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Abstract
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such as competition policies, taxing intermediate goods, robots or AI, trade regulation, production of
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to increase aggregate output, a recommendation we label the Production Regulation Principle. Under
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regulation that increases aggregate output do not deteriorate individual welfare, thereby resulting
in a Pareto improvement. We also provide formulas that balance the effects of regulatory changes
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I Introduction

Competition among firms, free trade agreements, and technological advancements – such as artificial

intelligence, robotics, and machine learning – drive efficiency gains but may also create adverse distri-

butional consequences (e.g., Buccirossi et al. (2013), Bourlès et al. (2013), Acemoglu and Autor (2011),

Autor et al. (2013), Acemoglu and Restrepo (2020)). Recent protectionist trends and debates on taxing

robots and AI highlight how regulating the production sector has become central to public and political

discourse. This is reinforced by some academic works such as Naito (1999), Guerreiro et al. (2021),

Costinot and Werning (2022), Thuemmel (2023). These works question the celebrated Diamond and

Mirrlees (1971) production efficiency theorem which advises against distorting the production sector for

redistributive purposes. This collection of seemingly disparate results does not provide clear guidance

for production policies, i.e. policies that regulates the production sector, such as competition policies,

trade agreements, technological policies, taxation of intermediate goods and public production. Should

these policies be designed solely to maximize aggregate production – a policy principle we refer to as

the “Production Regulation Principle” – or should they also account for potential adverse pre-distributive

effects?

We address this question in a model where taxpayers, endowed with heterogeneous characteristics,

choose their input supplies – such as effective labor units in a creative job, effective labor units as an en-

trepreneur, or saving in distinct assets – and allocate their resulting after-tax income to consumption. The

production sector is modeled in reduced-form through inverse input demand functions. It may consist of

different firms with potential vertical relations and horizontal competition. Firm’s market power, rent-

seeking behavior and production externalities, among other phenomena, may prevail. Production policies

impact input prices though these inverse demand functions. Input prices are determined endogenously in

General Equilibrium (GE).

Our findings rely on identifying, for any multidimensional nonlinear tax system, specific directions

of tax reforms that replicate the effects of input price changes, in GE, on agents’ welfare and behavior,

that we call “price-replicating directions”. The pre-distributive impact of any production policy reform

can be neutralized by a “neutralizing tax reform” along a combination of price replicating directions. We

prove that any production policy reform that increases aggregate output is Pareto-improving when it can

be combined with a neutralizing tax reform. This is our production regulation principle.

For any tax system, we can determine whether or not neutralizing tax reforms can be implemented.

For instance, when there are different types of labor and the tax system is based only on the sum of labor

incomes, production policy reforms may not be combined with their neutralizing tax reforms. In such a

case, we derive a formula in terms of sufficient statistics to assess the welfare impact of any production

policy, comparing its efficiency and pre-distributive effects. We also provide a test that identifies Pareto-
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efficient tax systems in GE and determine Pareto-improving tax reforms when the tax system is Pareto

dominated. Finally, we also provide optimal tax formulas in GE.

We organize the paper around the following key contributions.

First, we present our production regulation principle and detail the key fiscal parameters that any

government should carefully asses before implementing a policy intervention. Our contribution is sum-

marized in a decision tree on Figure 2. Production policies that increase efficiency results in a Pareto

improvement (i) if the government can reform the tax system along all the price-replicating directions, or,

(ii) if the government can reform the tax system in the price-replicating directions of a subset of inputs,

provided that the production policies do not alter the relative prices of the other inputs.

Our second contribution are formulas to evaluate the welfare impact of any production policy re-

form, tax reform or both. These formulas are expressed in terms of familiar elasticity concepts in PE,

now systematically extended to account for multiple income sources and cross-base responses, and new

statistics, the GE multipliers. Each input has an associated GE multiplier, which captures the impact of

price adjustments when aggregate income (accrued from the aggregate supply of that input) increases by

one unit. We show that the GE multiplier can be formulated as the sum of two corrective terms: one

for market failures and another for the suboptimality of the tax system with respect to tax reforms in

price-replicating directions. Our formulas are connected to empirical work measuring parameters such

as markup estimates (De Loecker et al., 2020), estimates of the log derivative of inverse demand with

respect to production policies (such as entry regulation in Bertrand and Kramarz (2002), Biscourp et al.

(2013)) and the familiar welfare weights (Kuziemko et al., 2015, Capozza and Srinivasan, 2024) and

estimates of compensated income responses and income effects (e.g., Saez et al. (2012)).

Third, we extend our analysis of GE effects to conditions for a tax reform to be Pareto-improving

and to optimal income tax systems. We develop a test to determine whether a given tax system is Pareto

efficient, under perfect competition. If it is not, the test identifies potential tax reforms that could achieve

a Pareto improvement. To do so, we show that one simply needs to evaluate the revealed marginal

welfare weights in PE (as in Bergstrom and Dodds (2024) and Spiritus et al. (2024)), i.e. ignoring

the endogeneity of prices. Intuitively, the weights are computed from the optimal tax formula, without

imposing restriction on the tax system functional form so that it is optimized along the price-replicating

directions. As a result, both corrective terms in GE multipliers are equal to zero. We show that combining

a Pareto-improving tax reform in PE – i.e. that weakly decreases tax liabilities for income bundle where

the revealed marginal social welfare weights are negative – with a GE-neutralizing tax reform is Pareto-

improving in GE. We also show that non-negative revealed weights is sufficient for the non-existence of

(local) Pareto-improving reform direction.

Forth, the reduced-form description of the production sector guarantee the robustness of our results to

2



variation in the underlying micro-foundations behind the demand functions. To illustrate the broad appli-

cability of our approach, we also provide, in Appendix B, micro-foundations to analyze several common

production policies, including a pro-competitive policy designed to reduce oligopolistic rents, taxation

of intermediate goods, automation (robots and AI), trade liberalization, public provision, commodity

taxation and environmental regulations for firms. For each of these applications, we prove how the de-

cisions within the production sector are equivalent to those of an hypothetical benevolent “production

coordinator”. This reformulation of production sector decisions enables us to provide micro-foundations

for our reduced forms inverse demand functions. We then retrieve that whether production policies

should be designed solely to increase production depends entirely on the availability of neutralizing tax

reforms. Hence our approach with reduced forms include many established results in the literature based

on micro-founded production functions.

Our paper contributes to a number of literature. The first examines whether production distortion

is optimal, when the government is also equipped with a linear income tax system. In these contexts,

can distributional concerns justify deviating from production efficiency? Diamond and Mirrlees (1971)

demonstrate that if linear income taxes are optimally imposed, the economy should operate on its pro-

duction frontier. To avoid distorting production decisions, linear tax rates on intermediate goods should

therefore be zero. Policymakers often struggle to grasp these concepts – avoiding distortions in the pro-

duction sector and ensuring the economy operates at its production frontier– as it relies on quite abstract

notions. Our paper aims to provide a pedagogical and practical tool for determining when production

policies should be regulated only to increase production, focusing on the tax system. We clarify that in

Diamond and Mirrlees (1971) and in the long-run model of Saez (2004), since income tax systems dis-

tinguish each input, they do incorporate their price-replicating directions for each income source. This

neutralizes the pre-distribution effects on individual well-being arising from imperfect input substitua-

bility. It clarifies that what matters is not whether tax instruments are linear or nonlinear, but whether

the tax system allows for reforms along price-replicating directions. Moreover, we characterize these

directions for a large set of tax systems. We make explicit that Diamond and Mirrlees (1971) insights

do not require a (fully) optimal tax system but only that the tax system can be reformed along the price-

replicating directions. Last but not least, our result does not rely on perfect competition, it extends to

settings with market failures.

Second, our results naturally extend to Atkinson and Stiglitz (1976)’s commodity tax problems as

well as to the taxes on intermediate goods and factors. Atkinson and Stiglitz (1976) demonstrate that

when the government imposes optimal nonlinear income taxation and the utility function is weakly sep-

arable between goods and leisure, commodity taxation is unnecessary. In such cases, the government

should keep the commodity markets efficient. They prove their results using a fixed-priced model with
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perfect substitution between different types of production factors, such as low and high-skilled labor.

Naito (1999) shows that violating the efficiency of commodity markets can be desirable when workers

of different skills are imperfect substitutes in production, and input prices are endogenous.

Naito’s reasoning hinges on the fact that the assumed tax schedule does not differentiate between

low- and high-skilled labor income. At the same time, the tax instrument can adjust the skilled-to-

unskilled wage ratio (Stolper and Samuelson, 1941), creating a positive first-order welfare effect without

violating incentive constraints. However, Saez (2004) argues that in a long-run model where workers

freely choose occupations, skilled workers can take unskilled jobs, eliminating this first-order effect on

welfare. We demonstrate that the no-commodity taxation of Atkinson and Stiglitz (1976) remains robust

to endogenous producer prices, whenever the neutralizing tax reforms can be implemented. Taxes on

intermediate goods and factors are particularly relevant to the debate on the taxation of robots and AI,

which can be seen as specific types of intermediate goods. Costinot and Werning (2022), Guerreiro et al.

(2021), Thuemmel (2023), and Beraja and Zorzi (2024) offer insightful derivations of optimal robot tax

formulas. We stress that their recommendations to tax or not robots depends solely on the features of the

income tax system, rather than on its optimality or on the absence of market failures. Our findings also

apply to the trade liberalization debate, as discussed in Diamond and Mirrlees (1971), Dixit and Norman

(1980, 1986), Antràs et al. (2017), Hosseini and Shourideh (2018) and Costinot and Werning (2022), as

well as to the pricing of inputs for public firms compared to the private sector, as in Little and Mirrlees

(1974) and Naito (1999).

Third, we complement the optimal tax literature. Diamond and Mirrlees (1971), Saez (2004) and

Saez and Zucman (2023) show that price adjustments in GE do not modify optimal tax formulas. Our

analysis highlights that their results stem from two assumptions: perfect competition and a tax system

flexible enough to be optimized along all price-replicating directions. In contrast, Stiglitz (1982), Naito

(1999), Rothschild and Scheuer (2013, 2014, 2016), Ales et al. (2015), Ales and Sleet (2016), Sachs et al.

(2020), Schultz et al. (2023) and Janeba and Schulz (2023) assume that different types of workers supply

distinct types of labor, which are imperfect substitutes, while the tax system depends only on the sum of

all incomes, i.e. is comprehensive. Due to their comprehensive nature, these optimal income tax systems

cannot optimize along their price-replicating directions which depend on the income obtained from each

specific input. This is excluded with a comprehensive tax system. As a result, in the previously cited

articles, GE effects alter the PE optimal tax formulas. Our paper highlights that whether optimal tax

formulas are affected by GE price adjustments depends on whether the tax system allows for improve-

ments along price-replicating directions. This explains why two seemingly unrelated questions–whether

production policies should be designed solely to maximize total production and whether the endogeneity

of input prices modifies optimal tax formulas–are often framed within the same “production efficiency”
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result. Under perfect competition, when the optimal tax system also optimizes along all price-replicating

directions, as in Diamond and Mirrlees (1971), the long-run model of Saez (2004) and Saez and Zucman

(2023), production policies should be designed solely to enhance aggregate production as well as tax

formulas unaltered by the endogeneity of input prices.

Fourth, this paper complements the literature on optimal redistribution where individuals can self-

select into different sector (e.g., Gomes et al. (2017)) and sector-specific returns depend on the aggre-

gate effort supplies via GE effects (Rothschild and Scheuer, 2013, 2014, Scheuer, 2014, Rothschild and

Scheuer, 2016). These papers analyze how GE effects modify the optimal income tax schedule using a

mechanism design approach. By assuming weakly separable preferences between effort and consump-

tion, they reduce the multidimensional screening problem to a one-dimensional one. They first solve

an “inner” problem, which involves solving a Mirrlees (1971) optimal tax problem for fixed levels of

aggregate effort in each sector. This yields optimal income tax formulas that incorporate multipliers

corresponding to new feasibility constraints, ensuring that aggregate effort in each sector matches pre-

determined levels. They then solve the “outer” problem, optimizing over the fixed sector-specific effort

levels, and demonstrate how GE effects influence the multipliers of the feasibility constraints, leading to

a difference between the optimal income tax schedule in GE and in PE.

We borrow to Rothschild and Scheuer (2014) by representing all types of market failures, flexibly,

through inverse demand functions. In addition, we incorporate the role of production policies into their

analysis. Our use of a tax perturbation approach eliminates the need for weakly separable preferences.

This also allows us to express how GE effects modify tax reform analyses in an intuitive way through

our GE multipliers in terms of market failures and suboptimality of the tax system in price-replicating

directions. When the tax system distinguishes incomes from each input, it can be reformed along all the

price-replicating directions such that the GE multipliers solely shape the tax system to address market

failures. When such failures are absent, as in Scheuer (2014) with a tax system distinguishing salary

from entrepreneurial incomes, there is no need to pre-distribute income through input prices (i.e. our

GE multipliers are nil). In contrast, when wage and entrepreneurial income are comprehensively taxed,

input prices play a pre-distributive role and their adjustments (captured by our GE-multipliers) increase

or decrease optimal marginal income tax rates along the income distribution. This arises from the fact

that incomes are not predominantly generated by the same inputs at different income levels. This sheds

light on the findings of Rothschild and Scheuer (2013, Figure II) and Sachs et al. (2020, Figure 4), where

GE price adjustments decrease optimal marginal tax rates at high income levels and increase them at

low income levels. Finally, while Rothschild and Scheuer (2013), Rothschild and Scheuer (2014), and

Rothschild and Scheuer (2016) derive optimal comprehensive income tax formulas and Scheuer (2014)

derives optimal schedular income tax formulas, we derive a multidimensional optimal nonlinear tax
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formula and explore the conditions under which a tax system is Pareto efficient or Pareto dominated.

Finally, we extend a rich literature that identifies distinct conditions for the Pareto efficiency of a tax

system. In PE, Werning (2007), Lorenz and Sachs (2016) and Bierbrauer et al. (2023) show that negative

revealed welfare weights indicate a Pareto inefficiency in the observed tax system, when taxpayers earn

a single income. Bierbrauer et al. (2023) show that negative revealed welfare weights at some income

levels are equivalent to their “revenue function” being increasing around that level, in which case a

two-brackets tax reform is Pareto-improving. Spiritus et al. (2024), Bergstrom and Dodds (2024) and

Bierbrauer et al. (2024) extend the analysis to multiple income sources in PE. This paper extends these

insights by identifying Pareto-improving tax reforms with multiple incomes in GE.

The rest of the paper is organized as follows. The model is presented in the next section. We

characterize the tax incidence in GE and the price-replicating directions of tax reforms. In Section III,

we present the production regulation principles along with a formula for assessing the impact of any

production policy on welfare. We also briefly explain how various micro-founded production policies

can be seamlessly and easily integrated into our reduced-form representation of the production sector.

The method is presented more formally, for each policy, in Appendix B. In Section IV, we introduce new

key statistics, including GE multipliers, and explain how to implement them. In Section V, we provide

conditions for the existence of Pareto-improving tax reforms with multiple incomes and GE. In Section

VI, we derive optimal tax formulas in GE under tax systems which are unrestricted (multidimensional

and nonlinear), schedular and comprehensive. All proofs are gathered in Appendix A.

II The Economic Environment

II.1 Taxpayers

We consider an economy with a unit mass of taxpayers and a production sector that produces a

numeraire good using n inputs with n ≥ 2. Taxpayers are endowed with varying characteristics summa-

rized by an n̂-dimensional vector θ = (θ1, ..., θn̂), with n̂ ≥ n. These types are distributed over a closed

and convex type space Θ ⊂ Rn̂ according to a continuously differentiable density function f(·) which is

positive over Θ and a CDF F (·).

Each taxpayer supplies xi ≥ 0 units of the ith input and her supply is denoted by x = (x1, ..., xn).

For instance, a taxpayer can supply effective units of labor x1 in a routine job, effective units of labor

x2 in a creative job, effective units of labor x3 as entrepreneur, investment units in capital x4, investment

units in a specific asset x5, etc. Each supply of input xi incurs an effort or a utility cost that depends on

the individual type θ.1

1Our framework can also encompass economies with different sectors, occupations, or industries, as in Rothschild and
Scheuer (2013, 2014, 2016), Scheuer (2014) and Gomes et al. (2017), where each xi stands for the amount of labor supplied in
each sector i = 1, ..., n. In Rothschild and Scheuer (2013), Scheuer (2014) and Gomes et al. (2017), workers can supply labor
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The income generated by supplying input xi is denoted by yi = pi xi. For the taxpayers, pi represents

the private return on the ith input they supply and is taken as given. For the firm, it is the price of this input.

These input prices are summarized in the vector p = (p1, ..., pn). For instance, if x1 represents effective

labor, then p1 denotes the wage per unit of effective labor, and y1 stands for labor income. Similarly, if

x2 corresponds to savings, p2 represents the gross return on savings, y2 signifies capital income, and so

forth. The various sources of income are concisely represented by the vector y = (y1, ..., yn).

The preferences of type-θ taxpayer are represented by the utility function (c,x;θ) 7→ U (c,x;θ),

which is assumed to be twice continuously differentiable over Rn+1
+ × Θ, increasing in the after-tax

income c (with partial derivative denoted Uc > 0) and decreasing in the supply of each input (with partial

derivative denoted Uxi < 0). The government enforces taxes based on a tax schedule that depends on

all sources of income, denoted as: T : y = (y1, ..., yn) 7→ T (y) = T (y1, ..., yn). After-tax income,

hereafter refereed to as consumption, is: c =
∑n

i=1 yi − T (y1, ..., yn).

The marginal rate of substitution between the supply of the ith input xi and consumption for a tax-

payer with type θ, at any bundle (c,x), is given by:

Si(c,x;θ)
def≡ −Uxi(c,x;θ)

Uc(c,x;θ)
. (1)

We assume that the utility function U (c,x;θ) is weakly concave in (c,x) and that the indifference sets

are convex in (c,x) for all utility levels and all types θ. This implies that matrix
[
Si
xj

+ Si
c Sj

]
i,j

is

positive definite, as shown in Appendix A.1.2 A θ-taxpayer chooses her supply of inputs x to solve:

U(θ)
def≡ max

x=(x1,...,xn)
U

(
n∑

i=1

pk xk − T (p1 x1, ..., pn xn) ,x;θ

)
. (2)

We assume (relying on usual assumptions presented in Appendix A.2) that, for each taxpayer of

type θ ∈ Θ, these programs admit a single solution with supplies of inputs denoted by X(θ)
def≡

(X1(θ), ..., Xn(θ)) and incomes denoted by Y(θ)
def≡ (Y1(θ), ..., Yn(θ)) where Yi(θ) = pi Xi(θ). By

aggregating the individual input supplies of Xi(θ), we obtain its total quantity, Xi, used in the production

process, i.e. Xi
def≡
∫
W Xi(θ) dF (θ). The utility achieved by θ-taxpayers is U(θ) = U (C(θ),X(θ);θ)

where C(θ)
def≡
∑n

i=1 Yi(θ)− T (Y(θ)) is their consumption. The first-order conditions are:

∀i ∈ {1, ..., n} : Si (C(θ),X(θ);θ) = pi (1− Tyi(p1 X1(θ), ..., pn Xn(θ))) . (3)

For each kind i = 1, ..., n of income, the marginal rate of substitution between the supply of input xi and

consumption is equal to the marginal net-of-tax rate of the ith income times the ith input price.

only in one sector. In our model, this consists in assuming that U (c,x;θ) = −∞ if more than one supply of factor is positive.
2Ai,j is a term of matrix A for which the row is i and the column is j.
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II.2 Production sector

The production sector can be made of different firms with potential vertical relations and horizontal

competition. Firms’ market power, rent-seeking behaviors, and production externalities, among other

phenomena, can prevail. As in Rothschild and Scheuer (2014), the production side is presented in re-

duced form. We adopt a highly flexible specification to describe how private returns depend on inputs

(X1, ...,Xn) through twice-differentiable inverse demand functions:

∀i ∈ {1, ..., n} : pi = Pi (X1, ...,Xn;α) . (4)

where α = (α1, ..., αL) ∈ A ⊂ RL is a vector of policies of dimension L, a concept we will elaborate

on later. The production function is given by the national accounting equation:

∀(X1, ...,Xn;α) : F(X1, ...,Xn;α)
def≡

n∑
i=1

Pi(X1, ...,Xn;α) Xi. (5)

The GDP on the left-hand side equals the sum of incomes derived from each input on the right-hand side.

A specific case arises under perfect competition where the price, equivalently the private return of

input i, pi, coincides with the marginal productivity of the ith input, equivalently the social return of

input i, FXi :

∀i ∈ {1, ..., n}, ∀ (X1, ...,Xn,α) : Pi(X1, ...,Xn;α) = FXi(X1, ...,Xn;α). (6)

Prices are then endogenous whenever inputs are imperfect substitutes.

Profits may occur under imperfect competition or under perfect competition if the production func-

tion exhibits decreasing returns to scale. In such a case, to retrieve the national accounting equation (5),

let Xn+1(θ) denote the share of profits received by taxpayers of type θ with Xn+1 =
∫
ΘXn+1(θ) dF (θ) =

1 and aggregate profits earned by all taxpayers being equal to pn+1Xn+1 = pn+1. This additional pro-

duction input Xn+1(θ) can be interpreted as an “entrepreneurial input” which is inelastically supplied

(McKenzie (1959), and Mas-Colell et al. (1995, pp. 134-135)). Equation (5) then still holds, provided

that in the right-hand side of (5), i is summed from 1 to n+ 1 instead of n.

