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Abstract

We extend the standard Constant Proportion Portfolio Insurance (CPPI) by introducing
simultaneously margin based dynamic strategies and constraints on minimum market expo-
sure. This leads us to introduce specific conditional floors, allowing the portfolio of not being
monetized (to avoid the cash-lock risk) while ensuring better participation in potential market
increases. To control the risk of such strategies, we introduce risk measures based both on
quantile conditions. Our empirical analysis is mainly conducted on S&P 500 and Euro Stoxx
50, by using Monte-Carlo experiments based on circular block boostrap method. This allows
us to analyze the impact of the different parameters that define our CPPI strategies (i.e. CPPI
multiple, successive margins, level of the minimum market exposure). We estimate and compare
the cumulative distribution functions of the portfolio returns corresponding to the various insur-
ance strategies that we investigate. We provide also their first four moments and measure their
respective performances using both the Sharpe and the Omega ratios. Our results highlight the
benefits of introducing time-varying floors associated to a decreasing sequence of margins while
keeping the market exposure above a minimum level.

Key words: Portfolio insurance; CPPI strategy; time vaying floor; margin based strategy;
market exposure.
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1 Introduction

The recent events1 and the history of the financial markets2 point out both the plausibility and
the severity of the potential losses that an investor can experience. For risk adverse investors,
such as insurers subject to regulatory constraints or pension funds with defined contributions, the
control of the downside risk plays a key role in their investment process. However, downside risk
control requires to address both statistical and practical concerns. First, estimating the downside
risk represents an important challenge due to the structure of asset prices ([1]). For instance, the
non-homogeneous behavior of asset returns implies that the risk is time-varying and need to be
dynamically assessed. Second, from a practical point of view, downside risk control is not as simple
as withdrawing the capital from a position at risk. Indeed, due to the market structure, a portfolio
manager cannot reallocate his entire portfolio at once due to liquidity issue or without suffering
from an execution risk. In addition, a significant reduction in exposure at the source of the risk
significantly limits the potential benefit of a future market recovery..

In this framework, the concept of portfolio insurance has been developed to limit the portfolio
downside risk while maintaining a certain upside participation. There are two main approaches
to portfolio insurance: (i) the option based strategies usually known as the option based portfolio
insurance (OBPI) and the (ii) floor-based strategies covering the well known, constant proportion
portfolio insurance (CPPI) and time invariant portfolio insurance (TIPP) strategies.

Option-based strategies use option instruments to target a desired payoff profile at a given time.
First introduced by Leland and Rubinstein ([2]), with the use of European put options to guarantee
a minimal portfolio value in the future, these strategies have evolved considerably over time, mainly
with the use of hedging strategies to mitigate the insurance cost or to benefit from more exotic
option payoff profile. For instance, Föllmer et al. ([3], [4]) introduce a quantile hedging framework
for investor facing budget constraints but requiring to achieve a specific goal. In a similar manner,
Strassberger ([5]) implements a dynamic risk budgeting strategy based on the replication of a syn-
thetic put to hedge the value at risk and the expected shortfall. Alternatively, Carr et al. ([6]) focus
on hedging the maximum drawdown using double barrier options. Additionally, since double barrier
options are not liquid, they provide alternative hedging strategies based on more vanilla options.
Other different approaches rely on optimization procedures to select the structure of the option
strategies. Capinski ([7]) proposes to find the optimal allocation of put options that minimize the
conditional value at risk of a portfolio subject to a cost constraints.

Although they offer a wide range of solutions, option based strategies are not always easily imple-
mentable. On one hand, options are not necessarily liquid instruments and even the most liquid
option markets are limited in the choice of the strike or maturity. On the other hand, option pricing
and hedging requires advanced statistical methods and computational resources that are not avail-
able to all investors.

The second approach to portfolio insurance provides a much simpler and less restricted imple-
mentation. Indeed, floor-based strategies consist of directly adjusting the portfolio exposure over
time to maintain a minimal guarantee value, referring to the floor level. These strategies are based
on the constant proportion portfolio insurance (CPPI) allocation mechanism introduced by Black
and Perold ([8]) and only differ in the design of the floor process. The CPPI strategy allocates
dynamically the portfolio value between two assets: a risky asset and a risk-free asset. The floor is
set at the inception of strategy and is assumed to evolve at the risk free rate. This design allows
an investor to insure a proportion of his initial capital. The exposition into these assets is based
on the distance of the portfolio value with its floor level, corresponding to the guarantee, and a
given parameter, the so-called multiple, which measures the market exposition and can be related
for example to risk aversion. The weight of the risky asset decreases or increases as the portfolio
value converges towards or moves away from the floor level. Then, the initial level and adjustment
speed of the exposure in the risky asset is amplified by the value of the multiple. Higher multiple
value results in an higher initial exposure into the risky asset with a higher variability over time.

1The COVID-19 crisis and the Russia-Ukraine war.
2Subprime crisis, sovereign debt.
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This parameter drives the investor ability to benefit from a rise in asset prices but, on the opposite
side, increase the risk of reaching faster the minimal desired portfolio value. Note that it must be
upper bounded to control the gap risk (i.e. the portfolio value becomes smaller than the floor).

Although the CPPI provides a flexible and easy to implement insurance strategy, it comes at
the cost of two major drawbacks. Initially developed in continuous time, this strategy ensures that
the portfolio value to never be lower than the floor level (i.e. there is no gap risk). However, under
real market conditions, time is discrete. Thus asset prices exhibit a jump risk making this strategy
subject to the gap risk ([9]). The main issues with gap risk is twofold: (i) the solution cannot
guarantee a minimal portfolio value with probability one and (ii) once the portfolio breaches the
floor, the portfolio is monetized (equivalently cash-lock). The exposure to the risky asset is set to
zero and the portfolio can no longer benefit from any rise in asset prices. In general, the second
issue does not necessarily require the portfolio to breach the floor level. The cash-lock risk occurs
implicitly since, before breaching the floor, the level of the exposure to the risky asset is already
significantly reduced. In most cases, the exposure mechanically becomes close to zero before the gap
risk materializes. Then the portfolio becomes almost fully concentrated on risk free asset and thus
misses a large part of a potential market increase.

The other major concern with the CPPI framework comes from the drawdown risk. By definition,
this strategy only focuses on one aspect of the downside risk, the initial capital loss. The allocation
scheme does not take into account the current gain of the portfolio and thus is subject to an high
drawdown risk. Let us consider an investor with an initial capital of $100 and floor level of $70.
If the portfolio reaches a net asset value of $300 then the maximum possible loss for the investor
is about 76.6% 3. It is unlikely that investors will tolerate such loss level. Indeed, as suggested by
Cheklov et al. ([10],[11]), investors usually withdraws their funds after a drawdown of about 20%
on a one year time period.

These issues lead to several modifications of the initial CPPI framework from the choice of the
multiple to the choice of the floor process. For instance, Ben Ameur and Prigent ([12]) address the
gap risk and thus indirectly the cash-lock risk by allowing the multiple to vary over time. They
use a risk control approach based on quantile and expected shortfall criteria to select the multiple
conditionally to the market environment. They find that using conditional multiple provides sig-
nificant different performance than the standard CPPI formulation due to the greater reactivity to
the local market configuration. Thus the strategy benefits from low risk environment to be more
inclined to increase its exposure to the risky asset and reciprocally to be more conservative in high
risk environment.

Other extensions focus on the change of the floor process. One of the most known alternative to
the CPPI strategy is the time varying portfolio protection (TIPP) strategy of Grossman and Zhou
([13]) which focus specifically on controlling the maximum drawdown. The TIPP considers the floor
level as a step function increasing every time the portfolio reaches a new maximum value. The floor
dynamic caps the exposure to the risky asset and thus ensures the portfolio drawdown to not exceed
a predefined level. However, every time the portfolio reaches a new maximum the exposure is reset
to a lower level limiting potential future gains. In a less restrictive approach, Kanniganti and Boulier
([14]) propose a more flexible framework based on two different floor process: (i) the margin and (ii)
the ratchet effects. The margin effect consists in setting the initial floor higher than the target floor
and use the difference, namely the margin, as a reserve to differ in time the investment mechanism.
This reserve is partially or fully consumed to increase the strategy’s exposure to the risky asset
when it becomes too low. This reduces the risk of cash-lock. Conversely, ratchet effects increase
the floor level when the strategy value increases above a predefined level. This mechanism is used
to lock a proportion of the strategy’s current gain and then limit the drawdown risk. However, the
authors limit their work to arbitrary choices of decrease and increase of the floor level. Based on
this framework, Ben Ameur and Prigent ([15]) propose for the two effects to adjust the floor level
according to the same risk control they use to find conditional multiples ([12]). As a result, the floor
is adjusted according to the expectation of the risk of the underlying asset. They provide, for both
margin and ratchet effects, a set of rules to update the floor level while maintaining a risk control

3Assuming there is no gap-risk.

3



over the strategy.

However, in their formulation, the use of the risk control implies strong conditions. In what fol-
lows, we consider the margin based CPPI strategies. Floor adjustments subject to the risk control
are triggered if the portfolio value becomes smaller than the conditional floor (equal to the target
floor plus the margin) of if the cushion level is (conditionally) expected at the next period to become
negative. In order to be active, this latter rule, requires either that the underlying asset must be
subject to substantial losses for low to moderate multiple level or to consider very high multiple
level to compensate for lower loss magnitude. Additionally, previous conditions can lead to too
conservative strategy (small market exposure) since the strategy can end up in a cash-lock situation
with a remaining margin since the magnitude of the expected price variation might never be enough
to expect a negative cushion.

The purpose of this article is to combine the approach of Ben Ameur and Prigent ([15]) with an
additional control of the minimum market exposition. Indeed, our approach is twofold : first we want
to introduce a more versatile way to trigger margin effects while maintaining a local risk control over
the strategy; second we search to better benefit from market rises by keeping the marker exposure
above a given minimum level. in this respect, we propose an ex-post version of the triggering mech-
anism which relies directly on the exposure level of the strategy as in Boulier and Kanniganti ([14]).
Second, we determine the floor adjustments based on a risk control which focus on the variability of
the cushion instead of its level.

