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issues, as well as Agust́ın Pérez-Barahona, Guillaume Chapelle, Ashley Piggins and Jean-Luc Prigent.
All remaining errors are mine.
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1 Introduction

Spatial models of voting have dominated formal political theory since the seminal work

of Downs (1957). This work and the literature stemming from it have typically considered

that each candidate j commits to a policy xj in the policy space R. And each elector

votes on the basis of her “Downsian”utility function: if voter i’s bliss point is ai ∈ R, then

her utility if candidate j is elected is u(ai, xj) = −L(|ai − xj |), where L() is any strictly

increasing loss function; each voter i votes for the candidate whose policy minimizes her

loss. Such a theory fails to take into account that candidates possess valence charac-

teristics, i.e., characteristics unrelated to policy selection and unanimously evaluated by

voters (e.g., charisma, competence). Thus, to add realism into the spatial model, various

authors have included an additive valence into the Downsian utility function and explored

its implications. More precisely, if θj ∈ R is the valence associated to candidate j, then

the literature has usually considered that voter i’s utility if candidate j is elected is:

u(ai, xj , θj, γ) = θj − |ai − xj |
γ (1)

where γ ∈ R∗
+ is commonly assumed to be equal to 2, i.e., the loss function |ai − xj |

2 is

quadratic (e.g., Dix and Santore, 2002, Aragonès and Xefteris, 2012), or equal to 1, i.e.,

the loss function |ai − xj | is absolute (e.g., Aragones and Palfrey, 2002, Hummel, 2010).

But the value that γ should take is almost never discussed. This paper argues that if the

objective of adding a valence parameter is to add realism into the spatial model, choosing

an adequate value for γ is also crucial to confront reality because it may have strong

implications on voter preferences.

More precisely, this paper provides first a necessary and sufficient condition for the

single-crossing property not being satisfied. A part of this condition states that the single-

crossing property does not hold if γ < 1 and the distance between the policies proposed
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by the candidates is high enough compared to the valence-advantage that one candidate

has over the other. Second, I use this condition to provide various hypothesis tests. In

particular, I show that γ̂ is significantly less than one in the 2008 United States (US)

Presidential election, using data from the pre-election survey of the American National

Election Studies (ANES). The single-crossing property is also rejected in this wave.

Let me first provide a definition of the single-crossing property, and then explain why

it is important to test if this property is satisfied or not.

Definition 1 (Single-crossing property) Consider two candidates, indexed by j = 1, 2.

The single-crossing property is satisfied if, for any distinct policy pair x1, x2 ∈ R, the

equation u(a, x1, θ1, γ) = u(a, x2, θ2, γ) has at most one solution in a.

This definition is standard in models of political competition (e.g., Roemer, 1994, p.360;

Ortuño-Ort́ın, 1997, p.431), and more generally in economic theory (e.g., Milgrom and Shannon,

1994, p.160; Quah and Strulovici, 2012, p.2333). The different panels of Figure 1 illustrate

Definition 1, assuming that x1 > x2, i.e., candidate 1 locates on the right of candidate 2,

and θ1 > θ2, i.e., candidate 1 has a valence-advantage over candidate 2. As depicted in

Panel (A), when the single-crossing property is satisfied but the solution to the equation

in Definition 1 is empty, all the voters prefer the valence-advantaged candidate. In Panel

(B), the single-crossing property is also satisfied but there is one solution in a, denoted a∗.

In this case, the voters whose bliss point is a∗ are indifferent between the two candidates,

all the voters whose bliss points are to the left of a∗ prefer candidate 2, while those to

the right of a∗ prefer candidate 1. Thus, if the single-crossing holds, there is a “nice”

separation of the set of voters for and the set of voters against a given candidate.

Conversely, Panel (C) depicts a situation wherein the single-crossing property is not

satisfied: u(a, x1, θ1, γ) = u(a, x2, θ2, γ) has two solutions in a, denoted a∗ and a∗∗. If so,

the set of voters who prefer the disadvantaged candidate in terms of valence is now the
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a

Utility

x1x2

θ1

θ2

u(a, x1, θ1, γ)

u(a, x2, θ2, γ)

(A) The single-crossing property is satisfied: u(a, x1, θ1, γ) = u(a, x2, θ2, γ) has
no solution in a (parameters: γ = 0.5, x1 = 1, θ1 = 2, x2 = −1, θ2 = 0.4)

a

Utility

x1x2

θ1

θ2

a∗

u(a, x1, θ1, γ)

u(a, x2, θ2, γ)

(B) The single-crossing property is satisfied: u(a, x1, θ1, γ) = u(a, x2, θ2, γ) has
one solution in a (parameters: γ = 2, x1 = 1, θ1 = 2, x2 = −1, θ2 = 1.5)

a

Utility

a∗ a∗∗ x1x2

θ1

θ2

u(a, x1, θ1, γ)

u(a, x2, θ2, γ)

(C) The single-crossing property is not satisfied: u(a, x1, θ1, γ) = u(a, x2, θ2, γ)
has two solutions in a (parameters: γ = 0.5, x1 = 1, θ1 = 2, x2 = −1, θ2 = 1.3)

Figure 1: The single-crossing property

open interval (a∗, a∗∗); and the set of voters who prefer the valence-advantaged candidate

is a non-convex set: this candidate is supported by voters whose bliss points are on the left

of a∗ and on the right of a∗∗. Thus, if the single-crossing property is not satisfied, voters

at the ideological ends vote together in opposition to moderates. Hence, voter preferences
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differ strongly from the case wherein the single-crossing property is satisfied.

When authors assume γ = 2 in Equation (1), this is an assumption of convenience,

made to obtain a model which is more mathematically tractable. As I will show, the

problem is that the single-crossing property is also implicitly assumed in additive-valence

models which consider γ = 2 (and more generally γ > 1). One can argue that it is

not a problem: it is common to assume the single-crossing property in models of spatial

competition. As far as only the distance matters, the single-crossing property can be

directly assumed. But if one adds a valence parameter to the Downsian framework, there

are instances where the property cannot be assumed or derived, as this paper shows. One

should have in mind that the single-crossing property is only an assumption that may

hold in some settings; it is not a universal truth.

Authors are usually silent about the fact that the single-crossing property may not

hold in an additive-valence model, or, in some cases, do not understand it at all. For

instance, Hollard and Rossignol (2008, p.443), who propose a model with multiplicative

valence1, write: “This paper investigates the consequences of moving from an additive form

to a multiplicative form. [...] [F]or dimension 1 [...] the electorates of both sides on the

equilibrium spectrum support the most favored candidate. [...] This is in sharp contrast

with the additive case which predicts a split into two intervals.” I will show that this last

assertion is false; as already noticed, the set of voters who prefer the valence-advantaged

candidate may be a non-convex set in a model with additive valence.

To the best of my knowledge, Evrenk (2019, p.273) and Groseclose (2001, p.865) are

the sole authors who explicitly mention that the single-crossing property may not hold if

γ < 1, as well as if γ = 1; see Section 2 for a discussion of this latter case. The sufficient

1Under the assumptions of a unidimensional policy space and an exponent parameter equal to one,
a utility function with multiplicative valence is expressed as follows: u(ai, xj , δj) = − 1

δj
|ai − xj |, where

δj ∈ R∗
+ represents the multiplicative valence.
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and necessary condition that I provide in Section 2 is obviously more complete because

one of my objectives is to perform hypothesis testing of the single-crossing property; this

is not the objective of Evrenk (2019) and Groseclose (2001).2

The general idea of this paper is simple and straightforward. It nevertheless appears

to be new. Indeed, I am not aware of research that tests the single-crossing hypothesis

in additive valence models. I am not aware of research that tests the hypothesis that γ

is less than one either.3 One reason of this oversight may be the fact that the parameter

γ enters utility nonlinearly. To test the hypotheses of interest, one of the model that I

will use is a discrete choice model. Standard computer packages, like, e.g., Stata, or those

in the R environment (Croissant, 2013), only provide routines for discrete choice models

with linear-in-parameters utility. Hence, the difficulty of writing a code to take account

of a nonlinear-in-parameter utility may be the reason of this oversight.

Alternatively, the reason may be the complexity to place candidates and voters in a

common ideological space to obtain the crucial regressor |ai − xj |. To compute it, it is

natural to use survey items which ask respondents to place themselves and candidates on

issue scales –typically a liberal-conservative scale. But respondents usually interpret and

answer this scale differently. I will show that this problem of interpersonal incompara-

bility of responses occurs in the data used in this paper. If so, taking these responses at

face value might bias the computed distances and the final results. To solve this prob-

lem, I will use the Aldrich and McKelvey’s (1977) scaling method. It is considered as

an extremely satisfactory approach to correcting for interpersonal incomparability and

placing candidates and voters in a common issue space (King et al., 2004, p.192). In

particular, it has been shown that the Aldrich-McKelvey procedure permits to recover

2See also Martin et al. (2022, p.314) who discuss the fact that γ = 2 in a multidimensional policy
space is a convenient assumption because it ensures an equal-utility hyperplane.

3In fact, the empirical literature often assumes a squared distance, i.e., γ = 2 is imposed; see, e.g.,
Adams et al. (2005, p.17), Alvarez and Nagler (1995, p.725) or Schofield et al. (2011, p.492).
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an accurate location of the candidates (Aldrich and McKelvey, 1977, pp.117-121). This

is true, even when one of the Gauss-Markov assumptions of the method, an assumption

of homoscedasticity which means that respondents are in practice equally imperfectly in-

formed about the candidates, is strongly rejected (Palfrey and Poole, 1987, pp.514-516).

This method is sometimes used; see Hollibaugh et al. (2013) and Gouret (2021), as well

as Zakharova and Warwick (2014) who use a Bayesian version due to Hare et al. (2015).

But generally, empirical work on valence does not deal with the problem of interpersonal

incomparability, despite the fact that correcting for this problem is far better than taking

the responses at face value.4

I arrange my presentation in the following way. Section 2 provides the necessary and

sufficient condition for the single-crossing property not being satisfied. This condition

permits to know the parameters that I need to identify to realize various hypothesis

tests related to the single-crossing property. Section 3 discusses the identification of the

parameters of interest in two frameworks that I will exploit to realize these tests. The

first one is a discrete choice model –a conditional logit– where the regressand is stated

choice. I show that under the assumption of sincere voting, the identification of the

parameters is possible in this framework. It contrasts with a “traditional” conditional

logit model where the utility is linear in all its unrestricted parameters, and where these

unrestricted parameters and the scale parameter are not separately identified. The second

4Degan (2007) is another notable exception who corrects for problems of interpersonal incomparability.
However, she does not use the Aldrich-McKelvey method. She uses the first dimension of the DW-
NOMINATE scores in the Senate as an accurate measure of candidates’ positions on a liberal-conservative
scale. This method is based on roll call votes, like in Poole and Rosenthal (1991) and Heckman and Snyder
(1997). But if the NOMINATE data give the position of candidates on a common space, they do not
give the position of voters. So Degan estimates a parametric distribution of voters’ positions using their
stated choices in two presidential elections and their characteristics. Note as well that Henry and Mourifié
(2013) study how a Downsian model permits to partially identify the distribution of voter positions,
assuming that each voter faces multiple elections and knows candidate positions via NOMINATE, like the
econometrician. Henry and Mourifié show that voting profiles in the multiple elections are incompatible
with the Downsian model. To reconcile this model with the data, they add an unobserved valence
parameter to the utility, assuming that γ = 2 (see Equation (1), p.656).
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framework is a seemingly unrelated regressions (SUR) model where the regressands are

feeling thermometers, i.e., respondents’ affect toward candidates to an election. I explain

the advantages that one framework can have over the other. To keep my presentation

manageable, Sections 4 and 5 focus on the 2008 US Presidential election. Section 4

describes the 2008 pre-election survey of the ANES. Section 5 provides the results. Section

6 provides some robustness checks and discusses the results with other US Presidential

elections. Following all of this, Section 7 concludes. Some additional results are relegated

to various appendixes.

2 Theoretical framework

Consider an election between two candidates indexed by j = 1, 2. Each candidate j

chooses a policy platform xj in the policy space R. Each voter i has a bliss point ai ∈ R.

Recall the utility function (1) of voter i if candidate j is elected:

u(ai, xj , θj, γ) = θj − |xj − ai|
γ

where θj ∈ R is the valence associated to candidate j, and γ ∈ R∗
+. I assume that

candidate 1 has a valence-advantage over candidate 2, i.e., θ ≡ θ1 − θ2 > 0. By Definition

1, recall that the single-crossing property is satisfied or not for any distinct pair x1 and

x2. Without loss of generality (w.l.o.g.), I assume that x1 > x2, i.e., candidate 1 locates

on the right of candidate 2.

Proposition 1 The single-crossing property is not satisfied if and only if:

(|x1 − x2|
γ > θ and γ < 1) or (|x1 − x2|

γ = θ and γ = 1) (2)

Proof : see Appendix A.

Proposition 1 states that Property (2) is a necessary and sufficient condition for the
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single-crossing property not being satisfied. Property (2) is a composite one, and it is

useful to comment its different parts as well as the proof in Appendix A to have a good

understanding of this condition. The proof is divided in three parts. It first shows that

(|x1 − x2|
γ > θ and γ < 1) is a sufficient condition for the single-crossing not being

satisfied. This case is exactly the one described in Panel (C) of Figure 1. Indeed, by

proving that (|x1 − x2|
γ > θ and γ < 1) implies that u(a, x1, θ1, γ) = u(a, x2, θ2, γ) has

two solutions in a, denoted a∗ and a∗∗, Appendix A also shows that a∗ ∈ (−∞, x2] and

a∗∗ ∈ (x2, x1), as in Panel (C) of Figure 1. Note that if one had assumed that candidate

2 had the valence-advantage over candidate 1, i.e., θ ≡ θ2 − θ1 > 0, he would have

obtained a symmetric result: (|x1 − x2|
γ > θ and γ < 1) implies that u(a, x1, θ1, γ) =

u(a, x2, θ2, γ) has two solutions in a, which are a∗ ∈ (x2, x1) and a∗∗ ∈ [x1,+∞).

The second part of the proof shows that (|x1 − x2|
γ = θ and γ = 1) is also a sufficient

condition for the single-crossing property not being satisfied. More precisely, it shows that

(|x1 − x2|
γ = θ and γ = 1) implies u(a, x1, θ1, γ) = u(a, x2, θ2, γ) ∀a ∈ (−∞, x2], i.e.,

there are an infinite number of solutions. It corresponds to the situation depicted by Figure

2 wherein a 7→ u(a, x1, θ1, γ) and a 7→ u(a, x2, θ2, γ) are coincident lines on (−∞, x2].

Obviously, if one had assumed that candidate 2 had the valence-advantage over candidate

1, i.e., θ ≡ θ2−θ1 > 0, he would have obtained that (|x1 − x2|
γ = θ and γ = 1) implies

u(a, x1, θ1, γ) = u(a, x2, θ2, γ) ∀a ∈ [x1,+∞).

The third part of the proof shows that Property (2) is a necessary condition for the

single-crossing property not being satisfied. To do so, I use the fact that a statement and

its contrapositive are equivalent. Thus, the proof first provides the negation of Property

(2), denoted ¬P ; see Equations (A8)-(A9) in Appendix A. Then it shows that ¬P implies

the single-crossing property. Now, given that Property (2) is a necessary and sufficient

condition for the single-crossing property not being satisfied, and because, again, a state-
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a

Utility

x1x2

θ

θ

u(a, x1, θ1, γ)

u(a, x2, θ2, γ)

The single-crossing property is not satisfied: u(a, x1, θ1, γ) = u(a, x2, θ2, γ) has
infinitely many solutions in a (parameters: γ = 1, x1 = 1, θ1 = 2, x2 = −1, θ2 = 0)

Figure 2: |x1 − x2|
γ = θ and γ = 1

ment and its contrapositive are equivalent, Corollary 1 can be deduced from Proposition

1; Property (3) is ¬P as shown in Equation (A9) of Appendix A.