II.3 Production policy reforms

Production policies refer to interventions that impact the productive processes of firms. These poli-

cies, represented by the vector α = (α1, ..., αL) ∈ A ⊂ RL, are designed to influence how firms operate

and interact on the markets. As a result, they affect aggregate production and the prices of inputs. While

these policies do not directly change individual taxpayer behavior at fixed input prices, shifts in input

prices can indirectly influence taxpayers’ income decisions. Our analysis of production policies extends

to examining the impact of various shocks that alter the production set, such as technological advance-

ments or expanded trade opportunities.
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A typical example of a production policy is competition policy. This policy aims to promote com-

petition among firms by preventing monopolistic practices, reducing barriers to entry, and encouraging

market efficiency. By altering the competitive landscape, competition policy can lead to increased ag-

gregate production and changes in input prices (see e.g. Buccirossi et al. (2013), Bourlès et al. (2013)),

as firms adjust their behavior in response to more competitive pressures. However, despite its impact on

production, this type of policy does not directly influence the consumption choices, labor supply deci-

sions or any other decisions that affect the various sources of individual income, differentiating it from

policies that target final goods or personal income. While competition policy is a typical example of a

production policy, other measures, such as intermediate goods taxation, taxes on robots and AI, public

production, trade policies, and business regulations, also fall within this category.

To describe how the production sector is affected by marginal changes in the strength of the ℓth

production policy,3 we differentiate the national accounting equation (5) with respect to direction of the

ℓth production policy αℓ:

Fαℓ
=

n∑
j=1

Xj
∂Pj

∂αℓ
=

n∑
j=1

Yj
∂logPj

∂αℓ
. (7)

where ∂logPj/∂αℓ is the log impact on jth input price of a (small) change in the magnitude of the ℓth

production policy, assuming there has been no change in input supplies.

We denote µ ⪋ 0 as the magnitude of any production policy reform (and later as the magnitude of

any tax reform), with each policy variable in the production policy vector α(µ) = (α1(µ), . . . , αL(µ))

being a function of µ. By summing over all policy dimensions αℓ, we obtain the aggregate marginal

changes in production as follows:

L∑
ℓ=1

Fαℓ
α′
ℓ(0) =

L∑
ℓ=1

n∑
j=1

Yj
∂logPj

∂αℓ
α′
ℓ(0). (8)

II.4 Government

The government’s resource constraint is:4

E ≤ B
def≡
∫
Θ
T (Y(θ)) dF (θ) (9)

where B represents tax revenue and E ≥ 0 denotes an exogenous public expenditure requirement.

To assess the impact of reform, we use either the Pareto criterion or a welfare function

W
def≡
∫
Θ
Φ (U(θ);θ) dF (θ). (10)

3There is here a slight abuse of notation since α denotes the vector of production policy and refers here to the direction of
the production policy reforms.

4According to the national accounting equation (5), the production function F represents the production net of the budgetary
costs of production sector policies.
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where Φ : (u,θ) 7→ Φ(u,θ) may be concave and type-dependent, is increasing in individual utility u

and twice continuously differentiable. This specification includes many different social objectives. The

objective is utilitarian when Φ(U,θ) = U and weighted utilitarian when Φ(U ;θ) = γ(θ)U . One obtains

maximin when γ(θ) equal zero for every taxpayer except those with the lowest utility level. When

Φ(U,θ) does not depend on type and is concave in U , one has Bergson-Samuelson preferences. We

note that the utility function U (·, ·;θ) is only one possible cardinal representation of type-θ taxpayers’

preferences. Other representations are obtained using an increasing transformation of U (·, ·;θ) such as

Φ(U (·;θ);θ). Therefore, the right-hand side of (10) can also be interpreted as a utilitarian objective

following a recardinalization of individual utility.

The government’s Lagrangian is a linear combination of tax revenue B and welfare W written as:

L
def≡ B +

1

λ
W , (11)

where the Lagrange multiplier λ > 0 represents the social value of public funds. We choose to express

the Lagrangian in monetary units instead of utility units.

II.5 Equilibrium

We employ two distinct equilibrium concepts: partial equilibrium (PE) with exogenous prices and

general equilibrium (GE) with endogenous prices. The GE is defined by:

Definition 1 (General Equilibrium (GE)). Given a tax schedule y 7→ T (y) and production policies α, a

GE is a set of prices p = (p1, ..., pn), of factor supplies X(θ) for each type θ of taxpayers and aggregate

inputs (X1, ...,Xn) such that:

i) Input supplies X(θ) maximize θ-taxpayers utility according to (2), taking prices p as given.

ii) Prices are given by inverse demand functions (4), where aggregate inputs sum up individual input

supplies according to:

Xi
def
≡
∫
Θ
Xi(θ) dF (θ). (12)

The PE takes prices as given and thereby omits part ii) of Definition 1, as follows.

Definition 2 (Partial Equilibrium (PE)). Given a tax schedule y 7→ T (y) and a set of prices p =

(p1, ..., pn), a PE is a set of input supplies X(θ) for each type θ of taxpayers that maximize θ-taxpayers

utility according to (2), taking prices as given.

We assume PE and GE exist and are unique.
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II.6 Tax system and tax reforms

The tax schedule y 7→ T (y) is assumed to be twice continuously differentiable. A tax reform

replaces the prevailing tax schedule y 7→ T (y) by a new one y 7→ T (y)−µR(y), µ being the magnitude

of the tax reform and the twice-continuously differentiable function R(·) specifying its direction.5 For a

given income vector y, the change in the tax burden due to the reform is therefore given by µ R(y). We

add the superscript “PE” to variables evaluated in PE. If a variable has no “PE” superscript, it is evaluated

in GE. Additionally, we indicate the direction of the considered reforms as superscripts on the variables:

R(·) for a tax reform in direction R(·), and R(·),α(·) for a tax reform in direction R(·) combined

with a production policy reform in direction α(·). The magnitude of the reforms is not indicated, as

we consistently use µ to represent it. Note that, in PE, when a tax reform affects input prices, we take

the determination of prices through the mapping µ 7→ (p
R(·),α(·),PE
1 (µ), ..., pRR(·),α(·), PEn(µ)) as

given. At the GE, on the other hand, the mapping t 7→ (p
R(·),α(·)
1 (µ), ..., p

R(·),α(·)
n (µ)) is endogenous

and determined by (4).

After a tax reform in the direction R(·) with magnitude µ, a type-θ taxpayer solves:6

UR(·),PE(θ;µ,p)
def≡ max

x
U

(
n∑

i=1

pi xi − T (p1 x1, ..., pn xn) + µ R(p1 x1, ..., pn xn),x;θ

)
. (13)

Applying the envelope theorem to (13) leads to:

dU =

[
R(y) dµ+

n∑
i=1

(1− Tyi) xi dpi

]
Uc(C(θ),X(θ);θ).

Let

g(θ)
def≡ ΦU (U(θ);θ)

λ
Uc(C(θ),X(θ);θ) (14)

denote the marginal welfare weights for taxpayers of type θ. We therefore get:

d Φ(U(θ);θ)

λ
=

[
R(y) dµ+

n∑
i=1

(1− Tyi) yi
dpi
pi

]
g(θ). (15)

Tax incidence in PE vs GE

When moving from the usual PE environment to GE, the behavioral responses and impact in terms

of well-being that prevail in PE are amplified by price adjustments, which in turn modify taxpayers’

input supplies and their corresponding incomes. We now describe the effects on input supplies, and their
5While optimizing over the highly multidimensional set of tax functions, we can compute partial derivatives along any

direction R(·) of tax reforms, allowing for optimization with respect to µ for each tax reform direction.
6We assume that the second-order condition associated holds strictly, meaning that the matrix[

Si
xj

+ Si
cSj + pi pj Tyiyj

]
i,j

is positive definite at c = C(θ), x = X(θ), and y = Y(θ), for each type θ ∈ Θ

and that for each type θ ∈ Θ, the program (2) admits a unique global maximum. These properties, further discussed in
Appendix A.2, eliminate the need to assume smooth individual responses to tax reforms. Instead, we apply the implicit
function theorem to the taxpayers’ first-order conditions (3)
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corresponding incomes, at GE of a tax reform in the direction R(·), a production policy reform in the

direction α(·), or both reforms together.

We first define the standard statistics at the PE: compensated responses and income effects for θ-

taxpayers. The compensated responses of their ith income with respect to the jth marginal net-of-tax rate

is denoted ∂Yi(θ)/∂τj while the income effect on their ith income is ∂Yi(θ)/∂ρ.7

The response to a change in µ at GE includes PE responses, along with the additional behavioral re-

sponses to input price adjustments observed in GE. Formally, as shown in Appendix A.3, ∀i ∈ {1, ..., n},

the ith input supply of a θ-agent is modified by:

∀θ ∈ Θ :
∂X

R(·),α(·)
i (θ;µ)

∂µ
=

∂X
R(·),PE
i (θ;µ,p)

∂µ
+

n∑
j=1

∂Xi(θ;p)

∂log pj

∂log p
R(·),α(·)
j

∂µ︸ ︷︷ ︸
Responses to price changes

, (16a)

which can be rewritten in terms of income responses as:

∀θ ∈ Θ :
∂Y

R(·),α(·)
i (θ;µ)

∂µ
=

∂Y
R(·),PE
i (θ;µ,p)

∂µ
+

n∑
j=1

∂Yi(θ;p)

∂log pj

∂log p
R(·),α(·)
j

∂µ︸ ︷︷ ︸
Responses to price changes

, (16b)

where:

pi
∂XR,PE

i (θ, µ)

∂µ
=

∂Y R,PE
i (θ, µ)

∂µ
=

n∑
j=1

∂Yi(θ)

∂τj
Ryj (Y(θ))︸ ︷︷ ︸

Compensated responses

+
∂Yi(θ)

∂ρ
R(Y(θ))︸ ︷︷ ︸

Income effects

. (16c)

Equation (16c) describes that, at PE, after small tax reform of magnitude dµ, taxpayers’ decisions are

modified, because of changes in the n marginal tax rates by Ryj (Y(θ))dµ (for j = 1, ..., n) or because

of a change in the level of tax by R(Y(θ))dµ. These PE responses are encapsulated into the first term

on the right-hand side of (16a) and (16b). The second term in the right-hand side of (16a) and (16b)

highlights that tax and production policy reforms impact the supply of the ith input Xi (and income Yi)

by a θ-agent not only through changes in its own price pi but also through variations in the prices of all

other inputs j ̸= i. Responses across different income sources are at play in this new term.

Similarly, the impact on taxpayers’ well-being at GE includes the impact at PE, along with the

additional behavioral responses to input price adjustments observed in GE. Formally, from (15), we have

∀θ ∈ Θ:

1

λ

∂Φ
(
UR(·),α(·)(θ;µ);θ

)
∂µ

=

R(Y (θ)) +

n∑
j=1

(1− Tyj (Y (θ)) Yj(θ)
∂log p

R(·),α(·)
j

∂µ

 g(θ). (16d)

7Formally, we use compensated tax reforms of direction R(y) = yj − Yj(θ) and magnitude τj to calculate ∂Yi(θ)/∂τj
that captures only substitution effects. The reform and the responses of θ-taxpayers, around income Yj(θ), are said to be
compensated since the j th marginal net-of-tax rate τj is modified while the level of tax is unchanged at y = Y(θ). We use
lump sum tax reforms of direction R(y) = 1 and magnitude ρ to calculate ∂Yi(θ)/∂ρ that captures income effects. Strictly
speaking, these responses do not just depend on the type θ, but also on the Hessian of the tax function. When the tax function
is non-linear, the responses to a tax reform generate changes in the marginal tax rates, which further induce compensated
responses to these changes in marginal tax rates, etc. (Jacquet et al., 2013). The behavioral responses encapsulate this “circular
process” through the endogeneity of the marginal tax rates.
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Price-replicating tax reforms

We now characterize a family of tax reforms that is pivotal to our results. These reforms have as

directions:

∀j ∈ {1, ..., n} : Rpj (y)
def≡ (1− Tyj (y1, ..., yn)) yj . (17)

We show, in Appendix A.4, that:

Proposition 1. The impact, measured at PE, on taxpayers’ input supplies and utility of a tax reform in

the direction Rpj (y)
def
≡ (1−Tyj (y1, ..., yn)) yj with magnitude µ is identical to the effect of a log-change

in the jth input price at GE. Formally,

∀i :
∂XRpj ,PE

i (θ;µ,p)

∂µ
=

∂Xi(θ;p)

∂log pj
and

∂URpj ,PE(θ;µ,p)

∂µ
=

∂U(θ;p)

∂log pj
. (18)

Intuitively, the mapping

(x1, . . . , xn) 7→
n∑

i=1

pi xi − T (p1 x1, . . . , pn xn) + µ R(p1 x1, . . . , pn xn)

between input supplies and after-tax income is the same for all taxpayers. Any tax reform or change

in input prices affects taxpayers’ program (2) solely through alterations in this mapping. Importantly,

this mapping is perturbed identically by a log-change in the price of the jth input and by a tax reform

in the direction Rpj (·) defined in (17), which we refer to as the “jth price-replicating direction” because

it replicates the impact of a log-change in the jth input price. Consequently, each taxpayer’s program is

affected identically by a log-change in the price of the jth input (at GE) and by a reform in the direction

Rpj (·) (at PE), which explains why both impact taxpayers’ input supplies and well-being in the same

way.

II.7 Price adjustments

In a PE with exogenous input prices (e.g., fixed wages), the effects of a tax change on a specific

income of a given agent can be readily derived as a function of behavioral elasticities. However, the

main challenge in GE is that this initial response influences prices, which subsequently affects the income

decisions of all other agents. These agents may adjust their efforts to earn different types of income, shift

income from one source to another, and so forth. Similarly, a change in production policies impact input

prices which subsequently impact input supplies which in turn feeds back into prices, and so on. These

ripple effects are synthesized in Figure 1. Determining the GE effects of these infinite sequences caused

by tax or production policy reforms is a complex task. Our key towards this characterization is a reduced-

form production side that we capture in inverse demand functions. According to Definition 1 and inverse

demand functions (4), after a tax or production policy reform of magnitude µ and direction, respectively

13



X1, ...,Xn

p1, ..., pn

Demand, Eq. (4), ΞSupply, Eq. (2), ΓTax reforms at PE Production policies α

Figure 1: The GE adjustments following a tax or a production policy reform.

R(·) or α(·), the prices (pR(·),α(·)
1 (µ), ..., p

R(·),α(·)
n (µ)) verify the following fixed-point conditions:

∀µ,∀i ∈ {1, ..., n} p
R(·),α(·)
i (µ) = Pi

(
XR(·),α(·)
1 (µ), ...,XR(·),α(·)

n (µ)
)

(19)

where the ith aggregate input XR(·),α(·)
i (µ) is defined from individual ith input XR(·),α(·)

i (θ, µ) thanks to

(12). Let Ξ denote the matrix where the term in the ith line and jth column is the inverse input’s demand

elasticity of the ith price pi with respect to the aggregate supply of the jth input Xj :

Ξi,j
def≡ Xj

Pi

∂Pi

∂Xj
. (20a)

We denote Γ the matrix of input supply elasticities, where the term Γi,j in the ith row and jth column

corresponds to the elasticity of the aggregate supply of the ith input with respect to the price of the jth

input,

Γi,j
def≡ 1

Xi

∫
Θ

∂Xi(θ;p)

∂log pj
dF (θ) =

1

Xi

∫
Θ

∂X
Rpj (·),PE
i (θ;µ,p)

∂µ
dF (θ) (20b)

where the second equality follows from Proposition 1. We denote In the n-identity matrix and assume

that the matrix In −Ξ · Γ is invertible so that, when we log-differentiates (19), we can apply the implicit

function theorem to ensure that equilibrium prices are differentiable with respect to µ.8 We denote the

vector of log-price changes resulting from the production policy reform, assuming no changes in input

supplies, as:

∂logPα(·)

∂µ

def≡

(
L∑

ℓ=1

∂P1

∂αℓ
α′
ℓ(0), ...,

L∑
ℓ=1

∂Pn

∂αℓ
α′
ℓ(0)

)T

. (21)

Thanks to these definitions, in the following lemma proofed in Appendix A.5, we present an equation

that formalizes the process of price adjustments.

Lemma 1. Following a tax reform in direction R(·) or a production policy reform in direction α(·), the

price adjustments at GE are given by:

∂log pR(·),α(·)

∂µ
= (In − Ξ · Γ)−1 · Ξ · ∂logXR(·),PE

∂µ
+ (In − Ξ · Γ)−1 · ∂logPα(·)

∂µ
, (22)

8Under perfect competition and when the production function is linear, i.e. F(X1, ...,Xn) =
∑n

i=1 Xi, matrix Ξ is nil.
Therefore, In − Ξ · Γ is invertible. Therefore, by continuity, this invertibility remains satisfied as long as the elasticities of
substitution between inputs are sufficiently high and competition is not too imperfect. Moreover, using the contracting mapping
theorem, the existence and uniqueness of the GE can be shown under the assumption that for all out-of-equilibrium price p and
input vectors X1, ...,Xn., matrices Ξ · Γ have all eigenvalues with a modulus below a bound strictly lower than 1.
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where the required elements are: the matrix of aggregate input supply elasticities Γ, the matrix of inverse

demand elasticities Ξ, the vector of input supply responses calculated at the PE – the latter being common

sufficient statistics in PE tax models – and the vector of log-price changes (absent changes in input

supplies) resulting from the production policy reform.

Notably, in (22), from (12), ∂ log p
R(·),PE
i /∂µ = 0 which leads to ∂ logXR(·),PE/∂µ = ∂ logYR(·),PE/∂µ.

Each ith row of these vectors measures how aggregate input supply or income i reacts to a tax reform of

magnitude µ, in the direction R, at the PE. Formally, from (16c), these measures are:

pi
∂XR,PE

i (θ, µ)

∂µ
=

∂YR,PE
i (θ, µ)

∂µ
=

∫
Θ


n∑

j=1

∂Yi(θ)

∂τj
Ryj (Y(θ))︸ ︷︷ ︸

Compensated responses

+
∂Yi(θ)

∂ρ
R(Y(θ))︸ ︷︷ ︸

Income effects


dF (θ). (23)

In Figure 1, we illustrate the process of price adjustments in GE. After a tax reform, the initial

taxpayers’ responses in PE impacts the supplies of production factors (through the matrix of supply

elasticities Γ) which modifies prices (through the matrix of inverse demand’s elasticities Ξ). These

price changes again impact the supplies of inputs, creating an ongoing loop of interdependence between

prices of inputs and their supplies. The two terms on the right-hand sides of Equations (22)-(23) are

these responses in supplies and demands which drive the infinite sequence of input price adjustments.

Equation (23) focuses on the supply responses that are already present in PE and are highlighted in blue

in Figure 1.

III Production Regulation

In this section, we present three theorems that state our main findings pertaining to what we call the

Production Regulation Principle. These findings highlight how (i) the characteristics of the existing tax

system and (ii) potential tax reforms lead to drastically different policy recommendations. We will enun-

ciate the Production Regulation Principle in Sub-Section III.2, but first, in Sub-section III.1, we outline

the key economic and fiscal parameters that any government should carefully assess before implement-

ing policy interventions. In Subsection III.3, we provide a decision-tree to evaluate whether a production

policy reform, efficient in increasing aggregate output, can also lead to a Pareto improvement based on

the assumptions satisfied. In Subsection III.4, we discuss the applicability of our framework across vari-

ous micro-founded examples, showing how they extend or complement existing results in the literature,

such as those on intermediate goods taxation (e.g. taxing robots), trade regulation, and business-focused

environmental regulation.
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III.1 Economic and Fiscal Parameters at a Glance

Assumption 1 (Full Implementability of Price-Replicating Reforms). The tax authority can reform the

tax system in the jth price-replicating direction, Rpj (·) (defined in (17)), for all j = 1, ..., n.

Under Assumption 1, the tax authority is able to differentiate the income derived from each individual

input for every taxpayer. Moreover, the structure of the tax system enables reforms along all price-

replicating directions.

Assumption 1 does not hold with comprehensive income tax systems, where total income is taxed

under a single (potentially nonlinear) schedule, y 7→ T (y) = T c(y1 + · · ·+ yn). With a comprehensive

income tax system, Equation (17) implies that the jth price-replicating direction takes the form:

Rpj (y) =
(
1− T c′(y1 + ...+ yn)

)
yj , (24)

which does not depend solely on total income y1 + ... + yn. Therefore, any reform along a price-

replicating direction Rpj (·) would no longer be consistent with a comprehensive tax system, which

therefore excludes such reforms.

In contrast, schedular tax systems, which are the sum of several (possibly non-linear) income-specific

functions, y 7→ T (y) = T s
1 (y1) + ... + T s

n(yn), enable reforms along all price-replicating directions

Rpj (·). With these systems, Equation (17) implies that the jth price-replicating direction is:

∀j ∈ {1, ..., n} : Rpj (y) =
(
1− T s′

j (yj)
)
yj . (25)

Hence, reforming a schedular tax system along price-replicating directions preserves its schedular nature.

As noted by Hourani et al. (2023), schedular tax systems prevail in Costa Rica, Denmark, Finland,

Greece, Hungary, Iceland, Israel, Italy, Latvia, Lithuania, Netherlands, Norway, Poland, Slovenia, Spain,

Sweden and Turkey. In contrast, tax systems in Switzerland, the United Kingdom and the United States

are similar to comprehensive systems (Hourani et al., 2023, Table A1).

Moreover, in practice, incomes arise from various sources, such as labor and capital. Labor incomes

can be categorized into routine tasks, manual tasks, and conceptual activities, while capital incomes

encompass dividends, interest, capital gains, capital losses, rents, imputed rents, and more. The tax

authority is capable of observing the different types of capital income. However, labor incomes are

indistinguishable by type. As a result, Assumption 1 holds only when the different types of labor are

perfect substitutes. In cases where this condition does not apply, a partial observability scenario may

prevail: the government observes only the sum of the first m incomes, ȳ
def≡ y1 + · · · + ym, while fully

observing all other income types.9 The tax system can then be an unrestricted function of incomes,
9Partial observability includes cases where several total incomes from different subsets of inputs are observed, but separate

incomes from each of these inputs are not distinguished.
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(ȳ, ..., yn) 7→ T (ȳ, ym+1, ..., yn), or a mixed tax system, as T (y) = T c(ȳ) +
∑n

i=m+1 Ti(yi). The

marginal tax rates for each income from the m ≤ n inputs are equal,

For j = 1, ...,m:
∂T (ȳ, ym+1, ..., yn)

∂yj
= Tȳ. (26)

Partial observability leads us to the following formal assumption:10

Assumption 2 (Partial Implementability of Price Replicating Reforms). The tax authority can reform

the tax system in the so-called comprehensive direction:

Rȳ(y)
def
≡ (1− Tȳ(ȳ, ym+1, ..., yn)) ȳ, (27)

where:

ȳ
def
≡ y1 + · · ·+ ym (28)

and in the jth price-replicating direction, Rpj (·) (defined in (17)), for all j = m+ 1, ..., n.

