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Abstract

Two agents trade an item in a simultaneous offer setting, where the exchange takes place

if and only if the buyer’s bid price weakly exceeds the seller’s ask price. Each agent is

randomly assigned the buyer or seller role. Both agents are characterized by a certain

degree of Kantian morality, whereby they pick their bidding strategy behind a veil of igno-

rance, taking into account how the outcome would be affected if their trading partner were

adopting their strategy. I consider two variants with asymmetric information, respectively

allowing buyers to have private information about their valuation or sellers to be privately

informed about the item’s quality. I show that when all trades are socially desirable, even

the slightest degree of morality guarantees that the outcome is fully efficient. In turn,

when quality is uncertain and some exchanges are socially undesirable, full efficiency is

only achieved with sufficiently high moral standards. Moral concerns also ensure equal

ex-ante treatment of the two agents in equilibrium. Finally, I show that if agents are al-

truistic rather than moral, inefficiencies persist even with a substantial degree of altruism.
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1 Introduction

Asymmetric information constitutes one of the main departures from perfect competition. It

may induce coordination breakdowns in trade, leading to mutually beneficial exchanges not

taking place. The Myerson and Satterthwaite (1983) theorem is a stark illustration of this

issue. While the effects of information asymmetries have been largely studied through models

populated by purely self-interested materialistic agents, human motivations are significantly

richer.

This paper focuses more specifically on the implications of agents weighing how they them-

selves would fare if hypothetically, other individuals also adopted their own course of action.

This kind of behaviour, usually referred to as “Kantian morality”, is potentially very conse-

quential in strategic interactions, and there exists sufficient experimental evidence to justify its

serious study.1 Moreover, the existing literature shows that this sort of moral reasoning helps

to remedy market failures in a host of different settings (see Alger and Weibull (2016)).

Here I study the extent to which Kantian moral motivations (or homo moralis preferences)

à la Alger and Weibull (2013) can solve inefficiencies originated in an unequal distribution of

information in bilateral trade.2 In this context, an agent who finds herself in the seller role

will take into account her own payoff if she were a buyer and happened to meet a seller who

employs her own strategy. Likewise, an individual in the buyer role applies the same reasoning

with the roles reversed. Exactly how much agents care about this counter-factual scenario is

measured by a parameter henceforth referred to as the degree of morality.

In order to capture this precise setting, I assume that agents play a bilateral trading game

where one is cast into the buyer role and the other one into the seller role, but they make their

decisions behind a Veil of Ignorance. That is, without knowing what the final role distribution

will be. This in turns implies that each participant needs to choose their seller strategy as well

as their buyer strategy before learning their role.

After roles have been assigned, agents play a game where they trade an item in a simultane-

ous offer setting. The exchange takes place if and only if the buyer’s bid price weakly exceeds

the seller’s ask price. Due to the simultaneous-move nature of the game, my framework does

not assume asymmetries in bargaining power. It also incorporates information asymmetries

1Experimental evidence consistent with the presence of Kantian morality is reported in Levine et al. (2020)

and Alger and Rivero-Wildemauwe (2023). Kantian preferences’ large out-of-sample predictive power is docu-

mented in Miettinen et al. (2020) and Alger and Van Leeuwen (2021). For evidence of deontological thinking,

see for example Capraro and Rand (2018), Tappin and Capraro (2018), Bursztyn et al. (2019), Capraro and

Vanzo (2019), Bilancini et al. (2020) and Sutter et al. (2020). For the theory grounding these particular moral

motivations in evolutionary processes, refer to Alger and Weibull (2013) and Alger et al. (2020).
2Theirs is not the only way to consider morality in such a setting. A very relevant alternative is the approach

described in Roemer (2010), where the notion of a “Kantian Equilibrium” is proposed. This is defined as a

strategy profile where no player would like all players to deviate in the same way.
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between buyer and seller. More precisely, I consider two kinds of canonical information asym-

metries that have been well studied under the assumption that agents only strive to maximise

their own material welfare. The first one is the case where the buyer’s valuation for the good

is her own private information and the seller can only resort to uniform pricing. The second

one is adverse selection. In this scenario, the information asymmetry favours the seller, who

knows the quality of her product (which may be high or low), while the buyer can only form

an expectation about it.

In the case where the seller is uncertain about the buyer’s valuation, the model always

produces two kinds of equilibria. The first one is fully efficient as no consumers are excluded

from the market. This result is a feature of the one-shot nature of the game I consider. The

second one features low-valuation consumers being excluded from the market (as in the standard

monopoly model) even though costs are below even the lowest consumer valuation. Introducing

moral concerns completely mutes this source of inefficiency, with only the most efficient profiles

(those where all consumers are served) surviving as equilibria.

In the adverse selection setting I consider two variants. Firstly, I examine the case where

the trade of both qualities produces a net positive surplus. Secondly I tackle the case where

trade of the low quality item is socially undesirable, as its cost is higher than the consumer’s

valuation for it. When trade of both qualities produces a net positive surplus, a sufficiently

high expected quality leads to equilibria that feature either no trade, only trade of the low

quality or trade of both qualities (the latter being the efficient result). In turn, if expected

quality is low, only equilibria with no trade or where high quality sellers are driven out of the

market are possible. Introducing even the slightest degree of morality (as long as agents are

not completely Kantian) fully restores efficiency, as only equilibria with trade of both qualities

are possible in this case.

So far, both the case where the seller is uncertain about the buyer’s valuation and the adverse

selection setting with desirable trade lead to the same conclusion: going from a game populated

by agents only concerned with their own material payoff (homo oeconomicus) to the same

one but with agents holding moral concerns eliminates all but the efficient equilibria. These

surviving equilibria are also symmetric in strategies, producing an ex-ante egalitarian result. It

can be stated then that introducing homo moralis preferences in these contexts (starting from

the benchmark self-interested materialistic agents) narrows down the equilibrium set, rather

than introducing equilibrium behaviour that would not arise with homo oeconomicus. It is

worth underscoring that for this narrowing down to occur, all it takes is for agents to be even

slightly morally concerned. In other words, the model does not feature a positive threshold

degree of morality for the efficient equilibria to be the only outcome possible, as I instead find

a stark discontinuity at zero, which implies that even the smallest degree of morality suffices

to eliminate all inefficient equilibria.

The situation where trade of the low quality item is undesirable presents important dif-

ferences with respect to the previous ones. Firstly, the most efficient result, which is having

only trade of the high quality item, is not an equilibrium when agents are homo oeconomicus.
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However, a sufficiently high degree of morality leads to these kind of profiles becoming equilib-

ria and moreover, the only kind possible. Thus, in this case morality does not act as a mere

equilibrium selection device. Rather, it allows for the existence of a fully efficient equilibrium

and, given a high enough degree of morality, it also selects on it.

Finally, I return to all the model variants described above and compare my results with

the case where players are endowed with altruistic preferences à la Becker (1976). The general

conclusion is that it takes a relatively high degree of altruism to fully restore efficiency even

in the settings where all trade is desirable. This result contrasts sharply with the effects

of morality, as in most cases partially Kantian agents manage to coordinate on the efficient

equilibria regardless of their degree of morality.

This paper is broadly related to the theoretical literature that studies the effects of pro-

social preferences and moral motivations on the equilibrium outcomes in a host of strategic

interactions (see e.g. Arrow (1973), Becker (1974), Andreoni (1988, 1990), Bernheim (1994),

Levine (1998), Fehr and Schmidt (1999), Akerlof and Kranton (2000), Bénabou and Tirole

(2006), Alger and Renault (2007), Ellingsen and Johannesson (2008), Englmaier and Wambach

(2010), Dufwenberg et al. (2011)). However, the closest references within this literature are

those that analyse the effects of moral concerns à la Alger and Weibull (2013).

In this line, Alger and Weibull (2017) study several canonical games and compare the

outcomes when players have standard, altruistic and moral preferences. Meanwhile, Sarkisian

(2017) analyses the optimal contract in a moral hazard problem where a risk-neutral principal

hires two risk-averse agents to perform a joint task and may be endowed with either standard,

altruistic and moral preferences. Ayoubi and Thurm (2020) rely on Kantian moral concerns to

explain why agents may engage in costly pro-environmental behaviour. Muñoz-Sobrado (2022)

tackles optimal linear and non-linear taxation problems with moral agents. Finally, Juan-

Bartroli and Karagozoglu (2022) study a standard Nash bargaining game where individuals

have moral concerns.

The aforementioned references have in common the fact that they deal with symmetric

games where information is equally distributed. In contrast, this paper focuses on contexts with

different information structures and importantly, where information asymmetries are central.

This in turn implies that the nature of the interaction is by definition asymmetric. The Veil

of Ignorance approach that I propose here allows me to carry out the analysis of this a priory

asymmetric situation through the lens of homo moralis and obtain the first results on how

moral concerns interact with asymmetric information.

The rest of the paper is organised as follows. Section 2 presents the general framework and

the benchmark bilateral trade game under complete information. Section 3 extends the model

to consider the case where buyers are heterogeneous in their valuations but the seller can only

set one price. Section 4 analyses the adverse selection case, where the buyer does not know the

product’s quality. Section 5 revisits the previous models now populated by altruistic agents.

Finally, Section 6 provides an overall discussion of my results.
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2 Framework

In this Section I describe the general setting used throughout the paper and also present the

benchmark complete information case. As stated in the Introduction, a simple and tractable

way to consider agents capable of universalising their choices in an asymmetric setting is to

take an ex-ante approach, analysing decisions made behind a “Veil of Ignorance” with respect

to the role distribution. In this line, I set up an environment where two identical agents play

one of two games, with Nature deciding which game is to be played: either the one that has

Player 1 in the first role (say, “seller”) and therefore Player 2 in the second role (“buyer”) or

vice-versa.

More formally, consider G1, a “contingent game” between players 1 and 2. Player 1 chooses

strategy s1 ∈ S and Player 2 chooses strategy b2 ∈ B. They respectively obtain the payoffs

πs(s1, b2) and πb(s1, b2), where πs, πb : S × B → R. In addition, take the contingent game G2,

a game between players 1 and 2 where Player 1 chooses strategy b1 ∈ B and Player 2 chooses

strategy s2 ∈ S. They respectively obtain the payoffs πb(s2, b1) and πs(s2, b1).

Next, define G as the game where Nature randomly chooses whether G1 or G2 is played,

with equal probabilities. The ex-ante material payoff obtained by Player i ∈ {1, 2} when using

strategy (si, bi) ∈ S ×B against Player j’s strategy (sj, bj) ∈ S ×B (with i ̸= j) is:

π ((si, bi), (sj, bj))) =
πs(si, bj) + πb(sj, bi)

2
. (1)

Finally, define the utility that Player i derives from choosing (si, bi) ∈ S × B against

(sj, bj) ∈ S ×B as:

U ((si, bi), (sj, bj))) = (1− κ)π ((si, bi), (sj, bj))) + κπ ((si, bi), (si, bi))) , (2)

where κ ∈ [0, 1] is a parameter representing the player’s “degree of morality”. When choosing

a strategy in the game G, each agent maximizes a convex combination of her own payoff

and the one she would obtain if the other player chose the same strategy as her. The term

π ((si, bi), (si, bi)) thus reflects the moral element in the agent’s decision-making process, as it

provides an answer to the question “what would my payoff be if the other player behaved as

I do?”, while κ ∈ [0, 1] weighs how much the agent cares about this moral component. The

second term in (2) can thus be interpreted as a way to reflect Kant’s categorical imperative,

“to act only on the maxim that you would at the same time will to be a universal law” (Kant

(1785)), mediated by κ.

At one end of the morality spectrum are the agents with κ = 0, to whom I refer as homo

oeconomicus. This is the “standard” case of individuals who are merely trying to maximise

their own material payoff. On the other end are players with κ = 1, whom (again following

Alger and Weibull (2013)) I denominate homo kantiensis. These purely Kantian agents only

care about their (hypothetical) payoff when the opposing party employs the same strategy as

theirs. That is, they only think about what would happen if both players in the game behaved

in the same way as they do and decide irrespectively of the actual strategy chosen by the other
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player in their game. Finally, κ ∈ (0, 1) gives way to partially moral agents or homo moralis,

who put some weight on the morality of their actions while at the same time considering their

own material payoff.

The setting I am proposing can be used for the Veil-of-Ignorance analysis of any two-player

game and is not limited to bilateral trade or bargaining processes. In order to specifically tackle

a given two-player interaction, it suffices to appropriately define S,B, πs, πb and specify κ. In

this paper, contingent game Gi is a game where a seller is in possession of an object and posts

a price for it, while the buyer simultaneously decides which prices she is willing to accept. In

this line, it can also be viewed as a contingent market where Player i is the seller and Player

j is the buyer. If the seller’s price belongs to the buyer’s set of acceptable prices, trade takes

place at that price. If it does not, trade does not occur.

2.1 Benchmark: Complete information

I now present the complete information game that I will use as a benchmark. The agent

assigned to the seller role (say, Player i) sets a price pi ∈ R+. Simultaneously, the player cast

as a buyer (say, Player j) chooses a threshold p̄j ∈ R+ that defines her set of acceptable prices

as all those that belong to the interval [0, p̄j].
3 The agent assigned to the seller role faces a cost

of r ∈ R+ if they sell the object, while the player in the buyer role derives some consumption

utility v ∈ R+ from acquiring the item. If no trade happens, the payoff obtained by each agent

is nil.

In terms of the framework laid out at the beginning of the Section, the above describes the

contingent game Gi, where si is pi ∈ R+ and bj is p̄j ∈ R+. This means that S ×B = R
2
+. The

contingent payoffs πs(pi, p̄j) and πb(pi, p̄j) are then defined as:

πs(pi, p̄j) =: 1{pi ≤ p̄j}(pi − r),

πb(pi, p̄j) =: 1{pi ≤ p̄j}(v − pi).

Substituting πs(pi, p̄j) and πb(pi, p̄j) in expressions (1) and (2) we obtain the ex-ante payoff

and utility, respectively:

π
(
(pi, pi); (pj, pj)

)
=

1

2

[
1{pi ≤ pj}(pi − r) + 1{pj ≤ p̄i}(v − pj)

]
, (3)

U
(
(pi, pi); (pj, pj)

)
=(1− κ) · 1

2

[
1{pi ≤ pj}(pi − r) + 1{pj ≤ p̄i}(v − pj)

]
+

κ · 1
2
· 1{pi ≤ p̄i}(v − r)

(4)

3Throughout the paper, I restrict attention to strategy spaces where buyers’ sets of acceptable prices are

defined by thresholds. I provide a generalisation in the Appendix.
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Notice that the term inside the parenthesis in the last line of Expression (4) is the total net

trade surplus. I consider a materially efficient outcome (or, simply put, an efficient outcome)

as the one that maximises this surplus. As a result, the efficient equilibria in the complete

information game are those that induce trade in both contingent markets.

My main concern throughout the paper is efficiency (although I do study the equity prop-

erties of the equilibrium outcomes whenever relevant). Notice that when considering a given

strategy profile of the bilateral trade game, in each contingent market it can either generate

trade (if the price in that market is no larger than the threshold) or not. As a consequence,

we can classify each profile into a type A/B where A indicates whether there is trade in the

first contingent market and B in the second one. For the complete information game studied

in this Section, profiles can be of four types: Trade/Trade, Trade/No Trade, No Trade/Trade

or No Trade/No Trade.

I begin with the version of the model where κ = 0 (so players only care about their own

material payoff), which I use as a benchmark. In order to find the game’s Nash equilibria in

pure strategies for this case, I start by noticing that, when deciding on her price if in the seller

role, the only way this action affects her payoff is through its interaction with the other player’s

threshold. Likewise, her action as buyer only influences her payoff through its interaction with

the other player’s price. It then follows that the equilibrium set of the bilateral trade game is

comprised of all the ordered pairs formed by an equilibrium in G1 and an equilibrium in G2.

Proposition 2.1 summarises them.4

Proposition 2.1. Consider the complete information bilateral trade game with κ = 0. The

Nash equilibria in pure strategies are:

� Trade/Trade: p∗i = p∗j ∈ [r, v] for all i ̸= j ∈ {1, 2}

� Trade/No Trade or No Trade/Trade: p∗i = p∗j ∈ [r, v], p∗j < r, p∗i > v for all i ̸= j ∈ {1, 2}

� No Trade/No Trade: p∗i < r, p∗j > v for all i ̸= j ∈ {1, 2}

The complete information game between two homo oeconomicus has three types of equi-

librium profiles. The first one is the Trade/Trade result, where exchanges take place in both

contingent markets at prices between seller cost and consumer valuation. The second kind

are No Trade/No Trade equilibria, where there is no trade in either contingent market. Here,

thresholds are set below seller costs and prices are above consumer valuation. The third sort of

equilibria are those with contingent trade, where there is trade in one of the contingent markets

(at a price between cost and valuation) but not in the other (where the threshold is set below

cost and the price is above consumer valuation).

4All proofs are relegated to the Appendix.
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Recall that I assume throughout that r < v, so a materially efficient outcome in this model

is for trade to actually happen. We see then that the second and third types of equilibrium

profiles (those with no trade or with contingent trade) constitute a sort of coordination failure, a

negotiation breakdown that is brought about by the simultaneity in the agents’ decisions. In this

regard, we could say that the particular set-up of the game is “stacked” against the occurrence of

socially beneficial exchanges. The following sections focus on additional inefficiencies stemming

from asymmetric information and explore whether they are mitigated in the presence of moral

concerns.

Having established this benchmark, I explore whether considering partially moral agents

(for whom κ ∈ (0, 1)) modifies this result.5 The following Proposition lays out the bilateral

trade game’s equilibrium set with homo moralis agents.

Proposition 2.2. Consider the complete information bilateral trade game with κ ∈ (0, 1). The

Nash equilibria in pure strategies are r ≤ p∗i = p̄∗j = p∗j = p̄∗i ≤ v,∀i, j ∈ {1, 2}, i ̸= j.

Proposition 2.2 states that only symmetric, full-trade profiles with prices in the [r, v] interval

are Nash equilibria in pure strategies of the bilateral trade game. This equilibrium set is a subset

of the equilibria resulting from the game between homo oeconomicus agents.

Partial morality fully restores efficiency in the complete information set-up, as it effectively

precludes any no-trade or contingent-trade outcome from taking place. Even more strikingly, in

order for the conclusion to go through, it is sufficient for only one of the players to be endowed

with homo moralis preferences. In fact, the attainment of full efficiency does not depend on

the intensity of players’ moral concerns as long as they are not fully Kantian.

