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Abstract 

We propose an analytical solvable model for household residential location choice in a linear 

monocentric city corridor with bottleneck congestion. Households are heterogeneous in terms 

of their income. The bottleneck is located between central downtown and adjacent suburb. 

The urban equilibrium is formulated as the solution of differential equations. We analytically 

explore the distributional effects of bottleneck capacity expansion on households and the 

bottleneck capacity investment issues under no toll and first-best and second-best tolls. The 

results show that the benefits of different-income households from bottleneck capacity 

expansion change with toll schemes. Specifically, under the no toll and first-best toll, those 

who gain most are the mid-income households residing at the bottleneck and in a suburban 

location (close to the bottleneck) respectively, whereas those who gain least are the poorest or 

richest households. Under the second-best toll, there are two possible cases: the poorest 

households gain most while the richest households gain least, or the mid-income households 

residing at the bottleneck gain most while the richest or poorest households gain least. With 

constant return to scale for capacity investment, self-financing principle still holds for the 

first-best and second-best tolling in the urban spatial context. Ignoring the changes in urban 

spatial structure due to household relocation may cause overinvestment or underinvestment in 

optimal bottleneck capacity under the no toll, but definitely underinvestment under the 

first-best and second-best tolls.  

 

Keywords: Bottleneck congestion; urban spatial structure; heterogeneous households; 

capacity expansion; distributional effect; congestion tolling; self-financing. 
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1. Introduction 

 

Traffic congestion during peak periods has become increasingly severe in many densely 

populated megacities worldwide, mainly due to the imbalance between traffic demand and 

infrastructure supply. Traffic congestion dynamics directly affect commuting costs, which 

significantly influence households’ residential location choices, especially for low-income 

households. It is, therefore, essential to consider the interactions among traffic congestion 

dynamics, residential location choices, and household income heterogeneity in urban models, 

as pointed out in previous studies like Takayama and Kuwahara (2017) and Takayama (2020). 

 

Traffic congestion is a deadweight loss and resource wastage for society. A possible solution 

to mitigating the growing traffic congestion may be to expand the capacity of traffic 

bottleneck (a supply-side measure). Unfortunately, bottleneck capacity expansion may induce 

new traffic demand and thus cause further congestion during peak periods. Furthermore, the 

funds available for capacity expansion remain limited in most urban areas. Congestion tolling, 

as a demand-side measure, has been widely suggested as a viable alternative to capacity 

expansion because of its potential to internalize congestion externalities. Typical examples 

include the tolling schemes adopted in London, Singapore, Stockholm, Oslo, and Hong Kong 

(de Palma and Lindsey, 2011). Naturally, implementations of capacity expansion and 

congestion tolling raise some important issues in terms of welfare, equity, and public finance: 

How does bottleneck capacity expansion under tolling affect the residential location choices 

of households with different income levels? Who gains and who loses? Does the 

self-financing principle (revenue from congestion tolls covers cost of capacity expansion) 

hold? What happens if the changes in urban spatial structure due to household relocation 

under bottleneck capacity expansion and/or congestion tolling are ignored. This paper aims to 

address these important social issues. 

 

We begin by establishing the urban equilibrium with dynamic congestion and heterogeneous 

households. We consider a continuous linear monocentric city corridor, with a bottleneck 

located in the corridor. Residents are heterogeneous in terms of their values of time (VOT), 

following a continuous distribution. They decide where to live along the corridor and when to 

depart from home for commuting trips. Based on the residential location theory (see e.g., 

Alonso, 1964; Muth, 1969; Mills, 1972; Fujita, 1989) and the dynamic bottleneck congestion 
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theory (see e.g., Vickrey, 1969; Arnott et al., 1990, 1993, 1994; Li et al., 2020), we first derive 

the household residential distribution along the corridor at equilibrium, formulated as the 

solution to differential equations. We extend the studies of Takayama and Kuwahara (2017) 

and Takayama (2020) from a discrete VOT case to a continuous VOT case. To our knowledge, 

this paper is the first to obtain a closed-form solution for the combined problem of 

heterogeneous households’ residential location choices and dynamic bottleneck congestion. 

 

Building upon the established urban equilibrium, we address the bottleneck capacity 

expansion issues under three scenarios: no toll, first-best (dynamic) toll, and second-best (flat) 

toll. The flat toll means that each driver passing through the bottleneck faces the same toll 

level.1  Our investigation focuses on three key aspects: (i) the distributional effects of 

bottleneck capacity expansion on heterogeneous households, (ii) the self-financing principle 

for bottleneck capacity investment with congestion tolling in the urban spatial context, and (iii) 

the effects of ignoring urban spatial changes on capacity investment decisions.  

 

We find that bottleneck capacity expansion benefits all households in the corridor regardless 

of whether congestion tolling is implemented or not. However, such benefits are differentiated 

across different-income households. The mid-income households residing at the bottleneck 

gain most from capacity expansion under no toll, whereas the mid-income households 

residing in a suburban location (close to the bottleneck) gain most under the first-best toll. For 

both of them, the poorest households residing at the city boundary or the richest households 

residing at the CBD (central business district) gain least. Under the second-best toll, two 

possible cases occur: the poorest households gain most while the richest households gain least, 

or the mid-income households residing at the bottleneck gain most while the richest or poorest 

households gain least. These results imply that congestion tolling significantly affects the 

distributional effects of bottleneck capacity expansion on households. Our results are 

comparable to previous studies. Arnott et al. (1994) showed that bottleneck capacity 

investment may benefit higher- or lower-income commuters more, without urban spatial 

 
1 Flat (or uniform) toll means an identical toll over a day, and thus all commuters passing through the bottleneck 

face the same toll, regardless of their arrival time at the bottleneck. Therefore, its implementation does not 

change commuters’ departure pattern. Different from the flat toll, coarse tolling means step tolling, which needs 

to determine the toll level and the start and end times of tolling for each step. Implementation of coarse tolling 

will affect commuters’ departure pattern. For these definitions, readers can refer to Arnott et al. (1990, 1993), and 

Tabuchi (1993). 
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dimension consideration. Takayama (2020) showed that with the bottleneck located at the 

CBD entrance (which is a special case of any bottleneck locations as addressed in this paper), 

commuters residing closer to the CBD gain but those residing farther from the CBD lose. Our 

study extends these studies by incorporating endogenous urban spatial structure and any 

bottleneck locations.  

 

Our work also extends the famous self-financing principle for facility improvement (Mohring 

and Harwitz, 1962; de Palma and Lindsey, 2007) to urban spatial context, in which urban 

spatial structure is endogenously determined. We demonstrate that under congestion tolling 

(first-best and second-best), the ratio of toll revenue to optimal capacity investment cost is 

equal to the capacity elasticity of the investment cost. Particularly, as the capacity cost 

exhibits a constant return to scale, the optimal capacity investment is exactly self-financing. 

Arnott et al. (1993) presented the elasticity-related self-financing principle for the bottleneck 

capacity expansion under the assumption of homogeneous commuters and absent urban 

spatial structure. Arnott and Kraus (1995) further extended the analysis to the case of 

heterogeneous commuters, showing that the self-financing property holds for the first-best 

dynamic toll but not for the uniform (or flat) toll. This paper finds that in the context of 

heterogeneous commuters and endogenous urban spatial structure, the self-financing principle 

remains valid for toll-funded bottleneck capacity investment issue regardless of toll types 

(first-best dynamic or second-best flat toll). 

 

In addition, we disclose the effects of ignoring the interplays between bottleneck capacity 

expansion and urban spatial structure. We find that under no toll, ignoring the urban spatial 

effects (i.e., change in urban spatial structure due to capacity expansion) may lead to an 

overinvestment or underinvestment in the capacity. However, under congestion tolling 

(first-best and second-best), it will cause an underinvestment. These results are different from 

those of traditional urban models with homogeneous households and static congestion (i.e., 

congestion level depends simply on traffic volume, regardless of time-of-use pattern). For 

example, Solow (1973) numerically showed that with no toll, the naïve cost-benefit analysis 

(with the rule that the marginal saving in transportation cost equals the marginal cost of road 

capacity expansion) tended to overinvest in road capacity. Kanemoto (1977) argued that the 

naïve method caused overinvestment in capacity near the CBD, but either overinvestment or 

underinvestment near the city boundary.   
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Our work is closely related to the studies combining dynamic bottleneck congestion and 

residential location choice. Arnott (1998) first introduced an urban model in this regard, but 

assumed homogeneous households and a downtown-suburb discrete city. Fosgerau and de 

Palma (2012) extended it to consider a continuous space but with an exogenous residential 

distribution. Gubins and Verhoef (2014) assumed that the marginal utility of households 

spending time at home depends on housing size to link household preferences for housing 

consumption and for departure time. Such an assumption is pivotal in their model, but it 

requires further validation and justification, as highlighted in Fosgerau and Kim (2019). 

Fosgerau et al. (2018) considered more general scheduling preferences to avoid such an 

assumption. Further, Fosgerau and Kim (2019) considered a discrete city with a central 

residential area and a suburban residential area, each having a bottleneck. These 

aforementioned studies assumed homogeneity in household income and a bottleneck located 

at the entrance to the CBD. Recently, Takayama and Kuwahara (2017) and Takayama (2020) 

made a major contribution to the issues of heterogeneous households’ residential location 

choices and bottleneck congestion. In their studies, heterogeneous households were 

discretized into limited income groups. However, they could not obtain closed-form solutions. 

Moreover, they focused on the demand-side congestion pricing, and paid little attention to the 

supply-side bottleneck capacity expansion. 

 

This paper presents an analytical model for heterogeneous households’ residential location 

choices and bottleneck capacity expansion in a linear monocentric city with any bottleneck 

locations, yielding significant insights into congestion dynamics, household heterogeneity, 

and urban spatial structure. The proposed model can serve as a useful tool for modeling 

household residential location choices and evaluating various urban policies.  

 

The remainder of this paper is organized as follows. In the next section, the urban equilibrium 

with bottleneck congestion and heterogeneous households is formulated. Section 3 addresses 

the bottleneck capacity expansion issues under no toll. Section 4 further addresses the 

bottleneck capacity expansion issues under the first-best and second-best tolls. Section 5 

concludes this paper and provides suggestions for further studies. Some proofs, mathematical 

derivations, and numerical examples are given in the appendices.  
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2. Urban equilibrium with bottleneck congestion and heterogeneous 

households 

 

2.1. Basic setup 

 

Consider a transportation corridor located in a closed, linear, and monocentric city, with a 

population size of N. The city’s residents continuously distribute along the corridor. They 

have different income levels and thus different VOTs. In this paper, we assume VOT is 

positively related to income. We represent   as resident’s VOT, with [ , ]    in which 

  and   are the lower and upper bounds, respectively. We use the distance from the CBD 

to denote a location. A bottleneck with capacity q is located at location a, as shown in Fig. 1. 

The bottleneck location divides the corridor into two areas: downtown (i.e., [0, )a ) and 

suburb (i.e., [ , ]a B ). Traffic congestion during the commuting peak period occurs at the 

bottleneck due to its limited capacity.2 The length of the corridor (or city boundary) is B, 

endogenously determined by the model. The words “commuter”, “resident” and “household” 

are interchangeable in this paper. 

 

 

Fig. 1. A linear city corridor with a bottleneck. 