Assumption 3 (Partial Pre-distributive effects of production policy). Production policies do not alter the

input price ratios j = 1, ...,m, with m ≤ n.

In Appendix A.6, we give examples of primitives that satisfy Assumption 3. In this paper, we will

offer precise policy recommendations for cases when either Assumption 1 or, both Assumptions 2 and 3

are satisfied, as well as when they are not. Therefore, these assumptions are the keys to sound decision-

making for policymakers.

III.2 Production Regulation Principle

Now that Assumptions 1 and 2 have highlighted the relevant characteristics to study in a tax system,

we identify when a tax reform can improve everyone’s situation despite a production policy that increases

aggregate output but also has adverse pre-distribution effects. To this end, we first present two lemmas

that demonstrate how taxpayers’ input supplies and utility levels can be unaltered when a production

policy reform is combined with a so-called neutralizing tax reform. These lemmas are demonstrated in

Appendices A.7.

Lemma 2. If Assumption 1 is satisfied, the tax authority can combine any production policy reform in

direction α(µ) = (α1(µ), ..., αL(µ)) with a GE-neutralizing tax reform so that taxpayers’ input supplies

10One might think that combining a schedular and a comprehensive tax system, such as y 7→ T c(y1 + ... + yn) +
T s
1 (y1) + ...+ T s

n(yn), would satisfy Assumption 1. However, in the corresponding j th price-replicating direction, Rpj (y) =(
1− T c′(y1 + ...+ yn)− T s′

j (yj)
)
yj , the T c′(y1 + ... + yn)yj component is compatible with neither the schedular nor

the comprehensive part of this mixed tax system. Assumption 1 is therefore not satisfied. In contrast, this tax system can be
reformed in direction Rȳ(y) defined in Assumption 2.
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X(θ) = (X1(θ), ..., Xn(θ)) and utility levels U(θ) are unaltered. These tax reforms have the following

neutralizing directions:

RN (·)
def
≡ −

n∑
j=1

γ
α(·)
j Rpj (·)︸ ︷︷ ︸

Price adjustments replication

(29a)

where the scaling factors γα(·)
j are given by:

∀j ∈ {1, ..., n} : γ
α(·)
j

def
≡

L∑
ℓ=1

∂logPj

∂αℓ
α′
ℓ(0). (29b)

Neutralizing tax reforms aim at annihilating the effects of any production policy reform on taxpayers’

welfare and their incentives to supply inputs. To achieve this, these neutralizing directions incorporate

the jth price-replicating directions defined in (17).

Although the tax authority does not distinguish between certain types of income, it can still imple-

ment the neutralizing tax reform (29) if Assumptions 2 and 3 are satisfied instead of Assumption 1.

Lemma 3. If the economy satisfies Assumptions 2 and 3, for any production policy reform with direction

α(µ) = (α1(µ), ..., αL(µ)), the GE-neutralizing reform defined by (29a) and (29b) is implementable.

Therefore, combining the production policy reform and this GE-neutralizing tax reform leaves unaltered

taxpayers’ input supplies X(θ) = (X1(θ), ..., Xn(θ)) and utility levels U(θ).

Combining any production policy with the corresponding neutralizing tax reform yields a Pareto

improvement, as stated in the following theorems, which are demonstrated in Appendix A.8.

Theorem 1. Production regulation Principle – Part I: If Assumption 1 holds, production policies that

increase aggregate output, combined with the neutralizing tax reform in the direction defined in (29),

result in a Pareto improvement. Conversely, reducing the use of production policies that decrease aggre-

gate output also leads to a Pareto improvement when combined with a GE-neutralizing tax reform.

Theorem 1 describes the tax reforms the tax authority should take when, for instance, a reform of the

competition policy is implemented that reduces barriers to entry (improving production efficiency), im-

pacts input prices and alters the pre-distribution in the economy. Given that the government can reform

the tax system in all price-replicating directions Rpj (·), introducing (small) tax reforms in the neutral-

izing direction leads to a Pareto improvement. The tax system allows the government to counteract all

pre-distributive losses arising from the competition policy reform. Importantly, the tax system does not

need to be optimal; it simply needs to enable reforms in the neutralizing direction to be effective (thereby

counterbalancing the production policy’s impact on welfare and taxpayers’ behavioral responses).

When the tax authority is limited to reforming the tax system in a subset of price-replicating di-

rections, and production policy reforms do not modify the input price ratios corresponding to the other
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inputs, Theorem 2 highlights that combining an efficient production policy reform with a neutralizing

tax reform also results in a Pareto improvement.

Theorem 2. Production Regulation Principle – Part II: If Assumptions 2 and 3 hold, production poli-

cies that increase aggregate output, combined with the neutralizing tax reform with the neutralizing

direction defined in (29), re-expressed as:

RN (·) = −
L∑

ℓ=1

α′
ℓ(0)

∂logPȳ

∂αℓ
Rȳ(·)−

n∑
j=m+1

L∑
ℓ=1

α′
ℓ(0)

∂logPj

∂αℓ
Rpj (·),

result in a Pareto improvement. Conversely, reducing the use of production policies that decrease aggre-

gate output also leads to a Pareto improvement when combined with this neutralizing tax reform.

According to the Production Regulation Principle (Theorems 1 and 2), the choice of production poli-

cies, such as competition policy, should be guided solely by efficiency considerations if either all price-

replicating directions, Rpj (·), of tax reforms are feasible, or production policies preserve price ratios of

the first m inputs, and only the price-replicating comprehensive directions Rȳ(·), Rpm+1(·), ..., Rpn(·)

are feasible. We call this principle the“Production Regulation Principle”. Another way of putting it is

that the design of any production policy needs not include pre-distribution concerns when the neutral-

izing tax reforms can be implemented. The production regulation principles can be regarded as some

form of “Tinbergen principle”: production policies should not be concerned with redistribution, as that

role falls within the area of tax policy. Importantly, Theorems 1 and 2 do not require perfect competi-

tion, contrasting with the existing tax literature which classically assumes perfect competition, such as

Diamond and Mirrlees (1971), Naito (1999), Saez (2004), Rothschild and Scheuer (2013, 2016), Jacobs

(2015), Sachs et al. (2020), Costinot and Werning (2022) or Schultz et al. (2023). Moreover, our frame-

work generalizes the usual approach, which assumes an optimal tax schedule and an economy operating

on the production possibility frontier, as in Diamond and Mirrlees (1971). We significantly extend these

insights by demonstrating that our Production Regulation Principles apply even with suboptimal tax sys-

tems that can be reformed through the neutralizing tax reform, and when the economy operates in the

interior of the production possibility set.

Underlying Mechanisms

To get an intuitive understanding of Theorem 1 and 2, we clarify the underlying mechanisms. This

complements the proofs in Appendix A.8, which takes care of all formal details. When an economy

undergoes changes in its production policies so that for some ℓ ∈ {1, ..., L} : α′
ℓ(0) ̸= 0, Theorem 1 and

2 suggest that the government assesses whether its current tax system meets Assumption 1 or 2. When it

is the case, the GE effects on input supplies and welfare, stemming from production policies, are offset
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by a tax reform with a GE-neutralizing direction, RN (·), defined in (29). This direction is calculated

based on the opposites of the (rescaled) price-replicating directions defined in (17).

Consequently, any possible deteriorating impact in terms of welfare being nullified, a Pareto im-

provement is guaranteed if and only if tax revenue is not deteriorated. The impact of the production

policies on each price is calculated with fixed input supplies as:

∀j ∈ {1, ..., n} :
∂log p

RN (·),α(·)
j

∂µ
=

L∑
ℓ=1

∂logP
α(·)
j

∂αℓ
α′
ℓ(0). (31)

Therefore, the impact on tax revenue is modified by
∑n

j=1

∑L
ℓ=1Xj(∂Pj/∂αℓ)α

′
ℓ(0), which is equal to

the aggregate marginal changes in production
∑L

ℓ=1Fαℓ
α′
ℓ(0), based on (8). One has a Pareto improve-

ment if and only if
∑L

ℓ=1Fαℓ
α′
ℓ(0) > 0, meaning that production policies must (solely) be designed to

boost aggregate production as the tax system ensures a Pareto-improvement.

If Assumptions 1 and 2 are violated, the policy makers have to check for welfare improvements by

comparing efficiency effects with pre-distributive effects, as follows.

Theorem 3. If Assumption 1 is violated and either Assumption 2 or Assumption 3 is not verified, to

determine the welfare impact of any production policy reform in direction α(·), we compare its efficiency

effects with its pre-distribution effects, as follows:

∂L α(·)

∂µ
=

L∑
ℓ=1

Fαℓ
α′
ℓ(0)︸ ︷︷ ︸

Production efficiency effect

+
L∑

ℓ=1

n∑
j=1

∂L Rpj (·)

∂µ

∂Pj

∂αℓ
α′
ℓ(0)︸ ︷︷ ︸

Pre-distributive effects

, (32)

where the first term is the way the production policy reform modifies efficiency and the second term is the

pre-distributional loss created by this reform.

Theorem 3 shows that the effects of a production policy reform can be decomposed into two parts: the

effects on productive efficiency with unchanged input supplies, and the fact that price changes induced

by a production policy trigger behavioral responses that have identical consequences to tax reforms in

the price-replicating directions Rpj .

When a competition policy reform (or any other multidimensional reform of the production sector)

αℓ, for ℓ = 1, ..., L is optimal, the net impact in terms of efficiency and pre-distribution is null, resulting

in (32) being equal to zero. In this equation, proved in Appendix A.9, the production efficiency effect∑L
ℓ=1Fαℓ

α′
ℓ(0) represents the aggregate marginal changes in production (as defined in (8)), which,

depending on its sign, may lead to either an improvement or deterioration in the government’s Lagrangian

(11). A competition policy reform (or any other multidimensional reform of the production sector)

µ 7→ (α1(µ), ..., αL(µ)) is production efficient if:

L∑
ℓ=1

Fαℓ
α′
ℓ(µ) > 0.
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Is Assumption 1 verified?
Can the government reform the tax system in all the
jth price-replicating directions Rpj (·) for j = 1, ..., n?

Yes No

Is Assumption 2 verified ?
Can the government reform the tax system in the price-replicating

directions Ry(·) and Rpj (·) for all j = m+ 1, ..., n?

Yes No

Is Assumption 3 verified?
Does the production policy alter the

input price ratio pj/pk for all (j, k) ∈ {1, ...,m}?

A production policy that increases aggregate output
leads to a Pareto improvement if combined with
the neutralizing tax reform RN (·).

Yes No

A production policy that increases aggregate output
also yields pre-distributive effects since the
neutralizing tax reform RN (·) cannot be implemented.

Figure 2: Decision Tree

The government should assess these production efficiency effects in conjunction with the pre-distributive

effects, captured in the second term of (32), to evaluate the overall impact of any production policy

reform. We show that these a priori complex pre-distributive effects are equal, for every change in the

policy, to a sum across all inputs prices. This sum consists in the reform’s impact on prices, hence on

the inverse demands for inputs, (∂Pj/∂αℓ) α′
ℓ(0), times an expression ∂L Rpj (·)/∂µ that makes all

the technical difficulties linked to the shift from PE to GE vanish. Together, these terms capture the

pre-distributional consequences of the competition policy. In the next section, we detail the calculation

of the effects on the Lagrangian of a tax reform in the price-replicating directions, ∂L Rpj (·)/∂µ.

It is worth noting that Theorems 1, 2 and 3 apply irrespective of perfect competition. They remain

valid in the presence of market failures, rent-seeking, externalities in production, or other imperfections

in input markets. Furthermore, as already emphasized, Theorems 1 and 2 do not require the tax system

to be optimal.

III.3 Decision Tree

Figure 2 presents a decision tree that guides in evaluating whether a given production policy reform–

efficient in terms of increasing aggregate production but potentially detrimental to pre-distribution–can

be Pareto-improving. The Production Pegulation Principle, which is summarized in the bottom-left box,
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applies when either Assumption 1 holds (see Theorem 1) or when both Assumptions 2 and 3 are verified

(see Theorem 2). If Assumption 2 is violated, Theorem 3, summarized in the bottom-right box, becomes

applicable.

III.4 Micro-founded examples

We derived our Production Regulation Principle in Theorems 1 and 2, along with our theorem ad-

dressing the impact of production policy reform when these principles do not apply (Theorem 3). This

was achieved using a reduced-form description of the production sector that specifies only the inverse

demand functions, Pi(·). This approach has a powerful advantage by ensuring our results remain robust

to variations in the underlying micro-foundations behind these inverse demand functions. To illustrate

the broad applicability of our reduced-form approach to various policy contexts, we provide a compre-

hensive exploration of micro-founded examples in Appendix B. We investigate policies impacting the

production sector under different contexts, such as competition policy, taxation of intermediate goods,

robots and AI, trade liberalization, public production, and firms’ environmental regulations.

In all these examples, we show how firms’ behaviors in the production sector can be represented by

the decision of an hypothetical “production coordinator”. Formally, this coordinator allocates aggregate

inputs supplies X1, ...,Xn within the production sector to maximize total consumption by taxpayers,

C(θ), and the government, E. When formulating the production coordinator’s program, we decompose

certain resource constraints to replicate the effects of potential market frictions and production policies

on resource allocation within the production sector.

This approach allows us to clarify, in each micro-founded examples, which production policies that

increase aggregate output can be recommended. We therefore bridge the Production Regulation Princi-

ples (Theorems 1 and 2) with key policy implications, including the reduction of sector-specific markups,

not taxing intermediate goods, no indirect taxation on commodities, free trade, managing public firms

using producer prices in the private sector, etc. Importantly, with these reduced-form examples, we

demonstrate that previous results in the literature, which all build upon Diamond and Mirrlees (1971)

and rely on micro-founded production functions, can easily be recovered and extended within our frame-

work as special cases. We also reproduce other results from the literature where the production efficiency

theorem of Diamond and Mirrlees (1971) does not apply. These departures, including Naito (1999,

2004), Koizumi (2020), Guerreiro et al. (2021), Costinot and Werning (2022) and Thuemmel (2023),

arise because neither Assumption 1 nor the combination of Assumptions 2 and 3 are verified. Therefore,

production policies must also account for their pre-distributive role, as specified by Equation (32) in

Theorem 3 and summarized in Figure 2.
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IV New Key Statistics and their Implementation

In this section, we detail two key statistics. The first is the welfare impact of the price-replicating tax

reform ∂L Rpj
/∂µ which appears in (32). This statistic allows us to obtain the impact on the Lagrangian

of all GE changes in input prices. It relies on our second statistic, the “GE-multiplier” that give the

welfare impact of price adjustments implied by any tax reform. In this section, we extend our results from

Lemma 2 and Theorem 3 to the case where both tax and production policy reforms occur simultaneously.

We conclude the section with a practical guide to the empirical implementation of our statistics.

IV.1 GE-Multipliers

The following proposition, proved in Appendix A.9, details the calculation of ∂L Rpj
/∂µ which

appears in Equation (32). It also introduces the GE multipliers to unlock the gate from the PE to the GE

framework.

Proposition 2. (GE multipliers) At GE, the impact of a tax reform in the jth price-replicating direction

Rpj (y)
def
≡ (1− Tyj (y1, ..., yn))yj is:

∂L Rpj (·)

∂µ
=

∫
Θ

−(1− g(θ))Rpj (Y(θ))︸ ︷︷ ︸
Mechanical effects

+
n∑

i=1

(Tyi(Y(θ)) + ηi)
∂Yi(θ)

Rpj (·),PE

∂µ︸ ︷︷ ︸
Responses of incomes at PE

dF (θ),

(33)

with:
∂Yi(θ)

Rpj (·),PE

∂µ
=

n∑
j=1

∂Yi(θ)

∂τj
R

pj
yj (y)︸ ︷︷ ︸

Compensated responses

+
∂Yi(θ)

∂ρ
Rpj (y)︸ ︷︷ ︸

Income effects

,

where ηi denote the “GE-multipliers” and are defined as:

∀i ∈ {1, ..., n} : ηi
def
≡ FXi − pi

pi︸ ︷︷ ︸
Market failure correction

+
n∑

j=1

∂L Rpj

∂µ

Ξj,i

Yi
.︸ ︷︷ ︸

Correction for “Rpj -suboptimality” of the tax system

(34)

If the tax system is optimized along the price-replicating direction Rpj (·), ∀j ∈ {1, ..., n}, Equation

(33), which provides the welfare impact of a tax reform of magnitude µ in the price-replicating direction

Rpj (·), is equal to zero, ∀j ∈ {1, ..., n}. If the tax system is not optimized along the price-replicating

directions, we have ∂L Rpj (·)/∂µ ̸= 0 for at least one j ∈ {1, ..., n}. The welfare impact can be

decomposed into two elements detailed in (33). First, independently of any behavioral change, the

tax reform impacts the Lagrangian through changes in tax liabilities Rpj (Y(θ)). It creates the usual

mechanical effects on government revenue and social welfare, 1 − g(θ). Second, the tax reform affects

tax revenue as taxpayers adjust their incomes, represented by ∂Yi(θ)
Rpj (·),PE/∂µ for i = 1, . . . , n, via
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compensated responses and income effects (already presented in Equation (16c)). In PE, these behavioral

responses impact the Lagrangian solely through their impact on tax revenues. This is why the marginal

tax rates Tyi appear as factors in the PE responses ∂Y
R(·),PE
i (θ)/∂µ to tax reforms. In GE, however,

the effect of price adjustments must also be considered. Specifically, the ith GE multiplier ηi captures

the impact on the Lagrangian of price adjustments resulting from a one unit increase in the ith aggregate

income in PE. Consequently, in the right-hand side of (33), the PE responses ∂Y
R(·),PE
i (θ)/∂µ to tax

reforms should also be multiplied by the GE multipliers ηi.11

The GE-multiplier ηi, associated to input i, consists of two elements in (34): a corrective term for

market failures and a corrective term for the suboptimality of the tax system in the price-replicating

directions, as stated in (34). The corrective term for market failure (FXi − pi)/pi assesses whether

the social return of input i, FXi , differs from its private return, pi, indicating the absence of perfect

competition. If FXi −pi is strictly positive, the corrective term is positive and, ceteris paribus, depending

on the sign of the response of income Yi, it increases or decreases the Lagrangian, in (33). In a perfectly

competitive setting, this term equals zero and (34) simplifies to the corrective term for the suboptimality

of the tax system in the price-replicating directions:

∀i ∈ {1, ..., n} : ηi =

n∑
j=1

∂L Rpj

∂µ

Ξj,i

Yi
. (35)

The right-hand side of (35) measures the welfare impact of the suboptimality of the tax system along the

price-replicating directions. To understand why this term arises, we can recall Proposition 1, which em-

phasizes that tax reforms in the price-replicating direction Rpj impacts taxpayers’ input supply, consump-

tion and utility similarly, at PE, to the effect of a log-change in the price of input j. Therefore, when a

tax reform generates a unit increase in the ith aggregate income at the PE, this generates a relative change

in the jth price equal to Ξj,i/Yi. This, in turn, impacts taxpayers’ input supplies and welfare as much as

a tax reform in the price-replicating direction Rpj (·). Therefore, the term
∑n

j=1(∂L Rpj
/∂µ) (Ξj,i/Yi)

captures the impact on the Lagrangian of these price changes. When the tax system is optimized in the

price-replicating directions, we have ∂L Rpj
/∂t = 0 ∀j ∈ {1, ..., n}, the tax system fully neutralizes

the prices’ impact on taxpayers. Let us stress that optimizing along the price-replicating directions does

not require the tax system to be optimal, which would impose significantly stricter conditions. Notably,

the GE-multipliers ηi depend neither on the direction R(·) nor on the size µ of the reform. The distinct

expressions that can be taken by the GE multipliers are summarized, in Table 1.

In economies satisfying Assumption 2, the tax authority is never able to optimize the tax system

in the price-replicating directions Rpj , for j = 1, ...,m, since it cannot separately observe the related

incomes. Therefore,
∑n

j=1(∂L Rpj
/∂µ) (Ξj,i/Yi) ̸= 0, for j = 1, ...,m. In contrast, the tax system may

11The role of GE multipliers ηi in our tax perturbation approach is akin to the role of consistency constraint multipliers in
Rothschild and Scheuer (2013, 2014)’s mechanism design approach.
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Is the tax system optimized with respect to all the jth

price-replicating directions Rpj (·) for j = 1, ..., n?

Yes No

Perfect competition?
Yes ηi = 0 ηi =

∑n
j=1

∂L R
pj

∂µ
Ξj,i

Yi

No ηi =
FXi

−pi
pi

ηi =
FXi

−pi
pi

+
∑n

j=1
∂L R

pj

∂µ
Ξj,i

Yi

Table 1: GE multipliers

be optimized along the price-replicating directions Rpj (·) for all j = m + 1, ..., n and along the price

replication direction Ry(·)(·) defined in (27). We can extend our insights if we assume inverse demands

functions are weakly separable, taking the form:

∀j ∈ {1, ...,m} : Pj (X1, ...,Xn;α) = Qj (X1, ...,Xm) P (A (X1, ...,Xm) ,Xm+1, ...,Xn;α) (36a)

∀j ∈ {m+ 1, ..., n} : Pj (X1, ...,Xn;α) = Pj (A (X1, ...,Xm) ,Xm+1, ...,Xn;α) . (36b)

This assumption can be microfounded, for instance, under perfect competition and a weakly separable

production function of the form F (X1, ...,Xn;α) = F (A (X1, ...,Xm) ,Xm+1, ...,Xn;α). Under such

assumptions, we obtain that for the n−m+1 last incomes, the GE multipliers are solely determined by

market failures (see Appendix A.10):

∀i ∈ {m+ 1, ..., n} : ηi =
FXi − pi

pi
. (37)

Additionally, when the inverse demand elasticities are weakly separable, Assumption 3 is verified, since

Equations (36a) imply the following price ratios:

∀(i, j) ∈ {1, ...,m} :
pi
pj

=
Qj (X1, ...,Xm)

Qj (X1, ...,Xm)

do not depend on production policies.

