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Abstract 

Ring roads, as candidate cordon locations, provide an advantageous condition for 

implementing cordon tolling schemes. This paper presents a methodology for investigating 

the ring road investment and cordon tolling problems in a congested ring-radial city. A 

two-dimensional urban system equilibrium for a ring-radial city is first formulated, in which 

interactions among stakeholders, including the authorities, property developers, households 

and commuters, are explicitly considered. Two social welfare maximization models for 

optimizing the ring road investment and cordon tolling schemes, a short-sighted and a 

far-sighted one, are then proposed. In the short-sighted model, the ring road investment 

decision is first made, and then the cordon tolling scheme is optimized based on the 

determined ring road locations as candidate cordons. However, in the far-sighted model, a 

simultaneous decision of the ring road investment and cordon tolling is made. The proposed 

models explicitly incorporate the estimation of the intra-area travel. The case study applied to 

the city network of Chengdu China shows that ring road investment and cordon tolling can 

reshape the urban spatial structure as a result of the tug-of-war between the dispersion effects 

due to ring road investment and the concentration effects due to cordon tolling. There is a 

large difference in the optimal solutions of the far-sighted model and the short-sighted model 

(e.g., optimal number of cordons). The former is closer to the social optimum than the latter. 

The optimal multi-cordon tolling scheme outperforms the optimal single-cordon tolling 

scheme in terms of the social welfare. However, the gap between them is trivial. Ignoring the 

household residential relocation behavior in the models leads to underestimates of total 

cordon toll revenue and social welfare gains. 
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1. Introduction 
 

The past decade has witnessed a dramatic increase in the sizes of some large cities in the 

world due to rapid urbanization and economic growth, such as Beijing and Seattle. The rapid 

urban expansion has led to more decentralized urban structure, longer average commuting 

distance, increased use of private cars, and heavier traffic congestion. In response, local 

authorities have launched a number of transportation infrastructure investment projects to 

increase accessibility to the city center and alleviate urban traffic congestion, including 

constructing ring roads around the city center to expand the capacity of urban road system. 

 

   
(a) Houston, US           (b) Moscow, Russia         (c) Chengdu, China 

Fig. 1. Some typical examples of ring-radial urban networks. 

 

Thus far, many megacities in the world have introduced ring roads. For example, Houston US 

has built two ring roads: inner ring (Loop 610) and outer ring (Beltway 8), as shown in Fig. 1a. 

Moscow, the capital of Russia, has had four ring roads (shown in Fig. 1b). Chengdu, a city 

located in West China, has had four ring roads under operation (shown in Fig. 1c). Recently, 

the Chengdu municipal government has launched the construction project of the fifth ring 

road, which is expected to be completed within this year. Besides, some new city projects 

around the world have been designed to address contemporary urban challenges, such as 

population growth, urbanization, and climate change, and to improve the life quality of 

inhabitants through integrating advanced and sustainable technologies, such as NEOM project 

of Saudi Arabia, New Songdo city project of Korea, and Masdar city project of the United 

Arab Emirates.1 The today’s planning of these new cities’ road network structures (e.g., 

radial/ring roads) is very important for their tomorrow’s traffic congestion level and 
 

1 https://www.neom.com/en-us; https://www.kpf.com/project/new-songdo-city; https://masdarcity.ae. 
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sustainable urban developments, and thus should be carefully made. 

 

Introduction of ring roads in an urban road network, as a supply-side strategy, can provide 

travelers with more alternative routes to reach their destinations through intersecting the radial 

major roads, thus creating ring-radial urban network structure with better connectivity and 

accessibility to suburban areas. Hence, the set of travelers’ alternative routes linking to the 

city center is expanded. As a result, traffic flow is distributed over more routes, and thus 

traffic congestion levels and en-route travel time costs on the urban radial major roads may be 

decreased (Saidi et al., 2016). Moreover, as urbanization is promoted, cities become more 

decentralized, and thus ring roads do play an increasingly important role in traffic congestion 

reduction via providing a fast road. However, the investment of the ring roads in an urban 

road network requires a huge capital cost. For instance, the planned length of the fifth ring 

road in Chengdu China is about 142.8 km, and the expected investment cost is about 34.9 

billion RMB, meaning 0.244 billion RMB per km.2 Naturally, this raises some important and 

intriguing issues: given the population size of a city, how many ring roads should be invested 

so as to create the most efficient urban system, in terms of social welfare? Where should the 

ring roads be located? What effects does the ring road investment bring to the urban spatial 

structure, in terms of household residential (re)location choice and housing market? The 

answers to these questions are especially important and urgent for transportation infrastructure 

investment decisions of many developing cities, such as Chengdu, in which rapid urbanization 

is currently being carried out. 