Corollary 1 The single-crossing property is satisfied if and only if:

(γ > 1) or (|x1 − x2|
γ < θ) or (|x1 − x2|

γ ≤ θ and γ 6= 1)

or (γ ≥ 1 and |x1 − x2|
γ 6= θ) (3)

Lastly, I think it prudent to emphasize that it is only the introduction of a difference

in quality among candidates which makes that the single-crossing property may not hold

when the loss function |ai − xj |
γ in Equation (1) is concave, i.e., γ < 1, or linear, i.e.,

γ = 1. If there is no difference in quality among candidates, i.e., θ = 0, the utility function

(1) is Downsian, i.e., u(ai, xj, γ) = −|xj−ai|
γ. As it is well known, if the utility function is

Downsian, the single-crossing property is satisfied for all γ ∈ R∗
+; see, e.g., Evrenk (2019).

3 Econometrics

This Section presents the two frameworks that I will exploit to provide various sta-

tistical tests related to the single-crossing property. To realize these tests, I first need to

discuss the identification of the parameters γ and θ which appear in Proposition 1 and
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Corollary 1. Subsection 3.1 discusses the identification of these parameters in my first

framework, a discrete choice model where the regressand is stated choice. I then present

the statistical tests that these identified parameters permit to realize. Subsection 3.2 dis-

cusses this identification in a second framework, a SUR model where the regressands are

feeling thermometers. Subsection 3.2 also explains the advantages that one framework

can have over the other.

3.1 Stated choice and discrete choice analysis

Consider a survey of N voters, i = 1, . . . , N , representative of the electorate of an

election. J candidates compete for this election, where J ≥ 2. Observe that if J > 2, a

voter may vote strategically, i.e., she may be willing to vote for another candidate than her

most preferred candidate if this latter is unlikely to win. However, in the discrete choice

model, I must assume that for all J ≥ 2, each voter i is sincere, i.e., she votes for her most

preferred candidate. Let yi denote the stated choice of respondent i and Ui,j her utility if

candidate j is elected; Ui,j = u(ai, xj, θj , γ)+ εi,j, where u(ai, xj, θj , γ) is the deterministic

component of the utility given by Equation (1) and εi,j a random component to utility.

The probability that respondent i states that she will vote for candidate j is:

P [yi = j] = P [Ui,j > Ui,k, ∀k 6= j]

= P [θj − |ai − xj |
γ + εi,j > θk − |ai − xk|

γ + εi,k, ∀k 6= j] (4)

Before to step any further, two remarks are in order concerning Equation (4). First,

the valence parameters θj and θk are not identified; what is identified is the difference

in valence. To fully understand, consider w.l.o.g. that θj > θk. Note now that Ui,j =

θ0j − |ai − xj |
γ + εi,j and Ui,k = θ0k − |ai − xk|

γ + εi,k, with θ = θ0j − θ0k, is equivalent to a

model with Ui,j = θ1j −|ai−xj |
γ + εi,j and Ui,k = θ1k−|ai−xk|

γ + εi,k, where the difference
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in valence is the same, i.e., θ1j − θ1k = θ = θ0j − θ0k. Indeed, it is impossible to identify the

valence parameters because an infinite number of values of the two valence parameters

have the same difference, so result in the same choice probabilities. To account for this fact,

we must normalize the valence of one candidate. But one should have in mind that the

impossibility to identify the valence parameters is of no practical consequence because it

is the valence-advantage θ of one candidate over another one which matters in Proposition

1, not the level of valence. I will present the results with the valence of the candidate

with the lowest valence normalized to zero. So, for the ease of exposition, I consider that

candidates are ranked according to their valence as such: θ1 ≥ θ2 ≥ . . . ≥ θJ−1 ≥ θJ = 0,

with at least one inequality which must be strict (otherwise, the model is Downsian).

The second remark concerns the scale of the utility and the distribution for the distur-

bances. To recover the parameters {θj}
J−1
j=1 and γ which will be crucial to form appropriate

test statistics, it is key to understand that the econometrician must scale the utility Ui,j

in the estimation procedure. To fully understand why, note that the scale is not identified

(e.g., Ruud, 2000, pp.765-766), i.e., multiplying or dividing the utility of each alternative

by a common strictly positive constant α does not affect the probability in Equation (4):

P [Ui,j > Ui,k, ∀k 6= j] = P
[
Ui,j

α
>

Ui,k

α
, ∀k 6= j

]
. Hence, the econometrician must choose

the scale, and this is done by normalizing the variance of the disturbances. I assume, as

it is commonly done, that the J disturbances are independent and identically distributed

(i.i.d.) with type I extreme value distribution. The variance of the type I extreme value

distribution is π2

6
. Obviously, there is no reason to assume that the variance of εi,j is

π2

6
: the disturbance εi,j has a variance which may be any positive number. However, this

variance can be expressed w.l.o.g. as a multiple of π2

6
, i.e., Var(εi,j) = σ2 π2

6
. If so, setting

the variance to π2

6
implies to divide the utility of each alternative by the scale parameter σ:

Ui,j

σ
=

u(ai,xj ,θj ,γ)

σ
+ε∗i,j, with ε∗i,j ≡

εi,j
σ
. It does not affect the probability in Equation (4), as
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described above, and the variance of the scaled disturbance is Var
(εi,j

σ

)
= Var(ε∗i,j) =

π2

6
.

Now, if ε∗i ≡ (ε∗i,j; j = 1, 2, . . . , J) are independent and identically distributed (i.i.d.) with

type I extreme value distribution, the probability of the ith individual stating that she

will vote for candidate j has the following conditional logit form (McFadden, 1974):

P [yi = j] =
exp

(
θj
σ
− 1

σ
|ai − xj |

γ
)

∑J
k=1 exp

(
θk
σ
− 1

σ
|ai − xk|γ

) (5)

It is crucial to include σ in the specification to avoid any bias. Note also that σ−1 is

identified, so are σ, {θj}
J−1
j=1 and γ. It contrasts with a “traditional” conditional logit

where the utility is specified to be linear in all its unrestricted parameters; in this case,

the unrestricted coefficients and the scale parameter are not separately identified (Train,

2009, p.41).5

Define di,j = 1 if yi = j and zero otherwise. Then, the log-likelihood function is:

ℓ = ln(LN ) =

N∑

i=1

J∑

j=1

di,j ln [P (yi = j)] (6)

Substituting (5) into (6), the log-likelihood function is rewritten as:

ℓ =

N∑

i=1

[(
J∑

j=1

di,j

(
θj

σ
−

1

σ
|ai − xj |

γ

))
− ln

(
J∑

k=1

exp

(
θk

σ
−

1

σ
|ai − xk|

γ

))]

5When the utility is specified to be linear in all its unrestricted coefficients, i.e., Ui,j = Xi,jβ + εi,j ,
where Xi,j is a vector of variables that relate to alternative j, β an unrestricted vector of coefficients of
these variables, and εi,j a disturbance whose variance may be any positive number, the conditional logit

is P [yi = j] =
exp(Xi,j

β
σ )∑

J
k=1

exp(Xi,k
β
σ )

. However, such a conditional logit is usually expressed in its scaled form,

with β∗ = β/σ: P [yi = j] =
exp(Xi,jβ

∗)∑
J
k=1

exp(Xi,kβ∗)
. The parameters β∗ are estimated, but some generalist

textbooks in econometrics do not mention explicitly that these parameters are actually the “true” coef-
ficients β divided by σ; they only say that the estimates of β∗ in a logit model are the probit estimated
coefficients multiplied by π√

3
. This difference is due to the variance of ε∗i,j which is normalized to one in

a probit and π2

3 in a logit. The fact that some generalist textbooks in econometrics are not explicit on

this issue is probably due to the fact that only the ratio β
σ
may be estimated if the utility is linear in all

its unrestricted parameters, i.e., β and σ are not separately identified in that case. Train (2009, p.24),
whose seminal book focuses on discrete choice models, is a notable exception.
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I code this log-likelihood in the R environment and use the optim function to maximize

it.

Now, recall that the estimation of this discrete choice model and the identification

of the parameters γ and {θj}
J−1
j=1 will serve to realize various statistical tests related to

the single-crossing property. Consider two of the J candidates, say candidates 1 and 2.

There are three hypotheses to be tested concerning these two candidates. First, the single-

crossing property holds for all γ ∈ R∗
+ if there is no difference in valence among these two

candidates. This is the introduction of a valence difference between candidates 1 and 2

which makes that the single-crossing property may not hold. So the first null hypothesis

is H0 : θ1 = θ2 versus HA : θ1 6= θ2. Recall that the valence-advantage of one candidate

over another one is denoted θ, so the hypothesis can be restated as H0 : θ = 0 versus

HA : θ 6= 0.

The second hypothesis to be tested concerns γ. When one candidate has a valence-

advantage over another one, the single-crossing property may not hold if γ < 1 or if γ = 1.

I believe that the most interesting case is when γ < 1 because it is when u(a, x1, θ, γ) =

u(a, x2, γ) may have two solutions in a, and an “ends against the middle” behavior may

occur, as depicted in Panel (C) of Figure 1. When γ = 1, the single-crossing property may

not hold because u(a, x1, θ, γ) = u(a, x2, γ) may have an infinity of solutions as depicted in

Figure 2. But this case is not a situation where voters at the ideological ends vote together

for the same candidate; it is only that an infinity of voters are indifferent between the two

candidates. So the second null hypothesis that I will test is H0 : γ ≥ 1 versus HA : γ < 1.

Last but not least, the third hypothesis to be tested concerns the single-crossing prop-

erty per se. Consider again two of the J candidates, candidates 1 and 2. I want to test

H0 : “the single-crossing property holds” versus HA : “the single-crossing property does

not hold”. Using the conditions in Proposition 1 and Corollary 1, the null hypothesis and
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its alternative can be restated formally as:

H0 : (γ > 1) or (|x1 − x2|
γ < θ) or (|x1 − x2|

γ ≤ θ and γ 6= 1)

or (γ ≥ 1 and |x1 − x2|
γ 6= θ)

versus

HA : [(|x1 − x2|
γ > θ and γ < 1) or (|x1 − x2|

γ = θ and γ = 1)]

To test these hypotheses, I will exploit bootstrap methods. This approach is particu-

larly attractive for the third test hypothesis, given the complexity of the null hypothesis.

But the approach is also useful for the other test hypotheses. Indeed, the distances be-

tween the candidates and the respondents’ bliss points, i.e., the key regressors in Equation

(5), will be based on a first-step estimate, the Aldrich-McKelvey scaling method to solve

problems of interpersonal incomparability of responses. Bootstrap methods permit to take

into consideration any estimation error in this first-step estimation; see Appendix D for

further details.

3.2 Thermometer scores and system of regression equations

The second framework that I use is a SUR model where the regressands are feeling

thermometers. Feeling thermometers are sometimes regarded as the best available mea-

sures of voters’ utility from political alternatives (e.g., Armstrong II et al., 2014, p.147).

There are at least two advantages to using thermometer scores. First, it is often considered

(implicitly) that responses to feeling thermometer questions reveal sincere preferences, so

they are often exploited when there are problems of strategic voting (e.g., Abramson et al.,

1992, Black, 1978, Blais and Nadeau, 1996, Gouret, 2021). It contrasts with discrete choice

models with stated choices as the one described in Subsection 3.1 which might generate

biased estimates of the parameters of the utility functions if J > 2. Indeed, when J > 2,
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a voter may not vote for her preferred candidate because of strategic voting. One may

argue that using stated choice data from Presidential elections in the US permits to avoid

this bias because these elections are often described as two-candidate elections. In reality,

it only minimizes this bias, but does not eliminate it, because the US Presidential elec-

tions have experienced the rise of third-candidate challengers (Alvarez and Nagler, 2000,

pp.58-59): Perot in 1992 or Nader in 2000 and 2004 are notable examples. Anticipating

Section 4, note, however, that if there were more than two candidates at the 2008 Pres-

idential election, each respondent in the ANES was asked if she would vote for Obama,

McCain, none, or another candidate but without specifying his or her name. Similarly,

the respondents were asked to provide thermometer scores for Obama and McCain, but

not for the other candidates. So in practice, we will operate as if there were only the

two main candidates, Obama and McCain. It implies that by using stated choice, the

respondents who answered that they would not vote or vote for another candidate will

appear as missing observations. In contrast, even if a respondent indicated that she would

not vote or vote for another candidate, she could provide thermometer scores for Obama

and McCain. This is the second advantage of using thermometer scores: it reduces the

number of missing observations. Given these advantages, the next step is to know if one

can identify accurately the parameters of interest in the SUR model; I explain below.

One should have in mind that the different utility functions considered are unique up to

positive affine transformations. Thus, the utility function u(ai, xj , θj, γ) = θj − |xj − ai|
γ

is equivalent to v(ai, xj , θj, γ, c, β) = c + β (θj − |xj − ai|
γ) for some scalar c and some

scalar β > 0 independent of i and j. The values of these scaling parameters c and β will

depend on the scales used in the questions of the survey; for instance, feeling thermometer

questions in the ANES ask respondents to rate on a 100-point scale their affect toward

different candidates.
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Let Vi,j denote the thermometer score or the utility of respondent i if candidate j

is elected; Vi,j = v(ai, xj , θj , γ, c, β) + ξi,j, where v(ai, xj , θj , γ, c, β) is the deterministic

component of the utility and ξi,j a random component to utility. The model is the following

system of equations:





Vi,1 = c+ βθ1 − β|x1 − ai|
γ + ξi,1

Vi,2 = c+ βθ2 − β|x2 − ai|
γ + ξi,2

... =
...

Vi,J = c+ βθJ − β|xJ − ai|
γ + ξi,J

(7)

Two remarks are in order concerning System (7). First, it imposes some cross-equation

restrictions: c, β and γ are not equation-specific. Imposing cross-equation constraints is

not possible using equation-by-equation OLS, but it is possible using SUR estimation. As

it is standard in SUR models, for a given voter i, the errors may be correlated across

equations, i.e., E [εi,jεi′,j′] = σj,j′ if i = i′ and 0 otherwise. The second remark concerns

the fact that System (7) is in fact not estimable as such. To understand why, note first

that System (7) is linear in the parameter c, but it is not linear in the other parameters

β, θ1, θ2, . . ., θJ and γ. However, if one lets δj = βθj for all j, then the system becomes

linear in c, δ1, δ2, . . ., δJ . Now, stacking all J utilities for the ith voter, we get:




Vi,1

Vi,2

...

Vi,J




=




1 1 0 . . . 0 |ai − x1|
γ

1 0 1 . . . 0 |ai − x2|
γ

...

1 0 0 . . . 1 |ai − xJ |
γ







c

δ1

δ2

...

δJ

−β




+




ξi,1

ξi,2

...

ξi,J



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Consider the first matrix on the right-hand side. The sum from the second to the J + 1

columns of this J × (J + 2) matrix is equal to one, and reproduces the first column –a

case of perfect multicollinearity. Then, in order to estimate the model, one must drop one

of these variables, or, this is the same, normalized c or one of the δj , j = 1 . . . J , to zero.

By normalizing one δj to zero, one considers that the corresponding θj is equal to zero,

given that δj = βθj . I will present the results with the valence of the candidate with the

lowest valence normalized to zero, to compare the estimated parameters {θ̂j}
J−1
j=1 and γ̂ of

the SUR model with those of the discrete choice model.

I will provide maximum likelihood estimates of the SUR models. They are obtained by

iterated feasible generalized least squares (see, e.g., Ruud, 2000, p.706). The computation

is carried out in the R environment and makes use of the nlsur package realized by Jan

Marvin Garbuszus.6 Concerning the hypotheses to be tested, they are the same as those

described in Section 3.1. Bootstrap methods will be used to take into consideration the

fact that the key regressors, i.e., the distances between the respondents and the candidates,

are estimates based on the Aldrich-McKelvey scaling method; see Appendix D for further

details.

4 The data

The data used in Sections 4 and 5 are drawn from the 2008 pre-election ANES. This

survey is produced by Stanford University and the University of Michigan. It began

on September 2, 2008 and ended November 3, 2008. No interviewing was conducted

on Election Day, November 4. The sample was structured to be representative of the

electorate. 2322 respondents were interviewed. Each respondent i was asked four key

questions for the analysis. First, each respondent i was asked if she will vote for Barack

6The package is available at: https://rdrr.io/github/JanMarvin/nlsur/.
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Obama (yi = 1) or John McCain (yi = 0). The question reveals if the respondent will

vote for one of the four other candidates at this election, but without specifying his or her

name; the four other candidates were Cynthia McKinney (from the Green party), Charles

Baldwin (from the Constitution party), Robert Barr Jr. (from the Libertarian party) and

Ralph Nader who ran his campaign independently.7 The discrete variable yi will be the

regressand of the discrete choice model described in Section 3.1. Second, each respondent

was asked to rate her affect toward Obama (Vi,o) and McCain (Vi,m); respondents were

not asked to rate their affect toward the other candidates.8 These feeling thermometers

will be the regressands of the SUR model described in Section 3.2. Third, each respondent

i was asked his placement ãi on a 7-point scale wherein the political views were arranged

from extremely liberal (1) to extremely conservative (7).9 Lastly, each respondent i was

7More precisely, the question is:

Who do you think you will vote for in the election for President?

or, if the respondent said previously that he will not vote:

If you were going to vote, who do you think you would vote for in the election for President?
[1] Barack Obama, [2] John McCain, [5] None, [7] Other.