 

All job opportunities are located in the CBD. Every morning, commuters travel from home to 

the CBD along the bottleneck-constrained corridor. Commuters’ travel costs depend on their 

home locations. The commuters originating in the downtown do not pass through the 

bottleneck, and thus incur no congestion. All of them prefer punctual arrivals at the workplace 

without causing any schedule delay. Their commuting costs thus include only the free-flow 

travel time cost. Let ( , )Dc x   be the (one-way) commuting cost of the downtown commuters 

with VOT   and residential location x ( 0 x a  ), defined as 

 
2 This paper focuses on the interactions between dynamic congestion and urban spatial structure. For analytical 

tractability, we assume that congestion occurs only at the bottleneck of the corridor, and other locations are 

congestion-free. 
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 0( , )Dc x t x =  , (1) 

where the subscript “D” represents the downtown area, and 0t  denotes the free-flow travel 

time per unit of distance, and thus 0t x  is the free-flow travel time from x to CBD. The VOT 

  is used to convert time units into equivalent monetary units. 

 

By contrast, commuters residing in the suburb have to traverse the bottleneck on their way to 

work, thus incurring a queuing delay. Similar to most bottleneck congestion studies, the queue 

at the bottleneck is vertical and has no physical length.3 For simplicity, we assume that the 

penalty for being late is infinite, and thus no late arrivals are permitted. Such an assumption 

has been adopted in some revious realted studies, such as Newell (1988), DePalma and Arnott 

(2012), Xiao and Zhang (2014), and Wu and Huang (2015). Therefore, commuters’ departure 

time choices will be based on a trade-off between the bottleneck queuing delay and 

early-arrival schedule delay. Let ( , )Sc x   be the equilibrium commuting cost of suburban 

commuters with VOT   and location x ( a x B  ). According to the bottleneck theory with 

continuous VOT distribution, we have 

 
0 0

ˆ ˆ
( , ) ,S S

S

N N
c x t x t x

q q
 = +  = +   (2) 

where the subscript “S” represents the suburban area. ˆ
SN  is the total number of suburban 

residents (i.e., bottleneck users), determined endogenously later. q is the bottleneck capacity, 

  is the value of early-arrival time, and  is the ratio of the value of early-arrival time to 

VOT, i.e.,  =   . In this paper, we assume  is a constant across residents, as in some 

bottleneck models (see e.g., Vickrey, 1973; Arnott et al., 1994; Xiao and Zhang, 2014). This 

means that households differ in both their VOTs and values of early-arrival time. The first 

term on the right-hand side (RHS) of Eq. (2) is the equilibrium bottleneck congestion cost 

(including the queuing delay cost and the early-arrival schedule delay cost). The second term 

is the free-flow travel time cost. The detailed derivation of Eq. (2) is provided in Appendix A. 

 

To sum up, the commuting cost ( , )c x   can be represented as 

 
( , ),  [0, ),

( , )
( , ),  [ , ].

D

S

c x x a
c x

c x x a B

 
 = 

 
 (3) 

 
3 For the model with physical vehicle queue length consideration, readers can refer to Mun (1999). 
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2.2. Equilibrium household residential distribution 

 

Traditional urban models usually assume that urban households are homogeneous in their 

income levels or VOTs. However, in reality income across households varies, depending on 

their occupations and skills. This leads to heterogeneity in residents’ VOTs, explicitly treated 

in this paper. In the following, we explore the difference in the residential location choices of 

households due to their VOT heterogeneity. 

 

Households obtain utility from land (or equivalently housing) consumption and non-land 

(numéraire) goods consumption. Households’ preferences for land and numéraire goods are 

quasi-linear, given by 

 ( , ) ( , )
2 ( , )

k
u x z x

h x
 =  −


, (4) 

where ( , )u x   is utility of households with location x and VOT  , ( , )z x   is numéraire 

goods consumption (measured in monetary units), and ( , )h x   is land consumption 

(measured in land areas).4 The positive constant k represents households’ preferences for land 

(a larger value indicates a stronger preference, and vice versa). The second term on the RHS 

of Eq. (4) represents the households’ utility derived from land consumption, measured in 

monetary units. Such a hyperbolic utility function has been adopted in some previous 

residential location models (see e.g., Mossay and Picard, 2011; Picard and Tabuchi, 2013; 

Blanchet et al., 2016; Akamatsu et al., 2017; Picard and Tran, 2021).5 Eq. (4) measures the 

household utility in monetary units, i.e., cardinal utility, which facilitates the comparison 

between utilities of different households and the calculation of social surplus (or welfare). 

 

In this paper, the price of the numéraire goods is normalized to one, but the land price is 

 
4 In this paper, it is assumed that utility u is twice continuously differentiable with regard to z and h, the 

distribution function of VOT   is continuous, and the commuting cost ( , )c x   is piecewise continuous with 

the bottleneck location as the discontinuous point.  

5 The hyperbolic and logarithmic preferences (see e.g., Beckmann, 1976; Fujita and Thisse, 2002) for the land 

are two frequent instances of the same class of preferences 1( 1) (1 )h − − −  where ρ = 2 and ρ → 1 respectively, 

which yield iso-elastic demands for residential space with price elasticity equal to 1/2 and 1, respectively. 

Therefore, the present hyperbolic preference represents an intermediate case between Beckmann’s demand and 

the inelastic demand for residential space that is standard in urban economics. 



9 

endogenously determined by the model. Households’ income is spent on numéraire goods, 

land, and commuting, and their budget constraint is given as 

 ( ) ( , ) ( ) ( , ) ( , )w z x p x h x c x =  +  +  , (5) 

where ( )w   is the income of the household with VOT  . ( )p x  is land rental price, and 

thus ( ) ( , )p x h x   is land expenditure for households with location x and VOT  . 

 

Each household chooses a residential location, land area, and quantity of numéraire goods to 

maximize utility subject to the budget constraint. From Eqs. (4) and (5), the utility 

maximization problem for households at a given location x can be expressed as 

 max  ( , ) ( ) ( ) ( , ) ( , )
2 ( , )h

k
u x w p x h x c x

h x
 =  −  −  −


. (6) 

From the first-order optimality condition 0du dh = , we have 

 ( ) .
2 ( )

k
h x

p x
=  (7) 

Eq. (7) shows that at a given location, household land consumption is only related to the land 

price but not to their income, because household preference is quasi-linear.  

 

Substituting Eq. (7) into Eq. (6) yields the household indirect utility as 

 ( , ) ( ) ( , ) 2 ( )u x w c x kp x =  −  − . (8) 

At equilibrium, no household has an incentive to unilaterally change its residential location. 

That is, the utility has been maximized for the chosen location, which corresponds to the 

condition ( , ) 0u x x   = .6 Combing it and Eq. (8) yields  

 
0

( ) 2 ( )
0

dp x p x
t

dx k
= −  . (9) 

It shows that as the distance from the CBD increases, the land rental price decreases. There is 

thus a trade-off between commuting cost and land rental price when choosing residential 

locations. Heterogeneous residents with different income levels / VOTs exhibit different 

attitudes towards such a trade-off.  

 

 
6 Since ( , )u x   is continuously differentiable (except at the bottleneck), the utility maximization condition for 

the chosen location (0, )x B  is equivalent to the first-order and second-order conditions: ( , ) 0u x x   =  

and 2 2( , ) 0u x x    . 
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Since households’ utility has been maximized under equilibrium location choices, exchanging 

households’ locations would reduce their total utility. That is, for any two residential locations 

1x  and 2x  (without loss generality, we assume 1 2x x ), with corresponding VOTs 1  and 

2 , 1 1 2 2 1 2 2 1( , ) ( , ) ( , ) ( , )u x u x u x u x +    +   should hold. Since ( , )u x   in Eq. (8) is 

submodular in x  and  , we immediately obtain 1 2   .7 This means that households 

residing farther from the CBD have a smaller VOT than those closer to the CBD. We have 

thus the following proposition. 

 

Proposition 1. At equilibrium, households spatially sort themselves in a descending order of 

VOTs from the CBD outward, i.e., households with higher VOTs reside closer to the CBD, 

while those with lower VOTs reside closer to the suburb. 

 

Proposition 1 indicates that a household’s location is determined by its VOT or income. 

Households with higher VOTs prefer to live closer to the CBD due to their greater aversion to 

high commuting costs over high land prices.8 A similar residential sorting has also been 

shown in Takayama and Kuwahara (2017), but with a discrete households’ VOT distribution.  

 

2.3. Equilibrium household residential density 

 

We have derived the residential sorting along the corridor in the previous section. In this 

section, we further derive the household residential density, i.e., the number of households per 

unit of land area. According to Eqs. (1) and (2), the commuting cost is discontinuous at the 

bottleneck (an upward jump). Therefore, in the following we in turn derive the downtown and 

suburban residential densities. 

 

Let ( )Dn x  be the household residential density at downtown location x , and ( )DN x  be the 

 
7 It is easy to show that 2 ( , ) 0u x x      holds, and thus ( , )u x   is submodular in x  and   (see e.g., 

Topkis, 1998; Fujishige, 2005). 

8 It should be pointed out that the residential sorting presented in Proposition 1 depends on the quasi-linear 

utility function, due to its inherent property of income-inelastic land consumption (see Eq. (7)). The quasi-linear 

utility function may apply to Chinese and European cities where the rich live in the city central areas, like 

Beijing, Shanghai, Paris or London. We admit that other utility functions, such as Cobb-Douglas functions, can 

be adopted for a further study (see e.g., Takayama, 2020), but may incur analytical intractability.  
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cumulative number of households from the CBD to x. Analogously, ( )Sn x  and ( )SN x  are 

the residential density and cumulative number of households in a suburban location x, 

respectively. Obviously, ( ) ( ),  ,i idN x dx n x i D S= =  holds. Land supply is uniform across 

the city, and normalized to 1 at any location of the corridor without loss of generality. 

Housing consumption per household equals land supply divided by the number of households, 

i.e., ( ) 1 ( ) ,  ,i ih x n x i D S= = . Substituting it into Eq. (7), the land rental price can be 

expressed as a function of residential density: 

 ( )
2

( ) ( ) ,  ,
2

i i

k
p x n x i D S= = . (10) 

Plugging it into Eq. (9) yields the following first-order ordinary differential equation 

regarding residential density: 

 0

( )
0,  ,idn x

t k i D S
dx

+ = = . (11) 

 

For analytical tractability, we assume that households’ VOTs are uniformly distributed, i.e., 

~ [ , ]U   . Since households are spatially distributed in a descending order of VOTs 

outward (see Proposition 1), there is a one-to-one correspondence between location x and 

VOT  . The VOTs at the CBD and the city boundary are   and  , respectively. Let   

be the household VOT at the bottleneck (also called critical VOT), endogenously determined 

later. For clarity, we introduce the concept of VOT mass, denoted by b , as the number of 

households per unit of VOT. Given the uniformly distributed VOT, b  is a constant, i.e., 

( )b N= − . Let ˆ
DN  and ˆ

SN  be the total number of households in the downtown and 

suburb, respectively. We thus have *ˆ ( )DN b= −  and *ˆ ( )SN b=  − . 