IV.2 Considering Both Tax and Production Policy Reforms

To make our results applicable to more real-world scenarios, we extend the economic environment

further by considering an economy where both production policy reforms and tax reforms coexist.

Neutralizing price effects from both reforms

With Equation (29a), we constructed the neutralizing direction of a tax reform which neutralizes the

price effects of any production policy α(·) on utility and behavior. We now extend this by constructing

tax reforms that neutralize not only the price effects from any production policy α(·) but also the price

effects from any initial tax reform R(·). With some abuse of notation, we label this direction RN (·) as

in (29a) and, in Appendix A.7, we show the following lemma.
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Lemma 4. Under Assumption 1, the tax authority can combine any initial tax reform in the direction

R(·) and any production policy reform in direction α(µ) = (α1(µ), ..., αL(µ)) with a GE-neutralizing

tax reform so that the effects on taxpayers’ input supplies X(θ) = (X1(θ), ..., Xn(θ)) and utility levels

U(θ) are those induced, in PE, by the initial tax reform in direction R(·). These tax reforms have the

following neutralizing directions:

RN (·)
def
≡ R(·)︸︷︷︸

Initial tax reform

−
n∑

j=1

γ
R(·),α(·)
j Rpj (·)︸ ︷︷ ︸

Price adjustments replication

(38a)

where the scaling factors are written as γR(·),α(·)
j given by:

∀j ∈ {1, ..., n} : γ
R(·),α(·)
j

def
≡

n∑
i=1

Ξj,i

Yi

∂YR(·),PE
i

∂µ
+

L∑
ℓ=1

∂logPj

∂αℓ
α′
ℓ(0). (38b)

Lemma 4 builds upon Lemma 2, which addressed the interplay between any production policy reform

and a GE-neutralizing tax reform. It extends this result to encompass the combination of a tax reform

and a production policy reform, alongside the relevant GE-neutralizing tax reform. Intuitively, in GE,

the impact on taxpayers’ utility and input supplies resulting from the combination of a tax reform in the

direction R(·) −
∑n

j=1 γ
R(·),α(·)
j Rpj (·), defined in (38a), and a production policy reform α(·) can be

decomposed into three main components. First, the PE effects of the tax reform in the direction R(·).

Second, the PE effects of the tax reforms
∑N

j=1 γ
R(·),α(·)
j Ryj (·). Third, the tax reform in the direction

RN (·) and the production policy reform in the direction α(·) imply prices changes ∂pR
N ,α(·)

j /∂µ at the

GE. According to Proposition 1, the PE effects of the tax reforms, −
∑N

j=1 γ
R(·),α(·)
j Ryj (·) (the second

component), neutralize the responses to price changes, ∂pR
N ,α(·)

j /∂µ (the third component), whenever

γ
R(·),α(·)
j = ∂p

RN (·),α(·)
j /∂µ for all j ∈ {1, . . . , n}. As shown in Appendix A.7, this condition is

satisfied when:

∀j ∈ {1, . . . , n} : γ
R(·),α(·)
j =

n∑
i=1

Ξj,i

Yi

∂YR(·),PE
i

∂µ
+

L∑
ℓ=1

∂logPj

∂αℓ
α′
ℓ(0) =

∂log p
RN (·),α(·)
j

∂µ
. (39)

Incidence of Tax and Production Policy Reforms

Now, we can extend Theorem 3 and state the welfare impact of both tax reforms and production

policy reforms. The proof is in Appendix A.9.

Theorem 4. The welfare impact of any tax reform in direction R(·) and of any production policy reform
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in direction α(·) on the government’s Lagrangian are given by:

∂L R(·),α(·)

∂µ
=

∫
Θ

−

(1− g(θ)) R(Y(θ))︸ ︷︷ ︸
Mechanical effects

−
n∑

i=1

(Tyi(Y(θ)) + ηi)
∂Yi(θ)

R(·),PE

∂µ︸ ︷︷ ︸
Responses of incomes at PE


dF (θ)

+
L∑

ℓ=1

Fαℓ
α′
ℓ(0)︸ ︷︷ ︸

Production efficiency effects

+
L∑

ℓ=1

n∑
j=1

∂L Rpj (·)

∂µ

∂Pj

∂αℓ
α′
ℓ(0)︸ ︷︷ ︸

Pre-distributive effects

, (40)

where the GE-multipliers ηi are defined in (34).

Beside the production efficiency and pre-distributive effects of production policy reforms already in

(32), mechanical effects and responses of incomes in PE appear in the first line of (40). These effects are

quite similar to those described in Lemma 2, except that, there, direction R(·) was the price-replicating

one, Rpj (·). Their interpretation and empirical implementation follow suit, simply with different direc-

tions. If the tax and production policy reforms are chosen optimally, the right-hand side of (40) is nil. In

the real world, we expect this right-hand side to be often either positive or negative.

IV.3 Empirical Implementation

The welfare impact of any production policy reform can be computed by implementing Equation

(32), in conjunction with (33), (34) and (17). Similarly, the welfare impact of a tax reform, or a com-

bination of tax and production policy reforms, can be evaluated using (40). Regardless of the type of

reform, the tax authority can weigh the pre-distributive effects against the production efficiency effects.

Communicating these effects clearly is crucial to help the public understand the trade-offs involved and

fosters informed debate.

For the pre-distributive effect of (32) or (40), we need to calculate ∂L Rpj (·)/∂µ. Either the tax

system is optimized along all price replication directions, in which case ∂L Rpj (·)/∂µ = 0 and ηi =

(FXi −pi)/pi for all i = 1, ..., n, according to (34), or this involves implementing each term in Equation

(33). The mechanical effects rely on the welfare weights g(θ), which can be calibrated either from

normative assumptions (Saez and Stantcheva, 2016) or from survey data (Kuziemko et al., 2015, Capozza

and Srinivasan, 2024). The term Rpj , defined in (17), requires the observed marginal tax rate. We also

need estimates of compensated responses ∂Yi(θ)/∂τj and income effects ∂Yi(θ)/∂ρ, which can be

empirically obtained using quasi-experimental evidences (see, e.g., Saez et al. (2012)).12

12One common problem in the sufficient statistics approach is that these statistics may depend on the tax system. In our
tax incidence analysis, one therefore needs sufficient statistics close to those estimated under the considered tax schedule.
Moreover, both compensated responses and income effects are defined with prices held constant. This aligns with the empirical
literature, which examines variations in taxpayer response to tax reforms under the assumption that price changes are consistent
across all taxpayers
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The calibration of the demand-side parameters requires estimating the market failure corrections,

(FXi − pi)/pi, the inverse demand elasticities Ξi,j with respect to input supplies, and the log-derivatives

of the inverse demand functions with respect to production policies, ∂Pi/∂αℓ. Market failure correc-

tions (FXi −pi)/pi can be calibrated by assuming perfect competition, in which case (FXi −pi)/pi = 0.

Alternatively, one may envision externalities or mark-ups arising from imperfect competition. In the lat-

ter case, markup-up estimates from the empirical Industrial Organization literature (see e.g. De Loecker

et al. (2020)) can be used to quantify how much input price pi is under-priced to generate profits. These

profits correspond to the income derived from the inelastically supplied entrepreneurial input, which al-

locates profits among taxpayers (see McKenzie (1959) and Mas-Colell et al. (1995, pp. 134-135)). The

matrix of elasticities of inverse demands with respect to input supplies, Ξ, can be calibrated structurally.

For instance, assuming two inputs –labor indexed by L and capital indexed by K– under perfect compe-

tition, the matrix Ξ can be obtained from the substitution elasticity σ between labor and capital, and the

income share αL and αK of, labor income and capital income in GDP, respectively. The matrix is given

by: 
∂ logPL

∂ logXL

∂ logPL

∂ logXK

∂ logPK

∂ logXL

∂ logPK

∂ logXK

 =


−αL

σ

αL

σ

αK

σ
−αK

σ
.


At the macroeconomics level, Antràs (2004) estimates an elasticity of substitution between labor and

capital, σ, lower than 0.5 for the US. In the meta-analysis, Knoblach et al. (2020) obtain a long-run

elasticity for the aggregate economy in the range of 0.45 − 0.87. Finally, we need estimates of the log

derivative of inverse demand with respect to production policies, ∂Pi/∂αℓ, as in Bertrand and Kramarz

(2002), Biscourp et al. (2013), who estimate the impact of entry regulation on retail prices using French

reforms.

V Pareto-improving tax reforms

We develop, in this section, an approach for the identification of Pareto-improving tax reforms in the

presence of multiple incomes and GE adjustments. We provide necessary and sufficient conditions for

the existence of Pareto-improving directions of tax reform, with multidimensional nonlinear tax systems

and GE effects. We show how to test whether a given tax system can be Pareto improved and whether a

given tax reform is Pareto-improving. As a preamble to this exercise, we must establish the optimal tax

system when there is no restriction on its form.

For this purpose, we denote ΘY the income space, ∂ΘY its smooth boundary. Let ∂Ŷi(y)/∂τj ,

∂Ŷi(y)/∂ρ and ĝ(y) denote the mean values of ∂Yi(θ)/∂τj , ∂Yi(θ)/∂ρ and g(θ), respectively, among

taxpayers with earnings Y(θ) = y. The following proposition, proved in Appendix A.11 characterizes
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the optimal tax system without any restriction on its form.

Proposition 3. When the tax system for multiple incomes has no restriction on its form, the optimal tax

system has to verify the Euler-Lagrange equation:

[
1− ĝ(y)−

n∑
i=1

(Tyi(y) + ηi)
∂Ŷi(y)

∂ρ

]
h(y) = −

n∑
j=1

∂

[
n∑

i=1
(Tyi(y) + ηi)

∂Ŷi(y)

∂τj
h(y)

]
∂yj

, (41)

∀y ∈ ΘY , and it satisfies the boundary conditions:

∀y ∈ ∂WY :
∑

1≤i,j≤n

(Tyi(y) + ηi)
∂Ŷi(y)

∂τj
h(y)ϕj(y) = 0 (42)

where ϕ(y) = (ϕ1(y), ..., ϕn(y)) is the outward unit vector normal to the boundary at y, where the GE

multipliers are given by (34) with ∂L Rpj (·)/∂µ = 0 for all j = 1, ..., n. Under perfect competition,

ηi = 0, for all i = 1, ..., n.

The Partial Differential Equation (41) is a divergence equation that must hold for any income y.

Equations (42) are boundary conditions that must hold at any income y ∈ ΘY in the boundary of ΘY .

Proposition 3 extends to a context with GE effects and market failures the optimal tax formulas of Mir-

rlees (1976), Golosov et al. (2014), Spiritus et al. (2024), Boerma et al. (2022) and Golosov and Krasikov

(2024). The aforementioned tax formulas describe the optimal tax system which is unconstrained on its

form, across a large spectrum of economic environments (e.g., with any type of market failure or under

perfect competition, with a production factors which are imperfect substitutes or not). Since the system

is optimized and not restricted at all on its form, we have ∂L Rpj
/∂µ = 0 for all j. The tax system is

optimized along the price-replicating directions defined in (17). Hence, according to (34), GE multipliers

are given by (35) to correct for market failures, if any. Under perfect competition, GE multipliers are nil.

We develop a test to determine whether a given tax schedule is Pareto efficient. If it is not, the test

identifies potential tax reforms that could achieve a Pareto improvement. To do so, based on (41), one

needs to calculate revealed marginal welfare weights, as detailed in Appendix A.11. The literature on

the inverse tax problem solves for these weights for which an observed tax system satisfies the first-order

conditions of an optimal tax problem, with a single source of income, see, for instance, Bourguignon and

Spadaro (2012), Bargain et al. (2014), Lorenz and Sachs (2016), Jacobs et al. (2017), Hendren (2020),

Bierbrauer et al. (2023).

In GE, the following lemma highlights that, with multiple incomes and under perfect competition,

revealed marginal welfare weights incorporate only PE components, which inherently make their calcu-

lation straightforward.
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Lemma 5. In GE, with multiple incomes, revealed marginal social welfare weights depend solely on

statistics evaluated in PE. These weights are expressed as:

g̃(y)
def
≡ 1−

n∑
i=1

Tyi(y)
∂Ŷi(y)

∂ρ
+

1

h(y)

n∑
j=1

∂

[
n∑

i=1
Tyi(y)

∂Ŷi(y)

∂τj
h(y)

]
∂yj

, (43)

where h(·) denotes the joint income density.

Lemma 5 comes as a surprise if one starts out with the basic intuition that, the revealed marginal

welfare weights should reflect GE effects. However, the revealed welfare weights are computed from the

optimal tax formula, assuming that the tax system has no restriction on its form and that competition is

perfect. Therefore, from Equation (34), the GE multipliers are zero, causing the revealed marginal social

welfare weights in GE to coincide with the ones in PE. As a result, the endogeneity of input prices can

be ignored when evaluating the revealed welfare weights. They can be inferred from data using (43) and

usual estimations of compensated responses ∂Ŷi(y)/∂τj , of income responses ∂Ŷi(y)/∂ρ and income

density h(y).

In PE, Lorenz and Sachs (2016), Hendren (2020), Bierbrauer et al. (2023) show that negative revealed

welfare weights indicate a Pareto inefficiency in the observed tax system, when taxpayers earn a single

income (n = 1). Bierbrauer et al. (2023) show that negative revealed welfare weights at some income

levels are equivalent to their “revenue function” being increasing around that level, in which case a two-

brackets tax reform is Pareto-improving.13 Spiritus et al. (2024, Proposition 2) and Bergstrom and Dodds

(2024) extend this result to multiple incomes. With complex and fully flexible tax systems, and following

Spiritus et al. (2024, Proposition 2), we can then state that

Lemma 6. In PE, a tax reform is Pareto-improving if

• tax liabilities are (weakly) decreased for income bundles y where the revealed marginal social

welfare weights are negative, ĝ(y) < 0,

• taxes liabilities are unchanged for income bundles y where the revealed marginal social welfare

weights are non-negative, ĝ(y) ≥ 0,

• the additional tax revenue generated is used to fund a lump-sum transfer.

In Appendix A.12, we show that combining Lemmas 4 and 6 yields the following proposition.

Theorem 5 (Pareto improving tax reforms). Under Assumption 1 and perfect competition, if a tax reform

in direction R(·) is Pareto-improving in PE (i.e., from Lemma 6, if g̃(y) < 0 for some income bundles

13Bierbrauer et al. (2023)’s approach no longer works with multiple incomes because one cannot adjust the vector of marginal
tax rates at one point without having to change it elsewhere.
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y then R(y) ≥ 0 and if g̃(y) ≤ 0 then R(y) = 0), implementing, for every income bundle y such that

g̃(y) < 0, a small GE-neutralizing tax reform in the direction:

RN (·) = R(·)−
n∑

j=1

∂log pR
N

j

∂µ
Rpj (·), (44a)

where the scaling factors γR(·)
j are:

∀j ∈ {1, ..., n} : γ
R(·)
j

def
≡

n∑
i=1

Ξj,i

Yi

∂X
R(·),PE
i (θ;µ,p)

∂µ
= p

RN (·)
j µ, (44b)

is Pareto-improving in GE.

This theorem provides a Pareto-efficiency test and Pareto-improving tax reforms. From Lemma

5, we know the simplicity of empirically implementing g̃(y), making it straightforward to verify the

sufficiency condition g̃(y) < 0. In particular, according to Lemma 4 (with α(µ) = 0), a tax reform in

direction RN (·) defined by Equation (44a) exerts, in GE, the same impact on taxpayers’ factor supplies

and utilities than the Pareto-improving tax reform R(y) in PE. Since the latter is Pareto-improving, the

former achieves Pareto improvement only if the change in price does not reduce tax revenue.14

There is a closed analogy between Theorems 1 and 5. Both theorems emphasize how a production

policy reform (Theorem 1) or tax reform (Theorem 5) that is Pareto efficient when taxpayers’ responses

to GE price adjustment are ignored, remains Pareto efficient in GE, provided it is combined with the

neutralizing tax reform described in Lemma 4. Importantly, both theorems require the tax system to be

sufficiently flexible, as specified in Assumption 1, to ensure the implementability of the neutralizing tax

reform.

The following proposition, proofed in Appendix A.13, establishes that positive welfare weights are

both necessary and sufficient for the non-existence of a Pareto-improving direction in GE.

Proposition 4. Under perfect competition, if g̃(y) ≥ 0 almost everywhere for income bundles y within

the interior of the income bundle space, then there is no Pareto-improving direction neither at the PE,

nor at the GE.

It is noteworthy that, as in Bierbrauer et al. (2023) with a single income, Proposition 4 does not

exclude the existence of a Pareto-improving reform which would be non-infinitesimal, i.e. a Pareto

improvement resulting from a large magnitude µ.
14In Appendix A.12, we show that both reforms have the same budgetary effects. Intuitively, rewriting tax liabilities as

T (Y(θ)) =
∑n

j=1 pj Xj(θ)− C(θ), the difference between the effects on tax revenue of a reform in the direction RN (·) at
the GE and a reform in the direction R(·) at the PE is therefore equal to

∑n
j=1 Xj dpj =

∑n
j=1 Yj dpj/pj . This difference is

zero under perfect competition.
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VI Optimal Income Tax Systems and GE-multipliers

In this section, we extend the analysis to a Mirrleesian tax model of income taxation extended with

several incomes. Proposition 3 characterizes the optimal tax function when the tax system is exhaustive

and there is no restriction on its form. In the presence of numerous income types and sources of income,

the lack of restrictions on the form of the tax system results in an optimal tax formula expressed as a par-

tial differential equation. However, in practice, policymakers and institutions may imposed constraints

on the degree of complexity of the tax system. We argue that realistic tax codes combine many functions

(schedules), each of them depending on a single argument (tax base). The imposition of such a realistic

restriction on the tax system takes our exploration a step further, revealing that with numerous types and

income sources, the optimal tax system must now conform to a system of ordinary differential equations,

adopting the ABC form introduced by Diamond (1998) and Saez (2001). This transformation not only

enhances the mathematical tractability of the optimal tax model but, critically, introduces a more realistic

framework leading to intuitive optimal tax formulas.

VI.1 Schedular tax systems

In this subsection, we investigate the case where the tax system is schedular, i.e. is the sum of n

income-specific functions Ti(·), so that:

T (y1, ..., yn) =
n∑

i=1

Ti(yi).

We introduce the possibility that for some incomes, say those for i > n′, with 1 ≤ n′ ≤ n, the cor-

responding tax schedule is linear i.e. Ti(yi) = ti yi where ti is a real number. Let then denote hi(·)

the density of the ith income and Hi(·) the corresponding CDF. For any variable Z(θ) and for any

i = 0, ..., n, we denote Z(θ)|Yi(θ)=yi
the mean of Z(θ) among types θ for which Yi(θ) = yi. The

notation εi(yi) refers to the compensated elasticity of the ith income with respect to its own marginal net-

of-tax rate. The corresponding uncompensated elasticity is denoted εui (yi). These means of elasticities

are calculated among θ-taxpayers who earn their ith income equal to yi:

εi(yi)
def≡ 1− T ′

i (yi)

yi

∂Yi
∂τi

∣∣∣∣
Yi(θ)=yi

and : εui (yi)
def≡ 1− T ′

i (yi)

yi

∂Y u
i

∂τi

∣∣∣∣
Yi(θ)=yi

. (45)

We thus get the following proposition, which is demonstrated in Appendix A.14.

Proposition 5. When the tax system is schedular, the GE multipliers η1, ..., ηn are given by

∀i ∈ {1, ..., n} ηi =
FXi − pi

pi
. (46a)

at the optimum, which has also to verify:
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a) When the ith schedule is nonlinear, i.e. for i = 1, ..., n′:

T ′
i (yi) + ηi
1− T ′

i (yi)
εi(yi) yi hi(yi) +

∑
1≤k≤n,k ̸=i

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂τi

∣∣∣∣
Yi(θ)=yi

hi(yi)

=

∫ ∞

z=yi

{
1− g(θ)|Yi(θ)=z −

n∑
k=1

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂ρ

∣∣∣∣
Yi(θ)=z

}
dHi(z). (46b)

b) When the ith schedule is linear, i.e. for i = n′ + 1, ..., n:

ti + ηi
1− ti

∫
W

εui (θ) Yi(θ) dF (θ) +

∫
W

n∑
k=1,k ̸=i

(
T ′
k(Yk(θ)) + ηk

) ∂Y u
k (θ)

∂τi
dF (θ)

=

∫
W

[1− g(θ)]Yi(θ) dF (θ). (46c)

In the GE multipliers, the corrective term addressing the suboptimality of the tax system disappears in

(34), allowing (46a) to be obtained directly. This arises from the fact that according to (25) in Appendix

A.14, the price-replicating directions Rpj (·) are part of a schedular tax system. Consequently, an optimal

schedular tax system optimizes along all price-replicating directions, i.e. ∂L Rpj
/∂t = 0.

To grasp the economic intuitions behind (46b), consider a small increase in the ith marginal tax rate

around income yi and a uniform increase in tax liabilities for all taxpayers with their ith income above yi.

Given the other tax schedules, the tax schedule specific to the ith income is optimal only if these reforms

do not imply any first-order effects on the Lagrangian. In Equation (46b), the costs and gains resulting

from these reforms– which are detailed below– are equated.