8The interviewer first said:

I’d like to get your feelings toward some of our political leaders and other people who are in
the news these days. I’ll read the name of a person and I’d like you to rate that person using
something we call the feeling thermometer. Ratings between 50 degrees and 100 degrees
mean that you feel favorable and warm toward the person. Ratings between 0 degrees and
50 degrees mean that you don’t feel favorable toward the person and that you don’t care
too much for that person. You would rate the person at the 50 degree mark if you don’t
feel particularly warm or cold toward the person. If we come to a person whose name you
don’t recognize, you don’t need to rate that person. Just tell me and we’ll move on to the
next one.

At the same time, the survey also made use of a respondent booklet and showed a 0-100 degree scale
indicating the meaning of 0, 15, 30, 40, 60, 70, 85 and 100 degrees. Then, the interviewer asked respondent
i to rate her affect toward the two main Presidential candidates. For instance, for Obama, the question
was:

How would you rate BARACK OBAMA?

9The wording of the question was as follows:

We hear a lot of talk these days about liberals and conservatives. Here is a seven-point
scale on which the political views that people might hold are arranged from extremely

18



also asked to place Obama (x̃i,o) and McCain (x̃i,m) on this 7-point liberal-conservative

scale; respondents were not asked to place the other candidates.10 The Original sample in

Table 1 provides descriptive statistics of the responses to these different questions. Some

observations are missing because some respondents refused to answer some questions, or

they provided unsuitable answers (e.g., they provided a “Don’t know” to the stated choice

question).

It would have been tempting to use the self-placement ãi and the reported placement

of the candidates x̃i,j , j = m, o, to obtain the two distances of interest d̃i,j = |x̃i,j − ãi|

for each respondent i. However, using x̃i,j and ãi to compute the distances is problematic

if respondents do not interpret the scale in the same way, i.e., if there is a problem of

interpersonal incomparability of responses. For example, a liberal respondent may place a

conservative candidate more on the right than do conservative respondents to exaggerate

the distance between her and this candidate she views unfavorably. Appendix B shows

that this form of interpersonal incomparability of responses is particularly true for Mc-

Cain. Thus, any econometrics using reported locations of candidates and self-placements

at face value cannot be considered as credible because the distances will be biased. I

follow Aldrich and McKelvey (1977) to recover the underlying locations of the candidates

and the respondents on a common dimension, the real line R. Their method permits to

obtain estimates of the actual positions of the candidates xj , j = m, o, and respondents’

bliss points ai, i = 1, . . . , N , on this dimension, using respondents’ reported positions of

liberal to extremely conservative. Where would you place YOURSELF on this scale, or
haven’t you thought much about this? [1] Extremely liberal, [2] Liberal, [3] Slightly liberal,
[4] Moderate/middle of the road, [5] Slightly conservative, [6] Conservative, [7] Extremely
conservative, [-7] Haven’t thought much about it, [-8] Don’t know, [-9] Refused.

10The questions concerning the locations of the candidates followed the self-placement question. As an
example, the wording for Obama was as follows:

Where would you place BARACK OBAMA on this scale?
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the stimuli (candidates and parties) as well as their self-placement. As already noticed,

this method is known to produce accurate locations of the candidates; see Appendix C

for a careful presentation of this method. The method minimizes a sum over all the re-

spondents of squared errors subject to a technical assumption (i) which is that the sum

of the true locations of the stimuli is zero and the sum of squares equal to one (Equation

(C3) in Appendix C). However, as shown in Remark C2 of Appendix C, if one considers

the respondents’ reported positions of only two stimuli, Obama and McCain here, the

Aldrich-McKelvey technical assumption (i) fully determines the locations of the stimuli

if it is combined with an extra assumption (ii) that the researcher knows the stimulus

the more conservative. Under these two assumptions, the obtained locations are −
√

1
2

and
√

1
2
whatever the two stimuli considered. In other words, with only two stimuli,

the reported positions of these stimuli by the respondents become irrelevant in determin-

ing their actual location; the locations of these stimuli are no longer the outcome of the

minimization of a sum of squared errors. For a sound analysis, the policy space should

be built based on an estimator having an optimality property. This is the reason why

I also include the reported placement of the Democratic (x̃i,dem) and Republican (x̃i,rep)

parties in the Aldrich and McKelvey (1977) procedure to obtain the estimated locations

of Obama (xo) and McCain (xm). An additional advantage of incorporating these two

extra stimuli in the procedure is that if one only includes the reported positions of the

two stimuli x̃i,o and x̃i,m, it will be impossible to obtain the bliss point of respondent i

if she locates Obama and McCain at the same place (i.e., x̃i,o = x̃i,m); see in particular

Remark C3 in Appendix C. Indeed, the absence of variability in the reported position

of the stimuli makes it impossible to estimate the Aldrich-McKelvey respondent-specific

distortion parameters denoted ci and wi in Appendix C. Without these distortion param-

eters, it is then impossible to obtain the respondents’ bliss points in the same policy space

as the actual locations of the candidates. By introducing two additional stimuli into the
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procedure, the likelihood of encountering a lack of variability in the reported stimulus

locations diminishes. Consequently, this enhances the likelihood of placing respondent i’s

bliss point within the same policy space as the actual locations of the candidates. That

is why Table 1 not only includes the reported placements of Obama and McCain but also

those of the Democratic and the Republican parties.

Table 1: Descriptive statistics

Original sample Discrete choice sample

Variable Obs. Mean Median Min Max Obs. Mean Median Min Max

yi = 1 (Obama) 2017 0.673 1 0 1 1320 0.615 1 0 1

Ui,o 2293 64.272 70 0 100
Ui,m 2283 48.588 50 0 100

ãi 1626 4.139 4 1 7 1320 4.151 4 1 7

x̃i,o 2099 3.287 3 1 7 1320 2.950 2 1 7
x̃i,m 2097 4.857 5 1 7 1320 5.113 6 1 7
x̃i,dem 2127 3.313 3 1 7 1320 3.003 2 1 7
x̃i,rep 2110 4.953 5 1 7 1320 5.222 6 1 7

Candidates’ locations and respondents’ bliss points according to the Aldrich-McKelvey method

ai 1320 -0.046 -0.004 -3.600 4.347
xo 1 -0.518
xm 1 0.478

SUR sample

Variable Obs. Mean Median Min Max

yi = 1 (Obama)

Ui,o 1449 62.501 70 0 100
Ui,m 1449 51.500 50 0 100

ãi 1449 4.137 4 1 7

x̃i,o 1449 2.966 2 1 7
x̃i,m 1449 5.107 6 1 7
x̃i,dem 1449 3.022 3 1 7
x̃i,rep 1449 5.223 5 1 7

Candidates’ locations and respondents’ bliss points according to the Aldrich-McKelvey method

ai 1449 -0.054 -0.012 -3.652 4.572
xo 1 -0.518
xm 1 0.478

I will consider two estimation samples, as described in Table 1: one, called the Discrete

choice sample, where the regressand is stated choice (i.e., yi = 1 if respondent i will vote for
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Obama, and 0 if he will vote for McCain), and another one, called the SUR sample, where

the regressands are the thermometer scores; the names used to describe these samples

refer to the econometric methods employed to identify the parameters of interest within

each sample, as described in Section 3. I explain below how they have been built.

Concerning the Discrete choice sample, observations where either the stated choice

(yi), the self-placement (ãi), or the reported location of one of the stimuli (x̃i,o, x̃i,m,

x̃i,dem or x̃i,rep) are missing are dropped. It reduces the sample size to 1346. Furthermore,

26 additional observations are excluded. These 26 respondents locate the four stimuli at

the same place (i.e., x̃i,o = x̃i,m = x̃i,dem = x̃i,rep). As already explained, this absence of

variability in the reported location of the four stimuli makes it impossible to obtain via

the Aldrich-McKelvey procedure these respondents’ bliss points in the same policy space

as the actual locations of the candidates, and then compute accurate distances. Thus,

the Discrete choice sample is composed of 1320 respondents (= 1346 − 26), implying an

effective response rate of about 57%
(
≃ 1320

2322

)
.

Concerning the SUR sample, observations where either one of the thermometer scores

(Vi,o or Vi,m), the self-placement (ãi), or the reported location of one of the stimuli (x̃i,o,

x̃i,m, x̃i,dem or x̃i,rep) are missing are dropped. It reduces the sample size to 1483. Fur-

thermore, 34 additional observations are excluded because these respondents locate the

four stimuli at the same place (i.e., x̃i,o = x̃i,m = x̃i,dem = x̃i,rep); so, again, the absence of

variability makes it impossible to obtain these respondents’ bliss points. Thus, the SUR

sample is composed of 1449 respondents (= 1483 − 34), implying an effective response

rate of about 63%
(
≃ 1449

2322

)
.

As reported in Table 1, the number of observations in the SUR sample is slightly higher

than the one in the Discrete choice sample (1449 versus 1320). Despite of this difference,

the summary statistics are very similar. The estimated locations of Obama and McCain
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are almost similar: xo = −0.5180862 and xm = 0.4780555 in the Discrete choice sample,

while xo = −0.5180191 and xm = 0.4783012 in the SUR sample.11 Concerning the bliss

points of the respondents, they range from a low of −3.600 to a high of 4.347 in the

Discrete choice sample, and from a low of −3.652 to a high of 4.572 in the SUR sample.

Note that the missing observations in the Discrete choice and SUR samples are mainly

due to the self-placement question: of the 2322 respondents of the survey, only 1626

provided a valid answer, i.e., one of the 7 points of the scale, as shown in the Original

sample of Table 1. Of the 696 other respondents (= 2322−1626), 675 answered that they

“Haven’t thought much about it”, 17 that they “Don’t know”, and 4 refused to answer

(696 = 675 + 17 + 4); see the question described in Footnote 9. It is a priori possible to

reduce the number of missing observations. Indeed, the self-placement question is followed

by another question which asks those who answered they “Haven’t thought much about

it” or “Don’t know”, as well as those who considered themselves as “Moderate/middle

of the road” (i.e., ãi = 4), how they would consider themselves if they had to choose.

This follow-up question proposes three possible valid answers: “Liberal”, “Conservative”

and “Moderate”. Exploiting the answers to the follow-up question to reduce the missing

observations implies to make some assumptions about the coding. For instance, think

about someone who answered initially “Moderate/middle of the road”or “Haven’t thought

much about it” to the self-placement question and who then responded “Liberal” to the

follow-up question. Should one code this respondent as liberal (i.e., ãi = 2) or as slightly

liberal (i.e., ãi = 3)? If one codes this respondent as liberal, he will consider that she is

more liberal than those who answered slightly liberal to the self-placement question. Yet,

when a respondent initially answered that she hasn’t thought much about it or that she

11The computations of the actual locations of the stimuli are carried out in the R environment and
make use of the basicspace package (Poole et al., 2016). Table 1 does not report the estimated locations of
the Democratic and the Republican parties, given that they are useless for the estimations of the discrete
choice and the SUR models. Remark C4 in Appendix C provides more details.
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is moderate, categorizing this person as more liberal than those who responded slightly

liberal to the self-placement question can be challenging. I set these concerns aside for

the moment. I shall present a set of robustness checks in Section 6 wherein I will exploit

this follow-up question to reduce the missing observations.

5 Estimation results

Table 2 provides the results for the 2008 Presidential election. Column (A) provides

the discrete choice model estimates. The first result concerns the estimated valence-

advantage which is θ̂ = 0.269; Obama is the candidate who has this advantage. If this

valence-advantage parameter adds realism to the spatial model, then the null hypothesis

H0 : θ = 0 should be rejected. The estimated standard error of θ̂ is ŝe(θ̂) = 0.033. If

so, the test statistic is t = θ̂−0

ŝe(θ̂)
= 7.995, which is far larger than the critical values of

the standard normal distribution for conventional levels of significance. Thus, the null is

rejected, and one may conclude that valence matters. However, a problem with this test

is that it treats the distances between ai and xj as observed variables, i.e., ignoring any

estimation error in these variables. But the uncertainty in the estimates of these variables

in a first step can influence the test statistic in the second step. To take into account this

problem, Column (A) in Table 2 also provides a 95 percent confidence interval based on

bootstrap percentiles; the complete procedure is detailed in Appendix D. The percentile

method uses the 2.5th and the 97.5th percentiles of the empirical distribution of B = 999

bootstrap estimates θ̂∗b , b = 1, . . . , B. Denote by θ̂∗0.025 and θ̂∗0.975 these percentiles. The

percentile 95 percent confidence interval for θ is then [θ̂∗0.025, θ̂
∗
0.975]=[0.206, 0.338]. Given

that H0 : θ = 0 lies outside this interval, the null is rejected again.

The second result concerns γ̂ = 0.818. In the case of γ, the interest is in the one-

tailed test H0 : γ ≥ 1 versus HA : γ < 1, as already noticed in Subsection 3.1. It is
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also possible to build a percentile 95 percent confidence interval based on a lower-tailed

test. Such an interval, which is open all the way out to infinity in one direction, is build

using the 95th percentile of the empirical distribution of B = 999 bootstrap estimates

γ̂∗
b , b = 1, . . . , B. The upper 0.05 quantile of the bootstrap estimates is 0.988, so the

percentile 95 confidence interval is (−∞, 0.988] in this case. The null H0 : γ ≥ 1 falls

outside this interval, so γ̂ is significantly less than 1 at the 5 percent significance level. If

one had ignored any estimation error in ai and xj and had used a simple t-test, he would

have made the same conclusion: the null is also rejected at the 5 percent significance

level. Indeed, the estimated standard error of γ̂ is ŝe(γ̂) = 0.097, so the test statistic is

t = γ̂−1
ŝe(γ̂)

= −1.876, which is less than -1.64, the one-tailed 5 percent critical value. So,

again, γ̂ is significantly less than 1 at the 5 percent significance level.

The third result concerns the single-crossing property. Abstracting for the moment

from sampling variation, it is easy to see that the single-crossing does not hold when

considering the estimates from either the discrete choice model or the SUR model. Indeed,

if one considers the discrete choice model, note that γ̂ = 0.818 < 1 and |xo − xm|
γ̂ =

| − 0.518 − 0.478|0.818 = 0.997 > θ̂ = 0.269. So Property (2) in Proposition 1 holds,

which means that the single-crossing property is not satisfied. With the SUR model,

γ̂ = 0.371 < 1 and |xo −xm|
γ̂ = | − 0.518− 0.478|0.371 = 0.998 > θ̂ = 0.227. So, again, the

single-crossing property does not hold. To take into consideration sampling variation and

test the null that the single-crossing holds (versus the alternative that it does not), the

last line in Table 2 provides the achieved significance levels of the test. In the case of the

discrete choice model, out of B = 999 bootstrap samples, the single-crossing property is

satisfied as many as 37 times, giving a achieved significance level of 0.037. So the single-

crossing property is rejected at the 5 percent significance level when the discrete choice

model is considered. In the case of the SUR model, out of B = 999 bootstrap samples,
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Table 2: Discrete choice and SUR estimates for the 2008 Presi-
dential election

(A) (B)
Discrete choice model SUR model

(Stated choice) (Thermometer scores)

Obama’s valence-advantage

θ̂ 0.269 0.227
(0.033) (0.037)

[0.206, 0.338]ii. [0.168, 0.286]
Exponent parameter

γ̂ 0.818 0.371
(0.097) (0.055)

(−∞, 0.988]iii. (−∞, 0.458]
Scale parameters

σ̂ 0.358
(0.031)

ĉ 86.615
(4.928)

β̂ 42.655
(5.070)

N 1320 1449

Log-likelihood -540.161 -13274.940

Bootstrap single-crossing testiv.

