

THEMA Working Paper n°2024-03
CY Cergy Paris Université, France

METROPOLIS2: Bridging Theory and
Simulation in Agent-Based Transport

Modeling

Lucas Javaudin, André de Palma

March 2024

METROPOLIS2: Bridging Theory and Simulation in
Agent-Based Transport Modeling

Lucas Javaudin∗ André de Palma†

March 25, 2024

Abstract

Transport simulators can be used to compute the equilibrium between transporta-
tion demand and supply within complex transportation systems. However, despite
their theoretical foundations, there is a lack of comparative analysis between simula-
tor results and theoretical models in the literature. In this paper, we bridge this gap
by introducing METROPOLIS2, a novel mesoscopic transport simulator capable of
simulating agents’ travel decisions (including mode, departure-time, and route choice),
based on discrete-choice theory within a dynamic, continuous-time framework. We
demonstrate METROPOLIS2’s functionality through its application to the single-road
bottleneck model and validate its ability to replicate analytical results. Furthermore,
we provide a comprehensive overview of METROPOLIS2 in large-scale scenarios. Fi-
nally, we compare METROPOLIS2’s results with those of the original METROPOLIS1
simulator in a simulation of Paris, highlighting its speed and ability to converge to an
equilibrium.

Keywords: transport simulation; agent-based modeling; bottleneck; dynamic traffic
assignment; discrete-choice models

JEL Codes: C63; R4

∗THEMA, CY Cergy Paris Université; lucas.javaudin@cyu.fr
†THEMA, CY Cergy Paris Université; andre.de-palma@cyu.fr

lucas.javaudin@cyu.fr
andre.de-palma@cyu.fr

1 Introduction

Transportation science explores the complex interplay between demand and supply within

transportation systems. Demand encompasses individuals, seeking to travel from one lo-

cation to another, each with their own preferences such as value of time and scheduling

constraints, along with some limitations imposed by factors like car ownership or public-

transit subscription. Supply encompasses the transportation infrastructure, comprising a

road network defined by regulations (e.g., speed limits, traffic signals, intersection priorities)

and congestion dynamics (e.g., bottlenecks, shock waves, queueing), a public transit system

with associated timetables, available parking spaces, etc.

A large portion of transportation science literature is dedicated to analyzing equilibrium

properties and evaluating transport policies through analytical models. These models, while

tractable, only capture certain facets of equilibrium dynamics. For example, the bottleneck

model (Vickrey, 1969; Arnott et al., 1990, 1993) sheds light on the impact of schedule con-

straints and road tolls using a model featuring a single road and a continuum of identical

individuals. With the advancement of computing power in recent decades, transportation

simulators are being used to analyze specific scenarios or policies, considering the complex

interplay of various effects (Nguyen et al., 2021). These simulators range from microscopic

models examining traffic infrastructure impacts at the neighborhood level (Lopez et al., 2018)

to macroscopic models investigating aggregated effects at city or national levels (McNally,

2007).

Mesoscopic models like METROPOLIS (de Palma et al., 1997) and MATSim (Horni

et al., 2016) adopt an intermediary approach between microscopic and macroscopic simula-

tions. Relying on an agent-based methodology, they account for heterogeneous effects while

simplifying congestion modeling (e.g., omitting lane changing or car following behaviors) to

enhance scalability for large-scale scenarios. This paper introduces METROPOLIS2, a novel

mesoscopic transport simulator that extends the legacy of its predecessor, METROPOLIS,

by drawing inspiration from similar mesoscopic modeling frameworks.

1

METROPOLIS2’s key characteristics include the simulation of agents’ travel decisions

(mode, departure-time, and route) within a dynamic, continuous-time framework. The simu-

lator is adapted to simulate and evaluate transport policies at the city or national level, such

as low-emission zones, infrastructure changes (e.g., alteration in speed limit, introduction

of new public-transit lines) or pricing adjustments (e.g., fuel cost taxation, modification in

public-transit fares). Grounded in economic and discrete-choice theories, METROPOLIS2

is well-suited for computing agents’ surplus in cost-benefit analyses. Moreover, it can derive

insights from analytical examples, as demonstrated in Section 3 and Appendix A.

METROPOLIS2 draws inspiration from and extends the transport simulator METROPO-

LIS (de Palma et al., 1997; de Palma and Marchal, 1999, 2002). To avoid confusion, the

original simulator METROPOLIS is referred to as METROPOLIS1 throughout the paper.

Compared to its predecessor, METROPOLIS2 offers additional features including trip chain-

ing, more flexible utility specifications, various vehicle types and explicit bottleneck queues.

Moreover, it relies on state-of-the-art routing algorithms (Batz et al., 2013; Geisberger and

Sanders, 2010), resulting in improved speed.

The primary difference between METROPOLIS2 and MATSim (Horni et al., 2016), a

popular agent-based transport simulator with an activity-based approach, lies in the conver-

gence algorithm used to reach an equilibrium. While MATSim employs a co-evolutionary

algorithm where agents select the best alternative from a small agent-specific choice set at

each iteration, with a low probability of switching to a different random alternative outside

of this choice set, METROPOLIS2 agents choose the best alternative from the complete

choice set at each iteration. Consequently, MATSim tends to produce a more stable system

with fewer changes between iterations but converges slower to an equilibrium, compared to

METROPOLIS2. MATSim may also become trapped in suboptimal equilibria if the param-

eters of the co-evolutionary algorithm are not properly adjusted. For an in-depth comparison

between MATSim, METROPOLIS1 and METROPOLIS2, refer to Section 2.

The paper is structured as follows. Section 2 conducts a literature review on meso-

2

scopic transport simulators and similar models. Section 3 introduces a simplified version

of METROPOLIS2, tailored to simulate the single-road bottleneck model, highlighting its

foundation in economic and discrete-choice theory and its ability to replicate results from

analytical models. Section 4 provides an overview of the general version of METROPOLIS2,

including a presentation of the convergence algorithm, an explanation of the features mod-

eled on the demand and supply side, and a discussion of the equilibrium concept. Section 5

delves into implementation details for the simulator, such as programming language, code

parallelization and testing. Section 6 presents a comparison with METROPOLIS1 using a

simulation of Paris’s urban area. Finally, Section 7 offers concluding remarks.

2 Literature Review

This section starts with a comparison of METROPOLIS2 with two other transport simula-

tors: METROPOLIS1 and MATSim. Additional related works are discussed at the end of

the section.

METROPOLIS1 is a dynamic mesoscopic transport simulator, whose original version was

presented by de Palma, Marchal, and Nesterov (1997). METROPOLIS1 is the main source

of inspiration for METROPOLIS2. METROPOLIS1 can simulate mode choice (between

car and public transit), departure-time choice (with a Continuous Logit) and route choice

for a population of agents all performing a single trip. In METROPOLIS1, congestion is

simulated using an event-based model relying on speed-density functions. Many applications

of METROPOLIS1 have been proposed in the last decades (e.g., road pricing with de Palma

et al. 2005, vehicle-emission pricing with Vosough et al. 2022, ride-sharing with de Palma

et al. 2022).

MATSim is defined as “an open-source framework for implementing large-scale agent-

based transport simulations.”1 A detailed description of this simulator is provided in Horni,

Nagel, and Axhausen (2016). MATSim has been used in many cities and regions around the
1https://matsim.org/, last accessed on 23d January 2024.

3

https://matsim.org/

world and its architecture is close to the one of METROPOLIS2, which justify including it

in the detailed comparison.

Tables 1, 2, 3 and 4 provide a comparison between the three simulators METROPO-

LIS2, METROPOLIS1 and MATSim on various areas. Table 1 compares the simulators

with respects to some general and software-related characteristics. While METROPOLIS2’s

development started in 2022, METROPOLIS1 was initially released around 1997 and the

Java version of MATSim was released in 2010 (with preliminary versions dating back from

the 1990s, see Nagel 1996). The three simulators each use different programming languages

and different input / output formats.

Table 1: Comparison of 3 transport simulators: General and software

METROPOLIS2 METROPOLIS1 MATSim

Reference This paper de Palma et al. (1997) Horni et al. (2016)

Initial release 2022 (version 0.1.0) Around 1997 2010 (version 0.1.0)

Language Rust C++ Java

Open source Undecided No Yes

Input / output format CSV or Parquet MySQL XML

Table 2 compares how demand is defined in the simulators. METROPOLIS1 generates

the population from origin-destination matrices, while METROPOLIS2 and MATSim rep-

resent the population as a list of agents. Therefore, METROPOLIS1 defines trips between

zones, while METROPOLIS2 and MATSim define them between network nodes or links (but

zone-to-zone trips can also be simulated as a special case). The latter two models differ in

that, for each agent, METROPOLIS2 considers a list of trips, while MATSim considers a list

of activities. However, since converting between trips and activities is straightforward (activ-

ities represent the time spent between trips and trips represent the way to connect activities),

this difference has no practical consequences. One limitation is that METROPOLIS2 as-

sumes that the activity duration is exogenous.

With regards to the definition of the utility function, METROPOLIS2 uses a polynomial

4

function of travel time, with a linear schedule-delay cost at origin and at destination (see

Appendix E.1). Other specifications could be easily added in the future. METROPOLIS1’

uses the α-β-γ model (Arnott et al., 1990), with a schedule-delay cost either at origin or

at destination (this is a special case of METROPOLIS2). MATSim’s definition of utility

(referred to as “score”) is based on Charypar and Nagel (2005): utility depends on activities’

duration, activities’ schedule delays, trips’ travel time and trips’ euclidean distance. The

parameters of these utility functions can be specific to each agent in METROPOLIS2, while

they are defined at the class- (or subpopulation-) level in METROPOLIS1 and MATSim.

Table 2: Comparison of 3 transport simulators: Demand definition

METROPOLIS2 METROPOLIS1 MATSim

Population Agents with 1+ trips Origin-destination matrix
by subpopulation (single
trip)

Agents with 1+ activ-
ities

Origin / destina-
tion definition (for
road modes)

Node Zone centroid Link

Activity duration Exogenous N/A Endogenous

Utility / general-
ized cost

Function of travel time and
schedule-delay costsa

Generalized cost (Vickrey
model)

Charypar-Nagel util-
ity functionb

Preference classes Parameters defined at the
agent-level

Distribution of parameters
at the class-level

Constant parameters
at the class-level

a The default utility function is a polynomial function of travel time with early / late schedule-delay
costs at origin and at destination. Other specifications can be easily added.

b Utility of activities (logarithmic function of duration with early and late penalties) and utility of trips
(linear function of travel time and euclidean distance).

Table 3 provides a comparison of the three simulators in terms of their choice models. A

fundamental difference lies in the fact that both METROPOLIS2 and METROPOLIS1 are

grounded in discrete-choice theory, whereas MATSim employs a co-evolutionary algorithm.

In METROPOLIS2 and METROPOLIS1, agents select the alternative that maximizes their

utility among all available alternatives (given the expected network conditions). In contrast,

MATSim maintains a list of plans (typically 5) in the “memory” of each agent. Each plan

represents an alternative (a combination of modes, departure times and routes). Agents in

5

MATSim then select one of these plans based on their perceived utility, or they “evolve” by

choosing a new plan (usually generated by applying a random perturbation to an existing

plan). While the co-evolutionary algorithm in MATSim offers a more realistic depiction

of agent behavior (although this is not the primary rationale behind its use, as noted by

Flötteröd 2016), it comes with certain drawbacks: (i) convergence to an equilibrium may be

slower compared to METROPOLIS1 and METROPOLIS2 due to agents’ slower adaptation

and (ii) computing agent-level surplus for cost-benefit analysis is not as straightforward (see

Kickhöfer and Nagel 2016).

METROPOLIS1 and METROPOLIS2 are very similar, with two notable exceptions.

First, METROPOLIS2 offers more flexibility than METROPOLIS1: while METROPO-

LIS1 is limited to a binary Logit mode choice and a Continuous Logit departure-time

choice, METROPOLIS2 allows for various discrete-choice models. Second, route selection in

METROPOLIS1 involves making decisions at every intersection, while, in METROPOLIS2,

the complete route is selected prior to departure from the origin (which enables the use of

more efficient routing algorithms).

Table 3: Comparison of 3 transport simulators: Choice models

METROPOLIS2 METROPOLIS1 MATSim

Basic principle Discrete-choice theory Discrete-choice the-
ory

Co-evolutionary algorithm

Mode choice Any discrete-choice model
(random or deterministic)

Binary Logit model Random shifts (when mode
innovation is triggered)a

Departure-time
choice

Various specificationsb Continuous Logit Random shifts (when time
innovation is triggered)

Route choice Fastest path at the time of
departure

Choice at each inter-
section (determinis-
tic or stochastic)

Fastest path at the time of
departure (when route in-
novation is triggered)

Destination choice Yes (with exogenous desti-
nations)

No With a module (Horni
et al., 2011)

a An alternative mode-choice model based on discrete-choice theory is available as a MATSim module
(see Hörl et al. 2018 and Hörl et al. 2019).

b The choice models include Multinomial Logit and Continuous Logit. Departure-time choice can also
be deactivate (i.e., departure time is exogenous).