As reflected in the first term on the left-hand side of (46b), an increase in the ith marginal tax rate

around yi implies direct compensated responses, ∂Yi(θ)/ ∂τi, of the ith income which is proportional

to the mean compensated elasticity εi of the ith income with respect to its own marginal net-of-tax

rate (as emphasized in Equation (45)). A first difference with the one income ABC tax formula is that all

behavioral responses have to be averaged across taxpayers who earn the same ith income yi. Composition

effects then take place (Jacquet and Lehmann, 2021). A second difference arises due to the GE price

adjustments. Under imperfect competition, the optimal tax formulas include a corrective term which

corresponds to the GE multipliers η1, ..., ηn given by (46a). Under perfect competition, these corrective

terms are nil, as in Saez (2001). A third difference occurs because a rise in the ith marginal tax rate

triggers (compensated) cross-base responses of all other tax bases ∂Yk(θ)/∂τi for k ∈ {1, ..., n} \ {i}

(see the second term on the left-hand side of (46b)). For example, taxpayers can report some of their ith

income as kth income, with k ̸= i, when the ith marginal tax rate rises (i.e. the ith marginal net of tax rate

τi declines), a phenomenon known as income shifting. The compensated increase in the kth income due

to income-shifting, i.e. ∂Yk(θ)/∂τi < 0, can partly offset the loss due to the compensated responses of

the ith income. Conversely, positive cross-base responses (∂Yk/∂τi > 0), as in the two-period framework

of Lefebvre et al. (2024), can exacerbate the loss due to compensated responses of the ith income.
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As usual, on the right-hand side of (46b), a rise in the tax liability above income yi implies mechanical

gains in terms of tax revenue and mechanical welfare losses that are emphasized by the aggregation of

1 − g(θ)|Yi(θ)=z for all z ≥ yi. It also creates income effects ∂yi(θ)/∂ρ on the right-hand side of

(46b). Again, compared to the one income optimal income tax formula, welfare weights and incomes

responses have first to be aggregated for all income earners with income above y. Second, if competition

is imperfect, income responses may be attenuated or exacerbated by GE price adjustments. Third, income

response matters for all income sources yk for k = 1, ..., n.

From (46c), we see that, when the tax schedule on the ith income is restricted to be linear, with no

restriction on the other tax schedules, similar intuitions than under nonlinear tax schedule apply. There

are however several particularities. First, under a linear tax schedule, income effects and compensated

effects can be combined and are equivalent to uncompensated responses, as can been verified using the

Slutsky Equation (A.6c) in Appendix A.3. Replacing the sum of income and compensated effects by

the uncompensated ones implies fewer terms in the right-hand side of (46c) compared to (46b). Sec-

ond, in the optimal linear tax formula (46c), integrals emphasize that means of sufficient statistics over

the whole population need to be estimated instead of means of sufficient statistics at each income level.

Third, as expected from the optimal linear tax formula (see e.g. Piketty and Saez (2013)), the mean of

welfare weights and uncompensated elasticities are income-weighted. Conversely, the mean of uncom-

pensated cross-base responses ∂Y u
k (θ)/∂τi for k ̸= i are not income-weighted since they are expressed

in derivatives rather than elasticities.

Finally, we provide an order of magnitude of how important GE effects are from a back-to-the en-

velope calculation. For this exercise, assume there are no cross-base or income responses and fix the

right-hand sides of (46b)-(46c). For simplicity, assume there is neither cross-base response nor income

responses and fix the right-hand sides of (46b)-(46c). Let T ′PE
i denote the optimal marginal tax rate

from the right-hand sides of (46b)-(46c), when the GE multipliers are erroneously ignored. The opti-

mal marginal tax rates that take into account GE price adjustments are related to T ′PE
i and to the GE

multipliers by:15

T ′
i = T ′PE

i − ηi (1− T ′PE
i )

For example, if T ′PE
i = 0, the optimal marginal tax rate is equal to minus the GE multipliers. In the

absence of a redistributive motive, the marginal tax rate deviates from zero only to correct for market

inefficiencies in a Pigou (1920) way. Marginal tax rates then vary one to one with the value of the GE

multiplier. However, if the redistributive motive is high enough (which implies larger T ′PE
i ), the effect

15Put differently T ′
i , T ′PE

i and ηi are related by:

T ′
i + ηi
1− T ′

i

=
T ′PE
i

1− T ′PE
i

where these ratios are equal to the right-hand side of (46b) or (46c).
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of the GE multiplier on the optimal marginal tax rate is of a smaller order of magnitude. To illustrate

this point, Table 2 shows that the higher the marginal tax rate at the PE (i.e. the higher the redistributive

motive) in the first column, the lower the effect of GE multiplier (in the top row) on optimal tax rates.

ηi
-0.10 -0.05 0 0.05 0.10

T ′,PE
i

20% 28% 24% 20% 16% 12%
40% 46% 43% 40% 37% 34%
60% 64% 62% 60% 58% 56%
80% 82% 81% 80% 79% 78%

Table 2: How much GE multipliers matter?

VI.2 Comprehensive tax systems

Building upon Haig (1921) and Simons (1938), we now turn our attention to comprehensive tax

schedules, wherein the tax function depends on the sum of all incomes, so-called comprehensive tax

base. Formally, the tax schedule takes the form

T (y) = T0 (y1 + ...+ yn)

where y0
def≡ y1 + ... + yn and Y0(θ) = Y1(θ) + ... + Yn(θ). We denote h0(·) the density of tax base

and H0(·) the associated CDF. Since marginal tax rate on all incomes is equal to T ′
0(y1 + ..., yn), the

compensated responses with respect to the marginal net of tax rate is given by:

∀i ∈ {0, ..., n} ∂Yi
∂τ0

=
n∑

j=1

∂Yi(θ)

∂τj
, (47)

the compensated elasticity of the comprehensive tax base is:

ε0(y0) =
1− T ′

0(y0)

y0

∑
1≤i,j≤n

∂Yi(θ)

∂τj

∣∣∣∣
Y0(θ)=y0

(48)

which is positive,16 and the income response of the comprehensive tax base are given by:

∂Y0(y0)

∂ρ
=

n∑
k=1

∂Yk(θ)

∂ρ

∣∣∣∣
Y0(θ)=y0

(49)

This elasticity depends on every compensated responses ∂Yi(θ)/∂τj to changes in every net-of-marginal

tax rate τj for i, j ∈ {1, ..., n}. The following proposition, which is proved in Appendix A.15, charac-

terizes the optimal comprehensive income tax schedule.

16Since the matrix
[
∂Yi(θ)
∂τj

]
i,j

is positive definite, the comprehensive tax base’s compensated elasticity is positive.
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Proposition 6. When the tax system is comprehensive, the GE multipliers η1, ..., ηn are given by (34) at

the optimum which has also to verify:

T ′
0(y0)

1− T ′
0(y0)

ε0(y0) y0 h0(y0) +
∑

1≤k≤n

ηk
∂Yk(θ)

∂τ0

∣∣∣∣
Y0(θ)=yi

h0(y0) (50)

=

∫ ∞

z=y0

{
1− g(θ)|Y0(θ)=z − T ′

0(z)
∂Y0(z)

∂ρ
−

n∑
k=1

ηk
∂Yk(θ)

∂ρ

∣∣∣∣
Y0(θ)=z

}
dH0(z).

This optimal income tax formula differs from the usual ABC formula since there are several types

of income and more importantly, by the presence of GE multipliers ηk. As shown in Appendix A.15,

under a comprehensive tax system, the price-replicating directions of tax reforms (given by (24) in the

appendix) do not belong to the set of comprehensive tax schedules. Hence the optimal comprehensive

tax function does not optimize along all price-replicating directions. This occurs since only the sum of all

incomes y0 determines tax liabilities. Hence the optimal tax system has to solve (45) for all k = 1, ..., n

together with (50) for all income levels.

To better understand how GE price adjustments affect the optimal comprehensive tax schedule, we

consider a simple economy with two production factors n = 2 and perfect competition. In this case, as

shown in Appendix A.15, the price-replicating directions simplify to Rp1(y1, y2) = (1−T ′
0(y1+y2)) y1

and Rp2(y1, y2) = (1 − T ′
0(y1 + y2)) y2. The optimal comprehensive tax system optimizes along all

comprehensive tax directions, including (1−T ′
0(y1+y2)) (y1+y2) = Rp1(y1, y2)+Rp2(y1, y2), but does

(generically) not optimize along Rp1 or Rp2 separately. Optimizing along (1−T ′
0(y1+ y2)) (y1+ y2) =

Rp1(y1, y2) + Rp2(y1, y2) leads to ∂L Rp1/∂µ + ∂L Rp2/∂µ = 0 by Gateaux differentiability of the

Lagrangian with respect to the tax reforms. Denoting σ the elasticity of substitution between the two

production factors, one obtains:

η1 = − 1

σ Y1

∂L Rp1

∂µ
, η2 = − 1

σ Y2

∂L Rp2

∂µ
. (51)

Therefore, these two GE multipliers have opposite signs. Let Yk(y0) denote the mean kth income earned

by taxpayers with comprehensive tax base y0. Define:

ε0k(y0)
def≡ 1− T ′

0(y0)

Yk(y0)

∂Yk(θ)

∂τ0

∣∣∣∣
Y0(θ)=y0

as the elasticity of the mean of the kth income, with respect to the net-of-marginal tax rate τ0 of the y0

tax base, among taxpayers earning y0. Fixing the right-hand side of (50), Equation (51) indicates that the

GE price adjustments affect the optimal marginal tax rate at y0 in proportion to:∑
1≤k≤n

ηk
∂Yk(θ)

∂τ0

∣∣∣∣
Y0(θ)=yi

=
1

σ (1− T ′
0(y0))

∂L Rp1

∂µ

[
Y2(y0)

Y2
ε02(y0)−

Y1(y0)

Y1
ε01(y0)

]
.

The impact of GE adjustments on the optimal marginal tax rates at taxable income y0 relies on the sign

of ∂L Rp1/∂µ which is the same across the taxable income distribution. Conversely, the term in square
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brackets may vary with taxable income. This term compares the two elasticities with respect to the net-

of-marginal tax rate scaled by the ratios of average kth income at taxable income y0 over aggregate kth

income Yk. In particular, if the two elasticities are identical, as is the case for instance in Rothschild and

Scheuer (2013) or in Sachs et al. (2020), then the impact of GE price adjustments on the optimal marginal

tax rates may be positive at low taxable income levels y0 and negative at high taxable income levels, as

in Figure 2 of Rothschild and Scheuer (2013) and Figure 4 of Sachs et al. (2020). In our framework, this

outcome occurs when ∂L Rp1/∂µ > 0 and if taxpayers with low (high) taxable income y0 earn relatively

more (less) income 2 and relatively less (more) income 1 than in the overall population.

We derive optimal tax formulas for two polar cases: a schedular tax schedule (Proposition 5) and

a comprehensive tax schedule (Proposition 6). In practice tax systems can also fall between these two

cases. For instance, a partial observability scenario may prevail where the tax authority observes only

the sum of m < n incomes y = y1 + ...+ ym, while separately observing the remaining income sources

ym+1, ..., yn. This situation can occur when the first m income sources correspond to different types

of labor (e.g., routine, manual, conceptual), while the remaining ones represent returns from various

forms of investment. Other intermediate cases can also be considered. In all such situations, optimal tax

formulas can be derived by combining the key determinants of the optimal schedular system (Proposition

5) with those of the optimal comprehensive system (Proposition 6).

VII Conclusion

A key takeaway from this paper is that the tax system deserves particular attention when assess-

ing the impact of changes in production policy. In multidimensional settings with market failures, we

identify the conditions under which production policies that increase aggregate output can be Pareto-

improving despite their negative distributional effects. When the tax system can be adjusted through

GE-neutralizing tax reforms, government intervention in the production sector is unnecessary.

Moreover, we provide formulas that quantify the impact of any tax and/or production policy reform

using standard empirical statistics, along with a key empirical measure for GE effects: the GE multipliers.

These GE multipliers highlight the importance of empirical research estimating mark-up, elasticities of

subsitution between inputs and the impact of regulation on prices. We then leverage the same statistics

to characterize optimal multidimensional, schedular, and comprehensive nonlinear tax systems.

Another key insight of this paper is the practical identification of Pareto-improving tax reforms and

Pareto-efficient tax systems, showing that this identification relies on the same condition than in PE.
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Online Appendix

A Proofs

A.1 Convexity of the Indifference Set

Let C (·,x;θ) denote the reciprocal of U (·,x;θ). Taxpayers of type θ who supply inputs x obtain
consumption c = C (u,x;θ) to enjoy utility u = U (c,x;θ). Using (1), we obtain:

Cu(u,x;θ) =
1

Uc (C (u,x;θ),x;θ)
Cxi(u,x;θ) = Si (C (u,x;θ),x;θ) (A.1)

For each type θ ∈ W and each utility level u, we assume that the indifference set x 7→ C (u, x1,...
, xn) is strictly convex. The ith partial derivative of x 7→ C (u, x1, ..., xn;θ) being Si(C (u, x1, .., xn;θ),
, x1, ..., xn;θ), the Hessian is matrix:

[
Si
xj

+ Si
cSj
]
i,j

=

[
−

Uxixj + SjUcxi + SiUcxj + SiSjUcc

Uc

]
i,j

Therefore, Matrix
[
Si
xj

+ Si
cSj
]
i,j

is positive definite if the indifference curves are strictly convex.

The first-order condition associated to (2) are given by:

0 = pi (1− Tyi(y)) Uc

(
n∑

i=1

pk xk − T (p1 x1, ..., pn xn) ,x;θ

)

+ Uxi

(
n∑

i=1

pk xk − T (p1 x1, ..., pn xn) ,x;θ

)
.

Therefore, using (3), the matrix of the second-order condition is:[
Uxixj + SjUcxi + SiUcxj + SiSjUcc − pi pj UcTyiyj

]
i,j

= −Uc

[
Si
xj

+ Si
cSj + pi pj Tyiyj

]
i,j

.

Hence, for taxpayers of type θ, the second-order condition holds strictly if and only if the matrix[
Si
xj

+ Si
cSj + pi pj Tyiyj

]
i,j

is positive definite, i.e. if and only if the indifference set x 7→ C (U(θ),x;θ)

is strictly more convex than the budget set x 7→
∑n

k=1 pk xk − T (p1 x1, ..., pn xn) at x = X(θ).

A.2 Assumptions for the Implicit Function Theorem

To apply the implicit function theorem to the first-order condition associated to the individual maxi-
mization program, we assume that:

(i) The initial tax schedule y 7→ T (y) is twice continuously differentiable.

(ii) The second-order condition associated to the individual maximization program (13) holds strictly,
i.e. the matrix

[
Si
xj

+ Si
cSj + pi pj Tyiyj

]
i,j

is positive definite at c = C(θ), x = X(θ) and at

y = Y(θ), for each type θ ∈ W ,

(iii) for each type θ ∈ W , program (13) admits a unique global maximum.
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Part (i) ensures that first-order conditions (3) are continuously differentiable in incomes y. It rules
out kinks in the tax function, thereby bunching.17 Parts (i) and (ii) together enable one to apply the
implicit function theorem to first-order conditions (3) to ensure that each local maximum of

x 7→ U

(
n∑

k=1

pk xk − T (p1 x1, ..., pn xn) + µ R(p1 x1, ..., pn xn), x1, ..., xn;θ

)

is differentiable in type θ, in price p and in the tax perturbation’s magnitude µ of tax reforms. Part (iii)
rules out the existence of multiple global maxima. This prevents any incremental tax reform from causing
a jump in the taxpayer’s choice from one maximum to another. Part (iii) also ensures the allocation
changes in a differentiable way with the magnitude of the tax reform and with types.

A.3 Proof of Equations (16a), (16b) and (16c)

The first-order conditions associated to (13) are ∀i ∈ {1, ..., n}:

Si

(
n∑

i=1

pi xi − T (p1 x1, ..., pn xn) + µ R(y),x;θ

)
= pi (1− Tyi(p1 x1, ..., pn xn) + µ Ryi(y)) (A.2)

Differentiating these first-order conditions at µ = 0 and using (A.2) leads to ∀i ∈ {1, ..., n}:

n∑
k=1

[
Si
xk

+ Si
c Sk + pi pk Tyiyk

]
dxk =

[
pi Ryi − Si

c R
]
dµ (A.3)

+
n∑

j=1

[
1i=j(1− Tyj )− pi xj Tyiyj − Si

c (1− Tyj ) xj
]
dpj .

Equation (A.3) can be rewritten in matrix form as:[
Si
xj

+ Si
cSj + pipjTyiyj

]
i,j

· dxT =
[
pi Ryi(Y(θ))− Si

c R(Y(θ))
]T
i
dµ (A.4)

+
[
(1− Tyj )

(
1i=j − xj Si

c

)
− pi xj Tyiyj

]
i,j

· dpT .

where superscript T denotes the transpose operator[Ai,j ]
T
i,j = [Aj,i]i,j and “·” denotes the matrix product.

Matrix
[
Si
xj

+ Si
cSj + pipjTyiyj

]
i,j

is the Hessian matrix associated to the maximization program (13).

It is therefore symmetric and semi-positive definite. Since the second-order condition associated to the
individual maximization program is assumed to hold strictly, matrix

[
Si
xj

+ Si
cSj + pi pj Tyiyj

]
i,j

is

positive definite, and is therefore invertible. Let Hi,j denote the term in the ith row and jth column of the
inverse of the Hessian matrix. We obtain by inverting (A.4):

dxi =
n∑

k=1

Hi,k

[
pk Ryk(Y(θ))− Sk

c R(Y(θ))
]
dµ (A.5)

+

n∑
j=1

{
n∑

k=1

Hi,k

[
(1− Tyj )

(
pj 1k=j − yj Sk

c

)
− pk yj Tykyj

]} dpj
pj

17In reality, most real world tax schedules are piecewise linear. Theoretically, one should observe bunching at convex
kinks and gaps at concave kinks. Empirically, most convex kinks do not cause significant bunching, with the exception of
the self-employed in the United States at the first kink point of the EITC (Saez, 2010). Moreover, no gap is observed at
concave kinks. These discrepancies between theoretical predictions and empirical evidence can be reconciled by assuming that
taxpayers do not optimize with respect to the exact tax schedule but with respect to some smooth approximation of it, e.g.
y 7→

∫
T (y + u) dΨ(u) where u is an n-dimensional random shock on incomes with joint CDF Ψ, which sastifies part i).
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Under a compensated tax reform of the jth marginal tax rate at income y = Y(θ) where R(y) =
yj − Yj(θ), one has R(Y(θ)) = 0 and Ryk(Y(θ)) = 1k=j . Hence, according to (A.5) compensated
responses are given by:

∂Xi(θ)

∂τj
= pj Hi,j ,

∂Yi(θ)

∂τj
= pi pj Hi,j (A.6a)

with ∂Yi(θ)
∂τj

=
∂Yj(θ)
∂τi

since the Hessian matrix is symmetric.
Under a lump-sum tax reform where R(y) = 1, one has R(Y(θ)) = 1 and Ryk(Y(θ)) = 0. Hence,

according to (A.5), income effects are given by:

∂Xi(θ)

∂ρ
= −

n∑
k=1

Hi,k Sk
c ,

∂Yi(θ)

∂ρ
= −pi

n∑
k=1

Hi,k Sk
c . (A.6b)

Under an uncompensated tax reform of the jth marginal tax rate at income y = Y(θ) where R(y) =
yj , one has R(Y(θ)) = Yj(θ) and Ryk(Y(θ)) = 1k=j . Hence, according to (A.5) uncompensated
responses are given by the Slutsky equations:

∂Xu
i (θ)

∂τj
=

∂Xi(θ)

∂τj
+ Yj(θ)

∂Xi(θ)

∂ρ
,

∂Y u
i (θ)

∂τj
=

∂Yi(θ)

∂τj
+ Yj(θ)

∂Yi(θ)

∂ρ
(A.6c)

From (A.5), the input supply responses to log-price changes can be written as:

∂Xi(θ)

∂log pj
=

n∑
k=1

Hi,k

[
(1− Tyj )

(
pj 1k=j − yj Sk

c

)
− pk yj Tykyj

]
(A.6d)

At the GE, the prices µ 7→ (pR1 (µ), . . . , p
R
n (µ)) are affected by any tax or production policy reform

of magnitude µ. Therefore, substituting dpj =
(
∂p

R(·),α(·)
j /∂µ

)
dµ into (A.5) results in the following

taxpayer responses:

∂X
R(·),α(·)
i (θ, µ)

∂µ
=

n∑
k=1

Hi,k

[
pk Ryk(Y(θ), 0)− Sk

c R(Y(θ), 0)
]

+

n∑
j=1

{
n∑

k=1

Hi,k

[
(1− Tyj )

(
pj 1k=j − yj Sk

c

)
− pk yj Tykyj

]} ∂log p
R(·),α(·)
j

∂µ
.

Using (A.6a), (A.6b) and (A.6d), we obtain:

∂X
R(·),α(·)
i (θ, µ)

∂µ
=

n∑
k=1

∂Xi(θ)

∂τk
Ryk(Y(θ)) +

∂Xi(θ)

∂ρ
R(Y(θ)) +

n∑
j=1

∂Xi(θ;p)

∂log pj

∂log pRj
∂µ

(A.7)

which, eventually, leads to (16a), (16b) and (16c).

A.4 Proof of Proposition 1

We take dµ = dpj/pj . According to (17), we get that for any k ̸= j, Rpj
yk(Y(θ)) = −yj Tykyj , so:[

pk R
pj
yk(Y(θ))− Sk

c R(Y(θ))
]
dµ =

[
−(1− Tyj )xj Sj

c − pk xj Tykyj
]
dpj .

Moreover, we get from (17) that Rpj
yj (Y(θ)) = 1− Tyj − yj Tyjyj , so:[

pk R
pj
yj (Y(θ))− Sj

c R(Y(θ))
]
dµ =

[
1− Tyj − (1− Tyj )xj Sj

c − pk xj Tykyj
]
dpj

3



Therefore, Equation (A.5) ensures that

∀i ∈ {1, ..., n}, ∀j ∈ {1, ..., n} :
∂XRpj ,PE

i (θ;µ,p)

∂µ
=

∂Xi(θ;p)

∂log pj
.