The paper is organized as follows. Section 2 presents the standard CPPI framework in discrete-
time and impact of the parameter selection on the strategy. Section 3 reviews the time-varying floor
approach of Ben Ameur and Prigent applied to the CPPI with margin effects. The third section
introduces the use of a different triggering event and an alternative gap risk control. Then the fourth
section provides the comparative analysis of our contribution using simulated and empirical data.
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2 The CPPI strategy in discrete-time

In the discrete-time framework, at a set of trading dates tk, the CPPI strategy allocates the port-
folio value Vtk between two assets: the risky asset Stk and the risk-free or reserve asset Btk over a
given investment horizon T . The allocation mechanism consists of investing an amount called the
exposure, etk = m∗Ctk = m∗(Vtk −Ptk) into the risky asset Stk and the remaining amount Vtk −etk
into the risk free asset Btk . The exposure is a function of the distance between the portfolio value
Vtk and the floor level Ptk , namely the cushion Ctk and of the multiple, m ∈ R+,∗. The multiple can
be usually related to the investor risk aversion.

In the standard formulation, the floor level is determined at inception and evolves at the same
rate as the reserve asset, namely with returns, rBtk , over the period [tk−1, tk]. For instance, an investor
requiring a capital insurance of 70% at one year horizon with a risk-free rate equal to 3% per year
sets at inception his floor level to Pt0 = 0.7 ∗ Vt0 ∗ exp[−0.03]. Finally, in the case of a floor breach,
i.e. Ctk ≤ 0, the exposure is immediately set to zero and the portfolio becomes fully concentrated in
the risk free asset. Therefore, due to the discrete-time setting, there is a non-negligible probability
that the targeted guarantee is not meet and the actual portfolio value is lower than the desired one.

The strategy dynamic is obtained through a two-step process: (i) the implementation step and
(ii) the evaluation step. The first stage allocates at time tk the portfolio value into the risky and
risk-less asset while the second assesses at time tk+1 the results of the allocation. Therefore, we get
the following representation of the CPPI strategy:

Implementation Vtk =
etk
Stk

∗ Stk +
Vtk − etk

Btk

∗Btk (1)

Evaluation Vtk+1
=

etk
Stk

∗ Stk+1
+

Vtk − etk
Btk

∗Btk+1
(2)

From these two steps, we deduce the portfolio value and cushion dynamics over one period of time
[tk, tk+1]. The portfolio dynamics is given by:

∆Vtk+1
= Vtk+1

− Vtk = etk ∗
∆Stk+1

Stk

+ (Vtk − etk) ∗
∆Btk+1

Btk

(3)

We deduce the cushion dynamics from the previous equation. Indeed, by definition, the cushion
satisfies Ctk = Vtk − Ptk . Thus, we have:

∆Ctk+1
= Ctk+1

− Ctk = ∆Vtk+1
−∆Ptk+1

= etk ∗
∆Stk+1

Stk

+ (Vtk − etk) ∗
∆Btk+1

Btk

−∆Ptk+1

Due to the fact that etk = m ∗ Ctk and Vtk = Ctk + Ptk , the previous expression becomes:

∆Ctk+1
= m ∗ Ctk ∗

∆Stk+1

Stk

+ (Ctk + Ptk −m ∗ Ctk) ∗
∆Btk+1

Btk

−∆Ptk+1

= Ctk ∗
(
m ∗

∆Stk+1

Stk

+ (1−m) ∗
∆Btk+1

Btk

)
+ Ptk ∗

∆Btk+1

Btk

−∆Ptk+1

Since the floor Ptk evolves at the same rate, rBtk+1
, as the reserve asset Btk we deduce that:

Ptk ∗
∆Btk+1

Btk

−∆Ptk+1
= 0

Finally, the dynamics of the cushion is given by:

∆Ctk+1
= Ctk ∗

(
m ∗

∆Stk+1

Stk

+ (1−m) ∗
∆Btk+1

Btk

)
(4)

Ctk+1
= Ctk ∗

(
1 +m ∗

∆Stk+1

Stk

+ (1−m) ∗
∆Btk+1

Btk

)
(5)
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If we consider that rBtk is very small (usually due to the small time period [tk, tk+1]), the previous
equation simplifies to:

Ctk+1
≈ Ctk ∗

(
1 +m ∗

∆Stk+1

Stk

)
= (Vtk − Ptk) ∗

(
1 +m ∗

∆Stk+1

Stk

)
(6)

This equation fully describes the behavior of the strategy and the role of the parameters. Indeed,
it appears that the multiple drives the variability of the cushion while, in some sense, the floor con-
trols its level. Moreover, this expression provides additional useful information over the relationship
between the parameters choice and the strategy risks. For instance, one way to escape rapidly from
the cash-lock risk (i.e. Ctk close to zero) is to use a high enough multiple value. However, such value
increases the risk of breaching the floor level (i.e. increases the gap risk). Alternatively, the floor
can be adjusted, downwards or upwards, to either mitigate the cash-lock risk or the drawdown risk,
respectively. A lower floor level mechanically results in an higher cushion and thus exposure, while
a higher floor level reduces the exposure and set a lower tolerance for losses.

In what follows, we are going to consider various time varying and conditional floors. However,
we note the following property of ”independence” w.r.t. the floor.

Remark 1 (Cushion positivity and floor) According to Equation 6, the positivity of the cushion
after the variations of the asset prices does not depend on the floor value.

3 Time varying floor framework

Due to these relationships, Ben Ameur and Prigent ([12],[15]) use the previous equation (5) as a
starting point to provide a risk based framework to the selection of the parameters. In a first
instance, they show in ([12]) that the gap risk can be controlled when considering multiples satisfying
the following quantile rule:

P (∀ tk ∈ [0, T ], Ctk > 0) ≥ 1− ϵ ⇔
rtk<<

P
(
∀ tk ∈ [0, T ], (1 +m ∗ ∆Stk

Stk−1

) > 0

)
≥ 1− ϵ

with ϵ ∈ (0, 1). Equivalently, considering MT = max
1≤l≤n

(
−∆Stl

Stl−1

)
the maximum loss over one period

of time, we get:

P
(
∀ tk ∈ [0, T ],−∆Stl

Stl−1

<
1

m

)
≥ 1− ϵ ⇔ P

(
MT <

1

m

)
≥ 1− ϵ

⇔ FMT

(
1

m

)
≥ 1− ϵ

⇔ 1

m
≥ F−1

MT
(1− ϵ)

⇔ m <
1

F−1
MT

(1− ϵ)

where F−1
MT

is the inverse of the cumulative distribution function of MT . This approach allows in-
vestors to target multiple value depending on their choice of the probability threshold ϵ. Indeed, the
upper bound is an increasing function of this latter one. For example, in some sense, a risk averse
investor will choose a small ϵ implying that he will select a low multiple. However, this rule considers
the asset returns distribution in its globality and do not account for its temporal properties. In this
way, the multiple is constant over the entire investment period and thus the strategy cannot adapt
to the different risk environments.

In this context, the authors address the lack of adaptability by considering a more general frame-
work. First the multiple is no longer constant. Second it evolves over time in such a way that the
gap risk is controlled over two consecutive trading dates. This local feature yields from the use of
the current state of the cushion in the risk control selection of the parameter. Since the cushion is
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mainly driven by the asset returns, this approach allows to account for the asset price dynamic and
thus its different risk environments.

This framework is not only limited to the selection of the multiple under a gap risk control.
Ben Ameur and Prigent ([15]), extended the previous approach to the floor process. Based on the
previous work of Kanniganti and Boulier ([14]), they show that the floor can be adjusted to reduce
both the cash-lock risk and the drawdown risk, using respectively margin and ratchet effects, while
maintaining a gap risk control. The margin effect consists of reducing the floor level to regain in
exposure into the risky asset. Reciprocally, the ratchet effect increases the floor level to lock in
the current gains of the strategy. Both of these effects are triggered based on predefined events
corresponding to specific states of the strategy. For example, in the case of the margin effect the
floor can be reduced when the exposure decreases below a specific level.

The time-varying floor mechanism is common to both effects. First it assumes a target floor,
denoted P̂tk , referring to the usual floor of the standard strategy. This floor allows to control the
global loss risk of the portfolio over time and allows to recover a predefined percentage of the initial
investment amount at the terminal horizon. If at any trading date, tk, the portfolio breached the
target floor (i.e. Ĉtk = Vtk − P̂tk ≤ 0) then the portfolio becomes monetized. Second this mechanism
allows the investor to modify his floor at any time during the management period. Thus it defines
an effective dynamic and conditional floor as follows:

∇Ptk = P+
tk

− P−
tk
, (7)

which means that ∇Ptk represents the variation of the floor at time tk due to the specific choice of
the new floor P+

tk
.

- The value P−
tk

is equal to the previous floor value chosen at time tk−1 for the period [tk−1, tk[
and invested in the riskless asset with rate rBtk during this time period. Thus it evolves according
to:

P−
tk

= P+
tk−1

∗ exp(rBtk).

- The value P+
tk

is chosen at time tk in order to satisfy the portfolio management objectives at
that time. This can be based on a triggering event modeled by a Bernoulli random variable
Xtk depending on the considered effects.

In the same way, we define the variations of the cushion at time tk, resulting from the choice of
the portfolio strategy at time tk:

∇Ctk = C+
tk

− C−
tk
.

Note that we have P+
tk

≥ P̂tk . Therefore, we get the following general form for the dynamic floor

P+
tk
:

Proposition 2 (Choice of the new floor) At any time tk, the floor P+
tk

is chosen in the following
manner:

P+
tk

=


h(tk,Γtk) if Xtk = 1,

P−
tk

= P+
tk−1

∗ (1 + rBtk) if Xtk = 0,

(8)

where h(tk,Γtk) denotes a generic function and Γ a set of parameters fully determined from the
considered effects.