6

Table 4 compares how congestion is modeled and simulated in the three simulators. In

this comparison, we only consider the QSim mobsim2 for MATSim (the default and most

used mobsim). MATSim, with QSim, uses a time-step based model, which means that

at each time step (1 second by default) all the vehicles currently on the network get an

“update” to move them. In contrast, METROPOLIS1 and METROPOLIS2 use an event-

based model, which means that vehicles are “updated” only when an event happens (e.g.,

they reach the end of their current link). Apart from the typical road vehicles (such as car

and trucks), MATSim has the capability to simulate public-transit vehicles. This means

that (i) buses can contribute traffic congestion and are also susceptible to being affected by

congestion caused by other vehicles and (ii) agents are forced to wait when a train vehicle

is full. Contrarily to METROPOLIS1 and MATSim, METROPOLIS2 represents time as a

continuous variable, which allows for greater accuracy in the computation.3. Congestion is

simulated in METROPOLIS1 via speed-density functions (the speed of a vehicle entering

a road is a function of the density of vehicles currently on this road) and in MATSim via

bottleneck queues (the outflow of vehicles exiting a road is limited by the road’s capacity;

a queue builds up if the flow is larger than the capacity). METROPOLIS2 can make use

of either speed-density functions or bottleneck queues, or a combination of both. The three

models support queue propagation: when the available space on a road is smaller than the

incoming vehicle length, the vehicle is stuck at his current location until enough space is freed.

Both METROPOLIS2 and MATSim support different vehicle types, with different length,

passenger car equivalent, speed limits and road restrictions. Finally, both METROPOLIS1

and MATSim support tolls and time-varying networks (e.g., capacity of a road is decreased

at an exogenous time).

We now discuss SimMobility (Adnan et al., 2016), an open-source C++ agent-based
2A MATSim mobsim, or mobility simulation, is a program responsible for the network loading of the

model, i.e., it is a program which simulates the movement of vehicles on the network.
3In METROPOLIS2, for a road with a capacity of 1440 vehicles per hour, at most 1 vehicle each

3600/1440 = 2.5 seconds is allowed to enter / exit the road. This is not easy to simulate in a discrete-time
model without introducing some randomness or rounding errors.

7

Table 4: Comparison of 3 transport simulators: Supply

METROPOLIS2 METROPOLIS1 MATSim (QSim)

Model Event-based Event-based Time-stepping (1s step by de-
fault)

Simulated modes Road and teleporta Road and teleporta Road, teleporta and public-
transit

Time Continuous Discrete (1s step) Discrete (1s step)

Speed-density func-
tions

Yes Yes No

Bottleneck queues Yes No Only for outflow

Queue propagation
(spillback)

Yes (configurable backward
propagation speed)

Yes (instantaneous
backward propaga-
tion)

Yes (15 km/h backward prop-
agation speed)

Vehicle types Yes (with different length,
PCE, speed limit)

No Yes (with different length,
PCE, maximum speed limit)

Road restrictions Yes No Yes

Tolls Partialb Yes Yes

Time-varying net-
work

No Yes Yes

a A “teleport” mode is a mode without any interaction with the other agents. For example, walking and
bicycling are usually considered as teleport modes since the travel time is constant. Public transit can
also be considered as a teleport mode if one assumes that the schedules are not impacted by car traffic
or in-vehicle congestion.

b In METROPOLIS2, simulating a single tolled road is possible with a strategy employing road restrictions
and vehicle types: agents can select between a vehicle restricted from the tolled road or a vehicle able
to take any road but incurring a fixed monetary penalty (equivalent to the toll amount). Expanding to
multiple tolled roads involves an increasing complexity and running time, scaling combinatorially with
the number of tolls.

8

simulator that shares many similarities with METROPOLIS2. SimMobility is divided in

three main components: short-, mid- and long-term. While the short-term component mir-

rors a microscopic model and the long-term component represents a land-use model, the

mid-term component, SimMobilityMT (Lu et al., 2015), adopts a mesoscopic approach akin

to that of METROPOLIS2. The research focus of SimMobilityMT has primarily revolved

around mobility-on-demand applications (Basu et al., 2018; Oh et al., 2020). Similar to

METROPOLIS2, the demand model of SimMobilityMT employs discrete-choice methods.

SimMobilityMT uses a fully econometric activity-based model to simulate the daily ac-

tivity patterns of agents, relying on a hierarchy of discrete-choice models. In contrast to

METROPOLIS2’s deterministic route choice model, SimMobilityMT employs a path-size

Logit model for route choice. Moreover, it allows for within-day decisions, enabling agents

to adjust their routes or activities based on observed network conditions throughout the

(simulated) day. Regarding the supply model, both METROPOLIS2 and SimMobilityMT

simulate congestion using a combination of speed-density functions and bottlenecks, incor-

porating queue propagation. Both simulators are also able to simulate different vehicle types

on the road network. However, METROPOLIS2 uses a continuous-time event-based model,

whereas SimMobilityMT relies on a time-stepping model. Finally, while METROPOLIS2

represents the demand-supply equilibrium as a solution to a fixed-point problem, the lit-

erature concerning SimMobilityMT cited so far does not explicitly mention the notion of

equilibrium.

For an extended literature review on agent-based transport simulators, the interested

readers can refer to the work of Nguyen et al. (2021).

Our work shares similarities with the study conducted by Otsubo and Rapoport (2008),

who propose a discrete version of the bottleneck model and observe that the solution to the

symmetric mixed-strategy Nash equilibrium diverges from the equilibrium solution of the

continuous model. In Section 3, we investigate a discretized version of the bottleneck model

with a finite number of agents. Our model differs from theirs in two key aspects: (i) we main-

9

tain time as a continuous variable, and (ii) we introduce stochasticity in the departure-time

decision process. Moreover, our findings shows that the results remain consistent whether

considering a finite number of agents or a continuum of agents (see Appendix A).

Finally, Guo et al. (2018) investigate the bottleneck model and conclude that an equi-

librium cannot be attained through a day-to-day learning process like proportional swap.

However, our findings present a more optimistic outlook, demonstrating that we can achieve

numerical proximity to an equilibrium with METROPOLIS2, using the same bottleneck

model with three differences: (i) a finite number of agents, (ii) the introduction of stochas-

ticity in the departure-time choice, and (iii) discretization of the travel-time function.

3 From Models to Simulations

This section explains the challenges encountered in transport simulations and provides an

overview of how METROPOLIS2 operates on a basic example. All the analysis in this

section rely on the bottleneck model.

3.1 The Bottleneck Model

The so-called bottleneck model is a transport model which was derived analytically by Vick-

rey (1969) and Arnott et al. (1990). The model consists in a single road, a single mode (car)

and identical individuals whose utility is a linear function of travel time and schedule delay.

Numerous extensions of the bottleneck model have been proposed in the literature (Li et al.,

2020). We provide below a brief description of this bottleneck model.

There is a continuum of N individuals traveling from an origin A to a destination B, via

a single road. This road consists in a free-flow travel time tf, followed by a bottleneck of

capacity s with a vertical queue, as illustrated in Figure 1. The travel time from A to B can

thus be expressed as

T (t) = tf + Q(t + tf)
s

,

10

where t is the departure time from A and Q(t) is the length of the bottleneck’s queue at

time t.

Origin A //

Bottleneck of capacity s

Destination B
Free-flow travel time tf

Figure 1: Illustration of the road network in the bottleneck model

Individuals choose their departure time from the origin to maximize their utility, given

by

V (t) = −α · T (t)− β · [t∗ − t− T (t)]+ − γ · [t + T (t)− t∗]+, (1)

where α is the value of travel time, β is the value of time for being early at destination, γ

is the value of time for being late at destination, t∗ is the desired arrival time at destination

and [x]+ = max(x, 0).

Departure time is the only decision variable in the bottleneck model, as there is neither

mode choice (all individuals travel by car) nor route choice (only one road connects A to B).

An equilibrium is reached when no individual has an incentive to unilaterally change their

departure time. The analytical solution to the equilibrium of the model is found by relying

on the following property:
V (t) = V̄ if rd(t) > 0,

V (t) ≤ V̄ if rd(t) = 0,

where rd(t) is the equilibrium rate of departures at time t and V̄ is the equilibrium utility

level. This property implies that at equilibrium, all individuals get the same utility level. The

analytical solution of the model is presented in Arnott et al. (1990). The equilibrium rate of

departures and arrivals and the equilibrium utility function are represented on Figure 2.

11

tq t̃ tq′

Departure time

0

20

40

60

80

D
ep

ar
tu

re
/

ar
ri

va
l

ra
te

Departure rate (left axis)

Arrival rate (left axis)

Utility (right axis)

−5

−4

−3

−2

−1

0

U
ti

li
ty

Figure 2: Analytical solution of the bottleneck model
Note: tq is the time at which congestion starts to appear, t̃ is the departure time such that the individual

arrives on time, tq′ is the time at which congestion ends.

3.2 Challenges of Simulation

Simulating a model, even as basic as the bottleneck model, presents several challenges that

requires specific adaptations and approximations. First, the analytical bottleneck model

assumes a continuum of identical individuals, allowing for departure times to be represented

as a continuous distribution. In practice, discretization of the model is required for simu-

lations. Indeed, simulations are limited to a finite number of distinct individuals, typically

referred to as “agents”. Each agent is treated as a separate entity with their own departure

time. Consequently, departure-time distribution in simulations becomes discrete, whereas

the analytical model assumes a continuous distribution. See Otsubo and Rapoport (2008)

for a numerical solution of the bottleneck model with discrete agents. Note that consider-

ing a discrete number of separate individuals is actually more realistic than a continuum of

individuals and it allows to more easily deal with individual heterogeneity.

Second, the analytical model assumes a population of perfectly identical individuals all

choosing a departure time that maximizes their deterministic utility. Equilibrium conditions,

12

as demonstrated by Arnott et al. (1990) and illustrated on Figure 2, reveal that there is

a continuous range of departure times that yield maximum utility. While the analytical

solution of the model provides a single solution for the rate of departures at equilibrium,

there exits an infinity of solutions regarding the order in which agents depart. In simulations,

whenever there are multiple departure times maximizing utility, there is no easy way to

spread the individuals over these departure times so that the equilibrium conditions are

satisfied. To address this, randomness is introduced in the simulation’s decision-making

process. This stochastic element encourages individuals to spread their departure times

across the equilibrium departure-time range. One approach to introduce randomness is by

adding a random component to the utility, similar to the methods used in discrete-choice

models. In this vein, de Palma et al. (1983) analyze the bottleneck model where departure-

time choice is modeled as a Continuous Logit model.

Third, travel-time function T (t) and utility function V (t) are continuous functions that

may not always have explicit analytical forms. In such cases, simulations need to resort to

numerical approximations. One common approach is to represent these continuous functions

as piecewise linear functions. This approximation involves dividing the function into linear

segments, with approximation errors depending on the length of these linear segments.

3.3 Simulating the Bottleneck Model

METROPOLIS2 is able to simulate various small-scale and large-scale models with the

goal of finding an equilibrium of the simulated model. For the bottleneck model, achieving

equilibrium entails finding a departure time td
n, for each agent n, such that no agent has an

incentive to choose a different departure time, given the travel-time function T (t) derived

from the agents’ collective departure times. We now describe how the bottleneck model

presented in Section 3.1 can be simulated.

We assume a population of N discrete agents, all traveling from origin A to destination

13

B. The utility of agent n ∈ {1, . . . , N} is given by

Un(t) = V (t) + εn(t),

where t is the departure time from the origin, V (t) is the deterministic utility function,

defined as in equation (1), and εn(t) is an agent-specific random component of utility. All

agents are identical except for the random components εn(t). The single road connecting

origin A to destination B has a free-flow travel time tf and a congested travel time described

by a bottleneck with capacity s. This means that, at most s cars can cross the bottleneck

during each time unit, or, equivalently, that two cars cannot follow each other in less than

1/s time units. As discussed in Section 3.2, the N agents are treated as separate entities and

the travel-time function T and the utility functions Un are both represented as a piecewise

linear functions.

The model simulated is split in a demand model, corresponding to the travel behavior of

the agents simulated, and a supply model, corresponding to the road-network infrastructure

operations.

Demand model The demand model consists in the agents choosing a departure time for

their trip, given the expected travel-time function from origin to destination.

Following de Palma et al. (1983), we assume that the distribution of εn(t) is such that the

probability that agent n chooses departure time t is given by the Continuous Logit model

(Ben-Akiva and Watanatada, 1981; Ben-Akiva et al., 1985):

pd
n(t) = eV (t)/µ

t1∫
t0

eV (τ)/µ d τ

, (2)

where µ represents the randomness of departure-time choice (with µ → 0 corresponding

to a deterministic choice and µ → ∞ corresponding to a pure random choice) and [t0, t1]

represents the period of possible departure times.

14

The departure time of an agent n can be drawn from the probability distribution defined

by pd
n(t) by relying on inverse sampling, which works as follows. Let F d

n be the cumulative

distribution function of the chosen departure time, i.e.,

F d
n (t) =

∫ t

t0
pd

n(τ) d τ,

and let un ∼ U[0,1] (uniform random number between 0 and 1). The chosen departure time is

then simulated as (F d
n)−1(un). Figure 3 illustrates how the departure time of an individual

is drawn from the distribution F d
n using inverse sampling. Note that, even though the utility

function is represented as a piecewise linear function, time itself is not discretized and thus

the departure time is a continuous variable.

F−1
n (un)

Departure time t

0

1

un

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
F
n
(t

)

Figure 3: Illustration of the use of inverse sampling to draw a departure time from a cumu-
lative distribution function

The logsum formula of the departure-time choice is defined as

logsum = µ · ln
∫ t1

t0
eV (τ)/µ d τ. (3)

It represents the expected maximum utility that the agent can get from the trip, which can

15

be used as a measure of the surplus of the agents.

We denote by

fdemand : T 7→ fdemand(T) = {(F d
n)−1(un)}1≤n≤N , (4)

the function that returns the departure times chosen by all agents, given the expected travel-

time function T .