 

In the downtown, owing to the one-to-one correspondence between location x and VOT  , 

( ) ( )DN x b=  −  holds. Substituting it into Eq. (11) to remove variable   yields the 

following vital second-order ordinary differential equation for ( )DN x : 

 
2

0 0

2

( )
( ) , [0, )D

D

t td N x
N x x a

dx kb k


− = −  . (12) 

 

Note that the cumulative number of households at the CBD is 0 , and that from the CBD to 

the bottleneck is the downtown population. Hence, the boundary conditions for Eq. (12) are 
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(0) 0DN =  and ˆ( )D DN a N= . The analytical solution for ( )DN x  can thus be derived as 

 
1 2( ) , [0, ),rx rx

DN x c e c e b x a−= + +    (13) 

where r , 1c , and 2c  are constants, with 

 0tr
kb

= , 1 2 1

ra

ra

b e b
c

e

 − 
=

−
, and 2 2

( )

1

ra ra

ra

e e b b
c

e

−  + 
=

−
. (14) 

From Eq. (14), 0r   and 2 0c   hold, while the sign of 1c  is undetermined. From Eq. (13), 

the residential density in the downtown is 

 
1 2( ) , [0, ).rx rx

Dn x c re c re x a−= −   (15) 

 

Similarly, in the suburb, ( ) ( )SN x b=  −  holds due to the one-to-one correspondence 

between location and VOT. Combining it with Eq. (11) yields the following differential 

equation for ( )SN x : 

 
2

0 0

2

( )
( ) , [ , ]S

S

d N x t t
N x x a B

dx kb k


− = −  , (16) 

subject to the boundary conditions: ˆ( )S DN a N= , ( )SN B N= , and ( )S Ap B r= . Herein, Ar  

is the exogenous agricultural land rent, and ( )Sp B , given by Eq. (11), is the land rental price 

at the city boundary B. These boundary conditions mean that the cumulative number of 

households from the CBD to the bottleneck is the downtown population, that from the CBD to 

the city boundary is the total city population, and the land rental price at the city edge equals 

the exogenous agricultural land rent. 

 

Based on Eq. (16) and the associated boundary conditions, one can solve ( )SN x  as 

 
3 4( ) ,  [ , ]rx rx

SN x c e c e b x a B−= + +   , (17) 

where 3c  and 4c  are constants, given by  

2 2 2

3

( ) ( ) 2 ( )

2

Ara b b b r kr
c e

 

− −  +  −  +
=  and 

2 2 2

4

( ) ( ) 2 ( )

2

Ara b b b r kr
c e

 −  −  −  +
= . (18) 

From Eq. (18), 4 0c   holds, while the sign of 3c  is undetermined. Meanwhile, the city 

boundary B is solved as 

 

2

3

2 ( )1
ln .

2

Ab r kr
B

r c

 − +
 =
 
 

 (19) 
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One can thus obtain the suburban residential density as 

 
3 4( ) , [ , ]rx rx

Sn x c re c re x a B−= −  . (20) 

 

Thus far, we have solved the equilibrium household residential density in the downtown and 

suburban areas for a given critical VOT   at the bottleneck. In the following, we determine 

 . Substituting Eq. (11) into Eq. (8), one can rewrite the indirect utility function as 

 ( , ) ( ) ( , ) ( ),  , .i i iu x w c x kn x i D S =  −  − =  (21) 

Note that at the equilibrium, the household utility should be continuous at the bottleneck, i.e., 

( , ) ( , )D Su a u a  =  . According to Eqs. (1), (2), (15), (20), and (21), the equilibrium 

condition for VOT   is 

 
2

2 2 2

2 2

1 2
( ) ( ) 2 ( ) ( )

1 1

ra ra

Ara ra

e e b
kr b kr b b r kr b kr

e q e

   +  
 +  −  + +  −  =

− −
. (22) 

Eq. (22) has a unique solution (if it exists) regarding  . This is because the left-hand side of 

Eq. (22) increases with   while the RHS is a constant.9 Once   is solved by Eq. (22), 

the equilibrium cumulative number of households and residential density can then be 

determined by Eqs. (13), (15), (17), and (20).  

 

Owing to the one-on-one correspondence between VOT   and residential location x, i.e., 

( ) ( ),iN x b=  −  ,i D S= , we can determine households’ residential locations as 

 

2

1 2

1

2 2 2

3

( ) 41
( ) ln , ( , ],

2

( ) ( ) 2 ( )1
( ) ln , [ , ],

2

D

A

S

b b c c
x

r c

b b b r kr
x

r c





  −  +  −
   =   

   


  −  +  −  +
  =   
 

  

 (23) 

where ( )Dx   and ( )Sx   are the residential locations of downtown and suburban 

households with VOT  , respectively. 

 

From Eqs. (10), (15), (20), and (22), it is easy to show that both the residential density and the 

land rental price monotonically decrease with the distance from the CBD, and are 

 
9 Eq. (22) might have no solution if the city population N is small enough or the bottleneck location a is too far 

from the CBD such that all population of the city is within the downtown area [0, ]a . Such an extreme case is 

unrealistic and meaningless, and thus is omitted here.  
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discontinuous at the bottleneck (a downward jump). In contrast to the traditional monocentric 

urban model using static congestion with continuous residential density and land rental price, 

the bottleneck congestion here does have an important impact on household residential 

distribution and land market. The bottleneck congestion reduces the accessibility to the CBD 

for suburban households, thus lowering their willingness to pay for suburban land. Such 

discontinuity of the accessibility at the bottleneck causes the discontinuity of the land/housing 

price and residential density. Similar discontinuity has also been observed under cordon 

tolling schemes. For example, Mun et al. (2003) and De Lara et al. (2013) showed that the 

cordon toll causes a discontinuity in residential density and land rent through analytical or 

numerical methods. 

 

So far, we have established the urban equilibrium, providing a firm basis for the investigation 

of bottleneck capacity expansion and congestion tolling issues in the next sections. 

 

3. Bottleneck capacity expansion with no toll 

 

Bottleneck congestion is a deadweight loss, and expanding bottleneck capacity is an efficient 

measure to reduce such a loss. In the long run, bottleneck capacity expansion may alter 

households’ commuting schedules and residential location choices, thereby impacting urban 

spatial structure. In this section, we examine the distributional effects of bottleneck capacity 

expansion on different-income households and determine the optimal capacity under no toll. 

We also compare the results with and without considering the urban spatial effects. 

 

3.1. Distributional effects of bottleneck capacity expansion on households 

 

We first look at the distributional effects of bottleneck capacity expansion on different-income 

households, i.e., who gains (more) and who loses (more). According to Eqs. (1), (15), and 

(21), the equilibrium utility for downtown households with VOT   can be given by 

 ( )( ) ( )

0 1 2( ) ( ) ( ) ,  ( , ].D Drx rx

D Du w t x kr c e c e −   =  −   − −     (24) 

From Eq. (24), one can derive 

 
2

1 2 1

22
1 1 2

( ) 4( ) 2
0,  

2 1( ) 4

ra

D

ra

b b c cdu c e krb d

dq c e dqb b c c

 − +  − 
 = + 
  −− +  − 

 (25) 
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2 ( )

0,Dd u

dqd





 (26) 

where d dq , derived from Eq. (22), is larger than 0. Eq. (25) shows that all downtown 

households can gain from the bottleneck capacity expansion, but the marginal gains for the 

residents with higher VOTs are less than those with lower VOTs according to Eq. (26).  

 

Similarly, the equilibrium utility for suburban households can be rewritten as 

 ( )( ) ( )

0 3 4

( )
( ) ( ) ( ) ,  [ , ].S Srx rx

S S

b
u w t x kr c e c e

q


 −    −

 =  −   − − −     (27) 

From Eq. (27), we have  

 
2

2

( ) 1 ( )
+ 0,  

1

ra

S

ra

du e b d
krb

dq e q dq

 



  +   −  
=  

−  
 (28) 

 
2 ( )

0.Sd u

dqd





 (29) 

Eqs. (28) and (29) imply that all suburban households can gain from bottleneck capacity 

expansion, but the marginal gains increase linearly with VOT, i.e., the richer households gain 

more. The derivations of Eqs. (25) and (28) are tedious, and omitted here to save paper space. 

 

Summarizing the above results leads to the following proposition. 

 

Proposition 2. With the bottleneck capacity expansion, 

(i) Each household benefits due to increased utility; 

(ii) The marginal benefit is highest for mid-income households living at the bottleneck with 

VOT  , while it decreases for households with VOT farther away from  . Consequently, 

the marginal benefit is lowest for the richest households residing in the CBD or the poorest 

households residing at the city boundary. 

 

Proposition 2 shows that the bottleneck capacity expansion leads to differential effects on 

heterogeneous households.10 This can be explained as follows. From utility function Eq. (21), 

changes in household utility depend on changes in commuting costs and residential density 

 
10 Proposition 2 works when household VOT   is continuously distributed so that equilibrium utility ( )u   is 

continuously differentiable with regard to   (except for the critical VOT). For a discrete VOT distribution, this 

conclusion may not hold and deserves a further investigation. 
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(or equivalently, land/housing area) for a given household income level. Bottleneck capacity 

expansion induces households to migrate outward due to reduced congestion, and thus 

households enjoy larger housing space. In the downtown, the lower-income households near 

the bottleneck can benefit more than the higher-income households near the CBD due to a 

greater increase in housing space. Conversely, in the suburb, the higher-income households 

near the bottleneck benefit more than the lower-income households near the city boundary. 

This is because although all suburban households benefit from increased housing space and 

reduced congestion costs after bottleneck capacity expansion, the higher-income households 

experience a greater reduction in congestion costs, leading to greater overall benefits. 

 

The results of Proposition 2 are comparable to Arnott et al. (1994) and Takayama (2020). 

Arnott et al. (1994) showed that bottleneck capacity investment may benefit either 

higher-income or lower-income commuters more, without spatial dimension consideration. 

Takayama (2020) found that commuters nearer to the CBD gain but those farther away the 

CBD lose, with assumptions of Cobb-Douglas preference (for housing and numéraire goods) 

and a bottleneck location at the entrance of CBD. In our model, the bottleneck is at an 

arbitrary location of the corridor, resulting in greater gains for the households near the 

bottleneck. These results highlight the importance of considering interactions among 

bottleneck location, household preference, and urban spatial structure when evaluating the 

distributional impacts of bottleneck capacity expansion. 

 

However, whether the richest or the poorest households benefit the least remains unclear from 

Proposition 2. For further check, we set =  in Eq. (25) and =  in Eq. (28), yielding 

 
= 2

( ) 2

1

ra

D

ra

du e krb d

dq e dq



 

 
=

−
, (30) 

 
2

= 2

( ) 1 ( )
+ .

1

ra

S

ra

du e b d
krb

dq e q dq

 

  

  +   −  
=  

−  
 (31) 

 

From Eqs. (30) and (31), the bottleneck location a  and the current bottleneck capacity q 

play vital roles. Specifically, given other parameters, a small a  results in a big   and thus 

a small 
  , thus causing the RHS value of Eq. (31) to be smaller than that of Eq. (30). 

That is, the marginal gains for the poorest households are less than those for the richest 

households. Contrarily, if a  is enough big, i.e., the bottleneck is close to the city boundary, 
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then 
   approaches 1, and thus the RHS of Eq. (31) may be larger than that of Eq. (30), 

implying that the richest households gain less than the poorest households. On the other hand, 

the current bottleneck capacity q is also vital for the comparison of Eqs. (30) and (31), 

because the coefficient of d dq  in Eq. (30) keeps unchanged with q, whereas the 

coefficient in Eq. (31) decreases with q. In Appendix G, we provide numerical examples to 

illustrate how these two factors affect the households’ marginal benefits from capacity 

expansion. It turns out that if the bottleneck is located quite close to (far from) CBD, then the 

poorest (richest) households marginally benefit the least. If the bottleneck is positioned 

relatively in the middle of the corridor, then the present bottleneck capacity dominates the 

results: the marginal benefit of the richest (poorest) households is the lowest when the 

capacity level is low (high). 

 

3.2. Optimal bottleneck capacity investment 

 

In this section, we discuss the optimal investment in the bottleneck capacity to maximize 

social surplus, which is defined as the social benefit minus the bottleneck capacity investment 

cost. The social benefit includes the total utility of all households and the aggregate net land 

rent received by the local government (landlord). The social surplus and its components are in 

turn defined as follows. 

 

Let TU  be the total utility of all households, calculated as 

 
1 1ˆ ˆ( ) ( )D D S STU N u d N u d





 

  
=   +  

 −  −  , (32) 

where ( )Du   and ( )Su   are given by Eqs. (24) and (27), respectively. Note that 

1 ( ) −  and 1 ( ) −  are the probability density functions of VOT   in downtown 

and suburb, respectively. Therefore, the two terms on the RHS of Eq. (32) are the total utility 

of downtown and suburban households, respectively. 