Based on this new floor process, we deduced the following dynamics for the strategy value and the
cushion level:

Vtk+1
= Vtk + e+tk ∗

∆Stk+1

Stk

+ (Vtk − e+tk) ∗
∆Btk+1

Btk

(9)

with e+tk = m ∗ C+
tk

= m ∗ (Vtk − P+
tk
)

and the dynamics of the cushion is defined by:

C−
tk+1

≈ C+
tk

∗
(
1 +m ∗

∆Stk+1

Stk

)
=
(
Vtk − P+

tk

)
∗
(
1 +m ∗

∆Stk+1

Stk

)
(10)

7



3.1 Value-at-Risk constraints on the cushion value

The floor can be adjusted up or down based on the following risk control on the cushion value:

∀ k ∈ N, PGtk (C−
tk+1

< −Ltk) < ϵ (11)

where ∀ k ∈ N, Ltk > 0 is a predefined threshold and Gtk corresponds to a set of information such

that Ftk−1
⊂ Gtk with Ftk = σ

(
∆St1

St0
, . . . ,

∆Stk

Stk−1

)
the σ-algebra generated by the asset returns. This

quantile condition is considered as ”local” since the control at time tk concerns only the variation
on the time period ]tk, tk+1].

Developing this risk control results to the following restriction over the floor level:

C−
tk+1

< −Ltk ⇔ C+
tk

∗
(
1 +m ∗

∆Stk+1

Stk

)
< −Ltk

⇔
∆Stk+1

Stk

< − 1

m
∗

(
1 +

Ltk

C+
tk

)

Let F∆Stk+1
Stk

(·) be the conditional cumulative distribution function of the asset returns w.r.t. the

information Gtk . We assume that it is invertible.4

∀ k ∈ N, PGtk−1 (C−
tk+1

< −Ltk) < ϵ ⇔ F∆Stk+1
Stk

(
− 1

m

(
1 +

Ltk

C+
tk

))
< ϵ

⇔ − 1

m

(
1 +

Ltk

C+
tk

)
< F−1

∆Stk+1
Stk

(ϵ)

⇔ −Ltk

C+
tk

<

(
1 +m ∗ F−1

∆Stk+1
Stk

(ϵ)

)

Denote by θmtk(ϵ) the term

(
1 +m ∗ F−1

∆Stk+1
Stk

(ϵ)

)
which is the quantile of

(
1 +m ∗

∆Stk+1

Stk

)
at the

probability level ϵ. Therefore we deduce: If θmtk(ϵ) < 0 then

− Ltk

θmtk(ϵ)
> C+

tk
⇔ − Ltk

θmtk(ϵ)
> (Vtk − Pt+k

)

⇔ Vtk +
Ltk

θmtk(ϵ)
< Pt+k

and since Vtk − P+
tk

> 0 we have the following restriction over the choice of the new floor level:

Vtk +
Ltk

θmtk(ϵ)
< Pt+k

< Vtk (12)

Finally if θmtk(ϵ) > 0 we have

Pt+k
< min

(
Vtk +

Ltk

θmtk(ϵ)
, Vtk

)
(13)

Since
Ltk

θmtk(ϵ)
> 0 then Pt+k

< Vtk . In this configuration the underlying risk is low enough to not

impose any particular restriction on the choice of the floor level.

4Otherwise, we consider its left inverse, as it is a monotononic function.
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Proposition 3 (VaR constraints on the new floor due to the risk control on the cushion value) The
risk control adjustment of the floor is completely determined by the sign of the quantity θmtk(ϵ):

1. If θmtk(ϵ) < 0 then

Vtk +
Ltk

θmtk(ϵ)
< Pt+k

< Vtk (14)

2. If θmtk(ϵ) > 0, then

Pt+k
< Vtk (15)

As emphasized in previous proposition, the sign of the quantile θmtk(ϵ) plays a key role when control-
ling locally the cushion value.

Remark 4 The quantile θmtk(ϵ) depends on the conditional distribution of the asset returns as fol-
lows:

θmtk(ϵ) < 0 ⇔ F−1
∆Stk+1

Stk

(ϵ) < − 1

m

θmtk(ϵ) > 0 ⇔ F−1
∆Stk+1

Stk

(ϵ) > − 1

m

For example, if m = 3 then the expected asset return over [tk, tk+1] at a given probability level
F−1

∆Stk+1
Stk

(ϵ) must be lower than −33.33%. This anticipated loss threshold is very significant and

suggests that the underlying instrument must be in very bad configuration to reach such loss level.
Likewise, if the expected asset returns is above this level then the instrument is considered to be in
a good enough configuration to require any risk control. The multiple plays an important role in
the classification of the underlying risk environment. Indeed, the multiple determines the sensitivity
of the strategy to the risky asset. Thus a low multiple implies a lower sensitivity and results in
an higher loss threshold. Reciprocally, strategies with higher multiples are more prone to require a
risk control since there more sensitive to the risky asset and thus considered riskier. Therefore, the
multiple determines the definition of the risk environment.

To summarize, the choice of the new floor P+
tk

at time tk, based on the risk control of the cushion
value, can be expressed as follows.

Proposition 5 (Choice of the new floor with risk control of the cushion value) At any time tk, we
follow the following process:

1. If P̂tk ≥ Vtk , then the exposure is set to 0 until maturity.

2. If P̂tk < Vtk , then the floor P+
tk

is chosen in the following manner:

P+
tk

=


h(tk,Γtk) if Xtk = 1,

P−
tk

= P+
tk−1

∗ (1 + rBtk) if Xtk = 0,

(16)

with

Xtk =


1 if P−

tk
> Vtk or P−

tk
< Vtk but θmtk(ϵ) < 0

0 if P−
tk

< Vtk and θmtk(ϵ) > 0

(17)

and

h(tk,Γtk) =


P̂tk + qtk Ĉtk with 0 < qtk <

(Vtk − P̂tk)

Ĉtk

if P−
tk

> Vtk

(
Vtk +

Ltk

θmtk(ϵ)

)
if P−

tk
< Vtk and θmtk(ϵ) < 0

(18)
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Note that this latter choice corresponds to the choice of the maximal possible exposure when P−
tk

<
Vtkand θmtk(ϵ) < 0, under the quantile constraint.

3.2 Alternative risk control

As discussed previously, the risk control is not easy to apply since it requires very strong conditions
to be active. In this context, we can control for example the downside variation of the cushion
induced by the choice of a new floor level instead of its direct level. Such approach allows to remove
the dependence of the risk control activation to the multiple. Thus, the application of the risk
control is now fully driven by the distribution of the asset returns. Let ∆C−

tk+1
= C−

tk+1
−C+

tk
be the

variation of the cushion right on the time period ]tk, tk+1]. The risk control is design as follows:

∀ k ∈ N, PGtk

(
∆C−

tk+1
< −L̃tk

)
< ϵ (19)

Since we have:

∆C−
tk+1

= C−
tk+1

− C+
tk

≈ C+
tk

∗m ∗
∆Stk+1

Stk

,

we deduce that

∀ k ∈ N, PGtk

(
∆C−

tk+1
< −L̃tk

)
< ϵ ⇔ PGtk

(
m ∗ C+

tk
∗
∆Stk+1

Stk

< −L̃tk

)
< ϵ

⇔ PGtk

(
∆Stk+1

Stk

<
−L̃tk

m ∗ C+
tk

)
< ϵ

Assuming that the cumulative conditional distribution function of the asset returns, F∆Stk+1
Stk

(·) is

invertible and θ̃mtk(ϵ) = m ∗ F−1
∆Stk+1

Stk

(ϵ), we obtain:

∀ k ∈ N, PG⊔∥

(
∆C−

tk+1
< −L̃tk

)
< ϵ ⇔ −Ltk

C+
tk

< θ̃mtk(ϵ)

⇔ − L̃tk < C+
tk

∗ θ̃mtk(ϵ)
⇔ − L̃tk <

(
Vtk − P+

tk

)
∗ θ̃mtk(ϵ)

Finally based on the sign of θ̃mtk(ϵ) we have the following relationships:


θ̃mtk(ϵ) < 0 =⇒ Vtk +

L̃tk

θ̃mtk(ϵ)
≤ P+

tk

θ̃mtk(ϵ) > 0 =⇒ P+
tk

≤ Vtk +
L̃tk

θ̃mtk(ϵ)
,

(20)

the latter condition being always satisfied by construction of P+
tk
.

Remark 6 These inequalities only differ from the ones (12, 13) obtained with the previous gap risk
control on how the risk environment is determined.

Level θmtk(ϵ) = 1 +m ∗ F−1
∆Stk+1

Stk

(ϵ) (21)

Variation θ̃mtk(ϵ) = m ∗ F−1
∆Stk+1

Stk

(ϵ) (22)

Looking at these measures, we note that the use of the new risk control provides two additional
features: (i) the risk environment (i.e. the sign of θ) is independent from the multiple m and (ii)
the risk measure is no longer restricted to extreme risk scenario. For the special cases Ltk = 0 and
L̃tk = 0, the first risk is to get a negative floor (gap risk of the conditional floor) while the second
risk corresponds to a (simple) decrease of the cushion.
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4 Floor adjustments with margin effects

In the case of margin effects, the effective floor process is composed as the sum of two elements: (i)
the target floor, P̂tk , and (ii) the margin, Mtk > 0. The margin works as a buffer that decreases
every time a triggering event is reached. By construction, the floor is initially higher than the target
floor and converges toward it gradually.

To detail the margin strategy, we first consider the case of the risk control according to previous
quantile condition.

4.1 Choice of the new margin with risk control of the cushion value

A) If the portfolio value Vtk satisfies P−
tk

< Vtk then we reduce possibly the margin according to the
following rule using the VaR condition, namely:

- 1) If θtk < 0, then the new value P+
tk

of the floor is equal to the usual floor plus the previous
margin evaluated at time tk, which is reduced by factor γtk . We have:

P+
tk

= P̂tk +M+
tk

and M+
tk

= M−
tk
γtk .