Supply model The supply model consists in the road infrastructure which constrains

the arrival times of the agents at destination. In the model investigated here, the road

infrastructure consists in a single road with a free-flow travel time tf and a road bottleneck,

as depicted in Figure 1.

In METROPOLIS2, road bottlenecks can be in two states: open or closed. When a

vehicle reaches an open bottleneck, it can cross it instantaneously and then the bottleneck

is closed for a period of 1/s time units, where s is the bottleneck’s capacity. When a vehicle

reaches a closed bottleneck, the vehicle is pushed to the back of a point queue.4 When the

bottleneck opens again, the vehicle at the front of the queue can cross instantaneously and

the bottleneck closes again.

The bottleneck thus defined satisfies the following two properties. First, two cars cannot

cross the bottleneck in less than 1/s time units. This implies that no more than s cars can

cross the bottleneck in 1 time unit, which is consistent with the definition of the bottleneck

capacity s. Second, the first-in-first-out property is satisfied as the next car to exit the

bottleneck queue is the car that entered the queue the earliest.

In METROPOLIS2, the trips are simulated using an event-based model, which executes

all the events occurring during the simulated period in chronological order. The events

to be executed include, e.g., “the car of agent n is reaching the bottleneck at time t” or

“the bottleneck is re-opening at time t′”. This event-based model will yield the arrival
4Horizontal queues with queue propagation can also be simulated in METROPOLIS2, see Section 4.

16

times of all the agents, denote by ta = {ta
n}1≤n≤N , given their departure times, denoted by

td = {td
n}1≤n≤N .

In METROPOLIS2, the travel-time function, T , is derived from the simulated departure

times, td, and arrival times, ta. This function is represented as a sequence of M breakpoints,

denoted by {(x1, y1), . . . , (xm, ym), . . . , (xM , yM)}. The x-values, corresponding to departure

times, are defined as {t0, t0 + δ, t0 + 2δ, . . . , t0 + (M − 1)δ}, where δ denotes the length of the

breakpoint intervals. The parameter M is defined as ⌊(t1−t0)/δ⌋+1 to ensure coverage of the

entire simulated period [t0, t1]. The y-values, corresponding to travel times, are computed

as weighted averages of the simulated travel times within the corresponding departure-time

interval. Formally, for 1 ≤ m ≤M , the value ym is computed as

ym =
∑

n

wn(xm) · (ta
n − td

n),

where the weights are given by

wn(xm) = max
(

0, 1− |xm − td
n|

δ

)
.

Here, the weight of agent n decreases linearly with the distance between the departure-time

breakpoint xm and the agent’s departure time. The weight is equal to 1 when td
n = x and

it becomes zero when td
n is outside the interval [xm − δ, xm + δ]. Given the sequence of

breakpoints (xm, ym) representing the travel-time function, METROPOLIS2 then relies on

linear interpolation to compute the travel-time for any departure time t ∈ [t0, t1]. Figure 4

provides an illustration of how the travel-time function is computed from the departure times

and travel times of the agents.

We denote by

f supply : td 7→ f supply(td) (5)

the function that returns the travel-time function resulting from the departure times chosen

17

7:00 a.m. 7:10 a.m. 7:20 a.m. 7:30 a.m. 7:40 a.m. 7:50 a.m. 8:00 a.m.
Departure time t

0

100

200

300

400

Tr
av

el
tim

e
(s

ec
on

ds
)

δ

(tdn, tan − tdn)
T (t)

Figure 4: Agents’ travel times and interpolated travel-time function (with N = 200 and
δ = 4 minutes)

by the agents.

Equilibrium The simulator METROPOLIS2 reaches an equilibrium of the model when it

finds a set of departure times, td, which result, in the supply model, in the same travel-time

function that was used, in the demand model, to simulate these departure times, i.e.,

fdemand(f supply(td)) = td
, (6)

where fdemand and f supply are the functions defined in equations (4) and (5), respectively.

We denote by T the equilibrium travel-time function associated to td, i.e.,

f supply(fdemand(T)) = T . (7)

The goal of METROPOLIS2 is therefore to find a set of departure times which solves the

fixed-point problem of equation (6), or, equivalently, to find a travel-time function which

solves the fixed-point problem of equation (7).

18

An iterative procedure to find such an equilibrium is depicted in Algorithm 1. The

algorithm starts from an initial value for the travel-time function, T0 (e.g., the no-congestion

travel-time function). Each iteration consists in simulating the departure times chosen by

the agents, given the current value of the travel-time function (demand model, line 4), then

simulating the travel-time function resulting from the current value of the departure times

(supply model, line 5). The iterative process stops when a fixed point is reached (line 6).

Algorithm 1: Pseudo-code of a naive algorithm to find an equilibrium of the bot-
tleneck model

Input: T0
1 κ← 0;
2 repeat
3 κ← κ + 1; /* Update the iteration counter */
4 td

κ = fdemand(Tκ−1); /* Run the demand model */
5 Tκ = f supply(td

κ); /* Run the supply model */
6 until td

κ ̸= td
κ−1 and Tκ ̸= Tκ−1;

Output: td
κ, Tκ

Algorithm 1 is “naive” in the sense that, at each iteration, the travel-time function used

in the demand model is equal to the travel-time function simulated during the previous

iteration. However, this naive algorithm will usually never converges, i.e., it will never reach

a point where the departure times and travel-time function do not vary from one iteration

to another (see Figure 19 in Appendix A for a numerical illustration).

Instead, METROPOLIS2 introduces a learning model so that the expected travel-time

function used to simulate the departure times is a weighted average of the simulated travel-

time functions from the previous iterations. Algorithm 2 describes the procedure used in

METROPOLIS2, with the changes compared to the naive algorithm highlighted in blue.

Algorithm 2 introduces a new variable for each iteration κ: the expected travel-time

function, T̂κ, used in the demand model instead of the previously simulated travel-time

function, Tκ−1 (line 4). In the added learning model (line 6), the next expected travel-time

function, T̂κ+1, is computed based on the simulated travel-time function, Tκ, and the current

expected travel-time function, T̂κ. The stopping criteria (line 7) are updated compared to

19

Algorithm 2: Pseudo-code of the METROPOLIS2 algorithm, adapted to the bot-
tleneck model

Input: T̂1
1 κ← 0;
2 repeat
3 κ← κ + 1; /* Update the iteration counter */
4 td

κ = fdemand(T̂κ); /* Run the demand model */
5 Tκ = f supply(td

κ); /* Run the supply model */
6 T̂κ+1 = f learning(κ, Tκ, T̂κ); /* Run the learning model */
7 until td

κ ̸= td
κ−1 and Tκ ̸= T̂κ;

Output: td
κ, Tκ, T̂κ

the naive algorithm so that the current simulated travel-time function, Tκ, is compared to

the current expected travel-time function, T̂κ.5

Learning model The learning model can be interpreted as a representation of how agents

update their expectations regarding the travel time they anticipate based on the observed

travel times in the past, although, it does not aim to be behaviorally accurate in modeling

how agents form their anticipations. It is assumed that both the simulated and expected

travel-time functions, Tκ and T̂κ respectively, are common knowledge among all agents.

The selection of the learning model, specifically the choice of the function f learning, plays a

crucial role in the convergence of the algorithm toward an equilibrium. In the numerical

applications, we consider the following learning function corresponding to the exponential

smoothing method:

f learning(κ, Tκ, T̂κ) = λ

aκ+1
Tκ + (1− λ) aκ

aκ+1
T̂κ, (8)

5This change is required to prevent the algorithm from converging to a non-equilibrium. This would be
the case whenever f learning(κ, Tκ, T̂κ) ≡ T̂κ, i.e., the expected travel-time function is never updated, which
would imply the chosen departure times and thus the simulated travel-time function to be the same from
one iteration to another, despite equations (6) and (7) not being necessarily satisfied.

20

where λ ∈ (0, 1] is the smoothing factor, κ is the iteration counter and aκ = 1− (1−λ)κ is a

normalization term to correct for the weight of the initial value T̂1, such that, by recurrence,6

T̂κ+1 = 1
aκ

λ
κ∑

i=0
(1− λ)iTκ,

with the convention that T0 = T̂1.

With λ = 1, the learning function is f learning(κ, Tκ, T̂κ) = Tκ and we are back to the naive

algorithm (Algorithm 1). With λ → 0, the learning function goes to f learning(κ, Tκ, T̂κ) =

1/(κ + 1)∑κ
i=0 Tκ and the expected value is simply an arithmetic mean of the past simulated

values.

Numerical applications In Appendix A, we present the results of various simulations of

METROPOLIS2 for the bottleneck model considered in this section. The results show that,

when the smoothing factor λ is not too large, the METROPOLIS2 algorithm is “almost”

converging to an equilibrium. The simulations replicate the analytical results from de Palma

et al. (1983) very accurately, suggesting that the discretization of the model does not impact

its results.

We also perform many sensitivity analysis. We find that the simulations converge even

with a small number of agents and a small number of breakpoints in the travel-time function.

We find that when µ is too small (the model is close to the deterministic model of Arnott

et al., 1990), the simulation does not converge to an equilibrium.

4 Simulator Overview

The previous section described the METROPOLIS2 simulator on the simple single-road

bottleneck model. In this section, we present an overview of METROPOLIS2 in the general
6In the standard exponential smoothing method, the weight of the initial value, T̂1, can get abnormally

high, compared to the other values, T̂κ, κ > 1, for a small λ value.

21

case, which can be obtained by extending the bottleneck model with an arbitrary road

network, heterogeneous agents, various modes, different vehicle types, etc.

Algorithm Algorithm 3 defines a pseudo-code of the process followed by the METROPO-

LIS2 simulator. It is a generalization of Algorithm 2 used for the bottleneck model (Sec-

tion 3). The simulator starts with some input data D and initial expected network con-

ditions T̂ 1 (by default equal to free-flow conditions). The input data D encompasses a

population (agents with their preferences and assigned trips), a road network (roads and

their attributes), vehicle types and technical parameters. Further details on the input data

of METROPOLIS2 are provided in Appendix B. The term network conditions denotes a data

structure representing the road-level time-dependent travel times, which are common to all

agents sharing the same vehicle type. See Appendix D for more details on these network

conditions.

At each iteration, the simulator executes three models: the demand model, the supply

model and the learning model. Termination of the simulator occurs upon meeting one of

the stopping criteria, which are discussed at the end of this section. Subsequently, the

equilibrium travel decisions, along with the expected and simulated network condition, are

returned. Travel decisions, denoted by z ≡ {zn}1≤n≤N , represent the mode, departure time

and route chosen by agents for each of their trips. For further details regarding the output

data of METROPOLIS2, refer to Appendix C. Table 5 summarizes the primary notations

used in this section.

Figure 5 illustrates the fundamental operational flow of METROPOLIS2. We now pro-

vide a brief description of the three models. More details on the demand and supply models

are provided in Appendix E.

Demand model The demand model simulates the travel decisions made by all agents,

given the expected network conditions for the current iteration. Initially, agents choose

between various travel alternatives. In its simplest form, a travel alternative represents a

22

Table 5: Main notations used in METROPOLIS2

Name Notation
Input data (population, network, parameters) D
Iteration counter κ
Simulated network conditions at iteration κ (vector of
road-level travel-time functions)

T κ

Expected network conditions for iteration κ (vector of
road-level travel-time functions)

T̂ κ

Travel decisions of agent n at iteration κ zn,κ

Travel decisions at iteration κ (vector of agent-level
travel decisions)

zκ

Algorithm 3: Pseudo-code of the METROPOLIS2 algorithm
Input: D, T̂ 1

1 κ← 0;
2 repeat
3 κ← κ + 1; /* Update the iteration counter */
4 zκ = fdemand(T̂ κ; D); /* Run the demand model */
5 T κ = f supply(zκ; D); /* Run the supply model */
6 T̂ κ+1 = f learning(κ, T κ, T̂ κ; D); /* Run the learning model */
7 until One of the stopping criteria is met;

Output: zκ, T κ, T̂ κ

23

Input data

Demand model Supply model Learning model

Output data

Agents,
Network,
Parameters,
Initial conditions

Travel
decisions

Simulated
network

conditions

Travel decisions,
Expected and simulated

network conditions

Stop?
Expected network conditions

Figure 5: Overview of METROPOLIS2 process

24

single trip with a given origin, destination and mode. However, it can also encompass chains

of trips (e.g., a car trip from home to grocery store, followed by 15 minutes of shopping,

followed by another car trip from grocery store to workplace). In most cases, the choice of

a travel alternative is akin to a mode choice, although it can also represent a destination

choice. Following the selection of a travel alternative, agents make decisions regarding their

departure time and the route, if applicable. The agents’ choices (travel alternative, departure

time and route) are referred to as the travel decisions of the agents. The choices are taken

based on utility maximization and the expected network conditions are used to predict the

trips’ travel time. In the general case, utility is expressed as a polynomial function of travel

time, with a linear penalty for early or late arrivals at destinations and for early or late

departures from origins (see Appendix E.1).

METROPOLIS2 follows a specific choice order, coherent with the decision-making pro-

cess of agents in real world scenarios: agents select their travel alternative, then their de-

parture time, and finally, their route. By relying on backward induction, METROPOLIS2

ensures that the optimal travel alternative is chosen knowing that the optimal departure

time and route for that alternative will subsequently be determined. The chosen route is

the fastest route at the time of departure. Departure-time choice can be represented by a

Multinomial Logit model or a Continuous Logit model. Mode choice can be represented by

a Multinomial Logit model or by a deterministic choice.7 The output of the demand model

are the travel decisions that the agents are planning to do during the simulated period.