ÂSL 0.037 0.000
Notes: i. Standard errors are in parentheses.
ii. The intervals in brackets below the estimated standard errors of θ̂ correspond to
the percentile 95 percent confidence intervals for the parameters. These intervals
are equal-tailed: they are the distance between the lower 0.025 and upper 0.025
quantiles of B = 999 bootstrap estimates of the parameter of interest. For instance,
the interval [0.206,0.338] below the estimated standard error of θ̂ in the case of the
discrete choice model corresponds to the percentile 95 percent confidence interval
[θ̂∗

0.025, θ̂
∗

0.975] for θ, where θ̂∗
0.025 = 0.206 is the lower 0.025 and θ̂∗

0.975 = 0.338 the

upper 0.025 quantiles of the B = 999 bootstrap estimates θ̂∗b , b = 1, . . . , B.
iii. The intervals below the estimated standard errors of γ̂ correspond to the
percentile 95 percent confidence intervals based on a lower one-tailed alternative
test. For instance, the interval (−∞, 0.988] below the estimated standard error
of γ̂ in the case of the discrete choice model corresponds to the percentile 95
percent confidence interval (−∞, γ̂∗

0.95] for γ, where γ̂∗

0.95 = 0.988 is the upper
0.05 quantiles of the B = 999 bootstrap estimates γ̂∗

b , b = 1, . . . , B.

iv. Bootstrap single-crossing test (ÂSL) provides the achieved significance level of
the test H0 : “the single-crossing property holds” versus HA : “the single-crossing
property does not hold”. Given that there are B = 999 bootstrap samples, there
are B sets of parameter estimates [x∗

ob, x
∗

mb, θ̂
∗

b , γ̂
∗

b ], b = 1, . . . , B. I check for each
set of parameter estimates if the single-crossing property holds. The proportion of
bootstrap samples for which the single-crossing property holds is the estimate of
the achieved significance level:

ÂSL = 1−
♯{b = 1, . . . , B ; [(|x∗

ob − x∗

mb|
γ̂∗

b > θ̂∗b and γ̂∗

b < 1) or (|x∗

ob − x∗

mb|
γ̂∗

b = θ̂∗b and γ̂∗

b = 1)]}

B

The method is discussed in Appendix D.
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the single-crossing is never observed, giving a achieved significance level of zero. So the

single-crossing property is also rejected when the SUR model is considered.

The rejection of the single-crossing property with both the discrete choice model and

the SUR model suggests consistent results. However, there is a problem with the discrete

choice model: if we consider the locations of Obama and McCain obtained with the

Discrete choice sample, and the estimated parameters θ̂ and γ̂ in Column (A) of Table

2, the equation û(a, xo, θ̂, γ̂) = û(a, xm, γ̂) has two solutions in a which are a∗ ≃ 0.124

and a∗∗ ≃ 442.458; a∗∗ belongs to the theoretical policy space R, but it is outside the

observed data-range [-3.600, 4.347] reported in Table 1. In other words, the single-crossing

property is rejected with the discrete choice model, but, in the data-range, the equation

û(a, xo, θ̂, γ̂) = û(a, xm, γ̂) has only one solution in a, a∗ ≃ 0.124, as described in Panel

(A) of Figure 3.

This issue does not occur with the SUR model. When we consider the locations of

Obama and McCain obtained with the SUR sample, and the estimated parameters in

Column (B) of Table 2, û(a, xo, θ̂, γ̂) = û(a, xm, γ̂) has two solutions in a, a∗ ≃ 0.172 and

a∗∗ ≃ 2.173, and these two solutions are in the data-range [-3.652, 4.572] reported in Table

1. So according to the estimated SUR model depicted in Panel (B) of Figure 3, voters

whose bliss points are to the right of 2.173 are closer to McCain, but their estimated utility

is higher for Obama. A reader may naturally ask if these respondents do rank Obama

above McCain by providing a higher thermometer score to Obama. 7 respondents have

their bliss points to the right of 2.173. Out of these 7 respondents, 3 rate Obama higher

than McCain, 3 rate them equally, and only 1 rates McCain higher.

This difference between the discrete choice and the SUR models is due to the estimated

exponent parameter γ̂. Indeed, the estimated valence-advantage parameter θ̂ is broadly

similar in the two models, as shown in Table 2. The estimated locations of Obama and
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McCain are also comparable in both the Discrete choice and SUR samples, as shown in

Table 1. Concerning γ̂, if this estimate is significantly less than one in both models, it is

notably lower in the SUR model.
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Figure 3: Estimated utility functions (Discrete choice and SUR samples)
Note: This figure depicts the estimated utilities in function of a obtained in Table 2. In Panel (A), the estimated coefficients

θ̂ and γ̂ of the discrete choice model are used, while in Panel (B), these are those of the SUR model. The (blue) solid curve
depicts the estimated utility if Obama is elected. The (red) dashed curve depicts the estimated utility if McCain is elected.

6 Additional results

This section includes several robustness checks. It also examines the results in the

context of other US Presidential elections besides the 2008 election.

6.1 Expanding the size of the Discrete choice and SUR samples

As previously noted in Section 4, missing observations in the Discrete Choice and SUR

samples primarily result from respondents failing to answer the self-placement question.

Respondents who answered they “Haven’t thought much about it” or “Don’t know” were

28



prompted with a follow-up question, with three possible responses: “Liberal”, “Conser-

vative” and “Moderate”. This subsection leverages this follow-up question to reduce the

number of missing observations. Recall that this follow-up question was also posed to

those who selected “Moderate/middle of the road” in response to the self-placement ques-

tion (i.e., ãi = 4). I briefly describe the specific assumptions used in the coding and the

results.

I assume that those who initially answered “Moderate/middle of the road” to the self-

placement question (i.e., ãi = 4) are moderate, even if they responded that they were

“Liberal” or “Conservative” to the follow-up question. Concerning those who responded

initially they “Haven’t thought much about it” or “Don’t know” to the self-placement

question, I assume that they are moderate (i.e., ãi = 4) if they answered “Moderate” to

the follow-up question. I assume that they are slightly liberal (i.e., ãi = 3) if they answered

“Liberal” to the follow-up question, and slightly conservative (i.e., ãi = 5) if they answered

“Conservative” to the follow-up question. The reason of this choice is that if someone

responded initially she hasn’t thought much about it or doesn’t know, it suggests that

she had doubts about her liberal-conservative inclination. So, if she answered “Liberal” or

“Conservative” to the follow-up question, it indicates only a slight inclination.

I proceed as I did in Section 4 to build the expanded Discrete choice and SUR samples.

For both samples, I initially remove any remaining missing observations, which could

occur if, e.g., the reported location of one of the stimuli (x̃i,o, x̃i,m, x̃i,dem, or x̃i,rep) is

unanswered. I then obtain via the Aldrich-McKelvey procedure the true locations of

Obama and McCain which are very similar to those obtained in Table 1: these locations

are xo ≃ −0.520 and xm ≃ 0.482 in the expanded Discrete choice sample, and xo ≃ −0.520

and xm ≃ 0.483 in the expanded SUR sample. Finally, I obtain the respondents’ bliss

points ai, i = 1, . . . , N , in the same dimension as the actual locations of the candidates.
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Note that these bliss points range in the interval [-3.729, 4.495] in the expanded Discrete

choice sample, and [-3.786, 4.753] in the expanded SUR sample. As for the number of

observations, the expanded Discrete choice sample consists of 1721 respondents, and the

expanded SUR sample has 1895 respondents. Hence the effective response rates are about

74%
(
≃ 1721

2322

)
and 82%

(
≃ 1895

2322

)
, against 57 and 63% in Sections 4 and 5.

Table E1 in Appendix E provides the results. Once again, I find that Obama is

the candidate with a valence-advantage. I obtain θ̂ = 0.386 with the discrete choice

model(versus 0.269 in Table 2), and θ̂ = 0.337 with the SUR model (versus 0.227 in Table

2). The null hypothesis H0 : θ = 0 is rejected whether we treat the distances between ai

and xj as observed variables (i.e., ignoring any estimation error in these variables) or if

we consider the 95 percent confidence interval based on bootstrap percentiles.

As for γ̂, the results closely resemble those obtained in Table 2: γ̂ = 0.846 with the

discrete choice model (versus 0.818 in Table 2), and γ̂ = 0.333 with the SUR model (versus

0.371 in Table 2). All the one-sided tests for H0 : γ ≥ 1 versus HA : γ < 1 reject the null

hypothesis.

Finally, the single-crossing property is rejected at the 5 percent significance level

in both the discrete choice and the SUR models. Similar to Section 5, the equation

û(a, xo, θ̂, γ̂) = û(a, xm, γ̂) based on the discrete choice estimates has two solutions in a,

a∗ ≃ 0.185 and a∗∗ ≃ 166.164, and a∗∗ falls outside the data-range [-3.729, 4.495]. This

issue, again, does not occur with the SUR model: û(a, xo, θ̂, γ̂) = û(a, xm, γ̂) has two

solutions for a, a∗ ≃ 0.277 and a∗∗ ≃ 1.040, and both of them fall within the data-range

[-3.786, 4.753]. So voters whose bliss points are to the right of 1.040 are closer to Mc-

Cain, but their estimated utility is higher for Obama. A reader may naturally ask if these

respondents do rank Obama above McCain by providing a higher thermometer score to

Obama. 105 respondents have their bliss points to the right of 1.040. Out of these 105

respondents, 21 rate Obama higher than McCain and 15 rate them equally.
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6.2 Constructing the policy space using the reported positions of only

two stimuli

In Section 4, I have contended that it is crucial to consider more than just two stimuli

when constructing the policy space. Nevertheless, by focusing on respondents’ reported

positions for just two stimuli, namely Obama and McCain, the Aldrich-McKelvey technical

assumption (i) which is that the sum of the true locations is zero and the sum of squares

equal to one fully determines the locations of the stimuli if it is combined with an extra

assumption (ii) that the researcher knows that McCain is located to the right of Obama,

i.e., xm > xo. Under these two assumptions, the obtained locations are xo = −
√

1
2

and xm =
√

1
2
; see Remark C2 in Appendix C for more details. Some readers may be

curious about the results when using only these two stimuli to build the policy space.

This subsection does so, providing a brief description of the specific issues in the coding

and the results.

First, I think it prudent to emphasize that if one constructs the policy space using

only two stimuli, the basicspace package in the R environment cannot be used because the

Aldrich-McKelvey procedure per se is not applicable. Indeed, the additional assumption

(ii) xm > xo is not part of the Aldrich-McKelvey assumptions. While it is a priori credible

to assume that the researcher knows McCain’s position is to the right of Obama, when

working with only two stimuli to define the policy space, a customized (simple) coding

procedure becomes necessary. I have first to assign the values of −
√

1
2
and

√
1
2
to xo and

xm. With the reported positions x̃i,o and x̃i,m of the stimuli and their location xo and

xm, I then estimate the respondent-specific distortion parameters ci and wi using OLS,

following the Aldrich-McKelvey method. Finally, I use these distortion parameters and

each respondent i’s self-placement ãi to obtain the bliss points ai, i = 1, . . . , N , in the

common space.
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As mentioned in Section 4, considering only two stimuli increases the number of

instances where there is no variability in the reported positions of these stimuli (i.e.,

x̃i,o = x̃i,m). Specifically, 89 respondents are affected when constructing the Discrete

Choice sample (versus 26 in Section 4), and 109 when creating the SUR sample (versus

34 in Section 4). Consequently, it is not surprising that both the Discrete choice and SUR

samples consist of fewer respondents than in Sections 4 and 5 (1278 versus 1320 and 1398

versus 1449, respectively).

Table E2 in Appendix E provides the results. Observe that the bootstrap method is

still attractive for testing the single-crossing hypothesis given its analytical complexity.

But if the number of stimuli to build the policy space is two, the reported positions of

these stimuli by the respondents become irrelevant to determine their location in a first

step: whatever the sample, xo = −
√

1
2
and xm =

√
1
2
. Hence there is no randomness in

xo and xm, nor in ai, i = 1, . . . , N : it is as if these variables were observed variables, and

there is no two-step estimation problem here. So the bootstrap procedure is only applied

to the second-stage regressions. Given that, the percentile confidence intervals for θ and

γ are not necessary. Nevertheless, Table E2 includes these percentile confidence intervals

to have a homogeneous presentation of the different tables of results. Besides, they are

provided because they could have lead to different conclusions compared to the simple t-

tests. However, this is not the case, and the results are broadly similar to those of Tables

2 and E1. First, the estimated valence advantage for Obama always differs significantly

from zero. Second, γ̂ is always significantly less than one. Ultimately, the single-crossing

property is also rejected in both the discrete choice and SUR models. Similar to Sections

5 and 6.1, the equation û(a, xo, θ̂, γ̂) = û(a, xm, γ̂) based on the discrete choice estimates

has two solutions in a, a∗ and a∗∗, but a∗∗ falls outside the data-range. This issue, again,

does not occur with the SUR model: û(a, xo, θ̂, γ̂) = û(a, xm, γ̂) has two solutions for
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a, and both of them fall within the data-range; more details are provided at the end of

Appendix E.

6.3 Other waves of the ANES

In Section 5, as well as in Subsections 6.1 and 6.2, I have shown that adding a valence-

advantage parameter to Obama over McCain in the spatial model is supported by both the

discrete choice and SUR models. Additionally, both econometric models provide results

which are consistent with a γ which is less than 1. The various tests also reject the single-

crossing hypothesis in both models. Thus, the results show qualitative similarity across

both models. However, it is worth noting that if the equation û(a, xo, θ̂, γ̂) = û(a, xm, γ̂)

has two solutions in a in both models, the “ends against the middle” split of the voters

is primarily confirmed by the SUR estimates. Specifically, if the equation û(a, xo, θ̂, γ̂) =

û(a, xm, γ̂) based on the discrete choice estimates has two solutions in a, and these two

solutions belong to the theoretical policy space R, one of this solution is always outside

the data-range. This discrepancy does not occur with the SUR estimates where the two

solutions in a always belong to the data-range.

Nevertheless, one should have in mind that these results are only true for the 2008 US

Presidential election. Nothing insures that the data for other US Presidential elections are

consistent with a γ which is less than 1, nor that the single-crossing property is rejected. I

have also investigated the 2012, 2016 and 2020 US Presidential elections, and I document

the results below. Before to step any further, note that I proceed like in Section 4 to build

the different estimation samples. In particular, I always consider four stimuli to build the

policy space of each election (the Democratic and the Republican candidates, as well as

their respective party).

Table 3 provides the discrete choice estimates. The first result concerns the estimated

exponent parameter γ̂. It is higher than one in the 2016 Presidential election (Column
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(B)). In the other elections (Columns (A) and (C)), γ̂ is less than one, but the null

H0 : γ ≥ 1 is never rejected at the 5 percent significance level. So the data in these

different waves of the ANES are consistent with the hypothesis that γ is higher than one.

If so, given Property (3) in Corollary 1, the single-crossing property is always satisfied.

In line with this finding, note that the achieved significance level of the bootstrap single-

crossing test is always larger than 0.05. So we conclude that the Discrete choice samples

in waves 2012, 2016 and 2020 are consistent with the single-crossing hypothesis.

Observe, however, that the 2012 Presidential election is a borderline case in Table 3:

we have failed to reject the single-crossing hypothesis at the 5 percent significance level,

but we would have rejected this hypothesis at the 10 percent significance level given that

the achieved significance level is 0.051. Similarly, the percentile 95 percent confidence

interval based on a lower tailed test for γ is (−∞, 1.003] when the Discrete choice sample

is considered, but the percentile 90 percent confidence interval based on a lower tailed test

is (−∞, 0.969]. So γ̂ is not significantly less than one at level 0.05, but it is at level 0.10.

Concerning the SUR estimates, the results are reported in Table 4. As for the 2008

Presidential election, the estimates γ̂ with the SUR models are much lower than those

found for the discrete choice models. These estimates are between 0.301 and 0.338, de-

pending on the election, and they are always significantly less than one. Finally, the

single-crossing property is also rejected in the different SUR models. These results seem

at odds with those of the different discrete choice models presented in Table 3. Nonethe-

less, consider the equation based on the different SUR estimates û(a, xj , θ̂, γ̂) = û(a, xk, γ̂),

where xj is the location of the valence-advantaged candidate j and xk the location of the

opponent in a given election. This equation has always two solutions in a, but, again,

one of this solution may be outside the observed data-range. This is the case of the 2016

Presidential election: the data-range for a is [-4.140, 4.140], but the two solutions are
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Table 3: Discrete choice estimates for the 2012, 2016 and 2020
Presidential elections

(A) (B) (C)
2012 2016 2020

Obama Clinton Biden
vs vs vs

Romney Trump Trump

Democrat’s valence advantage

θ̂ 0.200 0.151 0.098
(0.015) (0.021) (0.012)

[0.169, 0.232]ii. [0.107, 0.194] [0.0733, 0.122]
Exponent parameter

γ̂ 0.881 1.045 0.953
(0.062) (0.081) (0.063)

(−∞, 1.003]iii. (−∞, 1.228] (−∞, 1.089]
Scale parameter

σ̂ 0.249 0.274 0.253
(0.011) (0.014) (0.009)

N 3836 2295 5733

Log-likelihood -1069.398 -610.061 -1456.822

Bootstrap single-crossing testiv.

