·) =

∑m
j=1R

pj (·), so the GE-neutralizing reform can be expressed
solely in terms of available price-replicating directions Rpm+1(·), ..., Rpn(·) and Ry(·):

RN (·) = −
L∑

ℓ=1

α′
ℓ(0)

∂logPȳ

∂αℓ
Rȳ(y)−

n∑
j=m+1

L∑
ℓ=1

α′
ℓ(0)

∂logPj

∂αℓ
Rpj (y), (A.13)

which ends the Proof of Lemma 3.

A.8 Proof of Theorems 1 and 2

According to (9) and T (Y(θ)) =
∑n

i=1 pi Xi(θ)− C(θ), one gets that the tax revenue is equal to:

B =
n∑

i=1

pi Xi(θ)−
∫
Θ
C(θ) dF (θ). (A.14)

Under Assumption 1, Lemma 2 ensures that combining a production policy reform α(·) with the
associated neutralizing tax reform RN (·) defined in (29a) and (29b) changes neither taxpayers’ factor
supplies X(θ), nor their consumption levels C(θ). Lemma 3 ensures the same result holds under As-
sumptions 2 and 3. Therefore, combining a production policy reform α(·) with the neutralizing tax
reform RN (·) affects the Lagrangian only through tax revenue by:

∂L RN (·),α(·)

∂µ
=

∂BRN (·),α(·)

∂µ
=

n∑
i=1

Xi
∂p

RN (·),α(·)
i

∂µ
=

n∑
i=1

Yi
∂logP

α(·)
i

∂µ

where we used (29b) and (A.10). Using (7) and (21) yields:

∂L RN (·),α(·)

∂µ
=

∂BRN (·),α(·)

∂µ
=

L∑
ℓ=1

Fαℓ
α′
ℓ(0). (A.15)

Therefore, a production policy reform α(·) with the associated neutralizing tax reform does not affect
any taxpayer’s utility level, but increases tax revenue if it is production-enhancing, i.e. if

∑L
ℓ=1Fαℓ

α′
ℓ(0) >

0.

6



A.9 Proof of Theorems 3 and 4

Theorem 3 is a particular case of Theorem 4 where the initial tax reform is R(·) ≡ 0. We therefore
directly prove Theorem 4, by considering the effect on Lagrangian of combining a tax reform in the
direction R(·) with a production policy reform in the direction α(·).

According to Equations (9)-(11), we get that:

∂L R(·),α(·)

∂µ
=

∫
Θ

{
R(Y(θ)) +

n∑
i=1

Tyi(Y(θ))
∂Y

R(·),α(·)
i (θ)

∂µ
+

1

λ

∂Φ
(
UR(·),α(·)(θ);θ

)
∂µ

}
dF (θ).

Using (16b) and (16d) leads to:

∂L R(·),α(·)

∂µ
=

∫
Θ

{
−(1− g(θ)) R(Y(θ)) +

n∑
i=1

Tyi(Y(θ))
∂Yi(θ)

R(·),PE

∂µ

}
dF (θ) (A.16)

+

n∑
j=1

∂log p
R(·),α(·)
j

∂µ

∫
Θ

{
n∑

i=1

Tyi(Y(θ))
∂Yi(θ)

∂log pj
+
(
1− Tyj (Y(θ))

)
Yj(θ) g(θ)

}
dF (θ).

The first row in the right-hand side of (A.16) corresponds to the PE effects on the Lagrangian.28

∂L R(·),PE

∂µ

def≡
∫
Θ

{
−(1− g(θ)) R(Y(θ)) +

n∑
i=1

Tyi(Y(θ))
∂Yi(θ)

R(·),PE

∂µ

}
dF (θ). (A.17)

Moreover, as the term in factor of ∂log pR(·),α(·)
j /∂µ does not depend on tax reform and since the

partial derivatives ∂log Y
R(·),α(·)
i (θ)/∂µ and ∂log p

R(·),α(·)
j /∂µ are linear in the direction of tax and

production policy reforms according to (16a)-(16d) and (22), so does ∂L R(·),α(·)/∂µ. We then consider
the direction of tax reform RN (·) defined by (38a) and (38b). We thus get that:

∂L R(·),α(·)

∂µ
=

∂L RN (·),α(·)

∂µ
+

n∑
j=1

∂L Rpj (·)

∂µ
γ
R(·),α(·)
j . (A.18)

Moreover, according to Lemma 4, the combination of a tax reform in the direction RN (·) defined by
(38a) and (38b) have the same effects on taxpayers’ factor supplies and utility at the GE as does a
tax reform in the direction R(·) at the PE. According to (A.14), the GE effects on the Lagrangian of
the combination of the tax reform in the direction RN (·) and of the production policy reform in the
direction α(·) differs from the PE effects of a tax reform in the direction R(·) solely by the effects of
price changes at the GE holding factor supplies fixed. That is:

∂L RN (·),α(·)

∂µ
=

∂L R(·),PE

∂µ
+

n∑
j=1

Yj

∂log p
R(·),α(·)
j

∂µ
. (A.19)

Combining (A.10), (A.18) and (A.19) leads to:

∂L R(·),α(·)

∂µ
=

∂L R(·),PE

∂µ
+

n∑
j=1

(
Yj +

∂L Rpj (·)

∂µ

)
∂log p

R(·),α(·)
j

∂µ
. (A.20)

Plugging (38b) and (A.17) into (A.20) leads to:

∂L R(·),α(·)

∂µ
=

∫
Θ

{
−(1− g(θ)) R(Y(θ)) +

n∑
i=1

Tyi(Y(θ))
∂Yi(θ)

R(·),PE

∂µ

}
dF (θ)

+

n∑
j=1

(
Yj +

∂L Rpj (·)

∂µ

)
n∑

i=1

Ξj,i

Yi

∂YR(·),PE
i

∂µ
+

n∑
j=1

(
Yj +

∂L Rpj (·)

∂µ

)
L∑

ℓ=1

∂logPj

∂αℓ
α′
ℓ(0).

28Recall that production policies affects taxpayers only through change in prices, they have therefore zero impact on the
Lagrangian at the PE.

7



Rearranging terms yields:

∂L R(·),α(·)

∂µ
=

∫
Θ

{
−(1− g(θ)) R(Y(θ)) +

n∑
i=1

Tyi(Y(θ))
∂Yi(θ)

R(·),PE

∂µ

}
dF (θ) (A.21)

+
n∑

i=1

 n∑
j=1

Yj
Ξj,i

Yi
+

n∑
j=1

∂L Rpj (·)

∂µ

Ξj,i

Yi

 ∂YR(·),PE
i

∂µ

+
L∑

ℓ=1

n∑
j=1

Yj
∂logPj

∂αℓ
α′
ℓ(0) +

L∑
ℓ=1

n∑
j=1

∂L Rpj (·)

∂µ

∂logPj

∂αℓ
α′
ℓ(0).

Differentiating both sides of (5) with respect to Xi implies:

FXi = pi +
n∑

j=1

Xj
∂Pj

∂Xi
= pi +

n∑
j=1

Yj
∂logPj

∂Xi
.

Using that ∂logPj/∂Xi = (pi/Yi) Ξj,i according to (20a), we get that

n∑
j=1

Yj
Ξj,i

Yi
=

FXi − pi
pi

.

Plugging the latter equality and (7) into Equation (A.21), we obtain:

∂L R(·),α(·)

∂µ
=

∫
Θ

{
−(1− g(θ)) R(Y(θ)) +

n∑
i=1

Tyi(Y(θ))
∂Yi(θ)

R(·),PE

∂µ

}
dF (θ) (A.22)

+
n∑

i=1

FXi − pi
pi

+
n∑

j=1

∂L Rpj (·)

∂µ

Ξj,i

Yi

 ∂YR(·),PE
i

∂µ

+
L∑

ℓ=1

Fαℓ
α′
ℓ(0) +

L∑
ℓ=1

n∑
j=1

∂L Rpj (·)

∂µ

∂logPj

∂αℓ
α′
ℓ(0).