In METROPOLIS2, a routing algorithm determines the route chosen by each agent based

on their departure time from origin and the expected network conditions. The algorithm

selects the fastest available route for the entire network. The underlying assumption mirrors

real-life behavior, where individuals rely on car navigation system to plan their itinerary.

This approach differs from many other simulators, which often constrain agents to choose

their route from a limited choice set.
7Any discrete-choice models can be used for departure-time choice and mode choice, such as Probit

model, as long as the random perturbations can be simulated.

25

When using discrete-choice models, the expected maximum utility of the travel decision

is computed by METROPOLIS2 using the logsum formula (See Appendix E.1 for a formal

definition). This value reflects the range of choices available to the agent in the complete

choice hierarchy. It can be interpreted as the agent’s surplus for cost-benefit analysis.

The demand model can be represented mathematically by a function fdemand, taking as

an argument the expected network conditions T̂ and the input data D, and returning the

travel decisions of all agents z = {zn}1≤n≤N , i.e.,

fdemand : (T̂ , D) 7→ fdemand(T̂ ; D) = z.

Supply model The supply model simulates the movements of vehicles on the road net-

work.8 These movements are a direct outcome of the travel decisions made by agents in the

demand model. The simulation operates in continuous time using an event-based model,

where events can represent a vehicle departing from its origin or a vehicle reaching the end

of its current link, for example. These events are executed in chronological order.

Congestion is simulated using bottleneck queues and speed-density functions. Bottleneck

queues limit the inflow and outflow of vehicles at the link-level, based on the link’s capacity.

The simulation of bottleneck queues is described in details in Section 3.3. With speed-density

function, the speed at which a vehicle will travel on a link is determined by the density of

vehicles currently on that link when the vehicle enters. The density on a link is computed as

the sum of the headway of vehicles currently on the link, divided by the total length of the

link (product of its length and its number of lanes). Additionally, when queue propagation

is enabled, vehicles are constrained from entering a link unless enough space is available for

their headway length. Following a vehicle’s departure from a link, the liberated space it

creates propagates backward through the link at a predetermined speed until it reaches the
8In the current version of METROPOLIS2, there exists a one-to-one correspondence between agents and

vehicles, allowing these terms to be used interchangeably. However, it is worth noting that in future versions,
this relationship might no longer hold, with the inclusion of features such as ride-sharing or public transit,
where multiple agents might share a single vehicle.

26

link’s origin. Only when this free space has reached the beginning of the link can entering

vehicles utilize it.9 At the end of the supply model, the simulated travel-time functions are

computed at the link-level, based on the process described in Section 3.3 and Figure 4. These

travel-time functions form the simulated network conditions.

The supply model can be represented mathematically by a function f supply, taking as

an argument the travel decisions of all agents z and the input data D, and returning the

simulated network conditions T , i.e.,

f supply : (z; D) 7→ f supply(z; D) = T .

Learning model The learning model computes the expected network conditions to be

used in the next iteration by combining the current expected network conditions with the

simulated network conditions obtained from the supply model. These expected network

conditions are then used in the demand model’s routing algorithm to predict travel times.

The learning model mirrors how car navigation systems leverage historical data from all

users to forecast travel times. Different methods can be employed for the learning model,

such as the exponential smoothing method, presented in Section 3.3.

The learning model can be represented mathematically by a function f learning, taking as

arguments the iteration counter κ, the simulated network conditions for the current iteration

T κ, the expected network conditions for the current iteration T̂ κ and the input data D, and

returning the expected network conditions for the next iteration T̂ κ+1, i.e.,

f learning : (κ, T κ, T̂ κ; D) 7→ f learning(κ, T κ, T̂ κ; D) = T̂ κ+1.

9When queue propagation is enabled, gridlocks can appear. A gridlock is a situation in which traffic
comes to a complete standstill because no vehicle can move until the vehicle in front of it moves. To address
these gridlocks, METROPOLIS2 employs a mechanism where a vehicle is forced to move to the next link
if it remains in a pending state for a specific duration (configurable). This approach is similar to the one
taken in MATSim, while, in METROPOLIS1, the route choice at each intersection prevent gridlocks from
occurring.

27

Nash equilibrium The goal of METROPOLIS2 is to find a Nash equilibrium of the

simulation, defined by the input data D. Here, a Nash equilibrium is defined as a state where

no agent can improve their utility by unilaterally changing their travel decisions, considering

the travel decisions made by the other agents. In the context of transport simulations, such a

Nash equilibrium is also called an agent-based User Equilibrium (Nagel and Flötteröd, 2016).

More formally, a Nash equilibrium can be defined as the following fixed-point problem. We

want to find equilibrium travel decisions z̄ such that

fdemand(f supply(z̄; D); D) = z̄.

or, alternatively, we want to find equilibrium network conditions T̄ such that

f supply(fdemand(T̄ ; D); D) = T̄ ,

Intuitively, these equations mean that the expected network conditions used by the agents

when taking their decisions are identical to the simulated network conditions resulting from

these agents’ decisions. The definition of an equilibrium with the bottleneck model, in

Section 3, equations (6) and (7), is a special case with departure time as the only decision

variable and with a single travel-time function (corresponding to the single road).

Properties of the Nash equilibrium In dynamic traffic assignment models, there is

no proof of the existence, uniqueness and stability of a Dynamic User Equilibrium in the

general case (see Iryo 2013). A Nash equilibrium in METROPOLIS2 is a generalization

of a standard Dynamic User Equilibrium (with the addition of mode choice, departure-time

choice, trip chaining, etc.) so the existence, uniqueness and stability of a Nash equilibrium in

METROPOLIS2 cannot be proven either. Algorithm 3 is a heuristic method to approximate

a Nash equilibrium. Analytical applications (see Section 6) reveal that the algorithm does

not perfectly converge to a Nash equilibrium. Therefore, it becomes essential to asses the

28

quality of the solution by measuring its distance to a Nash equilibrium. One approach to

evaluate the solution’s quality is by calculating the magnitude of change in travel decisions

or network conditions relative to the previous iteration. Another option is to compute the

distance between the simulated and expected network conditions. See Section 6 for example

of indicators computing distance to a Nash equilibrium.

These indicators of a distance to a Nash equilibrium can be used as stopping criteria

to ensure that the simulator only stop when the quality of the solution is good enough.

Alternatively, one can fix the number of iterations to run and check a posteriori the quality

of the solution.

5 Implementation

METROPOLIS2 is implemented as a Rust program. Rust was chosen for its excellent per-

formance and safety guarantees. These safety guarantees ensure that code parallelization

can be utilized with minimal risk, enhancing the efficiency and reliability of the program.

To enhance its performance, METROPOLIS2 employs time-dependent contraction hier-

archies, a state-of-the-art routing algorithm (Batz et al., 2013). The simulator utilizes two

types of routing queries: (i) profile queries, which determine the fastest travel time for any

departure time, given an origin-destination pair (without returning corresponding routes),

and (ii) earliest-arrival queries, which provide the earliest arrival time along with the corre-

sponding route, for a given origin-destination pair and departure time from the origin. In

the demand model, profile queries efficiently retrieve the travel-time function for all trips,

required to compute the utility function used for departure-time choice. Earliest-arrival

queries are used to retrieve routes once agents have selected their mode and departure time.

The adoption of contraction hierarchies involves a preprocessing phase executed during each

iteration of METROPOLIS2, enabling the acceleration of subsequent queries. Moreover,

code parallelization is integrated into the routing algorithm to speed up the processes, such

29

as retrieving routes for all agents. Additionally, code parallelization is also employed in the

demand model, where agents’ decisions can be computed independently.

The choice of CSV and Parquet formats for input and output files in METROPOLIS2

offers a combination of usability, flexibility, and performance. CSV offers simplicity and

compatibility with a wide range of tools and platforms. Parquet, on the other hand, is a

columnar storage format that is optimized for performance and efficiency, making it suitable

for handling large datasets efficiently. This combination of formats satisfies different use

cases and preferences, ensuring that users can interact with METROPOLIS2 data in a way

that best suits their needs.

Given the complexity of the simulator, issues or unexpected behaviors are likely to ap-

pear. To mitigate this risk, we have implemented a rigorous testing framework. The tests

evaluate individual components (unit tests) as well as the interactions between various mod-

ules (integration tests). The example applications below (Section 6) also serve as validation

tests for the correctness of the source code.

6 Applications

6.1 Comparison with METROPOLIS1

As discussed in Section 2, METROPOLIS2 replicates and improves most of the methodology

used in METROPOLIS1. In this section, we compare the results of the two simulators when

running the same simulation. We rely on the work of Saifuzzaman et al. (2012) which propose

a calibrated simulation of METROPOLIS1 for Paris’ urban area.10

Demand input The demand side of the simulation is composed of 477 067 agents, all

performing a single trip between 4:00 a.m. and 1:00 p.m. There is no mode choice, car is
10Because we are missing some data, we were not able to replicate exactly their results. However, we did

run the two simulators with the exact same input (same population and preference parameters, same road
network).

30

the only available mode. The agents are divided in five categories. In each category, the

agents have the same parameters α, β, γ, ∆ and µ and the desired arrival times t∗ are

independent and identically distributed with a Normal or Uniform distribution. The studied

area is divided in 1326 zones and there is one origin-destination matrix for each category.

Supply input The road network of the simulation is limited to the main roads of the

area, which represent 17 987 nodes and 39 395 links. In addition, there are 4462 connectors

(virtual links used to connect the zones’ starting and ending nodes to the road network).

In METROPOLIS1, there is no explicit bottlenecks. Instead, the simulator uses the

following speed-density function, imitating a road bottleneck:11

speed(density) = min
(

free-flow speed,
vehicle headway × capacity

density

)
. (9)

Figure 6 proposes a representation of this speed-density function. This speed-density function

is used in both METROPOLIS1 and METROPOLIS2, using the same road capacities. Queue

propagation is enabled, with a vehicle headway of 8 meters. With this configuration, the

congestion model of METROPOLIS2 is an exact replication of the congestion model of

METROPOLIS1, with one difference: in METROPOLIS1, link travel times are truncated,

while, in METROPOLIS2, time is continuous (there is no rounding).
11To understand equation (9), observe that, using

density = vehicle headway × vehicle count
length × lanes ,

the road travel time can be written as

travel time(vehicle count) = length
speed(density) = min

(
length

free-flow speed ,
vehicle count

capacity × lanes

)
.

Assume that there are n vehicles on a road with a bottleneck of capacity s. Because of the bottleneck, there
must be at most s vehicles traveling through the road during one hour. This implies that the n vehicles on
the road cannot all cross the bottleneck in more than n/s hours. Therefore, the road travel-time is upper
bounded by n/s, which corresponds to the second term in the “min” operator of the previous equation.

31

0.0 0.2 0.4 0.6 0.8 1.0
Density (occupied length / total length)

0

10

20

30

40

50

Sp
ee

d

Figure 6: Bottleneck speed-density function on an example road (200 meters, free-flow speed
of 50 km/h, 1 lane, capacity of 1000 vehicles per hour)

Technical parameters With both METROPOLIS1 and METROPOLIS2, we run 200

iterations using a linear learning model (the expected travel time for the next iteration is

the arithmetic mean of the simulated travel time of all the previous iterations). Following

Saifuzzaman et al. (2012), the interval length between two breakpoints is set to 20 minutes.

Output indicators To measure the convergence of the simulations, we use four different

indicators. The two first indicators are used to measure by how much the choices of the agents

(departure time and route) change from one iteration to another. The change in departure

time is measured by the root of the mean squared difference between the departure time

chosen in the previous and current iteration, for each agent. This indicator is denoted by

RMSEdep
κ , for iteration κ > 1, and is defined as

RMSEdep
κ =

√
1
N

∑
n

(td
n,κ − td

n,κ−1)2,

where td
n,κ is the departure time chosen by agent n at iteration κ. The indicator is measured

in seconds, so a value RMSEdep
κ = 5, for example, means that, on average, the agents shifted

32

their departure time by plus or minus 5 seconds from iteration κ − 1 to iteration κ (note

that, because the differences are squared, the larger shifts contribute more to the RMSE

than the smaller shifts). The second indicator measures how much the routes taken by the

agents change from one iteration to another. Let’s denote by ρn,κ the share of the length of

the route taken by agent n during iteration κ that was not taken during iteration κ− 1, i.e.,

a value ρn,κ = 5 %, for example, means that 5 % of the length traveled by agent n during

iteration κ was made on roads that were not taken during iteration κ − 1. The indicator

RMSEroute
κ is defined as

RMSEroute
κ =

√
1
N

∑
n

(ρn,κ)2.

The third indicator measures how the simulated travel times (i.e., the simulated network

conditions) differ from the expected travel times (i.e., the expected network conditions). To

do so, we use the root of the mean squared difference between the simulated and expected

travel time for iteration κ, for each link of the road network and for each departure time.

This indicator is denoted by RMSET
κ and is defined as

RMSET
κ =

√√√√ 1
R

∑
r

1
t1 − t0

∫ t1

t0
[Tr,κ(t)− T̂r,κ−1(t)]2 d t,

where Tr,κ(t) (resp. T̂r,κ(t)) is the simulated (resp. expected) travel time on link r at time t

during iteration κ and [t0, t1] = [4 a.m., 1 p.m.] is the simulated period.

The fourth indicator measures how well the agents predict the travel time that they will

face. It is based on the travel-time expectation error: the difference between the actual and

expected travel time. The indicator is denoted by RMSEexpect
κ and is defined as

RMSEexpect
κ =

√
1
N

∑
n

(ttn,κ − t̂tn,κ)2,

where ttn,κ is the travel time of agent n for iteration κ and t̂tn,κ is the expected travel time

of agent n for iteration κ.