Finally, we directly obtain the equality:

∂URpj ,PE(θ;µ,p)

∂µ
=

∂U(θ;p)

∂log pj
.

by plugging Equation (17) into Equation (15).

A.5 Proof of Lemma 1

Let ∂logXR(·),α(·)/∂µ
def≡ (∂ logXR(·),α(·)

1 /∂µ, ..., ∂ logXR(·),α(·)
n /∂µ)T denote the column vec-

tor of input supply’s aggregate responses at GE and let ∂log pR(·),α(·)/∂µ
def≡ (∂ log p

R(·),α(·)
1 /∂µ, ...,

∂ log p
R(·),α(·)
n /∂µ)T denote the column vector of input price responses at GE. Summing (16a) over all

types and using (20b) leads to the supply responses equation:

∂logXR(·),α(·)

∂µ
= Γ · ∂log pR(·),α(·)

∂µ
+

∂logXR(·),PE

∂µ
(A.8)

The demand response equation si therefore given by:

∂log pR(·),α(·)

∂µ
= Ξ · ∂logXR(·),α(·)

∂µ
+

∂logPα(·)

∂µ
(A.9)

where ∂logPα(·)/∂µ
def≡ (∂ logP

α(·)
1 /∂µ, ..., ∂ logP

α(·)
n /∂µ)T denote the column vector of log-

derivatives of inverse demands with respect to production policy reforms, holding input supplies fixed.
Plugging (A.8) into (A.9) leads to:

∂log pR(·),α(·)

∂µ
= Ξ · Γ · ∂log pR(·),α(·)

∂µ
+ Ξ · ∂logXR(·),PE

∂µ
+

∂logPα(·)

∂µ
,

which eventually leads to (22), whenever Matrix In − Ξ · Γ is invertible.

A.6 Examples of primitives that satisfy Assumption 3

Assumption 3 specifies that the production policy reform α(·) considered does not affect the ratio of
prices between inputs j = 1, ...,m. This is satisfied when the inverse demand elasticities take a weakly
separable form, as in:

∀j ∈ {1, ...m} : Pj (X1, ...,Xn;α) = Qj (X1, ...,Xm) Pȳ (A (X1, ...,Xm) ,Xm+1, ...,Xn;α)

∀j ∈ {m+ 1, ...n} : Pj (X1, ...,Xn;α) = Pj (A (X1, ...,Xm) ,Xm+1, ...,Xn;α) . (A.10)

In this case, the price ratio pi/pj for 1 ≤ i, j ≤ m depends neither on the other inputs Xm+1, ...,Xn nor
on production policies α:

∀i, j ∈ {1, ...,m} :
pi
pj

=
Qi (X1, ...,Xm)

Qj (X1, ...,Xm)
.

Equations (A.10) are for instance verified in the case of perfect competition and a weakly separable
production function of the form:

F (X1, ...,Xn;α) = F (A (X1, ...,Xm) ,Xm+1, ...,Xn;α) .

We note that the above restrictions on the demand elasticities are only one relevant possibility for satis-
fying Assumption 3, as one only needs that the considered production policy reform does not modify the
ratio of prices between different inputs j = 1, ...,m.
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A.7 Proof of Lemmas 2, 3 and 4

We first consider the general case with a tax reform in the direction R(·) combined with a production
policy reform in the direction α(·), as considered in Lemma 4. We then adapt the proof of Lemma 4 to
the specific cases considered in Lemmas 2 and 3.

According to (16a), (16c) and (16d), combining a production policy reform in the direction α(·) with

a tax reform in the direction RN (·) def≡ R(·)−
∑n

j=1 γ
R(·),α(·)
j Rpj (·) defined in (38a), impacts taxpayers’

supplies and utilities though, ∀θ ∈ Θ:

∀i ∈ {1, ..., n} :
∂X

R(·),α(·)
i (θ;µ)

∂µ
=

∂X
R(·),PE
i (θ;µ,p)

∂µ
−

n∑
j=1

∂X
Rpj (·),PE
i (θ;µ,p)

∂µ
γ
R(·),α(·)
j

+

n∑
j=1

∂Xi(θ;p)

∂log pj

∂log p
RN (·),α(·)
j

∂µ
.

and :
∂UR(·),α(·)(θ;µ)

∂µ
=

∂UR(·),PE(θ;µ,p)

∂µ
−

n∑
j=1

∂URpj (·),PE(θ;µ,p)

∂µ
γ
R(·),α(·)
j

+

n∑
j=1

∂U(θ;p)

∂log pj

∂log p
RN (·),α(·)
j

∂µ
.

According to Proposition 1, if:

∀j ∈ {1, ..., n} : γ
R(·),α(·)
j =

∂log p
RN (·),α(·)
j

∂µ
(A.11)

we get that:

∀i ∈ {1, ..., n} :
∂X

R(·),α(·)
i (θ;µ)

∂µ
=

∂X
R(·),PE
i (θ;µ,p)

∂µ
.

and :
∂UR(·),α(·)(θ;µ)

∂µ
=

∂UR(·),PE(θ;µ,p)

∂µ
.

i.e. the combination of the production policy reform in the direction α(·) with a tax reform in the
direction RN (·) have the same effects on taxpayers’ input supplies and utility levels at the GE as does a
tax reform in the direction R(·) at the PE.

Let γR(·),α(·) = (γ
R(·),α(·)
1 , ..., γ

R(·),α(·)
n )T . Using (22) in Lemma 1, Condition (A.11) can be rewrit-

ten in matrix form as:

(In − Ξ · Γ) · γR(·),α(·) = Ξ · ∂logXRN (·),PE

∂µ
+

∂logPα(·)

∂µ

= Ξ · ∂logXR(·),PE

∂µ
Ξ · Γ · γR(·),α(·) +

∂logPα(·)

∂µ

= Ξ · ∂logYR(·),PE

∂µ
− Ξ · Γ · γR(·),α(·) +

∂logPα(·)

∂µ

where the second equality holds because of Equation (20b) and Proposition 1 and the third equality holds
because ∂ logXR(·),PE/∂µ = ∂ logYR(·),PE/∂µ according to (23). Rearranging terms leads to:

γR(·),α(·) = Ξ · ∂logYR(·),PE

∂µ
+

∂logPα(·)

∂µ
. (A.12)

which corresponds to Equation (38b), thereby ending the Proof of Lemma 4.
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In the absence of an initial tax reform (i.e. when R(·) ≡ 0), Equation (A.12) leads to (29b), thereby
ending the Proof of Lemma 2.

Finally, under Assumption 3, a production policy reform does not change the price ratio between
the m first inputs. This implies that ∂log(Pj/Pk)/∂αℓ = 0 for all ℓ ∈ {1, ..., L} and all (j, k) ∈
{1, ...,m}. Since for all (j, k) ∈ {1, ...,m}, one has ∂log(Pj/Pk)/∂αℓ = ∂logPj/∂αℓ−∂logPk/∂αℓ,
Assumption 3 implies:

∀ℓ ∈ {1, ..., L} :
∂logP1

∂αℓ
= ... =

∂logPm

∂αℓ

def≡ ∂logPy

∂αℓ
. (A.13)

Under Assumption 2, the government cannot reform the tax system in the price replicating directions
Rp1(·), ..., Rpm(·), but can reform the tax system in the price replicating directions Rpm+1(·), ..., Rpn(·)
and Ry(·). But Equation (A.13) implies that the GE-neutralizing reform RN (·) given by (29a) and (29b)
can be re-expressed solely in terms of available price replicating directions Rpm+1(·), ..., Rpn(·) and
Ry(·) since:

RN (·) = −
n∑

j=1

(
L∑

ℓ=1

∂logPj

∂αℓ
α′
ℓ(0)

)
Rpj (·)

= −

(
L∑

ℓ=1

∂logPj

∂αℓ
α′
ℓ(0)

)
m∑
j=1

Rpj (·)−
n∑

j=m+1

(
L∑

ℓ=1

∂logPj

∂αℓ
α′
ℓ(0)

)
Rpj (·)

According to (27), since the tax system depends on y1, ..., ym only though y = y1 + ...+ ym according
to Assumption 2, one has that Ry(·) =

∑m
j=1R

pj (·), so the GE-neutralizing reform can be expressed
solely in terms of available price replicating directions Rpm+1(·), ..., Rpn(·) and Ry(·):

RN (·) = −
L∑

ℓ=1

α′
ℓ(0)

∂logPȳ

∂αℓ
Rȳ(y)−

n∑
j=m+1

L∑
ℓ=1

α′
ℓ(0)

∂logPj

∂αℓ
Rpj (y), (A.14)

which ends the Proof of Lemma 3.

A.8 Proof of Theorems 1 and 2

According to (9) and T (Y(θ)) =
∑n

i=1 pi Xi(θ)− C(θ), one gets that tax revenue are equal to:

B =

n∑
i=1

pi Xi(θ)−
∫
Θ
C(θ) dF (θ). (A.15)

Under Assumption 1, Lemma 2 ensures that combining a production policy reform α(·) with the
associated neutralizing tax reform RN (·) defined in (29a) and (29b) changes neither taxpayers’ input
supplies X(θ), nor their consumption levels C(θ). Lemma 3 ensures the same result holds under As-
sumptions 2 and 3. Therefore, combining a production policy reform α(·) with the neutralizing tax
reform RN (·) affects the Lagrangian only through tax revenue by:

∂L RN (·),α(·)

∂µ
=

∂BRN (·),α(·)

∂µ
=

n∑
i=1

Xi
∂p

RN (·),α(·)
i

∂µ
=

n∑
i=1

Yi
∂logP

α(·)
i

∂µ

where we used (29b) and (A.11). Using (7) and (21) yields:

∂L RN (·),α(·)

∂µ
=

∂BRN (·),α(·)

∂µ
=

L∑
ℓ=1

Fαℓ
α′
ℓ(0). (A.16)

Therefore, a production policy reform α(·) with the associated neutralizing tax reform does not af-
fect any taxpayer’s utility levels but do increases tax revenue if it is production-enhancing, i.e. if∑L

ℓ=1Fαℓ
α′
ℓ(0) > 0.
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A.9 Proof of Theorems 3 and 4

Theorem 3 is a particular case of Theorem 4 where the initial tax reform is R(·) ≡ 0. We therefore
directly prove Theorem 4, by considering the effect on Lagrangian of combining a tax reform in the
direction R(·) with a production policy reform in the direction α(·).

According to Equations (9)-(11), we get that:

∂L R(·),α(·)

∂µ
=

∫
Θ

{
R(Y(θ)) +

n∑
i=1

Tyi(Y(θ))
∂Y

R(·),α(·)
i (θ)

∂µ
+

1

λ

∂Φ
(
UR(·),α(·)(θ);θ

)
∂µ

}
dF (θ)

Using (16b) and (16d) leads to:

∂L R(·),α(·)

∂µ
=

∫
Θ

{
−(1− g(θ)) R(Y(θ)) +

n∑
i=1

Tyi(Y(θ))
∂Yi(θ)

R(·),PE

∂µ

}
dF (θ) (A.17)

+
n∑

j=1

∂log p
R(·),α(·)
j

∂µ

∫
Θ

{
n∑

i=1

Tyi(Y(θ))
∂Yi(θ)

∂log pj
+
(
1− Tyj (Y(θ))

)
Yj(θ) g(θ)

}
dF (θ)

The first row in the right-hand side of (A.17) corresponds to the PE effects on the Lagrangian.18

∂L R(·),PE

∂µ

def≡
∫
Θ

{
−(1− g(θ)) R(Y(θ)) +

n∑
i=1

Tyi(Y(θ))
∂Yi(θ)

R(·),PE

∂µ

}
dF (θ) (A.18)

Moreover, as the term in factor of ∂log pR(·),α(·)
j /∂µ does not depend on tax reform and since the

partial derivatives ∂log Y
R(·),α(·)
i (θ)/∂µ and ∂log p

R(·),α(·)
j /∂µ are linear in the direction of tax and

production policy reforms according to (16a)-(16d) and (22), so does ∂L R(·),α(·)/∂µ. We then consider
the direction of tax reform RN (·) defined by (38a) and (38b). We thus get that:

∂L R(·),α(·)

∂µ
=

∂L RN (·),α(·)

∂µ
+

n∑
j=1

∂L Rpj (·)

∂µ
γ
R(·),α(·)
j (A.19)

Moreover, According to Lemma 4, The combination of a tax reform in the direction RN (·) defined by
RN (·) defined by (38a) and (38b) have the same effects on taxpayers’ input supplies and utility at the
GE as does a tax reform in the direction R(·) at the PE. According to (A.15), the GE effects on the
Lagrangian of the combination of the tax reform in the direction RN (·) and of the production policy
reform in the direction α(·) therefore differs from the PE effects on the Lagrangian of a tax reform in the
direction solely by the effects of price changes at the GE holding factor supplies fixed, i.e.:

∂L RN (·),α(·)

∂µ
=

∂L R(·),PE

∂µ
+

n∑
j=1

Yj

∂log p
R(·),α(·)
j

∂µ
. (A.20)

Combining (A.11), (A.19) and (A.20) leads to:

∂L R(·),α(·)

∂µ
=

∂L R(·),PE

∂µ
+

n∑
j=1

(
Yj +

∂L Rpj (·)

∂µ

)
∂log p

R(·),α(·)
j

∂µ
. (A.21)

Plugging (38b) and (A.18) into (A.21) leads to:

∂L R(·),α(·)

∂µ
=

∫
Θ

{
−(1− g(θ)) R(Y(θ)) +

n∑
i=1

Tyi(Y(θ))
∂Yi(θ)

R(·),PE

∂µ

}
dF (θ)

+

n∑
j=1

(
Yj +

∂L Rpj (·)

∂µ

)
n∑

i=1

Ξj,i

Yi

∂YR(·),PE
i

∂µ
+

n∑
j=1

(
Yj +

∂L Rpj (·)

∂µ

)
L∑

ℓ=1

∂logPj

∂αℓ
α′
ℓ(0)

18Recall that production policies affects taxpayers only through change in prices, they have therefore zero impact on the
Lagrangian at the PE.
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Rearranging terms yields:

∂L R(·),α(·)

∂µ
=

∫
Θ

{
−(1− g(θ)) R(Y(θ)) +

n∑
i=1

Tyi(Y(θ))
∂Yi(θ)

R(·),PE

∂µ

}
dF (θ) (A.22)

+

n∑
i=1

 n∑
j=1

Yj
Ξj,i

Yi
+

n∑
j=1

∂L Rpj (·)

∂µ

Ξj,i

Yi

 ∂YR(·),PE
i

∂µ

+

L∑
ℓ=1

n∑
j=1

Yj
∂logPj

∂αℓ
α′
ℓ(0) +

L∑
ℓ=1

n∑
j=1

∂L Rpj (·)

∂µ

∂logPj

∂αℓ
α′
ℓ(0)

Differentiating both sides of (5) with respect to Xi implies:

FXi = pi +

n∑
j=1

Xj
∂Pj

∂Xi
= pi +

n∑
j=1

Yj
∂logPj

∂Xi

Using that ∂logPj/∂Xi = (pi/Yi) Ξj,i according to (20a), we get that

n∑
j=1

Yj
Ξj,i

Yi
=

FXi − pi
pi

Plugging the latter equality and (7) into Equation (A.22), we obtain:

∂L R(·),α(·)

∂µ
=

∫
Θ

{
−(1− g(θ)) R(Y(θ)) +

n∑
i=1

Tyi(Y(θ))
∂Yi(θ)

R(·),PE

∂µ

}
dF (θ) (A.23)

+

n∑
i=1

FXi − pi
pi

+

n∑
j=1

∂L Rpj (·)

∂µ

Ξj,i

Yi

 ∂YR(·),PE
i

∂µ

+

L∑
ℓ=1

Fαℓ
α′
ℓ(0) +

L∑
ℓ=1

n∑
j=1

∂L Rpj (·)

∂µ

∂logPj

∂αℓ
α′
ℓ(0)

Using the definition of GE multipliers ηi in Equation (34) finally leads to (40), which ends the Proof of
Theorem 4.

A.10 Proof of Equation (37)

According to (17) and (27), one has that ∀y : Ry =
∑n

j=1R
pj (y) which implies that:

∂L Ry(·)

∂µ
=

m∑
j=1

∂L Rpj (·)

∂µ

When

∂L Ry(·)

∂µ
=

m∑
j=1

∂L Rpj (·)

∂µ
= 0 and ∀j ∈ {m+ 1, ..., n} :

∂L Rpj (·)

∂µ
= 0,

Equation (34) simplifies to:

ηi =
FXi − pi

pi
+

m∑
j=1

∂L Rpj (·)

∂µ

Ξj,i

Yi

According to (36a), inverse demand elasticities Ξj,i have to verify

∀i ∈ {m+ 1, ..., n}, ∀j ∈ {1, ...,m} : Ξj,i =
Xi

P
∂P
∂Xi
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Hence, we get:

ηi =
FXi − pi

pi
+

 m∑
j=1

∂L Rpj (·)

∂µ

 1

pi P
∂P
∂Xi

which finally leads to (37) whenever the tax system is also optimized over the price replicating direction
Ry(·), i.e. when:

0 =
∂L Ry(·)

∂µ
=

m∑
j=1

∂L Rpj (·)

∂µ

A.11 Proof of Proposition 3

Rewriting Equation (40) in terms of income y rather than type θ and when there is no production
policy reform yields:

∂L R(·)

∂t
=

∫
WY

{
−

[
1− ĝ(y)−

n∑
i=1

(Tyi(y) + µi)
∂Ŷi(y)

∂ρ

]
R(y)

+
∑

1≤i,j≤n

(Tyi(y) + ηi)
∂Ŷi(y)

∂τj
Ryj (y))

h(y)dy.

Using the divergence theorem on the term of the second line and rearranging, we obtain:

∂L R(·)

∂µ
=

∮
∂WY

∑
1≤i,j≤n

(Tyi(y) + ηi)
∂Ŷi(y)

∂τj
h(y)ϕj(y)R(y)dσ(y)

−
∫
WY

{[
1− ĝ(y)−

n∑
i=1

(Tyi(y) + ηi)
∂Ŷi(y)

∂ρ

]
h(y)

+

n∑
j=1

∂[
∑n

i=1 (Tyi(y) + ηi)h(y)]

∂yj

R(y) dy.

where dσ(y) is the corresponding measure of a surface integral (denoted by
∮

). If the tax system y 7→
T (y) is optimal, the latest equation has to be equal to zero for all possible directions R(·). This is only
possible if both equations given in Proposition 3 are satisfied.

At this optimum, one must have ∂L Rpj (·)/∂t = 0 for all j ∈ {1, ..., n}. This implies that Equation
(34) reduces to η1, ..., ηn = 0 under perfect competition. Revealed welfare weights g̃(y) solve Equation
(41) with η1, ..., ηn = 0 for ĝ(y) for the current tax schedule, which leads to (43).

A.12 Proof of Theorem 5

From the definition of revealed welfare weights, we get that for any direction R(·): ∂L R(µ)/∂t = 0.
Moreover, since η1 = ... = ηn = 0, we have that for any direction R(·): ∂L R(µ)/∂t = ∂L R,PE(µ)/∂t =
0 from (34) and (A.23). Therefore, using ∂L R,PE(µ)/∂t = ∂BR,PE(µ)/∂t + (1/λ)∂W R,PE(µ)/∂t
and Equation (16d) implies:

∂BR,PE(µ)

∂t
= −

∫
WY

ĝ(y) R(y) h(y)dy. (A.24)

Therefore, a tax reform with a small positive magnitude µ and a direction R(·) such that R(y) = 0 if
g̃(y) ≥ 0 and R(y) ≥ 0 if g̃(y) < 0 increases tax revenue at the PE. According to (16d), such a reform
also increases at the PE the welfare of taxpayers for which R(Y(θ)) > 0 and leave the welfare of the
others unchanged. It is therefore a Pareto-improving tax reform at the PE.
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According to Lemma 4, a reform with a small positive t in the direction RN (·) defined in (38a) and
(38b) has the same effects at the GE on taxpayers’ utility U(θ) and factor supplies X(θ) as a reform in
the direction R(·) and the same magnitude t at the PE. Since tax revenues are equal to:

∑n
j=1 pj Xj −∫

W C (U(θ),X(θ);θ) dF (θ), if a tax reform with a small positive magnitude t and a direction R(·) is
Pareto-improving at the PE, which is the case when some revealed welfare are negative and the direction
R(·) verifies that , a reform with a small positive magnitude µ and the direction RN (·) defined by (38a)
and (38b) is Pareto-improving if

∑
j Xj ∂p

RN
/∂t ≥ 0. From (5) we get:

F
(
XR,PE
1 (µ), ...,XR,PE

n (µ)
)
=

n∑
j=1

pRj (µ) X
R,PE
j (µ)

Differentiating both sides with respect to t and using (6) leads to:
∑

j Xj ∂pR
N
/∂t = 0. Hence, If a

reform with a small positive magnitude µ and a direction R(·) is Pareto-improving at the PE, then, under
perfect competition, a reform with a small positive magnitude t and the direction RN (·) defined by (38a)
and (38b) is Pareto-improving at the GE.

A.13 Proof of Proposition 4

We consider the case where revealed welfare weights ĝ(y) > 0 are almost everywhere positive. We
first notice that, according to Lemma 4, under perfect competition, there exists a direction RN (·) such
that reforms with positive µ in the direction RN (·) are Pareto-improving at the GE if and only if there
exists a direction R(·) such that reforms with positive t in the direction RN (·) are Pareto-improving at
the PE, where R(·) and RN (·) are related by (38a) and (38b)

Assuming, by contradiction, that there exists a direction of tax reform denoted RN (·) such that a
reform in the direction RN (·) and a small positive magnitude µ is Pareto-improving at the GE. According
to Lemma 4, this implies the existence of a direction of tax reform denoted R(·), such that a reform with
this direction and a positive µ is Pareto-improving at the PE. According to (16d), since a reform in the
direction R(·) improves taxpayer’s welfare at the PE, one must have R(Y(θ)) ≥ 0 for all θ ∈ W with a
strict inequality for some types. However, according to (A.24), such a reform decreases tax revenues at
the PE, leading to a contradiction for a Pareto-improving direction of tax reforms at the PE.

