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José Ignacio Rivero-Wildemauwe*

June 14, 2023

Click for most recent version

Abstract: I study a bilateral trade setting with asymmetric information, where one side

has all the bargaining power and makes a take-it-or-leave-it price offer. Both agents hold

a certain degree of Kantian morality and thus care about what would have happened had

their actions been adopted by their counterpart. In order to capture this, I implement

a Veil-of-Ignorance approach, whereby players are uncertain about their role and are

thus forced to submit strategies for both the case where they are the Buyer and the

Seller. More precisely, in the first stage, both agents propose the price at which they

would be willing to buy, while in a second stage they decide whether they would accept

to sell at the offered price. Buyer and Seller roles are randomly assigned in the last

stage. I consider adverse selection by assuming that the Seller is fully informed about

the product’s quality, while the Buyer can only form an expectation about it. I show

that when the degree of morality is low, the expected quality necessary to produce

efficient equilibria is lower than that required by purely selfish agents and, moreover,

it is decreasing in the intensity of the moral concern. I also find a threshold degree

of morality above which only efficient equilibria are possible for any expectation about

quality. Moral preferences thus mitigate the adverse selection problem and completely

eliminate it when sufficiently strong.

JEL codes: D03; D82; D91; C78

Keywords: bilateral trade; sequential; asymmetric information; homo moralis; Veil of

Ignorance
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1 Introduction

Asymmetric information constitutes one of the main sources of inefficiencies in market-based

allocation mechanisms (Myerson and Satterthwaite (1983)). Numerous examples of this perva-

sive issue have been studied in diverse interactions, such as that between creditors and lenders

(Stiglitz and Weiss (1981)), investors and entrepreneurs (Leland and Pyle (1977)), insurers and

insured (Rothschild and Stiglitz (1976)) or buyers and sellers (Akerlof (1970)). The effects of

information asymmetries in general and of adverse selection in particular have been largely

analysed through models where agents are only concerned about their own material outcomes.

However, there exists substantial evidence showing deviations from purely selfish motivations

and a vast literature modelling this behaviour (see Fehr and Fischbacher (2003) or Camerer

(2003)).

In this paper, I focus on a bilateral trade setting with asymmetric information, where one

side has all the bargaining power and makes a take-it-or-leave-it price offer. I study the effects of

individuals caring not only about their material payoff, but also about what that payoff would

be if, hypothetically, their own actions were to be adopted by the other agents. This is often

described as “Kantian morality” in the Behavioural Economics literature, and exactly how much

players are concerned about this counter-factual scenario is referred to as the degree of morality.

Moral concerns have been shown to be empirically relevant, as experimental evidence consistent

with their presence is reported in Levine et al. (2020) and Alger and Rivero-Wildemauwe (2023),

while Kantian preferences’ large out-of-sample predictive power is documented in Miettinen

et al. (2020) and Van Leeuwen and Alger (2023).1 Moreover, the existing theoretical literature

shows that this sort of moral reasoning helps to remedy market failures in a host of different

settings (see for example Alger and Weibull (2016)). It is therefore natural to wonder how

considering agents endowed with this kind of preferences affects efficiency in a bilateral trade

context where information is distributed unequally.

The interaction at the heart of my model has a Buyer who proposes a price in the first

stage and a Seller who decides whether or not she is willing to trade at that price, after having

learned it. In order to be able to introduce Kantian moral preferences in this context, I employ

a “Veil-of-Ignorance” approach, whereby neither of the two agents knows what their role in the

game will be, and thus need to submit strategies for both the case where they are the Buyer

but also the Seller.2 More precisely, I implement this by having both players set prices in

1For evidence of deontological thinking, see for example Capraro and Rand (2018), Tappin and Capraro

(2018), Bursztyn, Fiorin, Gottlieb, and Kanz (Bursztyn et al.), Capraro and Vanzo (2019), Bilancini et al.

(2020) and Sutter et al. (2020). For the theory grounding these particular moral motivations in evolutionary

processes, refer to Alger and Weibull (2013) and Alger et al. (2020).
2The “Veil-of-Ignorance” idea was introduced by Vickrey (1945), Harsanyi (1953) and Rawls (1957). Similar

approaches to the one used here and in Rivero-Wildemauwe (2023) are employed to study interactions between

moral agents (see for example Alger and Weibull (2013), Laslier (2023)).
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the first stage, deciding whether they would accept such prices in the second stage, and being

randomly assigned the Buyer or Seller role with equal probability in a third stage. Finally, to

allow for adverse selection, I also assume that the quality, either high or low, is randomly drawn

with a given probability. The Seller knows her particular quality, while the Buyer only knows

the probabilities. Importantly, costs for either quality are below their respective consumer

valuation, which means that the efficient result is for both of them to be traded.

The sequential move game analysed here results in a unique equilibrium when populated

by agents who only care about maximising their material payoff. Indeed, in equilibrium either

the price equals the low quality cost and only low quality items are traded, or the price equals

the high quality cost and both qualities are traded. This crucially depends on the probability

of the item being of high quality. When it is weakly above a given threshold, both qualities are

exchanged while if it is strictly below, the adverse selection outcome ensues (thus replicating

the standard result).

Considering agents with a low but positive degree of morality leads to a lower required

probability of high quality for efficient equilibria to obtain. This threshold is decreasing in the

degree of morality, meaning that more moral agents are able to reach efficient equilibria for

lower values of the probability of high quality. I also find that when the probability of high

quality is indeed above the threshold, there exists a continuum of prices that can support the

efficient equilibria. These prices can be shown to be strictly larger than the low quality cost

but weakly lower than the high quality one. Moreover, the range of this interval is increasing

in the degree of morality. In turn, when the probability of high quality is below the necessary

threshold, there is a unique equilibrium identical to the adverse selection outcome in the model

with agents who are solely profit-maximisers. That is, the price equals the low quality cost and

only low quality items are exchanged.

Interestingly, there exists a degree of morality above which only efficient equilibria are

possible, no matter the probability of high quality assumed. Thus, morality mitigates the

inefficiencies stemming from adverse selection and completely eliminates them when moral

concerns are intense enough.

This work brings together two different strands of the theoretical literature. The first one

concerns bargaining under asymmetric information (Ausubel et al. (2002)), where a general

result is that the Coase Theorem (Coase (1960)) does not hold when there exist information

frictions. The second one studies the effects of moral concerns on different settings: Alger

and Weibull (2013), Alger and Weibull (2017), Sarkisian (2017), Ayoubi and Thurm (2020),

Muñoz Sobrado (2022), Ayoubi and Thurm (2023), Juan-Bartroli and Karagozoglu (2023).

Amongst these, the closest to this paper are Alger and Weibull (2013), Juan-Bartroli and

Karagozoglu (2023) and Rivero-Wildemauwe (2023). Alger and Weibull (2013) briefly discuss

an Ultimatum Game played behind a Veil of Ignorance and find that in the presence of risk

aversion, morality pushes individuals to share the surplus in a more egalitarian fashion. In

turn, Juan-Bartroli and Karagozoglu (2023) analyse a Divide-the-Dollar game between two

(potentially) moral players, documenting that moral concerns ensure that bargaining is effi-
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cient and the egalitarian outcome must be always a Nash equilibrium of the game. Finally,

Rivero-Wildemauwe (2023) studies a one-shot bilateral trade game with asymmetric infor-

mation, finding that morality either completely eliminates or at least reduces the scope for

inefficient equilibria to take place.

Unlike the aforementioned references, the present work deals with sequential rather than

simultaneous decision-making. In this line, Alger and Weibull (2013) implement the Veil-of-

Ignorance by having agents post a proposal and acceptance threshold at the same time, thus

rendering the game simultaneous. This is more straightforward to see in Juan-Bartroli and

Karagozoglu (2023) and Rivero-Wildemauwe (2023), as the interactions considered there are

by definition one-shot. This difference is far from trivial, since simultaneous moves in bilateral

trade introduce an additional source of inefficiency: coordination failures resulting from agents

bidding too “aggressively”. Assuming a sequential move game naturally does away with this

issue when the game is solved by backwards induction.

Another relevant difference is that the sequential set-up confers full bargaining power to the

party that makes the first move. This source of inefficiency is completely muted in simultane-

ous move models. The current setting thus allows me to study the effects of moral concerns

in an adverse selection context while also permitting for one of the parties to have market

power (namely, the Buyer). Thirdly, this paper focuses on a trade interaction that allows for

asymmetric information between the parties, something that is not tackled in either Alger and

Weibull (2013) or Juan-Bartroli and Karagozoglu (2023).