33

Output comparison A comparison of the results of the simulations with METROPOLIS1

and METROPOLIS2 is provided in Table 6.12 The technical results show that METROPO-

LIS2 runs slightly faster than METROPOLIS1 when using a single thread. However, as

METROPOLIS2 can make use of parallel computing, the running time is around 9 times

faster when using 16 threads compared to using a single thread (or around 10 times faster

compared to the single-threaded METROPOLIS1). METROPOLIS2 peak memory use is

almost 30 % larger than METROPOLIS1’. One reason for this difference is that METROPO-

LIS1 uses single-precision floating-point format (32 bits), while METROPOLIS2 uses double-

precision (64 bits).

Table 6: Comparison of the aggregate results for a Paris simulation with METROPOLIS1
and METROPOLIS2

METROPOLIS1 METROPOLIS2
Technical output
Running time (1 thread) 18h 29m 12s 16h 12m 48s
Running time (16 threads) 18h 29m 12s 1h 49m 17s
Peak memory use 2.74 GiB 3.52 GiB
Convergence output

RMSEdep
200 2m 5s 5s

RMSEroute
200 18.07 % 5.49 %

RMSET
200 1m 40s 46s

RMSEexpect
200 10m 28s 6m 05s

Traffic-related output
Average utility −5.58e −5.32e
Average departure time 09:10:44 09:11:58
Average arrival time 09:27:07 09:27:31
Average travel time 16m 23s 15m 33s
Average free-flow travel time 13m 24s 13m 1s
Average route length 15.51 km 15.05 km
Average number of links taken 37.28 35.33

The output related to the convergence of the simulations show that METROPOLIS2
12All simulations are run on a machine with a 8-core Intel Xeon CPU (3.20GHz) and with 128GiB of

RAM. The source code to run the simulations and generate the graphs is available at https://github.com/
LucasJavaudin/Metropolis1-2Comparison/. The simulations are run with version 1.0.0 of METROPO-
LIS2.

34

https://github.com/LucasJavaudin/Metropolis1-2Comparison/
https://github.com/LucasJavaudin/Metropolis1-2Comparison/

achieves a solution that is more stable, in all aspects. This reveals that METROPOLIS2’s

solution is closer to a Nash equilibrium than METROPOLIS1’ solution.13

Figure 7 compares the convergence of the RMSEdep
κ metric across iterations, between

METROPOLIS1 and METROPOLIS2. Initially, both simulators exhibit similar conver-

gence patterns for the first 15 to 20 iterations. Then, METROPOLIS2 continues to steadily

decrease, while METROPOLIS1 appears to reach a plateau.

25 50 75 100 125 150 175 200

Iteration

0

100

200

300

400

500

600

R
M

S
E

d
ep
κ

(s
ec

on
d

s)

METROPOLIS1

METROPOLIS2

Figure 7: Comparison of the convergence of departure times over iterations, between
METROPOLIS1 and METROPOLIS2

Figure 8 compares the convergence of the RMSEexpect
κ metric across iterations, between

METROPOLIS1 and METROPOLIS2. Initially, METROPOLIS2 shows higher levels of

RMSEexpect
κ . As iterations progress, METROPOLIS2 achieves lower levels of the metric

compared to METROPOLIS1. On the other hand, METROPOLIS1 reaches a plateau after

about 50 iterations but exhibits less variation of the metric from one iteration to another.

This difference in behavior can be attributed to the adaptability of the agents in METROPO-
13Observe that the RMSEexpect

200 is still quite large in both METROPOLIS1 and METROPOLIS2. This
is due to threshold effects that can appear with the speed-density function, where the road travel time can
jump from a few seconds to a few minutes with just one more car being on the road segment. These threshold
effects are less prominent when using a larger population size (the simulation presented uses 10 % of total
population), a smaller breakpoint interval and explicit bottleneck queues instead of speed-density functions.

35

LIS1: they can adjust their routes during the trip when encountering congestion, thereby

avoiding extreme travel times; while, in METROPOLIS2, the route is chosen before leaving

origin (in the demand model) and cannot be changed afterward. However, this adaptability

results in more frequent route changes between iterations, leading to less predictable travel

times overall.

25 50 75 100 125 150 175 200

Iteration

103

104

R
M

S
E

ex
p

ec
t

κ
(m

in
u

te
s)

METROPOLIS1

METROPOLIS2

Figure 8: Comparison of the convergence of travel-time expectation error over iterations,
between METROPOLIS1 and METROPOLIS2

The traffic-related output on Table 6 shows that METROPOLIS2 reaches a situation

were agents are slightly better-off compared to the situation returned by METROPOLIS1

(utility is larger by 26 cents on average, travel time is smaller by 50 seconds on average,

etc.). As we mentioned previously, the congestion is modeled in the same way in the two

simulations, which means that these differences are explained by the choices of the agents

only.

Figure 9 shows that the departure-time distributions are very similar for the two simula-

tions. The peak around 8:00 a.m. is slightly more pronounced in METROPOLIS2. Figure 10

shows that the travel-time distributions are also very similar. Figure 11 shows that the

link-level flows are about the same between the two simulations: the correlation coefficient

36

between link-level flows in METROPOLIS1 and METROPOLIS2 is 95.37 %.

04:30:00 06:00:00 07:30:00 09:00:00 10:30:00 12:00:00

Departure time

0

5000

10000

15000

20000

25000

30000

35000

C
ou

n
t

METROPOLIS1

METROPOLIS2

Figure 9: Comparison of the departure-time distribution in the Paris simulation with
METROPOLIS1 and METROPOLIS2

In conclusion, the results from METROPOLIS1 and METROPOLIS2 are similar but

the latter runs faster and provides a closer approximation to equilibrium compared to

METROPOLIS1. Further improvements in convergence could be achieved in METROPO-

LIS2 by using explicit bottleneck queues, defined in Section 3.3.14 However, the use of

bottleneck queues leads to a distinct congestion model,15 complicating comparison between
14The use of speed-density functions can lead to a simulation that exhibits less stability compared to

simulations using explicit bottleneck queues. This instability comes from a discontinuity in the measure of
density. Specifically, when a vehicle enters a road at approximately the same time another vehicle exits
the same road, the entering vehicle’s travel time can experience a rapid jump from small to large value,
conditional on whether the exiting vehicle left just before or just after the entry. This discontinuity is more
prominent on shorter roads with smaller capacities. Conversely, with explicit bottleneck queues, there is
no such discontinuities. The waiting time for a vehicle in the queue decreases linearly with the time that
elapsed since the preceding vehicle exited, eventually reaching zero.

15Consider a road with a free-flow travel time of 10 seconds and a bottleneck capacity of 300 vehicles per
hour (i.e., a bottleneck closing time of 12 seconds). If there is a vehicle entering the road every 11 seconds,
the congestion differs significantly between the bottleneck speed-density function and the bottleneck queue.
When using the bottleneck speed-density function, equation (9), there is no congestion. This is because the
density remains null when a new vehicle enters the road, as the preceding vehicle has already left. However,
when using bottleneck queues, congestion does appear. Despite the first vehicle exiting the road before the
second one enters, the second vehicle is forced to wait until the bottleneck closing time elapses. Consequently,
a queue forms with an increasing waiting time as subsequent vehicles are arriving at a faster rate than the
bottleneck’s output rate.

37

0 10 20 30 40 50 60 70 80 90

Travel time (minutes)

0.0

10,000.0

20,000.0

30,000.0

40,000.0

50,000.0

C
ou

n
t

METROPOLIS1

METROPOLIS2

Figure 10: Comparison of the travel-time distribution in the Paris simulation with
METROPOLIS1 and METROPOLIS2

Figure 11: Comparison of the link-level flows for a Paris simulation with METROPOLIS1
and METROPOLIS2

Note: Each dot represents a link of the road network, with the observed flows in the METROPOLIS1
simulation on the x-axis and the observed flows in the METROPOLIS2 simulation on the y-axis.

38

convergence with speed-density functions and bottleneck queues.

7 Conclusion

This paper has detailed the methodology and implementation details of the METROPO-

LIS2 simulator. Beginning with the foundational single-road bottleneck model, we provided

insights into METROPOLIS2’s functionality and demonstrated its ability to replicate key re-

sults from the analytical model. We then proposed a comprehensive overview of METROPO-

LIS2’s capabilities in general scenarios, discussed some implementation details and conducted

a comparative analysis with the METROPOLIS1 simulator using a Paris case study.

METROPOLIS2 exhibits promising potential for efficiently and accurately simulating

traffic equilibrium in large-scale scenarios, making it well-suited for cost-benefit analysis.

However, the discussion on generating a synthetic population and calibrating the simulator

for real-world scenarios, though crucial, remains unexplored in this paper, leaving avenues

for future research.

Furthermore, future work may explore additional features for the simulator. For example,

integrating a public-transit model could enhance METROPOLIS2’s capabilities, enabling

consideration of in-vehicle congestion in route choices for public-transit trips.

Acknowledgments

The authors are grateful for the pioneering contributions of Fabrice Marchal and Yurii Nes-

terov to the METROPOLIS1 simulator, which laid robust foundations facilitating the de-

velopment of METROPOLIS2. Additionally, the authors wish to thank Moshe Ben-Akiva,

Michel Bierlaire, Nicolas Coulombel, Nikolas Geroliminis, Samarth Ghoslya, Moez Kilani,

Romuald Le Frioux, and Robin Lindsey for providing valuable insights and feedback during

the development stages of METROPOLIS2.

39

References
Adnan, M., F. C. Pereira, C. M. L. Azevedo, K. Basak, M. Lovric, S. Raveau, Y. Zhu,

J. Ferreira, C. Zegras, and M. Ben-Akiva (2016). Simmobility: A multi-scale integrated
agent-based simulation platform. In 95th Annual Meeting of the Transportation Research
Board Forthcoming in Transportation Research Record, Volume 2. The National Academies
of Sciences, Engineering, and Medicine Washington, DC.

Arnott, R., A. de Palma, and R. Lindsey (1990, January). Economics of a bottleneck.
Journal of Urban Economics 27 (1), 111–130.

Arnott, R., A. de Palma, and R. Lindsey (1993). A Structural Model of Peak-Period Conges-
tion: A Traffic Bottleneck with Elastic Demand. The American Economic Review 83 (1),
161–179.

Basu, R., A. Araldo, A. P. Akkinepally, B. H. Nahmias Biran, K. Basak, R. Seshadri,
N. Deshmukh, N. Kumar, C. L. Azevedo, and M. Ben-Akiva (2018, December). Automated
Mobility-on-Demand vs. Mass Transit: A Multi-Modal Activity-Driven Agent-Based Sim-
ulation Approach. Transportation Research Record: Journal of the Transportation Re-
search Board 2672 (8), 608–618.

Batz, G. V., R. Geisberger, P. Sanders, and C. Vetter (2013, December). Minimum time-
dependent travel times with contraction hierarchies. ACM Journal of Experimental Algo-
rithmics 18.

Ben-Akiva, M., N. Litinas, and K. Tsunokawa (1985, March). Continuous spatial choice:
The continuous logit model and distributions of trips and urban densities. Transportation
Research Part A: General 19 (2), 119–154.

Ben-Akiva, M. and T. Watanatada (1981). Application of a continuous spatial choice logit
model. Structural analysis of discrete data with econometric applications, 320–343.

Charypar, D. and K. Nagel (2005, July). Generating complete all-day activity plans with
genetic algorithms. Transportation 32 (4), 369–397.

de Palma, A., M. Ben-Akiva, C. Lefèvre, and N. Litinas (1983, November). Stochastic
Equilibrium Model of Peak Period Traffic Congestion. Transportation Science 17 (4), 430–
453.

de Palma, A., L. Javaudin, P. Stokkink, and L. Tarpin-Pitre (2022). Ride-sharing with
inflexible drivers in the Paris metropolitan area. Transportation, 1–24.

de Palma, A., M. Kilani, and R. Lindsey (2005, August). Congestion pricing on a road net-
work: A study using the dynamic equilibrium simulator METROPOLIS. Transportation
Research Part A: Policy and Practice 39 (7-9), 588–611.

de Palma, A. and F. Marchal (1999, January). Analysis of Travel Cost Components Using
Large-Scale, Dynamic Traffic Models. Transportation Research Record: Journal of the
Transportation Research Board 1676 (1), 177–183.

de Palma, A. and F. Marchal (2002, July). Implementation of a Dynamic Traffic Simulator
to the Paris Area. In Traffic And Transportation Studies (2002), Guilin, China, pp. 1216–
1223. American Society of Civil Engineers.

de Palma, A., F. Marchal, and Y. Nesterov (1997, January). METROPOLIS: Modular
System for Dynamic Traffic Simulation. Transportation Research Record: Journal of the
Transportation Research Board 1607 (1), 178–184.

Flötteröd, G. (2016, August). MATSim as a Monte-Carlo Engine, pp. 327–336. Ubiquity

40

Press.
Geisberger, R. and P. Sanders (2010). Engineering Time-Dependent Many-to-Many Shortest

Paths Computation. pp. 14 pages, 487697 bytes.
Guo, R.-Y., H. Yang, and H.-J. Huang (2018, June). Are We Really Solving the Dy-

namic Traffic Equilibrium Problem with a Departure Time Choice? Transportation Sci-
ence 52 (3), 603–620.

Hörl, S., M. Balac, and K. W. Axhausen (2018). A first look at bridging discrete choice
modeling and agent-based microsimulation in MATSim. Procedia Computer Science 130,
900–907.