 

We assume that the local government owns the urban land and collects the land rent, but 

needs to pay the agricultural rent (or land opportunity cost) to the central government, as 

assumed in Kanemoto (1977). Let LR  be the aggregate net land rent collected by the local 

government, expressed as 
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0

( ( ) ) ( ( ) )
a B

D A S A
a

LR p x r dx p x r dx= − + −  , (33) 

where Ar  is the exogenous agricultural rent, land rent ( ),  ,ip x i D S=  is given by Eq. (10), 

and city boundary B is determined by Eq. (19). 

 

Denote   as the social benefit, which is the sum of the total utility of all households and the 

aggregate net land rent, i.e., 

 TU LR= + . (34) 

Let IC  be the bottleneck capacity investment cost (including the construction and operating 

costs, etc.), and SS  the social surplus. The optimal bottleneck capacity investment problem 

can then be represented as 

 max  
q

SS IC= − . (35) 

In this paper, we assume that IC depends on q, and 0dIC dq   holds, i.e., a larger capacity 

requires a higher investment cost, and vice versa. From Eq. (35), the optimal bottleneck 

capacity can be obtained by first-order optimality condition d dq dIC dq = . 

 

The total household utility increases as the bottleneck capacity increases since all households 

gain after bottleneck capacity expansion according to Proposition 2. We can further derive 

0dB dq  , 0dLR dq  , and 0d dq   (see Appendix B). That is to say, as the bottleneck 

capacity increases, the city boundary expands, the aggregate net land rent decreases, but the 

social benefit (i.e., the sum of total household utility and aggregate net land rent) increases. 

These results mean that bottleneck capacity expansion poses different effects on different 

stakeholders: residents gain, while the local government loses due to the decreased net land 

rent besides the capacity investment cost. This occurs because some downtown households 

migrate to the suburb due to improved accessibility to the CBD. As a result, the city expands 

outward and land rent decreases in response to the increased bottleneck capacity. Similar 

phenomenon has also been observed in empirical studies such as Baum-Snow (2007), which 

found that new highways passing through the city reduce central-city population and make 

city more spread-out. 

 

In addition, we can obtain the upper and lower bounds of d dq  as 

 ( )( ) ( )( )
2 2

2 2 2 2

2 2
( ) ( ) .

4 2

b d b

q dq q

     
 −  −    −  −  (36) 
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The derivation of (36) is relegated to Appendix B. To explain the economic implications 

behind Eq. (36), we compute total bottleneck congestion cost, denoted as TC . According to 

Eq. (2), it can be calculated as 

 ( ) ( )( )
2 2

2 2( )
2

b b
TC d

q q


  



 
=  −   =  −  − . (37) 

The marginal effect of capacity expansion on TC  is  

 ( )( )
( )( )( )2 2

2 2 *
2 2

2 *

( )
( ) ,

2 2

ddTC b b d

dq q q d dq

 

 
 −  −  

= −  −  − +


 (38) 

where 0d dq  . The first term on the RHS represents the direct marginal reduction in 

TC  caused by the increased capacity, while the second term represents the indirect marginal 

increase in TC  caused by changes in urban spatial structure (i.e., the increased suburban 

population reflected by  ). Eqs. (36) and (38) demonstrate that the marginal effect of 

capacity expansion on social benefit is less than its direct effect on total bottleneck congestion 

cost, but larger than half of that direct effect.  

 

Summarizing the above, we have the following proposition. 

 

Proposition 3. With the bottleneck capacity expansion, 

(i) The city is expanded outward. The total utility of all households is increased, the aggregate 

net land rent is decreased, and the social benefit is increased. 

(ii) The marginal increase in social benefit is less than the direct marginal reduction in total 

bottleneck congestion cost, but greater than its half. 

 

3.3. Comparison of results with and without urban spatial structure consideration 

 

Traditional bottleneck studies typically determine optimal bottleneck capacity by a naïve 

criterion: the marginal capacity expansion cost equals the marginal reduction in bottleneck 

congestion cost. Besides, they implicitly assumed household residential locations are 

exogenously given and thus the urban spatial structure remains unchanged as the capacity 

expands. However, such a naïve optimality condition is invalidated when considering urban 

spatial structure. This is because bottleneck capacity expansion affects household residential 

location (thus commuting distance), household utility, and land rent, in addition to the 

bottleneck congestion cost. Next, we assess the distorted bottleneck capacity investment due 
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to ignoring changes in urban spatial structure. 

 

To do so, we represent q% as the initial bottleneck capacity from which it is expanded, and 

%  as the initial critical VOT at the bottleneck. If the change of urban spatial structure is 

ignored, then the critical VOT does not vary with bottleneck capacity expansion and thus 

remains a constant % . From Eq. (38), the marginal reduction in total bottleneck congestion 

cost, denoted by  , is 

 ( )( )
2

2 2

2
( ) ,  for 

2

b
q q

q

 
 =  −  − % % %. (39) 

The marginal reduction   measures the marginal benefit of capacity expansion to society 

without considering urban spatial structure. 

 

If urban spatial structure is explicitly treated as in this paper, the marginal benefit of capacity 

expansion to society will be d dq . Combining Eqs. (36) and (39), one can judge that for 

any initial capacity q%, there must exist a q%, satisfying 

  ,  for ,
d

q q q q
dq


   + %% %. (40) 

Eq. (40) shows that at the initial stage of bottleneck capacity expansion (i.e.,  ,q q q q +%% % ), 

ignoring change in urban spatial structure will overestimate the marginal benefit of capacity 

expansion to society. However, since   in d dq  increases with q (see Eq. (B.17)), 

d dq   may also occur when capacity has been expanded to a quite high level (i.e., 

 ,q q q + % % ), meaning that ignoring change in urban spatial structure may also 

underestimate the marginal benefit to society. As a result, ignoring urban spatial structure may 

cause underinvestment or overinvestment in bottleneck capacity, depending on the marginal 

cost of capacity expansion.  

 

Proposition 4. Ignoring the effects of the bottleneck capacity expansion on urban spatial 

structure may overestimate or underestimate its marginal benefit to society, depending on the 

bottleneck capacity expanded. Consequently, it may lead to overinvestment or 

underinvestment in the optimal bottleneck capacity. 

 

Proposition 4 is further illustrated in Appendix G by a numerical example. It can be explained 
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as follows. On the one hand, with capacity expansion, ignoring the change in urban spatial 

structure will overestimate its benefit to land market, because capacity expansion actually 

reduces aggregate net land rent (see Proposition 3(i)). On the other hand, ignoring urban 

spatial structure will underestimate the benefit to residents, especially for downtown 

residents since their utility is increased after relocation (see Proposition 2(i)). In the initial 

stage of capacity expansion, the overestimated effect on land market dominates the 

underestimated effect on households’ utility. This result will be reversed when the capacity is 

significantly expanded compared to the initial state. It should be mentioned that the land 

ownership plays an important role in the capacity investment decision through affecting the 

social benefit.11  

 

Capacity investment decision biases have also been studied in traditional urban models with 

static congestion and homogeneous households. Our results are comparable to these studies. 

For example, Kanemoto (1977) showed that the naïve cost-benefit rule (i.e., the marginal 

saving in transportation cost equals the marginal cost of road expansion) tends to overinvest 

in road capacity near the CBD, but may overinvest or underinvest near the city boundary. 

With dynamic congestion and heterogeneous households, we find that if the naïve investment 

rule is adopted and change in urban spatial structure is ignored, either overinvestment or 

underinvestment in bottleneck capacity occurs. 

 

4. Bottleneck capacity expansion with congestion tolling 

 

In the previous section, we analyzed the impact of bottleneck capacity expansion without toll, 

demonstrating its ability to enhance household utility and overall social welfare. However, 

capacity expansion cannot eliminate congestion externalities, leading to resource wastage. 

Well-designed congestion tolling schemes, as implemented in Singapore, London, and Hong 

Kong, can (partially) mitigate these externalities. Naturally, a hybrid approach combining 

capacity expansion (a supply-side measure) and congestion tolling (a demand-side measure) 

 
11 It is assumed in this paper that the land is owned by the local government and all net land rents go to social 

benefit  . If the land is owned by absentee landlords and a proportion  (0 1)     of net land rents are kept 

by them, then only a proportion 1−  of net land rents are included in the social benefit, i.e., 

(1 )TU LR = + − . In this case, d dq  will be larger than the value obtained in this paper since dLR dq  is 

negative. However, whether Eq. (40) and Proposition 4 still hold is not sure. 
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is expected to address the congestion issue efficiently. Moreover, toll revenue can be used for 

capacity expansion, alleviating the government’s financial burden. Therefore, this section 

investigates bottleneck capacity expansion problems under congestion tolling, including the 

first-best (dynamic) toll and the second-best (flat) toll. 

 

4.1. Bottleneck capacity expansion under first-best toll 

 

4.1.1. First-best toll and critical VOT at bottleneck 

 

The first-best dynamic toll is imposed at the bottleneck since congestion externality only 

occurs here. Downtown commuters are exempt from congestion tolls because they don’t pass 

through the bottleneck, and thus their commuting cost is given by Eq. (1). Denote ( )FB   as 

the first-best toll imposed on the suburban commuters with VOT  , where the subscript 

“FB” means the first-best, and ( )Bc   as the bottleneck congestion cost (queuing delay plus 

schedule delay) under the first-best toll. The commuting cost for suburban households 

includes bottleneck congestion cost, first-best toll, and free-flow travel time cost, given as 

 
, 0( , ) ( ) ( )S FB B FBc x c t x =  +  +  . (41) 

 

Under the first-best toll, it is easy to show that households still reside along the corridor in a 

decreasing VOT order from the CBD outward. Given the critical VOT 
FB

  at the bottleneck, 

residential density and household utility in downtown and suburb can be similarly derived as 

in the no-toll case (referring to Section 2.3). Since household utility is continuous at the 

bottleneck, the equilibrium condition used to determine 
FB

  can be given by 

 
2

2 2 2

2 2

1 2
( ) ( ) 2 ( ) ( ) ( ) .

1 1

ra ra

FB FB A B FB FB FBra ra

e e b
kr b kr b b r kr c kr

e e

   + 
 +  −  + +  +   =

− −
 (42) 

 

We now determine the first-best toll { ( ) | }FB FB

    . Denote FB  as the social 

benefit under the first-best toll, including the total household utility FBTU , aggregate net land 

rent FBLR , and toll revenue FBTR  collected by the government. Given the bottleneck 

capacity, the first-best toll aims to maximize the social benefit, formulated as 

 
{ ( )}
max

FB

FB FB FB FBTU LR TR
 

 = + + . (43) 
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Based on the maximization problem (43), we can obtain the following proposition (its proof is 

relegated to Appendix C).  

 

Proposition 5. The social optimum is achieved exactly under the first-best toll that 

completely eliminates the queues behind the bottleneck. 

 

Obviously, the urban system is distorted under the unpriced bottleneck congestion due to two 

important sources: bottleneck congestion externality caused by suburban commuters and 

mismatched population allocation between downtown and suburb. Proposition 5 implies that 

these distortions can be simultaneously eliminated by the first-best toll. 

 

From Proposition 5 and its proof, the first-best toll ( )FB   and the corresponding bottleneck 

congestion cost ( )Bc   can, respectively, be given by 

 
2 2( ) ( ),  [ , ]

2
FB FB

b

q


  =  −    , (44) 

 
*( ) ( ) ,  [ , ]B FB FB

b
c

q


 =  −     . (45) 

Plugging these equations into Eq. (42) yields the equilibrium condition that defines the critical 

VOT 
FB

  at the bottleneck. 

