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ABSTRACT
We consider a regulator driving individual choices towards increasing social welfare
by providing personal incentives. We formalize and solve this problem by maximiz-
ing social welfare under a budget constraint. The personalized incentives depend on
the alternatives available to each individual and on her preferences. A polynomial
time approximation algorithm computes a policy within few seconds. We analyti-
cally prove that it is boundedly close to the optimum. We efficiently calculate the
Maximum Social Welfare Curve to achieve for a range of incentive budgets. This
curve provides the right incentive budget to invest. We extend our formulation to
enforcement, taxation and non-personalized-incentive policies. We analytically show
that our personalized-incentive policy is also optimal within this class of policies
and construct close-to-optimal enforcement and proportional tax-subsidy policies.
We then compare analytically and numerically our policy with other state-of-the-art
policies. Finally, we simulate a large-scale application to mode choice to reduce CO2
emissions.
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1. Introduction

Taxes and subsidies in transportation are often perceived by the population as unfair,
since they neglect the alternatives actually available to each individual and the indi-
vidual preferences.1 On the other hand, with the increase in information available to
governments (Clarke and Margetts 2014), economic policies can be improved to con-
sider the peculiarities of each individual. Customized policies could be used to align
the individual cost with the social cost in the individuals’ decisions, without penalizing
anyone. We do not discuss here the legal dimension of such policies (which should be
debated in the political arena).

We propose a policy of personalized incentives in a framework where individuals
choose between multiple alternatives (or options). A benevolent regulator has a lim-
ited budget that he can use to propose monetary incentives, with the goal to induce

CONTACT Lucas Javaudin. Email: lucas.javaudin@cyu.fr
1A preliminary version of this work was presented at the 2022 IEEE 25th International Conference on Intel-

ligent Transportation Systems (ITSC), and a conference paper appears in the proceedings of that conference
(Javaudin, Araldo, and de Palma 2022).



individuals to change their choice toward socially-better ones. The policy we present
is fair in the sense that no individual increases or decreases her utility. This is a clear
advantage over road pricing, the most deployed demand management scheme, which
usually decreases the utility of some individuals.

Consider a regulator aiming to induce car buyers to choose more environmentally-
friendly car models. Suppose that two buyers, A and B, both consider buying a car
with high CO2 emissions and suppose that buyer A (resp. buyer B) can be convinced
to buy instead a car with low CO2 emissions if she gets a discount of $2000 (resp.
of $5000). With the policy of personalized incentives envisaged in this paper, the
regulator could give $2000 (resp. $5000) to buyer A (resp. to buyer B) if she accepts
to buy the low-emission car. In this simple example, the regulator could convince the
two buyers to choose the low-emission car for only $7000 ($2000 to buyer A and $5000
to buyer B), while, with a non-personalized subsidy policy, the regulator would need
to spend at least $10 000 to convince both buyers (each buyer receives $5000). Hence, a
personalized-incentive policy allows to reduce the average CO2 emissions by the same
amount than a non-personalized policy, while spending less.

We define the optimal personalized-incentive policy as the allocation of incentives
that maximizes social welfare (defined as the reduction of CO2 emissions in the example
above), for a given budget. With two cars and two buyers, the optimal policy is easy
to compute by simple enumeration. However, the problem is combinatorial so, with
a large number of heterogeneous buyers and a large number of car models to choose
from, we need more sophisticated methods.

We formalize the problem of finding a personalized-incentive policy maximizing
social welfare under the regulator’s budget constraint and show that it reduces to the
well-known Multiple-Choice Knapsack Problem (MCKP – see Section 3). The MCKP
consists in packing ‘items’ of different ‘classes’ into a knapsack of a certain ‘capacity’.
We show that the MCKP provides a natural formalization of an optimal incentive
policy, where a class is an individual, an item is an alternative and the knapsack
capacity is the budget of incentives. To approximate the optimal policy in polynomial
time, we adapt a greedy algorithm from the Operations Research literature and we
analyse some of its analytical (e.g., suboptimality gap bound) and economic (e.g.,
diminishing returns) properties (Section 4).

We then frame personalized-incentive policies into a larger family of demand man-
agement policies, including enforcement, tax and non-personalized-incentives (Sec-
tion 5). These policies aim to maximize social welfare subject to a disutility constraint,
where the disutility is the total loss of surplus for both the regulator and the indi-
viduals. We find that personalized-incentive policies are optimal within this larger
family of policies. Moreover, they are ‘fair’, since they guarantee that the utility of
each individual remains unchanged, and thus no one is penalized. We also compute a
theoretical lower bound on the gap between state-of-the-art incentive policies, which
are not personalized, and our personalized-incentive policy. Furthermore, we show that
our greedy algorithm can not only construct incentive policies, but also enforcement
and proportional tax-subsidy policies. We show that also in this case, the social welfare
is boundedly close to the theoretical optimum. While in most of the paper we assume
that the regulator knows exactly the preferences of each individual, we also study the
case of imperfect information (Section 6).

Using data from the French census, we evaluate the CO2 reduction achieved via the
policy computed with our algorithm in a large-scale use-case, where individuals are
incentivized to shift toward greener transportation modes for their commute to work,
at the scale of a French department (Section 7). The results confirm the theoretical
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findings, showing in particular that our personalized incentives achieve the same CO2
reduction as flat subsidies, but with a considerably smaller amount of incentives spent.
Our code is available as open source.2

Even though the case study is about modal shift, the proposed methods can be ap-
plied in various contexts. For example, consider the marketing department of a large
firm selling mutually exclusive goods. To increase the profits of the firm, the market-
ing department could use its budget to propose price discounts to some consumers
in order to convince them to shift to goods with higher margins. Another potential
example of application is in the telecommunications management context. In recent
years, governments are planning to subsidize local organizations to improve the access
of rural population to the Internet (France alone will spend 3 billions euros in 10 years,
Arcep 2021). With our methods, governments could allocate optimally these subsidies.

2. Related Work

We first discuss the literature on incentive policies (Section 2.1), in particular in trans-
portation, which is the main application domain we envision. We then review the ap-
plications of the Multiple Choice Knapsack Problem, on which our optimization is
based, in economics and transportation (Section 2.2) and, finally, in other domains
(Section 2.3).

2.1. Incentive Policies in Transportation

Earlier studies of welfare analysis in a discrete-choice framework have been conducted
by Small and Rosen (1981) and Anderson, de Palma, and Thisse (1992). De Borger
(2001) studies the optimal taxation in a discrete-choice framework with externalities.
His model is close to ours but he does not consider incentive policies. Some papers
conduct an empirical study of an incentive policy in the transportation context (e.g.,
Merugu, Prabhakar, and Rama 2009, Ettema, Knockaert, and Verhoef 2010, Yue et al.
2015, Hu, Chiu, and Zhu 2015) but they do not carry out a theoretical study of the
optimal policy.

Incentives are a promising tool for policy makers to trigger a transition toward
greener transportation. Mirhedayatian and Yan (2018) model the reaction of a single
logistics company to several incentives for buying and adopting electric vehicles. We are
interested instead in calculating optimal incentives for a large plethora of individuals.
A vast literature exists on time-varying incentives and/or surcharges to shift departure
times, in order to reduce congestion. To this aim, Sun et al. (2020) adopt a bottleneck
model of a road segment. Tang et al. (2020) propose an optimization model to calculate
transit surcharges and incentives, during peak and off-peak, respectively, to avoid over-
crowding. In the two aforementioned works, the incentives are not personalized, in that
they do not depend on the individual’s profile and all the individuals go from the same
origin to the same destination. We instead consider a large set of individuals, each
with a different set of alternatives, resulting in different contributions to the social
welfare and individual perceived utility. Our incentives are personalized, in that we
encourage social-welfare maximizing alternatives with an incentive that compensate
for the reduction in individual utility loss, which changes from an individual to another.

Closer to our work, Araldo et al. (2019) devise Tripod, a simulation-based opti-

2https://github.com/LucasJavaudin/individualized-incentives-algorithm
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mization method to calculate incentives to encourage energy efficient transportation
alternatives. However, the incentives do not depend on individual specificities. Indeed,
the system computes a unique ‘Token Energy Efficiency’ (TEE) value, and computes
the incentive for each alternative by simply multiplying the TEE by the estimated
energy savings achieved with that alternative. Such approach is pertinent when the
regulator has no information on the individual preferences. However, when perfect in-
formation is available, our approach is able to achieve the same social welfare of Tripod
with less incentives spent or, equivalently, to achieve a larger social welfare with the
same incentives spent. We show these findings both analytically (Section 5.2.3) and
numerically (Section 7.6).

2.2. Multiple Choice Knapsack Problem in Economics and
Transportation

The Multiple Choice Knapsack Problem (MCKP – Kellerer et al. 2004, chap. 11) can
be used to model a decision maker willing to optimally invest a limited budget in order
to increase an objective function. The possible investments options are divided into
separate groups, and the decision maker has to choose at most one option for each
group.

We now review the few examples of applications of MCKP in Economics and Trans-
portation. Zhong and Young (2010) study the decision of a transportation planner
willing to select a subset of candidate projects for funding. They do not propose any
resolution algorithm and solve the problem in an exact way using a solver. Later, Col-
orni et al. (2017) use MCKP as a subroutine of a more general multi-criteria project-
selection problem. Since the problem is NP hard (Kellerer et al. 2004, chap. 11), the
aforementioned exact approach would require an unfeasibly large computation time
in the large-scale applications we target. For this reason, we resort instead to a poly-
nomial time approximation algorithm. Zoltners, Sinha, and Chong (1979, Sec. 6 and
7) use MCKP as a subroutine for a problem where a sales representative with a finite
time-budget has to optimally allocate a call frequency to each accounts. They solve
such a subroutine with an algorithm similar in spirit to our Algorithm 1, but in a more
complicated setting, due to iterating decisions over multiple time-slots.

2.3. Multiple Choice Knapsack Problem in Computer Science and other
Domains

MKCP is widely adopted in the Computer Science community, where a certain re-
source must be allocated among different entities. In the work of Cao, Brahma, and
Varshney (2015), a central information aggregator receives information from several
selfish sensors, which can transmit it at several precision levels: the more the precision
level the higher the sensor cost in terms of energy. The aggregator needs to select
one precision level (or none) per sensor and compensates the corresponding loss of
energy of each sensor via payments. In Fielder et al. (2016), a manager of an infor-
mation system invests in security controls. Per each control, it has to select a certain
‘level’: the higher the level, the higher the protection of the organization, but also the
higher the investment. Araldo, Di Stefano, and Di Stefano (2020) allocate computa-
tional resources among different service providers; the owner of the resources selects
one configuration for each of them in order to increase the overall system utility. To
this aim, they use Multi-Dimensional Multiple-Node MCKP. Mohammadivojdan and
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Geunes (2018) solve the problem of a seller, who needs to decide the amount of prod-
uct to buy from several providers, each proposing a different pricing scheme, in order
to maximize its overall utility.

2.4. Position with respect to the Related Work

To the best of our knowledge, we are the first to formalize the problem of computing
optimal personalized-incentives with MCKP. By finding the assumptions that enable
such a formalization, we show in this paper that MCKP describes naturally such a
problem, since it manages to represent the different alternatives of each individual.
The adoption of MCKP also allows us to devise an efficient algorithm for large-scale
applications, adapting existing solutions from Operations Research.

3. Framework and Personalized-Incentive Policy

In this section, we first formalize the model studied and present the underlying as-
sumptions (Section 3.1). We also characterize the personalized-incentive policy that
will be studied throughout this paper (Section 3.2). We then present the Maximum
Social Welfare Problem, which consists in finding the optimal incentive policy under
a budget constraint (Section 3.3). Finally, we present the Maximum Social Welfare
Curve problem, which solves the previous problem for a range of budget values (Sec-
tion 3.4).

The notations used throughout this paper are summarized in Table 1. All the proofs
are relegated to Appendix B.

3.1. Model and Assumptions

We consider a population I ≡ {1, . . . ,m} of m individuals. Each individual i ∈ I
chooses an alternative j among an individual-specific choice-set Ni. For example,
we can consider individuals choosing a mode of transportation to commute to their
work. In this case, the choice set could be Ni = {car,walk,bike, public transit}. The
choice set can be individual-specific so that if individual i owns a car but indi-
vidual i′ does not, we could have Ni = {car,walk, bike,public transit} and Ni′ =
{walk,bike, public transit}. The mode-choice example is studied extensively in Sec-
tion 7. As another example, I could be a set of individuals purchasing a car. In this
case, the set of alternatives Ni of individual i would include the models of cars available
in the market.

Let zi,j ∈ R be a monetary transfer, from the regulator to individual i, induced when
she chooses alternative j. This monetary transfer can be an incentive, if positive, or
a tax, if negative. Any policy can thus be described by a set of monetary transfers
proposed to all the individuals for any of their alternatives, which we compactly denote
with z ≡ {zi,j}i,j .

A policy influences the individual choice since the proposed monetary transfers
change her utilities.