Hörl, S., M. Balać, and K. W. Axhausen (2019, January). Pairing discrete mode choice
models and agent-based transport simulation with MATSim. pp. 19 p.

Horni, A., K. Nagel, and K. W. Axhausen (2011, August). High-resolution destination choice
in agent-based demand models. pp. 23 p.

Horni, A., K. Nagel, and K. W. Axhausen (Eds.) (2016). The Multi-Agent Transport Simu-
lation MATSim. London: Ubiquity Press.

Iryo, T. (2013, April). Properties of dynamic user equilibrium solution: Existence, unique-
ness, stability, and robust solution methodology. Transportmetrica B: Transport Dynam-
ics 1 (1), 52–67.

Kickhöfer, B. and K. Nagel (2016, August). Microeconomic Interpretation of MATSim for
Benefit-Cost Analysis, pp. 353–364. Ubiquity Press.

Li, Z.-C., H.-J. Huang, and H. Yang (2020, September). Fifty years of the bottleneck model:
A bibliometric review and future research directions. Transportation Research Part B:
Methodological 139, 311–342.

Lopez, P. A., E. Wiessner, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flotterod,
R. Hilbrich, L. Lucken, J. Rummel, and P. Wagner (2018, November). Microscopic Traffic
Simulation using SUMO. In 2018 21st International Conference on Intelligent Transporta-
tion Systems (ITSC), Maui, HI, pp. 2575–2582. IEEE.

Lu, Y., K. Basak, C. Carrion, H. Loganathan, M. Adnan, F. C. Pereira, V. H. Saber, and
M. Ben-Akiva (2015). SimMobility mid-term simulator: A state of the art integrated agent
based demand and supply model. Transportation Research Board 94th Annual Meeting-
Transportation Research Board (15-3937).

Madow, W. G. and L. H. Madow (1944). On the Theory of Systematic Sampling, I. The
Annals of Mathematical Statistics 15 (1), 1–24.

McNally, M. G. (2007, January). The Four-Step Model. In D. A. Hensher and K. J. Button
(Eds.), Handbook of Transport Modelling, Volume 1, pp. 35–53. Emerald Group Publishing
Limited.

Nagel, K. (1996, May). Particle hopping models and traffic flow theory. Physical Review
E 53 (5), 4655–4672.

Nagel, K. and G. Flötteröd (2016, August). Agent-Based Traffic Assignment, pp. 315–326.
Ubiquity Press.

Nguyen, J., S. T. Powers, N. Urquhart, T. Farrenkopf, and M. Guckert (2021, December).
An overview of agent-based traffic simulators. Transportation Research Interdisciplinary
Perspectives 12, 100486.

Oh, S., R. Seshadri, C. L. Azevedo, N. Kumar, K. Basak, and M. Ben-Akiva (2020, August).
Assessing the impacts of automated mobility-on-demand through agent-based simulation:

41

A study of Singapore. Transportation Research Part A: Policy and Practice 138, 367–388.
Otsubo, H. and A. Rapoport (2008, December). Vickrey’s model of traffic congestion dis-

cretized. Transportation Research Part B: Methodological 42 (10), 873–889.
Saifuzzaman, M., A. de Palma, and K. Motamedi (2012). Calibration of METROPOLIS for

ile-de-france.
Vickrey, W. S. (1969). Congestion Theory and Transport Investment. The American Eco-

nomic Review 59 (2), 251–260.
Vosough, S., A. de Palma, and R. Lindsey (2022, July). Pricing vehicle emissions and con-

gestion externalities using a dynamic traffic network simulator. Transportation Research
Part A: Policy and Practice 161, 1–24.

42

A Bottleneck Model: Numerical Application

This appendix presents the results of simulations of METROPOLIS2 for the bottleneck
model presented in Section 3. It contains some definitions (Section A.1), a comparison to
the analytical results from de Palma et al. (1983) (Section A.2) and some sensitivity analysis
(Section A.3).

A.1 Definitions and Notations

Figure 7 shows the default values considered for the various parameters of the bottleneck
model investigated. We consider a population of 100 000 agents who can choose a departure
time during the time period 7:00 a.m. to 8:00 a.m. The desired arrival time of the agents at
destination is t∗ = 7:30 a.m. The travel time from origin to destination when the bottleneck
is not congested is tf = 30 seconds. The bottleneck capacity is set to s = 1.5 × N cars per
hour, which means that all agents can cross the bottleneck in 40 minutes. In the simulations,
the interval between two breakpoints for the piecewise-linear travel-time functions is set to
δ = 1 minute. The initial value for travel-time function, T̂1, is set to the no-congestion
travel-time function (a constant function equal to the free-flow travel-time tf).

Table 7: Default values for the parameters of the model

Parameter Notation Value
Number of agents N 100 000

Time period [t0, t1] [7:00 a.m., 8:00 a.m.]
Desired arrival time at destination t∗ 7:30 a.m.
Marginal disutility of travel time α 10 $/h

Marginal disutility of early arrivals β 5 $/h
Marginal disutility of late arrivals γ 7 $/h

Scale of the utility’s random component µ 1
Free-flow origin-to-destination travel time tf 30 seconds

Bottleneck flow rate s 1.5×N cars / h
Travel-time function breakpoints interval δ 1 minute

Measuring convergence of the simulation When running the simulations, the stopping
criteria, as defined in Algorithm 2, line 7, are never satisfied. Instead, we run the simulations
for a fixed number of iterations and check how far the results are from an equilibrium using
the two indicators presented below.

First, we use the root of the mean squared difference between the departure time chosen
in the previous and current iteration, for each agent. This indicator is denoted by RMSEdep

κ ,

43

for iteration κ > 1, and is defined as

RMSEdep
κ =

√
1
N

∑
n

(td
n,κ − td

n,κ−1)2,

where td
n,κ is the departure time chosen by agent n at iteration κ. Second, we use the root

of the mean squared difference between the expected travel-time function and the simulated
travel-time function, for each departure time. This indicator is denoted by RMSET

κ , for
iteration κ > 1, and is defined as

RMSET
κ =

√
1

t1 − t0

∫ t1

t0
[Tκ(t)− T̂κ(t)]2 d t.

For an iteration κ, RMSEdep
κ ≈ 0 implies that the agents did not change much their

departure time compared to the previous iteration and RMSET
κ ≈ 0 implies that the travel-

time function was correctly anticipated. Therefore, these indicators can be interpreted as a
distance to an equilibrium.

Measuring distance to the analytical results The analytical results of the bottleneck
model we consider are demonstrated in de Palma et al. (1983). From their findings, we com-
pute the equilibrium rate of departures from origin, rd(t) (see Figure 12), and the equilibrium
travel-time function, T (t) (see Figure 13).

To compare the simulation results with the analytical results, we use the following dis-
tance:16

D = max
t

∣∣∣Rd(t)−R
d(t)

∣∣∣ ,
with

R
d(t) = 1

N

∫ t

t0
rd(t) d t

the cumulative rate of departures from the analytical results and

Rd(t) = 1
N

∑
n

1td
n≤t

the cumulative rate of departures from the simulation.

Learning model For the learning model, we use the exponential smoothing defined by
equation 8. Further research is required to determine the optimal value of the smoothing

16Observe that this measure corresponds to the Kolmogorov-Smirnov statistic for comparing a sample of
values to a probability distribution, which justify using it here.

44

07:00:00 08:00:00tq t̃ tq′

Departure time t

0

10

20

30

40

50

60

70

R
at

e
of

d
ep

ar
tu

re
s

fr
om

or
ig

in
r̄d

(t
)

Figure 12: Analytical result for the rate of departures from origin
Note: tq is the time at which congestion starts to appear, t̃ is the departure time such that the individual

arrives on time, tq′ is the time at which congestion ends.

07:00:00 08:00:00tq t̃ tq′

Departure time t

0

50

100

150

200

250

300

tf

T
ra

ve
l

ti
m

e
T̄

(t
)

(s
ec

on
d

s)

Figure 13: Analytical result for the travel-time function
Note: tq, t̃, tq′ are defined as in Figure 12.

45

factor λ to use. We give here some guidance for the choice of λ resulting from our experi-
mentations. With smaller values of λ, a smaller weight is put on the simulated travel-time
function for the current iteration so the model learns slower but the convergence is more
stable (in the sense that it is less sensitive to what happened during a single iteration).
Conversely, with larger values of λ, convergence is usually faster but less stable.

In the simulations presented below, we use a value of λ = 0.4, unless specified otherwise.
The impact of λ on the convergence of the simulations is further discussed in Section A.3,
using numerical results.

A.2 Comparison to the Analytical Results

We simulate 200 iterations of METROPOLIS2 using the parameters defined in Table 7.17

Some results for the simulation are presented in Table 8. First, observe that, the simulation
is essentially reaching an equilibrium as, at the last iteration, both RMSEdep

κ and RMSET
κ

are practically zero (3×10−12 and 2×10−12 seconds respectively). This means that, from one
iteration to another, the chosen departure times stay almost identical and that the simulated
travel-time function in the supply model is almost identical to the expected travel-time
function in the demand model. One reason the simulation is not converging to exactly zero
might be related to the approximation errors of floating-point arithmetic. The maximum
distance between the cumulative rate of departures in the analytical results and in the
simulation results is D = 0.19 %, which indicates that the simulation replicates quite well
the analytical results. We also find that the expected maximum utility, computed using the
logsum formula (3), is at 7.188, which is close to the equilibrium value of 7.276 from the
analytical results.

Table 8: Results of running METROPOLIS2 to simulate the bottleneck model

Variable Value
Running time 3m 24s
Expected max. utility 7.188
Average travel time 1m 57s
Distance to analytical results D 0.19 %
RMSEdep

200 (seconds) 3× 10−12

RMSET
200 (seconds) 2× 10−12

Figures 14 and 15 show a comparison of the rate of departures from origin and the travel-
17All simulations are run on a machine with a 8-core Intel Xeon CPU (3.20GHz) and with 128GiB of

RAM. The source code to run the simulations and generate the graphs is available at https://github.com/
LucasJavaudin/MetropolisBottleneck/. The simulations are run with version 1.0.0 of METROPOLIS2.

46

https://github.com/LucasJavaudin/MetropolisBottleneck/
https://github.com/LucasJavaudin/MetropolisBottleneck/

time function between the simulation and the analytical results. For the rate of departures
(Figure 14), we observe some noise in the curve corresponding to the simulation, due to
the discretization of the agents, but the two curves are always close to each other. For the
travel-time function (Figure 15), there is less noise and the curves follows each other very
closely. The maximum travel time is about 3 seconds larger in the simulation results than
in the analytical results.

07:00:00 08:00:00tq t̃ tq′

Departure time t

0

10

20

30

40

50

60

70

R
at

e
of

d
ep

ar
tu

re
s

fr
om

or
ig

in
rd

(t
)

Simulated

Analytical

Figure 14: Comparison of the rate of departures from origin in the simulation and in the
analytical results

Note: tq, t̃, tq′ are defined as in Figure 12.

Figure 16 shows the convergence of RMSEdep
κ and RMSET

κ from iteration to iteration.
Both indicators steadily decrease for the first 120 iterations. Then, the indicators stay stable
for the remaining iterations.

Running with different random seeds The only randomness in the simulation is due
to the draw of the uniform random numbers un to simulate the departure time of each agent
using inverse sampling. We run 10 simulations with different random seeds to investigate
how the values of the draws affect the results. Table 9 shows how the results vary from one
simulation to another. The results are roughly similar for all 10 simulations. For example,
the distance to analytical results D varies between 0.19 % and 0.38 %.

When averaging the departure rates for the 10 simulations, we find a distance to the
analytical results of D = 0.10 %, which is almost twice smaller than the smallest distance
for any individual simulation. The reason is that averaging over multiple simulations is

47

07:00:00 08:00:00tq t̃ tq′

Departure time t

0

50

100

150

200

250

300

tf

T
ra

ve
l

ti
m

e
T

(t
)

(s
ec

on
d

s)
Simulated

Analytical

Figure 15: Comparison of the travel-time function from origin to destination in the simulation
and in the analytical results

Note: tq, t̃, tq′ are defined as in Figure 12.

25 50 75 100 125 150 175 200

Iteration

10−11

10−8

10−5

10−2

101

C
on

ve
rg

en
ce

(s
ec

on
d

s,
lo

g
sc

al
e)

RMSEdep
κ

RMSET
κ

Figure 16: Convergence of RMSEdep
κ and RMSET

κ

48

Table 9: Average, minimum and maximum values for the results with 10 different random
seeds

Variable Average Minimum Maximum
Running time 3m 33s 3m 30s 3m 42s
Expected max. utility 7.190 7.187 7.194
Average travel time 1m 56s 1m 55s 1m 57s
Dist. analytical res. D 0.26 % 0.19 % 0.38 %
RMSEdep

200 (seconds) 3× 10−12 2× 10−12 3× 10−12

RMSET
200 (seconds) 1× 10−12 8× 10−13 2× 10−12

akin to simulating more individuals, which reduces the noise created by drawing random
values.18 Figure 17 shows a comparison of the analytical departure rate and the departure
rate resulting from the average of the 10 simulations. Compared to Figure 14, we observe
much less noise for the simulated departure rate.

07:00:00 08:00:00tq t̃ tq′

Departure time t

0

10

20

30

40

50

60

70

R
at

e
of

d
ep

ar
tu

re
s

fr
om

or
ig

in
rd

(t
)

Simulated

Analytical

Figure 17: Comparison of the rate of departures when averaging over 10 simulations
Note: tq, t̃, tq′ are defined as in Figure 12.