It is worth noting that the experimental literature has also engaged with interactions relevant

to the bilateral trade context and decisions made behind a Veil of Ignorance. Van Leeuwen and

Alger (2023) include amongst their experimental protocols a “mini” Ultimatum Game played

behind a Veil of Ignorance, and generally find that Kantian concerns are relevant to explain

decisions. In turn, Alger and Rivero-Wildemauwe (2023) use a Veil-of-Ignorance treatment

to assess changes in the propensity of sellers to actually sell over-priced lemons when role

uncertainty is made salient and also to estimate the degree of morality. In that study, some

decisions are made behind the Veil of Ignorance (that is, under role uncertainty) and others in

front it (when there is no doubt that the decider has actually been attributed that role). In line

with previous works using role-uncertainty treatments (see e.g. Iriberri and Rey-Biel (2011)),

they find that this makes subjects behave more pro-socially, which in their context means not

selling lemons. They notice that this behaviour is thoroughly in line with the presence of

Kantian moral concerns.

Lastly, this paper is also broadly related to the theoretical literature that studies the ef-

fects of pro-social and moral preferences on the equilibrium outcomes in a host of strategic

interactions (see e.g. Arrow (1973), Becker (1976), Andreoni (1990), Bernheim (1994), Levine

(1998), Fehr and Schmidt (1999), Akerlof and Kranton (2000), Benabou and Tirole (2006),

Alger and Renault (2007), Ellingsen and Johannesson (2008), Englmaier and Wambach (2010),

Dufwenberg et al. (2011)).

The rest of the article is organised as follows. Section 2 presents the general framework and
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the benchmark bilateral trade game under complete information. Section 3 analyses the equilib-

ria under complete information for homo oeconomicus and moral agents. Section 4 presents the

asymmetric information model. Section 5 analyses the latter’s equilibria for different degrees

of morality. Finally, Section 6 provides an overall discussion of my results.

2 Framework

As stated in Section 1, I focus on a sequential interaction between a Buyer and a Seller where

in a first stage the former proposes a price and in the second one the latter decides whether to

accept it or not. If the Seller agrees, then they exchange the object at the settled-upon price.

In this case, the Seller obtains a payoff that consists of the price minus her cost r, while the

Buyer gets her valuation v for the item minus the price. If the Seller rejects, the payoffs for

both are nil. I assume throughout that 0 ≤ r < v, so that trade produces a net positive surplus.

In order to consider Kantian moral motivations, I assume that agents play this game behind

a Veil of Ignorance. That is, they choose their actions without knowing whether in the end

they will be the Buyer or the Seller and thus are obliged to post strategies that indicate their

actions in either role.3 Formally, I implement this by having players simultaneously set prices

p1 ∈ R and p2 ∈ R in the first stage. In the second stage, after having learned the prices, they

simultaneously make accept or reject decisions, which I denote by a1 for Player 1 and a2 for

Player 2. I represent i’s decision to accept or reject with ai = 1 and ai = 0 respectively.

Finally, I introduce a third stage where Nature decides whether Player 1 is the Buyer and

Player 2 the Seller or vice-versa. Either role distribution is chosen with the same probability.

Notice that the move by Nature introduced in stage three effectively “blinds” agents with

respect to their role and forces them to think about their choices in both roles. I present in

Figure 1 the complete information extensive-form game (which I modify in Section 4 to consider

asymmetric information).

2.1 Accept or reject decisions

To accommodate potential moral concerns, the accept or reject decision for Player i, ai, i ∈
{1, 2}, must originate from a mapping of both the price she is pondering about (call it p ∈ R) and

her own price pi ∈ R into {0, 1}. We thus have ai : R
2 → {0, 1}. The expression ai(p, pi) = 1

reflects Player i’s decision to accept price p given that she herself is setting pi. Likewise,

ai(p, pi) = 0 indicates Player i’s rejection of price p given that she is setting pi. I define the

space of all possible ai mappings as A. We will see further on that ai’s second argument pi

matters only in a game played between moral agents.

3The present one is adaptation of the approach used in Rivero-Wildemauwe (2023) to be able to accommodate

sequential decision-making.
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Figure 1: Complete information game in extensive form
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2.2 Strategy spaces and payoffs

Given that players do not know their role ex-ante, the expected material payoff obtained by

Player i ∈ {1, 2} when choosing actions (pi,ai) ∈ R × {0, 1} against Player j’s (pj,aj) ∈
R× {0, 1} (with i ̸= j) is:

π ((pi,ai), (pj,aj)) =
aj · (v − pi) +ai · (pj − r)

2
. (1)

Following Alger and Weibull (2013) and the subsequent literature on Kantian moral con-

cerns, I now introduce the utility function for an homo moralis :

U
(
(pi, ai), (pj, aj)

)
=(1− κ) · π

(
(pi, aj(pi, pj)), (pj, ai(pj, pi))

)
+

κ · π
(
(pi, ai(pi, pi)), (pi, ai(pi, pi)

)
,

(2)

where κ ∈ [0, 1] is the “degree of morality”. This function states that a (partially) moral agent

puts a weight of (1 − κ) on their own expected material payoff when playing (pi, ai) against

(pj, aj). At the same time, she also cares (with a weight of κ) about what her payoff would
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have been had the other agent used her own strategy (pi, ai) instead of (pj, aj). This latter

term reflects the player’s Kantian moral concern, as it effectively answers the question “how

would I like it for the other agent to behave like me?”. Replacing the payoffs, we get:

2U
(
(pi, ai), (pj, aj)

)
=(1− κ) ·

[
aj(pi, pj) · (v − pi) + ai(pj, pi) · (pj − r)

]
+

κ ·
[
ai(pi, pi) · (v − pi) + ai(pi, pi) · (pi − r)

]
=

(1− κ) ·
[
aj(pi, pj) · (v − pi) + ai(pj, pi) · (pj − r)

]
+

κ ·
[
ai(pi, pi) · (v − r)

]
(3)

From expression (3), it is clear that in addition to their expected material payoff, moral

agents value the fact that their price and acceptance decisions lead to surplus-generating trade

taking place if their actions are adopted by their counterpart. This is reflected in the second

term of the utility function.

2.3 Equilibrium conditions

In the case where agents are endowed with moral preferences, considering ai mappings that

take both prices into account is imperative. To see this, it suffices with examining Equation

(3) and noticing that its second term indicates that agent i actually has to decide whether or

not she would accept her own price. But the subgame where i sets pi is not the same where

she decides whether to accept pj. In other words, a player’s utility function within a given

subgame is affected by actions chosen in another, counter-factual subgame (this is due to the

non-consequentialistic nature of Kantian thinking). However, notice that this effect is constant

within the subgame and, hence, does not affect the optimal action in it. We can thus solve

the game by backwards induction as usual, but using an equilibrium notion that takes non-

consequalism into account. Our equilibrium concept must also boil down to standard subgame

perfection when dealing with fully consequentialistic agents such as homo oeconomicus.

Definition 2.1 (Equilibrium with complete information). An equilibrium in this game is a

profile (p∗i , a
∗
i ) ∈ R×A for all i ∈ {1, 2} such that for any pair of prices (pi, pj) ∈ R

2:

1. For all p,

a∗i (p, p) ∈ argmin
a∈{0,1}

(1− κ) · π
(
(p,a), (p, a∗j(p, p))

)
+ κ · π ((p,a), (p,a)) (4)

2. For all (pi, pj) such that pi ̸= pj,

a∗i (pi, pj) ∈ argmin
a∈{0,1}

(1−κ) ·π
(
(pi,a), (pj, a

∗
j(pi, pj))

)
+κ ·π ((pi, a

∗
i (pi, pi)) , (pi, a

∗
i (pi, pi)))

(5)

And:

p∗i ∈ argmin
p∈R

(1− κ) ·
[
a∗j(p, p

∗
j) · (v − p) + a∗i (p

∗
j , p) · (p∗j − r)

]
+ κ ·

[
a∗i (p, p) · (v − r)

]
(6)
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Definition 2.1 states that for all i ∈ {1, 2} the equilibrium mappings a∗i should induce accept

or reject decisions ai that maximise the agents’ utility given the prices set in the first stage.

In turn, for all i ∈ {1, 2} the equilibrium prices p∗i should constitute a mutual Best Reply given

that agents anticipate that the optimal mappings will be chosen.