The utility Ui,j(z) of individual i when choosing alternative j ∈ Ni is given by

Ui,j(z) = Vi,j + zi,j , (1)
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Table 1. Notation used throughout the paper.

i Index to denote an individual
j Index to denote an alternative

[i, j] Alternative j of individual i
I, m Set of individuals and number of individuals
Ni Set of alternatives available to individual i
Vi,j Intrinsic utility of individual i when choosing alternative j
bi,j Social indicator of alternative j of individual i
zi,j Monetary transfer received (or paid) by individual i when choosing alternative j

z General policy (set {zi,j}i,j of monetary transfers)
yi,j Personalized incentive proposed to individual i, conditional on choosing alternative j

y Personalized-incentive policy (set {yi,j}i,j of incentives)
Y Set of all personalized-incentive policies

Ui,j(z) Utility of individual i when choosing alternative j, given policy z (1)
j∗i (z) Alternative chosen by individual i, given policy z
j∗i (0) Default alternative, i.e., alternative chosen by individual i, in the absence of policy (5)
wi,j Weight of alternative j of individual i, equation (8)
ei,j Efficiency of alternative j of individual i (Definition 4.1)
Q Maximum budget available to the regulator
Q̃ Budget actually spent by the policy computed by Algorithm 1

B∗(Y ) Maximum social welfare reachable with a personalized-incentive policy,
with a total incentive expenditure of Y

B(Y ) Social welfare obtained with the personalized-incentive policy produced by our algorithm,
with a total incentive expenditure of Y

B(z) Social welfare achieved with a policy z, equation (2)
Y (z) Expenses of the regulator for a policy z, equation (3)

∆U(z) Total variation in individual utility of a policy z, equation (18)
δ(z) Disutility of policy z, equation (19)

Ri ⊆ Ni, ri = |Ri| Set of LP-extremes alternatives of individual i, and its cardinality
b̃i,j Incremental social indicator of the alternative j of individual i
w̃i,j Incremental incentive of the alternative j of individual i
ẽi,j Incremental efficiency of the alternative j of individual i
ẽs,t Incremental efficiency of the split item (Algorithm 1)
k Iteration index of Algorithm 1

e[k], ẽ[k] Overall and incremental efficiency of Algorithm 1 at iteration k (Definition 4.6)
τ Tax level (Section 5.2.2)
Ai Baseline social-indicator of individual i (Section 5.2.2)
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where Vi,j ∈ R is the intrinsic utility (in the absence of policy). We implicitly assumed
that utility is quasi-linear with respect to income, which means that both Vi,j and zi,j
are expressed in the same unit as income and that zi,j has an additive effect on utility,
hence equation (1).

Given a policy z, each individual i chooses an alternative j∗i (z) which maximizes
her utility:

j∗i (z) ∈ arg max
j

Ui,j(z).

We consider a regulator aiming to maximize a social welfare indicator, whose value
depends on the individuals’ choices. More formally, each alternative j of individual i
is characterized by a social indicator bi,j ∈ R. In the mode-choice example, the social
indicator could be the opposite of CO2 emissions induced by the commutes.

The goal of the regulator is to find a policy z which maximizes the global social
indicator, or social welfare indicator, defined by

B(z) ≡
m∑

i=1
bi,j∗i (z), (2)

i.e., the sum of the social indicators of the alternatives chosen by the individuals.
Intuitively, a policy z which maximizes welfare could be

zi,j =
{

0 if j ∈ arg maxj′ bi,j′

−∞ else , ∀i, j,

which is equivalent to a ban of all alternatives that do not maximize the social indicator
for each individual. However, in practice, the regulator is affected by some political
constraints and such extreme policy is not feasible.

Definition 3.1 (Expenses). For any policy z, we define the expenses Y (z) of the
regulator (or his revenues −Y (z)) as

Y (z) ≡
m∑

i=1
zi,j∗i (z), (3)

i.e., the sum of the monetary transfers paid or received for the alternative j∗i (z) chosen
by each individual i.

The following assumptions are made. First, we assume that individuals cannot affect
each other’s intrinsic utility.

Assumption 3.2 (Independent intrinsic utilities). Given a policy z, for each indi-
vidual i and each alternative j ∈ Ni, the intrinsic utility Vi,j is independent of the
alternative j∗i′(z) chosen by any other individual i′ ̸= i.

Similarly, we assume that the social indicator of the alternatives is independent of
the choices of the individuals.

Assumption 3.3 (Independent social indicators). Given a policy z, for each indi-
vidual i and each alternative j ∈ Ni, the social indicator bi,j is independent of the
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alternative j∗i′(z) chosen by any other individual i′ ̸= i.

Note that Assumptions 3.2 and 3.3 hold in many practical situations. For instance,
in the numerical scenario on transport mode choice (Section 7), we achieve relevant
social welfare improvement (CO2 reduction), while inducing only few individuals to
change their modes, with a negligible impact on the utilities of the other individuals.

We further assume that the utilities and social indicators are known to the regulator.

Assumption 3.4 (Perfect information). The regulator has perfect information: it
knows exactly the intrinsic utilities {Vi,j}i,j and social indicators {bi,j}i,j of all the
alternatives, for all the individuals.

In Sections 6 and 7 we discuss the implications of assumption 3.4 in the context of
mode choice and we show how to relax it by more realistically assuming that the intrin-
sic utilities {Vi,j}i,j are imperfectly known to the regulator. Developing our theoretical
framework under Assumption 3.4 allows us to develop optimization algorithms that
can then be applied, mutatis mutandis, also to the realistic case when Assumption 3.4
does not hold, as we show in Section 7.7.

With no loss of generality, we rule out identical alternatives.

Assumption 3.5 (No identical alternatives). We assume that, for any individual i,
there are no identical alternatives j, j′ ∈ Ni, i.e., such that Vi,j = Vi,j′ and bi,j = bi,j′ .

We need to characterize more precisely the behaviour of individuals when multiple
alternatives maximize their utility.

Assumption 3.6 (Tie-breaking rule). For any policy z, if the set arg maxj Ui,j(z)
contains more than one alternative, individual i chooses the alternative j′ with the
largest social indicator, i.e.,

j∗i (z) = arg max
j′∈arg maxj Ui,j(z)

bi,j′ . (4)

The previous assumption is merely a technical assumption that could be relaxed
by proposing incentives infinitesimally larger to ensure that the set arg maxj Ui,j(z) is
always a singleton.

The alternative chosen by each individual i in the absence of policy (i.e., where
zi,j = 0, ∀i, j) is called default alternative, and denoted j∗i (0). Under Assumption 3.6,
the default alternative is given by

j∗i (0) ≡ arg max
j′∈arg maxj Vi,j

bi,j′ . (5)

3.2. Personalized-Incentive Policies

We assume that the space of policies available to the regulator is limited to policies
such that zi,j ≥ 0, for each alternative j and individual i. In other words, the regulator
never taxes alternatives, for some political reasons. Note that we allow the regulator
to give different monetary transfers to different individuals for the same alternative
(e.g., some individuals might receive $2 for commuting by foot, while others may
only receive $1). Hence, this space of policies is referred to as the set of personalized-
incentive policies, denoted Y. To distinguish personalized-incentive policies from more
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general policies, we denote them with y = {yi,j}i,j , where yi,j is the incentive given to
individual i, conditional on her choosing alternative j, and thus,

Y =
{

y = {yi,j}i,j : yi,j ≥ 0, ∀i, j
}
.

The incentive yi,j reduces the budget of the regulator only if individual i chooses
alternative j. Therefore, if the regulator wants to spend at most a budget Q, the
budget constraint can be written as

Y (y) =
m∑

i=1
yi,j∗i (y) ≤ Q,

where j∗i (y) is the alternative chosen by individual i under the personalized-incentive
policy j∗i (y).

In the rest of this subsection, we characterize more precisely the set of policies we
consider, discarding ‘inefficient’ policies.

Proposition 3.7. The regulator can induce any individual i ∈ I to shift from her
default alternative j∗i (0) to any alternative j ∈ Ni, with a higher social indicator (i.e.,
bi,j > bi,j∗i (0)), by proposing the following incentives

yi,j = Vi,j∗i (0) − Vi,j ,
yi,j′ = 0, for any other alternative j′ ̸= j

(6)

Additionally, yi,j, defined above, is the minimum incentive required to induce individual
i to shift to alternative j.

Such a proposition tells us that it suffices to incentivize only one alternative per
individual and no more than that. Therefore, we can limit the space of the studied
personalized-incentive policies as in the following assumption, with no loss of general-
ity.

Assumption 3.8. We only study in this paper personalized-incentive policies that
propose incentives in the form of (6), i.e., only one alternative j per individual i is
incentivized, with an incentive equal to yi,j = Vi,j∗i (0) − Vi,j .

Remark 1. If an individual i is given an incentive yi,j , given by (6), to shift to
alternative j, then her utility Ui,j(y) remains unchanged since, from equation (1),

Ui,j(y) = Vi,j + Vi,j∗i (0) − Vi,j︸ ︷︷ ︸
yi,j

= Vi,j∗i (0).

In other words, the incentive amount is such that the utility of the individual does not
change. In this sense, our approach is fully equitable.

With no loss of generality, we can remove from any individual choice-set the alter-
natives that are never chosen, as the ones defined below.

Proposition 3.9 (Pareto-dominance). Let us consider individual i facing two alter-
natives j, j′ ∈ Ni. Alternative j is said to be Pareto-dominated by j′ if bi,j′ ≥ bi,j
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and Vi,j′ > Vi,j. Alternative j is Pareto-dominated, if it is Pareto-dominated by some
other alternative.

A personalized-incentive policy y that incentivizes a Pareto-dominated alternative
can be discarded, since there always exists another policy that obtains at least the same
social welfare, by spending less budget.

We thus exclude Pareto-dominated alternatives from the choice-set Ni of each indi-
vidual i, as they would never be chosen by individuals, under the considered policies.

Assumption 3.10 (No Pareto-dominated alternatives). For any individual i, there
are no Pareto-dominated alternatives in her set of alternatives Ni.

3.3. Maximum Social Welfare Problem

We can now formally define the optimization problem of the regulator, who chooses
the personalized-incentive policy y = {yi,j}i,j which maximizes social welfare under
his budget constraint. We refer to this problem as Maximum Social Welfare Problem:





max
y∈Y

B(y)

s.t. Y (y) ≤ Q
yi,j ≥ 0, ∀i ∈ I, j ∈ Ni

. (7)

Definition 3.11 (Optimal personalized-incentive policy). An optimal personalized-
incentive policy y, for a budget Q, is a solution of Problem 7.

We denote with {j1, . . . , jm} a chosen-alternative set, where ji denotes the alterna-
tive chosen by individual i ∈ I. According to Proposition 3.7, the regulator can induce
any chosen-alternative set {j1, . . . , jm} by proposing to any individual i the incentives
yi,ji = Vi,j∗i (0) − Vi,ji and yi,j = 0, for any j ̸= ji. Thanks to the same proposition,
the regulator cannot induce this set of alternatives by spending less. Therefore, the
optimization problem of the regulator (7) amounts to finding the chosen-alternative
set {j1, . . . , jm} which maximizes social welfare

∑m
i=1 bi,ji , subject to the constraint

that the corresponding spendings
∑m

i=1 yi,ji must not exceed the budget Q.
Such a problem can be expressed as an Integer Linear Program (ILP). In order to do

so, we introduce a weight wi,j for any alternative j ∈ Ni of individual i. The weight is
defined as the incentive amount that would be proposed to individual i if the regulator
were to induce her to choose alternative j, which is, according to Proposition 3.7,

wi,j ≡ Vi,j∗i (0) − Vi,j , ∀i, j. (8)

Note that wi,j is a fixed value that we used to compute the optimal policy, while yi,j
represents the incentive amount chosen by the regulator. The personalized-incentive
policy is such that yi,j = wi,j , if individual i is induced to choose alternative j, and
yi,j = 0 otherwise.

We introduce the binary decision variable xi,j that is equal to 1 if the regulator
wants to make individual i choose alternative j, and that is equal to 0 otherwise,
with the natural constraint that

∑
j∈Ni

xi,j = 1 (only one alternative is chosen). The
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Maximum Social Welfare problem (7) can be written as




max{xi,j}i,j

∑
i∈I

∑
j∈Ni

bi,jxi,j
s.t.

∑
i∈I

∑
j∈Ni

wi,jxi,j ≤ Q∑
j∈Ni

xi,j = 1, i ∈ I
xi,j ∈ {0, 1}, i ∈ I, j ∈ Ni

wi,j = Vi,j∗i (0) − Vi,j , i ∈ I, j ∈ Ni

, (9)

which is a Multiple-Choice Knapsack Problem (MCKP) with weights wi,j and profits
bi,j (Kellerer et al. 2004, chap. 11).

Observe that the solution {xi,j}i,j of problem (9) corresponds to the personalized-
incentive policy y, solution of (7), where

yi,j = xi,j · wi,j , ∀i, j.

For any budget Q, we indicate with B∗(Q) the maximum of the social welfare,
solution of problem (9).

3.4. Maximum Social Welfare Curve Problem

Suppose now that the regulator is endowed with a maximum budget Q and that he can
spend any budget in the interval Y ∈ [0, Q]. To decide the exact amount of budget that
is convenient to spend, it is useful to obtain the Maximum Social Welfare Curve C∗

Q,
representing the maximum social welfare reachable, B∗(Y ), for any budget Y ∈ [0, Q],
i.e.

C∗
Q =

{(
Y,B∗(Y )

) ∣∣ Y ∈ [0, Q]
}
. (10)

The Maximum Social Welfare Curve Problem consists in finding the curve C∗
Q, for a

given maximum budget Q. It is easy to show that it is monotone non-decreasing (the
larger the budget spent, the larger the social welfare reached). Observe that, although
a maximum budget Q is available, the regulator may not want to indiscriminately
spend it all, but may choose the actual budget to invest in incentives, based on several
criteria. For instance, the regulator may use the above curve to find the minimum
budget needed to reach a certain social-welfare target. Moreover, in many practical
cases, the social welfare is converted into money metric. The coefficient of conversion
is usually fixed based on political considerations. For instance, in our numerical results
(Section 7), we convert CO2 emission reduction into money, using the cost of 100 euros
per ton of CO2. After converting social welfare in money metric, the regulator may
choose to invest an incentive budget such that the gain of social welfare equals the
incentive spent. Such a value can be found on the Maximum Social Welfare Curve.

4. Approximation Algorithm

Kellerer et al. (2004) shows that the MCKP problem, and thus the Maximum Social
Welfare problem (9), is NP-hard. Therefore, for large instances of such problems,
finding the optimal solution is unfeasible and we need to resort to heuristics. We
provide in this section a polynomial time algorithm based on greedy algorithms from
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the Operations Research literature, which gives us solutions boundedly close to the
optimum. We then discuss some relevant properties of such an algorithm, e.g., its
diminishing returns behaviour and the fact that it is an anytime algorithm (explained
in Remark 2).