ÂSL 0.051 0.736 0.235
Notes: i. Standard errors are in parentheses.
ii. The intervals in brackets below the estimated standard errors of θ̂ correspond to
the percentile 95 percent confidence intervals for the parameter. These intervals are
equal-tailed: they are the distance between the lower 0.025 and upper 0.025 quantiles
of B = 999 bootstrap estimates of the parameter of interest. For instance, the interval
[0.169,0.232] below the estimated standard error of θ̂ in Column (A) corresponds to the

percentile 95 percent confidence interval [θ̂∗
0.025, θ̂

∗

0.975] for θ, where θ̂∗
0.025 = 0.169 is

the lower 0.025 and θ̂∗
0.975 = 0.232 the upper 0.025 quantiles of the B = 999 bootstrap

estimates θ̂∗(b), b = 1, . . . , B.
iii. The intervals below the estimated standard errors of γ̂ correspond to the percentile 95
percent confidence intervals based on a lower one-tailed alternative test. For instance, the
interval (−∞, 1.003] below the estimated standard error of γ̂ in Column (A) corresponds
to the percentile 95 percent confidence interval (−∞, γ̂∗

0.95] for γ, where γ̂∗

0.95 = 1.003 is
the upper 0.05 quantiles of the B = 999 bootstrap estimates γ̂∗(b), b = 1, . . . , B.

iv. Bootstrap single-crossing test (ÂSL) provides the achieved significance level of the
test H0 : “the single-crossing property holds” versus HA : “the single-crossing property
does not hold”. For instance, in the 2012 Presidential election, for each bootstrap sample,
I obtain first the actual location of Obama (x∗

o) and Romney (x∗

r) and the bliss point

a∗i of each respondent i, and then I estimate the conditional logit to obtain θ̂∗ and
γ̂∗. Given that there are B = 999 bootstrap samples, there are B sets of parameter
estimates [x∗

ob, x
∗

rb, θ̂
∗

b , γ̂
∗

b ], b = 1, . . . , B. I check for each set of parameter estimates if
the single-crossing property holds. The proportion of bootstrap samples for which the
single-crossing property holds is the estimate of the achieved significance level:

ÂSL = 1−
♯{b = 1, . . . , B ; [(|x∗

ob − x∗

rb|
γ̂∗

b > θ̂∗b and γ̂∗

b < 1) or (|x∗

ob − x∗

rb|
γ̂∗

b = θ̂∗b and γ̂∗

b = 1)]}

B

The method is discussed in Appendix D.
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a∗ ≃ 0.058 and a∗∗ ≃ 8.124; so a∗∗ falls outside the data-range. In the case of the 2020

Presidential election, the data-range for a is [-6.214, 4.434], and the two solutions in a are

a∗ ≃ 0.136 and a∗∗ ≃ 3.617. If this result seems to confirm the “ends against the middle”

split of the voters, it does not. Indeed, there is only one respondent who has her bliss

point ai = 4.434 greater than 3.617; this is negligible. Concerning the 2012 Presidential

election, the data-range is [-5.235, 6.398], and the two solutions in a are a∗ ≃ 0.146 and

a∗∗ ≃ 2.514. Voters whose bliss points are to the right of 2.514 are closer to Romney,

but their estimated utility is higher for Obama. 13 respondents have their bliss point to

the right of 2.514. Out of these 13 respondents, 3 provide a higher thermometer score to

Obama, and 3 rate Obama and Romney equally.

Thus, in contrast to the other SUR estimates of Table 4 where the single-crossing hy-

pothesis is rejected but broadly satisfied in the data-range, the single-crossing hypothesis

is rejected and is not satisfied in the data-range in 2012. It raises the question: what is

so special about the 2012 (and 2008) Presidential election? The short answer is: Obama.

His estimated valence-advantage over Romney in 2012 (0.159) is higher than the one of

Clinton over Trump in 2016 (0.080). As stated by Property (3) in Corollary 1, if θ is ex-

cessively high, i.e., θ > |xj − xk|
γ , the single-crossing property is satisfied (even if γ < 1).

Nevertheless, suppose that θ is relatively high, but the condition for the single-crossing

property not being satisfied holds, i.e., |xj − xk|
γ > θ (and γ < 1), as stated by Property

(2) of Proposition 1, which is the case in the 2012 Presidential election. If so, given that

|xj − xk|
γ > θ (and γ < 1), the single-crossing property is not satisfied in the theoretical

policy space R. Moreover, as I will explain below, given that θ is relatively high, it is also

not satisfied in the data-range. In contrast, if |xj −xk|
γ > θ (and γ < 1), but θ is too low,

as is the case in the 2016 Presidential election, the single-crossing property is not satisfied

in the theoretical policy space but it is satisfied in the data-range. As depicted in Figure F1
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Table 4: SUR estimates for the 2012, 2016 and 2020 Presidential
elections

(A) (B) (C)
2012 2016 2020

Obama Clinton Biden
vs vs vs

Romney Trump Trump

Democrat’s valence advantage

θ̂ 0.159 0.080 0.115
(0.014) (0.017) (0.010)

[0.136, 0.187]ii. [0.049,0.113] [0.094,0.140]
Exponent parameter

γ̂ 0.305 0.338 0.301
(0.023) (0.033) (0.018)

(−∞, 0.343]iii. (−∞, 0.381] (−∞, 0.337]
Scale parameter

ĉ 99.303 82.795 95.652
(3.909) (4.369) (3.222)

β̂ 65.352 56.273 67.948
(3.981) (4.506) (3.301)

N 4938 3125 6540

Log-likelihood -45766.23 -29479.11 -60960.36

Bootstrap single-crossing testiv.

ÂSL 0 0 0
Notes: i. Standard errors are in parentheses.
ii. The intervals in brackets below the estimated standard errors of θ̂ correspond to
the percentile 95 percent confidence intervals for the parameter. These intervals are
equal-tailed: they are the distance between the lower 0.025 and upper 0.025 quantiles
of B = 999 bootstrap estimates of the parameter of interest. For instance, the interval
[0.136, 0.187] below the estimated standard error of θ̂ in Column (A) corresponds to the

percentile 95 percent confidence interval [θ̂∗
0.025, θ̂

∗

0.975] for θ, where θ̂∗
0.025 = 0.136 is

the lower 0.025 and θ̂∗
0.975 = 0.187 the upper 0.025 quantiles of the B = 999 bootstrap

estimates θ̂∗(b), b = 1, . . . , B.
iii. The intervals below the estimated standard errors of γ̂ correspond to the percentile 95
percent confidence intervals based on a lower one-tailed alternative test. For instance, the
interval (−∞, 0.343] below the estimated standard error of γ̂ in Column (A) corresponds
to the percentile 95 percent confidence interval (−∞, γ̂∗

0.95] for γ, where γ̂∗

0.95 = 0.343 is
the upper 0.05 quantiles of the B = 999 bootstrap estimates γ̂∗(b), b = 1, . . . , B.

iv. Bootstrap single-crossing test (ÂSL) provides the achieved significance level of the
test H0 : “the single-crossing property holds” versus HA : “the single-crossing property
does not hold”. For instance, in the 2012 Presidential election, for each bootstrap sample,
I obtain first the actual location of Obama (x∗

o) and Romney (x∗

r) and the bliss point a∗i
of each respondent i, and then I estimate the SUR to obtain θ̂∗ and γ̂∗. Given that there
are B = 999 bootstrap samples, there are B sets of parameter estimates [x∗

ob, x
∗

rb, θ̂
∗

b , γ̂
∗

b ],
b = 1, . . . , B. I check for each set of parameter estimates if the single-crossing property
holds. The proportion of bootstrap samples for which the single-crossing property holds
is the estimate of the achieved significance level:

ÂSL = 1−
♯{b = 1, . . . , B ; [(|x∗

ob − x∗

rb|
γ̂∗

b > θ̂∗b and γ̂∗

b < 1) or (|x∗

ob − x∗

rb|
γ̂∗

b = θ̂∗b and γ̂∗

b = 1)]}

B

The method is discussed in Appendix D.
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of Appendix F, this phenomenon occurs because, given that the single-crossing property

is not satisfied in the theoretical policy space, the length of the interval (a∗, a∗∗) dimin-

ishes as the valence-advantage parameter θ increases. More precisely, the lower bound a∗

increases while the upper bound a∗∗ decreases. Thus, in the 2016 Presidential election

where the estimated valence-advantage θ̂ of Clinton over Trump is low, the length of the

interval (a∗, a∗∗) is large and the upper bound a∗∗ falls outside the observed data-range.

And in the 2012 Presidential election where the estimated valence-advantage θ̂ of Obama

over Romney is relatively high, the length of the interval (a∗, a∗∗) is smaller, so a∗ and a∗∗

fall within the observed data-range.

7 Conclusion

In order to add realism into the spatial model of voting, various authors have added a

valence parameter into the Downsian utility function. In this framework, the value that the

exponent on the distance should take is almost never discussed. Typically, many theorists,

but also empiricists, assume an exponent of 2 to obtain a mathematically more tractable

model. The problem is that the single-crossing property is also implicitly assumed in

valence models wherein the distance appears with an exponent of 2, as demonstrated in

this paper. More generally, this paper first establishes a necessary and sufficient condition

for the single-crossing property not being satisfied in an additive-valence model. A part

of this condition highlights that the single-crossing may not be satisfied if the exponent is

less than one.

It is not merely a theoretical peculiarity. We show, through two distinct econometric

frameworks applied to the 2008 US Presidential election, that the estimated exponent pa-

rameter is significantly less than one. Furthermore, the single-crossing property is rejected

in both frameworks. Nevertheless, in one framework, if the single-crossing property is not
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satisfied in the theoretical policy space, i.e., the real line, it is satisfied in the data-range.

This discrepancy does not occur in the other framework wherein the single-crossing is

not satisfied in the data-range, and the “ends against the middle” split of the voters is

confirmed.

These results highlight that an exponent parameter which is less than one or the fact

that the single-crossing property does not hold may occur. Nevertheless, it is essential to

emphasize that these results are not common in more recent US Presidential elections,

or, at least, are much more ambiguous. In the 2012, 2016, and 2020 US Presidential

elections, one of our frameworks always provides results consistent with the hypothesis

of an exponent parameter higher than one, which is a sufficient condition for the single-

crossing property being satisfied. In line with these results, the single-crossing hypothesis

is not rejected. In the other framework, the results are consistent with an exponent

parameter which is less than one. However, an “ends against the middle” split of the

voters is not found, except in the 2012 election.
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A Proof of Proposition 1

(1) We prove first that (|x1 − x2|
γ > θ and γ < 1) is a sufficient condition for the

single-crossing property not being satisfied. A voter whose bliss point is a strictly prefers

candidate 1 if u(a, x1, θ1, γ)−u(a, x2, θ2, γ) > 0. Let f(a) = u(a, x1, θ1, γ)−u(a, x2, θ2, γ) =

θ−|x1−a|γ+|x2−a|γ . Note that a 7→ u(a, x1, θ1, γ) and a 7→ −u(a, x2, θ2, γ) are continuous

on R. The sum of two continuous functions on R is also continuous on R, so a 7→ f(a) is

continuous on R.
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Now, recall that x1 > x2, and note the three preliminary results (A1), (A2) and (A3):

If a ∈ (−∞, x2], then f(a) = θ − (x1 − a)γ + (x2 − a)γ (A1)

If a ∈ (x2, x1), then f(a) = θ − (x1 − a)γ + (a− x2)
γ (A2)

If a ∈ [x1,+∞), then f(a) = θ − (a− x1)
γ + (a− x2)

γ (A3)

We study f(a) on these three intervals, and show that f(a) = 0 has two solutions in a if

(|x1 − x2|
γ > θ and γ < 1).

• If a ∈ (−∞, x2], then, using Equation (A1), f ′(a) = γ(x1 − a)γ−1 − γ(x2 − a)γ−1.

Given that x1 > x2, we have x1 − a > x2 − a ⇔ 1
x1−a

< 1
x2−a

. Given that γ < 1, we

obtain
(

1
x1−a

)1−γ

<
(

1
x2−a

)1−γ

⇔ (x1 − a)γ−1
< (x2 − a)γ−1. Hence, f ′(a) < 0, and

f(a) is strictly decreasing on (−∞, x2]. Thus, f(a) has a minimum at a = x2 and a

maximum when a → −∞. If a = x2, Equation (A1) becomes f(x2) = θ−(x1−x2)
γ.

Given that (x1 − x2)
γ > θ, then f(x2) < 0. Now, if a → −∞, the limit of Equation

(A1) is indeterminate: lima→−∞ θ− (x1− a)γ +(x2− a)γ = θ−∞+∞. To evaluate

this indeterminate form, we consider a linear Taylor series expansion. First, we

rewrite Equation (A1) as:

f(a) = θ − (−a)γ
[
1 +

(
−x1

a

)]γ
+ (−a)γ

[
1 +

(
−x2

a

)]γ
(A4)

The linear Taylor series expansion of a function g(z) = (1 + z)α around the point

z = 0 is g(z) = 1 + αz + o(z), where o is the little-o notation. Now, note that

lima→−∞

(
−x1

a

)
= 0 and lima→−∞

(
−x2

a

)
= 0. If so, Equation (A4) can be rewritten
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as:

f(a) = θ−(−a)γ
[
1 + γ

(
−x1

a

)
+ o

(
−x1

a

)]
+(−a)γ

[
1 + γ

(
−x2

a

)
+ o

(
−x2

a

)]
as a → −∞

Given that o
(
−x1

a

)
= o

(
1
a

)
and o

(
−x2

a

)
= o

(
1
a

)
, and o

(
1
a

)
+ o

(
1
a

)
= o

(
1
a

)
, we

obtain:

f(a) = θ + (−a)γ
[
−1 + γ

(x1

a

)
+ 1− γ

(x2

a

)
+ o

(
1

a

)]
as a → −∞ (A5)

Simplifying and rearranging Equation (A5), we have:

f(a) = θ + (−a)γ
[
γ

a
(x1 − x2) + o

(
1

a

)]
as a → −∞

= θ +
(−a)γ

a
[γ(x1 − x2) + o (1)] as a → −∞

= θ +
1

(−a)1−γ
[γ(x1 − x2) + o (1)] as a → −∞ (A6)

Now, note that 1
(−a)1−γ = o(1), so f(a) = θ + o(1), with o(1) a function whose limit

is zero when a → −∞. If so, we have shown that lima→−∞ f(a) = θ.

To sum up, we have shown that f(a) is strictly decreasing on (−∞, x2] given that

γ < 1, with lima→−∞ f(a) = θ > 0 and f(x2) = θ − (x1 − x2)
γ < 0 given that

θ < (x1 − x2)
γ . If so, there exists a unique a∗ ∈ (−∞, x2] such that f(a∗) = 0.

• If a ∈ (x2, x1), then, using Equation (A2), f ′(a) = γ(x1−a)γ−1+γ(a−x2)
γ−1. Given

that x1 > a > x2, we obtain f ′(a) > 0, so f(a) is strictly increasing on (x2, x1).

Thus, f(a) has a minimum at a = x2 and a maximum at a = x1. If a = x2, Equation

(A2) becomes f(x2) = θ − (x1 − x2)
γ. Given that (x1 − x2)

γ > θ, then f(x2) < 0.

If a = x1, Equation (A2) becomes f(x1) = θ + (x1 − x2)
γ . Given that x1 > x2, we

obtain f(x1) > 0. Since f(a) is strictly increasing on (x2, x1), with f(x2) < 0 and

f(x1) > 0, there exists a unique a∗∗ ∈ (x2, x1) such that f(a∗∗) = 0.
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• If a ∈ [x1,+∞), then, using Equation (A3), f ′(a) = −γ(a − x1)
γ−1 + γ(a− x2)

γ−1.