This Definition retains the subgame perfection “flavour” while allowing to consider agents

concerned with the question: “how would I fare if my counterpart behaved like me?”. Notice

that this reasoning implies that off-equilibrium actions may affect equilibrium utilities. It also

suggests a way to find such equilibria: first assume that both p1 and p2 are known and compute

a∗i , i ∈ {1, 2}, at the last stage. Next, in the previous stage and knowing the a∗i mappings, find

pBR
i (pj) such that it maximises (3).

3 Equilibrium with complete information

3.1 Homo oeconomicus (κ = 0)

In the homo oeconomicus case, all the agent cares about is π ((pi,ai), (pj,aj)). I apply back-

wards induction and therefore start with the last stage, where agents need to decide whether to

sell or not at the proposed price. It is clear that ai = 1 if and only if pj ≥ r and 0 otherwise,

for every pi ∈ R. Given this, in the price-setting stage agents will chose pi = r. We can thus

conclude that the complete information game when κ = 0 has a unique equilibrium: p∗i = r

and a∗i (p
∗
j , p

∗
i ) = 1 if and only if pj ≥ r and 0 otherwise (which given p∗i induces ai = 1); for all

i, j ∈ {1, 2}, i ̸= j.

In equilibrium, two agents who have absolutely no moral concerns will offer and accept prices

equal to cost. Trade thus takes place, with the player in the Buyer role capturing all the surplus

generated. This is consistent with a standard Ultimatum Game with no role uncertainty. In

this line, notice that the homo oeconomicus agent only considers whether the price she is being

offered is above her cost or not. This means that we can restrict attention to ai mappings that

just link a price with an accept or reject decision, such that ai : R → {0, 1}. It follows that

if we only consider ai(pj) and not ai(pj, pi), the equilibrium profile found is also the unique

subgame-perfect equilibrium.

3.2 Homo moralis (κ ∈ (0,1))

When considering moral agents, we need to consider that agents will take their own price into

account when deciding whether to accept or reject her rival’s. Following the method suggested

by Definition 2.1, I employ backwards induction in order to find the game’s equilibria. I start

with the accept or rejection stage. If pi = pj = p, utility becomes:
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2U
(
(p, ai), (p, aj)

)
=(1− κ) ·

[
aj(p, p) · (v − p) + ai(p, p) · (p− r)

]
+

κ ·
[
ai(p, p) · (v − r)

]
=

(1− κ) · (aj(p, p) · (v − p)) + ai(p, p) · ((1− κ)p+ κv − r).

(7)

The optimal accept decision ai thus becomes: ai = 1 if and only if p ≥ r−κv
1−κ

and 0 otherwise.

In contrast, if pi ̸= pj, then ai = 1 for all pi ̸= pj and a∗i (pj, pi) = 1 if and only if pj ≥ r and 0

otherwise.

We now need to find pi such that it is a best response to pj given the above a∗i mappings.

If pj ≥ r, by setting pi = r, Player i ensures that she is buying at the lowest possible price

while also capturing the “moral benefit”, since a∗i = 1 both for pj = r and for pj > r. Next, for

pj ∈ [ r−κv
1−κ

, r), i is indifferent between setting pi = r or pi = pj. Finally, for pj <
r−κv
1−κ

, the best

response is pi = r.

We conclude that there exists a continuum of equilibria: for all i, j ∈ {1, 2}, i ̸= j, where

p∗i = p∗j ∈ [ r−κv
1−κ

, r], a∗i (p
∗
j , p

∗
i ) = 1 if and only if pj ≥ r−κv

1−κ
and 0 otherwise for p∗i = p∗j = p,

and a∗i (p
∗
j , p

∗
i ) = 1 if and only if p∗j ≥ r and 0 otherwise, for p∗i ̸= p∗j . Moral agents can sustain

equilibria with trade at prices lower than the cost. How low they are willing to go depends on

their degree of morality κ, with larger values of the latter making the agents more willing to

accept lower prices.

The intuition behind this result is simple. When a morally concerned agent sets the same

price as her counterpart, at the time of making an accept or reject decision she takes into

account what the “moral” action would be. Given that trade generates a net positive surplus,

morality pushes the agent to accept. However, she will not be willing to trade at any price

because she also cares about her own material surplus. It is from solving this trade-off that

equilibrium prices originate, with the agent willing to part with her item when in the Seller

role only for prices weakly above the “moral reservation price” r−κv
1−κ

. A more intense concern

for morality will cause the agent to accept lower prices because making decisions that facilitate

trade if universalised is relatively more important to her. In fact, an agent who only cares

about morality (κ → 1) accepts any price. In contrast, players who do not care much about

the moral aspect will not be willing to trade at too low a price when compared with the cost

r. In the limit, an agent who does not care about morality (κ → 0) only accepts prices at or

above cost. We thus observe no discontinuities in the equilibrium sets as κ goes from zero to

strictly positive, as is the case in most applications studied in Rivero-Wildemauwe (2023).

It is also worth underlining that in this model, both agents’ have the same degree of morality

and this is common knowledge. Thus, when choosing a price to offer if in the Buyer role, players

are aware that when prices are symmetric, the Seller will agree to any price above the moral

reservation price. As a consequence, they take full advantage of this fact and offer the lowest

acceptable price possible, which is precisely that moral reservation price and is weakly below

the Seller ’s cost. So far, things look quite bright for the party who holds market power (namely,

the Buyer) and indeed they are. But this comes with a caveat when we stop thinking about
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roles and instead focus on agents. More precisely, recall that any given player does not learn

her role until after decisions are made. In equilibrium, agents fully exploit their market power

as Buyer, but are at the same time willing to accept these low prices when in the Seller role.

Moral agents thus offer low prices in equilibrium, but only provided that they themselves would

be willing to accept those low prices.

This complete information version of the model resembles an Ultimatum Game played

behind a Veil-of-Ignorance. Alger and Weibull (2012) (Section 4) and Alger and Weibull (2013)

(Section 6) also study this type of interaction between moral agents, finding that morality

essentially pushes individuals to share the surplus in a more egalitarian fashion. However, their

modelling approach is different to the one presented here. To begin with, they assume risk

averse agents, while in the current paper, payoffs are linear in surplus and thus agents are

risk-neutral. In addition, the strategy spaces in their model are different from the ones in the

present study, as agents simultaneously post a proposal and acceptance threshold. In contrast,

here I am assuming that agents make accept or reject decisions after learning which prices

have been posted, thus retaining the sequentiality of the Ultimatum Game at the core of the

interaction tackled by Alger and Weibull (2012) and Alger and Weibull (2013).

4 Introducing asymmetric information

I now introduce asymmetric information. The aim is to capture a situation where the Seller is

aware of her product’s quality but the Buyer can only form an expectation about it. In order

to do that, I assume that even though the Buyer can still only set one price, the Seller can

make two “accept or reject” decisions with regard to that price: one for the case where her

product is high quality and one for the case where it is low quality, denoted by aih ∈ {0, 1}
and ail ∈ {0, 1} respectively. In addition, in the game’s final stage, Nature draws the the role

distribution (with equal probabilities) as well as the item’s quality. The latter can be high with

probability λ ∈ [0, 1] and low with probability 1− λ. In line with this, there is now a valuation

for the high quality object and another one for the low quality item, and idem for the costs.

I denote them by vh, vl, rh and rl respectively. The modified extensive form game is shown

in Figure 2, where the play depicted has Player 1 selling both the high and low quality items,

while Player 2 only sells the low quality one.

I assume throughout that 0 ≤ rl < vl < rh < vh. Notice that the cost of producing each

quality rQ is lower than its respective consumer valuation vQ, Q ∈ {h, l}. This means that the

trade of both qualities is socially desirable, as there are net positive surpluses to be had from

the exchange of either one.
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The strategy spaces, payoffs, utility functions and equilibrium conditions must be modified

accordingly. The expected material payoff obtained by Player i ∈ {1, 2} when choosing actions

(pi,aih,ail) ∈ R× {0, 1}2 against Player j’s (pj,ajh,ajl) ∈ R× {0, 1}2 (with i ̸= j) is:

π
(
(pi,aih,ail), (pj,ajh,ajl)

)
=
1

2

[
λajh(vh − pi) + (1− λ)ajl · (vl − pi)

]
+

1

2

[
λaih · (pj − rh) + (1− λ)ail · (pj − rl)

]
,

(8)

The actions aiQ for Q ∈ {h, l} are originated by mappings aiQ ∈ A : R2 → {0, 1} that

link the price Player i is considering (p) and her own price pi to the accept or reject decision.