In the following subsection, we introduce some preliminary mathematical concepts.

4.1. Preliminary Steps

Before presenting the proposed algorithm, we need to ‘clean’ the input of the prob-
lem, removing some irrelevant alternatives from the set Ni of the alternatives of any
individual i. In broad terms, irrelevant alternatives are the ones that do not provide
enough social indicator compared to the incentive amount needed to induce them. We
call LP-extremes the alternatives remaining after the cleaning, and we denote them
with Ri ⊆ Ni. The name LP-extremes is borrowed from Kellerer et al. (2004, Section
11.2.1).

The process of constructing the set Ri is called concavization and is described in
detail in Appendix A. Here we just give the reader an intuition of it via Figure 1, which
represent the incentive amount and social indicator for a set of alternatives Ni, of an
individual i. In the figure, alternative 3 is irrelevant since 2 provides a larger social
indicator, while requiring less incentive. Alternative 7 is irrelevant since it requires to
spend more incentive than 6, for a negligible gain in the social indicator. It is much
more convenient to make a slightly bigger investment to induce alternative 9, which
provides a significant social indicator improvement with respect to 6. More formally,
we say that 7 is LP-dominated by 6 and 9 (see Appendix A for more details).

Figure 1. Alternative set Ni of individual i and the subset Ri of LP-extremes.

We follow the Operations Research literature in the slight abuse of notation of
denoting with wi,j the incentive to be provided to the j-th alternative in Ri, where
this is not ambiguous. With no loss of generality, we can assume the ordering

wi,1 < wi,2 < · · · < wi,ri (11)

in the set Ri, where ri is its cardinality. The default alternative of any individual
is neither dominated nor LP-dominated, since it requires no incentive (wi,j∗i (0) = 0).
Therefore, the default alternative is the first alternative in the set Ri and wi,1 = 0.

Definition 4.1 (Efficiency and incremental efficiency). We define the efficiency of an
alternative j of individual i as

ei,j ≡
bi,j − bi,j∗i (0)

wi,j
,
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i.e., the gain in social indicator that we can gain via a unit of incentive allocated to
that alternative. We define the incremental social indicator b̃i,j and the incremental
incentive w̃i,j required for each alternative j ∈ Ri as

b̃i,j ≡ bi,j − bi,j−1
w̃i,j ≡ wi,j − wi,j−1

, j = 2, . . . , ri. (12)

The incremental efficiency is then defined as

ẽi,j ≡ b̃i,j/w̃i,j . (13)

The incremental efficiency ẽi,j can be interpreted as the increase in social welfare for
each monetary unit spent, when individual i shifts from alternative j−1 to alternative
j.

4.2. Greedy Algorithm

We want to find a curve CQ = {(Y,B(Y )) | Y ∈ [0, Q]} that approximates the Max-
imum Social Welfare Curve C∗

Q (10), i.e., such that B(Y ) is close to B∗(Y ) for any
value of budget Y ≥ 0.

Very efficient algorithms, like the Dyer-Zemel algorithm (Kellerer et al. 2004, Sec-
tion 11.2.1) are known to solve problem (9), i.e., to approximate the maximum social
welfare for a fixed single value of budget Q. However, to apply them to the Maximum
Social Welfare Curve problem, in which we want to find the maximum social welfare
for a range of budget values Y ∈ [0, Q], instead of just one, we would have to run those
algorithms from scratch for every single value of budget. For this reason, we build our
solutions upon a simpler greedy algorithm (Kellerer et al. 2004, Figure 11.2), which is
less efficient to solve the Maximum Social Welfare problem (although still polynomial
in time complexity), but easily extendable to also solve the Maximum Social Welfare
Curve problem. The other advantage deriving from such choice is that this greedy al-
gorithm has interesting properties that increase its practical application and economic
interpretability, as discussed in Section 4.3.

The pseudocode of the algorithm is in Algorithm 1. The notation [i, j] stands for ‘j-
th alternative of individual i’. The idea of the algorithm is simple. First, the algorithm
finds all the LP-extremes alternatives and sorts them by order of decreasing incremen-
tal efficiency. Then, at each iteration, the next pair of individual and alternative [i′, j′]
with the highest incremental efficiency is picked (line 8). The alternative induced to
i′ is set to j′ (line 10) and the budget is reduced by the amount of the incremental
weight (equation (14)). An additional piece of the approximation of the social welfare
curve is computed (equation (16)). The algorithm stops when the maximum budget
Q is depleted and it returns a policy y, which is such that any individual i, for whom
the algorithm selected an alternative j ∈ Ri, effectively chooses this alternative j.

Observe that the curve CQ given as output by the algorithm is an approximation of
the solution C∗

Q of the Maximum Social Welfare Curve Problem (Section 3.4). More-
over, given any maximum budget Q, the algorithm returns an approximation B(Q) to
the solution B∗(Q) of the Maximum Social Welfare Problem (9). Note that, in order to
achieve B(Q), the policy issued by the algorithm does not spend the entire maximum
budget Q, but only Q̃ ≤ Q.

The algorithm also gives as output the incremental efficiency of the ‘split item’,
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Algorithm 1: Greedy algorithm for the Maximum Social Welfare and Maxi-
mum Social Welfare Curve problems.

Input : Social indicators {bi,j}i,j , intrinsic utilities {Vi,j}i,j , budget Q

1 Iteration index k := 0
2 Y [k] := 0, Total incentive allocated so far.
3 B[k] := 0, Social welfare obtained in the current allocation.
4 Compute the ordered set Ri of LP-extremes of each individual i.
5 Sort all the alternatives [i, j] according to decreasing incremental efficiency ẽi,j and put them in a set

R.
6 Initialize the alternatives chosen by the individuals {xi,j}i,j as follows{

xi,1 = 1, (default alternative)
xi,j = 0, for any alternative j > 1

7 while R ̸= ∅ and Y [k] ≤ Q do
8 Take [i′, j′], the next alternative with the highest incremental efficiency ẽi′,j′ from R.
9 Add [i′, j′] to the solution, i.e.:

R := R \ {[i′, j′]},

Y [k+1] := Y [k] + w̃i′,j′ (14)

ẽ[k] := ẽi′,j′ (15)

B(Y ) := B[k], ∀Y ∈ [Y [k], Y [k+1]) (16)

B[k+1] := B[k] + b̃i′,j′

k := k + 1

10 Update the selected alternative for individual i′, i.e.,{
xi′,j′ = 1,
xi′,j = 0, for any other alternative j ̸= j′

11 end
Output: Curve CQ = {(Y,B(Y )) | Y ∈ [0, Q]}

Chosen alternatives {xi,j}i,j
Incentive policy y = {yi,j}i,j , where yi,j = xi,j · wi,j

Split item [s, t] := [i′, j′]
Incremental efficiency of the split item ẽs,t
Budget actually used Q̃ := Y [k−1]

denoted with ẽs,t, useful to compute the optimality gap of the algorithm (Theorem 4.2
below). The name split item, which we borrow from Kellerer et al. (2004), reminds of
the fact that, when we allocate the budget Q, we add to the solution all the LP-extreme
alternatives, in decreasing order of incremental efficiency, up to [s, t]. In other words,
such alternative [s, t] splits the set R of all the LP-extremes in two parts: the first
part consists of the alternatives we include in our solution, while we do not include
the LP-extremes from the second part.

The distance to the optimum, in terms of social welfare, is bounded from above.

Theorem 4.2 (Upper bound). Let us run Algorithm 1 with budget Q, and let Q̃ be
the budget actually used and ẽs,t be the incremental efficiency of the split item. The
social welfare B(Q) we obtain is boundedly close to the social welfare B∗(Q) of any
optimal personalized-incentive policy (Definition 3.11). In particular,

B∗(Q) −B(Q) ≤ ẽs,t · (Q− Q̃). (17)

Corollary 4.3. The curve CQ obtained via Algorithm 1 is boundedly close to the Maxi-
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mum Social Welfare Curve C∗
Q from equation (10) and the gap is given by Theorem 4.2.

The next corollary says that, for any budget Q, the curve CQ returned by Algo-
rithm 1 and the Maximum Social Welfare Curve C∗

Q ‘touch each other’. This ensures
that the allocation computed by Algorithm 1 at every iteration is optimal. It is a direct
consequence of Theorem 4.2.

Corollary 4.4. The curve CQ obtained via Algorithm 1 and the Maximum Social
Welfare Curve C∗

Q from equation (10) are such that B(Y [k]) = B∗(Y [k]) in all the
values Y [k], k = 0, 1, . . .
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Figure 2. Distance between the social welfare curve CQ computed by Algorithm 1, the maximum social
welfare curve C∗

Q (Section 3.4) and the upper bound of Theorem 4.2. The stars represent the incentive spent
Y [k] and social welfare Y [k] = B∗(Y [k]) at each iteration k = 1, . . . , 8 of the algorithm (line 9).

Figure 2 illustrates this property. The continuous curve represents the Maximum
Social Welfare Curve C∗

Q and the dashed curve represents the curve CQ obtained via
Algorithm 1. These two curves are step-functions because of the discreteness of the
problem. From Corollary 4.4, the curve CQ intersects the curve C∗

Q at each iteration
of the algorithm (represented by the stars). The dotted curve represents the upper
bound of C∗

Q, computed from Theorem 4.2.

4.3. Useful Properties for Large-Scale Applications

Our aim is to compute a personalized-incentive policy in large scenarios in a small
amount of time. It is therefore crucial to show that our algorithm is computationally
efficient.

Proposition 4.5. The computational complexity of Algorithm 1 is O(
∑m

i=1 |Ni| ·
log |Ri| + |R| · logm), where m is the number of individuals, |Ni| is the number of
alternatives of individual i, |Ri| is the number of LP-extremes of individual i and
|R| ≡ ∑m

i=1 |Ri|.

Note that, since the alternatives of each individual are independent of the others,
the sets Ri can be computed in parallel, thus reducing even further the computation
time.

Despite our algorithm being computationally efficient, there might be cases in which
it is desirable to stop it prematurely, without waiting for it to completely terminate.
This can be the case when a personalized-incentive policy must be computed on-the-
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fly, within tight time-constraints. The following properties ensure that our algorithm
is suitable to this situation, which eases its practical adoption.

Remark 2 (Anytime algorithm). Algorithm 1 is anytime: if we stop it prematurely
at any iteration k, we get a valid solution for the Maximum Social Welfare and the
Maximum Social Welfare Curve problems, with budget Q′ = Y [k].

Remark 3 (Incremental use). Another desirable property of Algorithm 1 is that
we can build on a previously computed incentive allocation whenever new available
budget becomes available, instead of recomputing the entire allocation from scratch. To
explain this, let us suppose that we have a certain budget Q and the algorithm returns
the allocation {xi,j}i,j , spending the corresponding incentive amount Q̃. Suppose now
that the available budget increases to Q′ > Q. In this case, in order to exploit the
new additional budget, we can simply resume the algorithm from its last iteration
and continue up to the furthest iteration such that Y [k+1] ≤ Q′. This is, per-se, a
computational advantage with respect to algorithms that need to run from scratch
every time new resources (budget) are available.

In order to describe the diminishing return property of Algorithm 1, we need the
following definition.

Definition 4.6 (Incremental and overall efficiency). The incremental efficiency pro-
vided by the algorithm at iteration k is ẽ[k], defined in equation (15). We define the
overall efficiency of a personalized-incentive policy spending budget Y and achieving
social welfare B as e = B/Y . We denote with e[k] the overall efficiency of the policy
obtained by stopping Algorithm 1 at iteration k, i.e., e[k] = B[k]/Y [k].

The following proposition illustrates that, by spending more and more budget and
allocating it as the algorithm dictates, we increase social welfare, but the marginal
gain per unit of budget spent decreases.

Proposition 4.7 (Diminishing returns). The incremental efficiency ẽ[k] and the over-
all efficiency ẽ[k] of the alternative added by Algorithm 1 at every iteration k are both
monotonically non-increasing.

The following corollary is a consequence of Proposition 4.7.

Corollary 4.8. At any iteration k, we can compute an upper bound Bub ≥ B(Q) to
the social welfare we would get if we continue the algorithm until the end. Such an
upper bound is Bub = B(Y [k]) + ẽ[k] · (Q− Y [k]).

Therefore, if we notice that B(Y [k]) is already sufficiently close to Bub, then it is not
worth continuing the algorithm, as we would not get much additional social welfare. In
this case, we can safely stop the algorithm, without waiting for it to end, thus saving
time.

In some cases, the regulator would be willing to maximize social welfare under
the constraints that the overall inverse efficiency e−1 is below a certain target. For
instance, in Section 7.5 the regulator does not want to spend more than 100 euros per
ton of CO2 saved, which is considered to be the carbon price. In such cases, it is useful
to observe that, thanks to Proposition 4.7, (e[k])−1 is non-decreasing. Therefore, the
regulator could run the algorithm and stop at the iteration where (e[k])−1 goes above
the target inverse efficiency.
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We close this section with a definition that will be useful in Section 5.

Definition 4.9 (Maximum Step Size and Characteristic Incremental Efficiency). Let
us run Algorithm 1 with a certain budget Q and record the values Y [k] calculated
therein, as well as the incremental efficiency of the split item ẽs,t. The maximum
step size is defined as γQ ≡ maxk=1,2,...(Y [k] − Y [k−1]). The characteristic incremental
efficiency of budget Q is defined as ẽQ ≡ ẽs,t.

The properties presented in this section have shown that the proposed Algorithm 1
is computationally efficient and able to return an allocation providing a welfare close to
the optimum. Moreover, it has some features that make its adoption easier in practical
large-scale scenarios.