Using the definition of GE-multipliers ηi in Equation (34) finally leads to (40), which ends the Proof of
Theorem 4.

A.10 Proof of Equation (37)

According to (17) and (27), one has that ∀y : Ry =
∑n

j=1R
pj (y) which implies that:

∂L Ry(·)

∂µ
=

m∑
j=1

∂L Rpj (·)

∂µ
.

When

∂L Ry(·)

∂µ
=

m∑
j=1

∂L Rpj (·)

∂µ
= 0 and ∀j ∈ {m+ 1, ..., n} :

∂L Rpj (·)

∂µ
= 0,

Equation (34) simplifies to:

ηi =
FXi − pi

pi
+

m∑
j=1

∂L Rpj (·)

∂µ

Ξj,i

Yi
.
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According to (36a), inverse demand elasticities Ξj,i have to verify

∀i ∈ {m+ 1, ..., n}, ∀j ∈ {1, ...,m} : Ξj,i =
Xi

P
∂P
∂Xi

.

Hence, we get:

ηi =
FXi − pi

pi
+

 m∑
j=1

∂L Rpj (·)

∂µ

 1

pi P
∂P
∂Xi

which finally leads to (37) whenever the tax system is also optimized over the price-replicating direction
Ry(·), i.e. when:

0 =
∂L Ry(·)

∂µ
=

m∑
j=1

∂L Rpj (·)

∂µ
.

A.11 Proof of Proposition 3

Rewriting Equation (40) in terms of income y rather than type θ and when there is no production
policy reform, we have:

∂L R(·)

∂t
=

∫
WY

{
−

[
1− ĝ(y)−

n∑
i=1

(Tyi(y) + µi)
∂Ŷi(y)

∂ρ

]
R(y)

+
∑

1≤i,j≤n

(Tyi(y) + ηi)
∂Ŷi(y)

∂τj
Ryj (y))

h(y)dy.

Using the divergence theorem on the term of the second line and rearranging, we obtain:

∂L R(·)

∂µ
=

∮
∂WY

∑
1≤i,j≤n

(Tyi(y) + ηi)
∂Ŷi(y)

∂τj
h(y)ϕj(y)R(y)dσ(y)

−
∫
WY

{[
1− ĝ(y)−

n∑
i=1

(Tyi(y) + ηi)
∂Ŷi(y)

∂ρ

]
h(y)

+

n∑
j=1

∂[
∑n

i=1 (Tyi(y) + ηi)h(y)]

∂yj

R(y) dy,

where dσ(y) is the corresponding measure of a surface integral (denoted by
∮

). If the tax system
y 7→ T (y) is optimal, the above equation has to be equal to zero for all possible directions R(·). This is
only possible if both equations, given in Proposition 3, are satisfied.

At this optimum, one must have ∂L Rpj (·)/∂t = 0 for all j ∈ {1, ..., n}. This implies that Equation
(34) reduces to η1, ..., ηn = 0 under perfect competition. Applying Equation (41) with η1, ..., ηn = 0 to
the current tax schedule identifies the revealed welfare weights g̃(y) displayed in (43).

A.12 Proof of Theorem 5

From the definition of revealed welfare weights, we get that for any direction R(·): ∂L R(µ)/∂t =
0. Moreover, since η1 = ... = ηn = 0, we have that for any direction R(·): ∂L R(µ)/∂t =
∂L R,PE(µ)/∂t = 0 from (34) and (A.22). Therefore, using ∂L R,PE(µ)/∂t = ∂BR,PE(µ)/∂t +
(1/λ)∂W R,PE(µ)/∂t and Equation (16d) implies:

∂BR,PE(µ)

∂t
= −

∫
WY

ĝ(y) R(y) h(y)dy. (A.23)
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Therefore, a tax reform with a small positive magnitude µ and a direction R(·) such that R(y) = 0 if
g̃(y) ≥ 0 and R(y) ≥ 0 if g̃(y) < 0 increases tax revenue at the PE. According to (16d), such a reform
also increases at the PE the welfare of taxpayers for which R(Y(θ)) > 0 and leave the welfare of the
others unchanged. It is therefore a Pareto-improving tax reform at the PE.

According to Lemma 4, a reform with a small positive µ in the direction RN (·) defined in (38a)
and (38b) has the same effects at the GE on taxpayers’ utility U(θ) and factor supplies X(θ) as a
reform in the direction R(·) and the same magnitude µ at the PE. Since tax revenues are equal to:∑n

j=1 pj Xj −
∫
W C (U(θ),X(θ);θ) dF (θ), if a tax reform with a small positive magnitude µ and a

direction R(·) is Pareto-improving at the PE, which is the case when some revealed welfare are negative
and the direction R(·) verifies that, a reform with a small positive magnitude µ and the direction RN (·)
defined by (38a) and (38b) is Pareto-improving if

∑
j Xj ∂p

RN
/∂t ≥ 0. From (5) we get:

F
(
XR,PE
1 (µ), ...,XR,PE

n (µ)
)
=

n∑
j=1

pRj (µ) X
R,PE
j (µ).

Differentiating both sides with respect to µ and using (6) leads to:
∑

j Xj ∂pR
N
/∂µ = 0. Hence, if

a reform with a small positive magnitude µ and a direction R(·) is Pareto-improving at the PE, then,
under perfect competition, a reform with a small positive magnitude t and the direction RN (·) defined
by (38a) and (38b) is Pareto-improving at the GE.

A.13 Proof of Proposition 4

We consider the case where revealed welfare weights ĝ(y) > 0 are almost everywhere positive. We
first notice that, according to Lemma 4, under perfect competition, there exists a direction RN (·) such
that reforms with positive µ in the direction RN (·) are Pareto-improving at the GE if and only if there
exists a direction R(·) such that reforms with positive µ in the direction RN (·) are Pareto-improving at
the PE, where R(·) and RN (·) are related by (38a) and (38b)

Assuming, by contradiction, that there exists a direction of tax reform denoted RN (·) such that a
reform in the direction RN (·) and a small positive magnitude µ is Pareto-improving at the GE. According
to Lemma 4, this implies the existence of a direction of tax reform denoted R(·), such that a reform with
this direction and a positive µ is Pareto-improving at the PE. According to (16d), since a reform in the
direction R(·) improves taxpayer’s welfare at the PE, one must have R(Y(θ)) ≥ 0 for all θ ∈ W with
a strict inequality for some types. However, according to (A.23), such a reform decreases tax revenue at
the PE, leading to a contradiction for a Pareto-improving direction of tax reforms at the PE.

A.14 Proof of Proposition 5

When the tax system is schedular and linear for i = n′ + 1, ..., n, we get that:

T (y) =

n′∑
i=1

Ti(yi) +

n∑
i=n′+1

ti yi (A.24)

the admissible directions of tax reforms must also be schedular, i.e. they must depend only on one type
of income and take the form y 7→ Ri(yi). Moreover for i = n′ + 1, ..., n the directions specific to the
ith income must be linear.

Under Equation (A.24), according to (17) the price-replicating directions are given by Rj(y) =
(1 − T ′(yj))yj for j = 1, ..., n′ and by Rj(y) = (1 − tj)yj for j = n′ + 1, ..., n. Perturbing the tax
system along the GE-replicating directions thus keeps the tax system being schedular and also linear
for i = n′ + 1, ..., n. Therefore, one has ∂L Rj

/∂t = 0 for all j = 1, ..., n, so, according to (34), the
GE-multipliers are given by (46a).