Using systematic sampling We now try to use systematic sampling (Madow and Madow,
1944) to draw the uniform random numbers un. Concretely, the un values are set to be evenly
spaced between 0 and 1, with an interval of 1/N between two values. Figure 18 compares

18As shown in Section A.3, the distance to the analytical results gets smaller as the number of agents
simulated increases.

49

the simulated and analytical equilibrium rate of departures, when running 200 iterations of
METROPOLIS2. With systematic sampling, we reach a smaller distance to the analytical
results of D = 0.06 %. The reason is that, by using evenly spaced values of un, we reduce
greatly the noise induced by drawing random values.

07:00:00 08:00:00tq t̃ tq′

Departure time t

0

10

20

30

40

50

60

70

R
at

e
of

d
ep

ar
tu

re
s

fr
om

or
ig

in
rd

(t
)

Simulated

Analytical

Figure 18: Comparison of the rate of departures when using systematic sampling
Note: tq, t̃, tq′ are defined as in Figure 12.

A.3 Sensitivity Analysis

Impact of the smoothing factor The smoothing factor λ is used in the exponential
smoothing, equation 8. It represents the weight of the simulated travel-time function of
the current iteration over the weight of the expected travel-time function of the previous
iteration. We run a simulation for 1000 iterations with 6 different values of λ: 0.05, 0.2, 0.4,
0.6, 0.8 and 1. Table 10 shows the main results of the simulations for the different values of
λ. Figure 19 shows the convergence of RMSEdep

κ for the different values of λ (we do not show
here the convergence of RMSET

κ as it is roughly the same). For a value of λ = 1, there is no
convergence: RMSEdep

κ stays at high values. For the other values of λ, the simulation always
converge to a very low value of RMSEdep

κ and RMSET
κ and the distance to the analytical

results is the same. The convergence is the fastest with λ = 0.4, which justify using this
value in the previous section. We do not observe any major difference with regards to the
running time of the simulation between the different values of λ.

50

Table 10: Sensitivity of the results to the smoothing factor

λ 0.05 0.2 0.4 0.6 0.8 1

Running time 17m 30s 17m 35s 17m 38s 17m 35s 17m 33s 18m
Expected max. surplus 7.188 7.188 7.188 7.188 7.188 6.921
Average travel time 1m 57s 1m 57s 1m 57s 1m 57s 1m 57s 2m 13s
Dist. analytical res. D 0.19 % 0.19 % 0.19 % 0.19 % 0.19 % 13.67 %
RMSEdep

200 2× 10−12 4× 10−12 3× 10−12 3× 10−12 7× 10−12 2× 102

RMSET
200 2× 10−12 1× 10−12 3× 10−12 2× 10−12 4× 10−12 2× 102

200 400 600 800 1000

Iteration

10−10

10−7

10−4

10−1

102

R
M

S
E

d
ep
κ

(s
ec

on
d

s,
lo

g
sc

al
e)

λ = 0.05

λ = 0.2

λ = 0.4

λ = 0.6

λ = 0.8

λ = 1.0

Figure 19: Impact of the smoothing factor on RMSEdep
κ convergence

51

Impact of the number of agents We run a simulation for 200 iterations with 3 dif-
ferent values of the number of agents N : 1000, 10 000 and 100 000.19 Note that, since the
bottleneck capacity s is proportional to N , the equilibrium travel-time function from the
analytical results is not impacted by a variation in N and the equilibrium rate of departures
is proportional to N . The results are shown in Table 11. First, we observe that the running
time of the simulation is roughly linear in the number of agents. Then, we observe that the
simulation results are closer to the analytical results as the number of agents increases, as
shown by the distance to the analytical results D. However, the convergence of RMSEdep

κ is
roughly the same for all values of N , as shown on Figure 20. We conclude that, for smaller
values of N , the discretization of the agents has a larger impact which explains why the
comparison to the analytical results gets worse, but this discretization does not prevent the
simulations from converging.

Table 11: Sensitivity of the results to the number of agents

N 1000 10 000 100 000
Running time 1.70s 16.53s 3m 28s
Expected max. utility 7.147 7.176 7.188
Average travel time 2m 13s 2m 1s 1m 57s
Dist. analytical res. D 3.37 % 0.83 % 0.19 %
RMSEdep

200 2× 10−12 3× 10−12 3× 10−12

RMSET
200 8× 10−13 3× 10−12 3× 10−12

Impact of the travel-time function breakpoints interval The parameter δ represents
the time interval between two breakpoints in the travel-time function. We run a simulation
for 200 iterations with 4 different values of δ: 1 min, 5 min, 10 min and 15 min. Note that, as
δ → 0, the travel-time function converges to a continuous function. The results are shown in
Table 12 and Figure 21. We observe that the running time slightly decreases as δ increases.
The simulations converges to an equilibrium for all values of δ, convergence is faster for
larger values of δ. The convergence of the simulation is satisfactory even with δ = 15 min,
i.e., with only 5 breakpoints in total (1 each 15 minutes). Still, the distance to the analytical
results D is smaller for smaller values of δ because agents can better predict the travel time
that they will face for any departure time.

Figure 22 shows the simulated travel-time function at the last iteration for the different
values of δ. With larger values of δ, the simulated travel-time function cannot match well the

19We also run simulations with fewer agents but these simulations dependent heavily on the draws of the
random numbers so we decided not to report their results.

52

25 50 75 100 125 150 175 200

Iteration

10−11

10−9

10−7

10−5

10−3

10−1

101

R
M

S
E

d
ep
κ

(s
ec

on
d

s,
lo

g
sc

al
e) N = 1000

N = 10000

N = 100000

Figure 20: Impact of the number of agents on RMSEdep
κ convergence

Table 12: Sensitivity of the results to the breakpoint interval δ

δ 1 min 5 min 10 min 15 min
Running time 3m 24s 3m 34s 3m 16s 3m 11s
Expected max. utility 7.188 7.181 7.160 7.176
Average travel time 1m 57s 2m 2s 2m 14s 2m 16s
Dist. analytical res. D 0.19 % 1.14 % 2.39 % 3.08 %
RMSEdep

200 3× 10−12 3× 10−12 2× 10−12 2× 10−12

RMSET
200 2× 10−12 2× 10−12 4× 10−13 3× 10−13

53

25 50 75 100 125 150 175 200

Iteration

10−11

10−9

10−7

10−5

10−3

10−1

101

R
M

S
E

d
ep
κ

(s
ec

on
d

s,
lo

g
sc

al
e) δ = 1 min

δ = 5 min

δ = 10 min

δ = 15 min

Figure 21: Impact of the breakpoint interval on RMSEdep
κ convergence

analytical results because there is not enough breakpoints. Note that using a larger value for
δ is akin to assuming that agents have limited information on the travel-time function. This
might give more realistic results than the analytical model which assumes perfect information
on the travel times.

Impact of the scale of the utility’s random component The parameter µ represents
the scale of the utility’s random component. Figure 23 shows how the probability distribution
of the departure-time choice varies with µ. As µ→ 0, the probability distribution converges
to a distribution with a probability 1 to choose the best departure time (i.e., t∗ − tf under
free-flow conditions) and the model converges to the deterministic bottleneck model from
Arnott et al. (1990). As µ → +∞, the probability distribution converges to a uniform
distribution.

We run 1000 iterations of METROPOLIS2 with 5 different values of µ.20 The main
results are shown in Table 13 and Figure 24. From the figure, observe that as µ decreases,
convergence is slower. With µ = 0.2, the simulation does not converge (RMSEdep

1000 = 30,
RMSET

1000 = 100) and the distance to the analytical results is large (D = 20.10 %). The
reason for that might be that congestion is larger for smaller µ, as shown by the average
travel time which ranges from 30s for µ = 5 to 6m 7s for µ = 0.2. When congestion is larger,

20For each value of µ, we choose the value of the smoothing factor λ which gives the best convergence.
The values used are: λ = 0.01 for µ = 0.2, λ = 0.1 for µ = 0.5, λ = 0.4 for µ = 1.0, λ = 0.8 for µ = 2.0 and
λ = 1.0 for µ = 5.0. Observe that for smaller values of µ, the convergence is better with a smaller value of
λ.

54

07:00:00 08:00:00tq t̃ tq′

Departure time t

0

50

100

150

200

250

300

350

tf

T
ra

ve
l

ti
m

e
T

(t
)

(s
ec

on
d

s)
δ = 1 min

δ = 5 min

δ = 10 min

δ = 15 min

Figure 22: Travel-time function for different values of the breakpoint interval
Note: tq, t̃, tq′ are defined as in Figure 12.

07:00:00 08:00:00t∗

Departure time

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ili

ty

µ = 0.2
µ = 0.5
µ = 1.0
µ = 2.0
µ = 5.0

Figure 23: Probability distribution of the departure-time choice for different values of the
scale of the utility’s random component (assuming a constant travel time)

55

this means that there are more interactions between agents which might impede convergence.
For the simulations which converge (µ ≥ 0.5), the distance to the analytical results is similar
(from 0.15 % to 0.34 %). The running times are also very similar for all values of µ.

Table 13: Sensitivity of the results to the scale of the utility’s random component

µ 0.2 0.5 1 2 5
Running time 17m 40s 17m 48s 17m 32s 17m 14s 17m 1s
Average travel time 6m 7s 3m 30s 1m 57s 44s 30s
Dist. analytical res. D 20.10 % 0.15 % 0.19 % 0.30 % 0.34 %
RMSEdep

1000 (seconds) 3× 101 3× 10−11 3× 10−12 2× 10−12 3× 10−12

RMSET
1000 (seconds) 1× 102 3× 10−11 1× 10−12 2× 10−12 1× 10−13

200 400 600 800 1000

Iteration

10−10

10−7

10−4

10−1

102

R
M

S
E

d
ep
κ

(s
ec

on
d

s,
lo

g
sc

al
e)

µ = 0.2

µ = 0.5

µ = 1.0

µ = 2.0

µ = 5.0

Figure 24: Impact of the scale of the utility’s random component on RMSEdep
κ convergence

A.4 Considering Heterogeneity

So far, we have considered a population of homogeneous agents. The only difference be-
tween agents, and the reason their departure times differed, was the different values of un,
which we interpret as unobserved heterogeneity. In this section, we include some observed
heterogeneity to the model by assuming that the t∗ values are distributed. More specifically,
we assume that the desired arrival times of the agents, {t∗

n}1≤n≤N , are independent and
identically distributed with

t∗
n ∼ N (t∗

, σt∗),

56

where t
∗ = 7:30 a.m. is the center of the desired-arrival-time distribution and σt∗ = 5 min

is the variance of the distribution. The distribution of the t∗
n values drawn is presented on

Figure 25.

07:05:00 07:13:20 07:21:40 07:30:00 07:38:20 07:46:40 07:55:00

Desired arrival time t∗

0.0000

0.0002

0.0004

0.0006

0.0008

F
re

q
u

en
cy

Figure 25: Distribution of the t∗
n values for the simulations with observed heterogeneity

We run two different simulations, with µ = 1 and µ = 0.6. The main results are shown
in Table 14. Observe that the running time of METROPOLIS2 is similar between the three
scenarios. This is because agents are always simulated as separate entities so there is no
speed gains when simulating homogeneous agents.

In the heterogeneous case, the desired arrival times are spread over the simulated period
so the distribution of departure times is more spread than in the homogeneous case, as
shown on Figure 26. This explains why, with µ = 1, the average travel time is smaller in the
heterogeneous case (1m 8s) than in the homogeneous case (1m 57s). In the heterogeneous
case, when µ decreases from 1 to 0.6, the average travel time increases from 1m 8s to 2m 1s
(consistently with the results from the sensitivity analysis to µ, in Section A.3). Then the
homogeneous simulation with µ = 1 and the heterogeneous simulation with µ = 0.6 result
in a similar travel time. Finally, in the heterogeneous simulations, RMSEdep

200 and RMSET
200

are larger than in the homogeneous simulation but the values are still practically zero.

57

Table 14: Comparison between the homogeneous and heterogeneous bottleneck models

Model Homogeneous Heterogeneous A Heterogeneous B
Parameters µ = 1, σt∗ = 0 µ = 1, σt∗ = 5 min µ = 0.6, σt∗ = 5 min
Running time 3m 24s 3m 25s 3m 27s
Average travel time 1m 57s 1m 8s 2m 1s
RMSEdep

200 (seconds) 3× 10−12 7× 10−6 6× 10−4

RMSET
200 (seconds) 2× 10−12 2× 10−5 4× 10−4

07:05:00 07:13:20 07:21:40 07:30:00 07:38:20 07:46:40 07:55:00

Departure time t

0

10

20

30

40

50

60

70

R
at

e
of

d
ep

ar
tu

re
s

fr
om

or
ig

in
rd

(t
)

Heterogeneous µ = 1.0

Heterogeneous µ = 0.6

Homogeneous µ = 1.0

Figure 26: Comparison of the rate of departures between homogeneous and heterogeneous
simulations

58

B Input Data

The input data of METROPOLIS2 is composed of the following categories:

• The road network, which defines the infrastructure through which the road trips are
performed (see Section B.1).

• The agents, which are the entities whose travel behaviors are simulated (see Sec-
tion B.2).

• The parameters, which govern various technical aspects of the simulation, such as
stopping criteria (see Section B.3).

• The initial network conditions, which are the expected conditions used in the first
iteration of the simulator (see Section D). When omitted the free-flow conditions are
used.

B.1 Road-Network Input

In METROPOLIS2, a road network is defined by a set of edges and a set of vehicle types.
Each edge is characterized by its fundamental attributes, including its source node, target

node, base speed, length, number of lanes, bottleneck capacity and speed-density function
parameters.