Having re-defined the payoffs, I now show the utility function for an homo moralis :

U
(
(pi, aih, ail), (pj, ajh, ajl)

)
=(1− κ) · π

(
(pi, aih(pj, pi), ail(pj, pi), (pj, ajh(pi, pj), ajl(pi, pj)

)
+

κ · π
(
(pi, aih(pi, pi), ail(pi, pi), (pi, aih(pi, pi), ail(pi, pi)

)
.

(9)

Replacing the payoffs, we get:

2U
(
(pi, aih, ail), (pj, ajh, ajl)

))
=(1− κ) ·

[
λajh(pi, pj)(vh − pi) + (1− λ)ajl(pi, pj)(vl − pi)+

λaih(pj, pi)(pj − rh) + (1− λ)ail(pj, pi)(pj − rl)
]
+

κ ·
[
λaih(pi, pi)(vh − rh) + (1− λ)aib(pi, pi)(vl − rl)

]
.

(10)

Definition 4.1 states the equilibrium conditions in the asymmetric information game:

Definition 4.1 (Equilibrium with asymmetric information). An equilibrium in this game is a

profile (p∗i , a
∗
ih, a

∗
il) ∈ R×A2 for all i ∈ {1, 2} such that for any pair of prices (pi, pj) ∈ R

2:

1. For all Q,R ∈ {h, l}, Q ̸= R and all p,

a∗iQ(p, p) ∈ argmin
aQ∈{0,1}

{
(1− κ) · π

(
(p,aQ, a

∗
iR(p, p)), (p, a

∗
jQ(p, p), a

∗
jR(p, p))

)
+

κ · π
(
(p,aQ, a

∗
iR(p, p)), (p,aQ, a

∗
iR(p, p))

)} (11)

2. For all Q,R ∈ {h, l}, Q ̸= R and all (pi, pj) such that pi ̸= pj,

a∗iQ(pi, pj) ∈ argmin
aQ∈{0,1}

{
(1− κ) · π

(
(pi,aQ, a

∗
iR(pi, pj)), (pj, a

∗
jQ(pi, pj), a

∗
jR(pi, pj))

)
+

κ · π
((
pi, a

∗
iQ (pi, pi) , a

∗
iR (pi, pi)

)
,
(
pi, a

∗
iQ (pi, pi) , a

∗
iR (pi, pi)

))}
(12)
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And:

p∗i ∈ argmin
p∈R

{
(1− κ) ·

[
λa∗jh(p, p

∗
j)(vh − p) + (1− λ)a∗jl(pi, p

∗
j)(vl − p)+

λa∗ih(pj, p)(p
∗
j − rh) + (1− λ)a∗il(p

∗
j , p)(p

∗
j − rl)

]
+

κ ·
[
λa∗ih(p, p)(vh − rh) + (1− λ)a∗ib(p, p)(vl − rl)

]}
.

(13)

Definition 4.1 states that for all i ∈ {1, 2} and all Q ∈ {h, l} the equilibrium mappings a∗iQ
should induce accept or reject decisions aiQ that maximise the agents’ utility given the prices

set in the first stage. In turn, for all i ∈ {1, 2} the equilibrium prices p∗i should constitute a

mutual Best Reply given that agents anticipate that the optimal mappings will be chosen.

Turning to the analysis of the game’s equilibria under incomplete information, I define the

following quantities. Firstly, the expected consumer valuation, which is the average of the high

and low quality valuations weighed by their respective probabilities (λ and 1- λ).

ve ≡ λvh + (1− λ)vl. (14)

Secondly, the minimum value of λ for which the expected consumer valuation is weakly above

the high-quality cost (rh ≤ ve):

λe ≡
rh − vl
vh − vl

. (15)

Next, the function λ1 : R → [0, 1]. It represents the minimum value of λ for which an agent

would be willing to pay price p in order to acquire the item without knowing its quality.

λ1(p) ≡
p− rl

p− rl + vh − rh
. (16)

Recall that in Section 2 a “moral reservation price” sprang out from the computations, and it

was equal to r−κv
1−κ

. All prices between this value and the cost r could support an equilibrium

with trade. In the asymmetric information case we need to distinguish between the moral

reservation price for a high quality from that of a low quality item. Thus:

qQ ≡ rQ − κvQ
1− κ

;Q ∈ {h, l}. (17)

It is clear that as the degree of morality κ increases qQ, Q ∈ {h, l} decrease. It is then useful

to compute the values of κ for which moral reservation prices sit below costs and valuations.

More exactly, if κ ≥ rh−rl
vh−rl

then qh ≤ rl and if κ ≥ rh−rl
vh−vl

then qh ≥ ql.

κ1 ≡
rh − rl
vh − rl

;κ2 ≡
rh − rl
vh − vl

. (18)

Notice that given my assumption that 0 ≤ rl < vl < rh < vh, we have κ1 < κ2. Moreover:

1. If κ ≤ κ1, then ql ≤ rl ≤ qh ≤ vl < rh < vh

2. If κ ∈ [κ1, κ2], then ql ≤ qh ≤ rl < vl < rh < vh

3. If κ ≥ κ2, then qh ≤ ql < rl < vl < rh < vh

13



5 Equilibria with asymmetric information

5.1 Homo oeconomicus (κ = 0)

I now move on to analyse the asymmetric game’s equilibria for different degrees of morality.

The case where κ = 0 and therefore agents only care about their own material well-being is

tackled in Proposition 5.1.

Proposition 5.1. Consider the asymmetric information game and assume κ = 0. Then, the

unique equilibrium (p∗i , a
∗
ih, a

∗
il) is p

∗
i = rh and a∗iQ(p

∗
j , p

∗
i ) = 1 ⇐⇒ p∗j ≥ rQ and 0 otherwise, for

all i = {1, 2};Q = {h, l}; if and only if λ ≥ λe. For λ < λe, the unique equilibrium (p∗i , a
∗
ih, a

∗
il)

is p∗i = rl and a∗iQ(p
∗
j , p

∗
i ) = 1 ⇐⇒ p∗j ≥ rQ and 0 otherwise, for all i = {1, 2};Q = {h, l}.

Proof. Starting from the accept or reject stage, i’s payoff (8) is maximised if and only if aiQ = 1

when pj ≥ rQ and 0 otherwise, forQ ∈ {h, l}. This is valid for all pi, due to additive separability

of the terms depending on pi and those depending on pj. The Best Reply mappings are thus

aBR
iQ (pj, pi) = 1 ⇐⇒ pj ≥ rQ, otherwise aBR

iQ (pj, pi) = 0. At the price-setting stage, the price

pi that maximises i’s utility (10) with κ = 0 is given aBR
iQ , aBR

jQ and pj is p
BR
i = rh if λ ≥ λe and

pBR
i = rl otherwise.

Corollary 5.1.1. Assume that κ = 0. Since only the first element of the ai mappings are rele-

vant to compute the Best Replies, payoffs in a given subgame are not affected by decisions made

in other subgames. As a consequence, the profiles that are equilibria according to Definition 4.1

are also subgame-perfect equilibria.

In short, Proposition 5.1 states that with homo oeconomicus, we have a unique, symmetric

equilibrium where both players trade only low quality at price rl if λ < λe or both qualities

at price rh when λ ≥ λe. Recall that the trade of both qualities is socially desirable as it

generates a net positive surplus. In this context, when the probability of high quality λ is not

large enough, the typical adverse selection result ensues, whereby the high quality items are

not traded.

Notice that the equilibria described are not only compliant with Definition 4.1 but are also

subgame-perfect, by virtue of the additive separability of the terms depending on pi and those

depending on pj in expression (8).

5.2 Moral agents (κ ∈ (0,1))

Moving on to moral agents, the relevant thresholds for the degree of morality are κ1 and κ2.

When κ surpasses the former, the moral reservation price for the high quality becomes smaller

than the low quality cost, leading to both moral reservation prices to sit below both costs. In

turn, when κ is larger than κ2, not only are moral reservation prices lower than costs, but the

high quality moral reservation price is below that of the low quality. Proposition 5.2 presents

the equilibria for moral agents with a “low” degree of morality, namely, with κ < κ1.
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Proposition 5.2. Consider the asymmetric information game and assume κ ∈ (0, κ1). Then

the game’s equilibria according to Definition 4.1 are:

� When λ ≥ λ1(p), for every p ∈ [qh, rh] and every λ1(p) : p
∗
i = p∗j = p ∈ [qh, rh], a

∗
iQ(p, p

∗
i ) =

1 ⇐⇒ p ≥ qQ and 0 otherwise, for all Q ∈ {h, l}; i, j ∈ {1, 2}; i ̸= j.