Given that x1 > x2, we have a− x1 < a− x2 ⇔
1

a−x1
> 1

a−x2
. Given that γ < 1, we

obtain
(

1
a−x1

)1−γ

>
(

1
a−x2

)1−γ

⇔ (a− x1)
γ−1

> (a− x2)
γ−1. Hence, f ′(a) < 0, so

f(a) is strictly decreasing on [x1,+∞). Thus, f(a) has a maximum at a = x1 and a

minimum when a → +∞. If a = x1, Equation (A3) becomes f(x1) = θ+(x1−x2)
γ.

Given that x1 > x2, f(x1) > 0. Now, if a → +∞, the limit of Equation (A3) is

indeterminate: lima→+∞ θ − (a − x1)
γ + (a − x2)

γ = θ −∞ +∞. To evaluate this

indeterminate form, I consider a linear Taylor series expansion. First, Equation (A3)

is rewritten as: f(a) = θ−aγ
[
1 +

(
−x1

a

)]γ
+aγ

[
1 +

(
−x2

a

)]γ
. The linear Taylor series

expansion of a function g(z) = (1+z)α around the point z = 0 is g(z) = 1+αz+o(z).

Note that lima→+∞

(
−x1

a

)
= 0 and lima→+∞

(
−x2

a

)
= 0. If so, f(a) can be rewritten

as: f(a) = θ − aγ
[
1 + γ

(
−x1

a

)
+ o

(
−x1

a

)]
+ aγ

[
1 + γ

(
−x2

a

)
+ o

(
−x2

a

)]
as a → +∞.

Given that o
(
−x1

a

)
= o

(
1
a

)
and o

(
−x2

a

)
= o

(
1
a

)
, and o

(
1
a

)
+ o

(
1
a

)
= o

(
1
a

)
, we

obtain:

f(a) = θ +
1

a1−γ
[γ (x1 − x2) + o (1)] as a → +∞ (A7)

Given that 1
(a)1−γ = o(1), we have f(a) = θ + o(1), with o(1) a function whose limit

is zero when a → +∞. If so, we have shown that lima→+∞ f(a) = θ.

To sum up, we have shown that f(a) is strictly decreasing on [x1,+∞) given that

γ < 1, with lima→+∞ f(a) = θ > 0. If so, f(a) > 0 ∀a ∈ [x1,+∞).

Conclusion: we have shown that (|x1 − x2|
γ > θ and γ < 1) is a sufficient condition for f(a) = 0

having two solutions in a: there exists a unique a∗ ∈ (−∞, x2] such that f(a∗) = 0,

and there exists a unique a∗∗ ∈ (x2, x1) such that f(a∗∗) = 0. Thus, (|x1 − x2|
γ >

θ and γ < 1) is a sufficient condition for the single-crossing property not being

satisfied.
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(2) We prove now that (|x1 − x2|
γ = θ and γ = 1) is also a sufficient condition for the

single-crossing property not being satisfied. Consider the interval given by (A1).

• If a ∈ (−∞, x2], then, using Equation (A1), f ′(a) = γ(x1 − a)γ−1 − γ(x2 − a)γ−1.

Given that γ = 1, we obtain f ′(a) = 0, so f(a) is a constant for all a ∈ (−∞, x2].

It means that ∀a ∈ (−∞, x2], f(a) = f(x2). Hence, Equation (A1) is f(a) =

θ − (x1 − x2)
γ. Given that |x1 − x2|

γ = θ, we obtain f(a) = 0 ∀a ∈ (−∞, x2], i.e.,

there are infinitely many a ∈ (−∞, x2] such that f(a) = 0. This case is depicted by

Figure 2 in the main text.

Conclusion: we have shown that (|x1 − x2|
γ = θ and γ = 1) is also a sufficient condition for

f(a) = 0 having infinitely many solutions in a ∈ (−∞, x2]. Thus, (|x1−x2|
γ = θ and

γ = 1) is a sufficient condition for the single-crossing property not being satisfied.

(3) It remains to prove that [(|x1 − x2|
γ > θ and γ < 1) or (|x1 − x2|

γ = θ and γ = 1)]

is a necessary condition for the single-crossing property not being satisfied, i.e., if the

single-crossing property is not satisfied, then [(|x1−x2|
γ > θ and γ < 1) or (|x1−x2|

γ = θ

and γ = 1)]. Denote P = [(|x1 − x2|
γ > θ and γ < 1) or (|x1 − x2|

γ = θ and γ = 1)]. The

negation of this composite property, ¬P , is, using De Morgan’s laws:

¬P = ¬[(|x1 − x2|
γ > θ and γ < 1) or (|x1 − x2|

γ = θ and γ = 1)] (A8)

= [¬(|x1 − x2|
γ > θ and γ < 1) and ¬(|x1 − x2|

γ = θ and γ = 1)]

= [(|x1 − x2|
γ ≤ θ or γ ≥ 1) and (|x1 − x2|

γ 6= θ or γ 6= 1)]

Rearranging this property by using the distributive law, we obtain:

¬P = [(|x1 − x2|
γ ≤ θ or γ ≥ 1) and |x1 − x2|

γ 6= θ] or [(|x1 − x2|
γ ≤ θ or γ ≥ 1) and γ 6= 1]

= [(|x1 − x2|
γ ≤ θ and |x1 − x2|

γ 6= θ) or (γ ≥ 1 and |x1 − x2|
γ 6= θ)]

or [(|x1 − x2|
γ ≤ θ and γ 6= 1) or (γ ≥ 1 and γ 6= 1)]
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Note that (γ ≥ 1 and γ 6= 1) = (γ > 1), as well as (|x1 − x2|
γ ≤ θ and |x1 − x2|

γ 6= θ) =

(|x1 − x2|
γ < θ). So simplifying and rearranging ¬P , we obtain:

¬P = (γ > 1) or (|x1 − x2|
γ < θ) or (γ 6= 1 and |x1 − x2|

γ ≤ θ)

or (γ ≥ 1 and |x1 − x2|
γ 6= θ) (A9)

Now, note that a statement and its contrapositive are equivalent. So proving the statement

“the single-crossing property is not satisfied implies P” is equivalent to prove its contrapos-

itive “¬P implies the single-crossing property”. We proceed in four steps. We first show

that (γ > 1) implies the single-crossing property. Second, we show that (|x1 − x2|
γ < θ)

implies the single-crossing property. Third, we show that (γ 6= 1 and |x1 − x2|
γ ≤ θ)

implies the single-crossing property. Fourth, we show that (γ ≥ 1 and |x1 − x2|
γ 6= θ)

implies the single-crossing property.

First step. We first show that (γ > 1) implies the single-crossing property.

• If a ∈ (−∞, x2], then, using Equation (A1), f ′(a) = γ(x1 − a)γ−1 − γ(x2 − a)γ−1.

Given that x1 > x2 and γ > 1, we obtain that f ′(a) > 0. So f(a) is strictly

increasing on (−∞, x2] if γ > 1.

• If a ∈ (x2, x1), then, using Equation (A2), f ′(a) = γ(x1 − a)γ−1 + γ(a − x2)
γ−1.

Given that x1 > a > x2, we have f
′(a) > 0, so f(a) is strictly increasing on (x2, x1).

• If a ∈ [x1,+∞), then, using Equation (A3), f ′(a) = −γ(a − x1)
γ−1 + γ(a− x2)

γ−1.

Given that x1 > x2 and γ > 1, we have a−x1 < a−x2 ⇔ (a−x1)
γ−1 < (a−x2)

γ−1.

Hence, f ′(a) > 0, so f(a) is strictly increasing on [x1,+∞).

To sum up, we have shown that f(a) is strictly increasing on R if γ > 1. Recall that

f(a) is continuous on R. Therefore, there is at most one a∗ ∈ R such that f(a∗) = 0

if γ > 1. Thus, γ > 1 implies the single-crossing property.
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Second step. We now show that |x1 − x2|
γ < θ implies the single-crossing property.

we have shown in the First step that γ > 1 implies the single-crossing property. Thus,

(|x1 − x2|
γ < θ and γ > 1) implies the single-crossing property. If so, we only need to

show that (|x1 − x2|
γ < θ and γ ≤ 1) implies the single-crossing property.

• If a ∈ (−∞, x2], then, using Equation (A1), f ′(a) = γ(x1 − a)γ−1 − γ(x2 − a)γ−1.

Given that x1 > x2, we have x1 − a > x2 − a ⇔ 1
x1−a

< 1
x2−a

. Given that γ ≤ 1,

we obtain
(

1
x1−a

)1−γ

≤
(

1
x2−a

)1−γ

⇔ (x1 − a)γ−1 ≤ (x2 − a)γ−1. Hence, f ′(a) ≤ 0,

and f(a) is weakly decreasing on (−∞, x2]. Thus, f(a) has a minimum at a = x2

on the interval (−∞, x2]. If a = x2, we obtain from Equation (A1) that f(x2) =

θ − (x1 − x2)
γ. Given that (x1 − x2)

γ < θ, then f(x2) > 0. Hence, f(a) > 0

∀a ∈ (−∞, x2].

• If a ∈ (x2, x1), then, using Equation (A2), f ′(a) = γ(x1 − a)γ−1 + γ(a − x2)
γ−1.

Given that x1 > a > x2, we have f
′(a) > 0, so f(a) is strictly increasing on (x2, x1).

Thus, f(a) has a minimum at a = x2. We have f(x2) = θ − (x1 − x2)
γ > 0, given

that (x1 − x2)
γ < θ. So f(a) > 0 ∀a ∈ (x2, x1).

• If a ∈ [x1,+∞), then, using Equation (A3), f ′(a) = −γ(a − x1)
γ−1 + γ(a− x2)

γ−1.

Given that x1 > x2, we have a − x1 < a − x2 ⇔ 1
a−x1

> 1
a−x2

. Given that γ ≤ 1,

we obtain
(

1
a−x1

)1−γ

≥
(

1
a−x2

)1−γ

⇔ (a− x1)
γ−1 ≥ (a− x2)

γ−1. Hence, f ′(a) ≤ 0,

and f(a) is weakly decreasing on [x1,+∞). Thus, f(a) has a minimum when a →

+∞. As already shown (see Equation (A7)), lima→+∞ f(a) = θ > 0. So f(a) > 0

∀a ∈ [x1,+∞).

To sum up, we have shown that f(a) > 0 on R if (γ ≤ 1 and |x1 − x2|
γ < θ). Thus,

(γ ≤ 1 and |x1 − x2|
γ < θ) implies the single-crossing property.
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Third step. We now show that (γ 6= 1 and |x1 − x2|
γ ≤ θ) implies the single-crossing

property. Given that we have already shown in the First step that γ > 1 implies the

single-crossing property, and given that we have already shown in the Second step that

|x1 − x2|
γ < θ also implies the single-crossing property, we only need to show that (γ <

1 and |x1 − x2|
γ = θ) implies the single-crossing property.

• If a ∈ (−∞, x2], then, using Equation (A1), f ′(a) = γ(x1 − a)γ−1 − γ(x2 − a)γ−1.

Given that x1 > x2, we have x1 − a > x2 − a ⇔ 1
x1−a

< 1
x2−a

. Given that γ < 1,

we obtain
(

1
x1−a

)1−γ

<
(

1
x2−a

)1−γ

⇔ (x1 − a)γ−1
< (x2 − a)γ−1. Hence, f ′(a) < 0,

and f(a) is strictly decreasing on (−∞, x2]. Thus, f(a) has a minimum at a = x2

on the interval (−∞, x2]. If a = x2, we obtain from Equation (A1) that f(x2) =

θ− (x1−x2)
γ. Given that (x1−x2)

γ = θ, then f(x2) = 0. Given that f(a) is strictly

decreasing in a, there exists a unique a∗ ∈ (−∞, x2] such that f(a∗) = 0 and it is

a∗ = x2.

• If a ∈ (x2, x1), then, using Equation (A2), f ′(a) = γ(x1 − a)γ−1 + γ(a − x2)
γ−1.

Given that x1 > a > x2, we have f
′(a) > 0, so f(a) is strictly increasing on (x2, x1).

So f(a) > 0 ∀a ∈ (x2, x1).

• If a ∈ [x1,+∞), then, using Equation (A3), f ′(a) = −γ(a − x1)
γ−1 + γ(a− x2)

γ−1.

Given that x1 > x2, we have a− x1 < a− x2 ⇔
1

a−x1

> 1
a−x2

. Given that γ < 1, we

obtain
(

1
a−x1

)1−γ

>
(

1
a−x2

)1−γ

⇔ (a− x1)
γ−1

> (a− x2)
γ−1. Hence, f ′(a) < 0, and

f(a) is strictly decreasing on [x1,+∞). Thus, f(a) has a minimum when a → +∞.

As already shown (see Equation (A7)), lima→+∞ f(a) = θ > 0. So f(a) > 0 ∀a ∈

[x1,+∞).

To sum up, we have shown that if (|x1 − x2|
γ = θ and γ < 1), there exists a unique

a∗ ∈ R such that f(a∗) = 0 and it is a∗ = x2. So (|x1 − x2|
γ = θ and γ < 1) implies

the single-crossing property.
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Fourth step. We now show that (γ ≥ 1 and |x1 − x2|
γ 6= θ) implies the single-crossing

property. Given that we have shown in the First step that γ > 1 implies the single-crossing

property, and given that we have also shown in the Second step that |x1 − x2|
γ < θ also

implies the single-crossing property, we only need to show that (γ = 1 and |x1−x2|
γ > θ)

implies the single-crossing property.

• If a ∈ (−∞, x2], then, using Equation (A1), f ′(a) = γ(x1 − a)γ−1 − γ(x2 − a)γ−1.

Given that γ = 1, we obtain f ′(a) = 0, so f(a) is a constant for all a ∈ (−∞, x2].

It means that ∀a ∈ (−∞, x2], f(a) = f(x2). Hence, Equation (A1) becomes f(a) =

θ − (x1 − x2)
γ. Given that |x1 − x2|

γ > θ, we obtain f(a) < 0 ∀a ∈ (−∞, x2].

• If a ∈ (x2, x1), then, using Equation (A2), f ′(a) = γ(x1 − a)γ−1 + γ(a − x2)
γ−1.

Given that x1 > a > x2, we have f
′(a) > 0, so f(a) is strictly increasing on (x2, x1).

Thus, f(a) has a minimum at a = x2 and a maximum at a = x1. Using Equation

(A2), we obtain f(x2) = θ − (x1 − x2)
γ < 0, given that (x1 − x2)

γ > θ, and

f(x1) = θ + (x1 − x2)
γ > 0, given that θ > 0 and x1 > x2. If so, and given that

f(a) is strictly increasing on (x2, x1), there exists a unique a∗ ∈ (x2, x1) such that

f(a∗) = 0.

• If a ∈ [x1,+∞), then, using Equation (A3), f ′(a) = −γ(a − x1)
γ−1 + γ(a− x2)

γ−1.

Given that γ = 1, we obtain f ′(a) = 0, so f(a) is a constant for all a ∈ [x1,+∞).

It means that ∀a ∈ [x1,+∞), f(a) = f(x1). Hence, Equation (A3) becomes f(a) =

θ + (x1 − x2)
γ > 0 ∀a ∈ [x1,+∞).

To sum up, we have shown that if (γ = 1 and |x1 − x2|
γ > θ), there exists a unique

a∗ ∈ R such that f(a∗) = 0. Thus (γ = 1 and |x1 − x2|
γ > θ) implies the single-

crossing property.
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Conclusion: we have shown that ¬P implies the single-crossing property. Given that a

statement and its contrapositive are equivalent, we have also shown that if the single-

crossing property is not satisfied, then Property P holds, with P =[(|x1 − x2|
γ > θ and

γ < 1) or (|x1 − x2|
γ = θ and γ = 1)]. So [(|x1 − x2|

γ > θ and γ < 1) or (|x1 − x2|
γ = θ

and γ = 1)] is a necessary condition for the single-crossing property not being satisfied.�

B Interpersonal incomparability of responses

This appendix shows that respondents interpret issue scales differently. This problem

of interpersonal incomparability of responses can stem from different reasons. For instance,

some respondents may lack some relevant knowledge on political matters. If so, their self-

placement as well as the placement of the candidates are more likely to be noisy answers.