Each vehicle type is defined by the following characteristics:

• headway: typical distance between two vehicles, measured from tip-to-tip;

• passenger car equivalent: a measure of the congestion impact of the vehicle type, in
comparison to a standard passenger car;

• speed restrictions: speed limitations that apply to this vehicle type.

Additionally, it is possible to specifies road restrictions, i.e., edges which are forbidden
to some vehicle types.

B.2 Agents

METROPOLIS2 can simulate an arbitrary number of agents. Each agent chooses between
various travel alternatives, where a travel alternative can represent a single trip (with given
mode, origin and destination), a chain of trips, or no trip (e.g., work-at-home). Figure 27
represents the structure of the data for a single agent. An agent is defined by the travel

59

alternatives from which they can choose and the choice model defining how the chosen travel
alternative is determined (e.g., Multinomial Logit model, deterministic model).

Agent

Travel
alternatives

Alternative 1 Alternative n

Choice model

Figure 27: Structure of an agent

A travel alternative can be either a constant utility amount (e.g., to represent the utility
of work-at-home) or the description of a trip chain. The structure of trip chains is represented
in Figure 28. A single trip can be represented as a special case of a trip chain.

Trip chain

Trips

Trip 1

Type Stopping
time

Travel
utility

Schedule
utility

Trip n

Departure-
time model

Schedule
utility

At origin At destination

Figure 28: Structure of a trip chain

A trip chain is constructed from an arbitrary number of trips, each of which can belong
to one of two distinct types, defined below.

• Road trip: a trip defined by an origin and destination node on the road network with
a specific vehicle type.

• Virtual trip: a trip without any interaction with the network infrastructure (e.g., walk
trip, which neither impacts nor is impacted by congestion), defined by either a constant
travel time or a travel-time function.

These types can be combined within the same trip chain to represent inter-modal journeys.
Apart from the trip type and its associated data, each trip is characterized by the fol-

lowing elements.

• Stopping time: waiting time at the end of the trip before the start of the next trip, or,
equivalently, duration of the activity performed at the trip’s destination.

60

• Travel utility: utility as a function of the trip’s travel time.

• Schedule utility: utility as a function of the arrival time.

The sequence followed by an agent n with a chain of multiple trips works as follows. Let
t∆
n,k denote the stopping time at the end of the k-th trip of agent n. The agent’s departure

time, td
n, coincides with the start of their first trip, td

n,1. Subsequently, the agent reaches the
destination of their first trip upon the completion of the trip’s travel time, ttn,1, resulting in
their arrival time at the destination of the first trip as ta

n,1 ≡ td
n,1 + ttn,1. The second trip

starts after the end of the first trip’s stopping time, t∆
n,1, occurring at time td

n,2 ≡ ta
n,1 + t∆

n,1.
This alternation between trips and stopping times continues, until the agent arrives, upon
the conclusion of the stopping time of their last trip, at time ta

n. Figure 29 illustrate the
timing dynamics of a two-trip chain.

td
n = td

n,1 ta
n,1 td

n,2 ta
n,2 ta

nTrip 1
travel time

ttn,1

Trip 1
stopping time

t∆
n,1

Trip 2
travel time

ttn,2

Trip 2
stopping time

t∆
n,2

Figure 29: Timing dynamics of a trip chain with two trips

Finally, a trip chain is characterized by a departure-time model indicating how the de-
parture time from origin is computed (e.g., Continuous Logit, Multinomial Logit), and a
schedule utility at origin and at destination (a function of td

n and ta
n).

B.3 Parameters

The parameters of METROPOLIS2 include:

• the time window within which the trips take place,

• the learning model used to update the expected network conditions at each iteration,

• stopping criteria defining when the simulation should stop.

C Output Data

Output data for METROPOLIS2 can be divided in three categories: agent-specific out-
put (Section C.1), output specific to the road network (Section C.2) and aggregate results
(Section C.3).

61

C.1 Agent Output

For each simulated agent, the output of METROPOLIS2 includes

• the travel alternative chosen;

• the expected utility (pre-trip) and the actual utility (post-trip);

• the departure time, arrival time and travel time of all the trips taken;

• the route taken for all the trips (if applicable), with the detailed timings.

These values correspond to the choices and actions taken for the last simulated iteration.

C.2 Road-Network Output

METROPOLIS2 returns the current value of the simulated and expected network conditions
at the end of the simulation. These network conditions contain, for each edge of the road
network, the expected travel time as a function of time of day. The simulated network
conditions represent the simulated travel time in the supply model, for the last iteration.
The expected network conditions represent an average of the simulated travel time over the
past iterations, as per the learning model of the simulation.

These values can be analyzed to identify the main congested edges of the network. They
can also be used to compute the time-dependent travel time from any origin to any destina-
tion of the network.

C.3 Aggregated Results

The aggregated results of METROPOLIS2 include:

• aggregate results specific to the agents (e.g., mean departure time, arrival time, travel
time, expected utility, actual utility);

• aggregate results specific to road trips (e.g., mean travel time, mean route length, mean
uncongested travel time);

• aggregate results related to convergence (e.g., departure-time and route variation com-
pared to the previous iteration, difference between actual and expected travel times).

These values are returned at the end of each iteration of the simulation.

62

D Network Conditions

Network conditions are a critical component of METROPOLIS2. They represent the per-
ceptions of agents on the travel time that they will face during their trips. These network
conditions are common knowledge, i.e., all agents have the same perceptions. The network
conditions are updated at each iteration of the simulator based on the simulated travel times
on the network in the supply model.

The road-network conditions are composed of a travel-time function for each edge of the
road network. These travel-time functions represent the expected time required to traverse
the edge for any time of the day. They are used in the routing algorithm during the demand
model to compute the fastest route from origin to destination.

In METROPOLIS2, the travel-time functions are represented as piecewise linear func-
tions so that they can simply be stored as a list of breakpoints. If the simulation contains
multiple vehicle types, one travel-time function is saved for each vehicle type because these
vehicle types can experience different speed limits.

In the supply model, the occupied length and bottleneck queue are recorded for each
edge at any time. These values allows to compute the simulated travel time for any vehicle
type and any edge, i.e., the simulated road-network conditions. Then, the road-network
conditions are used in the learning model to update the expected conditions for the next
iteration.

E Description of the Models

E.1 Demand Model

The demand model simulates the travel decisions of all the agents, given the expected network
conditions (which are common knowledge). The travel decisions consist of choosing one of
the available travel alternatives and, if applicable, a departure time or route. These choices
are based on utility maximization. The network conditions are used to compute the expected
travel time, for road trips.

Backward induction is used to select the travel alternative, departure time and route in
this order. The demand model thus works as follows for each agent:

1. The selected route is computed for each travel alternative and each possible departure
time.

2. Base on the routes chosen in Step 1, the departure time maximizing utility and the
expected value of the departure-time choice are computed for each travel alternative.

63

3. A travel alternative is chosen based on its expected value, which is given by the
departure-time choice from Step 2.

The remainder of this section is organized as follows. We provide an explanation of how
utility is defined in METROPOLIS2. Then, the route, departure time and travel alternative
choices are presented, in this order.

Utility The utility of trip k of agent n is defined by

V trip
n,k (td

n,k, ta
n,k) = V so

n,k(td
n,k) + V tt

n,k(ta
n,k − td

n,k) + V sd
n,k(ta

n,k),

where td
n,k is the trip’s departure time, ta

n,k is the trip’s arrival time, V so
n,k is the schedule

utility at origin, V sd
n,k is the schedule utility at destination and V tt

n,k is the travel-time utility.
In the current version of METROPOLIS2, V so

n,k is limited to a linear schedule-delay penalty:

V so
n,k(td

n,k) = βn,k · [t∗
n,k −∆n,k − td

n,k]+ + γn,k · [td
n,k − t∗

n,k −∆n,k]+,

with βn,k (resp. γn,k) the penalty for early (resp. late) departures, t∗
n,k the desired departure

time, ∆n,k the length of the desired departure time period and [x]+ = max(x, 0). The same
specification can be used for V sd

n,k, with (desired) arrival time instead of (desired) departure
time. Any other parametric specifications could be implemented easily. The travel-time
utility V tt

n,k is limited to a polynomial function of travel time, with up to degree 4, including
a constant. Again, any other parametric specification could be implemented easily. To
evaluate numerically the utility function, METROPOLIS2 relies on linear approximation.

Route choice In the case of road trips,21 given a travel alternative and a departure time,
agents choose the route that minimizes travel time.22 These fastest routes are computed using
a time-dependent routing algorithm directly in the demand model (there is no en-route choice
in METROPOLIS2). They are computed using the expected network conditions which give
the time-dependent travel time for each edge of the road network. The relevant information
for departure-time choice are the travel time of these fastest routes, for all possible departure
times of each travel alternative.

21There is no route to choose in the case of virtual trips as travel time is exogenous.
22The assumption that agents always take the fastest route allows the use of very efficient routing algo-

rithm. In some special cases, however, the fastest route is not actually the one which maximizes utility. For
example, in the α-β-γ model, agents can increase their utility by taking a longer route whenever β > α,
i.e., the value of travel-time savings is smaller than the penalty for being early at destination. In such rare
cases, the travel decisions returned by the demand model do not strictly adhere to the utility-maximization
principle.

64

Departure-time choice Departure-time choice is continuous for trip chains composed of
road or virtual trips because utility is a continuous function of time. In the case of multiple
trips, only the departure time for the first trip is chosen. The departure times for the
subsequent trips are then derived based on the departure time of this first trip, along with
the corresponding travel times and stopping times for each trip within the chain.

The way the departure time is selected depends on the departure-time choice model of the
agent given as input. For example, when the departure-time choice model is a Continuous
Logit model, the probability to choose departure time t is given by:

pd
n,j(t) = eVn,j(t)

t1∫
t0

eVn,j(τ) d τ

,

where Vn,j(t) is the utility as a function of departure time for travel alternative j of agent
n and t0 (resp. t1) is the earliest (resp. latest) possible departure time. Inverse transform
sampling is used to draw the selected departure time from the probability distribution given
above. Then, the expected maximum utility of the travel alternative is given by the logsum
formula:

Vn,j = ln
t1∫

t0

eVn,j(τ) d τ.

Consider the case of an agent n with a chain of K trips, 1, . . . , k, . . . , K. From route
choice, METROPOLIS2 gets the expected travel-time function Tn,k from origin to destination
for each trip k of agent n. Then, for any departure time td from the first origin, the departure
times and arrival times of any trip k can be computed recursively from these expected travel-
time functions {Tn,k}1≤k≤K and the trips’ stopping times {t∆

n,k}1≤k≤K . For example, the
arrival time at destination of trip 1, is ta

n,1 ≡ td
n + Tn,1(td

n) the departure time from origin of
trip 2 is td

n,2 ≡ ta
n,1 + t∆

n,1, and the arrival time at destination of trip 2 is ta
n,2 ≡ td

n,2 +Tn,2(td
n,2).

Therefore, from these travel-time functions and the stopping times, it is possible to compute
the utility of the trip chain for any departure time from the first origin.

Choice of a travel alternative The choice between the travel alternatives available to
an agent is based on the choice model of the agent. The choice model specifies how the
travel alternative is selected given the expected maximum utility of all the travel alternatives,
determined by their departure-time choice. For example, with a deterministic choice model,
the travel alternative with the largest expected utility is chosen.

With a Multinomial Logit choice model, the probability that agent n chooses travel

65

alternative j is given by the Logit formula:

pn,j = eVn,j∑
j′ eVn,j′

,

where Vn,j is the expected maximum utility of travel alternative j of agent n. Like with the
departure-time choice model, the travel alternative can be drawn from such a probability
distribution using inverse transform sampling. The expected maximum utility, or surplus,
that the agent can get from their available travel alternatives is computed as the logsum
formula:

Vn = ln
∑

j

eVn,j .

E.2 Supply Model

The supply model of METROPOLIS2 uses an event-based model to simulate the movements
of agents and vehicles on the network, based on the travel decisions given by the demand
model. An event is defined as an action taken by an agent or a vehicle (e.g., a car reaches
an intersection, an agent reaches the destination of a virtual trip), together with the time
at which the action happens (its execution time). The events are stored in a priority queue,
based on their execution time, where the earliest events to be executed are on top of the
queue. The supply models work as follows:

• When the supply model starts, the event queue is loaded with the initial event of the
agents’ trips and public-transit trips, which corresponds to the departure from origin.

• The supply model then proceeds in executing all events in chronological order.

• Events can have an impact on the network-infrastructure state when being executed.
For example, when a car enters the next edge on its route, vehicle density is reduced
on the previous edge and increased on the new one.

• Events can push new events to the priority queue while being executed. For example,
when a car enters a edge, an event is created to be executed at the time the car will
reach the end of the edge (where the travel time on the edge depends on the current
density on the edge).

• The supply model stops when there is no more event to execute in the priority queue.

While the events are being executed, the simulated network conditions are recorded to
be used in the learning model.

66

	metropolis2reference_paper.pdf
	Introduction
	Literature Review
	From Models to Simulations
	The Bottleneck Model
	Challenges of Simulation
	Simulating the Bottleneck Model

	Simulator Overview
	Implementation
	Applications
	Comparison with METROPOLIS1

	Conclusion
	Bottleneck Model: Numerical Application
	Definitions and Notations
	Comparison to the Analytical Results
	Sensitivity Analysis
	Considering Heterogeneity

	Input Data
	Road-Network Input
	Agents
	Parameters

	Output Data
	Agent Output
	Road-Network Output
	Aggregated Results

	Network Conditions
	Description of the Models
	Demand Model
	Supply Model