 

4.1.2. Distributional effects of bottleneck capacity expansion on households 

 

We now investigate the distributional effects of bottleneck capacity expansion on different 

households under the first-best toll. Following the same procedure as in the no-toll case, we 

can show that under the first-best toll, all downtown households benefit from the bottleneck 

capacity expansion, but higher-income households benefit less. We now examine the effects 

of capacity expansion on suburban households. According to Eqs. (20), (21), (44), and (45), 

the equilibrium utility of suburban households is 

( )( ) ( )* 2 2

, 0 3 4( ) ( ) ( ) ( ) ( )
2

S Srx rx

S FB S FB

b b
u w t x kr c e c e

q q

 −  
 =  −   −  −  −  − − − , (46) 

where ( )Sx   is the residential location of suburban households, given by Eq. (23).  
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Based on Eq. (46), we can derive 

 , ( )
0,  

S FBdu

dq


  (47) 

2 22 2
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( ) 2 2 1
,

( ) 1 ( ) ( ) 2 ( ) ( ) ( ) 2 ( )

ar
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FBar

FB FB A FB A

d u krb de b krb b
krb

dqd e q q dqb b r kr b b r kr

  


  

    −   +  
  = + +  − −

    − −  −  +  −  +  

 (48) 

where 
FBd dq  is greater than 0 and independent of   (see Eq. (D.3)). 

 

Eq. (47) shows that all suburban commuters gain from bottleneck capacity expansion. 

However, who gains more is unclear since the sign of Eq. (48) is ambiguous. Note that the 

RHS of Eq. (48) decreases with  , and is positive when =  but negative when 
FB

= . 

Thereby, there exists a unique VOT ˆ ( ) ( , )FB FBq      such that 2

, 0S FBd u dqd   for 

ˆ[ , )FB    and 2

, 0S FBd u dqd   for ˆ( , ]FB FB

   . This implies that among relatively 

low-income suburban households (i.e., ˆ[ , ]FB   ), higher-VOT households marginally 

benefit more from the bottleneck capacity expansion, while among relatively high-income 

suburban households (i.e., ˆ[ , ]FB FB

   ), lower-VOT households marginally benefit more. 

As a result, relatively mid-income households with VOT ˆ
FB  benefit most. Summarizing the 

above, we have the following proposition. 

 

Proposition 6. With the bottleneck capacity expansion subject to the first-best toll,  

(i) Each household benefits due to increased utility. 

(ii) The marginal benefit is highest for relatively mid-income households living at a suburban 

location with VOT ˆ
FB , while it decreases for the households with VOT farther from ˆ

FB . 

Consequently, the marginal benefit is lowest for the richest households residing in the CBD or 

the poorest households residing at the city boundary. 

 

Proposition 6 reveals that under the first-best toll, the households living in a suburban location 

(not the bottleneck) gain the most from the capacity expansion, which significantly differs 

from the no-toll case where households living at the bottleneck gain the most. This is because 

by comparing Eqs. (2), (44), and (45), among different-income suburban households, the 

difference in marginal reduction of their congestion costs due to capacity expansion (i.e., 

2 ( , )Sc x q   ) becomes smaller after implementing the first-best toll. The utility increment 

from the decreased bottleneck congestion cost no more dominates that from the increased 
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house size. Suburban households with larger VOTs benefit more from the decreased 

bottleneck congestion cost, but less from the increased house size than those with lower VOTs. 

The trade-off between these two factors leads the relatively mid-income suburban households 

living at a suburban location to benefit the most from capacity expansion. Numerical 

examples in Appendix G confirms these findings. It further discloses that if the bottleneck 

location is quite far from (close to) the CBD, the marginal benefit is lowest for the richest 

(poorest) households. If the bottleneck location is relatively in the middle of the city, the result 

depends on the current bottleneck capacity. 

 

4.1.3. Optimal bottleneck capacity investment and self-financing property 

 

Under the first-best toll, the optimal bottleneck capacity investment aims to maximize social 

surplus, formulated as 

 max ,FB FB FB FB FB
q

SS IC TU LR TR IC= − = + + −  (49) 

where FBSS  is the social surplus under the first-best toll. The total household utility FBTU  

and aggregate net land rent FBLR  are defined by Eqs. (32) and (33), respectively. According 

to Eq. (44), toll revenue FBTR  collected by the local government can be given by 

 
2 2

2 2 3 2 31 1 1
( ) ( ) .

2 6 2 3

FB

FB FB FB

b b
TR d

q q


 



   
=  −  =  −   +  

 
  (50) 

 

Similar to the no-toll case, we can derive that with the bottleneck capacity expansion subject 

to the first-best toll, the city boundary moves outward, the aggregate net land rent decreases, 

and the total household utility increases. Besides, we can derive 

 
2

3 2 3

2

1 1 1
( ) 0

6 2 3

FB
FB FB

d b

dq q

    
=  −   +   

 
. (51) 

The detailed derivation of Eq. (51) is relegated to Appendix D. Eq. (51) shows that the social 

benefit increases after the capacity expansion under the first-best toll. To further disclose the 

economic implication behind Eq. (51), we define FBTC  as the total bottleneck congestion 

cost (excluding the congestion toll since it is merely a payment transfer within the city). From 

Eq. (45), FBTC  can be given by 

 ( )
2 2

3 2 31 1 1
( )

6 2 3

FB

FB FB FB FB

b b
TC d

q q


  



   
=  −   =  −   +  

 
 . (52) 
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The marginal reduction in FBTC  after the capacity expansion is thus derived as 

 
( )3 2 32 2

3 2 3

2

( ) 3 21 1 1 1
( )

6 2 3 6

FB FBFB FB
FB FB

FB

ddTC db b

dq q q d dq

  
 



 −   +    
= −  −   +  + 

 
, (53) 

where 0FBd dq  . The first term on the RHS of Eq. (53) is the direct marginal reduction in 

FBTC  caused by the increased capacity, while the second term represents the indirect 

marginal increase in FBTC  caused by the change in urban spatial structure. Eqs. (51) and (53) 

demonstrate that under the first-best toll, the marginal effect of capacity expansion on social 

benefit is exactly equal to its direct effect on total congestion cost. 

 

On the other hand, Eq. (51) can be rewritten as FB FBd dq TR q =  according to Eq. (50). 

Note that with optimal bottleneck capacity investment, the first-order optimality condition for 

optimization problem (49) requires FBd dq dIC dq = . Combining them yields 

 FBTR dIC q

IC dq IC
= . (54) 

Eq. (54) reveals a striking result about the bottleneck capacity investment. It shows that under 

the first-best toll, the ratio of toll revenue to the optimal bottleneck capacity investment cost is 

equal to the elasticity of capacity investment cost with respect to capacity. 

 

In light of the above, we have the following proposition. 

 

Proposition 7. With the bottleneck capacity expansion subject to the first-best toll, 

(i) The city is expanded outward. The total household utility is increased, the aggregate net 

land rent is decreased, and the social benefit is increased. 

(ii) The marginal increase in the social benefit is equal to the direct marginal reduction in total 

bottleneck congestion cost. 

(iii) With the optimal capacity, the ratio of the toll revenue to the capacity investment cost 

equals the elasticity of investment cost with respect to capacity. With increasing (decreasing) 

return to scale, the capacity investment financed by the toll revenue yields a surplus (a deficit). 

With constant return to scale, self-financing holds. 

 

Proposition 7(i) is straightforward, similar to the no-toll case. However, Proposition 7(ii) 

shows a distinct result from the no-toll case. Specifically, under the first-best toll, the increase 
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in the social benefit due to capacity expansion is exactly equal to the direct reduction in total 

bottleneck congestion cost. However, under the no toll, the former is less than the latter (see 

Proposition 3). Proposition 7(iii) presents a remarkable result regarding the self-financing 

property when the effects of the bottleneck capacity expansion on the urban spatial structure 

are taken into account. The seminal work on bottleneck capacity investment by Arnott et al. 

(1993) showed that the ratio of the first-best toll revenue to the optimal capacity construction 

cost equals the elasticity of construction cost with respect to capacity. However, they assumed 

homogeneous commuters and did not consider the urban spatial dimension. Arnott and Kraus 

(1995) further showed that such a self-financing principle holds for the first-best toll with 

heterogeneous commuters but an exogenous urban spatial structure. This paper further 

extends such an important property to the context of heterogeneous commuters and 

endogenous urban spatial structure. 

 

It should be pointed out that the self-financing result has a close relationship with the Henry 

George Theorem. In this paper, we achieve the self-financing outcome within an urban spatial 

framework. This result stems from implementing a constant return to scale, characterized by 

the homogeneity of degree zero, in the bottleneck congestion function (see Eq. (2)). If the 

congestion function exhibits variable returns to scale, the Henry George Theorem is 

applicable, as detailed in Berglas and Pines (1981), Kanemoto (1984), and Arnott (2004). 

 

4.1.4. Comparison of results with and without urban spatial structure consideration 

 

We now look at the investment decision biases of ignoring urban spatial structure. Similar to 

the no-toll case, we consider an initial urban equilibrium state from which the bottleneck 

capacity is expanded, with initial capacity q% and critical VOT 
FB

%  at the bottleneck. If the 

urban spatial effect is ignored, then the marginal benefit of capacity expansion to society FB  

(i.e., the marginal reduction in total bottleneck congestion cost) can be given by  

 
2

3 2 3

2

1 1 1
( ) ,  ,

6 2 3
FB FB FB

b
q q

q

   
 =  −   +   

 
% % % (55) 

where 
FB

%  remains invariable with regard to capacity q  because the urban spatial structure 

is exogenously given.  

 

If the spatial effects are considered, the marginal benefit of the capacity expansion to society 
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is FBd dq  (see Eq. (51)), in which 
FB

  increases with q. Specifically, ( )FB FBq  =%  

when q q= %, and ( )FB FBq  %  when q q %. Combining Eqs. (51) and (55) yields  

 ,  for FB
FB

d
q q

dq


   %. (56) 

Inequality (56) takes “=” when q q= %. Eq. (56) implies that the marginal benefit of capacity 

expansion to society with urban spatial structure consideration is larger than that without such 

a consideration. Besides, it is easy to show that FB  is concave with respect to q, and 

0FBd dq  . We immediately have the following proposition. 

 

Proposition 8. Under the first-best toll, ignoring the effects of bottleneck capacity expansion 

on urban spatial structure underestimates its marginal benefit to society, thus leading to 

underinvestment in the optimal bottleneck capacity. 

 

Proposition 8 shows that under the first-best toll, ignoring urban spatial effects and using the 

naïve cost-benefit method lead to a biased assessment of the benefit of capacity expansion and 

underinvestment in the bottleneck capacity, causing losses to society.12 This occurs because 

the underestimated household utility outperforms the overestimated land rent revenue. This 

result differs from the no-toll case, in which ignoring urban spatial effects may cause 

overinvestment or underinvestment in the bottleneck capacity, as presented in Proposition 5.  

 

4.2. Bottleneck capacity expansion under second-best toll  

 

4.2.1. Second-best toll and critical VOT at bottleneck 

 

Due to political and technical issues as pointed out by some previous studies (van den Berg 

and Verhoef, 2011; Lindsey, 2012), the first-best dynamic toll is hardly put into operation in 

practice. As the second-best choice, a flat toll scheme is more prevalent in real applications 

(Mun et al., 2003; De Lara et al., 2013; Li et al., 2014).  