 

Some studies have shown that the supply-side strategy, such as the construction of urban 

roads, is efficient in alleviating traffic congestion in a short term. However, it may induce new 

traffic demand and thus cause further traffic congestion during peak periods (Goodwin, 1996; 

Hansen and Huang, 1997; Kono et al., 2007). What’s more, the resources that are available for 

the road construction remain limited in most urban areas. Congestion pricing, particularly 

cordon tolling, has been suggested as a viable alternative to infrastructure expansion because 

of its ease of implementation and potential to internalize congestion externalities (Parry, 

2002). Typical examples include those adopted in Singapore, London, Hong Kong, Oslo, and 

Bergen (Wong et al., 2005; Yang and Huang, 2005; Rouwendal and Verhoef, 2006). Recently, 

feasibility analyses of cordon tolling projects have been made in some major Chinese cities, 

 
2 “RMB” is the Chinese currency, Renminbi, and US$1 approximates RMB6.94 on March 1, 2023. 
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such as Beijing, Shanghai, Shenzhen, and Chengdu.3 Apparently, the urban ring roads can 

serve as candidate cordon locations because they provide convenient conditions for 

implementation of cordon tolling schemes. This also raises other important issues: how to 

design the cordon tolling schemes for a congested ring-radial city in terms of cordon locations 

and toll levels, particularly for a city with ring roads as candidate cordons? How about the 

efficiencies of multi-cordon vs. single-cordon tolling schemes in terms of the social welfare? 

 

In light of the above discussions, this paper aims to address the issues of ring road investment 

and cordon tolling in a congested ring-radial city. As such, both ring road investment and 

cordon tolling may influence the households’ residential location choices and thus the urban 

spatial structure. In the proposed model, such externality effects of the ring road investment 

and the cordon tolling on households’ residential relocation decisions and the urban spatial 

structure are incorporated. It is anticipated that the proposed model can serve as a useful tool 

for long-term planning of ring-radial urban systems, and for evaluation of various 

transportation infrastructure investment and/or pricing policies. 

 

The main contributions of this paper are twofold. First, an urban system equilibrium model 

for a congested two-dimensional ring-radial monocentric city is presented, in which the 

interactions among different stakeholders and the intra-area travel are explicitly considered. 

Specifically, the authorities determine the optimal number and locations of ring roads to be 

introduced, cordon locations, and toll levels to maximize total social welfare of the urban 

system. The households choose their residential locations to maximize their own utilities 

within income budget constraint. The property developers seek to maximize their own net 

profit by determining the housing supply. The commuter of each household chooses travel 

route that minimizes his/her own commuting cost. The boundary contours for commuters’ 

route choices are identified, and the properties of the proposed urban system equilibrium 

model are analytically explored, together with the difference of the proposed continuum 

modeling method in this paper and the traditional traffic simulation method. Second, social 

welfare maximization models are presented to determine the optimal ring road investment and 

cordon tolling schemes. Two types of decision mechanisms, a short-sighted and a far-sighted 

one, are investigated and compared. The short-sighted decision mechanism follows a 

two-stage (or two-step) decision process. In the first stage, the ring road investment decisions 

 
3 https://www.66law.cn/laws/205007.aspx; http://sc.cnr.cn/sc/2014cd/201412/t20141210_517055571.shtml. 

https://www.66law.cn/laws/205007.aspx
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in terms of the number and locations of ring roads are made which temporarily ignores the 

fact that the infrastructure will be tolled later on. In the second stage, the optimal cordon 

tolling scheme that considers the ring roads already identified in the first stage as candidate 

cordon locations is determined. The far-sighted decision mechanism simultaneously 

determines the number and locations of ring roads and cordon tolling schemes (i.e., a joint 

decision). The solutions of the models under the two decision mechanisms with and without a 

consideration of household residential relocation behavior are compared, together with the 

optimal solutions for the multi-cordon and single-cordon tolling schemes. A case study from 

Chengdu China is provided to illustrate the properties and applications of the proposed 

models, together with discussion of policy implications. 

 

The remainder of this paper is organized as follows. Section 2 provides a literature review of 

previous related studies. Section 3 presents some basic model assumptions. Section 4 

formulates the urban system equilibrium problem and its properties. In Section 5, the social 

welfare maximization models under the short-sighted and far-sighted decisions are proposed 

for optimizing the ring road investment and cordon tolling schemes. In Section 6, a case study 

is given for the purpose of model illustration. Finally, Section 7 concludes this paper and 

provides recommendations for further studies. 

 

2. Literature review 
 

In this section, we conduct a comprehensive literature review of previous related studies. For 

presentation purpose, we divide the review into two parts according to the themes concerned, 

namely the ring road investment issue and the cordon tolling issue, given as follows. 