� When λ < λ1(p), for every p ∈ [qh, rh] and every λ1(p): p
∗
i = p∗j = rl; a

∗
iQ(p

∗, p∗i ) = 1 ⇐⇒
p∗ ≥ qQ and 0 otherwise. for all Q ∈ {h, l}; i, j ∈ {1, 2}; i ̸= j.

Proposition 5.2 is obtained by applying backwards induction as suggested by Definition

4.1 (for ease of exposition, its proof is relegated to Appendix). It states that if λ is weakly

larger than λ1(p) for p ∈ [qh, rh], then there is a continuum of equilibrium prices in the [qh, rh]

interval. The equilibrium mappings a∗iQ are such that, given their own equilibrium price, agents

will accept any price at least as high as qh. That is: a
∗
iQ(a, p

∗
i ) = 1 ⇐⇒ a ≥ qQ, a ∈ R. These

equilibria are all symmetric, as agents propose the same price and the same a∗iQ mappings. As

a consequence, full trade is attained and thus the most efficient outcome possible is reached.

In turn, when the probability of high quality λ is not large enough (namely, lower than

λ1(p) for p ∈ [qh, rh]), then there is a unique symmetric equilibrium where the a∗iQ mappings

are the same as before but the price is the low quality cost rl. Therefore, the adverse selection

problem persists, as there exist values of λ for which only the low quality item is traded.

It is worth delving deeper into λ1(p), in order to clarify whether going from homo oeconomi-

cus to slightly morally concerned agents significantly alleviates the inefficiencies stemming from

the unequal distribution of information. The function is illustrated in Figure 3. Firstly, notice

that for p ∈ [qh, rh], λ1(p) ∈ (0, 1). In addition, λ1(p) is increasing in p:

λ′
1(p) =

vh − rh
(pj − rl + vh − rh)2

> 0.

Moreover (again for p ∈ [qh, rh]), λ1(p) ∈ [0, λe]:

0 ≤ p− rl
pj − rl + vh − rh

≤ rh − rl
vh − rl

.
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Figure 3: Function λ1(p)

It follows that the λ interval for which moral agents are able to sustain fully efficient equi-

libria is larger to that of homo oeconomicus players. We can then conclude that a mild degree

of morality (no larger than κ1) does improve on the situation, although not in the dramatic

way seen in Rivero-Wildemauwe (2023), where a tiny yet positive degree of morality sufficed to

do away with non-efficient equilibria. The lowest possible value of λ that can sustain full trade

equilibria corresponds to λ1(qh). But notice that qh is actually a function of κ:

qh(κ) =
rh − κvh
1− κ

.

We can thus substitute qh(κ) in λ1(p) to obtain the minimal value of λ necessary to sustain

a full trade equilibrium as a function of κ: λmin : [0, rh−rl
vh−rl

] → [0, 1]. The function λmin(κ) is

depicted in Figure 4. As the degree of morality increases and approaches κ1, the lower bound

of the price interval for which full trade takes place (qh) falls (it equals rl when κ = κ1). In

consequence, the lowest value of λ than can support a full trade equilibrium falls as well, all

the way down to zero when κ reaches κ1.

The game’s equilibria when the degree of morality surpasses κ1 but not κ2 are laid out in

Proposition 5.3. Recall that for κ ∈ [κ1, κ2), ql ≤ qh ≤ rl < vl < rh < vh. That is, the moral

reservation price for the low quality item is still below that for the high quality, but the latter

is lower than both costs.

Proposition 5.3. Consider the asymmetric information game and assume κ ∈ [κ1, κ2). Then

the game’s equilibria according to Definition 4.1 are:

� For any λ: p∗i = p∗j = p ∈ [qh, rl], a
∗
iQ(p, p

∗
i ) = 1, for all Q ∈ {h, l}; i, j ∈ {1, 2}; i ̸= j.

� When λ ≥ λ1(p) for every p ∈ [rl, rh] and every λ1(p): p∗i = p∗j = p ∈ [rl, rh], a
∗
iQ(p, p

∗
i ) =

1, for all Q ∈ {h, l}, i, j ∈ {1, 2}, i ̸= j.
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Figure 4: Function λmin(κ)

The first noteworthy effect of agents having a larger degree of morality (at least as high as

κ1) is that there are no more inefficient equilibria. That is, only equilibria where both qualities

are traded remain. In contrast with the case where κ ∈ (0, κ1), here when considering the

function λ1(p), its domain is the entire [rl, rh] interval.

This result comes about because with κ ≥ κ1, both moral reservation prices sit below the

costs. As a consequence, the required minimum level of λ that sustains a full trade equilibrium

goes as low as zero. This is easily seen in Figure 3, where the function λ1(p) equals zero then

p = rl. In other words, even for λ = 0, we can find p such that λ ≥ λ1(p), namely rl. The

prices that support full trade equilibria are then p∗ ∈ [qh,p], where p ∈ [rl, rh] is such that

λ1(p) ≤ λ.

Finally, when agents exhibit a high degree of morality, with κ ≥ κ2, the same effect obtains.

The difference is that now the lower bound on the price interval that sustains the equilibria

is the moral reservation price for the low quality, ql and not qh. Proposition 5.4 presents this

result.

Proposition 5.4. Consider the asymmetric information game and assume κ ≥ κ2. Then the

game’s equilibria according to Definition 4.1 are:

� For any λ: p∗i = p∗j = p ∈ [ql, rl], a
∗
iQ(p, p

∗
i ) = 1, for all Q ∈ {h, l}; i, j ∈ {1, 2}; i ̸= j.

� When λ ≥ λ1(p) for every p ∈ [rl, rh] and every λ1(p): p∗i = p∗j = p ∈ [rl, rh], a
∗
iQ(p, p

∗
i ) =

1, for all Q ∈ {h, l}, i, j ∈ {1, 2}, i ̸= j.
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6 Discussion

Moral concerns have been shown to have a sound theoretical support (Alger and Weibull (2013))

and to be empirically relevant (Miettinen et al. (2020), Van Leeuwen and Alger (2023) Alger

and Rivero-Wildemauwe (2023)). While efforts to understand the effects of moral preferences

on different contexts have been made (see Section 1), so far the literature has not engaged

with bilateral trade situations where informational asymmetries are present, except for Rivero-

Wildemauwe (2023).

In this paper, I analyse the efficiency properties of a bilateral trade game’s equilibria where

bids are posted sequentially rather than simultaneously (as in Rivero-Wildemauwe (2023)).

While a simultaneous action setting naturally does away with market power, in the present

study the Buyer is a monopsonist, as she moves first. This set-up allows me to stay clear of

potential signalling issues, as the party who holds an informational advantage is indeed the

Seller.

I find that the expected quality required for moral agents to avoid the adverse selection

outcome is weakly lower than that of homo oeconomicus players. Furthermore, it is decreasing

in the degree of morality. As a consequence, agents with a low but strictly positive degree

of morality are able to reach fully efficient equilibria for a broader range of expected quality

values as compared to the model populated by pure profit maximisers. This entails that the

range of prices that can support these equilibria is also enlarged, with sellers willing to accept

prices lower than their cost. I also find a threshold degree of morality above which all equilibria

are efficient. Considering moral agents in this setting therefore mitigates the adverse selection

problem and completely eliminates it when the degree of morality is sufficiently high. These

results are “smoother” as compared to Rivero-Wildemauwe (2023). With the sequential set-

up used here, going from homo oeconomicus agents to mildly moral ones only modifies the

equilibrium set marginally, as opposed to Rivero-Wildemauwe (2023) where a strictly positive

degree of morality does away with any inefficient result in most situations.

A relevant remark to be made is that the experimental literature typically finds that pro-

posers in the Ultimatum Game do not attempt to keep all the surplus generated and responders

are not willing to accept an “unfair” distribution of the surplus. This fact has been explained

by a mixture of fairness concerns, inequity aversion and reciprocity (Camerer (2003), Camerer

and Thaler (1995), Fehr and Fischbacher (2003), Charness and Rabin (2002)) in the presence of

risk aversion. Briefly put, if a responder might experience dis-utility from knowing that she has

received an “unfair” offer, she might refuse. Knowing this, a risk-averse proposer may not offer

a very in-egalitarian distribution. More recently, Capraro and Rodriguez-Lara (2021) report

experimental results where both the amount proposed and the minimum accepted offer depend

positively on proxies of moral concerns.

Why are then these results (and the model proposed in Alger and Weibull (2013)) seemingly

at odds with the current findings? Central to the answer are the facts that the payoff functions

used here are “linear in money” and that agents know exactly what their rival is willing to

accept or not, even after factoring in moral concerns. Linearity implies that what is “moral”
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for these agents is to behave in a way that conduces to the surplus being produced, not caring

about its distribution. In turn, with partial morality, sequentiality means that when proposing,

agents choose a price that maximises their share of the surplus subject to being willing to

accept said price if in the role of respondent. My results are thus in line with Eriksson et al.