The new cushion is equal to:
C+

tk
= Vtk − P+

tk

Thus, to satisfy the general condition determining the lower bound on the floor if θtk < 0, we must
set:

Vtk +
Ltk

θtk
− P+

tk

M−
tk

≤ γtk ≤
Vtk1

− P+
tk

M−
tk

. (23)

In our illustrations, we set:

γtk = γV aR∗
tk

= Max[
Vtk +

Ltk

θtk
− P+

tk

M−
tk

, 0] (24)

- 2) If θtk−1
> 0, then the VaR condition is not stringent. We keep the same floor (i.e. P+

tk
= P+

tk
).

B) If the portfolio value Vtk satisfies P−
tk

> Vtk then we reduce the floor as follows: We define a

new margin M+
tk

equal to a given proportion qtk (0 < qtk < 1) of the target cushion Ĉtk = Vtk − P̂tk1
.

Thus we set:
P+
tk

= P̂tk +M+
tk

with M+
tk

= qtk

(
Vtk − P̂tk

)
.

Recall that, if P̂tk1
≥ Vtk , then the exposure is set to 0 until maturity.

Remark 7 In the original case of the margin introduced by Boulier and Kanniganti (2005), the
proportion γtk= qtk−1

is assumed to be constant. Additionally, there is no explicit risk control. In
our framework, this proportion is variable and based on the quantile condition depending at each
time on the values of several parameters such as m, Lt , and P̂0 together with the current portfolio
value Vtk .

To summarize, for the margin based strategy based on risk control, the floor process (P+
tk
)k is

defined through a sequence of margins (Mtl)l as follows.

Proposition 8 (Choice of the new margin with risk control of the cushion value) At any time tk,
the process P+

tk
is defined as follows:

1. If P̂tk ≥ Vtk , then the exposure is set to 0 until maturity.

2. If P̂tk < Vtk , then the floor P+
tk

satisfies:

P+
tk

=


hm(tk,Γtk) if Xtk = 1,

P−
tk

= P+
tk−1

∗ (1 + rBtk) if Xtk = 0,

(25)
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with

Xtk =


1 if P−

tk
> Vtk or P−

tk
< Vtk but θmtk(ϵ) < 0

0 if P−
tk

< Vtk and θmtk(ϵ) > 0

(26)

and

hm(tk,Γtk) =

{
P̂tk +M+

tk
with M+

tk
= qtk Ĉtk and 0 < qtk < 1 if P−

tk
> Vtk

P̂tk +M+
tk

with M+
tk

= M−
tk

∗ γV aR∗
tk

if P−
tk

< Vtk and θmtk(ϵ) < 0

(27)

Finally from these conditions, the portfolio manager is able to reduce the cash lock risk while
controlling the gap risk. For instance, when θmtk(ϵ) < 0 selecting the lower bound minimizes the
cash-lock risk since it represents the greatest increase in exposure while maintaining the gap risk
under control. Reciprocally, when θmtk(ϵ) > 0 the risk of the underlying asset is considered low
enough to be subject to the risk control.

4.2 Floor adjustments with margin effects and minimal exposure

As seen previously, the dependence of the triggering event to θmtk(ϵ) limits drastically its reachability,
except for very small values of the probability threshold φ. As a result, the strategy based on the
previous risk control is almost identical to the one introduced by Boulier and Kanniganti ([14]). Our
approach to mitigate this dependency is to change the triggering event for a simpler one only based
on the observed exposure of the strategy. In what follows, instead of monitoring an expected breach
of the running cushion, we focus on the proportion invested in the risky asset defined as:

wtk =
etk
Vtk

=
m ∗ Ctk

Vtk

.

This choice is equivalent to monitor the cushion due to their proportional relationship5 (note also
that sgn w−

tk
= sgn C−

tk
) but provides an easier interpretation. Let wtk ∈ R+ be the triggering

threshold such that a triggering event occurs every time wtk ≤ wtk . This event is considered as
ex-post compared to the previous one since it depends only on a realized observation and not on
any expectation. Thus the

Xtk = 1{w−
tk

≤ wtk}

The use of this type of triggers requires to distinguish two cases depending on the value of the
multiple m and the trigger threshold wtk . In the case of m ≤ wtk margin call will constantly occurs
since the maximal exposure is limited to a lower level than the trigger threshold:

max
1≤k≤n

(
w−

tk

)
= max

1≤k≤n

(
m ∗

(
1−

P−
tk

Vtk

))
< max

1≤k≤n

(
wtk ∗

(
1−

P−
tk

Vtk

))
< max

1≤k≤n
(wtk)

However this case is rarely implemented in practice since in most cases portfolio managers do not
have the ability to use large leverages. For instance, if m = 3 the portfolio exposure into the risky
asset must reached at least 300% to trigger a margin effect. Moreover to benefit from a convex payoff
the multiple tends to be quite high compared to the allowed level of leverage. In the case m > wtk ,
the use of soft triggers implies that the available margin at the time of the event is implicitly higher
than the one initially defined. Indeed, at a triggering time we have:

wtk ≤ wtk ⇔ m ∗
(
Vtk − P−

tk

)
≤ wtk ∗ Vtk ⇔ Vtk ≤ P−

tk
∗
(
1− wtk

m

)−1

= P
(I,−)
tk

,

where P
(I,−)
tk

denotes an implied effective floor from which we deduce the following implied margin:

5When using the exposition level, there is no need to screen the cushion and reciprocally.
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M
(I,−)
tk

= P
(I,−)
tk

− P̂tk = P−
tk

∗
(
1− wtk

m

)−1

− P̂tk = M−
tk

+ P−
tk

∗ wtk

m− wtk

Thus, to set the weight above its minimal value, we must choose the new floor such as:

P+
tk

≤ m− wtk

m
Vtk .

However, since we must choose the new floor above the target floor, we consider finally:

P+
tk

= Max

(
m− wtk

m
Vtk , P̂tk

)
When

m−wtk

m Vtk ≥ P̂tk , we note that:

P+
tk

= P̂tk +M+
tk

with M+
tk

=

(
1− wtk

m

)
Vtk − P̂tk =

(
Ĉtk − wtk

m
Vtk

)
.

To summarize, for the margin based strategy with minimal exposure, the floor process (P+
tk
)k is

defined through a sequence of margins (Mtl)l as follows.

Proposition 9 (Choice of the new margin with minimal exposure) At any time tk, the process P+
tk

is defined as follows:

1. If P̂tk ≥ Vtk , then the exposure is set to 0 until maturity.

2. If P̂tk < Vtk , then the floor P+
tk

satisfies:

P+
tk

=


he(tk,Γtk) if Xtk = 1,

P−
tk

= P+
tk−1

∗ (1 + rBtk) if Xtk = 0,

(28)

with

Xtk =


1 if P−

tk
> Vtk or P−

tk
< Vtk but wtk ≤ wtk

0 if P−
tk

< Vtk and wtk ≥ wtk

(29)

and

he(tk,Γtk) =

{
P̂tk +M+

tk
with M+

tk
= qtk Ĉtk and 0 ≤ qtk ≤ 1 if P−

tk
> Vtk

P̂tk +M+
tk

with M+
tk

= Max
[(

Ĉtk − wtk

m Vtk

)
, 0
]

if P−
tk

< Vtk and wtk ≤ wtk

(30)

If we impose also the constraint of minimal exposure when P−
tk

> Vtk , then we choose qtk such that

qtk = Max
[(

1− wtk

m

Vtk

Ĉtk

)
, 0
]
. Thus, the margin M+

tk
satisfies:

M+
tk

= γe,tkM
−
tk
with γe,tk =


Max

[(
Ĉtk

−
wtk
m Vtk

)
M−

tk

, 0

]
if Xtk = 1,

1 if Xtk = 0,

(31)
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5 Numerical analysis

In this section, we illustrate numerically the different versions of the previous floor adjustments. For
the margin effects, we review the following strategies: the ex-ante triggering mechanism with a level
risk control, the ex-post mechanism based on the strategy’s exposure associated with the level and
the variation risk control. Additional we introduce a naive strategy to compare with the ex-post
triggering mechanism. This strategy is similar to the later but does not account for a risk control.
The floor is adjusted such that the exposure is set to the minimal level that does not trigger a floor
adjustment. When the margin becomes too low to reach this level then all the remaining cash is
invested into the risky asset.

Our analysis is conducted in two parts: (i) the first part uses numerical simulations to analyze
the payoff profile of the strategies with respect to their parameters and (ii) the second part considers
empirical observations to assess their performances from a practical point of view.

In both cases, we use end of week observations6 of the S&P 500 Index and the Eurostoxx 50 Index
over two specific time periods. The first period lies from the 31st December 2003 to the 31st January
2012 which is associated to the subprimes crisis and the second period spans from the 1st January
2018 to the 1st January 2022 which refers to the COVID-19 crisis. These two periods are selected for
their different crisis behaviors (see table 1 and figure 1). The subprimes crisis defines a significant
drop in prices occuring at a relatively slow pace followed by a slow recovery period for the S&P 500
Index and a no recovery for the Eurostoxx 50 Index. Conversely, the COVID-19 crisis characterizes
a very fast sell-off lasting one month followed by a fast recovery period of approximately six months
for the S&P 500 Index and one year for the Eurostoxx 50 Index. These scenario are particularly
important for insurance strategies since they allow to access the efficiency of the protection and the
associated opportunity cost when the underlyer asset recover. For instance, the COVID-19 period is
one of the worst scenario in term of opportunity cost for floor based strategies due to the speed and
the strength of the drawdown and the recovery. Such strategies tends to be cash-lock during the
market recovery resulting in an important opportunity cost. The management of this cost is cru-
cial for portfolio manager since it allows to show their abilities to adjust the protection when needed.

Index
Start

date

Drawdown

date

Recovery

date

Time to

drawdown (days)

Time to

recover (days)
Drawdown Recover

SPX Index 09-Oct-2007 09-Mar-2009 28-Mar-2013 355 1021 -56.78% 131.95%

SPX Index 19-Feb-2020 23-Mar-2020 18-Aug-2020 23 106 -33.92% 51.51%

SX5E Index 16-Jul-2007 09-Mar-2009 none 430 No recovery -60.29% none

SX5E Index 19-Feb-2020 18-Mar-2020 18-Mar-2021 20 261 -38.27% 62.11%

Table 1: Features of the subprimes and COVID-19 drawdown for both the S&P 500 Index and the
Eurostoxx 50 Index.