Let Ri(yi) be any direction of a tax reform specific to the ith income. Because the tax schedule is
schedular, Equation (40), stating the impact on the Lagrangian of a tax reform at the GE, simplifies to:
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∂L Ri(·)

∂µ
=

∫
W

{
−

[
1− g(θ)−

n∑
k=1

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂ρ

]
Ri(Yi(θ))

+
n∑

1=k

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂τi

R′
i(Yi(θ))

}
dF (θ). (A.25)

Rewritten in terms of the distribution of the ith income leads to:

∂L Ri(·)

∂µ
=

∫
R+

{
−

[
1− g(θ)|Yi(θ)=yi

−
n∑

k=1

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂ρ

∣∣∣∣
Yi(θ)=yi

]
Ri(yi)

+

n∑
1=k

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂τi

∣∣∣∣
Yi(θ)=yi

R′
i(yi)

}
hi(yi)dyi.

Integrating by parts the first term and rearranging terms using (45) leads to:

∂L Ri(·)

∂µ
=

∫
R+

{
−
∫ ∞

z=yi

[
1− g(θ)|Yi(θ)=z −

n∑
k=1

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂ρ

∣∣∣∣
Yi(θ)=z

]
dHi(z)

+
T ′
i (yi) + ηi
1− T ′

i (yi)
εi(yi) yi hi(yi) +

∑
1≤k≤n,k ̸=i

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂τi

∣∣∣∣
Yi(θ)=yi

hi(yi)

R′(yi)dyi.

− lim
yi 7→∞

{∫ ∞

z=yi

[
1− g(θ)|Yi(θ)=z −

n∑
k=1

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂ρ

∣∣∣∣
Yi(θ)=z

]
dHi(z) Ri(yi)

}

+ lim
yi 7→0

{∫ ∞

z=yi

[
1− g(θ)|Yi(θ)=z −

n∑
k=1

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂ρ

∣∣∣∣
Yi(θ)=z

]
dHi(z) Ri(yi)

}
.

For i = 1, ..., n′, the income specific tax schedule Ti(·) being nonlinear, the above equation must be
equal to zero for any non linear direction Ri, which implies (46b).

For i = n′ + 1, ..., n, the ith income specific tax schedule has to be linear, so the only admissible
directions of tax reforms specific to the ith income are proportional to Ri(yi) = yi. Equation (A.25)
then simplifies to:

∂L Ri(·)

∂µ
=

∫
W

{
−

[
1− g(θ)−

n∑
k=1

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂ρ

]
Yi(θ)

+
n∑

1=k

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂τi

}
dF (θ).

Using (A.6c), the previous equation simplifies to:

∂L Ri(·)

∂µ
=

∫
W

{
− [1− g(θ)]Yi(θ) +

n∑
1=k

(
T ′
k(Yk(θ)) + ηk

) ∂Y u
k (θ)

∂τi

}
dF (θ).

Using (45), the condition ∂L yi/∂t = 0 leads to (46c).
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A.15 Proof of Proposition 6

When the tax schedule is comprehensive, admissible directions of tax reforms take the form y 7→
R(y1 + ...+ yn). Consequently, Equation (40) simplifies to:

∂L R(·)

∂µ
=

∫
W

{
−

[
1− g(θ)−

n∑
k=1

(
T ′
0(Y0(θ)) + ηk

) ∂Yi(θ)
∂ρ

]
R(Y0(θ))

+
∑

1≤j,k≤n

(
T ′
0(Y0(θ)) + ηk

) ∂Yk(θ)
∂τj

R′(Y0(θ))

dF (θ).

Rewriting this expression in terms of the density h0(·) and CDF H0(·) of the taxable income, the last
equation becomes:

∂L R(·)

∂µ
=

∫
R+

{
−

[
1− g(θ)|Y0(θ)=y0

−
n∑

k=1

(
T ′
0(y0) + ηk

) ∂Yk(θ)

∂ρ

∣∣∣∣
Y0(θ)=y0

]
R(y0)

+
∑

1≤j,k≤n

(
T ′
0(y0) + ηk

) ∂Yk(θ)

∂τj

∣∣∣∣
Y0(θ)=y0

R′(y0)

h0(y0)dy0.

Using (47)-(49) leads to:

∂L R(·)

∂µ
=

∫
R+

{
−

[
1− g(θ)|Y0(θ)=y0

− T ′
0(y0)

∂Y0(y0)

∂ρ
−

n∑
k=1

ηk
∂Yk(θ)

∂ρ

∣∣∣∣
Y0(θ)=y0

]
R(y0)

+
T ′
0(y0)

1− T ′
0(y0)

ε0(y0) y0 R
′(y0) +

n∑
k=1

ηk
∂Yk(θ)

∂τ0

∣∣∣∣
Y0(θ)=y0

R′(y0)

}
h0(y0)dy0.

Using Integration by parts in the first line yields:

∂L R(·)

∂µ

=

∫
R+

{
−
∫ ∞

z=y0

[
1− g(θ)|Y0(θ)=z − T ′

0(y0)
∂Y0(y0)

∂ρ
−

n∑
k=1

ηk
∂Yk(θ)

∂ρ

∣∣∣∣
Y0(θ)=z

]
dH0(y0)

+
T ′
0(y0)

1− T ′
0(y0)

ε0(y0) y0 h0(y0) +

n∑
k=1

ηk
∂Yk(θ)

∂τ0

∣∣∣∣
Y0(θ)=y0

h0(y0)

}
R′(y0)dy0

− lim
y 7→∞

∫ ∞

z=y0

[
1− g(θ)|Y0(θ)=z − T ′

0(y0)
∂Y0(y0)

∂ρ
−

n∑
k=1

ηk
∂Yk(θ)

∂ρ

∣∣∣∣
Y0(θ)=z

]
dH0(y0) R(y0)

+ lim
y 7→0

∫ ∞

z=y0

[
1− g(θ)|Y0(θ)=z − T ′

0(y0)
∂Y0(y0)

∂ρ
−

n∑
k=1

ηk
∂Yk(θ)

∂ρ

∣∣∣∣
Y0(θ)=z

]
dH0(y0) R(y0).

At the optimal comprehensive tax schedule, one mus have ∂L R/∂t = 0 for all directions, which implies
Equation (50).

If there are only two factors and if the elasticity of substitution between these two factors is denoted
σ, one gets:

dp1
p1

− dp2
p2

=
1

σ

(
dX2

X2
− dX1

X1

)
.
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Under perfect competition, and denoting αi = Yi/ (Y1 + Y2) the ith income share, the differentiation of
both sides of (5) leads to:

0 = α1
dp1
p1

+ α2
dp2
p2

⇒ dp1
p1

− dp2
p2

=
1

α2

dp1
p1

= − 1

α1

dp2
p2

.

Combining the two latter equations leads to:

Ξ =

(
−α2

σ
α2
σ

α1
σ −α1

σ

)
.

Under perfect competition, the GE-multipliers are given by Equation (35), which leads to:

η1 =
−∂L R1

∂t
α2 +

∂L R2

∂t
α1

σ Y1
and : η1 =

∂L R1

∂t
α2 −

∂L R2

∂t
α1

σ Y2
.

Using ∂L R1
/∂t+ ∂L R2

/∂t = 0 eventually yields (51).

B Micro-founded Examples

In the core of the paper, we derive all our results using only the inverse demand functions Pi(·) to
describe the production sector. Relying on these reduced-forms allows us to demonstrate all our results
and to show these results are robust to change in the underlying micro-foundations. However, this
simplicity hides the large set of problems that can be described by these reduced-forms. We now discuss
how our reduced-form description of the production sector is consistent with various micro-founded
applications that have been discussed in the literature.