A.14 Proof of Proposition 5

When the tax system is schedular and linear for i = n′ + 1, ..., n, we get that:

T (y) =
n′∑
i=1

Ti(yi) +
n∑

i=n′+1

ti yi (A.25)

the admissible directions of tax reforms must also be schedular, i.e. they must depend only on one type
of income and take the form y 7→ Ri(yi). Moreover for i = n′ + 1, ..., n the directions specific to the
ith income must be linear.

Under Equation (A.25), according to (17) the price-replicating directions are given by Rj(y) =
(1 − T ′(yj))yj for j = 1, ..., n′ and by Rj(y) = (1 − tj)yj for j = n′ + 1, ..., n. Perturbing the tax
system along the GE-replicating directions thus keeps the tax system being schedular and also linear for
i = n′ + 1, ..., n. Therefore, one has ∂L Rj

/∂t = 0 for all j = 1, ..., n, so, according to (34), the GE
multipliers are given by (46a).

Let Ri(yi) be any direction of a tax reform specific to the ith income. Because the tax schedule is
schedular, Equation (40), stating the impact on the Lagrangian of a tax reform at the GE, simplifies to:
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∂L Ri(·)

∂µ
=

∫
W

{
−

[
1− g(θ)−

n∑
k=1

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂ρ

]
Ri(Yi(θ))

+

n∑
1=k

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂τi

R′
i(Yi(θ))

}
dF (θ). (A.26)

since ∂Ri(yi)/∂yj = 0 whenever j ̸= i under a schedular direction of tax reform. Rewritten in terms of
the distribution of the ith income leads to:

∂L Ri(·)

∂µ
=

∫
R+

{
−

[
1− g(θ)|Yi(θ)=yi

−
n∑

k=1

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂ρ

∣∣∣∣
Yi(θ)=yi

]
Ri(yi)

+
n∑

1=k

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂τi

∣∣∣∣
Yi(θ)=yi

R′
i(yi)

}
hi(yi)dyi.

Integrating by parts the first term and rearranging terms using (45) leads to:

∂L Ri(·)

∂µ
=

∫
R+

{
−
∫ ∞

z=yi

[
1− g(θ)|Yi(θ)=z −

n∑
k=1

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂ρ

∣∣∣∣
Yi(θ)=z

]
dHi(z)

+
T ′
i (yi) + ηi
1− T ′

i (yi)
εi(yi) yi hi(yi) +

∑
1≤k≤n,k ̸=i

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂τi

∣∣∣∣
Yi(θ)=yi

hi(yi)

R′(yi)dyi.

− lim
yi 7→∞

{∫ ∞

z=yi

[
1− g(θ)|Yi(θ)=z −

n∑
k=1

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂ρ

∣∣∣∣
Yi(θ)=z

]
dHi(z) Ri(yi)

}

+ lim
yi 7→0

{∫ ∞

z=yi

[
1− g(θ)|Yi(θ)=z −

n∑
k=1

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂ρ

∣∣∣∣
Yi(θ)=z

]
dHi(z) Ri(yi)

}

For i = 1, ..., n′, the income specific tax schedule Ti(·) being nonlinear, the above equation must be
equal to zero for any non linear direction Ri, which implies (46b).

For i = n′ + 1, ..., n, the ith income specific tax schedule has to be linear, so the only admissible
directions of tax reforms specific to the ith income are proportional to Ri(yi) = yi. Equation (A.26) then
simplifies to:

∂L Ri(·)

∂µ
=

∫
W

{
−

[
1− g(θ)−

n∑
k=1

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂ρ

]
Yi(θ)

+
n∑

1=k

(
T ′
k(Yk(θ)) + ηk

) ∂Yk(θ)
∂τi

}
dF (θ).

Using (A.6c), the preceding equation simplifies to:

∂L Ri(·)

∂µ
=

∫
W

{
− [1− g(θ)]Yi(θ) +

n∑
1=k

(
T ′
k(Yk(θ)) + ηk

) ∂Y u
k (θ)

∂τi

}
dF (θ).

Using (45), the condition ∂L yi/∂t = 0 leads to (46c).
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A.15 Proof of Proposition 6

When the tax schedule is comprehensive, admissible directions of tax reforms take the form y 7→
R(y1 + ...+ yn). Consequently, Equation (40) simplifies to:

∂L R(·)

∂µ
=

∫
W

{
−

[
1− g(θ)−

n∑
k=1

(
T ′
0(Y0(θ)) + ηk

) ∂Yi(θ)
∂ρ

]
R(Y0(θ))

+
∑

1≤j,k≤n

(
T ′
0(Y0(θ)) + ηk

) ∂Yk(θ)
∂τj

R′(Y0(θ))

dF (θ).

Rewriting this expression in terms of the density h0(·) and CDF H0(·) of the taxable income, the last
equation becomes:

∂L R(·)

∂µ
=

∫
R+

{
−

[
1− g(θ)|Y0(θ)=y0

−
n∑

k=1

(
T ′
0(y0) + ηk

) ∂Yk(θ)

∂ρ

∣∣∣∣
Y0(θ)=y0

]
R(y0)

+
∑

1≤j,k≤n

(
T ′
0(y0) + ηk

) ∂Yk(θ)

∂τj

∣∣∣∣
Y0(θ)=y0

R′(y0)

h0(y0)dy0.

Using (47)-(49) leads to:

∂L R(·)

∂µ
=

∫
R+

{
−

[
1− g(θ)|Y0(θ)=y0

− T ′
0(y0)

∂Y0(y0)

∂ρ
−

n∑
k=1

ηk
∂Yk(θ)

∂ρ

∣∣∣∣
Y0(θ)=y0

]
R(y0)

+
T ′
0(y0)

1− T ′
0(y0)

ε0(y0) y0 R
′(y0) +

n∑
k=1

ηk
∂Yk(θ)

∂τ0

∣∣∣∣
Y0(θ)=y0

R′(y0)

}
h0(y0)dy0.

Integrating by parts the first line yields:

∂L R(·)

∂µ

=

∫
R+

{
−
∫ ∞

z=y0

[
1− g(θ)|Y0(θ)=z − T ′

0(y0)
∂Y0(y0)

∂ρ
−

n∑
k=1

ηk
∂Yk(θ)

∂ρ

∣∣∣∣
Y0(θ)=z

]
dH0(y0)

+
T ′
0(y0)

1− T ′
0(y0)

ε0(y0) y0 h0(y0) +

n∑
k=1

ηk
∂Yk(θ)

∂τ0

∣∣∣∣
Y0(θ)=y0

h0(y0)

}
R′(y0)dy0

− lim
y 7→∞

∫ ∞

z=y0

[
1− g(θ)|Y0(θ)=z − T ′

0(y0)
∂Y0(y0)

∂ρ
−

n∑
k=1

ηk
∂Yk(θ)

∂ρ

∣∣∣∣
Y0(θ)=z

]
dH0(y0) R(y0)

+ lim
y 7→0

∫ ∞

z=y0

[
1− g(θ)|Y0(θ)=z − T ′

0(y0)
∂Y0(y0)

∂ρ
−

n∑
k=1

ηk
∂Yk(θ)

∂ρ

∣∣∣∣
Y0(θ)=z

]
dH0(y0) R(y0)

At the optimal comprehensive tax schedule, one mus have ∂L R/∂t = 0 for all directions, which implies
Equation (50).

If there are only two production factors and if the elasticity of substitution between these two factors
is denoted σ, one gets:

dp1
p1

− dp2
p2

=
1

σ

(
dX2

X2
− dX1

X1

)
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Under perfect competition, and denoting αi = Yi/ (Y1 + Y2) the ith income share, the differentiation of
both sides of (5) lead to:

0 = α1
dp1
p1

+ α2
dp2
p2

⇒ dp1
p1

− dp2
p2

=
1

α2

dp1
p1

= − 1

α1

dp2
p2

Combining the two latter equations leads to:

Ξ =

(
−α2

σ
α2
σ

α1
σ −α1

σ

)
Under perfect competition, the GE multipliers are given by Equation (35), which leads to:

η1 =
−∂L R1

∂t
α2 +

∂L R2

∂t
α1

σ Y1
and : η1 =

∂L R1

∂t
α2 −

∂L R2

∂t
α1

σ Y2

Using ∂L R1
/∂t+ ∂L R2

/∂t = 0 eventually yields (51).

B Micro-founded Examples

In the core of the paper, we derive all our results using only the inverse demand functions Pi(·)
to describe the production sector. Relying on these reduced-forms allows us to demonstrate all our
results and to show these results are robust to change in the underlying micro-foundations. However, this
simplicity hides the large set of problems that can be described by these reduced-forms. We now discuss
how our reduced-form description of the production sector is consistent with various micro-founded
applications that have been discussed in the literature.

In the following subsections, we provide micro-foundations for several examples (competition pol-
icy, the taxation of intermediate goods, public sector pricing rules, commodity taxation, trade policies,
and the effects of business-oriented environmental regulations). To ease their presentation, we con-
sider many intermediate goods and sectors and adopt the following notations. There are one final
good and S intermediate goods therefore, S + 1 sectors, indexed by s = 0, ..., S. Within each sec-
tor s, there exist Ns firms. In sector s > 0, firm φ = 1, ..., Ns produces the sth intermediate good,

employing inputs Xφ,s def≡ (Xφ,s
1 , ...,Xφ,s

n ) and goods zφ,s
def≡ (zφ,s0 , ..., zφ,ss−1, z

φ,s
s+1, ..., z

φ,s
S ) with the

production function Fφ,s (Xφ,s, zφ,s). Firm φ = 1, ..., N0 in sector s = 0 produces the final good

using inputs Xφ,0 def≡
(
Xφ,0
1 , ...,Xφ,0

n

)
and goods zφ,0

def≡ (zφ,01 , ..., zφ,0S ) with the production function

Fφ,0
(
Xφ,0, zφ,0

)
. In all sectors s ∈ {0, ..., S}, let zφ,ss denote the production of firm φ ∈ {1, ...Ns}.

The production functions are differentiable with non-negative partial derivatives and well-behaved.
The market clearing condition for the final goods is:

N0∑
φ=1

Fφ,0
(
Xφ,0, zφ,0

)
=

S∑
s=1

Ns∑
φ=1

zφ,s0 +

∫
Θ
C(θ) dF (θ) + E. (B.1a)

It equalizes the total production of firms in the final good sector s = 0 in the left-hand side to the demands
for the final good s = 0 by intermediate goods producers (zφ,s0 for s = 1..., S and φ = 1, ..., Ns),
taxpayers (C(θ) for all θ ∈ Θ) and the government (E), in the right-hand side.

The market clearing condition for input i = 1, ..., n can be expressed as:

∀i ∈ {1, ..., n} : Xi =

S∑
s=0

Ns∑
φ=1

Xφ,s
i (B.1b)

i.e., the total supply of the ith input by taxpayers on the left-hand side is equal to the sum of input demands
by all firms in all sectors on the right-hand side.
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Finally, the market clearing condition in the intermediate goods sector s can be written as:

∀s ∈ {1, ..., S} :

Ns∑
φ=1

Fφ,s (Xφ,s, zφ,s) =

S∑
s′=0
s′ ̸=s

Ns′∑
φ=1

zφ,s
′

s (B.1c)

i.e., the total production of firms in sector s on the left-hand side is equal to the sum of the demands for
good s by firms in all sectors s′ other than s on the right-hand side.

In the next subsections, we describe how the resources are allocated within the production sector
in different micro-founded contexts. In a nutshell, the problem of resource allocation in the production
sector involves determining, for given aggregate supplies of inputs X1, ...,Xn, the demand for inputs and
goods by each firm φ ∈ {1, ..., Ns} in sector s ∈ {0, ..., S}. Specifically, this entails determining the in-
put demands Xφ,s = (Xφ,s

1 , ...,Xφ,s
n ), the demands for goods zφ,s = (zφ,s0 , ..., zφ,ss−1, z

φ,s
s+1, ..., z

φ,s
S ) , and

the firm’s production zφ,ss = Fφ,s (Xφ,s, zφ,s), subject to the market clearing conditions for intermediate
goods (B.1c), for final goods (B.1a) and for inputs (B.1b).

B.1 Competition policy

We first consider an example of a pro-competitive policy designed to reduce oligopolistic rents.
Consider that all firms, within each sector, have the same production function with constant returns
to scale. There is perfect competition in the final goods sector s = 0 and Cournot competition in
the intermediate goods sectors s ∈ {1, ..., S}. For simplicity, intermediate goods are produced using
only inputs and with the same production function denoted Fs (χφ,s). 19 Conversely, the final good is
produced using both intermediate goods and inputs according to the following Cobb-Douglas production
function:

Fφ,0
0

(
Xφ,0, zφ,0

)
=

S∏
s=1

(
zφ,0s

)βs

n∏
i=1

(
Xφ,0
i

)γi
where βs ≥ 0, γi ≥ 0 and

∑S
s=1 βs +

∑n
i=1 γi = 1. In all sectors s ∈ {0, ..., S}, let zs

def≡
∑Ns

φ=1 z
φ,s
s

denote the total output of the intermediate good s and let z−φ,s
s

def≡ zs − zφ,ss denote the amount of
intermediate good s produced by the competitors of firm φ. The program of the final good producers
φ ∈ {1, ..., N0} is:

max
Xφ,0,zφ,0

S∏
s=1

(
zφ,0s

)βs

n∏
i=1

(
Xφ,0
i

)γi
−

S∑
s=1

qs z
φ,0
s −

n∑
i=1

pi Xφ,0
i ,

where qs denotes the purchasing price of good s, with the normalization q0 = 1 for the final good. With
all production functions admitting constant returns to scale and being identical in the final goods sector,
the first-order condition of this program leads to the following inverse demand for the sth intermediate
good:

qs = βs
(
z0s
)βs−1

S∏
s′=1,s′ ̸=s

(
z0s′
)βs′

n∏
i=1

(
X 0
i

)γi , (B.2a)

where X 0
i

def≡
∑N0

φ=1X
φ,0
i represents the sum of the ith inputs used in the final goods sector, and where

z0s
def≡
∑N0

φ=1 z
φ,0
s represents the sum of the sth intermediate inputs demanded from the final goods sector.

Symmetrically, the first-order condition with respect to the ith input implies:

pi = γi

(
X γi−1
i

)γi−1
S∏

s=1

(
z0s
)βs

n∏
i′=1,i′ ̸=i

(
X 0
i′
)γi′ . (B.2b)

19Relaxing each of these assumptions do not alter our main results but adds complexity to the analysis.
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Since the final goods sector includes many firms and there are numerous intermediate goods sectors,
intermediate goods producers take production factor prices p1, ..., pn as given, as well as the output
of other intermediate goods producers. Noting that only final goods producers purchase intermediate
goods, the market clearing condition for the sth intermediate good writes zs = zφ,ss + z−φ,s

s . In sector
s = {1, ..., S}, under Cournot competition, firm φ ∈ {1, ..., Ns}’s maximization program is:20

max
Xφ,s,qs

qs Fs (Xφ,s)−
n∑

i=1

pi Xφ,s
i

s.t : qs = βs
(
Fs (Xφ,s) + z−φ,s

s

)βs−1
S∏

s′=1,s′ ̸=s

(
z0s′
)βs′

n∏
i=1

(
X 0
i

)γi .
At the symmetric Cournot-Nash equilibrium, all producers within a sector make identical choices. Hence,
the total production of good z by all firms in sector s is given by zs = Ns z

φ,s
s , while the total production

of its competitors is z−φ,s
s = (Ns − 1) zφ,ss . The first-order conditions thus imply:

∀i ∈ {1, ..., n} : pi = qs(1− αs)Fφ,s
Xi

, (B.2c)

where, αs
def≡ (1−βs)/Ns measures the extent to which the output price qs is marked up due to imperfect

competition. Since the production functions exhibit constant returns to scale, αs also denotes the profit
share in sector s. Under Cournot competition, this profit share is a decreasing function of the number Ns

of firms and an increasing function of the elasticity 1− βs of the inverse demand for the sth intermediate
good in absolute value. Competition policies directly set these sector-specific markups αs. For instance,
regulation policies in each sector s ∈ {1, ..., S} affects barriers to entry, entry costs, thereby the number
of firms Ns. The allocation of production resources , (Xφ,s, zφ,s) (for all firms φ = 1, ..., Ns in sector
s = 0, ..., S), is therefore obtained from a system of prices for inputs p1, ..., ps and for intermediate goods
q1, ..., qs, such that it verifies the demands for intermediate goods from final good producers (B.2a), the
demands for inputs from final good producers (B.2b), the pricing equation in the intermediate good
sectors (B.2c), as well as the market-clearing conditions (B.1a)-(B.1c).

We now demonstrate that this allocation of production resources, (Xφ,s, zφ,s) for all firms φ =
1, ..., Ns in sector s = 0, ..., S, coincides with the choice of an hypothetical “production coordinator”.
This reformulation will prove useful to easily retrieve the reduced-forms F(·) and the inverse demand
equations Pi(·) in (4). The production coordinator’s objective is the total production of the final good.
According to (B.1a), the total production of the final good coincides with the total final good’s con-
sumption by taxpayers and the government in (B.3a).21 The production coordinator’s program has to
verify resource constraints on production factors (B.1b) and on intermediate goods (B.1c). Crucially,
instead of using Equation (B.1c), the production coordinator adopts a reformulation of these resource
constraints on intermediate goods, as described by Equations (B.3c) and (B.3d), which together replicate
the original constraints (B.1c). However, by incorporating markups αs and sector-specific profits Z

s,
the coordinator’s program replicates the overpricing behaviors described in (B.2c). Thus, the production

20Let Xn+1(θ) denote the allocation of profits to individuals of type θ with
∫
Θ
Xn+1(θ)dF (θ) = 1. Xn+1 can be inter-

preted as an inelastically supplied “entrepreneurial input” (McKenzie (1959), and Mas-Colell et al. (1995, pp. 134-135)) whose
presence ensures that Equation (5) holds, provided that i is summed from 1 to n+ 1 instead of 1 to n.

21This is because we assume in this application that the final good is not used as an input by intermediate good producers.
Otherwise, the production coordinator’s objective would be total production of final good net of its consumption by intermediate
good producers, i.e. the GDP

∑N0
φ=1 F

φ,0
(
Xφ,0, zφ,0

)
−

∑S
s=1

∑Ns
φ=1 z

φ,s
0 .
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coordinator’s program is:

max
{Xφ,s,zφ,s}φ=1,..,Ns

s=0,...,S

N0∑
φ=1

Fφ,0
(
Xφ,0, zφ,0

)
(B.3a)

∀i ∈ {1, ..., n} : Xi =
S∑

s=0

Ns∑
φ=1

Xφ,s
i (B.3b)

∀s ∈ {1, ..., S} : αs Zs + (1− αs)

Ns∑
φ=1

Fφ,s (Xφ,s) =

N0∑
φ=1

zφ,0s , (B.3c)

where

∀s ∈ {1, ..., S} : Zs
def≡

Ns∑
φ=1

Fφ,s (Xφ,s, zφ,s) , (B.3d)

the sector specific production, is taken as given by the production coordinator. Let p⋆i denote the Lagrange
multiplier associated with constraint (B.3b) and let q⋆s the Lagrange multiplier associated to (B.3c). The
Lagrangian of Program (B.3a)-(B.3c) is written as:

L =

N0∑
φ=1

Fφ,0
(
Xφ,0, zφ,0

)
+

n∑
i=1

p⋆i

Xi −
S∑

s=0

Ns∑
φ=1

Xφ,s
i


+

s∑
s=1

q⋆s

αs Zs + (1− αs)

Ns∑
φ=1

Fφ,s (Xφ,s)−
N0∑
φ=1

zφ,0s

 .

The first-order conditions of the production coordinator’s program are:

∀s ∈ {1, ..., S} : q⋆s = βs
(
z0s
)βs−1

S∏
s′=1,s′ ̸=s

(
z0s′
)βs′

n∏
i=1

(
X 0
i

)γi (B.4a)

∀i ∈ {1, ..., n} : p⋆i = γi

(
X γi−1
i

)γi−1
S∏

s=1

(
z0s
)βs

n∏
i′=1,i′ ̸=i

(
X 0
i′
)γi′ . (B.4b)

Here, we use that the production functions, in the final good sector are Cobb-Douglas with constant
returns to scale. Finally, the first-order condition with respect to the ith input i ∈ {1, ..., n} for firm
φ ∈ {1, ..., Ns} in sector s ∈ {1, ..., S} is:

p⋆i = q⋆s(1− αs)Fφ,s
Xi

. (B.4c)

Since the production coordinator takes the sector-specific profits Zs as given, the first-order con-
ditions (B.4a)-(B.4c) are equivalent to, respectively, the demands for intermediate goods by final good
producers (B.2a), the demands for inputs by final good producers (B.2b) and the pricing equation in the
intermediate good sectors (B.2c). Moreover, we note that in all intermediate good sectors s ∈ {1, ..., S},
the combination of constraints (B.3c) and (B.3d) implies the market-clearing condition (B.1c). There-
fore, the production coordinator allocates resources within the production sector as firms do in the de-
centralized equilibrium. This reformulation of production sector decisions through the program of the
hypothetical production coordinator enables to define the inverse demand equations Pi(·) as the La-
grange multipliers associated to (B.3b), as functions of the vector of input supplies (X1, ...,Xn), and
of the vectors of sector-specific mark-ups (α1, ..., αS). Moreover, the (aggregate) production function
defined in (5) F(·) is the value function of Program (B.3a)-(B.3c).22

22The allocation of resources actually solves a fixed-point problem since the production coordinator’s program also depends
on sector-specific profits (Z1, ..., Zs) that are taken as given by the production coordinator. However, (Z1, ..., Zs) is deter-
mined by the solution of the production coordinator’s program through (B.3d).
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The most efficient allocation of resources within the production sector consists in maximizing the
total production of final goods subject to the resource constraints on inputs (B.1b) and intermediate
goods (B.1c). This coincides with the production coordinator’s program only when α1 = .... = αS = 0.
We conclude that the production regulation principles (Theorems 1 and 2) recommend nullifying the
markups α1, ..., αS .