It is worth further reflecting on the implications of Proposition 2.2 by contrasting the equi-

libria to the version of the model with homo oeconomicus. Recall that those profiles that

constitute equilibria for the latter but not for homo moralis are those that feature no trade

in at least one contingent market, and those with trade in both but at different prices. The

intuition is fairly simple. Notice that these profiles necessarily imply that at least one of the

players is setting a threshold higher than her own price. While this is completely irrelevant

in the homo oeconomicus case, homo moralis agents will find deviations from these strategies

morally profitable, as they care about setting a price that they themselves would be willing to

accept. Moreover, they can do this either without facing material losses or with only infinites-

5The approach of solving the contingent game to find the game’s equilibrium set is not applicable in this

case. This is due to the fact that when setting her price, each agent needs to take not only her opponent’s

threshold into consideration, but also her own. As a consequence, I take the alternative and admittedly more

cumbersome route of analysing each equilibrium type (no-trade, full trade and contingent trade), and discarding

those profiles for which profitable deviations are available (see Lemmas A.1 to A.6 in the Appendix). Following

this, I show that the remaining candidate equilibria are indeed mutual best responses and characterise them

(see Lemma A.7).
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imally large ones (thus trading off a strictly positive moral gain against an arbitrarily small

material loss in this latter case).

A final interesting remark is that due to the symmetry of the bilateral trade game under

analysis, a symmetric profile will result in the same ex-ante utility. So in this way, partial moral

concerns lead to complete ex-ante equality. Before the role distribution is revealed, each player

can expect to obtain the same level of utility.

It is reasonable to wonder whether moral motivations produce the same effects on bilateral

trade’s efficiency when inefficiencies result from information asymmetries between the buyer

and the seller. This is a pervasive issue that ranks amongst the most studied explanations for

why markets may fail to deliver fully efficient results. In particular, the case where the seller is

not completely certain of the buyer’s willingness to pay for the item is formalised as early as in

Pigou (1920)’s classic analysis of monopoly with uniform pricing. In turn, the situation where

buyers do not know the quality of the object being bargained over, which could either be low or

high was brought forth notably by Akerlof (1970). The following sections extend the complete

information model described here to embed those two cases in the bargaining framework.

3 Asymmetric information: Heterogeneous buyer valu-

ations

In order to analyse the valuation uncertainty case, I re-define the contingent game Gi, intro-

ducing a move by Nature where it randomly decides the buyer’s valuation. This can be high

(vh ∈ R+) with probability λ or low (vl ∈ R+) with probability 1−λ. The seller’s cost is r ∈ R+,

as in Section 2.1, and I assume that 0 < r < vl < vh (so the efficient outcome is for both types

of consumers to be served). The agent in the buyer role is informed of her valuation, while

the seller only knows the probability λ. As a consequence, the former now sets two thresholds,

while the latter sets only one price (as in Section 2.1). Contingent game Gi thus represents the

standard monopoly problem with uniform pricing, with the difference that price and thresholds

are decided simultaneously.

Strategy si is defined as pi ∈ R+ (as in Section 2.1), while bj is defined as (p̄jh, p̄jl) ∈ R
2
+.

Meanwhile, the contingent game’s payoffs are re-defined as:

πs(pi, p̄jh, p̄jl) =: λ1{pi ≤ pjh}(pi − r) + (1− λ)1{pi ≤ pjl}(pi − r)

πb(pi, p̄jh, p̄jl) =: λ1{pi ≤ pjh}(vh − pi) + (1− λ)1{pi ≤ pjl}(vl − pi).
(5)

Substituting the contingent payoffs in Expression (1), we obtain the ex-ante utility:

U
(
(pi, pih, pil); (pj , pjh, pjl)

)
=(1− κ) · 1

2

[
λ1{pi ≤ pjh}(pi − r) + (1− λ)1{pi ≤ pjl}(pi − r)+

λ1{pj ≤ pih}(vh − pj) + (1− λ)1{pj ≤ pil}(vl − pj)
]
+

κ · 1
2

[
λ1{pi ≤ pih}(vh − r) + (1− λ)1{pi ≤ pil}(vl − r)

] (6)

The first two lines of Expression (6) state that the seller’s payoff in the contingent game

is the weighted average of the surplus obtained by trading with either type of buyer, which
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is either the difference between price and cost or zero (if that particular consumer type is not

served). The weights are each consumer type’s probability. In turn, the buyer’s payoff is the

weighted average of the surplus that she would get if she was a high valuation buyer and that

corresponding to being a low valuation one. Meanwhile, the third line (which represents the

moral term) is just half the expected total surplus obtained in game G.

Having two types of consumers (high and low-valuation) requires more cumbersome expres-

sions to characterise equilibrium prices and thresholds. As a consequence, in Proposition 3.2

I only state whether trade takes place and with which type of consumer, relegating the full

characterisation to Proposition 3.2* in the Appendix. Definition 3.1 describes every kind of

outcome that can arise in either contingent market. I then use this classification to state the

game’s equilibrium types.

Definition 3.1. Consider the contingent market where i is in the seller role and j ̸= i is in

the buyer role. The contingent game’s outcomes can be of the following types:

� Full trade: both types of buyers are served. If and only if pi ≤ min{p̄jh, p̄jl}

� High valuation: only high valuation buyers are served. If and only if p̄jl < pi ≤ p̄jh

� Low valuation: only low valuation buyers are served. If and only if p̄jh < pi ≤ p̄jl

� No trade: no buyers are served. If and only if pi > max{p̄jh, p̄jl}

Proposition 3.2. Consider the heterogeneous buyer valuations bilateral trade game with κ =

0. The Nash equilibria in pure strategies are of the type A/B. A,B ∈ {Full trade,High val.,

No trade}.

For a given contingent market, two of the three possible outcomes are familiar results in

monopoly settings with uniform pricing. The first one is when all consumer types are being

served (“Full trade”), while the second one has low-valuation consumers excluded from the

market (“High valuation”). Recall that the latter is inefficient, as even the low consumer

valuation is above seller cost. Unsurprisingly, the range of prices that support equilibria with

exclusion is increasing in the probability of the consumer being of high valuation λ. The

third kind is the negotiation failure result (“No trade”), a consequence of the simultaneity of

decisions assumed in my framework that we had already encountered in the previous section.

The bilateral trade game’s equilibria are all the pairs that can be formed from this set.

Introducing buyer heterogeneity in this otherwise unmodified context then naturally brings

about a new source of inefficiency: asymmetric information. More specifically, the fact that

the seller is unsure about the consumer’s willingness to pay for the item makes it possible for

exclusion equilibria to exist. They occur when the maximum prices accepted by the low and

high valuation consumers are different enough so that, given the share of valuation consumers,

the seller is better off excluding.
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Considering partially moral agents drastically changes the types of equilibria attainable. I

state it in the following Proposition, relegating the full characterisation of prices and thresholds

to the Appendix, as before.6

Proposition 3.3. Consider the heterogeneous buyer valuations bilateral trade game with κ ∈
(0, 1). The only kind of Nash equilibria in pure strategies is Full trade/Full trade.

As in Section 2.1, these profiles are a subset of the equilibria in the bilateral trading game

with homo oeconomicus agents. Similarly to the case with complete information, partial moral

concerns eliminate inefficient equilibria originated in the coordination failure brought about

by the one-shot assumption. But the extension analysed here shows that this is not the only

effect they have. In fact, they also do away with inefficiencies stemming from the information

asymmetries, as they also preclude exclusion. Importantly, the precise degree of morality is

still not relevant as long as it remains strictly between 0 and 1. Therefore, we again find

a marked discontinuity in the effects of introducing morality in the agents’ decision making

process. Going from κ = 0 to a strictly positive degree of morality, however small (and as long

as it does not equal 1) suffices to do away with every inefficient equilibrium in this case as well.

4 Asymmetric information: Adverse selection

In contrast to the previous Section, I study here a common values setting where the information

asymmetry concerns both costs and valuation. More precisely, I consider a bilateral trading

game where the seller may be in possession of either a high quality object or a low quality one.

This is echoed in the consumer’s valuation, which is vh for the high quality and vl for the low

one. Importantly, I also assume that high-quality sellers face a higher cost than low-quality

ones, namely rh and rl, with rh > rl.

While the seller knows her item’s quality, the buyer only knows the probability distribution.

To reflect this in the definition of contingent game Gi, I assume that Nature first randomly

chooses whether the object is of high or low quality with probabilities λ and 1−λ. The seller is

then informed of the result of this draw, while the buyer only knows λ. In order to capture this

new information structure in a tractable way, we must then have the seller posting two prices,

one for when she is of the low quality type and one for when she is of the high quality kind.

In turn, the agent in the buyer role posts a threshold above which she will not trade (just as

in Section 2.1). All of this means that strategy si is now defined as (pih, pil) ∈ R
2
+, and bj as

6For the sake of completeness, I also present in the Appendix, in Lemma B.11 the equilibria with fully moral

agents. The takeaway is the same as in the complete information case.
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(p̄j) ∈ R+. The contingent game’s payoffs take the form:

πs(pih, pil, pj) =: λ1{pih ≤ p̄j}(pih − rh) + (1− λ)1{pil ≤ p̄j}(pil − rl)

πb(pih, pil, pj) =: λ1{pih ≤ p̄j}(vh − pih) + (1− λ)1{pil ≤ p̄j}(vl − pil).

Substituting these contingent payoffs in (2) gives the utility function for the quality uncertainty

version of the bilateral trading game:

U
(
(pih, pil, pi); (pjh, pjl, pj)

)
=(1− κ) · 1

2

[
λ1{pi ≤ pjh}(pi − r) + (1− λ)1{pi ≤ pjl}(pi − r)+

λ1{pj ≤ pih}(vh − pj) + (1− λ)1{pj ≤ pil}(vl − pj)
]
+

κ · 1
2

[
λ1{pi ≤ pih}(vh − r) + (1− λ)1{pi ≤ pil}(vl − r)

] (7)

In line with the previous sections, the first line in Expression (7) represent the expected

material payoff that an agent i choosing (pih, pil, pi) ∈ R
3
+ pitted against an individual who

plays (pjh, pjl, pj) ∈ R
3
+, j ̸= i would obtain when in the role of a seller. It is the weighted

average surplus that she would get if in the possession of a high quality object and the surplus

corresponding to having a low quality item. Again, the weights are the probabilities of getting

the high quality object or the low quality one. If j acquires the good (that is, if piQ ≤ pj,

with Q ∈ {h, l}), she receives the price she set and looses an amount equivalent to the cost of

the good, rQ. Her total surplus from selling is then piQ − rQ. In turn, if the aforementioned

exchange does not occur, the payoff is zero.

The second line is the expected material surplus that the agent would obtain when in the

role of a buyer. It is the weighted average of the surplus that she would get if paired with a high

quality seller and that corresponding to being matched with a low quality seller. The weights

are the probabilities of the object being of high quality (λ) or of low quality (1-λ). In each

case, Player i’s surplus corresponding to her potential buyer role is equivalent to her valuation

vQ for the good minus the price pjQ she paid if it is the case that Player j sells her the object

(which happens only if pjQ ≤ pi), while she obtains 0 if not.

As in the previous sections, the equilibrium set of the bilateral trading game with quality

uncertainty and homo oeconomicus agents can be found by studying the contingent game

between a buyer and a seller. I next define all the possible types of result that can arise in the

contingent game in Definition 4.1.

Definition 4.1. Consider the contingent market where i is in the seller role and j ̸= i is in

the buyer role. The contingent game’s outcomes can be of the following types:

� Full trade: both qualities are traded. If and only if max{pih, pil} ≤ p̄j

� Low quality: only low quality is traded. If and only if pil ≤ p̄j < pih

� High quality: only high quality is traded. If and only if pih ≤ p̄j < pil

� No trade: no quality is traded. If and only if p̄j < min{pih, pil}
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The equilibria are all pairs of profiles that can be formed with the elements belonging to the

contingent game’s equilibrium set. In order to make the reading more efficient, I first define two

relevant quantities that will be used in this and the following sections. Firstly, the expected

consumer valuation, which is the average of the high and low quality valuations weighed by

their respective probabilities (λ and 1- λ).

ve ≡ λvh + (1− λ)vl. (8)

Secondly, the minimum value of λ for which the expected consumer valuation is weakly above

the high-quality cost (rh ≤ ve):

λe ≡
rh − vl
vh − vl

. (9)

I study here two cases of these adverse selection setting. The first one is when not only the

exchange of the high quality object but also of the low quality item produces a positive surplus

and thus, is socially desirable. The second one is when the trade of the low quality good results

in a negative surplus and it is then efficient from a social standpoint to avoid it exchanging

hands.

4.1 Desirable trade

I present in Proposition 4.2 the equilibria for the case where all trade is socially desirable and

agents are of the homo oeconomicus type. The contingent market outcomes listed are those

defined in Definition 4.1.

Proposition 4.2. Consider the adverse selection bilateral trade game with κ = 0 and assume

0 < rl < vl < rh < vh. The Nash equilibria in pure strategies are:

� If λ ≥ λe, A/B where A,B ∈ {Full trade,Low quality,No trade}.

� If λ < λe, A/B where A,B ∈ {Low quality,No trade}

When the expected buyer valuation ve is (weakly) above the high quality cost rh or, equiv-

alently, λ ≥ λe, there are six types of equilibria. The first kind are those where trade takes

place no matter the role distribution or quality of the goods. Next, there are equilibria where

Player i sells to Player j only when in possession of a bad quality item, but the latter sells when

her good is either quality. The following class of equilibria has Player i not selling to Player j

and the latter selling to Player i no matter the quality. The fourth kind of equilibria are those

where only trade of the bad quality item takes place in both contingent markets. The game

also features equilibria where Player i does not sell to Player j but the latter sells when her

good is of low quality. The last class of equilibria are those where trade does not take place

at all. Notice that in this case, inefficient outcomes arise because of the coordination failure

introduced by the simultaneous-action assumption, mirroring the complete information case.
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In turn, when λ < λe, the equilibria laid out in Proposition 4.2 are of three types. The first

one is that where only the bad quality good is traded in both contingent markets. The second

sort is the case where the bad quality good is traded in one contingent market but the other

one features no trade. Finally, there are equilibria where no trade occurs in either contingent

market. The expected consumer valuation ve being below high quality cost rh implies that the

asymmetric information problem is much more harmful for market efficiency, as the high quality

item is never traded, even though it is socially desirable to do so. This situation resembles the

“lemons” problem, as high quality sellers are driven out of the market and, even when the

coordination failure is avoided (and trade takes place) only bad quality sellers remain.

While considering valuation uncertainty and homo oeconomicus players brought about the

possibility of equilibria where low-valuation consumers are not served (like in the traditional

monopoly pricing problem), the introduction of quality uncertainty adds a different potential

inefficiency, that of adverse selection (where only the bad quality item is traded). In fact, for

sufficiently low expectations about product quality, the most efficient profiles (those featuring

full trade) do not even belong to the equilibrium set. This renders the adverse selection setting

more problematic than the heterogeneous buyers case in terms of efficiency, as with homo

oeconomicus agents the efficient equilibria are not even attainable for sufficiently low values of

the λ.

I now explore whether considering partially moral agents does away with the various ineffi-

cient equilibria found in the homo oeconomicus version of the model. Proposition 4.3 presents

the bilateral trade game’s equilibrium types when agents are homo moralis. The detailed char-

acterisation is relegated to Proposition 4.3* in the Appendix.

Proposition 4.3. Consider the adverse selection bilateral trade game with κ ∈ (0, 1) and

assume 0 < rl < vl < rh < vh. If λ ≥ λe, the only Nash equilibria in pure strategies are of the

type Full trade/Full trade. If λ < λe, there are no Nash equilibria in pure strategies.

1

1

λe
A,B ∈ {Full t.,Low q.,No t.}

Full t./Full t.

A,B ∈ {Low q.,
No t.}

No eq.

λ

κ

Figure 1: Equilibrium regions in the (λ, κ) space, with κ ∈ [0, 1).

Proposition 4.3 states that when the probability of the item being of good quality is large

enough (or, equivalently, the high-quality cost rh is weakly below the expected consumption

valuation ve) the only Nash equilibria in pure strategies are symmetric and feature full trade

in both contingent markets. Furthermore, trade takes place at prices between the high-quality
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cost rh and the expected valuation ve. Notice again, that these profiles are a subset of the

equilibria in the homo oeconomicus model.

Hence, in the case where agents are sufficiently “optimistic” about quality (so that λ ≥
λe), going from a bilateral trade game where agents are endowed with homo oeconomicus

preferences to one where they are homo moralis effectively eliminates all equilibria but the

most materially efficient ones. In this context, these are the ones where both qualities are

traded in both contingent markets. Thus, (partial) moral concerns only prevent negotiation

failures, as was already clear from the benchmark complete information model. Moreover and

also in keeping with the findings for the previous variants of the model (complete information

and heterogeneous buyer valuations), homo moralis preferences result in a completely ex-ante

egalitarian result, as trade takes place in both contingent markets at the same price.

The intuition behind the result that profiles with no trade of either quality in at least one

contingent market are not equilibria when agents are homo moralis is the same as for the

full information benchmark. Starting from a situation with none or partial trade, agents can

adjust their strategies so as not to modify the actual trade taking place but managing to set

prices and thresholds such that the latter would not be above the former. Given that trade of

both qualities is socially desirable, these deviations produce moral gains that are not offset by

material losses and are thus profitable.

Secondly and also in line with the results for the full information case, asymmetric full trade

profiles cannot be equilibria either. This is due to the fact that in a asymmetric profile with

full trade in both contingent markets, there is at least one agent setting at least one price above

her threshold. This provides an opportunity to make a moral gain and avoid material losses by

simultaneously adjusting prices and thresholds.

Finally, it is worth noting that when the the probability of having a high quality item is not

high enough (λ < λe), there exist no Nash equilibria in pure strategies. This derives from the

fact that homo moralis will always find it convenient to deviate from a profile with full trade.

The reason is that such a profile features at least one contingent seller trading at a price below

cost or one contingent buyer paying above her expected valuation, so there are material gains

to be had from deviating. Agents will also be able to deviate from those featuring contingent

or no trade through moral gains.

Moreover, even if an equilibrium in mixed strategies were to exist, a small degree of morality

would not restore efficiency, as there would always be some probability that the threshold is

below some price in some contingent game.7 In fact, this assertion holds for κ close to 1

(although in that case we might expect that the probability of no trade becomes very small).