In the following subsections, we provide micro-foundations for several examples (competition pol-
icy, the taxation of intermediate goods, public sector pricing rules, commodity taxation, trade policies,
and the effects of business-oriented environmental regulations). We adopt the following notations. There
are one final good and S intermediate goods therefore, S + 1 sectors, indexed by s = 0, ..., S. Within
each sector s, there exist Ns firms. In sector s > 0, firm φ = 1, ..., Ns produces the sth intermediate

good, employing factors Xφ,s def≡ (Xφ,s
1 , ...,Xφ,s

n ) and goods zφ,s
def≡ (zφ,s0 , ..., zφ,ss−1, z

φ,s
s+1, ..., z

φ,s
S ) with

the production function Fφ,s (Xφ,s, zφ,s). Firm φ = 1, ..., N0 in sector s = 0 produces the final good

using factors Xφ,0 def≡
(
Xφ,0
1 , ...,Xφ,0

n

)
and goods zφ,0

def≡ (zφ,01 , ..., zφ,0S ) with the production function

Fφ,0
(
Xφ,0, zφ,0

)
. In all sectors s ∈ {0, ..., S}, let zφ,ss denote the production of firm φ ∈ {1, ...Ns}.

The production functions are differentiable with non-negative partial derivatives and are well-behaved.

Market clearing conditions
The market clearing condition for the final goods is:

N0∑
φ=1

Fφ,0
(
Xφ,0, zφ,0

)
=

S∑
s=1

Ns∑
φ=1

zφ,s0 +

∫
Θ
C(θ) dF (θ) + E. (B.1a)

It equalizes the total production of firms in the final good sector s = 0 in the left-hand side to the
demands for the final good s = 0 by intermediate goods producers (zφ,s0 for s = 1..., S and φ =
1, ..., Ns), taxpayers (C(θ) for all θ ∈ Θ) and the government (E), in the right-hand side.

The market clearing condition for factor i = 1, ..., n can be expressed as:

∀i ∈ {1, ..., n} : Xi =
S∑

s=0

Ns∑
φ=1

Xφ,s
i (B.1b)

i.e., the total supply of the ith factor by taxpayers on the left-hand side is equal to the sum of factor
demands by all firms in all sectors on the right-hand side.
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Finally, the market clearing condition in the intermediate goods sector s can be written as:

∀s ∈ {1, ..., S} :

Ns∑
φ=1

Fφ,s (Xφ,s, zφ,s) =
S∑

s′=0
s′ ̸=s

Ns′∑
φ=1

zφ,s
′

s (B.1c)

i.e., the total production of firms in sector s on the left-hand side is equal to the sum of the demands for
good s by firms in all sectors s′ other than s on the right-hand side.

In the next subsections, we describe how the resources are allocated within the production sector
in different micro-founded contexts. In a nutshell, the problem of resource allocation in the production
sector involves determining, for given aggregate supplies of factors X1, ...,Xn, the demand for factors
and goods by each firm φ ∈ {1, ..., Ns} in sector s ∈ {0, ..., S}. Specifically, this entails determining the
factor demands Xφ,s = (Xφ,s

1 , ...,Xφ,s
n ), the demands for goods zφ,s = (zφ,s0 , ..., zφ,ss−1, z

φ,s
s+1, ..., z

φ,s
S ),

and the firm’s production zφ,ss = Fφ,s (Xφ,s, zφ,s), subject to the market clearing conditions for final
goods (B.1a), for intermediate goods (B.1c) and for factors (B.1b).

B.1 Competition policy

Decentralized equilibrium
We first consider an example of a pro-competitive policy designed to reduce oligopolistic rents. Con-

sider that all firms, within each sector, have the same production function with constant returns to scale.
There is perfect competition in the final goods sector s = 0 and Cournot competition in the intermediate
goods sectors s ∈ {1, ..., S}. For simplicity, intermediate goods are produced using only factors and
with the same production function denoted Fs (χφ,s).29 Conversely, the final good is produced using
both intermediate goods and factors according to the following Cobb-Douglas production function:

Fφ,0
(
Xφ,0, zφ,0

)
=

S∏
s=1

(
zφ,0s

)βs

n∏
i=1

(
Xφ,0
i

)γi
where βs ≥ 0, γi ≥ 0 and

∑S
s=1 βs +

∑n
i=1 γi = 1. In all sectors s ∈ {0, ..., S}, let zs

def≡
∑Ns

φ=1 z
φ,s
s

denote the total production of the intermediate good s by all firms (φ = 1, ..., Ns) in sector s and let

z−φ,s
s

def≡ zs − zφ,ss denote the total amount of intermediate good s produced by the competitors of any
single firm φ in sector s. The program of the final good producers φ ∈ {1, ..., N0} is:

max
Xφ,0,zφ,0

S∏
s=1

(
zφ,0s

)βs

n∏
i=1

(
Xφ,0
i

)γi
−

S∑
s=1

qs z
φ,0
s −

n∑
i=1

pi Xφ,0
i ,

where qs denotes the purchasing price of good s, with the normalization q0 = 1 for the final good. The
first-order conditions with respect to z0φ,s lead, using the symmetry of these first-order conditions, to the
following inverse demand for the sth intermediate good:

qs = βs
(
z0s
)βs−1

S∏
s′=1,s′ ̸=s

(
z0s′
)βs′

n∏
i=1

(
X 0
i

)γi , (B.2a)

where X 0
i

def≡
∑N0

φ=1X
φ,0
i represents the sum of the ith factors used in the final goods sector, and where

z0s
def≡
∑N0

φ=1 z
φ,0
s represents the sum of the sth intermediate factors used by the N0 firms which produce

the final good. Symmetrically, the first-order condition with respect to Xφ,0
i leads to the following

inverse demand for the ith factor:

pi = γi
(
X 0
i

)γi−1
S∏

s=1

(
z0s
)βs

n∏
i′=1,i′ ̸=i

(
X 0
i′
)γi′ . (B.2b)

29Relaxing each of these assumptions do not alter our main results but adds complexity to the analysis.
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Since the final goods sector includes many firms and there are numerous intermediate goods sectors,
intermediate goods producers take production factor prices p1, ..., pn as given, as well as the production
of other intermediate goods producers. Noting that only final goods producers purchase intermediate
goods, the market clearing condition for the sth intermediate good writes zs = zφ,ss + z−φ,s

s . In inter-
mediate good sector s = {1, ..., S}, under Cournot competition, firm φ ∈ {1, ..., Ns}’s maximization
program is:30

max
Xφ,s,qs

qs Fφ,s (Xφ,s)−
n∑

i=1

pi Xφ,s
i

s.t. : qs = βs
(
Fφ,s (Xφ,s

s ) + z−φ,s
s

)βs−1
S∏

s′=1,s′ ̸=s

(
z0s′
)βs′

n∏
i=1

(
X 0
i

)γi ,
where Equation (B.2a) has been used. At the symmetric Cournot-Nash equilibrium, all producers within
a sector make identical decisions. Thus, the total production of good z by all firms φ ∈ {1, ..., Ns} in
sector s is given by zs = Ns zφ,ss , while the total production by the competitors of any single firm is
z−φ,s
s = (Ns − 1) zφ,ss . The first-order conditions with respect to the ith factor demand by firm φ in

sector s, Xφ,s
i , then imply:

∀i ∈ {1, ..., n} : pi = qs(1− αs)Fφ,s
Xi

, (B.2c)

where, αs
def≡ (1 − βs)/Ns measures the mark-up on the intermediate good price qs due to imperfect

competition. Since the production functions exhibit constant returns to scale, αs also denotes the profit
share in sector s. Under Cournot competition, this profit share is a decreasing function of the number of
firms Ns and an increasing function of the elasticity 1−βs of the inverse demand for the sth intermediate
good in absolute value. Competition policy directly sets these sector-specific mark-ups αs. For example,
regulatory policy in each sector s ∈ {1, ..., S} affects entry barriers, entry costs, and hence the number
of firms Ns.