5. Comparison with Other Policies

So far, we have considered that the regulator uses personalized incentives to increase
social welfare. In particular, the policy proposed is such that the loss in individual util-
ity, due to the shift to another alternative, is compensated exactly by the incentive. In
this section, to frame our proposed personalized-incentive policy into a more general
set of feasible policies, we generalize the formulation to include not only personal-
ized incentives, but also enforcement policies, taxation, and non-personalized-incentive
policies. In Section 5.1, we show that any optimal personalized-incentive policy (Def-
inition 3.11) is optimal in this more general class of policies. In Section 5.2, we show
that Algorithm 1 can be used to compute an enforcement policy and a proportional
tax-subsidy policy, which are both boundedly close to the optimal general policy. We
finally analytically show that non-personalized-incentive policies, like Tripod (Araldo
et al. 2019), achieve by construction less social welfare than our personalized-incentive
policy, and we provide a lower bound to this social welfare gap.

5.1. Optimality of Personalized-Incentives Policies among General
Policies

We now consider a more general space of policies, including incentives, enforcement
and taxation policies, and we define a criteria of optimality in this space. In order to
do so, we need to define some new quantities.

The total loss in individual utility, of a policy z, is

∆U(z) ≡
m∑

i=1

(
Vi,j∗i (0) − Ui,j∗i (z)(z)

)
. (18)

With a taxation policy, i.e., a policy z such that zi,j ≤ 0, ∀i, j, the loss in individual
utility is non-negative, i.e., ∆U(z) ≥ 0. With an incentive policy, i.e., a policy z such
that zi,j ≥ 0, ∀i, j, the loss in individual utility is non-positive, i.e., ∆U(z) ≤ 0.
In particular, in any personalized-incentive policy obeying to Proposition 3.7, the
individuals are perfectly compensated for their loss in utility, and thus ∆U(z) = 0,
in accordance with Remark 1. Keeping everything else fixed, it is obvious that, the
smaller ∆U , the better.

The disutility, or cost, of a policy is measured by combining the loss in individual
utilities and the expenses for the regulator, defined in equation (3).
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Definition 5.1 (Disutility). The disutility δ(z) of a policy z is defined as the expenses
of the regulator Y (z) plus the total loss in individual utilities ∆U(z), i.e.,

δ(z) ≡ Y (z) + ∆U(z). (19)

The following proposition shows that the disutility of a policy is always non-negative,
which means that it is not possible that both the individuals increase their utility and
the regulator collects revenues. It also shows that, if two policies imply the same
alternatives chosen, then they have the same disutility.

Proposition 5.2. Every policy z has a non-negative disutility that only depends on
the alternative chosen by the individuals, rather than the actual incentive or taxation
proposed. In particular:

δ(z) =
m∑

i=1

(
Vi,j∗i (0) − Vi,j∗i (z)

)
≥ 0

We can now define an optimal general policy, whose definition includes incentive,
taxation and enforcement policies.

Definition 5.3 (Optimal General Policy). An optimal general policy z with disutility
threshold Q ≥ 0 is the solution of the following problem:

{
max

z
B(z)

s.t. δ(z) ≤ Q
. (20)

Note that, problem (20) is a generalization of (7). Indeed, we obtain the latter
from the former by (i) constraining the policy to be a personalized-incentive policy,
i.e., zi,j ≥ 0, ∀i ∈ I, j ∈ Ni and (ii) imposing no change in individual utility, i.e.,
∆U(z) = 0.

The two next propositions characterize the optimal general policy. The first one im-
plies that finding an optimal general policy is equivalent to finding a chosen-alternative
set which maximizes social welfare, subject to a disutility constraint.

Proposition 5.4. Let z be an optimal general policy with disutility threshold Q. Any
other policy z′ inducing the same alternatives is also an optimal general policy, inde-
pendent of the actual value of the single incentives or taxes proposed.

The following proposition shows that the personalized-incentive policy, considered
previously, is still relevant in this more general framework. The proposition states
that, for any disutility threshold Q, it is possible to find an optimal policy which is a
personalized-incentive policy.

Proposition 5.5. For any Q ≥ 0, any optimal personalized-incentive policy y with
budget Q (Definition 3.11) is also an optimal general policy with disutility threshold
Q (Definition 5.3).

The following corollary states that the social welfare bound for personalized-
incentive policies (Theorem 4.2) is equivalent for general policies.
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Corollary 5.6. Let us run Algorithm 1 with budget Q to construct a personalized-
incentive policy. The social welfare B(Q) we obtain is boundedly close to the optimum
B∗(Q), obtainable with an optimal general policy with disutiliy threshold Q. In partic-
ular,

B∗(Q) −B(Q) ≤ ẽs,t · (Q− Q̃).

5.2. Computing Optimal Enforcement and Proportional Tax-Subsidy
Policy

In this section, we show how Algorithm 1 can be used, in conjunction with Propositions
5.5 and Corollary 5.6, to compute an enforcement policy and a proportional tax-
subsidy policy boundedly close to the optimum.

We provide a numerical comparison between these policies in Section 7.6.

5.2.1. Enforcement Policy

With enforcement policies, the regulator constrains the individuals to choose an alter-
native among a subset of their choice set. In the most extreme case, the individuals
can choose only one alternative.

Let y be the personalized-incentive policy returned by Algorithm 1, for a budget Q.
Consider now a policy z enforcing the individual to choose the same alternative that
they would choose under the policy y, i.e.,

{
zi,j = 0, if j = j∗i (y)
zi,j = −∞, otherwise , ∀i, j.

Proposition 5.7. The enforcement policy z constructed above is boundedly close to
an optimal general policy with disutility constraint Q. The bound is the same as Corol-
lary 5.6.

5.2.2. Proportional Tax-Subsidy Policy

We consider here policies z for which the monetary transfers are proportional to the
social indicator of the alternatives, that is

zi,j = τ · (bi,j −Ai), ∀i, j, (21)

where τ > 0 is the tax-subsidy level and Ai ∈ R is an individual-specific baseline
social-indicator, set by the regulator. We call these policies proportional tax-subsidy
policies. Observe that, for any individual i, her alternatives j ∈ Ni such that the
social indicator is below the baseline are taxed (i.e., bi,j < Ai ⇒ zi,j < 0). Conversely,
alternatives j ∈ Ni having social indicator above the baseline are subsidized (i.e.,
bi,j > Ai ⇒ zi,j > 0). The baseline social-indicators Ai can vary from individual to
individual. However, we impose that the tax-subsidy level τ is the same for everyone.
In this sense, we consider that these policies are not personalized.

Observe from equations (1) and (21) that, considering any individual i, if we vary
the baseline Ai the variation of the utility Ui,j is the same for all alternatives j ∈
Ni. Hence, the value of Ai does not impact the choice of i. It simply represents a
monetary transfer between the individual and the regulator. More precisely, setting
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low Ai favours transfers from the regulator to individuals, thus increasing individual
utilities, to the detriment of the regulator. On the other hand, setting high Ai, favours
the revenue of the regulator, to the detriment of the utility of the individuals.

Note that, if bi,j represents a negative externality (as in Section 7), then the tax-
subsidy policy defined above is equivalent to a Pigouvian tax if τ is set to be equal to
the external marginal cost of the externalities and Ai = 0. For instance, it has been
estimated (Quinet et al. 2009), that the social cost of 1 ton of CO2 is 100 euros. Then,
if bi,j represents CO2 emissions (in tons), the Pigouvian tax would be a proportional
tax-subsidy policy with τ = 100 euros.

The following theorem shows that we can use Algorithm 1 to compute a proportional
tax-subsidy policy that is boundedly close to the theoretical optimum.

Theorem 5.8. We can construct a proportional tax-subsidy z under a certain disu-
tility threshold Q as follows. Run Algorithm 1 with budget constraint Q and let ẽs,t be
the incremental efficiency of the split item given as output.

The proportional tax-subsidy policy z, defined as in equation (21), with tax-subsidy
level

τ = 1/ẽs,t (22)

achieves a social welfare that is boundedly close to the optimal general policy with
disutility threshold Q. The bound is the same as Corollary 5.6.

5.2.3. Comparison with Proportional-Incentive Policy and Tripod

A proportional-incentive policy z is a proportional tax-subsidy policy, as in (21) where
only subsidies and not taxes are distributed, i.e.

Ai ≤ bi,j , ∀i ∈ I, j ∈ Ni. (23)

An example of proportional-incentive policy is Tripod (Araldo et al. 2019).
In this section we show that proportional-incentive policies are inefficient incentive

policies, in the sense that, to achieve a certain social welfare level, they spend more
incentives than needed. We call ‘inefficiency gap’ this additional incentive spent and
we compute a lower bound for it in the following proposition.

Proposition 5.9. Consider a proportional-incentive policy z as before. There always
exists a personalized-incentive policy y that is able to achieve at least the same social
welfare and provides the following savings in the amount of incentive spent:

Y (z) − Y (y) ≥ 1
τ
·
∑

i∈I

(
Vi,j∗i (z) − Vi,j∗i (0)

)
· ∆ei,j∗i (z) ≡ L(z)

where ∆ei,j ≡ ei,j − 1/τ is defined as efficiency loss, ∀i ∈ I, j ∈ Ni. The quantity L(z)
defined above is a lower bound for the inefficiency gap.

Note that the efficiency loss quantifies the fact that proportional-incentive policies
are not able to exploit the inherent efficiency ei,j (see Definition 4.1) of the incentivized
alternative. Indeed, instead of using such an alternative-dependent efficiency, they use
a single value 1/τ .
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We compute in the following proposition a lower bound on the suboptimality gap
of proportional-incentive policies.

Proposition 5.10. Let us consider a proportional-incentive policy z, achieving a so-
cial welfare B(z) and spending an incentive amount Y (z). Let us denote with B∗(Y (z))
the maximum social welfare achievable by an optimal personalized-incentive policy with
that incentive amount. The following lower bound holds on the suboptimality gap:

B∗(Y (z)) −B(z) ≥ max
{

0, ẽY (z) ·
(
L(z) − 2γY (z)

)}

where γY (z) and ẽY (z) are the maximum step size and the characteristic incremental
efficiency, as defined in Definition 4.9.

We now draw an interesting parallel with Tripod, a proportional incentive policy
described in Araldo et al. (2019). In Tripod, social welfare is represented, in particular,
by energy reduction. While our formulation is general and can encompass any type
of social welfare (provided that the assumptions of Section 3 are valid) in our case
study (Section 7) we consider CO2 reduction. In both our case study and Tripod,
individuals are travellers and alternatives are modal choices. An important aspect of
Tripod is that it is dynamic, i.e., time is slotted and, in each time slot, the incentives for
the individuals happening to depart in that time slot are calculated. With the Tripod
policy, that we denote zTr, the incentives proposed to individuals are proportional to
the gain in the social indicator with respect to the default alternative, i.e.

zTr
i,j = (bi,j − bi,j∗i (0))/TEEt

where the constant TEEt is called Token Energy Efficiency and is fixed by the regulator
in every time slot t. In Tripod, the incentives are distributed to individuals under
a First-Come First-Served discipline, until a certain budget is depleted. Therefore,
out of the entire population It of individuals departing at time slot t only a subset
ITr
t actually receive an incentive. In Araldo et al. (2019), the value of TEEt is fixed

empirically, with a grid search, trying several values of TEEt in simulation and choosing
the one with maximum social welfare. The calculation is based on a Model-Predictive
Control (MPC) setting, where at every time slot the value of TEEt is calculated
taking into account not only the current time slot, but also a prediction of the system
state (congestion, individual arrival) in the subsequent time-slots, which are called
optimization horizon. Note that the MPC setting of Tripod allows to take into account
the impact of the incentive policies on congestion, which we instead neglect, based on
Assumptions 3.2 and 3.3. Therefore, for adopting our policy to a real scenario, care
should be taken in checking that such Assumptions are reasonable, as we do in our
case study.

Within our framework, Tripod can be defined as a proportional-incentive policy,
with τ = 1/TEEt and Ai = bi,j∗i (0), applied to population ITr

t .
As a consequence of Proposition 5.9, Tripod is an inefficient incentive policy, un-

der the assumptions of Section 3.1. In Corollary 5.11, we lower-bound the additional
incentive spent with respect to the theoretical best incentive policy.

Corollary 5.11. For any Tripod incentive policy zTr, there always exists a
personalized-incentive policy z that is able to achieve at least the same social welfare
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while spending less incentives. The saving in the incentives is:

Y (zTr) − Y (z) ≥
∑

t

TEEt ·
∑

i∈ITr
t

(
Vi,j∗i (zTr) − Vi,j∗i (0)

)
· ∆ei,j∗i (zTr)

where ∆ei,j ≡ ei,j − TEEt is defined as efficiency loss, ∀i ∈ ITr
t , j ∈ Ni and ITr

t is the
set of individuals getting incentives in Tripod in time-slot t.

Corollary 5.11 shows that Tripod is far from minimizing the incentives needed to
obtain a certain social welfare, while the policy issued by Algorithm 1 is generally close
to using minimal incentives. This is confirmed by our numerical results in Section 7.6.
An interpretation of the inefficiency suffered by Tripod follows.

Remark 4. Tripod uses a single value TEEt = 1/τ to compute incentives for all
alternatives j of all users i ∈ It and gets 1/TEEt additional units of social welfare
per additional unit of incentive spent. The only incentivized alternatives are the ones
for which ei,j ≥ TEEt (otherwise the proposed incentive would not be accepted by
the individual). In other words, Tripod gets always an efficiency (unit of social welfare
improvement over unit of incentive spend) that is lower than the intrinsic efficiency
of the incentivized alternatives. By contrast, our personalized policy always entirely
exploits the intrinsic efficiency of the incentivized alternatives.

Since Tripod is a proportional-incentive policy, the same lower bound on the sub-
optimality gap as in Proposition 5.10 also holds, which we do not write for the sake
of space.

6. Imperfect Information

The assumption that the regulator knows perfectly the utility of the individuals may
seem restrictive. In this section, we show that the algorithm is still relevant when
the utility is imperfectly known. From discrete-choice theory (Anderson, de Palma,
and Thisse 1992), we assume that intrinsic utility of alternative j of individual i is
composed of a deterministic part V̂i,j and a random part ϵi,j :

Vi,j = V̂i,j + ϵi,j .

We assume that the regulator knows the deterministic part V̂i,j of the utility but not
the random part ϵi,j .