7The existence of a mixed-strategy equilibrium would be guaranteed by Nash’s theorem if we consider a

finite grid of prices and thresholds. Furthermore, if the grid is between and including costs and valuations for

each quality and if it is fine enough, then all the pure strategy equilibria described in the paper remain so.
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4.2 Socially undesirable trade

In all of the above, I have assumed that costs are always lower than consumer valuations and

thus that trading always produces a social surplus. In this Section I modify the model laid out

in Section 4 in order to reflect a situation where it would be socially inefficient to trade the

low quality good. In this case, the sellers’ valuation for the good (rl) is actually higher than

the buyers’ (vl). In line with this, I assume now that 0 < vl < rl < rh < vh. Proposition 4.4

characterises the equilibria for the benchmark homo oeconomicus case. Recall that quantities ve

and λe represent, respectively, the expected consumer valuation and the value of the probability

of high quality above which the former is larger than the high quality cost rh. They are defined

in expressions (8) and (9).

Proposition 4.4. Consider the adverse selection bilateral trade game with κ = 0 and assume

that 0 < vl < rl < rh < vh. Then:

1. If λ ≥ λe, the Nash equilibria in pure strategies of the bargaining game between two homo

oeconomicus are of the kind A/B where A,B ∈ {Full trade,No trade}

2. If λ < λe, the Nash equilibria in pure strategies of the bargaining game are of the type No

trade/No trade

When the low quality object’s cost is higher than its consumer valuation, the most efficient

result is that only the high quality item be traded. However, Proposition 4.4 shows that this

type of profiles are not equilibria when agents are homo oeconomicus. In fact, in a given

contingent market, either both qualities are traded or non are, with the former equilibria only

existing when λ ≥ λe (that is, the probability of the object being of high quality is large

enough). This constitutes a relevant difference with the versions of the model analysed so far,

as the most efficient profiles possible were in fact part of the equilibrium set when λ ≥ λe. In

addition, the case where λ < λe leads to equilibria with no trade at all, whereas in the previous

case it could also lead to exclusion of the high quality in addition to no-trade. How does the

equilibrium set change when agents are of the homo moralis type? Proposition 4.5 provides

the answer to that question.

In order to facilitate the reading, I define the following thresholds for λ and κ:

λ1 :=
rh − rl
vh − rl

κ1 :=
rh − rl
rh − vl

κ2(λ) := min

{
λ(vh − vl) + vl − rl
λ(vh − rl) + rl − vl

,
λ(vh − vl) + vl − rh
λ(vh − rl) + rl − rh

}
, for λ ∈ [λe, 1]

Notice that λ1 < λe. In addition, κ2(λ) is continuous and strictly increasing with κ2(λe) = 0

and κ2(1) ∈ (κ1, 1).
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Proposition 4.5. Consider the adverse selection bilateral trade game with κ ∈ (0, 1) and

assume that 0 < vl < rl < rh < vh. The only kind of pure strategy Nash equilibria are:

1. High quality/High quality: if and only if λ ≥ λ1, κ ≥ κ1.

2. Full trade/Full trade: if and only if λ ≥ λe, κ ≤ κ2(λ).

3. High quality/Full trade or Full trade/High quality: if and only if κ ∈ [κ1, κ2(λ)]

Figure 2 summarises propositions 4.4 and 4.5. The first relevant point to be made about

Proposition 4.5 is that it now takes a sufficiently high degree of morality to do away with all

but the most efficient equilibria. This contrasts sharply with the conclusions for the preced-

ing sections, where only efficient equilibria are attained for any κ ∈ (0, 1). Even though a

requirement on expected quality persists, sufficiently moral agents require a lower probability

of good quality to reach these equilibria. In the same line, the existence of pure strategy Nash

equilibria with partially moral agents now requires a lower expectation of good quality than in

the previous case, provided that agents are moral (κ ≥ κ1) enough, since λ1 < λe.

Considering partially moral agents brings about additional interesting changes to the equi-

librium set of the game under study. In contrast with the previous cases where all trade was

socially desirable, under the present parametrisation, homo moralis agents reach equilibria that

are not attainable by homo oeconomicus. In other words, so far the introduction of partially

moral concerns has had the effect of “refining” the equilibrium sets in the game between by

homo oeconomicus players, as every equilibrium profile with homo moralis belonged to the for-

mer. This is not the case now because any profile with trade of exclusively the good quality in

either or both contingent markets does not constitute an equilibrium with homo oeconomicus.

This kind of equilibrium is particularly relevant, as only surplus-generating exchanges are

undertaken. They exist when the agents’ degree of morality and expectation about product

quality are sufficiently high (i.e., the former is above κ1 while the latter is above λ1). The

simple intuition behind such a result is that, given that trade is occurring at a price above

high-quality cost rh and thus above low-quality cost rl, only sufficiently moral agents will not

be tempted to reduce their low quality price to sell their low quality item. It is worth pointing

out that the minimum probability for the object to be of good quality required for the existence

of this type of equilibria is strictly below that required for any trade to take place between homo

oeconomicus, or in other words (λ1 < λe).

The second type of equilibrium found in the homo moralis model is Full trade/Full trade.

This is the only class already present in the homo oeconomicus case. It exists when the agents’

degree of morality is not “too high” (below κ2(λ)) and their expected consumer valuation is

above the high quality cost, just as the homo oeconomicus case. The fact that they exist only

for λ ≥ λe is also line with the result in the previous Section, where I assumed that all trade

is socially desirable. The difference is that now there is an upper bound on the degree of

morality (κ2(λ)) for which the equilibria exist. This is because high degrees of morality now

cause deviations that impede trade of the low quality to become profitable.
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The third type are those with only the good quality being exchanged in one contingent

market and full trade in the other one. The minimum degree of morality for which they exist

is the same as the High quality/High quality equilibria, but its maximum is also bounded from

above by κ2(λ), exactly like Full trade/Full trade profiles. This type of equilibria exist in the

intersection of the sets of λ and κ values where the first two types are possible. That means that

for a given (λ, κ) vector that supports High quality/Full trade equilibria, High quality/High

quality and Full trade/Full trade also exist. As reported in Proposition 4.5* in the Appendix,

the price at which exchanges take place is exactly the same in both contingent markets and

moreover, it is unique and increasing in the degree of morality. Intuitively, this is because more

moral players who are selling both items will require a larger price not to deviate and cease the

trade of the bad quality object. Simultaneously, for those selling only the good quality, they

will be enticed to cease bad quality trade if the price is sufficiently small. The maximum price

below which these deviations are profitable is increasing in κ.
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1

1

κ1

κ2

λ1 λe

High q./High q.

High q./High q.

Full t./High q.

Full t./Full t.

Full t./Full t.

No t./No t. Full t./Full t., Full t./No t., No t./No t.

λ

κ

Figure 2: Equilibrium regions in the (λ, κ) space. Shaded areas indicate types of equilibria for

κ ∈ [0, 1).

5 A comparison with altruism

I have shown in the previous sections that (partially) Kantian agents manage to prevent ne-

gotiation failures and significantly reduce or even eliminate the inefficiencies stemming from

information asymmetries. Cases where all potential exchanges produce a positive surplus fea-

ture particularly strong effects of morality on market outcomes: it suffices for agents to be

partially moral for all but the most efficient profiles to cease being equilibria.

In this section I modify the previous models to consider agents with altruistic preferences.

I describe as “altruistic” an individual who cares not only about her own material welfare but

also about that of others. Both moralists and altruists deviate from the standard assumption

that agents only care for their material payoff. Moreover, they may be behaviourally identical
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in certain contexts (see Alger and Weibull (2016)). However, the rationale for their observed

choices is radically different. While the former care about the hypothetical material payoff

they would get if their strategy is imitated by the other agent, altruists care about the material

payoffs induced by their own strategy and their opponent’s actual strategy. Confusing morally-

driven players and altruists could then lead to very different predictions when studying the

reaction of agents to changes in the environment.

An altruistic agent is partially concerned by the other player’s material payoff. The utility

function presented in (2) when the ex-ante game was defined needs to be modified accordingly.

A standard way of introducing altruism is:

Ualt
(
(si, bi), (sj, bj)

)
= π

(
(si, bi), (sj, bj))

)
+ α · π

(
(sj, bj), (si, bi)

)
, (10)

where α ∈ [0, 1] represents the degree of altruism. Equation (10) states that the utility of an

individual playing strategy (si, bi) against a player who employs strategy (sj, bj) depends on her

material payoff but is also positively affected by the material payoff obtained by her opposing

party (π
(
(sj, bj), (si, bi)

)
represents the payoff obtained by the player employing strategy (sj, bj)

against (si, bi)). The more altruistic this player is (that is, the larger α is), the more utility she

derives from her opponent’s material well-being.8

In the remainder of this Section I revisit the three games studied so far but I assume that

agents are altruistic rather than morally concerned. The main conclusion is that in every

setting considered, efficient results are attained only when altruism is high enough, and even

a very high degree of altruism may not lead to full efficiency in some cases. In addition and

echoing the homo oeconomicus case, equilibria in the game between altruistic agents can be

asymmetric. This implies that situations where one player has a larger ex-ante utility

In Proposition 5.1 I present the equilibria of the complete information game introduced in

Section 2.1 when agents have altruistic preferences.

Proposition 5.1. Consider the complete information game with α ∈ (0, 1). Then:

� If α ≤ r
v
, the Nash equilibria in pure strategies are of the type A/B where A,B ∈

{Trade,No trade}.

� If α > r
v
, the Nash equilibria in pure strategies are of the type Trade/Trade

When comparing the set of equilibria in the complete information game between altruistic

agents with the homo oeconomicus version, it is immediately clear that they are qualitatively

similar for low levels of altruism (α ≤ r
v
). In turn, for high levels of altruism the only possible

8Although quite conventional, this representation it is not the only one. See for example Bruhin et al. (2018)

for an expression which allows for different degrees of altruism depending on whether the agent has a higher or

a lower payoff than her opponent.
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equilibria are those of the Trade/Trade type. Therefore, a first conclusion is that only suffi-

ciently high altruism restores efficiency in this game. An additional interesting point is that

nothing prevents two equally altruistic agents to trade at different prices in the two contingent

markets, a feature that the model with homo oeconomicus also shares. What drives this result

is the deontological nature of moral decision-making and more precisely, the fact that a player’s

decisions in a given contingent market are linked to her decisions in the other market through

the moral Kantian term. This effect is not present when agents are consequentialistic (be it

homo oeconomicus or altruistic).

The above effects are a feature of the different versions of the bargaining game. However,

considering information asymmetries brings about other interesting differences in the outcomes

of the bargaining process between altruists when compared to the benchmark homo oeconomicus

and to homo moralis. I now turn to the buyer heterogeneity game with altruistic agents.

Proposition 5.2 lays out the equilibrium types for this version of the model.9

Proposition 5.2. Consider the buyer heterogeneity game between two agents with the same

degree of altruism α (0, 1). Then:

1. If α ≤ r
vh
, the Nash equilibria in pure strategies are of types A/B

where A,B ∈ {Full trade,High valuation,No trade}.

2. If r
vh

> α, the Nash equilibria in pure strategies are of types A/B

where A,B ∈ {Full trade,High valuation}.

Proposition 5.2 shows that in the heterogeneous buyers setting, altruism does not restore

full efficiency, as equilibria with exclusion of low valuation consumers are always possible for

any α ∈ (0, 1). Intuitively, this result originates in the fact that the altruistic seller actually

perceives a lower cost when trading with a high valuation consumer.

I now turn to the adverse selection game in the case where it is socially desirable to trade

both qualities. I define function λalt
e1 (α) to be used in the propositions that follow.

λalt
e1 (α) =


rh − vl + α(rl − vh)

vh − vl + α(rl − rh)
if α ≤ rh − vl

vh − rl

0 otherwise

(11)

For the case where vl < rl, I additionally define λalt
e2 (α):

λalt
e2 (α) =


rl − vl + α(rl − vl)

vh − vl + α(rl − rh)
if α ≤ vh − rl

rh − vl

1 otherwise

(12)

9The full characterisation is relegated to the Appendix because comparing prices and thresholds yields the

same conclusion as in the complete information game.
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Notice that λalt
e1 (α) is continuous and decreasing in α. Moreover, λalt

e1 (0) = λe, while λ
alt
e1

(
rh−vl
vh−rl

)
=

0. In turn, function λalt
e2 (α) is continuous and increasing in α for vl < rl, with λalt

e2 (0) =
rl−vl
vh−vl

.

Proposition 5.3 presents the game’s equilibrium types for different degrees of altruism when

low quality trade is socially desirable (rl < vl), while Proposition 5.4 does the same for the

opposite case (vl < rl).

Proposition 5.3. Consider the adverse selection game between two agents with the same degree

of altruism α ∈ (0, 1) and assume 0 < rl < vl < rh < vh. Then, the Nash equilibria are of type

A/B, where A,B ∈ T (α, λ) with:

� Full trade ∈ T (α, λ) if and only if λ ≥ λalt
e1 (α)

� Low quality ∈ T (α, λ) if and only if α < min
{

rh
vh
, rh−rl
vh−vl

}
� High quality ∈ T (α, λ) if and only if rh−rl

vh−vl
< α < rl

vl

� No trade ∈ T (α, λ) if and only if α < min
{

rh
vh
, rl
vl

}
Proposition 5.4. Consider the adverse selection game between two agents with the same degree

of altruism α ∈ (0, 1) and assume 0 < vl < rl < rh < vh. Then:

� Full trade ∈ T (α, λ) ⇐⇒ λ ≥ max{λalt
e1 (α), λ

alt
e2 (α)}

� High quality ∈ T (α, λ) ⇐⇒ α > rh−rl
vh−vl

� No trade ∈ T (α, λ) ⇐⇒ α < rh
vh

When the exchange of all qualities is socially desirable, a sufficiently high degree of altruism

does achieve full efficiency, eliminating all equilibria but those featuring full trade in both

contingent markets. In contrast, the fully efficient result when there is some socially undesirable

trade is not guaranteed by a very high degree of altruism. This is due to the fact that even

though a sufficiently large α is indeed a necessary and sufficient condition for the existence of

equilibria featuring only trade of the high quality good, it is not sufficient to eliminate equilibria

with full trade in some contingent market.

6 Discussion

In this paper I explore a simple bilateral trading process between two agents who may have

moral concerns of a Kantian nature. In it, the agent in possession of the good being bargained

over proposes a price, while the potential buyer simultaneously sets a threshold. The good

only gets exchanged (at the proposed price) if the threshold is at least as high as the price.

Importantly, I take an ex-ante approach, analysing the game between two agents who face the

same odds of finding themselves in either role. This framework is well suited to study the

interaction between two agents who in addition to wondering “what is the strategy that would
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leave me materially better-off?”, may also pose themselves the counter-factual question: “how

would I fare if my counter-party used the same strategy I am considering?”

My set-up does not rule out coordination failures and is flexible enough to allow for the study

of the interaction between different kinds of information structures and moral preferences. I

focus on two kinds of canonical information asymmetries. The first one originates when the

seller is uncertain about the buyer’s valuation for the product, while the second one is the well

known adverse selection problem where the buyer is not informed about the product’s quality

but the seller is. I tackle two versions of the latter: one where trade is always socially beneficial

irrespective of the quality, and another where only trade of the highest quality is desirable.

I show that considering moral preferences has important consequences on the outcome of

the market under study. In situations where all trade is desirable (and irrespective of whether

there is complete information, valuation uncertainty or adverse selection) and the version of

the game populated by agents who are only concerned with their material payoff has efficient

equilibria in addition to inefficient ones, partial morality eliminates the latter, leaving only the

most efficient equilibria. It also results in a completely ex-ante egalitarian outcome, in the

sense that expected utility levels are the same.

In the case with adverse selection and undesirable trade of the low quality items, when

agents are of the homo oeconomicus type, the most efficient equilibria (trade of only high

quality goods) are not part of the equilibrium set. It takes a sufficiently high degree of morality

for these profiles to become equilibria and an even larger one for them to be the sole kind of

equilibrium possible.

The above contrasts sharply with another kind of pro-social preferences that have received

a lot of attention in the literature: altruistic preferences. Indeed, I show that altruism is

much less capable of eliminating inefficiencies stemming from information asymmetries. In

particular, with altruistic agents, efficient equilibria remain as the sole equilibrium type only

when information is equally distributed or in the case of adverse selection with desirable trade

and, moreover, this is true only when the degree of altruism is high enough.

My results show that although moral preferences may go a long way in making the outcome

of the bilateral trade process more efficient, they are not all-powerful. Notably, the most

damaging incarnation of the adverse selection problem in this context (that in which trading

low quality items actually reduces total surplus) is completely solved only for very high degrees

of morality.

The latter not-withstanding, the inefficiencies introduced by the coordination problem as

well as those originating in the information problem are strongly mitigated by considering

moral preferences. This suggests that these kind of constraints might be less harmful than what

standard models predict, especially in contexts well suited for the kind of partially deontological

approach to decision-making that characterises homo moralis.
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Appendix A Appendix to Section 2.1

Proof of Proposition 2.1

The price set by a given player is completely independent of her threshold and only affects

her utility through its interaction with her rival’s threshold. Thus, the bargaining game’s

equilibrium set is all the pairs of profiles that can be formed from the equilibria of the contingent

game.

Consider now the contingent game. The seller’s best reply correspondences are:

p̄BR = argmax
p̄

UB(p̄; p) =

p ≥ p if p ≤ v

p < p if p > v

pBR = argmax
p

US(p; p̄) =

p = p if p ≥ r

p > p if p < r

These correspondences intercept whenever p∗ = p∗ ∈ [r, v] or p∗ < r, p∗ > v.
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The best-reply correspondences in the contingent game can be presented graphically in the

(p, p) ∈ R
2
+ plane. I do so in Figure 3. Notice that the contingent game has two types of distinct

equilibrium profiles. The first are are equilibria with trade, where the buyer sets a threshold

in the [r, v] interval and the seller proposes a price equal to the buyer’s threshold. The second

are no-trade equilibria, with the seller choosing a price above the the buyer’s valuation v, who

in turn sets a threshold below the seller’s cost r.

Figure 3: Buyer and seller best-responses

p

p

p = p

r

v

r v

Proof of Proposition 2.2 The proof follows directly from Lemmas A.1 to A.7, presented

below.