6End of week = friday.

14



[POINTBREAK] I stop here since i need to re-run the strategies on both simulated and empirical
price series.

5.1 Simulation based approach

The simulation approach consists of analyzing the impact of the parameters over the payoff and the
distribution of the different strategy configurations. We consider Monte-Carlo experiments based on
the Circular Block Bootstrap method. This method is purely data driven and aims to the preserve
the empirical properties of the asset returns. The data generation process uses the permutation of
block of data as describe by the illustration 7 in the appendix. This technique provides an easy
and efficient approach to simulate time series while preserving their dependencies. The choice of an
adequate block size is crucial since only the temporal dependencies within a block are conserved.
In our case, the block size is choosen proportionally to the size of initial sample to reproduce the
observed hetoroscedasticity7 as shown in the figure 2 below.
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(a) SPX Index from 31/12/2003 to 31/01/2012
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(b) SPX Index from 01/01/2018 to 01/01/2022
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(c) SX5E Index from 31/12/2003 to 31/01/2012
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(d) SX5E Index from 31/12/2018 to 01/01/2022

Figure 2: Representation of the estimated square returns auto-correlation for both simulations
methods. The black dash-line corresponds to the size of a block for the circular block Bootstrap.

7Replication of the slow decay in the auto correlation of the square returns.
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For Monte-Carlo experiments we generate 5000 returns trajectories that are transformed into
price series using compound returns. The length of the simulated price series corresponds to the
size of the observed sample. Then we use as risk free rates the annualized average returns of cash
indexes8, in the table below (2), associated to the same geographical area as the equity indexes.

Period SPX Index SX5E Index

31/12/2003 31/01/2012 2,05% 2,03%

01/01/2018 01/01/2022 1,09% -0,42%

Table 2: Annualized average of the cash index daily returns over the specified time period. The
annualization coefficient corresponds to 52 weeks.

Finally, the application of the strategy risk controls requires to estimate the conditional quantile of
asset returns F−1

∆Stk+1
Stk

(·) for each sample path. For simplicity purposes we use an empirical quantile

estimated on a moving window corresponding of the size of the bootstrap block.

In the following part we show the results of the different strategy configurations, the hard and
soft triggering event respectively associated with the level and variation risk controls as defined
previously. The hard triggering event represents a breach of the current floor (every time the current
cushion becomes negative) while the soft triggering is associated with a breach of the exposure level
(every time the exposure goes below a given level). The tables 3 and 4 below, presents the different
parameters used in the simulation process and the empirical application. The green row corresponds
to the baseline parameters while the others are used to analyze the sensitivity of the strategies to
these parameters. In other words, we obtain the sensitivity of the strategies to their parameters by
varying the value of one parameter (see rows of the table) and keeping the other constant with the
value in the green row. The second part of table corresponds to the standard floor configuration of
the CPPI with margin and ratchet effects. For the margin strategies we consider that 7.5% of the
global floor is dynamically adjusted and in case of a margin effect which does not fall under the risk
control conditions the margin is reduced by 20%. Then for the ratchet effect, the floor is revisited
upward every time the portfolio value exceeds the floor by a proportion based on the sign of θmtk(·)
and θ̃mtk(·).

Margin strategy parameters

Trigger

xtk

Multiple

m

Quantile

ϵ

Threshold

Ltk/Vtk

Max

exposure

Target

floor

Margin

M0/V0

Reduction

ptk

1.0% 3 0.25% 1.0%

5.0% 6 1.0% 2.5%

10% 8 5.0% 5.0%

100% 20% 7.5% 80%

Table 3: Parameters used in the simulation based analysis and the empirical application for both
indexes and time period.

5.1.1 Margin effects

The overall results9 show that soft triggering events produce more volatile strategies with a signif-
icantly lower skewness and kurtosis compare to the hard triggering events (see table 5, 6, 7 and
8). These results are expected since the soft triggering mechanism induces relatively more trades as
shown by the margin consumption in every market configuration (cf last row of the tables below).

8The Bloomberg tickers of the indexes are BXIIBUS0 Index and BXIIBEU0 Index.
9Independent from the considered index or time period.
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Ratchet strategy parameters

Upward revision

ptk

Multiple

m

Quantile

ϵ

Target

floor

90% 3 0.25%

85% 6 1.0%

80% 8 5.0%

20%

Table 4: Parameters used in the simulation based analysis and the empirical application for both
indexes and time period.

This higher trading activity results on one hand in an higher volatility and on the other hand in a
smoother transition between pre and post monetization or cash lock events. Particularly the change
in the strategy returns amplitude is less sudden reducing the skewness and the kurtosis compare to
the hard triggering mechanism.

The analysis of the different strategy configurations yields in mixed results based on the price
behavior following a drawdown event: (i) a fast recovery represented by the period 2018-2022 for
the S&P 500 index (see table 7), (ii) a slower recovery associated to the S&P 500 index (see table 5)
and the Eurostoxx 50 (see table 8), respectively, over the period 2004-2012 and 2018-2022 and (iii)
a no recovery defined by the Eurostoxx 50 index (see table 6) over the period 2004-2012.

First, the difference in performance between triggering types suggests that soft triggering events
provide on average better performances compare to hard triggering events for simulated scenarios
based on a recovery period. However, the performance improvement is significantly greater for the
period with a fast recovery (cf. table 7) except for low multiple values (m = 3)10. Indeed, for the
simulations based on this period, the total return is about 5% better, the annualized average return
is at least 1.5% higher and the omega ratio is about 0.1 point higher than the ones of the strategy
using hard triggering events. These improvements are followed by a small increase of volatility of
about 1% while the skewness and the kurtosis are significantly lower. Conversely, for the period
associated to a slower recovery the performance increase is less notable. For instance, based on the
simulation obtained from the Eurostoxx 50 index over the period 2018-2022, soft triggering events
slightly improve the total returns by about more than 1%, the average returns by 0.3% and the
omega ratio by at least 0.04 for less than 1 point of volatility increase.

Then in the case of simulations generated from a non recovery scenario (cf. table 6) the performance
of the strategies using soft triggering mechanism are degraded. Such performance loss is due to
the greater trading activity of these strategies. By construction these strategies increase more often
their exposure into the risky asset in period of downward markets, characterized by an important
consumption of the margin, to benefit as soon as possible from a potential recovery. Thus when the
recovery is not materializing this extra risk is not rewarded and yields to greater losses.

Second, when focusing on the risk control style we note that the variation risk control is more
aggressive than the level risk control. The consumption of the margin appears to be significantly
greater in all market configuration. Indeed based on the equation (21) and (22), the variation risk
control is solicited more easily since the condition θ̃mtk(ϵ) < 0 is less restrictive than the condition
θmtk(ϵ) < 0 of the level risk control. From a performance point of view, this increase in reactivity
yields to the same results as above for simulations generated from period with a fast and without
a recovery while the results are very mixed for the simulations associated to periods with a slower
recovery.

As previously indicated, in the case of fast and non recovery, the higher activity allows either to

10For lower multiple the risk of breaching the floor can be very low resulting in no performance differences between
the hard and soft triggering mechanisms.
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drastically increase or severely deteriorated the global performance of the strategies. For the fast
recovery scenario (cf. table 7), the variation risk control provides better performance increase than
the level risk control, independently from the strategy configuration. On the other hand, for the
non recovery scenario (cf. table 6) the variation risk control also generates the worst performance
regarding the strategy configuration.

For scenario based on a slower recovery, the results are mixed regarding the index. For instance,
based on the S&P 500 index over the period 2004-2012, there is no obvious gains in performance
between the level and the variation risk control. First, we note that when considering riskier or
less conservative parameters (right part of the table 5) the risk variation degrades the performance
in every configuration. Second when parameters are more conservative the performance differences
tend to disappear for the strategies using soft triggering events with the variation or the level risk
control. However for the strategies using the hard triggering mechanism the variation risk control
reduces globally the performance compares to the level risk control. Conversely, for the Eurostoxx
50 index on the period 2018-2022 (see table 8) the use of the variation risk control provides better
performance in every configuration. Both period even if labeled under a slow recovery are very
different. The drawdown and recovery behavior over the period 2018-2022 for the Eurostoxx 50
index are indeed much faster than the ones of the S&P 500 index over the period 2004-2012. The
variation risk control is more reactive than the level risk control thus for a period with a stronger
recovery it allows to benefit more from it but when the recovery is less pronounced this reactivity
tends to add supplementary risks which are not compensated by the realized gains.

Third, the sensitivity of the strategies to their parameters are difficult to interpret overall from
the tables. There is no clear evidence of a relationship between the performance of the strategies
and the parameter values. However, in general considering less conservative parameters tend to
increase the global risk of the strategies since it implies an higher trading activity, i.e. the margin
is decreased. The gain in performance for the extra risk depends essentially on the considered case.
As suggested previously, an higher trading activity accentuate the behavior of the sample used for
the simulations. For instance, for the simulations based on the Eurostoxx 50 index over the period
2004-2012 the performance is decreased as parameter values increase while for the S&P 500 index
we obtain the opposite results.

Since by construction the distribution of these strategies are truncated the use of averaged statis-
tic provide only a limited interpretation of their distributions. Thus, we analyze the estimated cu-
mulative distribution function of the strategies total return (see appendix B.1) to assess the impact
of the parameters on the distribution of the payoff. This approach allows to obtain more detailed
information of the strategies performance based on the value of a parameter. From this analysis, we
see that the quantile level and threshold parameters have a very little impact on the total return
distributions while the trigger level and the multiple change significantly these distributions. How-
ever, we note that strategies using the variation risk control are more sensitive to a change in the
threshold parameter. This result comes from the fact that the variation risk control is more often
used than the level risk control. Thus the threshold which regulates the magnitude of the margin
decrease plays a more active role.