(2017), where framing the reject option as “Payoff Reduction” leads rejection rates to decline

and the option to be judged morally wrong, as opposed to when the choice is simply labelled as

“Reject”. They are also coherent with the relatively high acceptance rate of responders in the

“mini” Ultimatum Game played behind the Veil of Ignorance reported by Van Leeuwen and

Alger (2023).

The current study suggests a number of avenues for future research. A natural first question

to be asked is what happens when it is the Seller who bids first and thus holds monopoly power.

The interest in providing an answer lies in the fact that the seller of a high quality item might

be interested in signalling this to the Buyer through her proposed price (Wolinsky (1983),

Jones and Hudson (1996)). Secondly, the comparison with other types of pro-social preferences

such as inequity aversion (Fehr and Schmidt (1999)) in this framework is also pertinent: are

the equilibria of a game between inequity-averse individuals more efficient? Are they in line

with the experimental literature? Thirdly, this paper considers agents with the same degree of

morality, and moreover, this is common knowledge. A follow-up question is what would happen

in the case where players hold different degrees of morality. In addition, one cannot help but

to wonder what would the equilibria look like if agents did not know their counterpart’s degree

of morality but could form an expectation about it. The issue seems to be particularly relevant

in the presence of risk aversion.

Finally, this framework could serve as a template for future experimental research, as the

game analysed seems to be applicable in a laboratory setting. It would be of particular interest

to study individuals’ behaviour in treatments where the adverse selection problem is more

or less acute and have them decide behind and in front of the Veil-of-Ignorance (as in Alger

and Rivero-Wildemauwe (2023)). By the same token, eliciting players’ degree of morality or

concerns for fairness and making it common knowledge before choices are made would provide

a good test for how far players in the Buyer role are willing to go in their impulse to maximise

their material payoff.
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A Appendix

A.1 Accept-or-reject stage (asymmetric information and moral agents)

I begin by figuring out i’s optimal accept or reject mappings, aBR
iQ (p, pi), Q = {h, l}. These are

the same for all κ ∈ (0, 1].

Lemma A.1. If pi = pj = p; i ̸= j, the Best Response mapping aBR
iQ (p, p) for Q = {h, l} is

aBR
iQ (p, p) = 1 ⇐⇒ p ≥ qQ and aBR

iQ (p, p) = 0 otherwise.

If pi ̸= pj, then for Q = {h, l},

aBR
iQ (pi, pi) = 1 for all pi ̸= pj

aBR
iQ (pj, pi) = 1 ⇐⇒ p ≥ rQ and aiQ(pj) = 0 otherwise.

To expedite the reading of the proofs, it is useful to establish the following Definition:

Definition A.2. Define the probability that the item is of quality Q as PQ. We thus have

Ph = λ and Pl = 1− Ph = 1− λ.

Proof. Consider aiQ = 1 and a′
iQ = 0:

(1− κ) ·
[
λajh(p, p)(vh − p) + (1− λ)ajl(p, p)(vl − p) + PQaiQ(p− rQ) + (1− PQ)aiR(p, p)(p− rR)

]
+

κ ·
[
PQaiQ(vQ − rQ) + (1− PQ)aiR(p, p)(vR − rR)

]
≥

(1− κ) ·
[
λajh(p, p)(vh − p) + (1− λ)ajl(p, p)(vl − p) + PQa

′
iQ(p− rQ) + (1− PQ)aiR(p, p)(p− rR)

]
+

κ ·
[
PQa

′
iQ(vQ − rQ) + (1− PQ)aiR(p, p)(vR − rR)

]
⇐⇒

(1− κ) ·
[
λajh(p, p)(vh − p) + (1− λ)ajl(p, p)(vl − p) + PQ(p− rQ) + (1− PQ)aiR(p, p)(p− rR)

]
+

κ ·
[
PQ(vQ − rQ) + (1− PQ)aiR(p, p)(vR − rR)

]
≥

(1− κ) ·
[
λajh(p, p)(vh − p) + (1− λ)ajl(p, p)(vl − p) + (1− PQ)aiR(p, p)(p− rR)

]
+

κ ·
[
(1− PQ)aib(p, p)(vR − rR)

]
⇐⇒

p ≥ rQ − κvQ
1− κ

≡ qQ

In turn, if pi ̸= pj, we need to actually distinguish aiQ(pi, pi) and aiQ(pj, pi). For Q = {h, l},
given that (vQ − rQ) > 0, it is clear that aiQ(pi, pi) = 1 for all pi ̸= pj (the agent always wants
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to “trade with herself”). As for aiQ(pj, pi), the agent will not sell to the other player at prices

lower than costs. We thus have:

aiQ(pi, pi) = 1 for all pi ̸= pj

aiQ(pj, pi) = 1 ⇐⇒ p ≥ rQ and aiQ(pj) = 0 otherwise.
(19)

A.2 Price-setting stage (asymmetric information and moral agents)

I compute here the price best responses pBR
i (pj). Recall that according to Definition 4.1, these

ought to be a Best Reply to pj given the aBR
iQ , aBR

jQ mappings (with Q ∈ {h, l}). For this stage,
it is necessary to distinguish between different cases as κ surpasses the thresholds κ1 and κ2.

Lemma A.3.

For κ ∈ (0, κ2):

1. If pj ≥ rh: p
BR
i = rh when λ ≥ λe, p

BR
i = rl otherwise

2. If pj ∈ [qh, rh): p
BR
i = pj when λ ≥ λ1(pj), pi = rl otherwise. Notice that for pj ∈ [rl, rh),

we have λ1(pj) < λe.

3. If pj ∈ [rl, qh): pBR
i = rh when λ ≥ λe, p

BR
i = rl otherwise

4. If pj ∈ [ql, rl): pBR
i = rh when λ ≥ λe, p

BR
i = rl otherwise

5. If pj < ql: pBR
i = rh when λ ≥ λe, p

BR
i = rl otherwise

Proof. I find the price pi that maximises (10) given aBR
iQ , aBR

jQ (with Q ∈ {h, l}), for all possible
values of pj.

pj ≥ rh

a. If pi = pj = p ≥ rh =⇒ aBR
iQ (p, p) = 1 for all Q = {h, l}, i = {1, 2}.

b. If pi ̸= pj, set lowest pi possible

b1. pi = rh + ϵ, ϵ → 0, =⇒ aBR
iQ (pj, pi) = 1 for all Q = {h, l}; i, j ∈ {1, 2}

b2. pi = rl =⇒ aBR
iQ (pj, pi) = 1 for all Q = {h, l}, aBR

iQ (pi, pi) = 1 for all Q = {h, l};
aBR
jh (pi, pj) = 0 and aBR

jl (pi, pj) = 1

Between (a) and (b1), the only difference is that i buys at a larger price. So (b1) is always

preferred to (a). The Best Response is rh if λ ≥ λe and rl otherwise.

pj ∈ [qh, rh) :

a. If pi = pj = p ∈ [qh, rh) =⇒ aBR
iQ (p, p) = 1 for all Q = {h, l}, i = {1, 2}.
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b. If pi ̸= pj, set lowest pi possible

b1. pi = rh =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 1, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) =

1, aBR
jh (pi, pj) = 1, aBR

jl (pi, pj) = 1

b2. pi = rl =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj) = 1, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pi) =

0, aBR
jl (pi, pj) = 1

Start by comparing (a) to (b1):

Ua

(
(pj, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)
≥ Ub1

(
(rh, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)

⇐⇒

(1− κ) ·
[
λ(vh − pj) + (1− λ)(vl − pj) + λ(pj − rh) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
>

(1− κ) ·
[
λ(vh − rh) + (1− λ)(vl − rh) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

rh ≥ pj (true by assumption)

Therefore, between (a) and (b1), always choose (a). Now compare (a) to (b2):

Ua

(
(pj, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)
≥ Ub2

(
(rl, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)

⇐⇒

(1− κ) ·
[
λ(vh − pj) + (1− λ)(vl − pj) + λ(pj − rh) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
≥

(1− κ) ·
[
(1− λ)(vl − rl) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

λ ≥ pj − rl
pj − rl + vh − rh

≡ λ1(pj)