Lemma A.1. Consider the bilateral trade game with complete information and κ ∈ (0, 1). Pro-

files where at least one contingent market features no trade and its price is set below consumer

valuation or the threshold above seller cost are not Nash equilibria in pure strategies.

Proof. Assume, without loss of generality, that p̄∗1 < p∗2 ≤ v. Player 1 can profitably deviate

by increasing her threshold to p̄′1 = p∗2. The first term of her utility function increases because

p̄′1 = p∗2 ≤ v. The second term either increases (if p∗2 ≥ p∗1) or remains the same (if p∗1 ≤ p̄∗1 or

p∗2 < p̄∗1).

In turn, suppose r ≤ p̄∗2 < p∗1. Player 1 can profitably deviate by reducing p∗1 down to

p′1 = p̄∗2. The first term of her utility function increases because p′1 = p̄∗2 ≥ r. The second term

either increases (if p̄∗1 ∈ [p̄∗2, p
∗
1)) or remains the same (if p̄∗1 < p̄∗2 or p̄∗1 ≥ p∗1).

Lemma A.2. Consider the bilateral trade game with complete information and κ ∈ (0, 1).

No-trade/No-trade profiles with prices above valuation and thresholds below costs are not Nash

equilibria in pure strategies.

Proof. These profiles are described by p∗i > v, p∗j < r; for all i, j ∈ {1, 2}, i ̸= j. Consider,

without loss of generality, Player 1. She can profitably deviate by setting p̄′1 ∈ (p∗2, p
∗
2) and
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p′1 ∈ (p∗2, p
′
1]. The first term of her utility function remains unchanged while the second one

increases.

Lemma A.3. Consider the bilateral trade game with complete information and κ ∈ (0, 1).

Profiles featuring trade in at least one contingent market at a price below cost or above valuation

are not Nash equilibria in pure strategies.

Proof. The first kind of profiles have (1) p∗i ≤ p̄∗j < r for some i, j ∈ {1, 2}, i ̸= j. The second,

(2) v < p∗j ≤ p̄∗i for some i, j ∈ {1, 2}, i ̸= j.

(1): Assume without loss of generality that p∗1 ≤ p̄∗2 < r. Then, Player 1 can profitably

deviate to p′1 = r, p̄′1 = max{r, p̄∗1}. The first term of her utility function increases while the

second one does not decrease.

(2): Assume without loss of generality that v < p∗2 ≤ p̄∗1. Then, Player 1 can profitably

deviate to p̄′1 = p′1 = p∗2− ϵ. For sufficiently small ϵ, the first term of her utility function strictly

increases while the second one does not decrease.

Lemma A.4. Consider the bilateral trade game with complete information and κ ∈ (0, 1).

Profiles featuring trade at a price between cost and valuation in one contingent market and

no trade with price above valuation and threshold below cost in the other one, are not Nash

equilibria in pure strategies.

Proof. These profiles are described by p∗i < r, p∗i ≤ p∗j ∈ [r, v] and p∗j > v; i, j ∈ {1, 2}, i ̸= j.

Assume without loss of generality that p∗1 < r, p∗1 ≤ p∗2, p
∗
1 ∈ [r, v] and p∗2 > v. Consider Player

1 and notice that p∗1 < p∗1. She can profitably deviate to p′1 = p∗1. The first term of her utility

function remains unchanged while the second one increases.

Corollary A.4.1. Profiles featuring no trade in at least one contingent market are not equilibria

of the bilateral trade game where at least one agent’s degree of morality is κ ∈ (0, 1).

Lemma A.5. Consider the bilateral trade game with complete information and κ ∈ (0, 1).

Profiles featuring full trade where the threshold differs from the price in at least one contingent

market are not Nash equilibria of the game between two homo moralis.

Proof. Assume without loss of generality, p∗1 < p̄∗2. Then, Player 1 can profitably deviate to

p′1 = p̄∗2, p̄
′
1 = max{p̄∗1, p̄∗2}. The first term of her utility function increases while the second one

does not decrease.

Lemma A.6. Consider the bilateral trade game with complete information and κ ∈ (0, 1).

Profiles featuring full trade but at different prices are not Nash equilibria of the game between

two homo moralis.

Proof. by Lemma A.5, we can focus on profiles where thresholds equal price in both contingent

markets. Assume, without loss of generality, that p∗2 = p̄∗1 < p∗1 = p̄∗2. Then, Player 1 can

profitably deviate to p̄′1 = p∗1. The first term of her utility function does not decrease while the

second one increases.
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Lemma A.7. Consider the bilateral trade game with complete information and κ ∈ (0, 1). Of

all symmetric profiles with full trade only those with coordinates inside the [r, v] interval are

Nash equilibria in pure strategies.

Proof. (1) Consider a profile where p∗ = p∗1 = p̄∗2 = p∗2 = p̄∗1 < r. Any such profile is not an

equilibrium because (without loss of generality) Player 1 can profitably deviate to p′1 = p′1 > p∗.

The first term of her utility function increases while the second one remains the same.

(2) Consider next a profile where v < p∗ = p∗1 = p̄∗2 = p̄∗1 = p∗2. Then, Player 1 can profitably

deviate to p̄′1 = p̄′1 = p∗ − ϵ. For small enough ϵ, the first term of her utility function increases.

The second term remains the same.

(3) Take a profile where r ≤ p∗ = p∗1 = p̄∗2 = p̄∗1 = p∗2 ≤ v. Consider, without loss

of generality, Player 1. Given Player 2’s strategy, both terms of her utility function are at

their maximum. Therefore, there are no profitable deviations possible. Then, the profile is an

equilibrium.

Proposition A.8. Consider the bilateral trade game with complete information and κ = 1.

The set of Nash equilibria in pure strategies is p∗i ≤ p∗i∀i ∈ {1, 2}

Proof. Given that r < v, i’s utility function with κ = 1 is maximised if and only if p∗i ≤ p∗i .

Agents with degree of morality κ equal to 1 (homo kantiensis) will only care about her own

strategy in order to compute their utility. That is, they will look for a best response against

their own strategy and completely disregard what the other player might do.

Under the parametrisation assumed, the surplus generated by trade is always positive.

Therefore, agents are then better off when they propose a price and a threshold such that trade

would take place if the other agent were to (hypothetically) post exactly the same ones. Recall,

however, that the occurrence or not of trade in this model still depends on whether Player 1’s

threshold is at least as high as the price proposed by Player 2 and vice-versa.

A game between two homo kantiensis will thus feature equilibria of two types. The first

kind are full trade equilibria, while in the second one only contingent trade will be attained.

These equilibria will always feature some trade, either contingent or full. This can be easily

shown by noticing that it is always be true that either p∗2 ≤ p∗1 or p
∗
2 > p∗1. In the first case, this

implies that p∗2 ≤ p∗1 (in equilibrium it is necessarily true that p∗2 ≤ p∗2 ≤ p∗1 ). This means that

Player 2 is selling to Player 1. If, in addition, it is also true that p∗2 ≥ p∗1, then these profiles

feature full trade, but this is not a necessary condition for equilibrium.

When comparing this game with the one between two homo oeconomicus, an immediate

conclusion is that the coordination failure introduced by the simultaneity in price and threshold

decisions is mitigated, as no-trade equilibria are no longer possible. Notwithstanding, full

morality does not always produce the more materially efficient result. This is because the game

may still feature equilibria where trade is only contingent. These are a direct effect of agents

only caring about their own threshold and prices while completely disregarding those of their

rival. The result thus points to the fact that partially consequentialistic reasoning keeps homo
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moralis “anchored” in reality by actually paying attention to her opponent’s choices and thus

producing actual trade.

The existence of completely deontological agents who only care about what would be “the

right thing to do” might seem a little far fetched. However, the above result serves to illustrate a

broader point already made in the preceding literature (notably in Alger and Weibull (2017)):

a higher degree of morality does not always imply a materially more efficient outcome, and

whether it does is very context-dependent. In this particular case, the inefficiency arises because

homo kantiensis looses her grip on reality in the sense that she is not concerned about whether

actual trade occurs, for which it is necessary that players set thresholds at least as high as their

rival’s prices. In contrast, she is content with just setting a price that she herself would accept,

no matter how large or small.

Appendix B Appendix to Section 3

Proposition 3.2*. Consider the bilateral trade game with valuation uncertainty and κ = 0.

The pure strategy Nash equilibria are:

� Full trade/Full trade: ∀i, j ∈ {1, 2}, i ̸= j : r ≤ p∗i = min{p̄∗jh, p̄∗jl} ≤ vl, p̄
∗
ih ∈ [(1− λ) p∗il+

λr,
(
1
λ

)
p∗il −

(
1−λ
λ

)
r]

� A/B with A,B ∈ {Full trade,High valuation}, A ̸= B: for i, j ∈ {1, 2}, i ̸= j:

r ≤ p∗i = min{p̄∗jh, p̄∗jl} ≤ vl, p̄
∗
ih ∈ [(1− λ) p∗il + λr,

(
1
λ

)
p∗il −

(
1−λ
λ

)
r];

vl < p∗j = p̄∗ih ≤ vh, 0 ≤ p̄l∗i ≤ λp̄∗ih + (1− λ)r

� A/B with A,B ∈ {Full trade,No trade}, A ̸= B: for i, j ∈ {1, 2}, i ̸= j:

r ≤ p∗i = min{p̄∗hj, p̄∗lj} ≤ vl, p̄
∗
hi ∈ [(1− λ) p̄∗li + λr,

(
1
λ

)
p̄∗li −

(
1−λ
λ

)
r];

max {p̄∗li, p̄∗hi} < r, p∗j > vh

� A/B with A,B ∈ {High valuation,No trade}, A ̸= B: for i, j ∈ {1, 2}, i ̸= j:

max
{
p̄∗lj, p̄

∗
jh

}
< r, p∗i > vh

vl < p∗j = p̄∗hi < vh, 0 ≤ p̄∗li ≤ λp̄∗hi + (1− λ)r

� High valuation/High valuation: ∀i, j ∈ {1, 2}, i ̸= j : vl < p∗j = p̄∗hi < vh, 0 ≤ p̄∗li ≤
λp̄∗hi + (1− λ)r

� No-trade in both contingent markets: ∀i, j ∈ {1, 2}, i ̸= j : max
{
p̄∗lj, p̄

∗
hj

}
< r, p∗i > vh
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Proof. The price set by a given player is completely independent of her thresholds and only

affects her utility through its interaction with her rival’s thresholds. Thus, the bilateral trade

game’s equilibrium set is all the pairs of profiles that can be formed from the equilibria of the

contingent game.

Consider now the contingent game where the seller sets price p and the buyer sets thresholds

p̄l and p̄h. The buyer’s best reply correspondences in the contingent game are:

p̄lBR = argmax
p̄l

UB(p̄l, p̄h; p) =

p̄hBR = p if p ≤ vh

p̄hBR = p if p > vh

p̄lBR = argmax
p̄l

UB(p̄l, p̄h; p) =

p̄lBR = p if p ≤ vl

p̄lBR = p if p > vl

The seller’s best reply correspondence in the contingent game is:

pBR > max{p̄h, p̄l} if max{p̄h, p̄l} < r

pBR = max{p̄h, p̄l} if max{p̄h, p̄l} ≥ r,min{p̄h, p̄l} < r

pBR = min{p̄h, p̄l} if p̄l ≥ r, (1− λ)p̄l + λr ≤ p̄h ≤ 1
λ
p̄l − 1−λ

λ
r

pBR = p̄l if p̄l ≥ r, p̄h < (1− λ)p̄l + λr

pBR = p̄h if p̄l ≥ r, p̄h > 1
λ
p̄l − 1−λ

λ
r

They intersect at the following profiles:

� Both consumer types are served: r ≤ p∗ = min{p̄,lp̄h} ≤ vl; p̄
∗
l ≤ p̄∗h ≤ p̄∗l

λ
− 1−λ

λ
r or

p̄∗h−λr

1−λ
≤ p̄∗h ≤ p̄∗l

� Only high valuation consumers are served: vl < p∗ = p̄∗h ≤ vh, p̄
∗
l ≤ λp̄∗h + (1− λ)r

� No consumers are served: max {p̄∗l , p̄∗h} < r, p∗ > vh

Proposition 3.3*. Consider the bilateral trade game with heterogeneous buyer valuations

and κ ∈ (0, 1). The Nash equilibria in pure strategies are p̄∗hi ∈ [(1− λ) p∗li + λr,
(
1
λ

)
p∗li −(

1−λ
λ

)
r]∀i, j ∈ {1, 2}, i ̸= j.

Proof. The proof follows directly from Lemmas B.1 to B.10, presented below.

Lemma B.1. Consider the bilateral trade game with heterogeneous buyer valuations and κ ∈
(0, 1). Profiles where at least one of the contingent markets features no-trade with the high (low)

valuation consumer and price below her valuation are not Nash equilibria in pure strategies.

Proof. Assume, without loss of generality, that p̄∗1Q < p∗2 ≤ vQ for some Q ∈ {h, l}. Then,

Player 1 can profitably deviate by setting p̄′1Q = p∗2. Her utility function’s first term increases

while the second one does not decrease.
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Lemma B.2. Consider the bilateral trade game with heterogeneous buyer valuations and κ ∈
(0, 1). Profiles where at least one of the contingent markets features no-trade and a threshold

above cost are not Nash equilibria in pure strategies.

Proof. Assume, without loss of generality, that r ≤ max{p̄∗h2, p̄∗l2} < p∗1. Then, Player 1 can

profitably deviate by setting p
′
1 = max{p̄∗h2, p̄∗l2}. Her utility function’s first term increases while

the second one does not decrease.

Lemma B.3. Consider the bilateral trade game with heterogeneous buyer valuations and κ ∈
(0, 1). Profiles featuring no-trade in both contingent markets are not Nash equilibria in pure

strategies.

Proof. By Lemmas B.1 and B.2, we can focus only on profiles where thresholds are below cost

and prices above valuation: ∀i, j ∈ {1, 2}, i ̸= j : max
{
p̄∗lj, p̄

∗
hj

}
< r, p∗i > vh. Then, without

loss of generality, Player 1 can profitably deviate to r < p′1 = p̄′h1 < vl. Her utility function’s

second term increases while the first one does not decrease.

Lemma B.4. Consider the bilateral trade game with heterogeneous buyer valuations and κ ∈
(0, 1). Profiles featuring no-trade and exclusion are not Nash equilibria in pure strategies.

Proof. By Lemmas B.1 and B.2, we can focus only on profiles where the contingent market

with no trade features thresholds below cost and price above valuation. Suppose first that

max {p̄∗l1, p̄∗h1} < r, p∗2 > vh and p̄∗Q2 < p∗1 ≤ p̄∗R2 < r;Q,R ∈ {h, l}, Q ̸= R. Notice that Player

1 is selling at a price below cost. She can profitably deviate to r < p̄l
′
1 = p̄h

′
1 = p′1 < vl. Her

utility function’s first term increases while the second one does not decrease.

Suppose alternatively that max {p̄∗l1, p̄∗h1} < r, p∗2 > vh but max
{
p̄∗Q2, r

}
< p∗1 ≤ p̄∗R2 <

p∗2;Q,R ∈ {h, l}, Q ̸= R. Notice that this means that max {p̄∗l1, p̄∗h1} < p∗1. Then, Player 1 can

profitably deviate to p̄′h1 = p∗1. Her utility function’s second term increases while the first one

does not decrease.

Finally, assume that max {p̄∗l1, p̄∗h1} < r, p∗2 > vh and p̄∗Q2 < p∗1, p
∗
2 ≤ p∗1 ≤ p̄∗R2;Q,R ∈

{h, l}, Q ̸= R. Notice that this means that Player 2 is buying at a price above the highest

valuation vh. She can deviate to p̄∗Q2 ≤ p̄′R2 = p′2 = p∗1 − ϵ, with ϵ → 0. She thus makes a

material loss as a consequence of the price reduction. This loss can be made arbitrarily small.

Then, her utility function’s first term increases for a sufficiently small ϵ while the second one

does not decrease.

Lemma B.5. Consider the bilateral trade game with heterogeneous buyer valuations and κ ∈
(0, 1). Profiles featuring no-trade and full-trade are not Nash equilibria in pure strategies.

Proof. By Lemmas B.1 and B.2, we can focus only on profiles where the contingent market

with no trade features thresholds below cost and price above valuation. Assume without loss

of generality that max {p̄∗l1, p̄∗h1} < r, p∗2 > vh and p∗1 ≤ min {p̄∗l2, p̄∗l2}.
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Suppose first that p∗1 < r. Then, Player 1 can profitably deviate to r < p′1 = p̄′l1, p̄
′
h1 < p∗2.

Her utility function’s first term increases while the second one does not decrease.

Alternatively, assume that r ≤ p∗1 ≤ vl. Notice then that max {p̄∗l1, p̄∗h1} < p∗1 < p∗2. Player 1

can profitably deviate by setting p̄′l1, p̄
′
h1 = p∗1. She makes a moral gain and sustains no material

losses.

Finally, suppose that p∗1 > vl. Player 2 can profitably deviate to r < p′2 = p̄′l2 < p∗1. Her

utility function’s first term increases while the second one does not decrease.

Lemma B.6. Consider the bilateral trade game with heterogeneous buyer valuations and κ ∈
(0, 1). Profiles featuring any exchange at a price above the high valuation are not Nash equilibria

in pure strategies.

Proof. Assume, without loss of generality, that vh < p∗2 ≤ p̄Q∗
1 for some Q ∈ {h, l}. Suppose first

that p∗1 < p∗2. Then, Player 1 can deviate to p̄Q
′

1 = p∗1. Her utility function’s first term increases

while the second one does not decrease. In turn, assume that p∗1 > p∗2. If p∗2 ≤ p̄Q∗
1 < p∗1, then

Player 1 can deviate to p′1 = p̄Q∗
1 and obtain a moral gain without suffering material losses.

If p∗2 < p∗1 ≤ p̄Q∗
1 ,then it is Player 2 who can deviate by setting p′2 = p̄R

′
2 = p̄Q∗

1 − ϵ for all

R ∈ {h, l}, with ϵ < p̄Q∗
1 − p∗2. Her utility function’s first term increases while the second one

does not decrease.