Overall the change in the distribution due to an increase of a parameter is twofold: it augments the
probability of ending with a negative total returns but also the probability of having a larger positive
returns. However, this increase is not linear and depends mostly on the value of the parameter. For
instance, in most cases going from the mid to the highest parameter value yields to increase more
significantly the negative side than the positive one. In other words, the gain in probability of having
a larger positive returns is marginal compare to the gain in probability of ending with a negative
returns.
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Threshold 1,00% 2,50% 5,00%

Trigger Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var. Level Level Var. Var.

Total return 17,13% 18,13% 18,70% 19,78% 16,42% 17,33% 18,09% 19,80% 16,42% 17,33% 17,30% 19,58%

Avg. return (an.) 2,01% 2,14% 2,22% 2,35% 1,92% 2,03% 2,14% 2,35% 1,92% 2,03% 2,03% 2,31%

Volatility (an.) 8,82% 9,41% 8,46% 9,38% 9,14% 9,41% 8,56% 9,89% 9,14% 9,41% 8,77% 10,12%

Skewness -1,83 -1,58 -2,29 -1,57 -1,69 -1,59 -2,12 -1,57 -1,69 -1,59 -1,87 -1,76

Kurtosis 20,15 16,74 26,52 16,72 19,10 17,42 24,05 16,75 19,10 17,42 20,69 19,78

Omega ratio 1,06 1,06 1,09 1,08 1,05 1,05 1,07 1,07 1,05 1,05 1,06 1,06

Margin 5,27% 3,90% 8,16% 4,77% 4,17% 3,56% 7,04% 3,52% 4,17% 3,56% 5,56% 2,89%

(a) Sensitivity to the threshold parameter.

Multiple 3 6 8

Trigger Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var. Level Level Var. Var.

Total return 18,27% 18,48% 18,27% 18,73% 16,42% 17,33% 18,09% 19,80% 16,89% 18,75% 18,06% 20,53%

Avg. return (an.) 2,19% 2,21% 2,19% 2,24% 1,92% 2,03% 2,14% 2,35% 1,98% 2,21% 2,14% 2,42%

Volatility (an.) 6,23% 6,47% 6,23% 6,74% 9,14% 9,41% 8,56% 9,89% 9,15% 10,28% 8,91% 10,71%

Skewness -2,04 -1,53 -2,04 -1,39 -1,69 -1,59 -2,12 -1,57 -2,28 -1,74 -2,55 -1,80

Kurtosis 21,57 14,75 21,57 13,16 19,10 17,42 24,05 16,75 27,91 20,84 32,62 20,65

Omega ratio 1,14 1,12 1,14 1,12 1,05 1,05 1,07 1,07 1,05 1,05 1,07 1,05

Margin 9,37% 7,36% 9,37% 6,13% 4,17% 3,56% 7,04% 3,52% 5,58% 3,38% 7,32% 2,97%

(b) Sensitivity to the multiple parameter

Trigger level 1,00% 5,00% 10,0%

Trigger Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var. Level Level Var. Var.

Total return 16,42% 16,67% 18,09% 19,94% 16,42% 17,33% 18,09% 19,80% 16,42% 18,07% 18,09% 20,26%

Avg. return (an.) 1,92% 1,95% 2,14% 2,37% 1,92% 2,03% 2,14% 2,35% 1,92% 2,12% 2,14% 2,39%

Volatility (an.) 9,14% 9,20% 8,56% 9,40% 9,14% 9,41% 8,56% 9,89% 9,14% 9,71% 8,56% 10,23%

Skewness -1,69 -1,65 -2,12 -1,62 -1,69 -1,59 -2,12 -1,57 -1,69 -1,58 -2,12 -1,57

Kurtosis 19,10 18,49 24,05 17,40 19,10 17,42 24,05 16,75 19,10 17,13 24,05 16,65

Omega ratio 1,05 1,05 1,07 1,08 1,05 1,05 1,07 1,07 1,05 1,05 1,07 1,06

Margin 4,17% 4,00% 7,04% 5,06% 4,17% 3,56% 7,04% 3,52% 4,17% 3,10% 7,04% 2,83%

(c) Sensitivity to the trigger parameter.

Quantile level 0,25% 1,00% 5,00%

Trigger Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var. Level Level Var. Var.

Total return 16,42% 17,33% 18,09% 19,80% 16,42% 17,33% 18,09% 19,80% 18,40% 19,26% 17,22% 19,09%

Avg. return (an.) 1,92% 2,03% 2,14% 2,35% 1,92% 2,03% 2,14% 2,35% 2,18% 2,29% 2,02% 2,25%

Volatility (an.) 9,14% 9,41% 8,56% 9,89% 9,14% 9,41% 8,56% 9,89% 8,51% 9,32% 8,79% 9,97%

Skewness -1,69 -1,59 -2,12 -1,57 -1,69 -1,59 -2,12 -1,57 -2,21 -1,59 -1,85 -1,76

Kurtosis 19,10 17,42 24,05 16,75 19,10 17,42 24,05 16,75 25,45 16,90 20,40 19,73

Omega ratio 1,05 1,05 1,07 1,07 1,05 1,05 1,07 1,07 1,08 1,07 1,06 1,05

Margin 4,17% 3,56% 7,04% 3,52% 4,17% 3,56% 7,04% 3,52% 7,64% 4,70% 5,43% 3,08%

(d) Sensitivity to the quantile parameter.

Table 5: Bootstrap statistics based on the SPX index for the period 2004-2012.
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Threshold 1,00% 2,50% 5,00%

Trigger Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var. Level Level Var. Var.

Total return 5,96% 4,70% 6,83% 5,20% 4,67% 4,20% 6,16% 4,46% 3,81% 4,00% 5,25% 4,13%

Avg. return (an.) 0,94% 0,79% 1,05% 0,85% 0,77% 0,72% 0,96% 0,77% 0,66% 0,70% 0,84% 0,74%

Volatility (an.) 7,65% 8,69% 7,57% 8,76% 7,87% 8,72% 7,62% 9,25% 8,14% 8,74% 7,75% 9,56%

Skewness -3,73 -2,91 -3,91 -2,89 -3,45 -2,95 -3,77 -2,99 -3,43 -2,98 -3,56 -3,00

Kurtosis 50,16 37,03 53,47 36,25 44,72 37,07 51,00 38,08 44,03 37,35 47,00 38,14

Omega ratio 1,02 0,99 1,04 1,00 1,00 0,99 1,03 0,99 0,99 0,98 1,01 0,98

Margin 6,63% 2,50% 7,76% 2,60% 4,98% 2,27% 6,89% 1,76% 3,97% 2,20% 5,71% 1,39%

(a) Sensitivity to the threshold parameter.

Multiple 3 6 8

Trigger Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var. Level Level Var. Var.

Total return 8,65% 7,71% 8,65% 7,21% 4,67% 4,20% 6,16% 4,46% 4,60% 3,95% 5,71% 3,78%

Avg. return (an.) 1,19% 1,07% 1,19% 1,01% 0,77% 0,72% 0,96% 0,77% 0,79% 0,73% 0,93% 0,71%

Volatility (an.) 5,63% 6,02% 5,63% 6,45% 7,87% 8,72% 7,62% 9,25% 8,52% 9,65% 8,19% 9,84%

Skewness -3,27 -2,34 -3,27 -2,21 -3,45 -2,95 -3,77 -2,99 -3,78 -3,16 -4,13 -3,26

Kurtosis 41,98 25,64 41,98 23,37 44,72 37,07 51,00 38,08 54,29 42,55 59,51 42,94

Omega ratio 1,09 1,05 1,09 1,04 1,00 0,99 1,03 0,99 1,01 0,98 1,02 0,97

Margin 9,37% 5,44% 9,37% 3,72% 4,98% 2,27% 6,89% 1,76% 5,39% 2,23% 6,75% 1,95%

(b) Sensitivity to the multiple parameter

Trigger level 1,00% 5,00% 10,0%

Trigger Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var. Level Level Var. Var.

Total return 4,67% 4,54% 6,16% 4,98% 4,67% 4,20% 6,16% 4,46% 4,67% 4,12% 6,16% 3,98%

Avg. return (an.) 0,77% 0,75% 0,96% 0,82% 0,77% 0,72% 0,96% 0,77% 0,77% 0,72% 0,96% 0,72%

Volatility (an.) 7,87% 8,26% 7,62% 8,64% 7,87% 8,72% 7,62% 9,25% 7,87% 9,10% 7,62% 9,45%

Skewness -3,45 -3,14 -3,77 -3,10 -3,45 -2,95 -3,77 -2,99 -3,45 -2,89 -3,77 -3,05

Kurtosis 44,72 39,94 51,00 39,88 44,72 37,07 51,00 38,08 44,72 36,17 51,00 38,55

Omega ratio 1,00 0,99 1,03 1,00 1,00 0,99 1,03 0,99 1,00 0,98 1,03 0,98

Margin 4,98% 3,38% 6,89% 2,80% 4,98% 2,27% 6,89% 1,76% 4,98% 1,72% 6,89% 1,48%

(c) Sensitivity to the trigger parameter.

Quantile level 0,25% 1,00% 5,00%

Trigger Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var. Level Level Var. Var.

Total return 4,67% 4,20% 6,16% 4,46% 4,67% 4,20% 6,16% 4,46% 6,44% 4,89% 4,14% 3,77%

Avg. return (an.) 0,77% 0,72% 0,96% 0,77% 0,77% 0,72% 0,96% 0,77% 1,00% 0,81% 0,70% 0,69%

Volatility (an.) 7,87% 8,72% 7,62% 9,25% 7,87% 8,72% 7,62% 9,25% 7,61% 8,69% 8,06% 9,39%

Skewness -3,45 -2,95 -3,77 -2,99 -3,45 -2,95 -3,77 -2,99 -3,82 -2,91 -3,44 -3,05

Kurtosis 44,72 37,07 51,00 38,08 44,72 37,07 51,00 38,08 51,92 37,01 44,34 38,35

Omega ratio 1,00 0,99 1,03 0,99 1,00 0,99 1,03 0,99 1,03 1,00 1,00 0,98

Margin 4,98% 2,27% 6,89% 1,76% 4,98% 2,27% 6,89% 1,76% 7,24% 2,58% 4,33% 1,44%

(d) Sensitivity to the quantile parameter.