 

 
12 If the land is owned by absentee landlords and a proportion  (0 1)     of the land rents are kept by them, 

then social benefit (1 )FB FB FBTU LR = + − . In this case, 
FBd dq  is larger than the RHS of Eq. (51), and thus 

Eq. (56) and Proposition 8 still hold. 
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Denote SB  as the second-best flat toll, and 
SB

  as the critical VOT at the bottleneck, where 

the subscript “SB” means the second-best. Under the second-best toll, the commuting cost for 

downtown households is given by Eq. (1). According to the bottleneck theory, given the 

residential distribution of suburban commuters, a flat toll will not change their departure 

patterns. Therefore, the commuting cost for suburban households is given by Eq. (2) with an 

additional flat toll SB . Again, it can be shown that residents sort along the corridor outward 

in a decreasing order of VOT. Given the value of 
SB

 , the residential density and household 

utility can be obtained similar to the no-toll case (see Section 2.3). From the continuity of 

household utility, 
SB

  can be determined by Eq. (22) with an additional flat toll SB  on its 

left-hand side. 

 

We now determine the second-best toll SB . Denote SB  as the social benefit under the 

second-best toll. It consists of total household utility SBTU , aggregate net land rent SBLR , 

and toll revenue SBTR  (i.e., the flat toll multiplied by the suburban population). Given the 

bottleneck capacity q, the second-best toll aims to maximize social benefit, expressed as 

 max
SB

SB SB SB SBTU LR TR


 = + + .  (57) 

 

The optimality condition of the maximization problem (57) yields  

 ( )2 2 ( )
( )

2 2

SB SB
SB SB

bb

q q

 
   −  +

 =  − = . (58) 

The derivation of Eq. (58) is relegated to Appendix E. The implications of Eq. (58) are 

explained below. At equilibrium, the household VOT in the suburb follows a uniform 

distribution over [ , ]SB

   because the household VOT in the entire city follows a uniform 

distribution over [ , ]  . Therefore, ( ) 2SB

 +  represents the mean value of suburban 

VOTs. From Eq. (2), the bottleneck congestion cost (excluding toll) for a suburban commuter 

with VOT   is ( )SBb q  −  . Hence, Eq. (58) implies that at equilibrium, the optimal 

flat toll for suburban commuters is equal to their average congestion cost.  

 

Based on Eq. (58), the total toll revenue can thus be calculated as 

 ( )( )
2

2 2ˆ ( )
2

SB S SB SB SB

b
TR N

q

 
=  =  −  − . (59) 
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It should be mentioned that unlike the first-best toll which can completely eliminate 

congestion externality and population distortion between downtown and suburb, the 

second-best flat toll can partially lower congestion externality through population adjustment 

between downtown and suburban areas. 

 

4.2.2. Distributional effects of bottleneck capacity expansion on households 

 

Again, similar to the no-toll case, one can show that all the downtown households benefit 

from bottleneck capacity expansion, but the marginal benefit for richer households is lower. 

We now look at the utility changes of suburban households after the capacity expansion. We 

can easily obtain the equilibrium utility 
, ( )S SBu   for suburban households under the 

second-best toll, and derive 
, ( ) 0S SBdu dq   and 

 
2

, ( ) 2
,

3

S SB SB SB

SB

d u d

d dq dq





  
=

  +
 (60) 

where 0SBd dq  , and SB  is given by 

 ( )
22

2 2 2 2

( )1 1 3

1 2 2( ) ( ) 2 ( )

ar

SB
SB SBar

SB A

krbe b
krb

e qb b r kr






 ++ 
 = − +  −

−  −  +
. (61) 

 

It shows that under the second-best toll, all suburban households gain from bottleneck 

capacity expansion. However, the comparison of the marginal benefits among them is 

ambiguous since the sign of SB  is indefinite. Note that SB  is independent of VOT  . 

Therefore, Eq. (60) shows that the marginal benefit for suburban households may increase or 

decrease linearly with VOT  , relying on the sign of SB . Summarizing these results, we 

have the following proposition. 

 

Proposition 9. With the bottleneck capacity expansion subject to the second-best toll, 

(i) Each household benefits due to increased utility. 

(ii) The marginal benefits are differentiated across different-income households: as 0SB  , 

the marginal benefit is highest for relatively mid-income households living at the bottleneck 

with VOT 
SB

 , whereas it decreases for households with VOT farther away from 
SB

 , and 

the richest or poorest households benefit least; as 0SB  , households’ marginal benefits 
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monotonically decrease with their VOTs, i.e., the poorest households benefit most while the 

richest households benefit least. 

 

As stated in the no-toll case, among the suburban households, who benefits more from the 

capacity expansion depends on the tug-of-war between the increased housing space and the 

decreased bottleneck congestion cost. Proposition 9 indicates that such a tug-of-war depends 

on the sign of SB . Unlike the no toll and first-best toll cases, the poorest households may 

gain most from the capacity expansion under the second-best toll. Numerical study in 

Appendix G further illustrates that if the bottleneck is located quite far from the CBD, then 

SB  takes a negative value. As a result, households’ marginal benefits from capacity 

expansion decrease with their VOTs, i.e., the poorest (richest) households gain the most 

(least).  

 

4.2.3. Optimal bottleneck capacity investment and self-financing property 

 

We now determine the optimal bottleneck capacity investment and check the self-financing 

property under the second-best toll. The optimal capacity investment problem to maximize the 

social surplus can be formulated as 

 max ,SB SB
q

SS IC= −  (62) 

where SBSS  is the social surplus under the second-best toll, and the social benefit SB  is 

defined by Eq. (57).  

 

Similarly, one can show that under the second-best toll, bottleneck capacity expansion leads to 

an outward movement of the city boundary, a decrease in the aggregate net land rent, but an 

increase in the total household utility and the social benefit. The marginal increase in social 

benefit can be calculated as 

 ( )( )
2

2 2

2
( ) 0

2

SB
SB SB

d b

dq q

  
=  −  −  . (63) 

Define SBTC  as the total bottleneck congestion cost (excluding congestion toll). It can easily 

be derived that the marginal reduction in SBTC  after capacity expansion is 

 ( )( )
( )( )2 22 2

2 2

2

( )
( )

2 2

SB SBSB SB
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ddTC db b

dq q q d dq
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 



 −  −  
= −  −  − +


. (64) 
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The two terms on the RHS of Eq. (64) are, respectively, the direct marginal reduction in total 

congestion cost caused by the increased capacity and the indirect marginal increase in total 

congestion cost due to the changed urban spatial structure. The first term on the RHS of Eq. 

(64) and the term on the RHS of Eq. (63) are the same, meaning that under the second-best 

toll, the direct effect of bottleneck capacity expansion on total bottleneck congestion cost is 

exactly equal to its marginal effect on social benefit.  

 

With the optimal capacity investment, the first-order condition for the maximization problem 

(62) necessitates SBd dq dIC dq = . Combining it with Eqs. (59) and (63) yields 

 ,SBTR dIC q

IC dq IC
=  (65) 

which demonstrates that under the second-best toll, the ratio of toll revenue to the optimal 

capacity investment cost still equals the capacity elasticity of the investment cost. 

 

We summarize the above results and obtain the following proposition. 

 

Proposition 10. With the bottleneck capacity expansion subject to the second-best toll, 

(i) The city is expanded outward. The total household utility is increased, the aggregate net 

land rent is decreased, and the social benefit is increased. 

(ii) The marginal increase in the social benefit is equal to the direct marginal reduction in total 

bottleneck congestion cost. 

(iii) With the optimal capacity, the ratio of the toll revenue to the capacity investment cost 

equals the elasticity of investment cost with respect to capacity. With increasing (decreasing) 

return to scale, the capacity investment financed by the toll revenue yields a surplus (a deficit). 

With constant return to scale, self-financing holds. 

  

Proposition 10 shows that the self-financing principle remains valid under the second-best 

context. This finding extends the study of Arnott et al. (1993), in which self-financing 

property holds under the flat toll, but for homogeneous commuters without urban spatial 

structure consideration. Arnott and Kraus (1995) further considered household heterogeneity 

in absence of urban spatial effects and concluded that the self-financing property no more 

applied to the uniform (flat) toll. By contrast, our work indicates that if the urban spatial 

structure (or household relocation behavior) and household heterogeneity are explicitly 

treated, the self-financing principle still holds for the optimal flat toll.  
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4.2.4. Comparison of results with and without urban spatial structure consideration 

 

We now briefly discuss the capacity investment biases when ignoring urban spatial structure. 

Let q% represent the initial bottleneck capacity, and 
SB

%  the critical VOT at the bottleneck. 

From Eq. (64), we can easily obtain the marginal benefit SB  of capacity investment to 

society when the urban spatial structure is ignored. Further, we can show SB SBd dq   for 

 q q %, similar to the procedure adopted in the first-best toll case. These findings can be 

summarized as follows. 

 

Proposition 11. Under the second-best toll, ignoring the urban spatial effects will 

underestimate the marginal benefit of bottleneck capacity expansion to society, leading to 

underinvestment in the optimal bottleneck capacity. 

 

Propositions 8 and 11 show that regardless of the first-best dynamic toll or the second-best 

flat toll, underinvestment in bottleneck capacity would occur due to ignoring the urban spatial 

structure.13 

 

4.3. Comparison of urban spatial structures with optimal bottleneck capacities under no toll, 

first-best, and second-best tolls 

 

Thus far, we have discussed the optimal bottleneck capacity investment issues under no toll, 

first-best toll, and second-best toll. For ease of presentation, the cities with optimal capacities 

under no toll, first-best toll, and second-best toll are referred to as no-toll optimal, first-best, 

and second-best cities, respectively. Comparing their urban spatial structures, we obtain the 

following proposition, and its proof is given in Appendix F. 

 

Proposition 12. With constant return to scale for bottleneck capacity investment, 

(i) For a given household, its residential location in the first-best city is farther from the CBD 

than in the second-best city, making the first-best city longer than the second-best city. 

(ii) The downtown residential density and land rent under the first-best city are lower than 

 
13 Similar to the first-best toll (see Footnote 12), if a portion of land rents go to the absentee landlords under the 

second-best toll, Proposition 11 still holds. 
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those under the second-best city. The results are reversed for the suburban area. 

(iii) As 0 = , the no-toll optimal city lies between the first-best and second-best cities, in 

terms of residential location, city length, residential density, and land rent. 

 

The results of Proposition 12 can be explained as follows. Given the suburban population and 

bottleneck capacity, the first-best dynamic toll can eliminate bottleneck queues and thus 

reduce the commuting cost of suburban commuters. Hence, the first-best toll attracts some 

households to live in the suburban area. As a result, the city boundary expands. By contrast, 

the second-best flat toll does not change the departure patterns of bottleneck users but 

increases their commuting costs. In essence, the second-best toll alleviates the bottleneck 

congestion by driving some suburban commuters to live downtown, and thus the city shrinks. 

As a result, the first-best city is longer than the second-best city, albeit they have different 

optimal capacities. For a special case of 0 = , we analytically prove that the no-toll optimal 

city lies between the first-best and second-best cities in terms of residential location, city 

length, residential density, and land rent. Numerical results in Appendix G indicate that the 

no-toll optimal city still lies between the first-best and second-best cities when   is 

relatively small, which is consistent with the special case of 0 = . However, when   is 

relatively large (approaching  ), the no-toll optimal city has the lowest (highest) downtown 

(suburban) residential density, and the farthest residential location for a given household 

among the three optimal cities. 

 

Finally, we numerically explore the relationships of optimal capacity investments among 

no-toll, first-best, and second-best cities (see also Appendix G). It shows that such 

relationships are ambiguous, depending on the model parameters, such as the marginal cost 

  of capacity expansion. As   is small, the no-toll optimal city requires the largest capacity 

investment; otherwise, the largest investment takes place in the first-best city.  