Next, suppose that prices are equal, so p∗1 = p∗2. Then, Player 1 can profitably deviate by

setting p̄
′Q
1 = p′1 = p∗2 − ϵ, with ϵ → 0. The deviation entails a strictly positive material gain

from ceasing to buy at p∗2 > vh and a potential loss from selling at the lower price p∗2− ϵ and no

moral losses. Since the material loss can be made arbitrarily low by choosing a small enough ϵ,

the deviation is profitable. Her utility function’s first term increases while the second one does

not decrease.

Lemma B.7. Consider the bilateral trade game with heterogeneous buyer valuations and κ ∈
(0, 1). Profiles with at least some trading in at least one contingent market are not Nash

equilibria if the price is below cost.

Proof. Assume, without loss of generality that p∗1 < r, p∗1 ≤ p̄Q∗
2 for some Q ∈ {h, l}. Then, if

p̄R∗
1 < r for some R ∈ {h, l}, Player 1 can profitably deviate by setting p′1 = p̄R

′
1 = r, whereas if

p̄R∗
1 > r for all R ∈ {h, l}, she can deviate to p′1 = r. Her utility function’s first term increases

while the second one does not decrease.

Lemma B.8. Consider the bilateral trade game with heterogeneous buyer valuations and κ ∈
(0, 1). Profiles featuring exclusion in one contingent market and full trade in the other one are

not Nash equilibria in pure strategies.

Proof. Assume, without loss of generality that p̄Q∗
2 < p∗1 < p̄R∗

2 for Q,R ∈ {h, l}, Q ̸= R, and

p∗2 ≤ min{p̄h∗1 , p̄l∗1 }. By Lemmas B.6 and B.7, we can focus on profiles where r ≤ p∗i ≤ vh∀i ∈
{1, 2}. Then:

(1) Profiles where p∗2 < p∗1 are not equilibria. Indeed, Player 1 will always be able to deviate

from a profile where p∗2 < p∗1 and p̄Q∗
1 < p∗1 for some Q ∈ {h, l} to p̄Q

′

1 ≥ p∗1, as she obtains a
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moral gain and suffers no material losses. That only leaves p∗2 < p∗1 ≤ min{p̄h∗1 , p̄l∗1 }. But then,
it is Player 2 who can deviate to p′2 = p̄Q

′

2 = p∗1− ϵ, with ϵ → 0. Her utility function’s first term

increases while the second one does not decrease. Therefore, we cannot have p∗2 < p∗1.

(2) Profiles where p∗1 ≤ p∗2 are not equilibria. Indeed, Player 1 will always be able to

deviate from a profile where p∗1 ≤ p∗2 and vl < p∗2 by setting p′1 = p̄l
′
2 = p∗2 − ϵ, with ϵ → 0.

Her utility function’s first term increases while the second one does not decrease. That only

leaves p∗1 ≤ p∗2 ≤ vl. But then, it is Player 2 who can deviate to p′2 = p̄Q
′

2 = p∗1. Her utility

function’s first term increases while the second one does not decrease. Therefore, we cannot

have p∗1 ≤ p∗2.

Lemma B.9. Consider the bilateral trade game with with heterogeneous buyer valuations and

κ ∈ (0, 1). Profiles featuring exclusion in both contingent markets are not Nash equilibria in

pure strategies.

Proof. Consider profiles where p̄∗Qi < p∗j < p̄∗Rj;∀i, j ∈ {1, 2}, i ̸= j and Q,R ∈ {h, l}, Q ̸= R.

By Lemma B.1, we can focus only on the subset of profiles where vl < p∗i ≤ vh∀i ∈ {1, 2}.
Then:

(1) Profiles where prices are different are not equilibria. Suppose, without loss of generality,

that p∗1 < p∗2. Then, if p̄
∗
h2 < p∗2, Player 2 can deviate to p̄′h2 = p∗2 to obtain a moral gain while

suffering no material losses. Thus, we can only have p̄∗h2 ≥ p∗2. But then, Player 1 finds it

profitable to deviate to p′1 = p̄′l1 = p∗2 − ϵ, with ϵ < p∗2 − p∗1. Her utility function’s first term

increases while the second one does not decrease.

(2) But neither are equilibria profiles where prices are the same. Take max{p̄∗l1, p̄∗l2} < p∗1 =

p∗2 ≤ min{p̄∗h1, p̄∗h2}. Then, without loss of generality, Player 1 can deviate to p′1 = p̄l
′
1 = p∗2 − ϵ,

with ϵ → 0. She thus obtains a strictly positive moral gain that she trades off against a material

loss that can be made arbitrarily small. Her utility function’s second term increases while the

first one does not decrease.

Lemma B.10. Consider the bilateral trade game with heterogeneous buyer valuations and κ ∈
(0, 1). Profiles featuring pooling in both contingent markets are Nash equilibria only if p̄∗hi ∈
[(1− λ) p∗li + λr,

(
1
λ

)
p∗li −

(
1−λ
λ

)
r]∀i, j ∈ {1, 2}, i ̸= j.

Proof. By Lemmas B.6 and B.7, we can focus on profiles where prices are weakly above cost

and below the high valuation. Take a profile with full trade in both contingent markets, so that

min{p̄∗hi, p̄∗li} < p∗j and r ≤ p∗j ≤ vh,∀i, j ∈ {1, 2}, i ̸= j.

(1) If prices are different, the profile is not a Nash equilibrium. To see it, assume without

loss of generality that p∗1 < p∗2. Then, if p̄∗Q2 < p∗2 for some Q ∈ {h, l}, Player 2 can profitably

deviate to p̄′Q2 ≥ p∗2. She obtains a moral gain without suffering any material losses. In turn,

if p̄∗Q2 ≥ p∗2 for all Q ∈ {h, l} are not Nash equilibria either, as Player 1 can profitably deviate

to p′1 = p∗2, obtaining a material gain without experiencing moral losses (her utility function’s

first term increases while the second one does not decrease).
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(2) If prices are equal but above the low valuation, the profile is not a Nash equilibrium.

Indeed, suppose that vl < p∗1 = p∗2. Then, without loss of generality, Player 1 can deviate to

p̄l
′
1 = p′1 = p∗2 − ϵ, with ϵ → 0. She obtains a strictly positive material gain by not buying

from Player 2 in the low-valuation case. This gain outweighs the material loss brought about

by the price reduction if ϵ is small enough. In addition, she suffers no moral losses. Her utility

function’s first term increases while the second one does not decrease.

(3) With equal prices, profiles where a player’s lowest threshold is above the common price

are not Nash equilibria. Indeed, suppose without loss of generality that p∗1 = p∗2 < min{p̄∗l2, p̄∗h2}.
Then, Player 1 can deviate to p′1 = p̄′h1 = p̄′l1 Her utility function’s first term increases while

the second one does not decrease.

(4) With equal prices, if (p̄∗li, p̄
∗
hi) are such that p̄∗hi /∈ [(1− λ) p∗li + λr,

(
1
λ

)
p∗li −

(
1−λ
λ

)
r] for

some i ∈ {1, 2} then the profile is not an equilibrium. Indeed, suppose without loss of generality

that p̄∗h2 /∈ [(1− λ) p∗l2 + λr,
(
1
λ

)
p∗l2 −

(
1−λ
λ

)
r]. Then, Player 1 can deviate to p′1 = p̄′h1 = p̄′l1 =

max{p∗l2, p∗l2}. Her utility function’s first term increases while the second one does not decrease.

(5) Profiles where r ≤ p∗i = p∗j ≤ vl and p̄∗hi ∈ [(1− λ) p∗li + λr,
(
1
λ

)
p∗li −

(
1−λ
λ

)
r]∀i, j ∈

{1, 2}, i ̸= j are equilibria. Indeed, notice that given (p∗j , p
∗
lj, p

∗
hj), (p

∗
i , p

∗
li, p

∗
hi) maximises ??.

The strategies are then mutual best responses and therefore, these profiles are Nash equilibria.

Proposition B.11. The set of Nash equilibria of the bilateral trade game with heterogeneous

buyer valuations and κ = 1 is p∗i ≤ min{p̄∗hi, p̄∗li}∀i ∈ {1, 2}

Proof. Given that r < vl < vh, Expression (6) with κ = 1 is maximised if and only if p∗i ≤
min{p̄∗hi, p̄∗li} .

Appendix C Appendix to Section 4.1

Proposition 4.2*. Consider the bilateral trade game with with adverse selection between two

homo oeconomicus and assume that 0 < rl < vl < rh < vh. The Nash equilibria in pure

strategies are:

1. If λ ≥ λe:

� Full-trade: p∗i = p∗jl = p∗jh ∈ [rh, v
e];∀i, j ∈ {1, 2}, i ̸= j

� Adverse selection and pooling: p∗i = p∗jl ∈ [rl, vl], p
∗
jh > vh, p

∗
j = p∗il = p∗ih ∈

[rh, v
e]; i, j ∈ {1, 2}, i ̸= j

� No trade and pooling: p∗i < rl, p
∗
jh > min

{
max

{
p∗jl,

1− λ

λ
(vl − p∗jl)

}
, vh

}
, p∗jl > vl,

p∗j = p∗il = p∗ih ∈ [rh, v
e]; i, j ∈ {1, 2}, i ̸= j

� Adverse selection (both cont. markets): p∗i = p∗jl ∈ [rl, vl], p
∗
jh > vh, ,∀i, j ∈ {1, 2}, i ̸=

j
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� Adverse selection and no-trade: p∗i = p∗jl ∈ [rl, vl], p
∗
jh > vh,

p∗j < rl, p
∗
ih > min

{
max

{
p∗il,

1− λ

λ
(vl − p∗il)

}
, vh

}
, p∗il > vl; i, j ∈ {1, 2}, i ̸= j

� No-trade: p∗i < rl, p
∗
jh > min

{
max

{
p∗jl,

1− λ

λ
(vl − p∗jl)

}
, vh

}
, p∗jl > vl;∀i, j ∈

{1, 2}, i ̸= j

2. If λ < λe, the Nash equilibria in pure strategies of the main game are:

� Adverse selection (both cont. markets): p∗i = p∗jl ∈ [rl, vl], p
∗
jh > vh,∀i, j ∈ {1, 2}, i ̸=

j

� Adverse selection and no-trade: p∗i = p∗jl ∈ [rl, vl], p
∗
jh > vh,

p∗j < rl, p
∗
ih > min

{
max

{
p∗il,

1− λ

λ
(vl − p∗il)

}
, vh

}
, p∗il > vl; i, j ∈ {1, 2}, i ̸= j

� No-trade: p∗i < rl, p
∗
jh > min

{
max

{
p∗jl,

1− λ

λ
(vl − p∗jl)

}
, vh

}
, p∗jl > vl;∀i, j ∈

{1, 2}, i ̸= j

When agents are homo oeconomicus, their utility function reduces to their expected material

payoff, shown in Expression (3) (substituting for the appropriate seller and buyer payoffs shown

in (4)). Notice that the terms inside the first square brackets of Player i’s utility function are

only affected by her threshold p̄i and Player j’s prices pjh and pjl. Meanwhile, the second square

brackets of Player i’s utility function are only affected by her prices pih and pil and by Player

j’s threshold p̄j. I then study the “contingent” game between a buyer who sets p ∈ R+ and a

seller who decides (p2g, p2b). Their utilities are respectively UB and US:

UB(p; ph, pl) = λ1{ph ≤ p̄}(vh − ph) + (1− λ)1{pl ≤ p̄}(vl − pl), (13)

∈ R
2
+ and has utility:

US(ph, pl; p) = λ
(
1{ph ≤ p̄}(ph − rh)

)
+ (1− λ)

(
1{pl ≤ p̄}(pl − rl)

)
. (14)

As with the symmetric information case, I find the Nash equilibria in pure strategies of the

contingent game by writing down the best-response correspondences and looking for their inter-

section. The result is summarised in Lemma C.1, where the term ve is used to refer to expected

quality λvh + (1− λ)vl.

Lemma C.1. Assume that 0 < rl < vl < rh < vh. Then, the Nash equilibria in pure strategies

of the contingent game between a seller who chooses prices (p∗h, p
∗
l ) and a buyer who chooses

threshold p̄ are:

(1) If rh ≤ ve:

� Pooling: p∗1 = p∗g = p∗l ∈ [rh, v
e]

� Adverse selection (only bad quality traded): p∗1 = p∗l ∈ [rl, vl], p
∗
h > vh
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� No trade: p∗ < rl, p
∗
l > vl, p

∗
h > min

{
max

{
p∗l ,

1− λ

λ
(vl − p∗l )

}
, vh

}
(2) If rh > ve:

� Adverse selection (only bad quality traded): p∗1 = p∗l ∈ [rl, vl], p
∗
g > vh

� No trade: p∗ < rl, p
∗
l > vl, p

∗
h > min

{
max

{
p∗l ,

1− λ

λ
(vl − p∗l )

}
, vh

}
Proof. The seller’s best reply correspondences in the contingent game are:

pBR
h = argmax

ph

US(ph, pl; p̄) =

pBR
h = p1 if p ≥ rh

pBR
h > p1 if p < rh

pBR
l = argmax

pl

US(ph, pl; p̄) =

pBR
l = p if p ≥ rl

pBR
l > p if p < rl

The buyer’s best reply correspondence in the contingent game is:

p̄BR ≥ max{ph, pl} if 0 ≤ pl ≤ vl, 0 ≤ ph ≤ vh

p̄BR ∈ [pl, ph) if 0 ≤ pl ≤ vl, vh < ph

p̄BR ∈ [ph, pl) if vl < pl, ph ≤ min{vh, pl}

p̄BR < min{ph, pl} if vl < pl, ph > min

{
max

{
vh +

1− λ

λ
(vl − pl), pl

}
, vh

}
p̄BR ≥ max{ph, pl} if vl < pl ≤ ph ≤ vh, 0 ≤ ph ≤ vh +

1− λ

λ
(vl − pl)

If rh ≤ ve, the best replies intercept whenever:

p∗ = p∗h = p∗l ∈ [rh, λvh + (1− λ)vl], p
∗ = p∗l ∈ [rl, vl], p

∗
h > vh and

p∗ < rl, p
∗
l > vl, p

∗
h > min

{
max

{
p∗b ,

1− λ

λ
(vl − p∗b)

}
, vh

}
.

If rh > ve, they do so when:

p∗ = p∗l ∈ [rl, vl], p
∗
h > vh and p∗ < rl, p

∗
l > vl, p

∗
h > min

{
max

{
p∗b ,

1− λ

λ
(vl − p∗l )

}
, vh

}
.

Proof of Proposition 4.2:

Proof. Immediate from the fact that the main game is composed of two contingent games and

Lemma C.1.

Proposition C.2. Consider the bilateral trade game with with adverse selection between two

fully moral agents and assume that 0 < rl < vl < rh < vh. The Nash equilibria in pure strategies

are of the form p∗i ≥ max{p∗ih, p∗il} ∀i ∈ {1, 2}.
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Proof. Given that rh < vh and rl < vl , utility is maximised p∗i ≥ max{p∗ih, p∗il}, ∀i ∈ {1, 2}.

Corollary C.2.1. The equilibria between two homo kantiensis always feature some trade.

Since it is always true that either p∗1 ≥ p∗2 or p∗2 ≥ p∗1, in equilibrium there will always be a

player who is selling to the other one in both states of the world. In contrast, the high-threshold

agent (who is buying in both states of the world) may or may not post prices low enough to

sell to the other player. Hence, equilibria may feature full trade, trade of both qualities when

one player is the seller and no trade when she is the buyer, or trade of both qualities when one

player is the seller and trade of only one quality when roles are reversed.

Proposition 4.3*. Consider the bilateral trade game with adverse selection between two homo

moralis and assume 0 < rl < vl < rh < vh. If λ ≥ λe, the only Nash equilibria are profiles

where rh ≤ p̄∗i = p∗ih = p∗il ≤ ve; for all i ∈ {1, 2}. In turn, if λ < λe, there exist no Nash

equilibria in pure strategies.

Proof. The proof follows directly from Lemmas B.1 to B.10, presented below.

Lemma C.3. Consider the bilateral trade game with adverse selection between two homo

moralis and assume 0 < rl < vl < rh < vh. Then, profiles featuring no trade in at least

one contingent market where either of conditions (1) to (4) are true, are not Nash equilibria in

pure strategies. The conditions are: (1) the low quality price below is (weakly) the low valuation,

(2) the low quality price is (weakly) above low quality valuation but below the high quality price

and the expected price is not above expected valuation (3) the high quality price is below both

the low quality price and the high valuation, (4) the threshold is weakly above low-quality cost.

Proof. Assume without loss of generality, that p̄∗1 < min{p∗2h, p∗2l}. Then:
(1) Assume also that p∗2l ≤ vl. Player 1 can profitably deviate to p̄′1 = p∗2l. The first term of

her utility function increases because p̄′1 = p∗2l ≤ vl. The second term does not decrease.

(2) Assume also that vl ≤ p∗2l ≤ p∗2h ≤ vh +
1−λ
λ
(vl − p∗2l). Player 1 can profitably deviate to

p̄′1 = p∗2h. The first term of her utility function increases because p̄′1 = p∗2h ≤ vh +
1−λ
λ
(vl − p∗2l).

The second term does not decrease.

(3) Assume also that p∗2h < p∗2l, p
∗
2h ≤ vh. Player 1 can profitably deviate to p̄′1 = p∗2h. The

first term of her utility function increases because p̄′1 = p∗2h ≤ vh. The second term does not

decrease.

(4) Assume also that p̄∗1 ≥ rl. Player 2 can deviate to p′2l = p̄∗1. The first term of her utility

function increases because p′2l ≥ rl. The second term does not decrease.

Lemma C.4. Consider the bilateral trade game with adverse selection between two homo

moralis and assume 0 < rl < vl < rh < vh. Profiles where no trade takes place in either

contingent market are not Nash equilibria in pure strategies.

Proof. No-trade profiles are described by p̄∗i < min{p∗jh, p∗jl} and p̄∗j < min{p∗ih, p∗il} (with i, j ∈
{1, 2}, i ̸= j,). From Lemma C.3, only profiles featuring p∗i < rl, p

∗
j < rl, p

∗
il > vl, p

∗
jl > vl, p

∗
ih >
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min{max
{
p∗il,

1−λ
λ
(vl−p∗il)

}
, vh} and p∗jh > min{max{p∗jl, 1−λ

λ
(vl−p∗jl)}, vh} remain as candidate

equilibria. Next, consider, without loss of generality, Player 1. She can profitably deviate by

setting p′1 ∈ (p∗2,min{p∗2l, p∗2h}) and new prices {(p′1l, p′1h) : p′1l ∈ (p∗2, p
′
1], p

′
1h ∈ (p∗2, p

′
1]}. The

first term of her utility function remains the same, while the second one increases.