At the decentralized equilibrium, the allocation of production resources (factors and goods (Xφ,s, zφ,s)
for all firms φ = 1, ..., Ns in sector s = 0, ..., S), is thus obtained from a system of factor prices p1, ..., ps
and prices of intermediate goods q1, ..., qs, such that it verifies the demands for intermediate goods by
final good producers (B.2a), the demands for factors by final good producers (B.2b), the pricing equation
in the intermediate goods sectors (B.2c), as well as the market clearing conditions (B.1a)-(B.1c).

Same allocation with a production coordinator and at the decentralized equilibrium

We now demonstrate that this allocation of production resources, (Xφ,s, zφ,s) for all firms φ =
1, ..., Ns in sector s = 0, ..., S, coincides with the choice of an hypothetical “production coordinator”.
This reformulation will prove useful to easily retrieve the reduced-forms F(·) and the inverse demand
equations Pi(·) in (4). The production coordinator’s objective is the total production of the final good.
According to (B.1a), the total production of the final good coincides with the total final good’s consump-
tion by taxpayers and the government in (B.3a).31 The production coordinator’s program has to verify
resource constraints on production factors (B.1b) and on intermediate goods (B.1c). Crucially, instead of
using Equation (B.1c), the production coordinator adopts a reformulation of these resource constraints
on intermediate goods, as described by Equations (B.3c) and (B.3d), which together replicate the orig-
inal constraints (B.1c) which described the market clearing conditions in the intermediate goods sector

30Let Xn+1(θ) denote the allocation of profits to individuals of type θ with
∫
Θ
Xn+1(θ)dF (θ) = 1. Xn+1 can be

interpreted as an inelastically supplied “entrepreneurial factor” (McKenzie (1959), and Mas-Colell et al. (1995, pp. 134-135))
whose presence ensures that Equation (5) holds, provided that i is summed from 1 to n+ 1 instead of 1 to n.

31This is because we assume in this application that the final good is not used as an factor by intermediate good producers.
Otherwise, the production coordinator’s objective would be total production of final good net of its consumption by intermedi-
ate good producers, i.e. the GDP

∑N0
φ=1 F

φ,0
(
Xφ,0, zφ,0

)
−

∑S
s=1

∑Ns
φ=1 z

φ,s
0 .
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s. However, by incorporating markups αs and sector-specific production Z
s, the coordinator’s program

replicates the overpricing behaviors described in (B.2c). Thus, the production coordinator’s program is:

max
{Xφ,s,zφ,s}φ=1,..,Ns

s=0,...,S

N0∑
φ=1

Fφ,0
(
Xφ,0, zφ,0

)
(B.3a)

∀i ∈ {1, ..., n} : Xi =

S∑
s=0

Ns∑
φ=1

Xφ,s
i (B.3b)

∀s ∈ {1, ..., S} : αs Zs + (1− αs)

Ns∑
φ=1

Fφ,s (Xφ,s) =

N0∑
φ=1

zφ,0s , (B.3c)

where

∀s ∈ {1, ..., S} : Zs
def≡

Ns∑
φ=1

Fφ,s (Xφ,s) , (B.3d)

denote the sector specific production, and is taken as given by the production coordinator. Let p⋆i denote
the Lagrange multiplier associated with constraint (B.3b) and let q⋆s the Lagrange multiplier associated
to (B.3c). The Lagrangian of Program (B.3a)-(B.3c) is written as:

L =

N0∑
φ=1

Fφ,0
(
Xφ,0, zφ,0

)
+

n∑
i=1

p⋆i

Xi −
S∑

s=0

Ns∑
φ=1

Xφ,s
i


+

s∑
s=1

q⋆s

αs Zs + (1− αs)

Ns∑
φ=1

Fφ,s (Xφ,s)−
N0∑
φ=1

zφ,0s

 .

The first-order conditions of the production coordinator’s program are:

∀s ∈ {1, ..., S} : q⋆s = βs
(
z0s
)βs−1

S∏
s′=1,s′ ̸=s

(
z0s′
)βs′

n∏
i=1

(
X 0
i

)γi (B.4a)

∀i ∈ {1, ..., n} : p⋆i = γi

(
X γi−1
i

)γi−1
S∏

s=1

(
z0s
)βs

n∏
i′=1,i′ ̸=i

(
X 0
i′
)γi′ . (B.4b)

Here, we use that the production functions, in the final good sector are Cobb-Douglas with constant
returns to scale. Finally, the first-order condition with respect to the ith factor i ∈ {1, ..., n} for firm
φ ∈ {1, ..., Ns} in sector s ∈ {1, ..., S} is:

p⋆i = q⋆s(1− αs)Fφ,s
Xi

. (B.4c)

Since the production coordinator takes the sector-specific production Zs as given, the first-order
conditions (B.4a)-(B.4c) are equivalent to, respectively, the demands for intermediate goods by final
good producers (B.2a), the demands for inputs by final good producers (B.2b) and the pricing equa-
tion in the intermediate good sectors (B.2c). Moreover, we note that in all intermediate good sectors
s ∈ {1, ..., S}, the combination of constraints (B.3c) and (B.3d) implies the market-clearing condition
(B.1c). Therefore, the production coordinator allocates resources within the production sector as firms
do in the decentralized equilibrium.

Retrieving inverse demands and production function

This reformulation of production sector decisions through the program of the hypothetical produc-
tion coordinator enables to define the inverse demand equations Pi(·) as p⋆i , the Lagrange multipliers
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associated to (B.3b), as functions of the vector of factor supplies (X1, ...,Xn), and of the vectors of
sector-specific mark-ups (α1, ..., αS), in (B.4c). Moreover, the (aggregate) production function, F(·),
defined in (5) is the value function of Program (B.3a)-(B.3c).32 Conditions (B.2c) coincide with (B.4c),
provided that p⋆i = pi for all i = 1, ..., n and q⋆s = qs for all s = 0, ..., S.

Generalized production efficiency and incidence formula

The final step is to characterize how the competition authority should set mark-ups αs on intermedi-
ate goods prices qs (s = 1, ..., S) to maximize aggregate production. When such mark-ups are combined
with a flexible income tax system, generalized production efficiency (Theorems 1 and 2) is achieved.

To do this, we exploit the fact that the allocation achieved by the production coordinator coincides
with that of the decentralized equilibrium. Moreover, the most efficient allocation of resources within
the production sector consists in maximizing the total production of final goods (B.1a) or (B.3a), subject
to the resource constraints on factors (B.1b) or (B.3b), and on intermediate goods (B.1c) or (B.3c). The
latter program coincides with the production coordinator’s program if and only if α1 = .... = αS = 0.
Therefore, given that generalized production efficiency (Theorems 1 and 2) requires increasing total
production, the optimal production policy consists in nullifying markups α1, ..., αS .

In practice, whenever the tax system can be improved along all the price-replicating directions, no
mark-up should persist in the markets. This policy implication extends beyond the specific case of
Cournot competition. Any competition policy that reduces markups αs is desirable provided that the tax
system can be reformed by GE-neutralizing tax reforms to offset the welfare impact of such reforms. We
posit that this reasoning extends to policies like merger regulations in the case of horizontal or vertical
integration, as well as to corporate law reforms.33

When the tax system is not enoughly flexible (i.e. 1 and 2 are violated), we can determine the welfare
impact of mark-ups change using the incidence formula in Theorem 3.