In practice, whenever the tax system can be improved along all the price-replicating directions, no
mark-up should persist in the markets. This policy implication extends beyond the specific case of
Cournot competition. Any competition policy that reduces markups αs is desirable provided that the tax
system can be reformed by neutralizing tax reforms to offset the welfare impact of such reforms. We
posit that this reasoning extends to policies like merger regulations in the case of horizontal or vertical
integration, as well as to corporate law reforms.

B.2 Taxation of intermediate goods and taxing robots and AI

The advent of robots and AI raises the question of relevant tax policy responses. Our approach also
addresses this issue and extends more broadly to the taxation of intermediate goods. We consider that
all firms operate under constant or decreasing returns to scale, and intermediate goods (e.g. robots, AI
or any other intermediate good or service) are subject to the sector-specific ad-valorem tax rates αs, for
s = 1, ..., S, with the normalization α0 = 0 for the final good. Again, qs denotes the purchasing price of
good s, with the normalization q0 = 1 for the final good. In this scenario, firm φ = 1, ..., Ns in sector
s = 0, ..., S solves:

πφ,s def≡ max
Xφ,s,zφ,s

qs(1− αs) Fφ,s (Xφ,s, zφ,s)−
n∑

i=1

pi Xφ,s
i −

S∑
s′=0
s′ ̸=s

qs′ z
φ,s
s′ , (B.5)

where πφ,s denotes the profit of firm φ in sector s. Since firms operate under perfect competition, profit
πφ,s is positive if the production function of the firm φ in sector s has decreasing returns to scale. Let
Xn+1(θ) denote the exogenous share of firms’ profits earned by θ-taxpayers so that pn+1Xn+1(θ) is the
profits earned by θ-taxpayers. Program (B.5) leads to the following conditions:

∀i ∈ {1, ..., n} : pi = qs(1− αs)Fφ,s
Xi

and ∀s′ ̸= s : qs′ = qs(1− αs)Fφ,s
zs′

. (B.6)

The competitive allocation of the production resources is a vector (Xφ,s, zφ,s) for all firms φ =
1, ..., Ns in sector s = 0, ..., S, a vector of intermediate goods’ prices (q1, ..., qS) (with normalization
q0 = 1) and a vector of input prices (p1, ..., pn). These vectors must verify the market clearing conditions
(B.1b) and (B.1c), as well as the optimality conditions (B.6), for all firms, in all sectors.

As in Subsection B.1, we determine the optimization program of a hypothetical production coordina-
tor whose solution coincides with the competitive allocation of production resources, (Xφ,s, zφ,s) (for all
firms φ = 1, ..., Ns in sector s = 0, ..., S). Here, its program consists in maximizing the total production
of the final good net of the final good demands by the firms producing intermediate goods. According to
(B.1a), this coincides with the total consumption of final good by taxpayers and the government, which
corresponds to the objective function (B.7a). The production coordinator’s program has to verify re-
source constraints on inputs (B.1b), rewritten as (B.7b), and on intermediate goods (B.1c). Instead of the
latter equation, the production coordinator considers (B.7c) and (B.7d) where the government collects a
fraction αs of the production of each intermediate good, as described by Equations (B.7c) and (B.7d).
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The program for the production coordinator is:

max
{Xφ,s,zφ,s}φ=1,..,Ns

s=0,...,S

N0∑
φ=1

Fφ,0
(
Xφ,0, zφ,0

)
−

S∑
s=1

Ns∑
φ=1

zφ,s0 (B.7a)

∀i ∈ {1, ..., n} : Xi =

S∑
s=0

Ns∑
φ=1

Xφ,s
i (B.7b)

∀s ∈ {1, ..., S} : αs Zs + (1− αs)

Ns∑
φ=1

Fφ,s (Xφ,s, zφ,s) =
S∑

s′=0
s′ ̸=s

Ns′∑
φ=1

zφ,s
′

s (B.7c)

where

∀s ∈ {1, ..., S} : Zs
def≡

Ns∑
φ=1

Fφ,s (Xφ,s, zφ,s) (B.7d)

is taken as given by the production coordinator.
Let p⋆i denote the Lagrange multiplier associated to (B.7b), and let q⋆s denote the Lagrange multiplier

associated to (B.7c). Adopting the normalization q⋆0 = 1 and α0 = Z0 = 0, the Lagrangian of (B.7a)-
(B.7c) is:

L =
S∑

s=0

q⋆s

αs Zs + (1− αs)

Ns∑
φ=1

Fφ,s (Xφ,s, zφ,s)−
S∑

s′=0
s′ ̸=s

Ns′∑
φ=1

zφ,s
′

s

+ n∑
i=1

p⋆i

Xi −
S∑

s=0

Ns∑
φ=1

Xφ,s
i

 .

The first order conditions are:

∀i ∈ {1, ..., n} : p⋆i = q⋆s(1− αs)Fφ,s
Xi

and ∀s′ ̸= s : q⋆s′ = q⋆s(1− αs)Fφ,s
zs′

. (B.8)

These conditions coincide with (B.6), provided that p⋆i = pi for all i = 1, ..., n and q⋆s = qs for all
s = 0, ..., S. Therefore, the production coordinator allocates resources within the production sector
identically to how firms do in the decentralized equilibrium. This reformulation of production sector
decisions through the program of the hypothetical production coordinator enables to define the inverse
demand equations Pi(·) as the Lagrange multipliers associated with (B.7c) as functions of the vector
of input supplies (X1, ...,Xn), and of the vectors (α1, ..., αS). Moreover, the (aggregate) production
function defined in (5) F(·) is the value function of Program (B.7a)-(B.7c).

Again, the most efficient allocation of resources within the production sector consists in maximizing
the total production of final goods subject to the resource constraints on inputs (B.1b) and intermediate
goods (B.1c). This coincides with the production coordinator’s program only when α1 = .... = αS =
0, i.e. when intermediate goods are untaxed. We conclude that the production regulation principles
(Theorems 1 and 2) recommend not taxing intermediate goods α1, ..., αS = 0.

Diamond and Mirrlees (1971)’s production efficiency theorem already recommends not taxing inter-
mediate goods. However, our regulation principles (Theorems 1 and 2) imply that this recommendation
applies also under a suboptimal tax schedule, or under imperfect competition. Actually, increasing ag-
gregate output leads to a Pareto improvement without the need to be on the production possibility frontier
or to fully optimize the tax system. A neutralizing tax reform is all we need. In our example, production
functions that exhibit decreasing returns, as in Dasgupta and Stiglitz (1971, 1972), imply that the neu-
tralizing tax reform optimized the tax system along, in particular, the n+ 1th price-replicating direction
associated with the n + 1th entrepreneurial factor. Profits are fully taxed, as shown in Dasgupta and
Stiglitz (1971, 1972).

This formulation of our framework also enables us to address the question of taxing robots and
AI, as Koizumi (2020), Guerreiro et al. (2021), Costinot and Werning (2022) and Thuemmel (2023)
do, by simply considering them as particular intermediate goods. This literature typically finds optimal

18



to tax robots, because their tax authorities are assumed to be unable to distinguish between various
(imperfectly substitutable) types of labor, such as routine and non-routine tasks. In such cases, the
neutralizing tax system cannot be implemented (i.e. the tax system cannot optimized along all its price-
replicating directions). As Assumption 1 is violated, the Production Regulation Principle in Theorem 1
does not apply. Moreover, since taxing robots affects the wage ratio between routine and non-routine
labor, Assumption 3 is violated, preventing the Production Regulation Principle (Part II) in Theorem
2. In such a case, the pre-distributive effects of taxing robots matter and the optimal tax on robots is
determined by Equation (32) in Theorem 3 (See also Figure 2).

B.3 Commodity taxation

Using the framework employed to analyze the taxation of intermediate goods in Subsection B.2, we
can study whether the taxation of final goods should be uniform when the utility is weakly separable in
leisure and consumption, as examined by Atkinson and Stiglitz (1976). Their theorem considers that each
taxpayer has preference over factor x and commodities z = (z1, ..., zS), according to a weakly separable
utility function of the form U (V (z1, ..., zS),x;θ). We can align our model with theirs by interpreting our
intermediate goods as their commodities (z1, ..., zs). Additionally, assume that all taxpayers in Section
B.2 produce and consume one final good z0 using the same production function z0 = V (z1, ..., zn) so
that this corresponds to the sub-utility obtained from commodities in Atkinson and Stiglitz (1976). We
assume constant returns to scale in the production functions of the intermediate good sectors s ∈ 1, ..., S
and that final goods are not employed as production factors (thus, zφ,s0 = 0 for all firms φ ∈ 1, ..., Ns

in sectors s = 1, ..., S). Upon this reinterpretation, our taxation of intermediate goods in Section B.2
is taxation of commodities in Atkinson and Stiglitz (1976). Therefore, the no-tax result on intermediate
goods discussed in Section B.2 translates to a no-tax result on commodities, or equivalently, uniform
commodity tax rates, in Atkinson and Stiglitz (1976).

This reinterpretation shows that the production regulation principles (Theorems 1 and 2) imply that
the no-commodity taxation result of Atkinson and Stiglitz (1976) remains robust to endogenous producer
prices, whenever the neutralizing tax reform can be implemented. This applies, for instance, in the long-
run model of Saez (2004) where taxation is occupation-specific so that Assumption 1 holds. Conversely,
in frameworks such as Naito (1999), the short-run model of Saez (2004), or in Jacobs (2015), the income
tax system does not discriminate between the different types of labor, thereby violating Assumption 1.
The same level of income drives the same tax rate, even when earned by different labor types. In this type
of framework, the tax systems can therefore not be reformed along the price-replicating direction specific
to each type of labor. Commodity taxation should then not be uniform and may have a pre-distributive
role, which is described in Equation (32) in Theorem 3. It is worth mentioning that our reinterpretation
of Atkinson and Stiglitz (1976)’s theorem leading to no-tax on intermediate goods does not hold when
taxpayers have different preferences V(·) over commodities, as in e.g. Saez (2002) and Ferey et al.
(2024).

B.4 Trade policy

We now adapt our multi-sector framework to discuss the desirability of trade liberalization policies
such as the reduction of tariff measures or of technical barriers. For this purpose, we assume that,
in each sector s ∈ {0, ..., n}, certain firms operate abroad. Regardless of whether firms are domestic or
foreign, the arguments of the production function refer only to goods or production factors from the home
country. Foreign firms φ ∈ {1, ..., Ns} in sector s ∈ {0, ..., S} do not use domestic factors of production,
so Xφ,s

i = 0 for all i ∈ {1, ..., n}, but these foreign firms export goods zφ,ss′ from sector s′ ̸= s. Their
imports of goods s are given by Fφ,s (zφ,s;α), where the vector α captures the impact of trade frictions.
In particular, αs captures various costs associated with the imports or exports of foreign producers in
sector s, costs that trade policies can diminish, so that Fφ,s

α < 0 for foreign firms. Conversely, trade
policies do not impact the production possibilities of domestic firms, hence, Fφ,s

α = 0 for domestic
firms. As in the previous subsection, the allocation of production resources within the production sector
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can be described as the maximization program of an hypothetical production coordinator. Assuming
perfect competition, the competitive allocation of resources within the production sector coincides with
the solution of the following production coordinator’s program:

max
{Xφ,s,zφ,s}φ=1,..,Ns

s=0,...,S

N0∑
φ=1

Fφ,0
(
Xφ,0, zφ,0;α

)
−

S∑
s=1

Ns∑
φ=1

zφ,s0 (B.9a)

∀i ∈ {1, ..., n} : Xi =
S∑

s=0

Ns∑
φ=1

Xφ,s
i (B.9b)

∀s ∈ {1, ..., S} :

Ns∑
φ=1

Fφ,s (Xφ,s, zφ,s;αs) =

S∑
s′=0
s′ ̸=s

Ns′∑
φ=1

zφ,s
′

s . (B.9c)

For each vector of factor supply (X1, ...,Xn) and each vector (α0, ..., αS) of sector-specific trade
costs, the inverse demands Pi(·) are defined as the Lagrange multipliers associated to (B.9b) and the
production function F(·) is the value function associated to Program (B.9a)-(B.9c). A policy that re-
duces trade costs therefore unambiguously improves aggregate production.23 The desirability of trade
liberalization policies thus depends solely on whether or not a neutralizing tax reform can take place.
This type of reform is feasible in Diamond and Mirrlees (1971), Dixit and Norman (1980, 1986) where
the tax system includes sector-specific and linear taxes on labor. Hence Assumption 1 is verified, en-
suring that the Production Regulation Principle (Part 1) (in Theorem 1) applies, thereby, supporting the
case for free trade. The multi-country Ricardian model of trade proposed by Hosseini and Shourideh
(2018) also aligns with the free trade recommendation for the same reasons. Conversely, in Costinot
and Werning (2022), the different types of labor are imperfect substitutes but generate incomes that the
tax administration cannot distinguish and therefore must tax comprehensively, in accordance with As-
sumption 2. However, as along as trade policies impacts the wage ratios between the different types of
labor, which means that Assumption 3 is violated, Theorem 2 does not apply and the Production Reg-
ulation principle does not hold (See Figure 2). Consequently, the impact of trade liberalization policies
should be evaluated thanks to Theorem 3, where production efficiency effects have to be balanced against
pre-distributive effects, as described by Equation (32). In this context, protectionist measures become
desirable when their pre-distibutive effects are more beneficial than their detrimental effects on aggregate
production.

B.5 Public production

Consider the government owns the public firm φ⋆ in sector s⋆. Within this framework, the production

policies are the public firm’s demand of inputs and the demand of goods, i.e. α
def≡ (Xφ⋆,s⋆ , zφ

⋆,s⋆).
The private firms solve (B.5) and their behaviors are described by (B.6). Therefore, the allocation of
production resources coincides now with the solution of the following production coordinator’s program:

max
{Xφ,s,zφ,s}φ=1,..,Ns,(φ,s)̸=(φ⋆,s⋆)

s=0,...,S

N0∑
φ=1

Fφ,0
(
Xφ,0, zφ,0

)
−

S∑
s=1

Ns∑
φ=1

zφ,s0 (B.10a)

∀i ∈ {1, ..., n} : Xi =
S∑

s=0

Ns∑
φ=1

Xφ,s
i (B.10b)

∀s ∈ {1, ..., S} :

Ns∑
φ=1

Fφ,s (Xφ,s, zφ,s) =

S∑
s′=0
s′ ̸=s

Ns′∑
φ=1

zφ,s
′

s . (B.10c)

23Applying the envelope theorem with respect to the α’s to the Lagrangian of (B.9a)-(B.9c) yields Fαs < 0, since Fφ,s
αs

< 0
for foreign firms.
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Again, for each vector of factor supply (X1, ...,Xn) and each vector of production policy, (Xφ⋆,s⋆ , zφ
⋆,s⋆),

the inverse demands Pi(·) are defined as the Lagrange multipliers associated to constraints (B.10b) and
the production function F(·) is the value function associated to program (B.10a)-(B.10c).

According to the Production Regulation Principles (Theorems 1 and 2), if either Assumption 1 holds
or the combination of Assumptions 2 and 3, the government sets the production plan (Xφ⋆,s⋆ , zφ

⋆,s⋆) of
the public firm φ⋆ in sector s⋆ to maximize the total production of the final good (minus its consumption
by producers of intermediate goods), as detailed in (B.10a). This amounts to solving program (B.10a)-
(B.10c) with respect to the production plan of private firms (as in (B.10a)-(B.10c)) and of the public firm
φ⋆ in sector s⋆. In such a case, private and public firms face the same first-order conditions:

∀i ∈ {1, ..., n} : pi = qs Fφ,s
Xi

and ∀s′ ̸= s : qs′ = qs Fφ,s
zs′

.

This has the implication, that in evaluating public projects prices used to value factors purchased (or
sold) in the market by the public sector should be producer prices (Diamond and Mirrlees, 1971, Little
and Mirrlees, 1974). Again, we do not need to assume optimality of the tax schedule, i.e. optimality with
respect to all directions R(·). We only need that Assumption 1 or the combination of Assumptions 2 and
3 are verified. However, as soon as neither Assumption 1 nor the combination of Assumptions 2 and 3
are verified, it is desirable to use a different price system for public firms as emphasized in Naito (1999).

B.6 The effects of business-focused environmental regulations

Consider now the scenario where the production sector is polluting, e.g. with carbon emissions
and firms have the option to mitigate emissions by adopting cleaner technologies. Production policy
consists in taxing carbon emissions. Here, intermediate good producers not only produce intermediate
goods according to the production function Fφ,s(Xφ,s

1 , ...,Xφ,s
n ;βφ,s) but also emit carbon according

to Eφ,s(Xφ,s
1 , ...,Xφ,s

n ;βφ,s) where βφ,s is the degree of cleanliness in the technology adopted by firm
φ ∈ {1, ..., Ns} in sector s ∈ {1, ..., S}. Employing more production factor increases both production
and pollution, thus Fφ,s

Xi
> 0 and Eφ,s

Xi
> 0. Production is concave in βφ,s with a maximum at a level

normalized to zero. Hence Fφ,s
β < 0 if βφ,s > 0 and Fφ,s

β > 0 if βφ,s < 0. Conversely, carbon
emissions decrease when firms adopt greener technology, thus Eφ,s

β < 0. For simplicity, we assume that
intermediate good producers do not use intermediate goods or the final good as input.

We assume that the government can observe each firm’s carbon emissions and tax them at a rate
denoted by α. Assuming perfect competition and a constant returns to scale production functions, firm
φ ∈ {1, ..., Ns} in sector s ∈ {0, ..., S} solves:

max
Xφ,s

1 ,...,Xφ,s
n ,βφ,s

qs Fφ,s (Xφ,s
1 , ...,Xφ,s

n ;βφ,s)−
n∑

i=1

pi Xφ,s
i − α Eφ,s (Xφ,s

1 , ...,Xφ,s
n ;βφ,s) .

This leads to the following first-order conditions:

∀i ∈ {1, ..., n} : qs Fφ,s
Xi

= pi + α Eφ,s
Xi

and : qs Fφ,s
β = α Eφ,s

β (B.11)

As in B.3, each taxpayer produces a final good through the same production function, which is denoted
F0(·). Moreover, pollution exerts a negative externality. Hence F0 is decreasing in aggregate emissions

E def≡
∑S

s=1

∑Ns
φ=1 Eφ,s (Xφ,s;βφ,s), so we have F0 (z1, ..., zS , E), with F0

zi > 0 > F0
E . For tractability,

we assume that the final good production function exhibits constant returns to scale with respect to
intermediate goods consumption (z1, ..., zS). This leads to the intermediate goods demand conditions:

∀s ∈ {1, ..., S} : qs = F0
zs

(
z01 , ..., z

0
S , E

)
, (B.12)

where

z0s
def≡

Ns∑
φ=1

Fφ,s (Xφ,s, βφ,s)
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denotes the total production of the sth intermediate good.
The competitive allocation of resources within the production sector is the same as the one chosen

by an hypothetical production coordinator whose program consists in:

max
{Xφ,s,βφ,s}φ=1,..,Ns

s=1,...,S ,z01 ,...,z
0
S

F0
(
z01 , ..., z

0
S , E

)
− α

S∑
s=1

Ns∑
φ=1

Eφ,s (Xφ,s;βφ,s) + α E (B.13a)

∀i ∈ {1, ..., n} : Xi =
S∑

s=1

Ns∑
φ=1

Xφ,s
i (B.13b)

∀s ∈ {1, ..., S} :

Ns∑
φ=1

Fφ,s (Xφ,s, βφ,s) = z0s . (B.13c)

where the production coordinator takes aggregate emissions

E =
S∑

s=1

Ns∑
φ=1

Eφ,s (Xφ,s;βφ,s) (B.13d)

and carbon tax revenue α E as given.24 Tax revenue α E enters the production coordinator’s objective
because it is distributed to all taxpayers in a lump-sum way.

For each vector of input supply, (X1, ...,Xn), each carbon tax rate α and each carbon tax revenue
α E , the inverse demands Pi(X1, ...,Xn;α, E) are defined as the Lagrange multipliers associated to
constraints (B.13b) and the production function F(X1, ...,Xn;α, E) is the value function associated to
program (B.13a)-(B.13c).

To determine the carbon tax that maximizes total production, one must choose α to maximize
(B.13a), subject to (B.13b)-(B.13d) and taking into account the effects on aggregate emissions E . This
implies that the carbon tax maximizing aggregate production satisfies the Pigouvian rule F0

E = −α,
which corrects for the externality.25

The Pigouvian rule F0
E = −α is optimal in two cases: (i) when the tax system satisfies Assumption

1, in which case Theorem 1 applies, or (ii) when both Assumptions 2 and 3 hold, in which case Theorem
2 applies. In both cases, the production regulation principle reduces to applying the Pigouvian rule
F0
E = −α. Conversely, if Assumption 1 and either 2 or 3 are violated, the optimal carbon tax must also

account for the pre-distributive effects of taxation, as characterized by Equation (32) in Theorem 3.

24Denoting pi the Lagrange multiplier associated to the ith equation (B.13b) and qs the Lagrange multiplier associated to
sth equation (B.13c), the first-order conditions of (B.13) with respect to Xφ,s, βφ,s and z0s leads to (B.11) and (B.12). Since
the production coordinator is constrained by the same resource constraints (B.13c) as the competitive economy, the production
allocation chosen by the production coordinator coincides with that of the competitive economy. Finally, since revenue from
carbon tax α E shows up in the production coordinator’s objective (B.13a), the Walras Law ensures that the value function
associated to the production coordinator’s program (B.13) verifies the accounting equation (5).

25Applying the envelope theorem to Program (B.13) with r««««espect to α and taking (B.13d) into account leads formally
to Fα = 0. Applying the envelope theorem with respect to E leads to FE = F0

E + α.
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