It is also possible that some respondents have relevant information and are able to provide

accurate responses in principle, but they have only a finite amount of time to process this

information and provide answers in practice; so again, their self-placement as well as

the one of the candidates are more likely to be noisy answers. Another reason is that

some respondents may exaggerate the distance between themselves and candidates they

view unfavorably. For example, a liberal respondent may place a conservative candidate

more on the right than do conservative respondents, probably to exaggerate the distance

between her and this candidate she views unfavorably. I show below that the latter

problem occurs in the Discrete choice and the SUR samples described in Section 4 and

exploited in Section 5.

Concerning the Discrete choice sample, Panel (B) in Figure B1 suggests that, on

average, voters who consider themselves as liberal (ã = 2) or extremely liberal (ã = 1)

place McCain more on the right than those who consider themselves as conservative (ã =

6) or extremely conservative (ã = 7). Indeed, Mean(x̃m|ã = 2) = 5.91 and Mean(x̃m|ã =
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1) = 5.70 while Mean(x̃m|ã = 6) = 5.24 and Mean(x̃m|ã = 7) = 4.56. Note that the

conditional means are depicted by (red) solid triangles in the box-and-whisker diagrams

of Figure B1. The conditional (0.25, 0.50, 0.75) quantiles of the box-and-whisker diagram

in Panel (B) provide a similar story, so this trend seems to be robust to outliers.

If one considers the SUR sample, the results are broadly equivalent: Panel (D) in

Figure B1 shows that voters who consider themselves as liberal (ã = 2) or extremely

liberal (ã = 1) place McCain more on the right than those who consider themselves as

conservative (ã = 6) or extremely conservative (ã = 7). Indeed, Mean(x̃m|ã = 2) = 5.88

and Mean(x̃m|ã = 1) = 5.76 while Mean(x̃m|ã = 6) = 5.19 and Mean(x̃m|ã = 7) = 4.47.

Again, this trend seems to be robust to outliers, given that the conditional (0.25, 0.50, 0.75)

quantiles in Panel (D) give a similar story.

Table B1: Statistical tests of interpersonal comparability of re-
sponses

Discrete choice sample SUR sample

(A) (B) (C) (D)

Obama (x̃o) McCain (x̃m) Obama (x̃o) McCain (x̃m)

[1] OLS estimates

β̂1,j -0.001 -0.162*** -0.001 -0.173***
(0.030) (0.025) (0.029) (0.024)
[0.960] [0.000] [0.950] [0.000]

β̂0,j 2.956*** 5.786*** 2.974*** 5.823***
(0.119) (0.111) (0.115) (0.106)

[2] Spearman’s rank correlations

ρ̂(ã, x̃j) -0.103*** -0.206*** -0.096*** -0.211***
[0.000] [0.000] [0.000] [0.000]

N 1320 1320 1449 1449

Notes: (i.) *, ** and *** represent statistical significance at the 10, 5 and 1% levels,
respectively.
(ii.) Heteroskedasticity-robust standard errors are in parentheses.
(iii.) Achieved significance levels (or p-values) of interest are in brackets [·].

Table B1 provides formal tests of this specific form of interpersonal incomparability. I

first linearly regress (via OLS) x̃i,j on ãi for each candidate j, i.e., x̃i,j = β0,j+β1,jãi+εi,j. If
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(D) McCain

SUR sample

Figure B1: Reported location of Obama (x̃o) and McCain (x̃m) conditional on self-placement
(ã) (Discrete choice and SUR samples)
Notes: The four figures represent box-and-whisker diagrams. The bottom and the top of a box are the first and third
quartile. The ends of the whiskers are the lowest datum still within 1.5 times the interquartile range from the first quartile
and the highest datum still within 1.5 times the interquartile range from the third quartile. If there are any data beyond
that distance (i.e., outliers), they are represented as circles. The conditional median is represented by a line (inside the
box). The graphics also provide the conditional mean, represented by a (red) solid triangle.
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there is interpersonal incomparability of responses for candidate j, then the null hypothesis

H0 : β1,j = 0 should be rejected. Part [1] of Table B1 shows that β̂1,j is negative

and significantly different from zero for McCain (j = m), but not for Obama (j = o).

This is true if one considers the Discrete choice or the SUR sample. It means that

liberal respondents place McCain more on the right than do conservative respondents but

conservative respondents do not place Obama more on the left than do liberal respondents.

Given the ordinal nature of the data, a Spearman’s rho between x̃j and ã has also been

considered to test the null of interpersonal comparability H0 : ρ(ã, x̃j) = 0. Part [2] of

Table B1 shows that the null is again rejected for McCain, whatever the sample; the null

is also rejected for Obama. All these results indicate a pronounced issue of interpersonal

incomparability in responses.

C The Aldrich-McKelvey procedure

In this appendix, I give a short but formal presentation of the Aldrich-McKelvey

procedure. It is a technique for estimating the positions of political stimuli (i.e., candidates

and parties) and respondent bliss points on a common issue space, using the reported

positions of the stimuli by the respondents as well as their self-placement. This appendix

permits in particular to be explicit about a technical assumption of this procedure, i.e.,

that the sum of the true locations of the stimuli is zero and the sum of squares equal

to one. I also show that if one considers only two stimuli, this technical assumption

is not sufficient to determine the locations of the stimuli. However, it fully determines

these locations if it is combined with the extra assumption that the researcher knows the

stimulus the more conservative; see Remark C2. The appendix also permits to explain

why the absence of variability in the reported location of the stimuli makes it impossible to

estimate the Aldrich-McKelvey respondent-specific distortion parameters, denoted ci and
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wi. As noticed in the main text, these distortion parameters, which appear in Equation

(C1), are crucial to obtain the respondents’ bliss points in the same policy space as the

actual locations of the stimuli.

For each respondent i, the data reveal her reported positions of the stimuli locations,

i.e., the responses x̃i,j, j = 1, . . . , J . These responses follow a two-step process. The first

step has to do with respondent i’s perception of the stimuli locations xi,j , j = 1, . . . , J .

Respondent i retrieves relevant information on the actual locations xj , j = 1, . . . , J , of

the stimuli on R. However, her perception is distorted. One reason of this distortion

is that respondent i pushes the stimuli she views unfavorably toward the extremes, as

shown in Appendix B. But other reasons may also generate a distortion in her perception,

as described at the beginning of Appendix B. Whatever the reason for this distortion,

her perception xi,j of the stimulus j is subject to an error term εi,j, such that xi,j =

xj + εi,j. Note that εi,j satisfies the traditional Gauss-Markov assumptions. In a second

step, respondent i reports an answer x̃i,j for each stimulus j to the interviewer. This

answer is assumed to be a (linear) distortion of her perception xi,j since there is not

a common metric for placing the stimuli. Indeed, the response options offered by the

question may appear as vague: the exact boundary between slightly liberal (i.e., [3] on the

7-point scale) and liberal (i.e., [2]) may be unclear. If so, there are the already mentioned

distortion parameters ci and wi for each respondent i such that (Aldrich and McKelvey,

1977, Equation (3), p.114):

xi,j = xj + εi,j = ci + wix̃i,j (C1)

Remark C1 The assumption that the response is a two-step or more generally a multi-

step process is in line with the current literature on the psychology of survey responses.
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For instance, Tourangeau et al. (2000) consider that a survey response process involves

four stages: (i) understanding the question, (ii) retrieving relevant information, (iii) using

this information to make a judgment, and (iv) selecting and reporting of an answer. Each

stage can add a level of noise to the responses. Stages (i)-(iii) correspond to the first step

in the Aldrich-McKelvey procedure, and stage (iv) corresponds to the second step.

Now, consider the following matrix notation:

X =




x1

x2

...

xJ




X̃i =




1 x̃i,1

1 x̃i,2

...
...

1 x̃i,J




δi =




ci

wi


 and F =




1

1

...

1




(C2)

If the vector X of actual locations were known, then the best linear unbiased estimator δ̂i

of the distortion parameters for respondent i would be δ̂i = (X̃ ′
iX̃i)

−1X̃ ′
iX , and the sum

of squared residuals for this respondent (X − X̃iδ̂i)
′(X − X̃iδ̂i).

To obtain the vector X of actual locations, a technical assumption is made: the sum

of the true locations of the stimuli is zero and the sum of squares equal to one, i.e.,

Assumption (i)
∑J

j=1 xj = X ′F = 0 and
∑J

j=1 x
2
j = X ′X = 1

Then the total sum of squared residuals of all the respondents is minimized subject to

Assumption (i). That is, a Lagrangian multiplier problem is set up as follows:

L(δ̂i, X, α1, α2) =
N∑

i=1

(X − X̃iδ̂i)
′(X − X̃iδ̂i) + 2α1X

′F + α2(X
′X − 1) (C3)

where α1 and α2 are Lagrangian multipliers. Setting A =
∑N

i=1 X̃i(X̃
′
iX̃i)

−1X̃ ′
i, the La-

grangian multiplier problem permits to obtain [A − NIJ ]X = α2X , where IJ is the

J × J identity matrix (Aldrich and McKelvey, 1977, Equation (24), p.115). By defini-

tion, α2 is an eigenvalue of [A −NIJ ] and X an eigenvector of [A− NIJ ] (Fuente, 2000,
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p.146). It can then be shown that −X ′[A−NIJ ]X =
∑N

i=1(X − X̃iδ̂i)
′(X − X̃iδ̂i) = −α2

(Aldrich and McKelvey, 1977, Equation (26), p.116). In words, the solution X is the

eigenvector of [A−NIJ ] with the highest (negative) nonzero eigenvalue.

Remark C2 If the number of stimuli is 2 (J = 2), then Assumption (i) fully determines

the locations of the stimuli if it is combined with an extra assumption:

Assumption (ii) x1 > x2

Assumption (ii) states that the researcher knows the stimulus the more conservative; it is

assumed w.l.o.g. that stimulus 1 is more conservative than stimulus 2. Under Assumptions

(i) and (ii), the respondents’ reported positions of the two stimuli x̃i,1 and x̃i,2 for i =

1, . . . , N do not matter to determine the locations of the two stimuli; there is no need to

set up the Lagrange multiplier problem (C3). Indeed, if J = 2, the part of Assumption (i)

which states that the sum of the true locations of the stimuli is zero permits to write that
∑2

j=1 xj = 0, so x1 = −x2. Then, given that x1 = −x2, the part of Assumption (i) which

states that the sum of squares equal to one can be rewritten as
∑2

j=1 x
2
j = x2

1 + (−x1)
2 =

2x2
1 = 1. Thus, x1 = ±

√
1
2
. Given that x1 = −x2, if x1 =

√
1
2
, then x2 = −

√
1
2
; and if

x1 = −
√

1
2
, then x2 =

√
1
2
. Finally, Assumption (ii) permits to obtain that x1 =

√
1
2
and

x2 = −
√

1
2
.

Having obtained the stimuli locationsX , it is then possible to obtain each respondent’s

bliss point in the common space, the real line. Indeed, one can estimate the distortion

parameters by calculating δ̂i = (X̃ ′
iX̃i)

−1X̃ ′
iX . Then, one has to subject each respondent’s

bliss point to the same transformation that her reported positions of the stimuli are

subjected to. Given that ãi is respondent i’s self-placement, her bliss point ai in the

common policy space is ai = ĉi + ŵiãi (Aldrich and McKelvey, 1977, Equation (32),

p.117).

Remark C3 If the number of stimuli is 2, i.e., J = 2, and if the reported placement of

stimuli 1 and 2 by respondent i is identical, i.e., x̃i,1 = x̃i,2, then one cannot obtain the

respondent-specific distortion parameters ĉi and ŵi. The reason is that in such case, the
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two columns of the 2×2 respondent-specific data matrix X̃i in (C2) are perfectly collinear.

It is now obvious that by adding additional stimuli, so J > 2, the two columns of the

J × 2 respondent-specific data matrix X̃i are less likely to be perfectly collinear.

Remark C4 In Sections 4 and 5, the computations are carried out in the R environment

and make use of the basicspace package (Poole et al., 2016). I need to obtain the actual

locations of Obama (xo) and McCain (xm), the two main candidates of the 2008 Presiden-

tial election. As pointed out in Section 4, other candidates competed at this election. But

the respondents were not asked to report their position. So the data reveal the reported

positions of only two candidates, i.e., the responses x̃i,o and x̃i,m for each respondent i.

Given Remarks C2 and C3, I add the reported positions of the Democratic party (x̃i,dem)

and the Republican party (x̃i,rep) in the Aldrich-McKelvey procedure to obtain the actual

locations of Obama and McCain. So I consider the reported positions of four stimuli:

x̃i,m, x̃i,o, x̃i,dem and x̃i,rep. Using the Discrete choice sample, the actual locations of the

stimuli obtained via the Aldrich-McKelvey method are:

xo = −0.5180862 xm = 0.4780555 xdem = −0.4811076 xrep = 0.5211383

Using the SUR sample, the results are almost similar:

xo = −0.5180191 xm = 0.4783012 xdem = −0.4811876 xrep = 0.5209055

D Bootstrap methods

The locations of the candidates and the respondents’ bliss points are estimates based

on the Aldrich-McKelvey procedure described in Appendix C. The uncertainty in the

estimates of these variables can influence the different test statistics considered in the

conditional logit and the SUR model. To take into account these two-step estimation

problems, I consider bootstrap tests. In this appendix, I describe the bootstrap methods

that I exploit to test the different hypotheses considered in this paper. Observe that in

the main text, in Section 5, I also consider for θ̂ and γ̂ test statistics which treat the
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distances between ai and xj as observed variables, i.e., ignoring any estimation error in

these variables. I consider in the presentation of the bootstrap methods that the two

candidates of interest are Obama (j = o) and McCain (j = m), as in Sections 4 and 5.

Finally, before to step any further, recall that to find the actual location of Obama (xo)

and McCain (xm), I include in the Aldrich-McKelvey procedure the reported positions of

Obama (x̃i,o) and McCain (x̃i,m) of each respondent i, as well as her reported positions

of the Democratic party (x̃i,dem) and the Republican party (x̃i,rep). A full explanation is

provided in Appendix C, in particular in Remark C4, as well as in Remarks C2 and C3.

Difference in valence. Let me begin by the first hypothesis which concerns the difference

in valence among Obama and McCain. This is the introduction of a valence difference

between Obama and McCain which makes that the single-crossing property may not hold.

So the first null hypothesis is H0 : θ = 0 against HA : θ 6= 0. I describe the method

for the discrete choice model. The method remains the same for the SUR model, with

the only difference being the size of each bootstrap sample: N = 1449 for the SUR and

N = 1320 for the discrete choice model. My approach for this two-sided test at level α

is to consider a bootstrap percentile method: I find the lower α
2
and upper α

2
quantiles of

B bootstrap estimates θ̂∗b , b = 1, . . . , B; if H0 : θ = 0 falls outside this region, the null is

rejected. I fully explain the procedure below.

Let ωi = (yi, x̃i,o, x̃i,m, x̃i,dem, x̃i,rep, ãi) be the respondent i’s answers to the set of

questions which are needed for the estimations of the discrete choice model, and W =

(ω1, ω2, . . . , ωN)
′ the sample. A bootstrap sample W∗ of size N = 1320 is obtained by

sampling from ω1, ω2, . . . , ωN with replacement. The steps to obtain the bootstrap test

can be summarized as:

(i.) Draw B = 999 bootstrap samples W∗ of size N = 1320.
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(ii.) For each bootstrap sample W∗: first, estimate the actual locations of the stimuli,

i.e.,
{
x∗
o, x

∗
m, x

∗
dem, x

∗
rep,
}
, as well as the bliss point a∗i of each respondent i, using

the Aldrich-McKelvey method. Second, use the values obtained for x∗
o, x

∗
m and a∗i

to compute the distances |x∗
o − a∗i | and |x∗

m − a∗i | for each respondent i in the boot-

strap sample, and estimate the conditional logit. Given that there are B bootstrap

samples, this leads to B estimates θ̂∗b , b = 1, . . . , B.

(iii.) Consider the empirical distribution of the B bootstrap estimates θ̂∗b , b = 1, . . . , B.

Denote by θ̂∗0.025 and θ̂∗0.975 the 2.5th and the 97.5th percentiles of this empirical

distribution. The percentile 95 percent confidence interval for θ is then [θ̂∗0.025, θ̂
∗
0.975].

(iv.) Reject the null hypothesis if H0 : θ = 0 falls outside [θ̂∗0.025, θ̂
∗
0.975].