Lemma C.5. Consider the bilateral trade game with adverse selection between two homo

moralis and assume 0 < rl < vl < rh < vh. Profiles with trade of only the good quality in

at least one contingent market are not Nash equilibria in pure strategies.

Proof. Assume without loss of generality that p∗1h ≤ p̄∗2 < p∗1l. Then, if in addition:

(1) p̄∗1 ≤ p̄∗2 ≤ rl, Player 1 can deviate to p′1h ∈ (p̄∗2, rl) and p̄′1 = p′1h. The first term of her

utility function increases while the second one does not decrease.

(2) p∗1h ≤ p̄∗2 < p∗1l, p̄
∗
2 < p̄∗1 and p̄∗2 ≤ rl, Player 1 can deviate to p′1h ∈ (p̄∗2, p̄

∗
1]. The first

term of her utility function increases while the second one stays the same.

(3) p∗1h ≤ p̄∗2 < p∗1l and p̄∗2 > rl, Player 1 can deviate to p′1l = p̄∗2. The first term of her utility

function increases while the second one does not decrease.

In contrast with the homo oeconomicus variant of the model, profiles where one contingent

market features no trade at all and the other one presents trade of only the bad quality or trade

of both qualities are not equilibria of the game between two homo moralis agents. Lemmas

C.6 and C.7 leverage Lemma C.3 in order to show this, checking only profiles in which the

contingent market with no trade has prices above valuations and threshold below costs.

Lemma C.6. Consider the bilateral trade game with adverse selection between two homo

moralis and assume 0 < rl < vl < rh < vh. Then, profiles with full trade in one contin-

gent market and only trade of the bad quality in the other one are not equilibria.

Proof. Assume without loss of generality that p̄∗1 < min{p∗2h, p∗2l}. From Lemma C.3, only when

p̄∗1 < rl, p
∗
2l > vl and p∗2h > min

{
max{p∗2l, 1−λ

λ
(vl − p∗2l)}, vh

}
can these profiles be equilibria.

Then, assume alternatively that:

(1) p∗1l ≤ p̄∗2 < rl. Player 1 can deviate to p′1l ∈ (p̄∗2, rl) and p̄′1 = p′1l. The first term of her

utility function increases because rl > p∗1l while the second one remains the same (if p̄ ≥ p∗1l)

or increases (if p̄∗1 < p∗1l).

(2) vl < p∗1l ≤ p̄∗2. Player 2 can deviate to p̄′2 ∈ (vl, p
∗
1l) and p′2l ∈ (vl, p̄

′
2] if p̄

′
2 < p1b

∗ and to

p′2g ∈ (vl, p̄
′
2] if p̄

′
2 < p∗1h. The first term of her utility function increases because vl < p∗1l while

the second one remains the same.

(3) rl ≤ p∗1l ≤ p̄∗2 ≤ vl. Player 2 can deviate to p′2g = p′2l ∈ (p̄∗1, p̄
∗
2]. The first term of her

utility function remains the same while the second one increases.

Notice that the last point of the proof of Lemma C.6 resorts to a deviation that has no effect

with homo oeconomicus agents, as it does not lead to more or less trade nor does it modify the

prices at which it is carried out.
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Lemma C.7. Consider the bilateral trade game with adverse selection between two homo

moralis and assume 0 < rl < vl < rh < vh. Then, profiles with full trade in one contin-

gent market and no trade in the other one are not Nash equilibria in pure strategies.

Proof. Assume, without loss of generality, that p̄∗1 < min{p∗2h, p∗2l} and max{p∗1h, p∗1l} ≤ p̄∗2.

From Lemma C.3, only if p̄∗1 < rl, p
∗
2l > vl and p∗2h > min

{
max{p∗2l, 1−λ

λ
(vl − p∗2l)}, vh

}
can

these profiles be equilibria. Then, assume alternatively that:

(1) max{p1g∗, p1b∗} ≤ p̄∗2 < rl. Player 1 can deviate by setting p1g
′, p1b

′ and p̄′1 such that

p′1h ∈ (p̄∗2, p̄
′
1], p

′
1l ∈ (p̄∗2, p̄

′
1] and p̄′1 < p∗2l. The first term of her utility function increases because

p∗1h < rl and p∗1l < rl while the second one does not decrease.

(2) Assume alternatively to (2), that vl < p∗1l ≤ p̄∗2. Player 2 can deviate to p̄′2 ∈ (p̄∗1, p1b
∗)

and also lowering p2b to p′2l ∈ (p̄∗1, p̄
′
2]. The first term of her utility function increases because

vl < p∗1l while the second one increases does not decrease.

(3) Assume, in turn, that rl ≤ p∗1l ≤ p̄∗2 ≤ vl. Player 2 can deviate to p′1l ∈ (p̄∗1, p̄
∗
2]. The first

term of her utility function remains the same while the second one increases.

Lemma C.8. Consider the bilateral trade game with adverse selection between two homo

moralis and assume 0 < rl < vl < rh < vh. Then, profiles with only trade of the bad quality in

both contingent markets are not Nash equilibria in pure strategies.

Proof. Assume, without loss of generality, that p̄∗1 < p∗2h and p̄∗2 < p∗1h. Next, consider a profile

where p∗1l ≤ p̄∗2 < rl. Player 1 can deviate to p′1l ∈ (p̄∗2, rl) and p̄′1 = p′1l if p̄
∗
1 < p′1l. The first term

of her utility function increases because p∗1l < rl while the second one remains the same. This

shows that only profiles with rl ≤ p∗1l ≤ p̄∗2 and rl ≤ p∗2l ≤ p̄∗1 remain as equilibrium candidates.

(1) Assume now that rl ≤ p∗1l ≤ p̄∗2 and rl ≤ p∗2l ≤ p̄∗1 and, without loss of generality, that

p̄∗1 ≤ p̄∗2. If p∗2l < p̄∗1, Player 2 can deviate to p′2l = p̄∗1. The first term of her utility function

increases because p∗2l < p′2l while the second one remains the same. Thus, if p̄∗ ≤ p̄∗2, only

profiles with p∗2l = p̄∗1 remain as equilibrium candidates.

(2) Assume that rl ≤ p∗1l ≤ p̄∗2 and rl ≤ p∗2l = p̄∗1 ≤ q̄∗2. If p̄∗ < q̄∗2, Player 1 can deviate to

p′1l and p̄ to p̄′1 = p̄∗2. The first term of her utility function increases because p∗1l < p′1l while

the second one remains the same. Thus, only profiles with rl ≤ p∗2l = p∗2l = p̄∗1 = p̄∗2 remain as

equilibrium candidates.

(3) Consider now profiles where vl < p∗1l = p∗2l = p̄∗1 = p̄∗2. Player 1 can deviate by marginally

reducing p̄1 to p̄′1 = p̄∗1−ϵ (with ϵ → 0) while at the same time lowering p1b to p′1l = p̄′. The first

term of her utility function increases because p∗1l − p′1l can be made arbitrarily small, whereas

the quantity q2b
∗− vl is fixed. The second term of her utility function remains the same. Thus,

only profiles with rl ≤ p∗2l = p∗1l = p̄∗1 = p̄∗2 ≤ vl remain as equilibrium candidates.

(4) Assume rl ≤ p∗2l = p∗1l = p̄∗1 = p̄∗2 ≤ vl and p∗1h ≤ min{max{p∗2l, vh + 1−λ
λ
(vl − p∗2l)}, vh}.

Then, Player 1 can deviate to p̄′1 = p∗2h. The first term of (??) increases, whereas the second

one increases (if p∗1h ∈ (p̄∗1, p
∗
2h]) or remains the same (if p∗1h > p∗2h.

(5) Consider now profiles where rl ≤ p∗2l = p∗1l = p̄∗1 = p̄∗2 ≤ vl and p∗2h > min{max{p∗2l, vh +
1−λ
λ
(vl − p∗2l)}, vh}. Then, Player 1 can deviate to p̄′1 ∈ (p̄∗2, p

∗
2h). The first term of her utility

function remains the same, whereas the second one increases.
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Lemma C.9. Consider the bilateral trade game with adverse selection between two homo

moralis and assume 0 < rl < vl < rh < vh. Then, profiles with only trade of the bad quality in

one contingent market and full trade in the other one are not Nash equilibria in pure strategies.

Proof. Assume, without loss of generality, that p1l ≤ p̄∗2 < p∗1h and max{p∗2l, p∗2h} ≤ p̄∗1. Then:

(1) Suppose that p̄∗1 ≤ p̄∗2. Profiles with max{p∗2l, p∗2h} < p̄∗1 are not equilibria. Player 2 can

set p2Q = p̄∗1, Q ∈ {h, l}. The first term of her utility function while the second one remains the

same because p̄∗1 ≤ p̄∗2.

(2) Suppose that p∗2l = p∗2h = p̄∗1 ≤ p̄∗2 and p∗1l ≤ p̄∗2 < p∗1h. If p∗1l < p̄∗2, Player 1 can deviate

to p′1l = p̄′1 = p̄∗2. The first term of her utility function while the second one remains the same.

(3) Assume that p∗2l = p∗2h = p̄∗1 = p∗1l = q̄∗ < rh. Player 2 can deviate to p′2g > p̄∗1 and

p̄′2 = p′2g. The first term of her utility function while the second one remains the same.

(4) Assume, alternatively to (3), that rh ≤ p∗2l = p∗2h = p̄∗1 = p∗1l = p̄∗2 < p∗1h. Player 1 can

deviate to p′1h = p∗2l = p∗2h = p̄∗1 = p∗1l = p̄∗2. Both terms of her utility function increase.

(5)Assume p1l < p̄∗1 < p∗1h, max{p∗2l, p∗2h} ≤ p̄∗1 and p̄∗1 > p̄∗2.Player 1 can deviate to p′1l = p̄∗2.

The first term of her utility function increases because p′1l = p̄∗2 < p̄∗1, while the second one

remains the same.

(6) Assume that p∗1l = p̄∗2 < min{rl, p∗1h}, max{p∗2l, p∗2h} ≤ p̄∗1 and p̄∗1 > p̄∗2. Player 1 can

deviate to p′1l ∈ (p̄∗2, p̄
∗
1]. The first term of her utility function increases because p∗1l < rl, while

the second one remains the same because p′1l ≤ p̄∗1.

(7) Assume that p∗1l = p̄∗2 > vl, p̄∗2 < p∗1h, max{p∗2l, p∗2h} ≤ p̄∗ and p̄∗1 > p̄∗2. If either

p∗2h < p̄∗2 < p∗2l, p
∗
2l < p̄∗2 < p∗2h or max{p∗1l, p∗2h} < p̄∗2, Player 2 can deviate to p̄′2 ∈ [p∗2h, p

∗
1l),

p̄′2 ∈ [p∗2h, p
∗
1l) or p̄′2 ∈ [max{p∗2l, p∗2h}, p∗1l) respectively. The first term of her utility function

increases because p∗1l > vl, while the second one remains the same. In turn, if min{p∗2l, p∗2h} > p̄∗2,

then Player 2 can profitably deviate p̄′2 < p∗1l. The first term of her utility function increases

because p∗1l > vl, while the second one remains the same.

If p∗2l = p̄∗2 or p∗2h = p̄∗2 (or both), Player 2 can deviate to p̄′2 = p∗1l − ϵ (with ϵ → 0), p′2l = p̄′

and/or p2g to p′2g = p̄′2. The first term of her utility function increases because p∗2l − p′2l can be

made arbitrarily small, whereas the quantity p∗2l − vl is fixed. The second term of her utility

function remains the same.

(8) Assume p̄∗2 = p∗1l ∈ [rl, vl], p̄
∗
2 < p∗1h, p

∗
2h ≤ p̄∗1, p̄

∗
2 < p̄∗1 and p∗1h < vh. Player 2 can deviate

to p̄′2 ≥ p∗1h. The first term of her utility function increases because p∗1h < vh, while the second

one increases (if q2b ∈ (p̄∗2, p̄
′
2] or p2g ∈ (p̄∗2, p̄

′
2]) or remains the same (if p2b ≤ p̄∗2 and p2g ≤ p̄∗2 or

p2b > p̄′2 and p2g > p̄′2).

(9) Assume that p̄∗2 = p∗1l ∈ [rl, vl], p̄
∗
2 < p∗1h, vh < p∗1h, max{p∗2l, p∗2h} ≤ p̄∗1, p̄

∗
2 < p̄∗1 and

min{p∗2h, p∗2l} > vh. Player 1 can deviate to p̄′1 < min{p∗2h, p∗2l} to p′1h = p̄′1 (if p̄′1 < p∗1h). The

first term of her utility function increases because min{p2g∗, p2b∗} > vh, while the second one

remains the same.

(10) Assume that p̄∗2 = p∗1l ∈ [rl, vl], p̄
∗
2 < p∗1h, vh < p∗1h, max{p∗2l, p∗2h} ≤ p̄∗1, p̄

∗
2 < p̄∗1,

p∗2h < p∗2l ≤ p̄∗1 and p∗2l > vl. Player 1 can deviate to p̄′1 ∈ [p∗2h, p
∗
2l) and p′1h = p̄′1 (if p̄′1 < p∗1h).

The first term of her utility function increases because p2b
∗ > vl, while the second one increases
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if.

(11) Assume that p̄∗2 = p∗1l ∈ [rl, vl], p̄
∗
2 < p∗1h, vh < p∗1h, max{p∗2l, p∗2h} ≤ p̄∗1, p̄

∗
2 < p̄∗1 and

p∗2h ≤ p̄∗1 < rh. Player 2 can deviate to p′2g > p̄∗ while at the same time augmenting q̄ to

p̄′2 ∈ [p′2g, p
∗
1h). The first term of her utility function increases because p∗2l > vl, while the second

one increases if.

(12) Assume that p̄∗2 = p∗1l ∈ [rl, vl], p̄
∗
2 < p∗1h, vh < p∗1h, max{p∗2l, p∗2h} ≤ p̄∗, p̄∗2 < p̄∗ and

p∗2l ≤ p̄∗1 < rl. Player 2 can deviate to p′2l > p̄∗1 and p̄′2 ∈ [p′2l, p
∗
1h). The first term of her utility

function increases because p∗2l > vl, while the second one increases if.

(13) Assume that p̄∗2 = p∗1l ∈ [rl, vl], p̄
∗
2 < p∗1h, vh < p∗1h, max{p∗2l, p∗2h} ≤ p̄∗1 and p̄∗2 < p̄∗1 while

at the same time, rl ≤ p∗2l ≤ p∗2h and rh ≤ p∗2h ≤ vh. Notice that rh ≤ p∗2h and p̄∗2 = p∗1l ∈ [rl, vl]

implies that p̄∗2 < p∗2h. Player 2 can deviate to p̄′2 = p∗2h The first term of her utility function

remains the same, while the second one increases.

Lemma C.10. Consider the bilateral trade game with adverse selection between two homo

moralis and assume 0 < rl < vl < rh < vh. Then, profiles with full trade in at least one

contingent market at a price below high quality cost are not equilibria are not Nash equilibria

in pure strategies of the game between two homo moralis.

Proof. Assume, without loss of generality, that max{p∗1l, p∗1h} ≤ p̄∗2 < rh. Then, if in addition,

p̄∗2 < p̄∗1, Player 1 can profitably deviate to p′1h ∈ (p̄∗2, p̄
∗
1]. The first term of her utility function

increases while the second one remains the same. In turn, assume that p̄∗1 ≤ p̄∗2. Then, Player 1

can profitably deviate to p′1h > p̄∗2 and p̄′1 = p′1h. The first term of her utility function increases

while the second one does not decrease.

Lemma C.11. Consider the bilateral trade game with adverse selection between two homo

moralis and assume 0 < rl < vl < rh < vh. Then, profiles where with full trade in at least one

contingent market at a price above expected valuation are not Nash equilibria in pure strategies

of the game between two homo moralis.

Proof. Take a profile where ve < p̄∗i = p∗iQ; for all i ∈ {1, 2}, and Q ∈ {h, l}. Then, without

loss of generality, Player 1 can profitably deviate to p̄′1 < p̄∗2 and p′i = p′1l = p′1h = p̄′1, where

p∗ − p̄′1 = ϵ > 0, ϵ → 0).There exists ϵ > 0 sufficiently small such that p∗ − p̄′1 < ve − p∗.

Therefore, the first term of her utility function increases while the second one remains the

same.

Corollary C.11.1. If ve < rh, there are no equilibria in pure strategies in the bilateral trade

game with quality uncertainty and desirable trade between two moralis.

Lemma C.12. Consider the bilateral trade game with adverse selection between two homo

moralis and assume 0 < rl < vl < rh < vh and rh ≤ ve. Then, symmetric full trade profiles

with prices between high quality cost and expected valuation are equilibria.

Proof. Consider, without loss of generality, Player 1. Given Player 2’s strategy, both terms of

her utility function are maximised. The strategies are then mutual best responses and thus the

profile is a Nash equilibrium.

41



Appendix D Appendix to Section 4.2

Proof of Proposition 4.4

The prices set by a given player are completely independent of her threshold and only affect

her utility through their interaction with her rival’s threshold. Thus, the bargaining game’s

equilibrium set is all the pairs of profiles that can be formed from the equilibria of the contingent

game.

Consider now the contingent game. The seller’s best reply correspondences are:

pBR
h = argmax

ph

US(ph, pl; p̄) =

pBR
h = p if p1 ≥ rh

pBR
h > p if p < rh

pBR
l = argmax

pl

US(ph, pl; p̄) =

pBR
l = p if p ≥ rl

pBR
l > p if p < rl

The buyer’s best reply correspondence is:



p̄BR ≥ max{ph, pl} if 0 ≤ pl ≤ vl, 0 ≤ ph ≤ vh

p̄BR ≥ ph if vl < pl ≤ ve, pl ≤ ph ≤ vh +
1− λ

λ
(vl − pl)

p̄BR ∈ [pl, ph) if 0 ≤ pl ≤ vl, vh < ph

p̄BR ∈ [ph, pl) if vl < pl, 0 ≤ min{pl, vh}

p̄BR < min{ph, pl} if vl < pl, ph > min

{
max

{
vh +

1− λ

λ
(vl − pl), pl

}
, vh

}
If λ ≥ λe, the best replies intercept whenever:

p∗ = p∗h = p∗l ∈ [rh, ve], and

p∗ < rl, p
∗
l > vl, p

∗
h > min

{
max

{
p∗l , vh +

1− λ

λ
(vl − p∗l )

}
, vh

}
.