Under this assumption, the regulator cannot compute the minimum incentive
amount needed to induce individual i to shift from her default alternative j∗i (0) to
another alternative j, using directly equation (6). A heuristic solution would be to set
the incentive amount equal to the expectation of the utility difference between the two
alternatives, given that j∗i (0) is the default alternative chosen when there is no incen-
tive. In this case, the incentives {yi,j}j∈Ni

proposed by the regulator to individual i,
to convince her to shift to alternative j, are such that yi,j′ = 0, for any j′ ̸= j, and

yi,j = E(Vi,j∗i (0)−Vi,j |Vi,j∗i (0) > Vi,j) = ŷi,j +E(ϵi,j∗i (0)−ϵi,j |ϵi,j∗i (0)−ϵi,j > −ŷi,j), (24)

where ŷi,j = V̂i,j∗i (0) − V̂i,j is the difference in the deterministic part of the utility,
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known to the regulator.
Given an individual i and an alternative j ∈ Ni, if the regulator proposes the

incentive yi,j , as defined by equation (24), then individual i has a positive probability
to refuse the incentive. Hence, the expenses of the regulator may be smaller than the
total incentive amount proposed.

Algorithm 1 can be used to compute a personalized-incentive policy under imperfect
information, by defining new weights

wi,j = E(Vi,j∗i (0) − Vi,j |Vi,j∗i (0) > Vi,j).

At each iteration of the algorithm, the regulator proposes the incentive wi′,j′ to
individual i′ for alternative j′, where [i′, j′] is the pair of individual and alternative
selected by the algorithm. The regulator observes the response of the individual to
the incentive. If the individual accepts the incentive, it decreases the budget by the
incentive amount. The regulator keeps proposing incentives one by one until his budget
is depleted.

Note that, if an individual i accepts an incentive yi,j for alternative j ∈ Ni, the
regulator can still propose her, later, an incentive yi,j′ for another alternative j′ ∈ Ni.
If the individual refuses the second incentive yi,j′ , she still receives the first incentive
yi,j .

In Section 7.7, we apply the policy presented above to our case study and compare
it to the case with perfect information, assuming that random terms are Gumbel-
distributed. The following proposition gives the exact expression of the incentives (24),
in case of Gumbel-distributed random terms.

Proposition 6.1. Let us assume that the random terms are i.i.d. and follow a Gumbel
distribution with scale parameter µ (i.e., ϵi,j/µ follows a standard Gumbel distribution).
Then, the incentive amount from equation (24) can be written as

yi,j = µ
1 + eŷi,j/µ

eŷi,j/µ
ln
(

1 + eŷi,j/µ
)
≥ 0.

7. Numerical Results in an Application to Mode Choice

In this section, we simulate an application of our personalized incentive policy to a
scenario related to mode choice of individuals commuting to their workplace. We con-
sider a regulator willing to employ a limited monetary budget in order to promote eco-
friendly modes of transportation. The goal of the regulator is to reduce CO2 emissions.
We compute the reduction in CO2 emissions achieved via the personalized-incentive
policy of Algorithm 1 and compare it with enforcement, proportional taxation and
non-personalized-incentive policies.

Our approach is as follows. After describing the census data used to build the
simulation scenario (Section 7.1), we estimate a Multinomial Logit model for mode
choice (Section 7.2). Then, using the previous estimates, we simulate the utility of a
home-work trip for a group of individuals, for all the modes of transportation con-
sidered (Section 7.3). We then approximate the CO2 emissions for these same trips
(Section 7.4) and approximate the optimal personalized-incentive policy using Algo-
rithm 1 (Section 7.5). We then study the modal shifts induced by such policy and the
gain in CO2 emissions achieved. We conclude the numerical results by comparing our
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personalized incentive policy with other policies (enforcement, taxation, flat incen-
tives – Section 7.6) and by evaluating its performance in case of imperfect information
(Section 7.7).

7.1. Data

We use census data from the French statistics institute INSEE, regarding households
surveyed between 2015 and 2019. We restrict the dataset to households whose home
and workplace are in the Rhône department, which includes Lyon and its suburbs
(about 222 000 households in total). Observed variables include city- or district-level
home and work location, main mode of transportation used for commuting, and some
socio-demographic variables. The modes of transportation are divided in five cate-
gories: car, public transit, walking, cycling and motorcycle. Appendix C provides a
detailed description of the data.

7.2. Multinomial Logit Model

Using the census data, we estimate a Multinomial Logit model for the mode choice of
the individuals. We consider five exogenous variables specific to the individual (age,
sex, number of cars owned per employee in the household and professional occupation)
and one exogenous variable which is specific to both the mode of transportation and
the individual (travel time). The number of cars owned is supposed to only impact
the utility of commuting by car. Following Inoa, Picard, and de Palma (2015), we also
include interaction variables between travel time and socio-demographic variables.
Details on how travel time is computed are provided on Appendix D. To estimate the
utility of the round trip to work, travel times are doubled (we assume that the modes
of transportation for the trip back and forth are the same).

Note that public transit is excluded from the choice set of the individuals whose
commute to work cannot be performed by public transit (≃16 000 individuals, see
Appendix D for more details).

The four other modes of transportation (car, walking, cycling and motorcycle) are
assumed to be in the choice set of all the individuals. This is a strong assumption. A
regulator willing to deploy the personalized-incentive policy in practice could improve
the precision of the model by using individual-specific data for vehicle ownership in
order to remove some modes of transportation from the choice set of an individual, if
she does not own the corresponding vehicle.

Table 2 provides the results of the Multinomial Logit model, estimated with the R
package mlogit. The most frequent categories are used as reference category (car for
the mode of transportation, man for the sex and employee for the occupation).

The results are consistent with the literature on commute mode choice. For example,
we find that being young and male increases the probability to commute by cycling,
consistently with the literature review of cycling mode choice from Muñoz, Monzon,
and Daziano (2016). We also find that the coefficient of travel time is larger for public
transit than for car which suggests that the value of time for commutes by public
transit is slightly smaller than for commutes by car. This is coherent with the meta-
analysis on the value of travel-time in France from Wardman et al. (2012).
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Table 2. Multinomial Logit model of mode choice

(1) (2) (3) (4) (5)
car public transit walking cycling motorcycle

constant 2.7709*** 2.8659*** 1.1340*** -0.7284***
(0.0395) (0.0488) (0.0509) (0.0773)

age -0.0150*** -0.0026*** -0.0139*** -0.0019
(0.0008) (0.0009) (0.0010) (0.0015)

woman 0.5349*** 0.4361*** -0.3882*** -1.6909***
(0.0194) (0.0248) (0.0242) (0.0527)

car per indiv 1.2138***
(0.0161)

car per indiv>0 1.5604***
(0.0245)

occupation: farmer -3.9054*** -1.0434*** -2.3653*** -0.8798**
(0.4140) (0.2012) (0.5073) (0.4400)

occupation: artisan -1.7023*** -1.2153*** -0.7848*** -0.2261***
(0.0525) (0.0566) (0.0651) (0.0841)

occupation: executive 0.1522*** 0.2031*** 1.1710*** 0.2986***
(0.0255) (0.0327) (0.0337) (0.0575)

occupation: intermediate -0.2283*** -0.1447*** 0.4259*** -0.0060
(0.0242) (0.0311) (0.0349) (0.0584)

occupation: blue-collar -0.7579*** -0.9691*** -0.4808*** -0.0259
(0.0318) (0.0413) (0.0467) (0.0616)

travel time -1.6281*** -1.1746*** -2.1032*** -2.8474*** -3.2075***
(0.0530) (0.0480) (0.0492) (0.0581) (0.0968)

travel time × age -0.0026**
(0.0010)

travel time × woman -0.1134***
(0.0266)

travel time × occupation: farmer 1.1027***
(0.3621)

travel time × occupation: artisan -0.0763
(0.0918)

travel time × occupation: executive -0.3671***
(0.0354)

travel time × occupation: intermediate -0.1986***
(0.0330)

travel time × occupation: blue-collar 0.2623***
(0.0403)

Reference category is male employee
Travel time is expressed in hours

Standard errors are reported in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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7.3. Simulating Utilities

We consider a regulator whose goal is to reduce the CO2 emissions due to commute
trips, by distributing incentives to the population described in the data (about 222 000
individuals).

To apply Algorithm 1, the regulator needs to know the utility and the CO2 emissions
of each individual, for each mode of transportation. We describe in this subsection how
we estimate them. Note that our estimations are individual specific.

Remark 5. Recall that Assumption 3.2 implies that the utility of an individual when
commuting by car or public transit does not depend on how many other individuals
commute by car or by public transit. Such an assumption is reasonable when the
congestion on the road and transit occupation rate are approximately exogenous, i.e.,
they do not depend on the incentive policy. This approximation is legitimate if the
number of modal shifts induced by the policy is low, so that their impact on congestion
and occupation is negligible. A posteriori, we check that this latter assumption is
verified in our case, since less than 1.60% of individuals shifted mode due to the
personalized-incentive policy.

Following the Multinomial Logit theory, we assume that utility of alternative j of
individual i is composed of a deterministic part V̂i,j and a random part ϵi,j :

Vi,j = V̂i,j + ϵi,j . (25)

The deterministic part of the utility can be computed using the estimates from Table
2. As for the random part, we simulate random draws from a random variable with
standard Gumbel distribution (see Appendix E). In accordance with Assumption 3.4,
the regulator is assumed to know perfectly both the estimates and the draws and thus
the utilities. We relax this assumption in Section 7.7, where we provide results where
the random draws are unknown to the regulator.

To normalize the utility in monetary units, we compare the value of travel time by
car from our regression (expressed in utility units) with the value of travel time by
car in France from the literature (expressed in euros). We compute the value of travel
time by taking the opposite of the average marginal effect on utility of increasing the
travel time of the individuals by one hour.3 We find an average value of time of 1.88
utility units per hour.

Previous studies (Wardman et al. 2012) have shown that the value of travel time,
for car commuters, in France, is about 9.17 euros per hour. This would imply that,
in our estimates, one utility unit corresponds to µ = 9.17/1.88 = 4.88 euros. In the
following, we assume that the utility is normalized in monetary units, i.e., the values
in equation (25) are multiplied by µ. Note that it implies that the random variables
ϵi,j follows a Gumbel distribution with scale parameter µ.

3For example, referring to the coefficients of Table 2, for a 40-year old male employee, the value of travel time
by car is

−
(

−1.6281︸ ︷︷ ︸
coef. of travel time (car)

+ −0.0026︸ ︷︷ ︸
coef. of travel time×age

· 40︸︷︷︸
age

)
= 1.7321 utility units/hour.
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Table 3. Our calculations of CO2 emissions in the Rhône department.

Daily CO2 emissions (all home-work and work-home trips) 595.26 tons of CO2
Total CO2 emissions in one year (200 working days) 119 050 tons of CO2
Average yearly individual CO2 emissions 0.54 tons of CO2

7.4. Computing the Social Indicator

The regulator wants to reduce greenhouse gas emissions. The social indicator associ-
ated to the mode of transportation j of individual i is the reduction in CO2 equivalent
of greenhouse gas emissions generated during the trip of i performed with mode j,
with respect to the emissions of the default mode. To compute CO2 emissions for each
individual and each mode of transportation, we take the distance of the fastest path
between the individual’s home and workplace and we multiply this distance with the
CO2 emissions equivalent per kilometre for the mode of transportation, using open-
sourced data from the French agency ADEME (Agence de l’Environnement et de la
Mâıtrise de l’Énergie).4

For car, we use the CO2 emissions of a passenger car with average motorization
(0.193 kilogram of CO2 per kilometre). That is, we assume that the CO2 emissions
per kilometre are the same for everyone. We pinpoint that this assumption may lead
to some imprecision in the calculation of the actual CO2 reduction. The application
could be improved by using detailed data on the characteristics of the vehicle used by
each individual.

For Assumption 3.3 to be valid, CO2 emissions due to the commuting trip of an
individual must be independent from the mode of transportation chosen by the other
commuters. For the same argument of Remark 5, we can claim that this approximately
holds true in the scenario.

As Chester, Horvath, and Madanat (2010), we adopt a disaggregated view of CO2
emissions from public transit. We consider that the overall CO2 generated by transit
vehicles is shared among all travellers making trips within transit, proportionally to the
kilometres travelled. In other words, each trip on transit produces a quantity of CO2
emissions equal to the number of kilometres travelled multiplied by the average CO2
emissions per kilometre per passenger, assuming average and constant occupancy rate.
Observe that it is reasonable to assume an average occupancy rate that is constant
over time from the argument of Remark 5. The average CO2 emissions per kilometre
per passenger vary according to the mode of transportation used (e.g., bus, tramway
or metro). The mode of transportation taken for the fastest path are used to compute
CO2 emissions. For multi-modal public-transit trips (e.g., bus then tramway), the
CO2 emissions are computed according to the distance travelled by each mode of
transportation.

CO2 emissions for walking and cycling trips are set to zero. Hence, for each indi-
vidual, the two alternatives corresponding to walking and cycling differ only in the
intrinsic utility. As a consequence, the alternative with smaller intrinsic utility can be
neglected, thanks to Proposition 3.9.

Recall that Assumption 3.4 implies that the regulator knows perfectly the CO2
emissions of the trips. This is more realistic than for utility. In any case, measurement
errors for CO2 emissions are not as worrying as measurement errors for utility as

4https://www.bilans-ges.ademe.fr/en/
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Figure 3. Maximum social welfare curve, up to a daily budget of 3000 euros. Note: The social welfare
corresponds to the reduction in CO2 emissions due to the personalized-incentive policy.

we can assume that, if such errors are unbiased, they cancel out. We will observe in
Section 7.7 that the errors are much more severe when utilities are imperfectly known,
as some individuals might reject the incentives, which leads to a suboptimal allocation.