The exponent. The second hypothesis concerns γ. When one candidate has a valence-

advantage, the single-crossing property may not hold if γ < 1 or if γ = 1. As noticed

in Section 3, the most interesting case is when γ < 1 because it is when u(a, xo, θ, γ) =

u(a, xm, γ) may have two solutions in a, and the ends may be against the middle. So the

second null hypothesis is H0 : γ ≥ 1 against HA : γ < 1. My approach for this lower

one-tailed test is very similar to the one presented for the difference in valence. The only

difference is that for each bootstrap sample, once the conditional logit model is estimated,

γ̂∗ is saved, and the percentile 95 percent confidence interval for γ is constructed based on

a lower one-tailed test. Denote by γ̂∗
0.95 the 95th percentiles of the empirical distribution

of B = 999 bootstrap estimates γ̂∗
b , b = 1, . . . , B. The percentile 95 confidence interval

is (−∞, γ̂∗
0.95] in this case. And the null hypothesis is rejected if H0 : γ ≥ 1 falls outside

this interval.

The single-crossing property. The third hypothesis concerns the single-crossing property

per se. This third null hypothesis is H0 : “the single-crossing property holds” versus HA :
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“the single-crossing property does not hold”. Recall Proposition 1: the single-crossing

property does not hold if and only if [(|xo − xm|
γ > θ and γ < 1) or (|xo − xm|

γ =

θ and γ = 1)]. The general approach for this test is very similar to the one presented

for the difference in valence. For each bootstrap sample W∗, I first estimate the actual

locations of the stimuli, i.e.,
{
x∗
o, x

∗
m, x

∗
dem, x

∗
rep,
}
, and the bliss point a∗i of each respondent

i using the Aldrich-McKelvey method, then I use the values obtained for x∗
o, x

∗
m and a∗i

to compute the distances |x∗
o − a∗i | and |x∗

m − a∗i | for each respondent i, and I estimate

the discrete choice model to obtain θ̂∗ and γ̂∗. Thus, for each bootstrap sample W∗, I

obtain the set of parameter estimates [x∗
o, x

∗
m, θ̂

∗, γ̂∗] to see if the single-crossing holds.

Given that there are B = 999 bootstrap samples, there are B sets of parameter estimates

[x∗
ob, x∗

mb, θ̂∗b , γ̂∗
b ], b = 1, . . . , B, and I count the proportion of bootstrap samples for

which the single-crossing property holds. It permits to obtain an estimate of the achieved

significance level (or p-value) of the test which is:

ÂSL = 1−
♯{b = 1, . . . , B ; [(|x∗

ob − x∗
mb|

γ̂∗

b > θ̂∗b and γ̂∗
b < 1) or (|x∗

ob − x∗
mb|

γ̂∗

b = θ̂∗b and γ̂∗
b = 1)]}

B

And one fails to reject the null hypothesis whenever ÂSL is larger than standard levels

of significance; I consider a 5 percent significance level, like for the other tests.

E Robustness checks

In this appendix, I provide the tables of results of the two robustness checks described

in Subsections 6.1 and 6.2.

In Section 4, I observe that missing observations in both the Discrete choice and SUR

samples primarily stem from the self-placement question. Respondents who answered

“Haven’t thought much about it” or “Don’t know”, along with those who considered them-

selves as “Moderate/middle of the road” (i.e., ãi = 4), were prompted to categorize them-
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selves via a follow-up question. Table E1 utilizes the responses to this follow-up question

to expand the sizes of the Discrete choice and SUR samples. The coding assumptions,

as described in Subsection 6.1, involve various considerations. The bootstrap methods

employed are similar to those explained in Appendix D. The results are discussed in

Subsection 6.1.

In Section 4, I also emphasize the importance of considering more than just two stimuli

when constructing the policy space. But a policy space can still be constructed by consid-

ering only two stimuli. The drawback is that the resulting locations are fully determined

by Assumptions (i) and (ii), as explained in Remark C2 of Appendix C. In other words,

the reported positions of these stimuli by the respondents become irrelevant in determin-

ing their actual location. Despite of this drawback, some readers may be interested in

the outcomes obtained when using only the reported positions of Obama and McCain to

construct the policy space. Table E2 presents these findings.

Before to comment them, observe that Table E2 provides confidence intervals based

on bootstrap percentiles for θ and γ. It also provides the achieved significance levels of

the bootstrap single-crossing tests. As mentioned in Subsection 6.2, the general bootstrap

algorithm differs from the one described in Appendix D. The reason is that the reported

positions of Obama and McCain by the respondents become irrelevant to determine their

location in a first step: xo = −
√

1
2
and xm =

√
1
2
whatever the sample. Given that

there is no uncertainty in xo and xm (nor in ai, i = 1, . . . , N), there is no two-step

estimation problem. Recall that in Appendix D, if we consider the Discrete choice sample,

the bootstrap methods were based on the sample W = (ω1, ω2, . . . , ωN)
′, where ωi =

(yi, x̃i,o, x̃i,m, x̃i,dem, x̃i,rep, ãi). For each bootstrap sample W∗, we estimated first the actual

locations x∗
o and x∗

m and the bliss point a∗i of each respondent i using the Aldrich-McKelvey

method, and then the conditional logit to obtain θ̂∗ and γ̂∗. In Table E2, the bootstrap
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Table E1: Discrete choice and SUR estimates for the 2008
Presidential election using the follow-up question to increase
the sample sizes

(A) (B)
Discrete choice model SUR model

(Stated choice) (Thermometer scores)

Obama’s valence-advantage

θ̂ 0.386 0.337
(0.036) (0.053)

[0.316, 0.458]ii. [0.258, 0.428]
Exponent parameter

γ̂ 0.846 0.333
(0.088) (0.056)

(−∞, 0.988]iii. (−∞, 0.423]
Scale parameters

σ̂ 0.409
(0.031)

ĉ 83.876
(5.542)

β̂ 40.921
(5.658)

N 1721 1895

Log-likelihood -740.987 -17388.000

Bootstrap single-crossing test, with B = 999 replications

ÂSL 0.041 0.000
Notes: i. Standard errors are in parentheses.
ii. The intervals in brackets below the estimated standard errors of θ̂ correspond to
the percentile 95 percent confidence intervals for the parameters. These intervals
are equal-tailed: they are the distance between the lower 0.025 and upper 0.025
quantiles of B = 999 bootstrap estimates of the parameter of interest. For instance,
the interval [0.316, 0.458] below the estimated standard error of θ̂ in the case of the
discrete choice model corresponds to the percentile 95 percent confidence interval
[θ̂∗

0.025, θ̂
∗

0.975] for θ, where θ̂∗
0.025 = 0.316 is the lower 0.025 and θ̂∗

0.975 = 0.458 the

upper 0.025 quantiles of the B = 999 bootstrap estimates θ̂∗(b), b = 1, . . . , B.
iii. The intervals below the estimated standard errors of γ̂ correspond to the
percentile 95 percent confidence intervals based on a lower one-tailed alternative
test. For instance, the interval (−∞, 0.988] below the estimated standard error
of γ̂ in the case of the discrete choice model corresponds to the percentile 95
percent confidence interval (−∞, γ̂∗

0.95] for γ, where γ̂∗

0.95 = 0.988 is the upper
0.05 quantiles of the B = 999 bootstrap estimates γ̂∗(b), b = 1, . . . , B.

iv. Bootstrap single-crossing test (ÂSL) provides the achieved significance level of
the test H0 : “the single-crossing property holds” versus HA : “the single-crossing
property does not hold”. Given that there are B = 999 bootstrap samples, there
are B sets of parameter estimates [x∗

ob, x
∗

mb, θ̂
∗

b , γ̂
∗

b ], b = 1, . . . , B. I check for each
set of parameter estimates if the single-crossing property holds. The proportion of
bootstrap samples for which the single-crossing property holds is the estimate of
the achieved significance level:

ÂSL = 1−
♯{b = 1, . . . , B ; [(|x∗

ob − x∗

mb|
γ̂∗

b > θ̂∗b and γ̂∗

b < 1) or (|x∗

ob − x∗

mb|
γ̂∗

b = θ̂∗b and γ̂∗

b = 1)]}

B

The method is discussed in Appendix D.
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methods are based on the sample H = (η1, η2, . . . , ηN)
′, where ηi = (yi, xo, xm, ai), with

xo = −
√

1
2
and xm =

√
1
2
. A bootstrap sample H∗ of size N is obtained by sampling from

η1, η2, . . . , ηN with replacement. For each bootstrap sample H∗, I directly estimate the

conditional logit. Given that there are B bootstrap samples, this leads to B estimates for

θ̂∗b and γ̂b, b = 1, . . . , B. I then use the empirical distribution of these bootstrap estimates

to build the percentile confidence intervals.12 Concerning, the single-crossing hypothesis,

I count the proportion of bootstrap samples for which the single-crossing property holds.

Regarding the results, Obama is again the candidate with a valence-advantage. I

obtain θ̂ = 0.327 with the discrete choice model(versus 0.269 in Table 2), and θ̂ = 0.440

with the SUR model (versus 0.227 in Table 2). In the case of the discrete choice model, the

null hypothesis H0 : θ = 0 is rejected whether we use the t-ratio
(
0.327
0.042

= 7.738
)
, which is

larger than the critical values of the standard normal distribution for conventional levels

of significance, or the 95 percent confidence interval based on bootstrap percentiles [0.248,

0.415]. The same conclusion is reached with the SUR model, as evident in Column (B) of

Table E2.

Regarding the exponent parameter γ, its estimate is γ̂ = 0.666 with the discrete choice

model (compared to 0.818 in Table 2), and γ̂ = 0.392 with the SUR model (versus 0.371

in Table 2). Once again, all the one-sided tests for H0 : γ ≥ 1 versus HA : γ < 1 reject

the null hypothesis.

Finally, the single-crossing property is rejected at the 5 percent significance level

in both the discrete choice model and the SUR model. The equation û(a, xo, θ̂, γ̂) =

û(a, xm, γ̂) based on the discrete choice estimates has again two solutions in a, a∗ ≃ 0.217

and a∗∗ ≃ 23.663, and a∗∗ falls outside the observed data-range [-7.778, 6.364]. This issue,

12Given that there is no randomness in xo, xm, and ai, i = 1, . . . , N , there is no two-step estimation
problem, so one may ask why I provide these percentile confidence intervals. Two main reasons explain
this choice. First, it permits to have a homogeneous presentation of the different tables of results. Second,
they could have lead to different conclusions compared to the simple t-tests.
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again, does not occur with the SUR model: û(a, xo, θ̂, γ̂) = û(a, xm, γ̂) has two solutions

in a, a∗ ≃ 0.424 and a∗∗ ≃ 1.556, and both of them fall within the observed data-range

[-7.778, 7.778]. So voters whose bliss points are to the right of 1.556 are closer to McCain,

but their estimated utility is higher for Obama. Again, a reader may naturally ask if these

respondents do rank Obama above McCain by providing a higher thermometer score to

Obama. 78 respondents have their bliss points to the right of 1.556. Out of these 78

respondents, 28 rate Obama higher than McCain and 12 rate them equally.

F The impact of an increase in the valence-advantage pa-

rameter

In Subsection 6.3, I highlight that conditional to the fact that the single-crossing

property is not satisfied in the theoretical policy space, the length of the interval (a∗, a∗∗)

diminishes as the valence-advantage parameter θ increases. This appendix provides a

graphical explanation to this claim.

The presentation follows Figure 1 in Section 1, in particular Panel (C) given that γ < 1

and the single-crossing property is not satisfied. Recall that in Figure 1, w.l.o.g., x1 > x2,

i.e., candidate 1 locates on the right of candidate 2, and θ = θ1 − θ2 > 0, i.e., candidate

1 has a valence-advantage over candidate 2. Let’s consider an increase in θ1, the valence

associated to candidate 1, to θ′1, so θ′ = θ′1 − θ2 > θ.

The increase in θ1 shifts u(a, x1, θ1, γ) upward in Figure F1. Initially, the set of voters

who prefer the disadvantaged candidate in terms of valence is the open interval (a∗, a∗∗),

where a∗ and a∗∗ are the solutions to the equation u(a, x1, θ1, γ) = u(a, x2, θ2, γ). After

the increase in θ1, the set of voters who prefer the disadvantaged candidate in terms of

valence is the open interval (a
′∗, a

′∗∗), where a
′∗ and a

′∗∗ are the solutions to the equation

u(a, x1, θ
′
1, γ) = u(a, x2, θ2, γ). As shown in Figure F1, the lower bound a∗ increases to
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Table E2: Discrete choice and SUR estimates for the 2008
Presidential election using a policy space constructed with
only two stimuli

(A) (B)
Discrete choice model SUR model

(Stated choice) (Thermometer scores)

Obama’s valence-advantage

θ̂ 0.327 0.440
(0.042) (0.059)

[0.248, 0.415] [0.330, 0.562]
Exponent parameter

γ̂ 0.666 0.392
(0.053) (0.034)

(−∞, 0.740]iii. (−∞, 0.439]
Scale parameters

σ̂ 0.503
(0.036)

ĉ 70.367
(1.233)

β̂ 21.755
(1.266)

N 1278 1398

Log-likelihood -554.179 -12861.500

Bootstrap single-crossing test, with B = 999 replications

ÂSL 0.000 0.000
Notes: i. Standard errors are in parentheses.
ii. The intervals in brackets below the estimated standard errors of θ̂ correspond to
the percentile 95 percent confidence intervals for the parameters. These intervals
are equal-tailed: they are the distance between the lower 0.025 and upper 0.025
quantiles of B = 999 bootstrap estimates of the parameter of interest. For instance,
the interval [0.248, 0.415] below the estimated standard error of θ̂ in the case of the
discrete choice model corresponds to the percentile 95 percent confidence interval
[θ̂∗

0.025, θ̂
∗

0.975] for θ, where θ̂∗
0.025 = 0.248 is the lower 0.025 and θ̂∗

0.975 = 0.415 the

upper 0.025 quantiles of the B = 999 bootstrap estimates θ̂∗(b), b = 1, . . . , B.
iii. The intervals below the estimated standard errors of γ̂ correspond to the per-
centile 95 percent confidence intervals based on a lower one-tailed alternative test.
For instance, the interval (−∞, 0.740] below the estimated standard error of γ̂ in
the case of the discrete choice model corresponds to the percentile 95 percent con-
fidence interval (−∞, γ̂∗

0.95] for γ, where γ̂∗

0.95 = 0.740 is the upper 0.05 quantiles
of the B = 999 bootstrap estimates γ̂∗(b), b = 1, . . . , B.

iv. Bootstrap single-crossing test (ÂSL) provides the achieved significance level of
the test H0 : “the single-crossing property holds” versus HA : “the single-crossing
property does not hold”. The method is different than the one presented in Ap-

pendix D: here, the locations of Obama
(
xo = −

√
1

2

)
and McCain

(
xm =

√
1

2

)

are fully determined by Assumptions (i) and (ii) (see Remark C2 in Appendix C),
so there is no uncertainty in xo and xm. For each bootstrap sample, I directly
estimate the conditional logit or the SUR to obtain θ̂∗ and γ̂∗. Given that there
are B = 999 bootstrap samples, there are B sets of parameter estimates [θ̂∗

b
, γ̂∗

b
],

b = 1, . . . , B. I check for each set of parameter estimates if the single-crossing
property holds. The proportion of bootstrap samples for which the single-crossing
property holds is the estimate of the achieved significance level:

ÂSL = 1−
♯{b = 1, . . . , B ; [(|xo − xm|γ̂

∗

b > θ̂∗b and γ̂∗

b < 1) or (|xo − xm|γ̂
∗

b = θ̂∗b and γ̂∗

b = 1)]}

B

.
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a
′∗, while the upper bound a∗∗ decreases to a

′∗∗, so the length of the interval (a∗, a∗∗)

diminishes.

a

Utility

a∗ a∗∗a
′∗ a

′∗∗

θ1

θ′
1

θ2

u(a, x1, θ
′
1, γ)

u(a, x1, θ1, γ)

u(a, x2, θ2, γ)

Figure F1: The effects of an increase in the valence-advantage of candidate 1 over candidate
2 when the single-crossing property is not satisfied (parameters: γ = 0.5, x1 = 1, θ1 = 1.9,
θ′1 = 2.3, x2 = −1, θ2 = 1.3)
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