If λ < λe, they do so only when:

p∗ < rl, p
∗
l > vl, p

∗
h > min

{
max

{
p∗l , vh +

1− λ

λ
(vl − p∗l )

}
, vh

}
.

Lemma D.1. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Then, no-trade profiles where the weakly largest threshold is below

own high quality price or above own bad quality price are not Nash equilibria in pure strategies.

Proof. Assume that p̄∗i < min{p∗jh, p∗jl}∀i, j ∈ {1, 2}, i ̸= j and, without loss of generality, that

p̄∗2 ≤ p̄∗1. Then:

(1) Suppose additionally that p̄∗1 < p∗1h. If p̄∗2 < p̄∗1, Player 1 can profitably deviate to

p′1h = p̄∗1. In turn, if p̄∗2 = p̄∗1, she can profitably deviate to p̄′1h = p′1 ∈ (p̄∗1,min{p∗1l, p∗2h, p∗2l}).
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In both deviations, the first term of her utility function does not change while the second one

strictly increases.

(2) Suppose, alternatively to (1), that p∗1l ≤ p̄∗1. Then, for p̄∗2 < p̄∗1, Player 1 can profitably

deviate to p′1l > p̄∗1. The first term of her utility function does not change while the second one

strictly increases.

Lemma D.2. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Then, profiles where there is no trade in either contingent market

are not Nash equilibria in pure strategies.

Proof. Assume that p̄∗i < min{p∗jh, p∗jl}∀i, j ∈ {1, 2}, i ̸= j and, without loss of generality that

p̄∗1 ≤ p̄∗2. First, consider the case where p̄∗1 < p̄∗2. Then, by Lemma D.1, only profiles where

p∗2h ≤ p̄∗2 < p∗2l can be candidate equilibria. The profiles left when p̄∗1 < p̄∗2 are then those where

p̄∗1 < p∗2h ≤ p̄∗2 < min{p∗2l, p∗1h, p∗1l}. However, notice that if p∗2h ≤ vh, then Player 1 finds it

(weakly) profitable to increase her own threshold to p̄′1 = p∗2h. After this deviation, the only

change is that Player 1 now acquires Player 2’s high quality good at price p∗2h ≤ vh, without

buying the bad quality item. The first term of her utility function increases while the second

one does not change. Thus, no-trade profiles featuring p̄∗1 < p̄∗2 and p̄∗2 ≤ vh are not equilibria.

It remains to check whether profiles such that p̄∗1 < p̄∗2 and p∗2h > vh are equilibria. The

answer is also negative because we have that p∗2h ≤ p̄∗2 =⇒ p̄∗2 > vh > rh. With Player 2’s

threshold above rh, Player 1 can profitably deviate by lowering her own high quality price to

p′1h = p̄∗2 and sell her good quality item for a profit, without experiencing neither “moral” losses

nor gains, as both her prices remain above her threshold. The first term of her utility function

increases while the second one does not change. I can then affirm that no-trade profiles where

players set different thresholds are not equilibria of this game.

Finally, suppose that p̄∗1 = p̄∗2. Player 1 can profitably deviate to p′1h = p̄′1 ∈ (p̄∗2,min{p∗1l, p∗2l, p∗2h}).
In this way, she gets to sell the high quality good to “herself” without modifying anything else,

thus obtaining a “moral” gain. The first term of her utility function does not change while the

second one strictly increases.

Lemma D.3. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Then, profiles with trade of both qualities in one contingent market

and no trade in the other one where agents setting different thresholds are not Nash equilibria

in pure strategies.

Proof. Assume without loss of generality that p̄∗1 < min{p∗2h, p∗2l}, p̄∗2 ≥ max{p∗1h, p∗1l} and

p̄∗1 ̸= p̄∗2. Then:

(1) Suppose first that p̄∗2 < p̄∗1. This implies that p̄∗2 < min{p∗2h, p∗2l}. But then, Player 2 can

profitably deviate to p̄∗1 < p̄′2 = p′2h < p′2l. Her utility function’s first term remains unchanged

while the second one increases.

(2) Assume now that p̄∗1 < p̄∗2. Notice first that a profile complying with these assumptions

and also with p∗1l < p̄∗2 cannot be an equilibrium. Indeed, Player 1 can profitably deviate to
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p′1l = p̄∗2 and make a material improvement while experiencing no moral losses, or even gains

(her utility function’s first term increases while the second one does not decrease). Next, remark

that profiles where p∗2l ≤ p̄∗2 or p∗2h > p̄∗2 are not equilibria. In the former case, Player 2 can

p′2l > p̄∗2 whilst in the latter she can do so to p′2h ≤ p̄∗2. The deviations entail a moral gain

without material losses (her utility function’s first term remains unchanged while the second

one increases).

We are thus left with profiles where p̄∗1 < p∗2h ≤ p̄∗2 = p∗1l < p∗2l and p∗1h ≤ p̄∗2. No profiles of

this kind are equilibria if p∗1h < p̄∗2. Player 1 can profitably deviate to p′1h = p̄′1 = p∗2h − ϵ. She

makes a material gain and sustains no moral losses.

Profiles with p∗1h = p̄∗2 are not equilibria either. Consider first the case where p∗1h = p̄∗2 ≤ vh.

Then we must also have p∗2h = p̄∗2 since if p∗2h < p̄∗2, Player 1 can deviate to p̄′1 = p∗2h and make

a material gain. Therefore, the remaining candidates are p∗1l = p∗1h = p∗2h = p̄∗2 < p∗2l. These

are not equilibria, as Player 1 can deviate to p′1h = p̄′1 = p̄∗2 − ϵ. She makes a moral gain and

sustains a material loss that can be made smaller by choosing the appropriate ϵ. Assume in

turn that p∗1h = p̄∗2 > vh. Then, Player 2 can deviate to p̄′2 = p′2h ∈ (p̄∗1, p̄
∗
2). She makes a

material gain while avoiding moral losses.

Lemma D.4. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Then, profiles with trade of both qualities in one contingent market,

no-trade in the other one and agents setting the same threshold are not Nash equilibria in pure

strategies.

Proof. Assume without loss of generality that min{p∗1h, p∗1l} ≤ p̄∗2 = p̄∗1 < min{p∗2h, p∗2l}. Then,

Player 2 can profitably deviate to (p̄′2, p
′
2h, p

′
2l) such that p̄∗2 = p̄∗1 < p′2h ≤ p̄′2 < p′2l. This simple

deviation allows her to achieve a ‘moral” gain by commencing to trade with “herself” the good

quality object, thus breaking the equality in thresholds assumed at first.

Lemma D.5. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Then, profiles where only the bad quality is exchanged in at least

one contingent market at a price strictly below the threshold are not Nash equilibria in pure

strategies.

Proof. Assume without loss of generality that p∗1l < p̄∗2 < p∗1h. Then, Player 1 can profitably

deviate to p′1l = p̄∗2. She makes a material gain without suffering moral losses.

Lemma D.6. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Then, profiles where only the bad quality is exchanged in at least

one contingent market at a price above the low quality valuation are not Nash equilibria in pure

strategies.

Proof. Assume without loss of generality that vl < p∗2l ≤ p̄∗1 < p∗2h. By Lemma D.5, we can

focus on the case vl < p∗2l = p̄∗1 < p∗2h. Then:
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(1) Suppose in addition that p∗1h < p̄∗1. Then Player 1 can profitably deviate to p̄′1 ∈ (p∗1h, p̄
∗
1).

She makes a material gain while avoiding a moral loss.

(2) Assume, alternatively, that p∗1h = p̄∗1. Then Player 1 can deviate to p̄′1 = p̄′1 < p̄∗1 − ϵ.

The deviation entails a material gain from stopping the trade of the bad quality item at a price

above valuation and a potential loss from reducing her own high quality price. However, the

loss can be made smaller than the gain by choosing an appropriate ϵ. Since there are no moral

losses involved, the deviation is profitable.

(3) Assume, in turn, that p∗1h > p̄∗1. Then, Player 1 can profitably deviate to p̄′1 < p̄∗1. She

makes a material gain while avoiding a moral loss.

Lemma D.7. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Then, profiles where only the bad quality is exchanged in at least

one contingent market at prices below low quality cost are not Nash equilibria in pure strategies.

Proof. Assume without loss of generality that p∗2l ≤ p̄∗1 < min{rl, p∗2h}. By Lemma D.5, we can

focus on the case p∗2l = p̄∗1 < min{rl, p∗2h}. Then, Player 2 can profitably deviate to p′2l > rl.

She makes a material gain while avoiding a moral loss.

Corollary D.7.1. If we assume vl < rl, profiles where only the bad quality is exchanged in at

least one contingent market are not equilibria of this game. Indeed, Lemmas D.5, D.6 and D.7

show that the threshold of the contingent market featuring only trade of the bad quality cannot

be neither above vl nor below rl to be equilibria.

Lemma D.8. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Then, profiles with only good quality trade in one contingent market

and no trade in the other one are not Nash equilibria in pure strategies.

Proof. Assume without loss of generality that p̄∗1 < min{p∗2h, p∗2l} and p∗1h ≤ p̄∗2 < p∗1l.

(1) Consider the case where, in addition, p̄∗2 < p̄∗1. Firstly, Player 1 can profitably deviate

from any profile where p̄∗1 ≥ p∗1l to p′1l > p̄∗1.She makes a moral gain without sustaining material

losses. Therefore, I can restrict attention to those where it is also true that p̄∗1 < p∗1l. But then,

notice that Player 2 can make a “moral” gain by deviating to p′2l > p̄′2 = p′2h ∈ (p̄∗1, p
∗
1l).

(2) In turn, suppose that p̄∗1 < p̄∗2. Firstly, notice that if p∗2l ≤ p̄∗2 Player 2 can profitably

deviate to p′2l > p̄∗2 and make a moral gain without suffering material losses. I then focus on

cases where p∗2l > p̄∗2. If p̄∗2 < rh, Player 1 can profitably deviate to p′1h ∈ (p̄∗2,min{p∗2h, p∗2l}).
She makes a material gain without sustaining moral losses. If p̄∗2 ≥ rh, Player 1 can profitably

deviate to p′1l = p̄∗2. Again, she makes a material gain without sustaining moral losses.

(3) Assume now thatp̄∗2 = p̄∗1. Then, Player 2 can profitably deviate to p′2l > p̄′2 = p′2h ∈
(p̄∗1, p

∗
1l) and p′2h = p̄′2. she makes a material gain without sustaining moral losses.

Lemma D.9. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Then, only profiles where players set the same high quality price

and threshold remain as equilibrium candidates when there is only good quality trade in both

contingent markets.
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Proof. Assume without loss of generality that p̄∗1 < p̄∗2. Then, Player 2 can always profitably

deviate from a profile where p∗2l ≤ p̄∗2 to p′2l > p̄∗2, making a moral loss without suffering material

losses. Therefore, I consider only profiles where p̄∗2 < p∗2l.

Next, notice that Player 1 can profitably deviate from any profile where p∗1h < p̄∗2 by setting

p̄′1 = p′1h = p̄∗2. She makes a material gain without experiencing moral losses. As a consequence,

I further restrict attention to profiles where p∗2h ≤ p̄∗1 < p∗1h = p̄∗2 < min{p∗2l, p∗1l}. Furthermore,

Player 2 can profitably deviate whenever p∗2h < p̄∗1 < p∗1h = p̄∗2 < min{p∗2l, p∗1l} to p′2h = p̄∗1, which

leaves only p∗2h = p̄∗1 < p∗1h = p̄∗2 < min{p∗2l, p∗1l}. But notice that Player 1 can then deviate to

p̄′1 = p∗1h = p̄∗2 and obtain a material gain without sustaining moral losses.

It follows that out of all possible profiles complying with p∗ig ≤ p̄∗j < p∗ib∀i, j ∈ {1, 2}, i ̸= j,

the only equilibrium candidates are those where p∗ig = p̄∗j = p∗jh = p̄∗i < min{p∗ib, p∗jl}.

Lemma D.10. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Then, only profiles where players set the same high quality price and

threshold and these are between high quality cost and valuation remain as equilibrium candidates

when there is only good quality trade in both contingent markets.

Proof. Define p∗ : p∗ = p∗jh = p̄∗i = p∗ig = p̄∗j∀i, j ∈ {1, 2}, i ̸= j. Suppose first that vh < p∗ <

min{p∗1l, p∗2l}. Then, without loss of generality, Player 1 can profitably deviate to p̄′1 = p′1h <

p∗ − ϵ. She makes a material loss (she sells the high quality item at a lower price) that can be

made smaller than the material gain by choosing an appropriate ϵ. In addition, she does not

make any “moral” losses.

In turn, assume that p∗ < min{rh, p∗2l, p∗1l}. Without loss of generality, Player 1 can prof-

itably deviate by setting p′1 = p′1h ∈ (p∗,min{p∗2l, p∗1l}). She obtains a material gain without

sustaining moral losses.

Lemma D.11. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Define p∗ : p∗ = p∗ig = p̄∗j = p∗jh = p̄∗i∀i, j ∈ {1, 2}, i ̸= j. Then,

profiles where rh ≤ p∗ ≤ min
{
(1− λ)rl + λvh,

rl−κvl
1−κ

}
, p∗ < min{p∗ib, p∗jl} are Nash equilibria in

pure strategies if and only if:

λvh + (1− λ)rl ≥ rh ⇐⇒ λ ≥ rh − rl
vh − rl

, and

rl − κvl
1− κ

≥ rh ⇐⇒ κ ≥ rh − rl
rh − vl

.

Proof. Consider a profile where rh ≤ p∗ ≤ vh and p∗ < min{p∗1l, p∗2l}. Take, without loss of

generality, Player 1. She has only two potentially profitable deviations available. On the one

hand, she can deviate to p′1l = p∗. This allows her to sell the bad quality object to Player 1 at

a price above cost rl, but also entails a “moral” loss as she would trade the bad quality item

with “herself”.

On the other hand, she can deviate to p′1l = p∗ and p′1h = p̄′1 = p∗ − ϵ. This allows her

to sell the low quality good to Player 2 at a price above cost while not selling it to “herself”
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(avoiding moral losses). In contrast, she stops buying the good quality item from Player 2 at

a price below her valuation (because she set a threshold below the latter’s price), thus making

a material loss. Finally, there is also a material loss that stems from lowering the high quality

price but this can be made smaller than the material gain by choosing an appropriate value for

ϵ.

Utility at the initial profile is:

Uhm
(
(p∗, p∗1l, p

∗), (p∗, p∗2l, p
∗)
)
=

1− κ

2

[
λ(vh − p∗) + λ(p∗ − rh)

]
+

κ

2

[
λ(vh − rh)

]
. (15)

Meanwhile, utilities obtained at respectively the first and second deviations described are:

Uhm
(
(p∗, p∗, p∗), (p∗, p∗2l, p

∗)
)
=

1− κ

2

[
λ(vh − p∗) + λ(p∗ − rh) + (1− λ)(p∗ − rl)

]
+

κ

2

[
λ(vh − rh) + (1− λ)(vl − rl)

]
,

(16)

Uhm
(
(p′1h, p

∗, p̄′1), (p
∗, p∗2l, p

∗)
)
=

1− κ

2

[
λ(p′1h − rh) + (1− λ)(p∗ − rl)

]
+

κ

2

[
λ(vh − rh)

]
.

(17)

Comparing (15) with (16), we conclude that the first deviation is profitable if and only if:

p∗ >
rl − κvl
1− κ

. (18)

Meanwhile, the comparison of (15) with (17) yields that the second one is beneficial if and only

if:

p∗ > rl +
λ

1− λ
(vh − p′1h). (19)

By taking into account that p′1h can be made arbitrarily close to p∗ we can take the limit of the

expression at the right-hand side of (19) and get:

lim
p′1h→p∗

rl +
λ

1− λ
(vh − p′1h) = rl +

λ

1− λ
(vh − p∗). (20)

The second deviation is then profitable if and only if:

p∗ > (1− λ)rl + λvh. (21)

Therefore, the game has equilibria in pure strategies where only the good quality is traded in

both contingent markets if and only if:

λvh + (1− λ)rl ≥ rh ⇐⇒ λ ≥ rh − rl
vh − rl

, and (22)

rl − κvl
1− κ

≥ rh ⇐⇒ κ ≥ rh − rl
rh − vl

, (23)

They are characterised by:

rh ≤ p∗ = p∗1h = p∗2h = p̄∗2 = p̄∗1 ≤ min

{
(1− λ)rl + λvh,

rl − κvl
1− κ

}
and p∗ < min{p∗2l, p∗1l}.
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Lemma D.12. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Then, profiles with trade of the good quality in one contingent

market and full trade in the other one are not equilibria if players set different thresholds and

prices for the traded qualities.

Proof. Assume without loss of generality, that p∗2h ≤ p̄∗1 < p∗2l,max{p∗1h, p∗1l} ≤ p̄∗2.

(1) Suppose first that in addition to the above, p̄∗2 < p̄∗1. Then Player 2 could always deviate

profitably from profiles where p∗2h < p̄∗1 just by setting p′2h = p̄′2 = p̄∗1. This is enough to discard

profiles with p̄∗2 < p̄∗1.

(2) Assume in turn, that p̄∗1 < p̄∗2. No profile where p∗2l ≤ p̄∗2 can be an equilibrium, as

Player 2 can deviate to p̄∗2 < p′2l and obtain a moral gain without suffering material losses.

Therefore, I can circumscribe to profiles where p∗2l > p̄∗2. Moreover, p∗1l < p̄∗2 cannot be part

of an equilibrium, as Player 1 can profitably deviate to p′1l = p̄∗2. She obtains a moral gain

without suffering material losses. So we are left with p∗2h ≤ p̄∗1 < p̄∗2 = p∗1l < p∗2l and p∗1h ≤ p̄∗2. If

p∗1h < p̄∗2, Player 1 can profitably deviate by setting p′1h = p̄′1 ∈ (p∗1h, p̄
∗
2). She makes a material

gain without suffering moral losses. In turn, if p∗1h = p̄∗2, she can deviate to p′1h = p̄′1 = p̄∗2 − ϵ.

She experiences a strictly positive moral gain and a material loss. However, the latter can be

made smaller than the former by choosing an appropriate ϵ. Then, the thresholds cannot be

different.