Table 6: Bootstrap statistics based on the SX5E index for the period 2004-2012.
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Threshold 1,00% 2,50% 5,00%

Trigger Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var. Level Level Var. Var.

Total return 39,08% 44,96% 39,08% 43,01% 39,08% 44,96% 39,08% 47,38% 39,08% 44,96% 39,08% 51,58%

Avg. return (an.) 8,09% 9,62% 8,09% 9,14% 8,09% 9,62% 8,09% 10,23% 8,09% 9,62% 8,09% 11,18%

Volatility (an.) 13,27% 14,55% 13,27% 14,11% 13,27% 14,55% 13,27% 15,10% 13,27% 14,55% 13,27% 15,95%

Skewness -2,82 -1,79 -2,82 -1,98 -2,82 -1,79 -2,82 -1,59 -2,82 -1,79 -2,82 -1,42

Kurtosis 27,01 13,80 27,01 15,76 27,01 13,80 27,01 11,87 27,01 13,80 27,01 10,57

Omega ratio 1,20 1,30 1,20 1,28 1,20 1,30 1,20 1,32 1,20 1,30 1,20 1,34

Margin 9,38% 8,02% 9,38% 8,35% 9,38% 8,02% 9,38% 7,40% 9,38% 8,02% 9,38% 6,39%

(a) Sensitivity to the threshold parameter.

Multiple 3 6 8

Trigger Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var. Level Level Var. Var.

Total return 31,30% 31,46% 31,30% 31,63% 39,08% 44,96% 39,08% 47,38% 57,17% 55,98% 50,30% 49,77%

Avg. return (an.) 7,06% 7,10% 7,06% 7,15% 8,09% 9,62% 8,09% 10,23% 12,26% 12,00% 10,82% 10,66%

Volatility (an.) 10,18% 10,21% 10,18% 10,25% 13,27% 14,55% 13,27% 15,10% 17,10% 16,99% 15,90% 15,98%

Skewness -1,72 -1,69 -1,72 -1,66 -2,82 -1,79 -2,82 -1,59 -1,24 -1,29 -1,60 -1,58

Kurtosis 11,87 11,60 11,87 11,41 27,01 13,80 27,01 11,87 11,09 10,76 12,29 12,03

Omega ratio 1,30 1,31 1,30 1,31 1,20 1,30 1,20 1,32 1,35 1,34 1,32 1,32

Margin 9,38% 9,25% 9,38% 9,11% 9,38% 8,02% 9,38% 7,40% 5,61% 5,49% 7,47% 6,71%

(b) Sensitivity to the multiple parameter.

Trigger level 1,00% 5,00% 10,0%

Trigger Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var. Level Level Var. Var.

Total return 39,08% 43,69% 39,08% 45,62% 39,08% 44,96% 39,08% 47,38% 39,08% 45,22% 39,08% 47,24%

Avg. return (an.) 8,09% 9,31% 8,09% 9,78% 8,09% 9,62% 8,09% 10,23% 8,09% 9,69% 8,09% 10,18%

Volatility (an.) 13,27% 14,29% 13,27% 14,72% 13,27% 14,55% 13,27% 15,10% 13,27% 14,68% 13,27% 15,16%

Skewness -2,82 -1,94 -2,82 -1,76 -2,82 -1,79 -2,82 -1,59 -2,82 -1,72 -2,82 -1,59

Kurtosis 27,01 15,49 27,01 13,63 27,01 13,80 27,01 11,87 27,01 13,02 27,01 11,73

Omega ratio 1,20 1,29 1,20 1,30 1,20 1,30 1,20 1,32 1,20 1,30 1,20 1,31

Margin 9,38% 8,44% 9,38% 7,90% 9,38% 8,02% 9,38% 7,40% 9,38% 7,53% 9,38% 7,01%

(c) Sensitivity to the trigger parameter.

Quantile level 0,25% 1,00% 5,00%

Trigger Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var. Level Level Var. Var.

Total return 39,08% 44,96% 39,08% 47,38% 39,08% 44,96% 39,08% 47,38% 39,08% 44,96% 39,08% 47,94%

Avg. return (an.) 8,09% 9,62% 8,09% 10,23% 8,09% 9,62% 8,09% 10,23% 8,09% 9,62% 8,09% 10,36%

Volatility (an.) 13,27% 14,55% 13,27% 15,10% 13,27% 14,55% 13,27% 15,10% 13,27% 14,55% 13,27% 15,22%

Skewness -2,82 -1,79 -2,82 -1,59 -2,82 -1,79 -2,82 -1,59 -2,82 -1,79 -2,82 -1,56

Kurtosis 27,01 13,80 27,01 11,87 27,01 13,80 27,01 11,87 27,01 13,80 27,01 11,60

Omega ratio 1,20 1,30 1,20 1,32 1,20 1,30 1,20 1,32 1,20 1,30 1,20 1,32

Margin 9,38% 8,02% 9,38% 7,40% 9,38% 8,02% 9,38% 7,40% 9,38% 8,02% 9,38% 7,27%

(d) Sensitivity to the quantile parameter.

Table 7: Bootstrap statistics based on the S&P 500 index for the period 2018-2022.
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Threshold 1,00% 2,50% 5,00%

Trigger Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var. Level Level Var. Var.

Total return 8,56% 8,37% 7,10% 7,32% 9,97% 9,88% 7,93% 7,66% 10,12% 10,01% 8,97% 8,39%

Avg. return (an.) 2,15% 2,09% 1,70% 1,77% 2,56% 2,54% 1,96% 1,87% 2,61% 2,57% 2,28% 2,09%

Volatility (an.) 13,55% 13,56% 12,63% 12,97% 14,66% 14,65% 13,09% 13,27% 14,76% 14,73% 13,84% 13,84%

Skewness -2,19 -2,18 -2,97 -2,60 -1,90 -1,90 -2,48 -2,37 -1,88 -1,88 -2,06 -2,15

Kurtosis 20,45 20,31 30,17 25,19 17,88 17,76 23,78 22,27 17,81 17,69 19,10 19,71

Omega ratio 1,02 1,02 0,97 0,99 1,04 1,04 1,01 1,01 1,04 1,04 1,03 1,02

Margin 5,89% 5,63% 7,55% 6,25% 4,58% 4,48% 6,59% 5,71% 4,42% 4,35% 5,52% 5,10%

(a) Sensitivity to the threshold parameter.

Multiple 3 6 8

Trigger Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var. Level Level Var. Var.

Total return 4,02% 4,21% 4,02% 4,31% 9,97% 9,88% 7,93% 7,66% 5,86% 5,94% 7,00% 7,75%

Avg. return (an.) 1,00% 1,06% 1,00% 1,09% 2,56% 2,54% 1,96% 1,87% 1,21% 1,23% 1,59% 1,82%

Volatility (an.) 8,55% 8,62% 8,55% 8,71% 14,66% 14,65% 13,09% 13,27% 14,33% 14,38% 13,86% 14,26%

Skewness -2,46 -2,31 -2,46 -2,22 -1,90 -1,90 -2,48 -2,37 -3,04 -3,01 -2,78 -2,58

Kurtosis 20,66 19,15 20,66 18,25 17,88 17,76 23,78 22,27 29,42 29,02 27,68 25,32

Omega ratio 0,98 0,99 0,98 1,00 1,04 1,04 1,01 1,01 0,92 0,92 0,96 0,98

Margin 9,37% 8,77% 9,37% 8,34% 4,58% 4,48% 6,59% 5,71% 5,30% 5,16% 6,09% 5,45%

(b) Sensitivity to the multiple parameter.

Trigger level 1,00% 5,00% 10,0%

Trigger Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var. Level Level Var. Var.

Total return 9,97% 9,96% 7,93% 7,88% 9,97% 9,88% 7,93% 7,66% 9,97% 9,76% 7,93% 7,96%

Avg. return (an.) 2,56% 2,56% 1,96% 1,94% 2,56% 2,54% 1,96% 1,87% 2,56% 2,50% 1,96% 1,96%

Volatility (an.) 14,66% 14,66% 13,09% 13,10% 14,66% 14,65% 13,09% 13,27% 14,66% 14,64% 13,09% 13,65%

Skewness -1,90 -1,90 -2,48 -2,47 -1,90 -1,90 -2,48 -2,37 -1,90 -1,89 -2,48 -2,23

Kurtosis 17,88 17,88 23,78 23,58 17,88 17,76 23,78 22,27 17,88 17,48 23,78 20,61

Omega ratio 1,04 1,04 1,01 1,01 1,04 1,04 1,01 1,01 1,04 1,04 1,01 1,01

Margin 4,58% 4,57% 6,59% 6,50% 4,58% 4,48% 6,59% 5,71% 4,58% 4,33% 6,59% 4,95%

(c) Sensitivity to the trigger parameter.

Quantile level 0,25% 1,00% 5,00%

Trigger Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var. Level Level Var. Var.

Total return 9,97% 9,88% 7,93% 7,66% 9,97% 9,88% 7,93% 7,66% 10,04% 9,91% 8,12% 7,72%

Avg. return (an.) 2,56% 2,54% 1,96% 1,87% 2,56% 2,54% 1,96% 1,87% 2,58% 2,54% 2,02% 1,88%

Volatility (an.) 14,66% 14,65% 13,09% 13,27% 14,66% 14,65% 13,09% 13,27% 14,69% 14,66% 13,22% 13,36%

Skewness -1,90 -1,90 -2,48 -2,37 -1,90 -1,90 -2,48 -2,37 -1,95 -1,93 -2,38 -2,32

Kurtosis 17,88 17,76 23,78 22,27 17,88 17,76 23,78 22,27 18,71 18,32 22,54 21,63

Omega ratio 1,04 1,04 1,01 1,01 1,04 1,04 1,01 1,01 1,04 1,04 1,01 1,01

Margin 4,58% 4,48% 6,59% 5,71% 4,58% 4,48% 6,59% 5,71% 4,47% 4,39% 6,39% 5,58%

(d) Sensitivity to the quantile parameter.