Under the previous assumptions, we calculate the CO2 emissions reported in Table 3,
which results in 0.54 ton of CO2 yearly per individual in the Rhône department. This
number is close to the publicly known estimation for the entire France: in 2007, the
average French worker emitted 0.64 ton per year because of his/her home-work trips
(Levy and Le Jeannic 2011).

7.5. Calculation of the Personalized-Incentive Policy

We consider a large-scale scenario with more than 200 thousands individuals and
over 1 million alternatives (Appendix C). We consider a policy in which the regulator
proposes, each day, incentives to the individuals before their home-work trip. The
incentives are given conditional on the mode of transportation chosen for the round trip
to work, thus the social indicator of an alternative is the reduction in CO2 emissions for
the trip back and forth, with respect to the default alternative. The budget represents
the daily amount available to the regulator for incentives.

First, we run Algorithm 1 with a daily budget of 3000 euros and we plot the max-
imum social welfare curve (see Figure 3). The maximum social welfare curve is an
increasing step function (steps are small and thus not visible). Consistently with Propo-
sition 4.7, the slope of each step is non-increasing, which gives the curve a concave
curvature.

Quinet et al. (2009) predict that the carbon price in France would be of 100 euros
per ton of CO2 in 2030. It is thus reasonable to assume the regulator is interested in
finding an incentive policy such that, for every 100 euros spent in incentives, pollution
is reduced by at least a ton of CO2. To this aim, the regulator can observe the curves
of Figure 4, which plots the inverse of the incremental and overall efficiency (the ẽ[k]
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Inverse overall efficiency 1/e[k]

Figure 4. Cost of the policy in euros per ton of CO2 prevented as a function of the daily budget.

and e[k] of Definition 4.6), with respect to the budget Y [k] allocated by the algorithm
at each iteration k. Thanks to Proposition 4.7, 1/e[k] and 1/ẽ[k] increase with Y [k],
as we proceed with the iterations of the algorithm. Thanks to this monotonicity, the
regulator can apply one of the following two criteria to fix the budget to invest. It could
run Algorithm 4 and stop it when 1/e[k] equals 100 euros per ton of CO2. Alternatively,
it can stop the Algorithm when 1/ẽ[k] equals 100 euros per ton of CO2. From Figure 4,
we observe that with the first criterion the regulator would need to invest about 1800
euros per day, and about 500 euros with the second criterion. In our opinion, both
criteria would make sense, and the preference over one of them is a political choice.

We now set the budget of the regulator to Q = 1800 euros. Running Algorithm 1
with this budget required about 3500 iterations and took about 6 seconds (with
Python, on a computer with an Intel i5-8350U 1.7GHz and 24GB of memory). The
algorithm allocates practically all the budget (1798.59 euros). We find that 1.57% of
individuals received incentives and changed transportation mode, which results in a
reduction of CO2 emission by 18 tons of CO2 per day (3.00 % of total CO2 emissions).
Thus, this policy would cost on average 100.61 euros for each ton of CO2 prevented.

Despite the small incentives, the reduction in CO2 emissions is considerable. Indeed,
among the individuals who received incentives, the average amount of incentives is 0.52
euros per individual, for an average daily reduction in CO2 emissions of 5 kilograms.
Recall that alternatives providing a large reduction in CO2, while requiring small in-
centive, have a high efficiency. Hence, the algorithm selects first shifts achievable with
a small incentive, i.e., where the individual is almost indifferent between the two alter-
natives, which however have a large difference in CO2. Figure 5 shows the distribution
of the incentive amount and the CO2 reduction for the incentivized individuals. For
most incentives, the amount proposed to individuals is below 1 euro (incentives with
a larger amount are not efficient enough, unless the CO2 reduction is very high).

Figure 6 compares mode share before and after the policy. Most individuals who
received incentives are individuals who commuted by car and were induced to commute
by public transit (1.2% of all individuals, 74% of individuals who received incentives).
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Figure 6. Evolution of mode share before and after the policy. 1.163 % of individuals were given incentives
to shift from car to public transit, 27.29 % of individuals commuted by public transit before the policy and
were not induced to shift.

The share of individuals commuting by car decreased by 2.4%, while public transit
ridership increased by 4%.

We now compute a bound of the optimality gap, i.e., the maximum additional
CO2 savings we would achieve if we could use a theoretical optimal policy instead
of resorting to Algorithm 1. To do so, we apply Theorem 4.2. Since the incremental
efficiency of the split item returned by the algorithm is ẽs,t ≃ 5 kilograms of CO2 per
euro and the unused budget is Q − Q̃ = 1.41 euros, an optimal policy would reduce
just 5 ·1.41 ≃ 7 kilograms more than Algorithm 1, which is negligible compared to the
total CO2 emissions reduction of 18 tons provided overall.

7.6. Comparison with Other Policies

In Section 7.5, we evaluated the performance of the personalized incentive policy cal-
culated by Algorithm 1, which we denote with y. We now compare it with three other
policies from Section 5.2: an enforcement policy, a proportional taxation system and
the Tripod incentive system from Araldo et al. (2019).

Aggregate results for these policies are provided in Table 4. The policies are de-
fined so that they induce the same choices for the individuals, using results from
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Table 4. Summary of policies.

Policy z Expenses (euros) Ind. utility (euros) Disutility (euros) CO2 reduction (tons)
Y (z) ∆U(z) δ(z) B(z)

Personalized incentives 1798.59 0 1798.59 17.878
Enforcement 0 −1798.59 1798.59 17.878
Proportional tax −116 167.48 −114 368.89 1798.59 17.878
Tripod incentives 3596.97 1798.38 1798.59 17.878

Section 3. Therefore, they provide the same reduction in CO2 emissions and, from
Proposition 5.2, they have the same disutility. However, they differ in their cost for
the regulator and the variation in individual utilities implied. It should be noted that
the best policy to implement depends on social, political or juridical constraints.

In these results, we fix the disutility threshold to 1798.59 euros, which corresponds
to the incentive Q̃ actually spent by Algorithm 1 when we set the budget to Q = 1800
euros. This means that if we run the algorithm setting a budget of 1798.59 euros,
it spends it all and, thanks to Corollary 5.6, the resulting policy is optimal under a
budget constraint of 1798.59 euros.

7.6.0.1. Enforcement policy. Thanks to Proposition 5.7, the regulator can com-
pute an enforcement policy z that is optimal for a disutility threshold of 1798.59 euros,
by simply ‘imitating’ the personalized incentive policy y, i.e., by inducing the same
alternatives as y. In order to do so, the regulator bans all the other alternatives, i.e.,
any alternative j such that j ̸= j∗i (y) is banned. Obviously, it is not necessary to ban
any alternative j if j∗i (y) is preferred to j, in absence of policy, i.e., Vi,j < Vi,j∗i (y).
Therefore, only the individuals receiving incentives under policy y suffer bans with z,
which correspond to only 1.57% of the population.

Contrarily to the personalized-incentive policy, the enforcement policy does not cost
any money to the regulator (apart from eventual transaction costs) but it decreases
individual utilities by 1798.59 euros. Moreover, the 1.57% of individuals impacted by
the ban may perceive that they are inequitably penalized with respect to the others.
Hence, the enforcement policy might be less accepted by the population. Still, this
policy is well adapted to the context of imperfect information as it ensures that the
individuals always choose the alternative wanted by the regulator.

7.6.0.2. Proportional tax. The proportional tax policy is computed from equa-
tion (21), using the tax level given by equation (22) (Theorem 5.8). For each individual
i, the baseline social-indicators Ai is set to the CO2 emissions of the default trans-
portation mode, so that bi,j − Ai is equal to the opposite of the CO2 emissions of
transportation mode j.

Since the taxation provides revenues, the regulator is not constrained by his budget
anymore. However, taxation negatively impacts the utilities of the individuals, and is
thus limited by political constraints, which we model by imposing that the disutility
of the policy must be below a threshold Q = 1798.59 euros.

The tax must be paid by all individuals commuting either by car, public transit or
motorcycle (about 86 % of individuals), even if the tax does not affect their choice. This
is different from the personalized-incentive policy, for which only 1.57 % of individuals
are impacted. This explains why the amount of taxes collected is about hundred times
larger than the amount of incentive needed to reach the same reduction in CO2 emis-
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sions (see Table 4). A taxation policy is particularly penalizing for inelastic individuals
who cannot shift to a more eco-friendly alternative, e.g., because they are living far
from their workplace, or in a place with no transit offer. Therefore, a taxation policy
is much less acceptable than an incentive one.

On the other hand, the tax policy is not individual-specific, which means that it
requires less information (knowledge of individual utilities is required to compute the
tax level from (22) but the tax level does not change much under imperfect information
and so the policy is still efficient).

7.6.0.3. Tripod policy. We now compute a proportional-incentive policy as in
Section 5.2.3. Taking some additional assumption, we call such policy ‘Tripod’ as
in Araldo et al. (2019). In particular, we assume that the individuals described in
the dataset are the first to log-in in the Tripod incentive system, such that budget
Q = 1798.59 euros is depleted after the Tripod system treats them.

For the sake of simplicity, we assume for both Tripod and our personalized policy
that the entire population of the whole day is known in advance, as well as their
alternatives. In this setting, we let Tripod calculate a TEE close to the best possible
value, i.e., we set τ (the inverse of the TEE) as in Theorem 5.8. Observe that the
possibility for Tripod to change the TEE from a time-slot to another might improve
its efficiency with respect to what we observe here. On the other hand, the TEE
calculation in Tripod is based on simulation-based prediction, which is imperfect by
nature, and the TEE is never guaranteed to be close to the best one (which we are
assuming). This would instead deteriorate the efficiency of Tripod with respect to what
we observe here. We also set Ai = bi,j∗i (0), for any individual i, and Q = 1798.59 euros.

The Tripod policy, like the personalized-incentive policy, is more adapted in cases
where the regulator is endowed with a limited budget that he must use as efficiently as
possible to increase social welfare. In such cases, however, our personalized-incentive
policy performs better than Tripod. As explained in Remark 4, the reason is that
we exploit the entire efficiency of the incentivized alternatives, thus getting the most
additional social welfare out of every additional unit of incentive spent. Tripod is in-
stead limited to a fixed efficiency, generally smaller than the intrinsic efficiency of
the incentivized alternatives. It is important to remark that, however, while our per-
sonalized policy needs exact information about individual utilities, Tripod does not,
since it finds TEE empirically based on simulation-based prediction of its effects. In
other words, Tripod needs a perfect simulation-based prediction instead of perfect
information about individuals, which in many practical scenarios might more easily
hold.

In this application, both policies reach the same social welfare but the Tripod policy
require an incentive budget twice as large as the personalized-incentive policy.

However, it is important to remark that under our personalized incentive policy,
two individuals providing the same social utility would receive a different incentive,
based on their individual characteristics. Although we ensure that all individuals keep
their original individual utility, there is a risk that our policy may be perceived as
discriminatory. In Tripod, instead, the incentive received by an individual only depends
on the social utility she provides, which might be more easily accepted by citizens.
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Table 5. Comparison of the performance of the personalized-incentive policy for one day, with perfect and
imperfect information.

Perfect information (Sec. 7.5) Imperfect information

Budget spent 1798.59 euros 1797.03 euros
Incentives proposed 3486 419
Incentives accepted 3486 247
Acceptance rate 100 % 59 %
CO2 reduction 17.9 tons 3.8 tons

7.7. Imperfect Information

We show in this section the performance of our allocation policy when the regulator
has imperfect information about individual utilities. In this case, the allocation policy
is computed as in Section 6. Using the values of the random variables ϵi,j drawn
previously, we can check whether individuals accept the incentives proposed to them.
The policy stops when the daily budget of 1800 euros is depleted.

Table 5 compares the performance of our personalized-incentive policy under the
perfect and imperfect information assumption. Observe that, as expected, imperfect
information decreases the efficacy of the policy. Since the regulator does not exactly
know the individual utilities, it may propose insufficient incentives, which are rejected
by individuals (it happens 41 % of the times). This results in a smaller reduction of
CO2 (21 % compared with the perfect information case). Note that less individuals
are involved in the incentive program (only 12 % compared to the perfect information
case) because incentive given to single individuals are on average larger, and thus the
budget is depleted more quickly.

These results could be improved by learning from the responses of individual i to
the incentives proposed earlier in order to compute the incentives that will be proposed
to her for other alternatives. For example, if the regulator observes that individual i
refused the incentive to shift from car to walking, he learns information on the random
term of the utility for car of individual i.

Also, if it is not possible to propose incentives to individual i for different alter-
natives consecutively, the regulator could propose incentives for multiple alternatives
simultaneously.

These extensions cannot be carried out with Algorithm 1. Future work could study
the optimal personalized-incentive policy under imperfect information.

8. Conclusion

This paper explores a new system of personalized incentives. The agents face a dis-
crete set of alternatives, and make independent discrete choices. We consider situations
where an individual utility for an alternative does not coincide with the social utility
of this alternative. Such situations call for regulation or State intervention. The idea
is to determine the optimal incentives to be provided to each individual to alter their
choices in order to better align individual benefits and the Principal benefits (note that
the Principal can be any regulator). The regulator is assumed to have a fixed budget
for the incentives. Even if individuals make independent choices, the computation of
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the incentives to be provided has to consider all individuals’ preferences, so the prob-
lem is combinatorial. We provided in this paper an algorithm to optimally distribute
individual incentives given a budget constraint in order to maximize the social utility
or the social welfare function.

In 2021, this incentive system may be somewhat in advance. Nowadays, individual
information is gathered via GPS, social networks and the Internet of things. This is
precious information, which can potentially be used to optimally compute the optimal
set of incentives, and thus to better manage Society. (Privacy issues are ignored here,
which does not mean they are not important.)