Notice that λ1(pj) ∈ (0, 1). In addition, recall that we assume κ < κ1 =⇒ rl < qh and we are

in the case pj ≤ rh. So pj ∈ (rl, rh]. Therefore, λ1(pj) ≤ λe. The Best Response is then

pi = pj = p ∈ [qh, rh] if and only if λ ≥ λ1(pj) and rl otherwise.

pj ∈ [rl,qh) :

a. If pi = pj = p ∈ [rl, qh) =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 1, aBR
ih (pi, pi) = 0, aBR

il (pi, pi) =

1, aBR
jh (pi, pj) = 0, aBR

jl (pi, pj) = 1

b. If pi ̸= pj, set lowest pi possible

b1. pi = rh =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 1, aBR
ih (pi, pj) = 1, aBR

il (pi, pj) =

1, aBR
jh (pi, pj) = 1, aBR

jl (pi, pj) = 1

b2. pi = rl =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 1, aBR
ih (pi, pj) = 1, aBR

il (pi, pj) =

1, aBR
jh (pi, pj) = 0, aBR

jl (pi, pj) = 1
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Start by comparing (a) to (b2):

Ua

(
(pj, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)
≥ Ub2

(
(rl, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)

⇐⇒

(1− κ) ·
[
(1− λ)(vl − pj) + (1− λ)(pj − rl)

]
+

κ ·
[
(1− λ)(vl − rl)

]
≥

(1− κ) ·
[
(1− λ)(vl − rl) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

(1− κ)(1− λ)(rl − pj)− κλ(vh − rh) ≤ 0 (impossible)

Therefore between (a) and (b2), the agent always chooses (b2). Now, compare (b2) with (b1).

Ub1

(
(rh, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)
≥ Ub2

(
(rl, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)

⇐⇒

(1− κ) ·
[
λ(vh − rh) + (1− λ)(vl − rh) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
≥

(1− κ) ·
[
(1− λ)(vl − rl) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

λ ≥ λe

The Best Response is then rh if and only if λ ≥ λe and rl otherwise.

pj ∈ [ql, rl) :

a. If pi = pj = p ∈ [ql, rl) =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 1, aBR
ih (pi, pi) = 0, aBR

il (pi, pi) =

1, aBR
jh (pi, pj) = 0, aBR

jl (pi, pj) = 1

b. If pi ̸= pj, set lowest pi possible

b1. pi = rh =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) =

1, aBR
jh (pi, pj) = 1, aBR

jl (pi) = 1

b2. pi = rl =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pj) =

0, aBR
jl (pi, pj) = 1

Start by comparing (a) to (b2):
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Ua

(
(pj, a

BR
ih , aBR

il ), (pj, ajhBR , aBR
jl )
)
≥ Ub2

(
(rl, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)

⇐⇒

(1− κ) ·
[
(1− λ)(vl − pj) + (1− λ)(pj − rl)

]
+

κ ·
[
(1− λ)(vl − rl)

]
≥

(1− κ) ·
[
(1− λ)(vl − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

− κλ(vh − rh) ≥ 0 (impossible)

Therefore between (a) and (b2), the agent always chooses (b2). Now, compare (b2) with (b1).

Ub1

(
(rh, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)
≥ Ub2

(
(rl, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)

⇐⇒

(1− κ) ·
[
λ(vh − rh) + (1− λ)(vl − rh)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
≥

(1− κ) ·
[
(1− λ)(vl − rl) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

λ ≥ λe

The Best Response is then rh if and only if λ ≥ λe and rl otherwise.

pj < ql :

a. If pi = pj = p ∈ [ql, rl) =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 0, aBR

il (pi, pi) =

0, aBR
jh (pi, pj) = 0, aBR

jl (pi, pj) = 0

b. If pi ̸= pj, set lowest pi possible

b1. pi = rh =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) =

1, aBR
jh (pi, pi) = 1, aBR

jl (pi, pi) = 1

b2. pi = rl =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pj) =

0, aBR
jl (pi, pj) = 1

The Best Response is then rh if and only if λ ≥ λe and rl otherwise.

Lemma A.4.

For κ ∈ [κ1, κ2), we have that ql ≤ qh < rl. The price best replies are:

1. If pj ≥ rh: p
BR
i = rh when λ ≥ λe, p

BR
i = rl otherwise

2. If pj ∈ [rl, rh): pBR
i = pj when λ ≥ λ1(pj), p

BR
i = rl otherwise. Notice that for pj ∈

[rl, rh), we have λ1(pj) < λe.
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3. If pj ∈ [qh, rl): pBR
i = pj

4. If pj ∈ [ql, qh): pBR
i = rh when λ ≥ λe, p

BR
i = rl otherwise

5. If pj < ql: pBR
i = rh when λ ≥ λe, p

BR
i = rl otherwise

Proof. I find the price pi that maximises (10) given aBR
iQ , aBR

jQ (with Q ∈ {h, l}), for all possible
values of pj.

pj ≥ rh

a. If pi = pj = p ≥ rh =⇒ aBR
iQ (p, p) = 1 for all Q = {h, l}, i = {1, 2}.

b. If pi ̸= pj, set lowest pi possible

b1. pi = rh + ϵ, ϵ → 0, =⇒ aBR
iQ (pj, pi) = 1 for all Q = {h, l}; i, j ∈ {1, 2}

b2. pi = rl =⇒ aBR
iQ (pj, pi) = 1 for all Q = {h, l}, aBR

iQ (pi, pi) = 1 for all Q = {h, l};
aBR
jh (pi, pj) = 0 and aBR

jl (pi, pj) = 1

Between (a) and (b1), the only difference is that i buys at a larger price. So (b1) is always

preferred to (a). The Best Response is rh if λ ≥ λe and rl otherwise.

pj ∈ [rl, rh)

a. If pi = pj = p ∈ [rl, rh) =⇒ aBR
iQ (p, p) = 1 for all Q = {h, l}, i = {1, 2}.

b. If pi ̸= pj, set lowest pi possible

b1. pi = rh =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 1, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pj) =

1, ajl(pi, pj) = 1

b2. pi = rl =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj) = 1, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pi) =

0, aBR
jl (pi, pj) = 1

Start by comparing (a) to (b1):

Ua

(
(pj, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)
> Ub1

(
(rh, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)

⇐⇒

(1− κ) ·
[
λ(vh − pj) + (1− λ)(vl − pj) + λ(pj − rh) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
>

(1− κ) ·
[
λ(vh − rh) + (1− λ)(vl − rh) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

rh > pj (true by assumption)

So between (a) and (b1), always choose (a). Now compare (a) to (b2):
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Ua

(
(pj, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)
> Ub2

(
(rl, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)

⇐⇒

(1− κ) ·
[
λ(vh − pj) + (1− λ)(vl − pj) + λ(pj − rh) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
>

(1− κ) ·
[
(1− λ)(vl − rl) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

λ >
pj − rl

pj − rl + vh − rh
≡ λ1(pj)

Notice that λ1(pj) ∈ (0, 1) and moreover, λ1(pj) < λe. The Best Response is then

pi = pj = p ∈ [rl, rh) if and only if λ ≥ λ1(pj) and rl otherwise. Notice that λ1(rl) = 0

and therefore, pBR
i (rl) = rl and it induces full trade.

pj ∈ [qh, rl)

a. If pi = pj = p ∈ [qh, rl) =⇒ aBR
ih (pj, pi) = 1, aBR

il (pj, pi) = 1, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) =

1, aBR
jh (pi, pj) = 0, aBR

jl (pi, pj) = 1

b. If pi ̸= pj, set lowest pi possible

b1. pi = rh =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pj) =

1, ajl(pi, pj) = 1

b2. pi = rl =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pj) =

0, aBR
jl (pi, pj) = 1

Start by comparing (a) to (b1):

Ua

(
(pj, aih, ail), (pj, ajh, ajl)

)
≥ Ub1

(
(rh, aih, ail), (pj, ajh, ajl)

)
⇐⇒

(1− κ) ·
[
λ(vh − pj) + (1− λ)(vl − pj) + λ(pj − rh) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
≥

(1− κ) ·
[
λ(vh − rh) + (1− λ)(vl − rh)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

1 ≥ λ (true by definition)
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So between (a) and (b1), the agent always chooses (a). Now, compare (a) with (b2).