(3) Finally, suppose that p̄∗1 = p̄∗2 but p∗1h, p
∗
1l or p

∗
2h are strictly below p̄∗1 = p̄∗2. Then, the

agent can just increase her price up to the thresholds and make a material gain while sustaining

no moral losses.

Corollary D.12.1. A necessary condition for the existence of equilibria with trade of the good

quality in one contingent market and full trade in the other one is that λvh+(1−λ)vl ≥ rh ⇐⇒
λ ≥ λe.

Lemma D.13. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Take all profiles with trade of the good quality in one contingent

market and full trade in the other one where agents set the same thresholds and prices for traded

qualities. Then, only those with prices above high quality cost and below expected valuation

remain as equilibrium candidates.

Proof. By Lemma D.13, we can focus on profiles where p∗ig = p∗ib = p∗jh = p̄∗i = p̄∗j < p∗jl, i, j ∈
{1, 2}, i ̸= j.

Assume without loss of generality, that p∗1h = p∗1l = p∗2h = p̄∗1 = p̄∗2 < p∗2l and define

p∗ = p∗1h = p∗1l = p∗2h = p̄∗1 = p̄∗2.

Suppose first that p∗ < rh. Then, without loss of generality, Player 1 can deviate to

p′1h = p̄′1 ∈ (p∗, p∗2l). She makes a material gain and avoids moral losses.

In turn, assume that p∗ > ve. Then, Player 2 can deviate to p′2h = p̄′2 = p̄∗1 − ϵ. She makes

a material gain from ceasing to buy both qualities at a price above the expected valuation and

a loss from reducing her price, while experiencing no moral losses. Since the loss can be made

smaller than the gain by choosing an appropriate ϵ, the deviation is profitable.
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Lemma D.14. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Then, profiles with full trade in one contingent market and trade of

only the good quality in the other one if and only if:

λ ≥ λ2

κ ∈ [κ1, κa(λ)]

They are characterised by:

rl − κvl
1− κ

= p∗ig = p∗jh = p∗ib = p̄∗j = p̄∗i < p∗jl for i, j ∈ {1, 2}, i ̸= j.

Proof. (1) By Lemmas D.12 and D.13, the remaining candidate equilibria are such that rh ≤
p∗ = p̄∗i = p̄∗j = p∗jh = p∗ig = p∗ib ≤ ve, p

∗ < p∗jl∀i, j ∈ {1, 2}, i ̸= j. Corollary D.12.1 establishes

that λ ≥ λe is a necessary condition for the existence of this kind of equilibria.

(2) Assume, without loss of generality, that rh ≤ p∗ = p̄∗1 = p̄∗2 = p∗2h = p∗1h = p∗1l ≤ ve, p
∗ <

p∗2l. Player 1’s utility at this kind of profiles is specified in Equation (24), while that of Player

2 in (25).

Uhm
1

(
(p∗, p∗, p∗), (p∗, p∗2l, p

∗)
)
=

1− κ

2

[
λ(vh − p∗) + λ(p∗ − rh) + (1− λ)(p∗ − rl)

]
+

κ

2

[
λ(vh − rh) + (1− λ)(vl − rl)

]
,

(24)

Uhm
2

(
(p∗, p∗2l, p

∗), (p∗, p∗, p∗)
)
=

1− κ

2

[
λ(vh − p∗) + (1− λ)(vl − p∗) + λ(p∗ − rh) + (1− λ)rl

]
+

κ

2

[
λ(vh − rh)

]
.

(25)

Player 1 may deviate from the profiles described in two potentially beneficial ways: either

by marginally reducing her threshold and high quality price or by increasing her low quality

price. The first deviation leads Player 1 to stop trading the bad quality item with “herself”,

but also to stop buying the high quality good from Player 2 whilst also selling her own good

quality object for a slightly lower price. In turn, the second one leads to her not selling the

low quality good to Player 2 but avoiding the exchange of this same item with “herself”. The

utility achieved by Player 1 after the first deviation is described in Expression (26), where p′1h
is Player 1’s high quality price and threshold after deviating. Meanwhile, Player 1’s utility at

to the second deviation is shown in Equation (27), with p′1l representing the low quality price

set by Player 1 at the deviation.
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Uhm
1

(
(p′1h, p

∗, p′1h), (p
∗, p∗2l, p

∗)
)
=

1− κ

2

[
λ(p′1h − rh) + (1− λ)(p∗ − rl)

]
+

κ

2

[
λ(vh − rh)

]
,

(26)

Uhm
1

(
(p∗, p′1l, p

∗), (p∗, p∗2l, p
∗)
)
=

1− κ

2

[
λ(vh − p∗) + λ(p∗ − rh)

]
+

κ

2

[
λ(vh − rh)

]
.

(27)

The first deviation is profitable whenever

(1− κ) (λ(vh − rh)) + κ(1− λ)(vl − rl) > (1− κ)λ(p′1h − rh).

Recall that the price reduction from p∗ to p′1h is a marginal change and Player 1 can make

them arbitrarily similar. Taking the limit as p′1h approaches p∗ of the right hand side in the

above expression and solving for p∗ gives:

p∗ > vh +
κ(1− λ)

(1− κ)λ
(vl − rl) = A. (28)

In turn, the second deviation is beneficial to Player 1 whenever:

p∗ <
rl − κvl
1− κ

= B. (29)

I now turn to deviations available to Player 2. Firstly, she can reduce her low quality price

to p∗. In this way, she gets to sell her low quality good to Player 1 at price p∗ but also exchanges

it with “herself”, making a “moral” loss. Secondly, she can, in addition to lowering her low

quality good to p∗, slightly reduce her threshold and high quality price to p′2h. Thus, she gets

to sell her low quality good to Player 1 at price p∗ and avoid trading it with ‘herself”. She also

avoids buying Player 1’s low quality object. In contrast, she stops buying the good quality item

from Player 1. Player 2’s utility after the first deviation is shown in (30), while the second one

is displayed in (31).

Uhm
2

(
(p∗, p∗, p∗), (p∗, p∗, p∗)

)
=

1− κ

2

[
λ(vh − p∗) + (1− λ)(vl − p∗) + λ(p∗ − rh) + (1− λ)(p∗ − rl)

]
κ

2

[
λ(vh − rh) + (1− λ)(vl − rl)

]
,

(30)

Uhm
2

(
(p′2h, p

∗, p′2h), (p
∗, p∗, p∗)

)
=

1− κ

2

[
λ(p′2h − rh) + (1− λ)(p∗ − rh)

]
+

κ

2

[
λ(vh − rh)

]
.

(31)
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The first deviation is profitable to Player 2 whenever:

p∗ >
rl − κvl
1− κ

= B. (32)

In turn, the second one is beneficial to Player 2 when:

p∗ >
ve + (1− λ)rl

2− λ
= C. (33)

From expressions (29) and (32), the only possible value for p∗ in this type of equilibria is:

p∗ =
rl − κvl
1− κ

.

From (28) and (33) we obtain two new conditions for the existence of these equilibria:

rl − κvl
1− κ

≤ vh +
κ(1− λ)

(1− κ)λ
(vl − rl),

rl − κvl
1− κ

≤ ve + (1− λ)rl
2− λ

.

(3) Putting together all of the above, we have equilibria with full trade in one contingent

market and trade of only the good quality in the other one if and only if:

B ∈ [rh,min {A,C, ve}] . (34)

(4) Notice that:

rh ≤ ve =⇒ C ≤ ve.

(5) We can also show that:

B ≤ C =⇒ C ≤ A.

Firstly,

B ≤ C ⇐⇒ κ ≤ λ(vh − vl) + vl − rl
λ(vh − rl) + rl − vl

= κa(λ).

Secondly,

C ≤ A ⇐⇒ κ ≤ 2λvh − λ(rl + vl)

2 (λ (vh − rl) + rl − vl) = κc(λ)
.

Finally, κa(λ) ≤ κc(λ) ⇐⇒ λ ≤ 2, which is true by definition.

(6) So we can re-write (34) as:

B ∈ [rh, C] ⇐⇒ κ ∈
[
rh − rl
rh − vl

, κa(λ)

]
. (35)

(7) The condition for the above interval to be non-empty is:

λ ≥ rh − rl + rh − vl
rh − rl + vh − vl

, (36)

which is larger than rh−vl
vh−vl

(the value of λ necessary for rh ≤ ve).
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Lemma D.15. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Then, of all profiles with full trade, only those where players set

the same thresholds and prices remain as candidate Nash equilibria in pure strategies.

Proof. Assume without loss of generality, that p̄∗1 < p̄∗2. Then:

(1) Profiles where p∗1l < p̄∗2 can immediately be discarded as candidate equilibria, since

Player 1 can profitably deviate to p′1l = p̄∗2 and make a material benefit without suffering moral

losses.

(2) Within profiles where p∗1l = p̄∗2, those where p∗1h < p̄∗2 are also not equilibria, as Player

1 can profitably deviate to p′1h = p̄′1 ∈ (p∗1h, p̄
∗
2) and make a material benefit without suffering

moral losses.

(3) From profiles where p∗1h = p∗1l = p̄∗2, Player 1 can profitably deviate to p̄′1 = p′1h = p̄∗2 − ϵ.

She makes a moral gain and a material loss. The latter can be made smaller than the latter by

choosing an appropriate value for ϵ and thus, the deviation is profitable.

(4) Finally, profiles where p∗2Q < p̄∗1 = p∗1h = p∗1l = p̄∗2 for some Q ∈ {g, b} are not equilibria,

as Player 2 can profitably deviate to p′2Q = p̄∗1, making a material gain without facing moral

losses.

The proof of Lemma D.15 entails an interesting remark. Indeed, profiles where rh ≤ p∗2l =

p∗2h = p̄∗1 < p∗1l = p∗1h = p̄∗2 ≤ ve are equilibria in the bargaining game between two homo

oeconomicus. It is homo moralis ’ “impulse” to set a high quality price she herself would

be willing to accept that drives her to deviate, even though the deviation has no material

consequences on either player, but only a moral gain for the deviating agent.

I turn now to profiles where both players set the same threshold. Lemma D.17 shows that

the only equilibria with full trade are those where players set the same prices and thresholds

and characterises them.

Lemma D.16. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Then, full trade profiles with symmetric prices and thresholds are

not equilibria if they are below the high quality cost or above the expected valuation.

Proof. Define p∗ = p̄∗1 = p∗1l = p∗1h = p̄∗2 = p∗2l = p∗2h.

(1) Assume that p∗ < rh. Then, without loss of generality, Player 1 can profitably deviate

to p′1h = p̄′1 > p∗. She makes a material gain without suffering moral losses.

(2) Assume alternatively that ve < p∗. Then, without loss of generality, Player 1 can

profitably deviate to p̄′1 = p′1h = p∗ − ϵ. She makes no moral losses, makes a material gain from

not buying both qualities for a price larger than the expected valuation and a loss from reducing

her high quality price. However, the loss can be made smaller than the gain by choosing an

appropriate value for ϵ.

Lemma D.17. Consider the quality uncertainty game between two homo moralis and assume

that 0 < vl < rl < rh < vh. Then, full trade profiles are Nash equilibria of pure strategies if and

only if:
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λ ≥ rh − vl
vh − vl

,

κ ≤ min {κa(λ), κb(λ)} .

They are characterised by:

p∗ = p̄∗i = p∗jh = p∗jl ∈
[
max

{
rh,

rl − κvl
1− κ

}
, ve +

κ(1− λ)

1− κ
(vl − rl)

]
, ∀i, j ∈ {1, 2}, i ̸= j.

Proof. When considering only profiles where rh ≤ p∗ ≤ ve, there are no unilateral deviations

that could prove beneficial for all values of κ and λ. Consider (without loss of generality) Player

1. The first potentially profitable deviation could be for her to increase her low quality price.

In this way, she would stop trading the bad quality good with “herself” (thus making a “moral”

gain), but she would also stop selling it to Player 2, making a material loss. The second and

final one is to slightly reduce her threshold and good quality price. This would allow her to

stop trading the bad quality item with “herself” and reap a “moral” benefit. In contrast, she

would stop buying from Player 2 at prices below the expected valuation ve and would also sell

her high quality good for an arbitrarily smaller price. Player 1’s utility at the candidate profile

is:

Uhm
(
(p∗, p∗, p∗), (p∗, p∗, p∗)

)
=

1− κ

2

[
λ(vh − p∗) + (1− λ)(vl − p∗) + λ(p∗ − rh) + (1− λ)(p∗ − rl)

]
+

κ

2

[
λ(vh − rh) + (1− λ)(vl − rl)

]
.

(37)

Meanwhile, her utility at respectably the first and second deviation is shown in expressions (38)

and (39):

Uhm
(
(p∗, p′1l, p

∗), (p∗, p∗, p∗)
)
=

1− κ

2

[
λ(vh − p∗) + (1− λ)(vl − p∗) + λ(p∗ − rh)

]
+

κ

2

[
λ(vh − rh)

] (38)

Uhm
(
(p′1h, p

∗, p̄′1), (p
∗, p∗, p∗)

)
=

1− κ

2

[
λ(p′1h − rh) + (1− λ)(p∗ − rl)

]
+

κ

2

[
λ(vh − rh)

] (39)

The first deviation is profitable if and only if:

p∗ <
rl − κvl
1− κ

= B. (40)
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In turn, the second deviation is profitable whenever:

(1− κ)

[
λ(vh − p∗) + (1− λ)(vl − p∗) + λ(p∗ − rh)

]
+ κ(1− λ)(vl − rl) < (1− κ)λ(p′1h − rh)

Taking the limit as p′1h approaches p∗ of the right hand side in the above expression and solving

for p∗ gives:

p∗ > ve +
κ(1− λ)(vl − rl)

1− κ
= D. (41)

Putting together all of the above, we have full-trade equilibria if and only if:

p∗ ∈ [max {rh, B} ,min {ve, D}] . (42)

Delving into (42), first notice that D ≤ ve for all λ ∈ [0, 1] and κ ∈ (0, 1). As a consequence,

we can write it as:

p∗ ∈ [max {rh, B} , D] . (43)

As a consequence, a necessary and sufficient condition for these equilibria to exist is that both

B ≤ D and rh ≤ D.

We have that B ≤ D if and only if:

κ ≤ λ(vh − vl) + vl − rl
λ(vh − rl) + rl − vl

= κa(λ), (44)

while rh ≤ D:

κ ≤ λ(vh − vl) + vl − rh
λ(vh − rl) + rl − rh

= κb(λ). (45)

The function κa(λ) is continuous and strictly increasing in λ. Its root is at λa = rl−vl
vh−vl

∈
(0, 1). For λ > λa, κb(λ) > 0 ⇐⇒ λ > λe. Finally, λa < λe. Therefore, the necessary and

sufficient condition to have κa(λ) > 0 and κb(λ) > 0 is λ > λe.

Notice that given λ > λe, κa(λ) ≥ κb(λ) (respectively, κa(λ) < κb(λ)) if and only if λ ≤ λ2

(respectively, λ > λ2).

We can thus conclude with two necessary and sufficient conditions for the existence of

equilibria with full trade:

λ ≥ λe and κ ≤ min{κa(λ), κb(λ)}.

Proposition D.18. Assume that 0 < vl < rl < rh < vh. Then, the set of Nash equilibria in pure

strategies of the game between two homo kantiensis is
{
(pig, pib, pi)) : p

∗
ig ≤ p̄∗i < p∗ib}∀i ∈ {1, 2}

}
.

Proof. Given that rh < vh and rl > vl, the agent’s utility function is maximised if and only if

p∗ig ≤ p̄∗i < p∗ib.

Corollary D.18.1. The equilibria between two homo kantiensis always feature trade of the good

quality item in at least one contingent market and no trade of the low quality good in the other

one.
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Corollary D.18.1 is due to the fact that it will always be true that either p̄∗1 ≤ p̄∗2 or p̄
∗
1 > p̄∗2.

As a consequence, these equilibria always feature trade of the good quality item in at least

one of the contingent markets and no trade of the low quality good in the other one. I can

thus assert that profiles where no player is trading with the other one are not equilibria in this

model, and neither are situations where both Players trade both items with each other (full

trade).

Proposition 4.5*. SSS

Appendix E Appendix to Section 5

Proof of Proposition 5.1

The prices set by a given player are completely independent of her threshold and only affect

her utility through their interaction with her rival’s threshold. Thus, the bargaining game’s

equilibrium set is all the pairs of profiles that can be formed from the equilibria of the contingent

game.

Consider now the contingent game. The buyer’s and seller’s best reply correspondences are:

p̄BR = argmax
p̄1

UB(p̄; p) =

p ≥ p if (v − p) + α(p− r) ≥ 0 ⇐⇒ v − αr

1− α
= valt ≥ p

p < p otherwise

pBR = argmax
p

US(p; p̄) =

p = p if (v − p) + α(p− r) ≥ 0 ⇐⇒ r − αv

1− α
= ralt ≤ p

p < p otherwise

These correspondences intercept whenever p∗ = p∗ ∈ [ralt, valt] or p∗ < ralt, p∗ > valt. When

α ≥ r
v
, ralt ≤ 0 and therefore there does not exist a non-negative threshold that can be lower

than ralt.

Proof of Proposition 5.2

The prices set by a given player are completely independent of her threshold and only affect

her utility through their interaction with her rival’s threshold. Thus, the bargaining game’s

equilibrium set is all the pairs of profiles that can be formed from the equilibria of the contingent

game.

The buyer’s best reply correspondences in the contingent game are:

p̄hBR = argmax
p̄h

UB(p̄l, p̄h; p) =

p̄hBR = p if p ≤ valth

p̄hBR = p if p > valth

p̄lBR = argmax
p̄l

UB(p̄l, p̄h; p) =

p̄lBR = p if p ≤ valtl

p̄lBR = p if p > valtl
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The seller’s best reply correspondence in the contingent game is:

pBR > max{p̄h, p̄l} if max{p̄h, p̄l} < ralth

pBR = p̄h if p̄h ≥ ralth , p̄l ≤ min{p̄h, λp̄h + (1− λ)}raltl

or p̄h ≥ ralte , p̄l ∈ [p̄h,
ph∗j −ralth

1−λ
]

pBR = p̄l if p̄h ≥ raltl , p̄l ∈ [
ph∗j −ralth

1−λ
, p̄h]

or p̄l ≥ raltl , p̄h ≤ (1− λ) p̄l + λ
(1−α)

ralth

They intersect at the equilibrium profiles described.

56