Besides, humans remain unpredictable. There is still (and hopefully for some time)
some margin of freedom as far as to what people decide. The recent pandemic shows
that individuals or governments remain unpredictable (Zhang 2020) and that the right
set of incentives remains hard to determine. As a consequence, individual choices are
described by the modeller as being probabilistic. Incentives thus change choices up to
some probability distribution. While we have just tackled imperfect information in the
empirical application, the treatment of imperfect information appears to be tractable.
Preliminary computations, with the Logit, the workhorse of discrete choice models,
suggest that such an extension is promising, including analytically. Contrarily to the
full information case, mainly envisaged in this paper, some incentives may be too large
for some individuals (who could select the same choice with a smaller incentive), and
this incentive is then inefficient; other incentives may be too small to modify individual
choice as expected, and in such a case the incentive is ineffective. The optimal solution
makes a comprise between these two sources of imperfection.

In the empirical application, we have ignored congestion. In our defence, let’s recall
that few commuters receive an incentive, which is a quality of our method. In practice,
congestion means that the utility of some individuals can change as other individuals
are shifting, which renders the incentive amounts computed ex-ante imprecise. We
have not solved the current problem with congestion because it is likely to be difficult.
But it is not impossible. An iterative procedure alternating the incentive algorithm
and the computation of the current level of congestion is promising. Congestion can
be treated as a static or dynamic (time of the day dependent) process. Much work
remains to be done along this line.

Finally, we have considered so far static choice, i.e., at a given point in historical
time. If we consider mode choice, it may be the case that incentive for public transport,
for example, will have on the long run an impact on automobile ownership. Moreover,
in the medium run, a car left at home can be used by other family members for
short trip. Without any intervention, the trend could yield more trips and vehicle cold
starts particularly on local roads, especially in places where vehicles continue to rely
on internal combustion engines. These examples show the need to also consider the
medium and long-run impacts of incentives, by appending a predictive model to the
incentive algorithm. There are plenty of roads left to run.
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Appendix A. Concavization

The process of concavization (Zoltners, Sinha, and Chong 1979, Figures 1 and 2)
consists in removing from the set of alternatives of any individual i some alternatives
that we consider ‘irrelevant’, as introduced in Section 4.1.

We introduce the concepts of dominance and LP-dominance and other definitions
from Kellerer et al. (2004, Section 11.2).

Definition A.1 (Dominance). Given an individual i and two of her alternatives j, j′,
we say that j dominates j′ if it has a higher social indicator and requires less incentives
to be adopted, i.e., bi,j ≥ bi,j′ and wi,j ≤ wi,j′ .

Note that, from equation (6), the condition wi,j ≤ wi,j′ is equivalent to Vi,j ≥ Vi,j′

and thus the concept of dominance is equivalent to the concept of Pareto-dominance of
Definition A.1. Thanks to Assumption 3.10, we can assume they have been eliminated
from our problem.

Definition A.2 (LP-dominance). Consider three alternatives j, j′, j′′, such that bi,j <
bi,j′ < bi,j′′ and wi,j < wi,j′ < wi,j′′ . We say that j′ is LP-dominated by j and j′′ if

bi,j′′ − bi,j′

wi,j′′ − wi,j′
≥ bi,j′ − bi,j

wi,j′ − wi,j
.

We denote with Ri the set of alternatives of individual i that are neither dominated
nor LP-dominated and ri its cardinality. We call such alternatives LP-extremes. Note
that this corresponds to the upper convex hull of Ni, as in Kellerer et al. (2004, Figure
11.1).
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Appendix B. Proofs

Proofs of Section 3

Proof of Proposition 3.7. Given any policy y, individual i chooses alternative j ∈
Ni, with bi,j > bi,j∗i (0), if

Vi,j + yi,j ≥ Vi,j′ + yi,j′ , ∀j′ ∈ Ni, (B1)

and

Vi,j + yi,j > Vi,j′ + yi,j′ , ∀j′ ∈ Ni \ {j} : bi,j ≤ bi,j′ . (B2)

Indeed, equations (B1) and (B2) ensure that (4) is satisfied.
Let i ∈ I and j ∈ Ni, and consider a personalized-incentive policy y such that

yi,j′ = 0, for any j′ ̸= j and yi,j = Vi,j∗i (0) − Vi,j . Rewriting (B1) and (B2), we can
claim that individual i chooses alternative j, if

Vi,j∗i (0) ≥ Vi,j′ , ∀j′ ∈ Ni, (B3)

and

Vi,j∗i (0) > Vi,j′ , ∀j′ ∈ Ni \ {j} : bi,j ≤ bi,j′ . (B4)

Thanks to equation (5), the personalized-incentive policy y satisfies equation (B3). It
remains to prove that it always satisfies also equation (B4). Suppose by contradiction
that there exists an alternative j′ ∈ Ni \ {j} such that bi,j ≤ bi,j′ , which does not
satisfy equation (B4). Then we would have Vi,j∗i (0) ≤ Vi,j′ . By construction bi,j′ ≥
bi,j > bi,j∗i (0). This would contradict the definition of default alternative (equation (5)).

At this point of the proof, we have demonstrated the first part of the Proposition,
i.e., that, considering an option j such that bi,j > bi,j∗i (0), a personalized-incentive
policy y such that yi,j′ = 0, for any j′ ̸= j and yi,j = Vi,j∗i (0) −Vi,j successfully induces
individual i to choose alternative j. We now prove the second part of the Proposition.

Observe that, if yi,j < Vi,j∗i (0)−Vi,j , then Ui,j(y) = Vi,j+yi,j < Vi,j∗i (0) and individual
i would never prefer j to j∗i (0).

Proof of Proposition 3.9. Consider an individual i and an alternative j, Pareto-
dominated by another alternative j′. Suppose that the policy y is such that i is induced
to choose j. According to Assumption 3.8, the incentive is yi,j = Vi,j∗i (0) −Vi,j and the
individual shifts from her default alternative j∗i (0) to j, increasing the social welfare
by δ = bi,j − bi,j∗i (0).

We can then construct a policy y′, which is identical to y, except for the incentive
proposed to individual i: she is incentivized to shift from her default alternative to j′,
with an incentive y′i,j′ = Vi,j∗i (0) − Vi,j′ . The increase of social welfare is in this case
δ′ = bi,j′ − bi,j∗i (0).

By the definition of Pareto-dominance, y′i,j′ < yi,j and δ′ ≥ δ. Therefore, policy y′

obtains at least the same increase in social welfare than y but spending less incentive
budget. Therefore, it makes no sense to consider policy y.

Proofs of Section 4
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Proof of Theorem 4.2. If we run Algorithm 1 with budget Q, we practically make
the same steps as the MCKP-Greedy algorithm (Kellerer et al. 2004, equation (11.8)
and Figure 11.2). In line 5 of the aforementioned algorithm, the authors compute an
upper bound to the solution of the Multiple Choice Knapsack Problem (9) as

ub = B̄[k] + b̃s,t · (Q− Y [k])/w̃s,t.

where k is the last iteration of the algorithm.
Observing, by the definition of efficiency (13), that ẽs,t = b̃s,t/w̃s,t, we get ub−B̄[k] =

ẽs,t · (Q − Y [k]). By construction, the theoretical maximum social welfare B∗(Q) of
problem (9) is less than or equal to the upper bound ub. Therefore:

B∗(Q) − B̄[k] ≤ ub − B̄[k] = ẽs,t · (Q− Y [k]).

By construction, B(Q) = B̄[k] and Q̃ = Y [k], which gives the inequality (17) that we
want to prove. Such inequality is illustrated in Figures 2 and B1.

B*(Q) ub
Alg.1 Optimum Upper bound
B[k]

Figure B1. Illustration of the upper bound from Theorem 4.2.

Proof of Proposition 4.5. To compute the ordered LP-extremes Ri of the indi-
vidual i we resort to the method of Kirkpatrick and Seidel (1986) of complexity
O(

∑m
i=1 |Ni| · log |Ri|). To obtain the set R, we just need to merge these ordered

sets into an aggregated ordered set. This operation has complexity O(|R| · logm). The
rest of the operations consists in adding to the solution the alternatives in R, one by
one, which has complexity O(|R|).

Proof of Proposition 4.7. By construction, Algorithm. 1 gets at each iteration the
alternative with the highest incremental efficiency (Line 8). This proves the first part
of the claim.

The second part of the claim can be shown geometrically. In the figure above, we
represent the total incentive and social welfare calculated by the algorithm at each
iteration.
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Observe that the incremental efficiency ẽ[k] is the inclination of the segment
connecting (Y [k−1], B[k−1]) to (Y [k], B[k]) and that the efficiency e[k] is the inclination

of the segment connecting (0, 0) to (Y [k], B[k]). It becomes then evident that the
monotonicity of ẽ[k] implies also the monotonicity of e[k].
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Proof of Corollary 4.8. Observe that at every iteration k we increase the social
welfare by ẽ[k] · (Y [k+1] − Y [k]). Therefore B(Q) = B(Y [k]) + ẽ[k] · (Y [k+1] − Y [k]) +
ẽ[k+1] · (Y [k+2] − Y [k+1]) + . . . . Observing that ẽ[k] is non increasing, we get: B(Q) ≤
B(Y [k])+ẽ[k]·

[
(Y [k+1] − Y [k]) + (Y [k+2] − Y [k+1]) + . . .

]
= B(Y [k])+ẽ[k]·(Q−Y [k])

Proofs of Section 5

Proof of the Proposition 5.2. From equations (1), (3), (18) and (19), observe that

δ(z) =
m∑

i=1

(
Vi,j∗i (0) − Vi,j∗i (z)

)
≥ 0,

Proof of Proposition 5.4. Thanks to Proposition 5.2, δ(z′) = δ(z) ≤ Q. Moreover,
the social welfare is also the same, i.e., B(z) = B(z′), since it only depends on the
alternative chosen. This shows the proposition.

Proof of Proposition 5.5. Assume, by contradiction, that the optimal
personalized-incentive policy y is not an optimal general policy. This would
imply the existence of a policy z such that B(z) > B(y) and δ(z) ≤ Q.

Consider now a personalized-incentive policy y′ such that
{

y′i,j = Vi,j∗i (0) − Vi,j , if j = j∗i (z)
y′i,j = 0, otherwise .

Then, by construction, y′ is such that j∗i (y′) = j∗i (z), ∀i ∈ I.
Moreover, observe that y′ is such that B(y′) > B(y) and Y (y′) = δ(y′) ≤ Q.

Therefore, y′ would be a better personalized-incentive policy than y, which is absurd,
since by construction y is an optimal personalized-incentive policy.

Proof of Corollary 5.6. Let B(Q) be the social welfare returned by Algorithm 1
for a budget Q. We know from Theorem 4.2 that it is boundedly close to the social wel-
fare B∗(Q) obtained with an optimal personalized-incentive policy, with the following
bound

B∗(Q) −B(Q) ≤ ẽs,t · (Q− Q̃).

Thanks to Proposition 5.5, B∗(Q) is also the social welfare obtained via an optimal
general policy with disutility threshold Q. This proves the Corollary.

Proof of Proposition 5.7. By construction, the enforcement policy z induce the
same individual alternatives as the personalized-incentive policy y. Then, thanks to
Proposition 5.2, they have the same disutility δ(z) = δ(y) ≤ Q and achieve the same
social welfare B(z) = B(y). Thanks to Corollary 5.6, B(y) is boundedly close to the
optimum B(Q), and so is B(z).

Proof of Theorem 5.8. Let z be a policy such that zi,j = τ(bi,j −Ai), with τ given
by equation (22) and Ai ∈ R.
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Let y be the personalized-incentive policy obtained running the algorithm as ex-
plained in the statement of this theorem. Thanks to Corollary 5.6, we know that B(y)
is such that

B∗(Q) −B(y) ≤ ẽs,t · (Q− Q̃). (B5)

If we prove that j∗i (y) = j∗i (z), ∀i ∈ I, we could claim that B(z) = B(y) and also,
thanks to Proposition 5.2, that δ(z) = δ(y) ≤ Q. In this case, the bound (B5) would
also hold for z.

To do so, we show that (i) alternative j∗i (z) is in the set Ri of the LP-extremes
alternatives and (ii) alternative j∗i (y) maximizes Ui,j(z) = Vi,j + τ(bi,j − Ai), over all
alternatives j ∈ Ri.

B.0.0.1. Proof of (i). Assume, by contradiction, that j∗i (z) is LP dominated by
alternatives j and j′, i.e., bi,j < bi,j∗i (z) < bi,j′ and yi,j < yi,j∗i (z) < yi,j′ , and

bi,j′ − bi,j∗i (z)

wi,j′ − wi,j∗i (z)
≥

bi,j∗i (z) − bi,j

wi,j∗i (z) − wi,j
.

From equation (8), wi,j = Vi,j∗i (0)−Vi,j and thus the previous condition can be written
as

bi,j′ − bi,j∗i (z)

Vi,j∗i (z) − Vi,j′
≥

bi,j∗i (z) − bi,j

Vi,j − Vi,j∗i (z)
.

Multiplying by τ > 0 on both sides and adding and subtracting Ai yields

τ
bi,j′ − bi,j∗i (z) −A + A

Vi,j∗i (z) − Vi,j′
≥ τ

bi,j∗i (z) − bi,j −A + A

Vi,j − Vi,j∗i (z)
.

Rearranging the terms and using equation (21) yields

zi,j′ − zi,j∗i (z)

Vi,j∗i (z) − Vi,j′
≥

zi,j∗i (z) − zi,j

Vi,j − Vi,j∗i (z)
.

Finally, using equation (1), we get

Ui,j′(z) − Ui,j∗i (z)(z)
Vi,j∗i (z) − Vi,j′

≥
Ui,j∗i (z)(z) − Ui,j(z)

Vi,j − Vi,j∗i (z)
.

Let α = Vi,j − Vi,j∗i (z) and α′ = Vi,j∗i (z) − Vi,j′ . From yi,j < yi,j∗i (z) < yi,j′ , it follows
that Vi,j > Vi,j∗i (z) > Vi,j′ and thus α, α′ > 0. Then, we get

Ui,j′(z) − Ui,j∗i (z)(z)
α′ ≥

Ui,j∗i (z)(z) − Ui,j(z)
α

.