 

5. Conclusion and further studies 

 

We presented a novel model combining household residential location choice and bottleneck 

congestion. Residents are heterogeneous in terms of income, and continuously distributed 

along a linear city corridor. A bottleneck with limited capacity in the corridor causes traffic 

congestion during commutes. We analytically derive urban equilibrium solution by 
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well-defined differential equations. We examine the distributional effects of bottleneck 

capacity expansion on heterogeneous households, and investigate the bottleneck capacity 

investment issues under the no toll, first-best toll, and second-best toll, as well as the 

self-financing issue. The biases in bottleneck capacity investment due to ignoring its effects 

on urban spatial structure are also examined. 

 

The following insightful findings are obtained. First, regardless of whether the toll is levied or 

not, all households benefit from bottleneck capacity expansion. However, the marginal benefit 

is differential across different-income households. In particular, under no toll, the mid-income 

households residing at the bottleneck location gain the most, while the richest or the poorest 

households gain the least. Under the first-best toll, the households residing in a suburban 

location (close to the bottleneck location) gain the most. Under the second-best toll, there is a 

critical condition leading households’ marginal benefit from capacity expansion to decrease 

with their income. Numerical results show that such differential marginal benefit depends on 

the bottleneck location and current bottleneck capacity level. Second, under the first-best or 

second-best toll, the ratio of toll revenue to optimal capacity investment cost is exactly equal 

to the elasticity of investment cost with respect to capacity. With constant return to scale for 

capacity investment, the self-financing principle holds exactly. Third, ignoring the change in 

urban spatial structure causes distorted capacity investment. Specifically, under no toll, 

overinvestment or underinvestment in capacity may occur, depending on capacity expansion 

cost. However, under the first-best and second-best tolls, only underinvestment takes place. 

The proposed model elucidates the interplay among bottleneck congestion, capacity 

expansion, and urban spatial structure, and can serve as a useful tool to efficiently evaluate 

and design anti-congestion policies from demand side, supply side, or both. 

 

Some extensions can be envisaged as follows. First, household utility follows a quasi-linear 

function, which should be justified using real survey data. Empirical calibrations of the utility 

function are beneficial for the model application in realistic cases. Second, this paper assumes 

a uniform household income distribution. Considering other income distributions, such as 

lognormal distribution, is more realistic. However, deriving a closed-form solution for a 

general distribution could be challenging, and a simulation method may be necessary in such 

cases. Third, this paper assumes a linear monocentric urban structure. However, many cities in 

reality have radial and/or circular structures (Li et al., 2013; Li and Wang, 2018) or multiple 

business centers (Anas and Kim, 1996; Anas and Xu, 1999). Therefore, there is a need to 
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extend the proposed model to account for other urban forms. Finally, this paper focuses on the 

case of fixed bottleneck location, like bridges and tunnels. However, real road bottlenecks can 

arise from various random factors like traffic accidents, adverse weather, road works, and lane 

changes. The bottleneck locations may thus stochastically vary by time of day, day of week, 

and season. Therefore, extending the proposed model to consider the case of stochastic 

bottleneck locations is meaningful.  
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Appendix A: Derivation of Eq. (2) 

 

For a resident at suburban location x ( )x a  with VOT  , the commuting cost ( , )Sc x   is 

composed of queuing delay cost at the bottleneck, the early-arrival penalty, and the free-flow 

travel time cost, expressed as 

 0( , ) ( ) ( )( ) ,S ec x m t t t t x =  +  − +   (A.1) 

where ( )   is the value of early-arrival time for the resident with VOT  , t is the arrival 

time at the CBD, et  is the desired arrival time or work start time, and ( )m t  is the queuing 

delay time at the bottleneck. It is assumed that residents with different VOTs have the same 

ratio, , of value of early-arrival time to VOT, i.e., 

 
( )

, [ , ].
 

 =   


 (A.2) 

At equilibrium, any resident in the suburb cannot unilaterally change his/her schedule to 

reduce commuting cost, i.e., ( , ) 0Sdc x dt = . Combining it with Eq. (A.1) yields  

 
( )

( ) 0.
dm t

dt
 −  =  (A.3) 

 

Let st  be the arrival time of the first commuter at the CBD. Obviously, there is no queue for 

the first commuter, i.e., ( ) 0sm t = . Combining it with Eqs. (A.2) and (A.3) yields 

 ( ) ( )sm t t t=  − . (A.4) 

Since late arrival is not allowed, the work start time et  is also the arrival time of the last 

commuter at the CBD, and thus the peak period lasts e st t−  units of time. The bottleneck 

runs at capacity during the peak period. We thus have 

 
ˆ

.S
e s

N
t t

q
= −  (A.5) 

Substituting Eqs. (A.2), (A.4), and (A.5) into (A.1), the commuting cost for the suburban 

residents residing at x with VOT   can be obtained as 

 
0

ˆ
( , ) .S

S

N
c x t x

q
 = +   (A.6) 

This completes the derivation of Eq. (2). 



41 

Appendix B. Derivation of Eq. (36) 

 

Bottleneck capacity expansion changes household residential distribution. From Eq. (22), we 

can obtain 

 

1
2 2

2 22 2 2

1 (2 ) ( )
0

1 ( ) ( ) 2 ( )

ra

ra

A

d e b b b
kr b kr

dq e q qb b r kr

−
    



  +    −   − 
 = + + 
 −  −  + 

. (B.1) 

 ( ) 2 2

2 2 2 2

( ) 1 1
( ) 0.

1 ( ) ( ) 2 ( )
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A

d b q e b d
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dq e q dqb b r kr
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

 

  − +   
 = − + +  − 
  −  −  + 

 (B.2) 

From Eq. (19), we can derive 

 
2 2 2

0
( ) ( ) 2 ( )A

dB b d

dq dqr b b r kr






= 

 −  +
, (B.3) 

which means that the capacity expansion leads the city to expand outward.  

 

From Eq. (11), the aggregate net land rent in Eq. (33) can be rewritten as 

 2 2

0
( ) ( )

2 2

a B

D S A
a

k k
LR n x dx n x dx r B= + −  . (B.4) 

From Eqs. (14) and (15), we have 
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( )( ) ( )
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 
 (B.5) 

From Eqs. (18)-(20), we have 
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 (B.6) 

Substituting Eqs. (B.5) and (B.6) into (B.4), we can derive 

( ) ( ) ( )

( )

( ) ( )

2 2 2 2 2 2 2

2

22 2 2 2 2

2 2 2 2 2

2 2 2 2

2

1 2 ( ) ( ) 1 2

2 1 2 ( ) ( ) 2 ( ) 1

1 2 1 2
( ) ( ) 2 ( )

2 1 2

ra ra ra ra ra

ra ra
A

ra ra ra ra ra

Ara

e b e b krb b b e e b e bdLR krb d
kr a

dq e dqb b r kr e

e b e b e e b e bkrb krb
b b r kr kr a

e e

   



 



 +  −   −  − +  +   = + +
 −  −  + −
 

+  −  − +  + 
 +  −  + +

− ( )
2

2
.

1ra

d

dq

 
 

 −
 

 (B.7) 

According to equilibrium condition Eq. (22), one can judge 
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Combining Eqs. (B.7) and (B.8), one obtains 0dLR dq  , meaning that bottleneck capacity 

expansion leads to a decrease in the aggregate net land rent.  

 

Note that VOT   and location x have a one-to-one correspondence, i.e., 

( ) ( ),  ,iN x b i D S=  − = . According to Eqs. (13) and (17), we can obtain the VOT of a 

household at any location x as 
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 (B.9) 

Hence, the utility of the households at location x can be written as 

 ( ) ( ( )) ( , ( )) ( )u x w x c x x kn x=  −  − , (B.10) 

where ( ) ( )Dn x n x=  for [0, )x a , and ( ) ( )Sn x n x=  for [ , ]x a B .  

 

From (B.10), the total utility of all households in the city can be expressed as 
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0 0 0 0
( ) ( ) ( ( )) ( ) ( , ( )) ( ) ( ) .

B B B B

TU u x n x dx w x n x dx c x x n x dx kn x dx= =  −  −     (B.11) 

Combining it with Eq. (B.4), we have 
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B B
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From Eqs. (1), (2), (15), and (20), we have 
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 (B.13) 

From Eqs. (B.2), (B.3), and (B.13), we can derive 
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In addition, from Eq. (B.3), we have 
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2 2 2
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2
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A
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r
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=
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Note that the first integral term on the RHS of Eq. (B.12) represents the total income of all 

households, and is independent of capacity q. We thus have 
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2

B

A
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

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
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Substituting Eqs. (B.7), (B.14), and (B.15) into (B.16), and using the equilibrium condition 

Eq. (22) yield 

( ) ( )( )2 2 2 22 2

2 2 2 2

( ) ( ) ( ) ( )1
0,

2 1 22 ( ) ( ) 2 ( )

ra

ra

A

krb b b b bd krb e b d
b

dq e q dqb b r kr

   


 

  −    −   −  +  
 =  − + +   −   −  +  

 (B.17) 

where d

dq

  is given by Eq. (B.1).  

 

Note that the following relationships hold 
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Combining Eqs. (B.1), (B.17), and (B.18), we can obtain 

 ( )( ) ( )( )
2 2

2 2 2 2

2 2
( ) ( ) .

4 2

b d b

q dq q

     
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This completes the derivation Eq. (36). 



44 

Appendix C: Proof of Proposition 5 

 

As proven in Takayama and Kuwahara (2017), given the critical household VOT at the 

bottleneck, the land market is efficient in both the downtown and the suburb. Therefore, the 

distortion in our model arises only from two sources: the bottleneck congestion externality 

incurred by suburban commuters, and the mismatch in population allocation between the 

downtown and suburb. 

 

First, we justify that the first-best dynamic congestion toll on the suburban households with 

VOT   should take the following form: 

 ( ) ( ) ,  [ , ]FB FB

   =   +     (C.1) 

where ( )   is the dynamic bottleneck congestion toll that exactly eliminates queues, and 

parameter   is a constant toll used to balance the population allocation between the 

downtown and suburb. To confirm this, we assume that there is another toll scheme ˆ ( )FB  , 

with the critical VOT at the bottleneck ˆ
FB

 . In toll scheme ( )FB  , we can always achieve 

the same critical VOT ˆ
FB

  by adjusting the value of  , such that the population allocation 

between downtown and suburb under toll scheme ( )FB   is the same as that under toll 

scheme ˆ ( )FB  . Since household preference is quasi-linear, toll schemes ( )FB   and 

ˆ ( )FB   have the same residential density and land rent across the city. Therefore, the 

difference in social surplus between these two toll schemes lies in the total bottleneck 

congestion cost (excluding toll). Apparently, the social surplus under toll scheme ( )FB   is 

larger than that under toll scheme ˆ ( )FB   because the former minimizes the total congestion 

cost according to the bottleneck theory. 

 

Since suburban commuters’ VOTs follow a uniform distribution ( , )FBU   , the optimal 

bottleneck dynamic toll ( )   that eliminates queues in Eq. (C.1) can be derived as 

 
2 2( ) ( ),  [ , ].

2
FB

b

q

 
  =  −     (C.2) 

The derivation of Eq. (C.2) is similar to the procedure in Appendix A, and thus omitted here. 

Readers can refer to Xiao and Zhang (2014) and Wu and Huang (2015). Meanwile, the 

corresponding bottleneck congestion cost ( )Bc   (i.e., early-arrival schedule delay cost) after 
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the toll can be derived as 

 
*( ) ( ) ,  [ , ].B FB FB

b
c

q


 =  −      (C.3) 

 

We next solve the optimal constant toll   that maximizes the social benefit. From Eq. (42), 

the equilibrium condition determining the critical VOT 
FB

  can be rewritten as 
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Referring to Eq. (B.12), the optimization problem Eq. (43) can be reformulated as  

0 0
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
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where ( )x  is given by Eq. (B.9), and ( , ( ))c x x%  is defined as  
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From Eqs. (1), (2), (15), (20), and (B.9), we have  
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 (C.7) 

Based on Eq. (C.7), we can derive 
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  (C.8) 

where 
FBd d   is less than 0 and can be determined by Eq. (C.4). 