B.2 Taxation of intermediate goods and taxing robots and AI

The advent of robots and AI raises the question of relevant tax policy responses. Our approach also
addresses this issue and extends more broadly to the taxation of intermediate goods.

Decentralized equilibrium

We consider that all firms operate under constant or decreasing returns to scale, and intermediate
goods (e.g. robots, AI or any other intermediate good or service) are subject to the sector-specific
ad-valorem tax rates αs, for s = 1, ..., S, with the normalization α0 = 0 for the final good. Again,
qs denotes the purchasing price of good s, with the normalization q0 = 1 for the final good. In this
scenario, firm φ = 1, ..., Ns in sector s = 0, ..., S solves:

πφ,s def≡ max
Xφ,s,zφ,s

qs(1− αs) Fφ,s (Xφ,s, zφ,s)−
n∑

i=1

pi Xφ,s
i −

S∑
s′=0
s′ ̸=s

qs′ z
φ,s
s′ , (B.5)

where πφ,s denotes the profit of firm φ in sector s. Since firms operate under perfect competition, profit
πφ,s is positive if the production function of the firm φ in sector s has decreasing returns to scale. Let
Xn+1(θ) denote the exogenous share of firms’ profits earned by θ-taxpayers so that pn+1Xn+1(θ) is
the profits earned by θ-taxpayers. Program (B.5) leads to the following conditions:

∀i ∈ {1, ..., n} : pi = qs(1− αs)Fφ,s
Xi

and ∀s′ ̸= s : qs′ = qs(1− αs)Fφ,s
zs′

. (B.6)

32The allocation of resources actually solves a fixed-point problem since the production coordinator’s program also depends
on sector-specific production (Z1, ..., Zs) that are taken as given by the production coordinator. However, (Z1, ..., Zs) is
determined by the solution of the production coordinator’s program through (B.3d).

33See also Kaplow (2021) who introduces mark-ups on consumption goods in a Mirrleesian world where the different types
of labor are perfect substitutes.
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The competitive allocation of the production resources is a vector (Xφ,s, zφ,s) for all firms φ =
1, ..., Ns in sector s = 0, ..., S, a vector of intermediate goods’ prices (q1, ..., qS) (with normalization
q0 = 1) and a vector of factor prices (p1, ..., pn). These vectors must verify the market clearing condi-
tions (B.1b) and (B.1c), as well as the optimality conditions (B.6), for all firms, in all sectors.

Same allocation with a production coordinator and at the decentralized equilibrium

As in Subsection B.1, we determine the optimization program of a hypothetical production coor-
dinator whose solution coincides with the competitive allocation of production resources, (Xφ,s, zφ,s)
(for all firms φ = 1, ..., Ns in sector s = 0, ..., S). Here, its program consists in maximizing the total
production of the final good net of the final good demands by the firms producing intermediate goods.
According to (B.1a), this coincides with the total consumption of final good by taxpayers and the gov-
ernment, which corresponds to the objective function (B.7a). The production coordinator’s program has
to verify resource constraints on factors (B.1b), rewritten as (B.7b), and on intermediate goods (B.1c).
Instead of the latter equation, the production coordinator considers (B.7c) and (B.7d) where the gov-
ernment collects a fraction αs of the production of each intermediate good, as described by Equations
(B.7c) and (B.7d). The program for the production coordinator is:

max
{Xφ,s,zφ,s}φ=1,..,Ns

s=0,...,S

N0∑
φ=1

Fφ,0
(
Xφ,0, zφ,0

)
−

S∑
s=1

Ns∑
φ=1

zφ,s0 (B.7a)

∀i ∈ {1, ..., n} : Xi =

S∑
s=0

Ns∑
φ=1

Xφ,s
i (B.7b)

∀s ∈ {1, ..., S} : αs Zs + (1− αs)

Ns∑
φ=1

Fφ,s (Xφ,s, zφ,s) =
S∑

s′=0
s′ ̸=s

Ns′∑
φ=1

zφ,s
′

s (B.7c)

where

∀s ∈ {1, ..., S} : Zs
def≡

Ns∑
φ=1

Fφ,s (Xφ,s, zφ,s) (B.7d)

is taken as given by the production coordinator.
Let p⋆i denote the Lagrange multiplier associated to (B.7b), and let q⋆s denote the Lagrange multiplier

associated to (B.7c). Adopting the normalization q⋆0 = 1 and α0 = Z0 = 0, the Lagrangian of (B.7a)-
(B.7c) is:

L =
S∑

s=0

q⋆s

αs Zs + (1− αs)

Ns∑
φ=1

Fφ,s (Xφ,s, zφ,s)−
S∑

s′=0
s′ ̸=s

Ns′∑
φ=1

zφ,s
′

s

+ n∑
i=1

p⋆i

Xi −
S∑

s=0

Ns∑
φ=1

Xφ,s
i

 .

The first order conditions are:

∀i ∈ {1, ..., n} : p⋆i = q⋆s(1− αs)Fφ,s
Xi

and ∀s′ ̸= s : q⋆s′ = q⋆s(1− αs)Fφ,s
zs′

. (B.8)

These conditions coincide with (B.6), provided that p⋆i = pi for all i = 1, ..., n and q⋆s = qs for all
s = 0, ..., S. Therefore, the production coordinator allocates resources within the production sector
identically to how firms do in the decentralized equilibrium.

Retrieving inverse demands and production function

This reformulation of production sector decisions through the program of the hypothetical produc-
tion coordinator enables to define the inverse demand equations Pi(·) as the Lagrange multipliers as-
sociated with (B.7c). They are functions of the vector of factor supplies (X1, ...,Xn), and of vectors
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(α1, ..., αS). Moreover, the (aggregate) production function defined in (5), F(·), is the value function of
Program (B.7a)-(B.7c).

Generalized production efficiency and incidence formula

Again, the most efficient allocation of resources within the production sector consists in maximizing
the total production of final goods subject to the resource constraints on factors (B.1b) and intermediate
goods (B.1c). This coincides with the production coordinator’s program only when α1 = .... = αS = 0,
i.e. when intermediate goods are untaxed. We conclude that generalized production efficiency (Theo-
rems 1 and 2) recommends not taxing intermediate goods α1, ..., αS = 0.

Diamond and Mirrlees (1971a,b)’s production efficiency theorem already recommends not taxing
intermediate goods, with an optimal linear tax system. However, generalized production efficiency (The-
orems 1 and 2) imply that this recommendation applies also under a suboptimal tax schedule, or under
imperfect competition. Actually, increasing aggregate output leads to a Pareto improvement without
the need to be on the production possibility frontier or to fully optimize the tax system. A neutralizing
tax reform is all we need. In our example, production functions that exhibit decreasing returns, as in
Dasgupta and Stiglitz (1971, 1972), imply that the GE-neutralizing tax reform optimized the tax system
along, in particular, the n + 1th price-replicating direction associated with the n + 1th entrepreneurial
factor. Profits are fully taxed, as shown in Dasgupta and Stiglitz (1971, 1972).

This formulation of our framework also enables us to address the question of taxing robots and AI,
as Koizumi (2020), Guerreiro et al. (2021), Costinot and Werning (2022) and Thuemmel (2023) do, by
simply considering them as particular intermediate goods. This literature typically finds optimal to tax
robots, because their tax authorities are assumed to be unable to distinguish between various (imperfectly
substitutable) types of labor, such as routine and non-routine tasks. In such cases, the neutralizing tax
system cannot be implemented (i.e. the tax system cannot optimized along all its price-replicating
directions). As Assumption 1 is violated, the generalized production efficiency (Part I) in Theorem 1
does not apply. Moreover, since taxing robots affects the wage ratio between routine and non-routine
labor, Assumption 3 is violated, preventing the generalized production efficiency (Part II) in Theorem
2. In such a case, the predistributive effects of taxing robots matter and the optimal tax on robots is
determined by Equation (32) in Theorem 3 (See also Figure 2).