Table 8: Bootstrap statistics based on the SX5E index for the period 2018-2022.
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Finally, the analysis of the strategies payoff profile (for the parameters in the green rows in the
table 3 and 4) provides additional interesting results. The payoff profile in the figure 3 represents
the relationship between the percentile of the total returns of the simulated price path and the per-
centile of the total returns of the strategies. From this figure, we note that the use of soft triggering
mechanisms provide better participation to upward price scenarios compare to the hard triggering
strategies. For instance, the payoff of hard triggering strategies converge toward soft triggering
strategies payoff only for very high underlyer’s total returns. However, this better upward participa-
tion comes at an higher cost. Indeed, when the underlyer shows negative total returns the strategies
using soft triggering events provide greater losses. Applying the same analysis over the risk control
allows to show that when combined to soft triggering events the strategies provides better upward
participation but also at an higher cost. On the other hand when associated to the hard triggering
events there are almost no differences in the payoff profiles for the different risk controls.

The analysis of the cumulative distribution function of the strategies total returns reinforce the pre-
vious results. The introduction of soft triggering events increase the probability of reaching negative
total returns but provides greater probability to reach higher positive returns in all configuration
compare to hard triggering events. The same results are obtain for the use of the variation risk
control regarding the level risk control. The intensity of these results depends mainly on the price
scenario used for the simulations. For instance, for scenarios generated from the S&P 500 index over
the period 2018-2022 the use of soft triggering events greatly increase the probability of reaching
higher positive returns while the probability of ending in negative territory is slightly raised. Con-
versely, when considering scenario with less defined upward trend as for the Eurostoxx 50 index over
the period 2018-2022 differences between strategies are less distinct.

[INSERT CONCLUSION]
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5.2 Empirical application

In this part we apply the previous strategy configurations (green rows in the tables 3 and 4) over the
two indexes. The empirical application allows to assess the strategies under real market conditions.
In our application, we assume that we can directly trade the indexes, the quantities bought or sold
are integers and fees of 0.5 basis points of the traded amount are applied. Then for simplicity
purpose the return quantile is estimated using a rolling empirical quantile based on a 2 years moving
window.

5.2.1 Margin effect

The figure 5 illustrates the strategy values with respect to their floor process. As we can see hard
triggering events compare to soft triggering mechanism (see figures 5a and 5c) are more likely to be
locked to their floor without breaching them. This behavior reduces drastically the ability of floor
based strategies to benefit from market recovery. Additionally, the introduction of the variation
risk control provides greater floor reduction which allows to participate more quickly to upward
markets. However, this greater reduction introduces more risk. Indeed, the market recovery might
not materialized and also a greater part of the margin is consumed limiting the ability to support
other downside periods. For instance, the figure 5b shows that the use of the risk variation control
combined with soft margin provides a relatively good upward participation from the 2009-2011
recovery. However, the gains generated during this period are immediately offset for the period
2011-2012 and the strategy value only slightly differs from the other configuration and the margin
is significantly consumed.

The performance analysis highlights these behavior, for every time period with a drawdown re-
covery the use of soft triggering events allows to participate to the recovery (see figure 6a, 6b and
6d). However, this participation does not always yields to better performances. It only indicates
that these strategies are more reactive to price variation. For instance, for the S&P 500 index over
the period 2004-2012 (table 9a) the performance gains of the strategies using soft triggering events
with a level risk control does not generates better performances than the strategies using the hard
triggering events.

The choice of the risk control impacts significantly the performance for periods with a more pro-
nounced recovery (see the period 2018-2022 for tables 9a and 9b). Since the variation risk control
implies greater floor reductions it also provides a greater gain in the underlyer exposure and thus a
better upward participation. Reciprocally, the gain in exposure for period without recovery (see the
period 2004-2012 for the table 9b) conducts to lower the performances.
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Period 31/12/2003 - 31/01/2012 01/01/2018 - 01/01/2022

Trigger Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var.

Total return 2,72% 2,38% 2,34% 4,12% -3,72% 39,11% -3,72% 55,18%

Avg, return (an.) 0,76% 0,76% 0,73% 1,16% -0,46% 9,14% -0,46% 12,06%

Volatility (an.) 9,19% 9,70% 9,43% 11,47% 9,63% 13,46% 9,63% 14,86%

Skewness -0,99 -0,88 -0,93 -0,77 -3,62 -1,40 -3,62 -1,10

Kurtosis 7,23 6,07 6,65 5,75 25,71 8,88 25,71 7,50

Omega ratio 1,04 1,03 1,03 1,04 0,97 1,31 0,97 1,38

Margin 7,50% 6,00% 6,27% 4,20% 9,38% 7,50% 9,38% 6,20%

(a) S&P 500 index

Period 31/12/2003 - 31/01/2012 01/01/2018 - 01/01/2022

Trigger Hard Soft Hard Soft Hard Soft Hard Soft

Risk control Level Level Var. Var. Level Level Var. Var.

Total return -5,54% -5,60% -4,70% -5,19% 21,66% 21,66% -5,43% -5,43%

Avg, return (an.) 0,30% 0,32% 0,38% 0,32% 5,82% 5,82% -1,05% -1,05%

Volatility (an.) 14,01% 14,25% 13,82% 13,89% 13,69% 13,69% 8,20% 8,20%

Skewness -1,26 -1,20 -1,30 -1,28 -0,40 -0,40 -2,32 -2,32

Kurtosis 11,05 10,34 11,63 11,39 7,24 7,24 13,36 13,36

Omega ratio 1,01 1,01 1,01 1,01 1,20 1,20 0,95 0,95

Margin 0,00% 0,00% 0,48% 0,00% 0,00% 0,00% 6,63% 6,63%

(b) Eurostoxx 50 index

Table 9: Performance table of the strategies applied to the S&P 500 and Eurostoxx 50 index. The
backtest includes trading fees of 0.5 basis points.
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[4] Hans Föllmer and Peter Leukert. Efficient hedging: Cost versus shortfall risk. Finance and
Stochastics, 4:117–146, 2 2000.

[5] M Strassberger. Capital requirement, portfolio risk insurance, and dynamic risk budgeting.
papers.ssrn.com, 3:78, 2006.

[6] Peter Carr, Hongzhong Zhang, and Olympia Hadjiliadis. Maximum drawdown insurance. In-
ternational Journal of Theoretical and Applied Finance, 14:1195–1230, 12 2011.
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A Circular block bootstrap illustration
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Figure 7: Representation of the circular block Bootstrap for a sample of 9 elements and a block size
of 3 elements.
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B Sensitivity analysis

B.1 CPPI with margin effects

30



31



32



33



Figures/Data introduction/spx_2003_2012.pdf

(a) SPX Index from 31/12/2003 to 31/01/2012

Figures/Data introduction/spx_2018_2022.pdf

(b) SPX Index from 01/01/2018 to 01/01/2022

Figures/Data introduction/sx5e_2003_2012.pdf

(c) SX5E Index from 31/12/2003 to 31/01/2012

Figures/Data introduction/sx5e_2018_2022.pdf

(d) SX5E Index from 31/12/2018 to 31/01/2022

Figure 1: Price index of the S&P 500 Index and the Eurostoxx 50 Index over the two considered
time period on a weekly basis.
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(a) SPX Index from 31/12/2003 to 31/01/2012
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(b) SPX Index from 01/01/2018 to 01/01/2022
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(c) SX5E Index from 31/12/2003 to 31/01/2012
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(d) SX5E Index from 31/12/2018 to 31/01/2022

Figure 3: Representation of the estimated payoff profile of the different strategies over the different
dataset. The payoff profile represents the relationship between the percentile of simulated price path
total returns and the percentile of the strategies total returns. In this figure there 50 percentiles
evenly ranging from the 0-th to the 100-th percentile.
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(a) SPX Index from 31/12/2003 to 31/01/2012
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(b) SPX Index from 01/01/2018 to 01/01/2022
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(c) SX5E Index from 31/12/2003 to 31/01/2012
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(d) SX5E Index from 31/12/2018 to 31/01/2022

Figure 4: Representation of the estimated cumulative distribution function of the different strategies
over the different dataset. The CDF is based on the total returns of the simulated strategies.

36



2004 2005 2006 2007 2008 2009 2010 2011 2012
0.8

0.9

1

1.1

1.2

1.3
108

Strategy value

Running floor

Target floor

(a) Hard level

2004 2005 2006 2007 2008 2009 2010 2011 2012
0.8

0.9

1

1.1

1.2

1.3
108

(b) Soft level

2004 2005 2006 2007 2008 2009 2010 2011 2012
0.8

0.9

1

1.1

1.2

1.3
108

(c) Hard variation

2004 2005 2006 2007 2008 2009 2010 2011 2012
0.8

0.9

1

1.1

1.2

1.3
108

(d) Soft variation

Figure 5: Representation of the CPPI with margin effects over the S&P 500 index from 31/12/2003
to 31/01/2012.
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(a) S&P 500 index from 31/12/2003 to 31/01/2012
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(b) S&P 500 index from 01/01/2018 to 01/01/2022
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(c) Eurostoxx 50 index from 31/12/2003 to 31/01/2012
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(d) Eurostoxx 50 index from 01/01/2018 to 01/01/2022

Figure 6: Representation of the different strategy configurations
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Figure 8: Representation of the estimated cumulative distribution function of the different strategies
over the SPX Index from 31/12/2003 to 31/01/2012. The CDF is based on the total returns of the
simulated strategies.
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Figure 9: Representation of the estimated cumulative distribution function of the different strategies
over the SPX Index from 01/01/2018 to 01/01/2022. The CDF is based on the total returns of the
simulated strategies.
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Figure 10: Representation of the estimated cumulative distribution function of the different strategies
over the SX5E Index from 31/12/2004 to 31/01/2012. The CDF is based on the total returns of the
simulated strategies.
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Figure 11: Representation of the estimated cumulative distribution function of the different strategies
over the SX5E Index from 01/01/2018 to 01/01/2022. The CDF is based on the total returns of the
simulated strategies.
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