Ua

(
(pj, aih, ail), (pj, ajh, ajl)

)
≥ Ub2

(
(rl, aih, ail), (pj, ajh, ajl)

)
⇐⇒

(1− κ) ·
[
λ(vh − pj) + (1− λ)(vl − pj) + λ(pj − rh) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
≥

(1− κ) ·
[
(1− λ)(vl − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

λ(vh − rh) ≥ 0 (true by assumption)

The Best Response is pj.

pj ∈ [ql,qh)

a. If pi = pj ∈ [ql, qh) =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 1, aBR
ih (pi, pi) = 0, aBR

il (pi, pi) =

1, aBR
jh (pi) = 0, aBR

jl (pi) = 1

b. If pi ̸= pj, set lowest pi possible

b1. pi = rh =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pj) =

1, ajl(pi, pj) = 1

b2. pi = rl =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pj) =

0, aBR
jl (pi, pj) = 1

Start by comparing (a) to (b2):

Ua

(
(pj, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)
> Ub2

(
(rl, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)

⇐⇒

(1− κ) ·
[
(1− λ)(vl − pj) + (1− λ)(pj − rl)

]
+

κ ·
[
(1− λ)(vl − rl)

]
>

(1− κ) ·
[
(1− λ)(vl − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

− κλ(vh − rh) > 0 (impossible by assumption)

So between (a) and (b2), the agent always chooses (b2). Now, compare (b2) with (b1).

Ub1

(
(rh, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)
≥ Ub2

(
(rl, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)

⇐⇒

(1− κ) ·
[
λ(vh − rh) + (1− λ)(vl − rh)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
≥

(1− κ) ·
[
(1− λ)(vl − rl) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

λ ≥ λe
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The Best Response is rh if and only if λ ≥ λe and rl otherwise.

pj < ql

a. If pi = pj = p < ql =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 0, aBR

il (pi, pi) =

0, aBR
jh (pi, pj) = 0, aBR

jl (pi, pj) = 0

b. If pi ̸= pj, set lowest pi possible

b1. pi = rh =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, ajh(pi, pi) =

1, ajl(pi, pi) = 1

b2. pi = rl =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pj) =

0, aBR
jl (pi, pj) = 1

The Best Response is then rh if and only if λ ≥ λe and rl otherwise.

Lemma A.5.

For κ ≥ κ2, we have that qh ≤ ql < rl. The price best replies are:

1. If pj ≥ rh: p
BR
i = rh when λ ≥ λe, p

BR
i = rl otherwise

2. If pj ∈ [rl, rh): pBR
i = pj when λ ≥ λ1(pj), p

BR
i = rl otherwise. Notice that for pj ∈

[rl, rh), we have λ1(pj) < λe.

3. If pj ∈ [ql, rl): pBR
i = pj

4. If pj ∈ [qh, ql): p
BR
i = rh when λ ≥ λe, p

BR
i = rl otherwise

5. If pj < ql: p
BR
i = rh when λ ≥ λe, p

BR
i = rl otherwise

Proof. I find the price pi that maximises (10) given aBR
iQ , aBR

jQ (with Q ∈ {h, l}), for all possible
values of pj.

pj ≥ rh

a. If pi = pj = p ≥ rh =⇒ aBR
iQ (p, p) = 1 for all Q = {h, l}, i = {1, 2}.

b. If pi ̸= pj, set lowest pi possible

b1. pi = rh + ϵ, ϵ → 0, =⇒ aBR
iQ (pj, pi) = 1 for all Q = {h, l}; i, j ∈ {1, 2}

b2. pi = rl =⇒ aBR
iQ (pj, pi) = 1 for all Q = {h, l}, aBR

iQ (pi, pi) = 1 for all Q = {h, l};
aBR
jh (pi, pj) = 0 and aBR

jl (pi, pj) = 1

Between (a) and (b1), the only difference is that i buys at a larger price. So (b1) is always

preferred to (a). The Best Response is rh if λ ≥ λe and rl otherwise.

pj ∈ [rl, rh)
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a. If pi = pj = p ∈ [rl, rh) =⇒ aBR
iQ (p, p) = 1 for all Q = {h, l}, i = {1, 2}.

b. If pi ̸= pj, set lowest pi possible

b1. pi = rh =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 1, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pj) =

1, ajl(pi, pj) = 1

b2. pi = rl =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj) = 1, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pi) =

0, aBR
jl (pi, pj) = 1

Start by comparing (a) to (b1):

Ua

(
(pj, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)
> Ub1

(
(rh, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)

⇐⇒

(1− κ) ·
[
λ(vh − pj) + (1− λ)(vl − pj) + λ(pj − rh) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
>

(1− κ) ·
[
λ(vh − rh) + (1− λ)(vl − rh) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

rh > pj (true by assumption)

So between (a) and (b1), always choose (a). Now compare (a) to (b2):

Ua

(
(pj, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)
> Ub2

(
(rl, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)

⇐⇒

(1− κ) ·
[
λ(vh − pj) + (1− λ)(vl − pj) + λ(pj − rh) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
>

(1− κ) ·
[
(1− λ)(vl − rl) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

λ >
pj − rl

pj − rl + vh − rh
≡ λ1(pj)

Notice that λ1(pj) ∈ (0, 1) and moreover, λ1(pj) < λe. The Best Response is then

pi = pj = p ∈ [rl, rh) if and only if λ ≥ λ1(pj) and rl otherwise. Notice that λ1(rl) = 0

and therefore, pBR
i (rl) = rl and it induces full trade.

pj ∈ [ql, rl)

a. If pi = pj = p ∈ [ql, rl) =⇒ aBR
ih (pj, pi) = 1, aBR

il (pj, pi) = 1, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) =

1, aBR
jh (pi, pj) = 0, aBR

jl (pi, pj) = 1

b. If pi ̸= pj, set lowest pi possible

b1. pi = rh =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pj) =

1, ajl(pi, pj) = 1
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b2. pi = rl =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pj) =

0, aBR
jl (pi, pj) = 1

Start by comparing (a) to (b1):

Ua

(
(pj, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)
≥ Ub1

(
(rh, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)

⇐⇒

(1− κ) ·
[
λ(vh − pj) + (1− λ)(vl − pj) + λ(pj − rh) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
≥

(1− κ) ·
[
λ(vh − rh) + (1− λ)(vl − rh)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

1 ≥ λ (true by definition)

So between (a) and (b1), the agent always chooses (a). Now, compare (a) with (b2).

Ua

(
(pj, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)
≥ Ub2

(
(rl, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)

⇐⇒

(1− κ) ·
[
λ(vh − pj) + (1− λ)(vl − pj) + λ(pj − rh) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
≥

(1− κ) ·
[
(1− λ)(vl − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

λ(vh − rh) ≥ 0 (true by assumption)

The Best Response is pj.

pj ∈ [qh,ql)

a. If pi = pj ∈ [qh, ql) =⇒ aBR
ih (pj, pi) = 1, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) =

0, aBR
jh (pi) = 1, aBR

jl (pi) = 0

b. If pi ̸= pj, set lowest pi possible

b1. pi = rh =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pj) =

1, ajl(pi, pj) = 1

b2. pi = rl =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pj) =

0, aBR
jl (pi, pj) = 1

Start by comparing (a) to (b2):

33



Ua

(
(pj, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)
> Ub2

(
(rl, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)

⇐⇒

(1− κ) ·
[
(1− λ)(vl − pj) + (1− λ)(pj − rl)

]
+

κ ·
[
(1− λ)(vl − rl)

]
>

(1− κ) ·
[
(1− λ)(vl − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

− κλ(vh − rh) > 0 (impossible by assumption)

So between (a) and (b2), the agent always chooses (b2). Now, compare (b2) with (b1).

Ub1

(
(rh, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)
≥ Ub2

(
(rl, a

BR
ih , aBR

il ), (pj, a
BR
jh , aBR

jl )
)

⇐⇒

(1− κ) ·
[
λ(vh − rh) + (1− λ)(vl − rh)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
≥

(1− κ) ·
[
(1− λ)(vl − rl) + (1− λ)(pj − rl)

]
+

κ ·
[
λ(vh − rh) + (1− λ)(vl − rl)

]
⇐⇒

λ ≥ λe

The Best Response is rh if and only if λ ≥ λe and rl otherwise.

pj < qh

a. If pi = pj = p < qh =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 0, aBR

il (pi, pi) =

0, aBR
jh (pi, pj) = 0, aBR

jl (pi, pj) = 0

b. If pi ̸= pj, set lowest pi possible

b1. pi = rh =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, ajh(pi, pi) =

1, ajl(pi, pi) = 1

b2. pi = rl =⇒ aBR
ih (pj, pi) = 0, aBR

il (pj, pi) = 0, aBR
ih (pi, pi) = 1, aBR

il (pi, pi) = 1, aBR
jh (pi, pj) =

0, aBR
jl (pi, pj) = 1

The Best Response is then rh if and only if λ ≥ λe and rl otherwise.
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