B.3 Commodity taxation

Using the framework employed to analyze the taxation of intermediate goods in Subsection B.2, we
can study whether the taxation of final goods should be uniform when the utility is weakly separable
in leisure and consumption, as examined by Atkinson and Stiglitz (1976). Their theorem considers that
each taxpayer has preference over factor x and commodities z = (z1, ..., zS), according to a weakly sep-
arable utility function of the form U (V (z1, ..., zS),x;θ). We can align our micro-founded model with
theirs by interpreting our intermediate goods, (z1, ..., zs), as their commodities. Additionally, assume
that all taxpayers in Section B.2 produce and consume one final good z0 using the same production
function z0 = V (z1, ..., zn) so that this corresponds to the sub-utility obtained from commodities in
Atkinson and Stiglitz (1976). We assume constant returns to scale in the production functions of the
intermediate good sectors s ∈ 1, ..., S and that final goods are not employed as production factors (thus,
zφ,s0 = 0 for all firms φ ∈ 1, ..., Ns in sectors s = 1, ..., S). Upon this reinterpretation, our taxation of
intermediate goods in Section B.2 is taxation of commodities in Atkinson and Stiglitz (1976). There-
fore, the no-tax result on intermediate goods discussed in Section B.2 translates to a no-tax result on
commodities, or equivalently, uniform commodity tax rates, in Atkinson and Stiglitz (1976).

Generalized production efficiency and incidence formula
This reinterpretation shows that generalized production efficiency (Theorems 1 and 2) implies that

the no-commodity taxation result of Atkinson and Stiglitz (1976) remains robust to endogenous producer
prices, whenever the neutralizing tax reform can be implemented. This applies, for instance, in the long-
run model of Saez (2004) where taxation is occupation-specific so that Assumption 1 holds. Conversely,
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in frameworks such as Naito (1999), the short-run model of Saez (2004), or in Jacobs (2015), the income
tax system does not discriminate between the different types of labor, thereby violating Assumption 1.
In this type of framework, the tax systems can therefore not be reformed along the price-replicating
direction specific to each type of labor. Commodity taxation should then not be uniform and may have
a predistributive role, which is described in Equation (32) in Theorem 3.

It is worth mentioning that our reinterpretation of Atkinson and Stiglitz (1976)’s theorem leading
to no-tax on intermediate goods does not hold when taxpayers have different preferences V(·) over
commodities, as in e.g. Saez (2002) and Ferey et al. (2024).

B.4 Trade policy

We now adapt our multi-sector framework to discuss the desirability of trade liberalization policies
such as the reduction of tariff measures or of technical barriers. For this purpose, we assume that, in
each sector s ∈ {0, ..., n}, certain firms operate abroad. Regardless of whether firms are domestic or
foreign, the arguments of the production function refer only to goods or production factors from the
home country. Foreign firms φ ∈ {1, ..., Ns} in sector s ∈ {0, ..., S} do not use domestic factors of
production, so Xφ,s

i = 0 for all i ∈ {1, ..., n}, but these foreign firms export goods zφ,ss′ from sector
s′ ̸= s. Their imports of goods s are given by Fφ,s (zφ,s;α), where the vector α captures the impact
of trade frictions. In particular, αs captures various costs associated with the imports or exports of
foreign producers in sector s, costs that trade policies can diminish, so that Fφ,s

α < 0 for foreign firms.
Conversely, trade policies do not impact the production possibilities of domestic firms, hence, Fφ,s

α = 0
for domestic firms.

Same allocation with a production coordinator and at the decentralized equilibrium

As in the previous subsection, the allocation of production resources within the production sector
can be described as the maximization program of a hypothetical production coordinator. Assuming
perfect competition, the competitive allocation of resources within the production sector coincides with
the solution of the following production coordinator’s program:

max
{Xφ,s,zφ,s}φ=1,..,Ns

s=0,...,S

N0∑
φ=1

Fφ,0
(
Xφ,0, zφ,0;α

)
−

S∑
s=1

Ns∑
φ=1

zφ,s0 (B.9a)

∀i ∈ {1, ..., n} : Xi =

S∑
s=0

Ns∑
φ=1

Xφ,s
i (B.9b)

∀s ∈ {1, ..., S} :

Ns∑
φ=1

Fφ,s (Xφ,s, zφ,s;αs) =
S∑

s′=0
s′ ̸=s

Ns′∑
φ=1

zφ,s
′

s . (B.9c)

For each vector of factor supply (X1, ...,Xn) and each vector (α0, ..., αS) of sector-specific trade
costs, the inverse demands Pi(·) are defined as the Lagrange multipliers associated to (B.9b) and the
production function F(·) is the value function associated to Program (B.9a)-(B.9c).

Generalized production efficiency and incidence formula

A policy that reduces trade costs therefore unambiguously improves aggregate production.34 The
desirability of trade liberalization policies thus depends solely on whether or not a GE-neutralizing
tax reform can take place. This type of reform is feasible in Diamond and Mirrlees (1971a,b), Dixit
and Norman (1980, 1986) where the tax system includes sector-specific and linear taxes on labor. Hence

34Applying the envelope theorem with respect to the α’s to the Lagrangian of (B.9a)-(B.9c) yields Fαs < 0, since Fφ,s
αs

< 0
for foreign firms.
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Assumption 1 is verified, ensuring that generalized production efficiency (Part 1) (in Theorem 1) applies,
thereby, supporting the case for free trade. The multi-country Ricardian model of trade proposed by
Hosseini and Shourideh (2018) also aligns with the free trade recommendation for the same reasons.
Conversely, in Costinot and Werning (2022), the different types of labor are imperfect substitutes but
generate incomes that the tax administration cannot distinguish and therefore must tax comprehensively,
in accordance with Assumption 2. However, as along as trade policies impacts the wage ratios between
the different types of labor, which means that Assumption 3 is violated, Theorem 2 does not apply and
generalized production efficiency (Part II) does not hold. Consequently, the impact of trade liberalization
policies should be evaluated thanks to the incidence formula (Theorem 3), where production efficiency
effects have to be balanced against predistributive effects, as described by Equation (32). In this context,
protectionist measures become desirable when their pre-distibutive effects are more beneficial than their
detrimental effects on aggregate production.

B.5 Public production

Decentralized equilibrium

Consider the government owns the public firm φ⋆ in sector s⋆. Within this framework, the production

policies are the public firm’s demand of factors and the demand of goods, i.e. α
def≡ (Xφ⋆,s⋆ , zφ

⋆,s⋆).
The private firms solve (B.5) and their behaviors are described by (B.6).

Same allocation with a production coordinator and at the decentralized equilibrium
The allocation of production resources coincides with the solution of the following production coor-

dinator’s program:

max
{Xφ,s,zφ,s}φ=1,..,Ns,(φ,s)̸=(φ⋆,s⋆)

s=0,...,S

N0∑
φ=1

Fφ,0
(
Xφ,0, zφ,0

)
−

S∑
s=1

Ns∑
φ=1

zφ,s0 (B.10a)

∀i ∈ {1, ..., n} : Xi =
S∑

s=0

Ns∑
φ=1

Xφ,s
i (B.10b)

∀s ∈ {1, ..., S} :

Ns∑
φ=1

Fφ,s (Xφ,s, zφ,s) =

S∑
s′=0
s′ ̸=s

Ns′∑
φ=1

zφ,s
′

s . (B.10c)

Again, for each vector of factor supply (X1, ...,Xn) and each vector of production policy, (Xφ⋆,s⋆ , zφ
⋆,s⋆),

the inverse demands Pi(·) are defined as the Lagrange multipliers associated to constraints (B.10b) and
the production function F(·) is the value function associated to program (B.10a)-(B.10c).