 

Besides, from Eqs. (B.7) and (B.15), we have 
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Taking the first-order derivative of FB  with respect to   in Eq. (C.5), and combining Eqs. 

(C.4), (C.8), (C.9), and (C.10) yield 
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( , ( )) ( )

2

B

FB FB
A

d c x x n x dxd ddLR dB
r

d d d d d

 
= − − − = 

    

 %
. (C.11) 

Since 0FBd d   , Eq. (C.11) implies the social benefit is maximized when 0 = . 

Combing it with Eq. (C.2), one obtains that the social optimal toll is exactly the optimal 

bottleneck dynamic toll that eliminates bottleneck queues, i.e., 

 
2 2( ) ( ),  [ , ].

2
FB FB

b

q


  =  −     (C.12) 

This completes the proof of Proposition 5. 
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Appendix D: Derivation of Eq. (51) 

 

Referring to Eq. (C.5), we have 
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From Eqs. (C.4) and (C.7), we can derive 
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where FBd

dq


 can be obtained from Eq. (C.4) as 
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Substituting Eqs. (D.2), (B.7), and (B.15) into (D.1) yields 
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This completes the derivation of Eq. (51). 
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Appendix E: Derivation of Eq. (58) 

 

Similar to Eq. (22), under the second-best toll SB , we can write the equilibrium condition 

that determines critical VOT 
SB

  as 
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From Eq. (E.1), one can obtain  
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According to Eq. (B.12), the social benefit SB  under the second-best toll can be written as 
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where ( , ( ))c x x  is obtained by replacing   in Eq. (3) with 
SB

 . From Eqs. (B.3) and 

(B.7), we have 
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Referring to 
0
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c x x n x dx  in Eq. (B.13), we can derive 
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The optimal second-best toll SB  requires 0SB SBd d  = . From Eqs. (E.3)-(E.6), we have  
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Combining Eqs. (E.1) and (E.7) yields 
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This completes the derivation of Eq. (58).
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Appendix F: Proof of Proposition 11 

 

Note that given the critical VOT at the bottleneck, the city length, residential density, and 

residential location with no toll are the same as those with congestion tolling, which can be 

obtained by Eqs. (15), (19), (20), and (23). This means that the critical VOT at the bottleneck 

governs the urban spatial structure. In the following, we look at the effects of the critical VOT 

on the urban spatial structure. 

 

From Eq. (B.3), we have 
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which means that the city boundary increases with the critical VOT at the bottleneck.  

 

From Eqs. (14), (15), (18) and (20), we can derive 
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Eqs. (F.2) and (F.3) indicate that the residential density of households in the downtown (or in 

the suburb) decreases (or increases) as the critical VOT at the bottleneck increases. 

 

From Eqs. (14) and (23), we can derive 
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Similarly, from Eqs. (18) and (23), we have 
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Eqs. (F.4) and (F.5) mean that the residential location of households increases as the critical 

VOT increases.  

 

In order to compare the spatial structure differences (city length, residential density, and 

residential location) among the no-toll optimal, first-best, and second-best cities, we only 
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need to compare the values of  , 
FB

 , and 
SB

 .  

 

We first prove 
FB SB

    by contradiction method. The capacity investment cost is assumed 

to satisfy a constant return to scale IC q=  . Denote 
FBq  and 

SBq  as the optimal capacities 

in the first-best city and the second-best city, respectively. We assume that 
FB SB

    holds. 

Comparing equilibrium conditions Eqs. (42) and (E.1), one can obtain 
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On the other hand, since the capacity investment cost exhibits a constant return to scale, the 

optimality condition implies SBFB
dd

dq dq


= =  . From Eqs. (51) and (63), one obtains 
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From Eqs. (F.6) and (F.8), one obtains 
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Combining the leftmost and rightmost terms in Eq. (F.9) yields 
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Clearly, Eq. (F.10) contradicts (F.7). Therefore, 
FB SB

    holds. According to Eqs. 

(F.1)-(F.5), one can obtain that the first-best city is longer than the second-best city, and any 

resident with a given VOT in the first-best city lives farther from the CBD than in the 

second-best city. Besides, the residential density and thus the land rent in the downtown area 

(or the suburban area) in the first-best city are lower (or higher) than in the second-best city. 

Similarly, one can prove 
SB FB

      for 0 =  by using the contradiction method. This 

completes the proof of Proposition 11.
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Appendix G: Numerical examples 

 

Numerical examples are used to further illustrate the properties of the model and gain 

additional insights. Specifically, we aim to (i) investigate how the bottleneck location and 

current bottleneck capacity affect households’ marginal benefits from capacity expansion, (ii) 

compare the marginal benefit of capacity expansion to society with and without urban spatial 

consideration when there is no toll, and (iii) examine the differences in both spatial structure 

and optimal capacity investment among the no-toll optimal, first-best, and second-best cities. 

 

G1. Parameter specifications 

 

Consider one monocentric linear transportation corridor, with a population size of N = 20000. 

The bottleneck is located 10 km from the CBD, i.e., 10a = km. The agricultural rent Ar  is 

$100 per day. The average auto free-flow travel speed is 40 km per hour, i.e., 0 1 40t = h/km. 

The ratio, , of the value of early-arrival time to the VOT is 0.3, as calibrated by Hall (2024). 

The lower and upper bounds of VOT   are $40 =  and $120 =  per hour, respectively. 

Besides, we suppose that residents’ VOT is proportional to their wage, and ( ) 8w  =   with a 

consideration that the work time is about 8 hours per day. The parameter k in the hyperbolic 

utility function (see Eq. (4)) is 0.05. The bottleneck capacity investment cost IC  follows a 

power function, IC q=  , where   is the coefficient and   represents the elasticity of 

capacity investment cost regarding capacity. The base values of   and   are set as $20 and 

1, respectively. 

 

G2. Distributional effects of bottleneck capacity expansion 

 

Analytical results in the previous sections have shown that differential marginal benefits 

across different-income households due to bottleneck capacity expansion may depend on the 

bottleneck location and the current bottleneck capacity level. To detect their relationships, we 

consider three bottleneck locations of 5,  10,  25a = km from the CBD, and two current 

bottleneck capacity levels of 2000q =  and 10000 veh/h. The marginal benefits of capacity 

expansion under different toll schemes are depicted in Fig. G.1. 
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(a)                     (b)                      (c) 

 

(a′)                      (b′)                      (c′) 

 

(a″)                      (b″)                      (c″) 

Fig. G.1. Marginal benefit of households from bottleneck capacity expansion. (a)-(c): no toll 

with a = 5, 10, 25km; (a′)-(c′): first-best toll with a = 5, 10, 25km; (a″)-(c″): second-best toll 

with a = 5, 10, 25km. The round points represent the households at the bottleneck. 

 

It can be seen in Fig. G.1(a)-(c) that under no toll, the (relatively) mid-income households 

residing at the bottleneck location gain the most from the capacity expansion. The richest or 

the poorest gain the least: when the bottleneck is located very close to the CBD (i.e., 5a = ), 

the poorest households gain the least; when it is located very far from the CBD (i.e., 25a = ), 

the richest households gain the least; and when the bottleneck is positioned relatively in the 

middle of the city (i.e., 10a = ), the current bottleneck capacity dominates the result: the 

richest households gain the least if the current capacity is small (i.e., 2000q = ); otherwise, 
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the poorest households gain the least if the capacity is large (i.e., 10000q = ).  

 

Under the first-best toll (see Fig. G.1(a′)-(c′)), the pattern of household benefits from capacity 

expansion is similar to that in the no-toll scenario, with the main difference being that 

households living at a suburban location (not the bottleneck) gain the most. Under the 

second-best toll (see Fig. G.1(a″)-(c″)), when the bottleneck location is very far from the CBD 

(i.e., 25a = ), the household marginal benefit from capacity expansion decreases with their 

VOTs, i.e., the richer households benefit less. When the bottleneck location is not very far 

away from the CBD (i.e., 5,  10a = ), the mid-income households at the bottleneck benefit the 

most, whereas the poorest or richest households benefit the least, depending on the bottleneck 

location and current capacity level.  

 

G3. Marginal benefit of bottleneck capacity expansion with and without urban spatial 

structure consideration under no toll 

 

To further confirm Proposition 4, Fig. G.2 presents the marginal benefit of bottleneck capacity 

expansion to society with and without urban spatial consideration under no toll. The initial 

capacity is 2000 veh/h, from which it is expanded. It shows that at the initial stage of capacity 

expansion (i.e., 3300q  veh/h), ignoring urban spatial structure will overestimate the 

marginal benefit. As the capacity becomes large (i.e., 3300q  veh/h), an underestimate 

occurs. As a result, ignoring urban spatial structure may cause overinvestment or 

underinvestment in the optimal bottleneck capacity, depending on the marginal cost of 

capacity expansion. 

 

Fig. G.2. Marginal benefit of bottleneck capacity expansion under no toll. 

 

(3300, 30.7) 
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G4. Difference in urban spatial structure and optimal capacity among no-toll optimal, 

first-best, and second-best cities 

 

In Section 4.3, we have analytically proved that with constant return to scale for capacity 

investment (i.e., 1 = ), the first-best city has a lower (higher) residential density in 

downtown (suburb), and a farther residential location than the second-best city for a given 

household (see Proposition 12). As the lower bound of household VOT 0 = , the no-toll 

optimal city lies between the first-best and second-best cities in terms of residential density 

and location. To check whether this conclusion is robust for 0  , we conduct numerical 

analysis of  , with   being $20 and $80 per hour, respectively. The results are shown in 

Fig. G.3.  

 

 

 (a)                                     (b) 

 

 (a′)                                     (b′) 

Fig. G.3. Residential density and residential location for no-toll optimal, first-best, and 

second-best cities. (a) and (b): $20 h = ; (a′) and (b′): $80 h = . 

 

Bottleneck location 

Bottleneck location 
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Fig. G.3 shows that the first-best city always has a lower downtown residential density but a 

higher suburban suburban residential density, and a farther residential location than the 

second-best city, regardless of  . If the lower bound of household VOT   is small (i.e., 

$20 h = ), the no-toll optimal city lies between the first- and second-best cities in terms of 

residential density and location (see Fig. G.3(a) and (b)), which is consistent with Proposition 

12. However, if   is large (i.e., $80 h = ), the no-toll optimal city has the lowest (highest) 

downtown (suburban) residential density, and the farthest residential location from the CBD 

among the three cities (see Fig. G.3(a′) and (b′)). With non-constant return to scale for 

capacity investment cost (i.e, 1  ), similar results can be obtained, but not shown here for 

saving paper space. 

 

 

Fig. G.4. Optimal bottleneck capacity vs. marginal investment cost   under no toll, 

first-best toll, and second-best toll. 

 

In addition, it is difficult to analytically determine the relationships of optimal capacity 

investments among the no-toll optimal, first-best, and second-best cities. As an example, Fig. 

G.4 shows the changes of optimal capacity investment with the marginal capacity investment 

cost   numerically. It turns out that as   is small ( 47.1  ), the no-toll optimal city 

requires the largest capacity investment; Otherwise, the first-best city requires the largest 

investment. The lowest capacity investment may occur in any one of the three optimal cities, 

depending on the value of  . 

 

(33.6, 2671) 
(47.1, 1959) 

(73.7, 875) 