By simple arithmetic calculation, one can see that this is equivalent to

αUi,j′(z) + α′Ui,j(z)
α + α′ ≥ Ui,j∗i (z)(z). (B6)
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Equation (B6) means that the utility of j∗i (z) is less than or equal to the weighted
average of the utility of j and j′. Two cases could then hold:

• Either j or j′ is preferred to j∗i (z), i.e., Ui,j(z) > Ui,j∗i (z)(z) or Ui,j′(z) >
Ui,j∗i (z)(z). This would mean that j∗i (z) does not maximizes utility and would
contradict equation (4).

• The three alternatives are equivalent, i.e., Ui,j(z) = Ui,j∗i (z)(z) = Ui,j′(z). This
would also contradict equation (4) because bi,j′ > bi,j∗i (z), by assumption.

Therefore, j∗i (z) is not a LP-dominated alternative. Clearly, j∗i (z) is not dominated
either and thus j∗i (z) ∈ Ri.

B.0.0.2. Proof of (ii). The proof of (ii) requires the following lemmas.
Lemma A If the alternatives in Ri are ordered according to equation (11), i.e., they

are ordered by increasing weight, then

ẽi,1 > ẽi,2 > · · · > ẽi,ri .

To prove this lemma, show by contradiction that if ẽi,j ≤ ẽi,j+1, then j would be
LP-dominated by j − 1 and j + 1.

Lemma B If j ∈ Ri is such that ẽi,j ≥ 1/τ , then Ui,j−1(z) ≤ Ui,j(z), where j − 1
denotes the alternative which comes just before j in the ordered set Ri.

To prove this lemma, note that, using equations (8), (12) and (13), the inequality
ẽi,j ≥ 1/τ can be written as

bi,j − bi,j−1
Vi,j−1 − Vi,j

≥ 1/τ.

Multiplying by τ(Vi,j −Vi,j−1) > 0, subtracting τ ·Ai from both sides and rearranging
the terms, we get Vi,j−1−τ(A−bi,j−1) ≤ Vi,j−τ(A−bi,j). Using equations (21) and (1)
yields Ui,j−1(z) ≤ Ui,j(z).

Lemma C If j ∈ Ri is such that ẽi,j < 1/τ , then Ui,j−1(z) > Ui,j(z), where j − 1
denotes the alternative which comes just before j in the ordered set Ri.

This lemma can be proved with the same reasoning as Lemma B.
Let j ∈ Ri be such that

ẽi,j ≥ 1/τ > ẽi,j+1. (B7)

Then, Lemmas A and B imply that the alternatives in the set {j′ ∈ Ri : j′ ≤ j}
are ordered by non-decreasing utility. Similarly, Lemmas A and C imply that the
alternatives in the set {j′ ∈ Ri : j′ ≥ j} are ordered by decreasing utility. Hence,
alternative j, defined by equation (B7), is the alternative which maximizes the utility
Ui,j(z), over all alternatives in Ri.

Observe that, by construction of Algorithm 1, the alternative j∗i (y) satisfies equation
(B7). Hence, alternative j∗i (y) maximizes the utility Ui,j(z), over all alternatives j ∈
Ri. As we have shown that j∗i (z) ∈ Ri, it must be that j∗i (y) = j∗i (z).

Proof of Proposition 5.9. For any individual i ∈ I, let us consider the alternative
j∗i (z) she chooses under policy z and compute the respective incentive

zi,j∗i (z) = τ · (bi,j∗i (z) −Ai) ≥ τ · (bi,j∗i (z) − bi,j∗i (0)) ≥ Vi,j∗i (0) − Vi,j∗i (z).
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where the first inequality is a consequence of the definition of proportional-incentive
policy – see (23), while the last inequality ensures that the incentive compensates for
the loss in individual utility when shifting to alternative j∗i (z), which is a necessary
condition for the individual to accept the incentive and shift to j∗i (z).

Therefore, recalling from Definition 4.1 that the efficiency of a generic alternative j

as ei,j ≡
bi,j−bi,j∗

i
(0)

Vi,j∗
i

(0)−Vi,j
, we can write:

1
τ
≤ ei,j∗i (z), ∀i ∈ I =⇒ 1

τ
≤ min

i∈I
ei,j∗i (z)

Observe that the smaller τ , the smaller the incentive spent by z. Therefore, it is
always best to choose

τ = 1
mini∈I ei,j∗i (z)

Let us now consider a policy y that incentivizes the same individuals i ∈ I.
In particular, it incentivizes the same alternative j∗i (z), with a quantity yi,j∗i (z) =
Vi,j∗i (0) − Vi,j∗i (z). This incentive is sufficient to induce each individual to choose such
an alternative. Therefore, the social welfare of this new policy y will be the same as
z, i.e., B(y) = B(z). However, the saving of incentive distributed is:

Y (z) − Y (y) =
∑

i∈I
(zi,j∗i (z) − yi,j∗i (z)) =

∑

i∈I
(bi,j∗i (z) − bi,j∗i (0)) ·

(
τ − 1

ei,j∗i (z)

)

= 1
τ
·
∑

i∈I

bi,j∗i (z) − bi,j∗i (0)

ei,j∗i (z)
·
(
ei,j∗i (z) −

1
τ

)
= 1

τ
·
∑

i∈I

(
Vi,j∗i (z) − Vi,j∗i (0)

)
· ∆ei,j∗i (z)

Proof of Proposition 5.10. Let us run Algorithm 1 with budget Q = Y (z), which
allows to get the values of ẽY (z) and γY (z). Thanks to Proposition 5.9, there always
exists a personalized-incentive policy policy y that achieves at least the same social
welfare of z:

B(y) ≥ B(z) (B8)

while providing incentive savings of at lest L(z). Let k′ be the first iteration of the
algorithm in which Y [k′] ≥ Y (y) and k′′ the last iteration in which Y [k′′] ≤ Y (z).

First, suppose L(z) ≥ 2γY (z). In this case, observe that

Y [k′] − Y (y) ≤ γY (z)

Y (z) − Y [k′′] ≤ γY (z)

Y (z) − Y (y) ≥ L(z).

This is shown, for the sake of understanding, in the following figure
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Y(y) Y(z)

≥ L(z)

Y[k’-1] Y[k’]

≤ γ
Y(z)

 

Y[k’’] Y[k’’+1]

≤ γ
Y(z)

 

Summing the first two of the inequalities above and then replacing Y (z) − Y (y)
with the third inequality, we get

Y [k′] − Y [k′′] + L(z) ≤ Y [k′] − Y (y) + Y (z) − Y [k′′] ≤ 2γY (z)

Rearranging the elements between the first and third terms, we get

Y [k′′] − Y [k′] ≥ L(z) − 2γY (z). (B9)

Observe that:

B[k′′] −B[k′] =
k′′−1∑

k=k′

(B[k+1] −B[k])

=
k′′−1∑

k=k′

ẽ[k] · (Y [k+1] − Y [k]) ≥ ẽ[k′′]

=
k′′−1∑

k=k′

(Y [k+1] − Y [k])

= ẽ[k′′] · (Y [k′′] − Y [k′])

where the inequality holds thanks to the monotonicity of incremental efficiencies
(Proposition 4.7). Applying (B9):

B[k′′] −B[k′] ≥ ẽ[k′′] · (L(z) − 2γY (z))

By construction, ẽ[k′′] = ẽY (z). Moreover, B∗(Y (z)) ≥ B∗(Y [k′′]) = B[k′′], where the
inequality holds thanks to the monotonicity of the maximum social welfare curve and
the equality holds thanks to Corollary 4.4 . We also know that B[k′] = B∗(Y [k′]) ≥
B∗(Y (y)) ≥ B(y) ≥ B(z), where the first equality derives from Corollary 4.4, the
second inequality from the monotonicity of the maximum social welfare curve, the
third inequality by the definition of optimal personalized-incentive policy and the last
by (B8).

Proofs of Section 6

Proof of Proposition 6.1. Let ξ = ϵi,j∗i (0) − ϵi,j . Then, ξ is the difference of two
i.i.d. Gumbel-distributed random variables with scale parameter µ, and thus it is
a logistic-distributed random variable with scale parameter µ (Nadarajah and Kotz
2005). Its probability density function is f(x) = ex/µ

µ(ex/µ+1)2 and its cumulative distri-
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bution function is F (x) = ex/µ

ex/µ+1 . For any z ∈ R, we have

E(ξ|ξ > z) =
∫∞
z xf(x)dx
1 − F (z)

= 1
1 − ez/µ/(1 + ez/µ)

∫ ∞

z

xex/µ

µ(ex/µ + 1)2dx

=
(

1 + ez/µ
)∫ ∞

z

xex/µ

µ(ex/µ + 1)2dx.

Using

∂

∂x

(
− x

ex/µ + 1

)
= xex/µ

µ(ex/µ + 1)2 − 1
ex/µ + 1

,

and

∂

∂x
µ ln(1 + e−x/µ) = −e−x/µ

1 + e−x/µ
= −1

ex/µ + 1
,

we get
∫ ∞

z

xex/µ

µ(ex/µ + 1)2dx = z

ez/µ + 1
−
∫ ∞

z

−1
ex/µ + 1

dx.

= z

ez/µ + 1
+ µ ln(1 + e−z/µ).

Finally,

yi,j = ŷi,j + E(ξ|ξ > −ŷi,j)
= ŷi,j − ŷi,j + µ(1 + e−ŷi,j/µ) ln(1 + eŷi,j/µ)

= µ
1 + eŷi,j/µ

eŷi,j/µ
ln(1 + eŷi,j/µ).
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Appendix C. Census Data Description

We now describe the census data we use.5 They are published by INSEE and concern
the period from 2015 to 2019. The data contain observations for 7 861 201 households,
representing 21 810 707 individuals (about a third of national population). Only one
individual is surveyed in each household, which means that, for example, the main
mode of transportation is only observed for one individual in the household. Hence,
in each household, we consider only the surveyed individual.

We restrict our sample to workers living and working in the Rhône department,
with a valid mode of transportation (i.e., unemployed and individuals working from
home are excluded). We remove some outliers, i.e., individuals travelling more than 90
minutes, which were about 2000. The final dataset contains 221 571 individuals. The
total number of alternatives is 1 092 748.

Note that census data do not represent an exhaustive sample of the population.
Therefore, some categories of individuals might be over- or under-represented. To
correct for such imbalances, INSEE computes a weight for each surveyed person. To
compute the statistics below and to perform the multinomial regression, we use these
weights.

C.0.0.1. Home and Work Location.. The home and work location of the in-
dividuals is reported at the city-level, except for Lyon where it is reported at the
district-level. There are 275 unique home locations (an average of 812 individuals
living at each location).

C.0.0.2. Mode of Transportation.. The main mode of transportation used for
commuting is in one of the following five categories: car, public transit, walking, cycling
and motorcycle. The share of each category are reported on Table C1.

Table C1. Share of each mode of transportation reported.

Mode of transportation Share

Car 60.69 %
Public transit 25.07 %

Walking 8.83 %
Cycling 3.95 %

Motorcycle 1.47 %
Source: population census for Rhône department, INSEE.

C.0.0.3. Socio-Demographic Variables.. The data contain socio-demographic
variables which are used to estimate a Multinomial Logit model for mode choice.
Table C2 reports the list of numeric variables that we use, Table C3 reports the list
of categorical variables that we use.

5https://www.insee.fr/fr/statistiques/4507890
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Table C2. Description of the numeric socio-demographic variables.

Name Description Mean

Age Age of the individual, rounded to the nearest five-year age group 38.49
Cars per individual Number of cars owned divided by number of employed in the household 0.84

Source: population census for Rhône department, INSEE.

Table C3. Description of the categorical socio-demographic variables.

Name Description Most frequent category

Sex Sex of the individual man (50.67 %)
Occupation Occupation of the individual, using INSEE nomenclature employee (24.93 %)

Source: population census for Rhône department, INSEE.

Appendix D. Computation of Travel Times

For any individual, the origin point of her trips is set to the town hall of the city
where she lives and the destination point is set to the town hall of the city where she
works (for district-level home and workplace, the town hall of the district is used).
The coordinates of the town halls are retrieved from OpenStreetMap.

Travel time of each mode is set to the travel time of the fastest path, within that
mode, which connects the two locations, computed from the open-source routing en-
gine GraphHopper. The road network for pedestrians, bicycles, motorcycles and cars
is retrieved from OpenStreetMap data. It is assumed that there is no congestion. For
public transit trips, the fastest path is computed using public transit timetables, re-
trieved from open-data GTFS files. The departure time is assumed to be at 8 a.m. on
a weekday.

Note that, for some individuals, no path can be found to travel by public transit
from their origin to their destination (16 161 individuals, representing 10.87% of total
sample weight). For these individuals, we exclude public transit from their choice set.

Some individuals are living and working in the same city (61 497 individuals, rep-
resenting 26.61 % of total sample weight). For these individuals, travel times are com-
puted by supposing that trip distance is equal to the radius of the city (assuming cities
are circular) and that speed is equal to the average speed of intercity trips.

Figure D1 shows the distribution of travel times in the population, for each mode
of transportation. Except for public transit trips, most trips last less than 30 minutes.

48



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Travel time (min.)

0

5000

10000

15000

20000
C

ou
n
t

car

public transit

walking

cycling

motorcycle

Figure D1. Distribution of travel times in the population (before the policy).

Appendix E. Simulating Utilities

In the Multinomial Logit model, the utility of individual i with mode of transportation
j is

Vi,j = V̂i,j + ϵi,j ,

where V̂i,j is the deterministic part of the utility, which depends on the individual- and
alternative-specific exogenous variables, and ϵi,j is a random variable with standard
Gumbel distribution.

The deterministic part V̂i,j are computed from the estimates of the Multinomial
Logit model. From the data, we know the alternative j∗i (0) chosen by any individual
i so we must have

Vi,j∗i (0) > Vi,j , ∀j ̸= j∗i (0). (E1)

To simulate draws of standard Gumbel variables conditional on equation (E1), we
use the rejection sampling method, i.e., we draw values from the standard Gumbel
distribution until the constraint of equation (E1) is satisfied.
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