Generalized production efficiency and incidence formula

According to generalized production efficiency (Theorems 1 and 2), if either Assumption 1 holds or
the combination of Assumptions 2 and 3, the government sets the production plan (Xφ⋆,s⋆ , zφ

⋆,s⋆) of
the public firm φ⋆ in sector s⋆ to maximize the total production of the final good (minus its consumption
by producers of intermediate goods), as detailed in (B.10a). This amounts to solving program (B.10a)-
(B.10c) with respect to the production plan of private firms (as in (B.10a)-(B.10c)) and of the public firm
φ⋆ in sector s⋆. In such a case, private and public firms face the same first-order conditions:

∀i ∈ {1, ..., n} : pi = qs Fφ,s
Xi

and ∀s′ ̸= s : qs′ = qs Fφ,s
zs′

.

This has the implication, that in evaluating public projects, prices used to value factors purchased (or
sold) in the market by the public sector should be producer prices (Diamond and Mirrlees, 1971a,b, Little
and Mirrlees, 1974). Again, we do not need to assume optimality of the tax schedule, i.e. optimality with
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respect to all directions R(·). We only need that Assumption 1 or the combination of Assumptions 2 and
3 are verified. However, as soon as they are not verified, it is desirable to use a different price system for
public firms as emphasized in Naito (1999). In that case, the optimal prices must also account for the
predistributive effects due to the public firm’s demands, as characterized by Equation (32) in Theorem
3.

B.6 The effects of business-focused environmental regulations

Decentralized equilibrium

Consider now the scenario where the production sector is polluting, e.g. with carbon emissions
and firms have the option to mitigate emissions by adopting cleaner technologies. Production policy
consists in taxing carbon emissions. Here, intermediate good producers not only produce intermediate
goods according to the production function Fφ,s(Xφ,s

1 , ...,Xφ,s
n ;βφ,s) but also emit carbon according

to Eφ,s(Xφ,s
1 , ...,Xφ,s

n ;βφ,s) where βφ,s is the degree of cleanliness in the technology adopted by firm
φ ∈ {1, ..., Ns} in sector s ∈ {1, ..., S}. Employing more production factor increases both production
and pollution, thus Fφ,s

Xi
> 0 and Eφ,s

Xi
> 0. Production is concave in βφ,s with a maximum at a level

normalized to zero. Hence Fφ,s
β < 0 if βφ,s > 0 and Fφ,s

β > 0 if βφ,s < 0. Conversely, carbon
emissions decrease when firms adopt greener technology, thus Eφ,s

β < 0. For simplicity, we assume that
intermediate good producers do not use intermediate goods or the final good as factor.

We assume that the government can observe each firm’s carbon emissions and tax them at a rate
denoted by α. Assuming perfect competition and a constant returns to scale production functions, firm
φ ∈ {1, ..., Ns} in sector s ∈ {0, ..., S} solves:

max
Xφ,s

1 ,...,Xφ,s
n ,βφ,s

qs Fφ,s (Xφ,s
1 , ...,Xφ,s

n ;βφ,s)−
n∑

i=1

pi Xφ,s
i − α Eφ,s (Xφ,s

1 , ...,Xφ,s
n ;βφ,s) .

This leads to the following first-order conditions:

∀i ∈ {1, ..., n} : qs Fφ,s
Xi

= pi + α Eφ,s
Xi

and : qs Fφ,s
β = α Eφ,s

β (B.11)

As in B.3, each taxpayer produces a final good through the same production function, which is denoted
F0(·). Moreover, pollution exerts a negative externality. Hence F0 is decreasing in aggregate emissions

E def≡
∑S

s=1

∑Ns
φ=1 Eφ,s (Xφ,s;βφ,s), so we have F0 (z1, ..., zS , E), with F0

zi > 0 > F0
E . For tractability,

we assume that the final good production function exhibits constant returns to scale with respect to
intermediate goods consumption (z1, ..., zS). This leads to the intermediate goods demand conditions:

∀s ∈ {1, ..., S} : qs = F0
zs

(
z01 , ..., z

0
S , E

)
, (B.12)

where

z0s
def≡

Ns∑
φ=1

Fφ,s (Xφ,s, βφ,s)

denotes the total production of the sth intermediate good.
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Same allocation with a production coordinator and at the decentralized equilibrium

The competitive allocation of resources within the production sector is the same as the one chosen
by a hypothetical production coordinator whose program consists in:

max
{Xφ,s,βφ,s}φ=1,..,Ns

s=1,...,S ,z01 ,...,z
0
S

F0
(
z01 , ..., z

0
S , E

)
− α

S∑
s=1

Ns∑
φ=1

Eφ,s (Xφ,s;βφ,s) + α E (B.13a)

∀i ∈ {1, ..., n} : Xi =

S∑
s=1

Ns∑
φ=1

Xφ,s
i (B.13b)

∀s ∈ {1, ..., S} :

Ns∑
φ=1

Fφ,s (Xφ,s, βφ,s) = z0s . (B.13c)

where the production coordinator takes aggregate emissions

E =

S∑
s=1

Ns∑
φ=1

Eφ,s (Xφ,s;βφ,s) (B.13d)

and carbon tax revenue α E as given.35 Tax revenue α E enters the production coordinator’s objective
because it is distributed to all taxpayers in a lump-sum way.

For each vector of factor supply, (X1, ...,Xn), each carbon tax rate α and each carbon tax revenue
α E , the inverse demands Pi(X1, ...,Xn;α, E) are defined as the Lagrange multipliers associated to
constraints (B.13b) and the production function F(X1, ...,Xn;α, E) is the value function associated to
program (B.13a)-(B.13c).

Generalized production efficiency and incidence formula

To determine the carbon tax that maximizes total production, one must choose α to maximize
(B.13a), subject to (B.13b)-(B.13d) and taking into account the effects on aggregate emissions E . This
implies that the carbon tax maximizing aggregate production satisfies the Pigouvian rule F0

E = −α,
which corrects for the externality.36

The Pigouvian rule F0
E = −α is optimal in two cases: (i) when the tax system satisfies Assumption

1, in which case Theorem 1 applies, or (ii) when both Assumptions 2 and 3 hold, in which case Theorem
2 applies. In both cases, generalized production efficiency reduces to applying the Pigouvian rule F0

E =
−α. Conversely, if Assumption 1 and either 2 or 3 are violated, the optimal carbon tax must also account
for the predistributive effects of taxation, as characterized by Equation (32) in Theorem 3.

35Denoting pi the Lagrange multiplier associated to the ith equation (B.13b) and qs the Lagrange multiplier associated to
sth equation (B.13c), the first-order conditions of (B.13) with respect to Xφ,s, βφ,s and z0s leads to (B.11) and (B.12). Since
the production coordinator is constrained by the same resource constraints (B.13c) as the competitive economy, the production
allocation chosen by the production coordinator coincides with that of the competitive economy. Finally, since revenue from
carbon tax α E shows up in the production coordinator’s objective (B.13a), the Walras Law ensures that the value function
associated to the production coordinator’s program (B.13) verifies the accounting equation (5).

36Applying the envelope theorem to Program (B.13) with respect to α and taking (B.13d) into account leads formally to
Fα = 0. Applying the envelope theorem with respect to E leads to FE = F0

E + α.
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