 

2.1. Ring road investment issue 

 

In literature, there are some studies involving ring road investment. For the convenience of 

readers, we have summarized in Table 1 some main contributions to ring road system research, 

in terms of decision variable(s), objective function, urban form, modeling approach, and 

whether considering congestion effects and household residential relocation behavior. Table 1 

shows that the previous relevant studies mainly focused on the following topics: routing 

problems in a symmetric circular city (Tan, 1966; Blumenfeld and Weiss, 1970b; Zitron, 
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1974), traffic equilibrium assignment problems (Lam and Newell, 1967; D'Este, 1987; Wong, 

1994), and ring or radial road location problems (Blumenfeld and Weiss, 1970a; Pearce, 1974; 

Smith, 1976, 1979; Anas and Moses, 1979; Li, 2004; Li et al., 2013). Particularly, the studies 

published before the 1980s mainly concerned symmetric and congestion-free (i.e., travel time 

is independent of traffic flow) circular cities so as to derive analytical solutions. An exception 

is Lam and Newell (1967), who considered road traffic congestion effects in the route choice 

equilibrium problem of travelers in a ring-radial city. However, their model focused on a 

symmetric city structure, and also ignored the household residential relocation behavior due to 

the ring road investment. 

Table 1 Contributions to ring road system research. 

Reference Decision 
variable(s) 

Objective 
function Urban form Modeling 

approach 

Considering 
congestion 

effects 

Considering 
household 
relocations 

Tan (1966) Routing 
(shortest route) 

Min. distance 
traveled, road 

space required, 
or travel time 

Symmetric 
circular city 

with two 
ring roads 

Analytical × × 

Lam and 
Newell 
(1967) 

Equilibrium 
route flow 

Min. route 
travel time 

Symmetric 
radial-ring 

city 

Analytical + 
simulations 

√ × 

Blumenfeld 
and Weiss 

(1970a) 

Location of an 
additional ring 

road 

Min. route 
travel time 

Symmetric 
circular city 

Analytical × × 

Blumenfeld 
and Weiss 
(1970b) 

Routing 
(shortest route) 

Min. route 
travel time 

Symmetric 
circular city 

Analytical × × 

Pearce (1974) Locations of 
two ring roads 

Min. average 
travel distance 

Symmetric 
circular city 

Analytical × × 

Zitron (1974) Routing 
(optimal cost 

route) 

Min. route 
travel cost 

Symmetric 
circular city 

Analytical × × 

Smith (1976) Locations of 
two ring roads 

Min. total radial 
traffic flow 

Symmetric 
circular city 

Analytical × × 

Smith (1979) Location of a 
single ring road 

Max. traffic 
relief to radials 

Symmetric 
circular city 

Analytical × × 

Anas and 
Moses (1979) 

Number of 
radial lines 

Max. household 
welfare 

Symmetric 
radial city 

Analytical + 
simulations 

× √ 

D'Este (1987) Equilibrium 
route flow 

Min. route 
travel time 

Asymmetric 
radial city 

Analytical 
for special 

case 

√ × 

Wong (1994) Equilibrium 
route flow 

Min. route 
travel time 

Asymmetric 
radial city 

Analytical + 
simulations 

√ × 

Li (2004) Location of a 
single ring road 

Min. average 
travel distance 
on major roads 

Symmetric 
radial-ring 

city 

Analytical × × 

Li et al. 
(2013) 

Locations of 
radial roads 

Max. social 
welfare 

Asymmetric 
radial city 

Analytical + 
simulations 

√ √ 

This paper 
(2023) 

Number and 
locations of ring 

roads, cordon 
locations, and 

toll levels 

Max. social 
welfare 

Asymmetric 
radial-ring 

city 

Analytical + 
simulations 

√ √ 
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Table 1 also shows that some studies published after the 1980s have relaxed the symmetric 

and congestion-free assumptions to consider more realistic situations. For example, D'Este 

(1987) investigated the commuters’ radial road choices in a two-dimensional monocentric city 

with several radial major roads using the ring-radial travel method of Anas and Moses (1979), 

in which commuters traveling from their home locations to the workplace in the central 

business district (CBD) first travel along circular dense surface streets to reach a radial major 

road, and then proceed along the radial major road to reach the city center. Wong (1994) 

reformulated the traffic assignment model presented in D'Este (1987) as a mathematical 

programming problem. These two studies (D'Este, Wong) assumed that the household 

residential distribution in the city is exogenously given and fixed. 

 

Li et al. (2013) further relaxed such an assumption to investigate the optimization problem of 

the density of radial major roads in a two-dimensional monocentric city using the ring-radial 

travel method. In their study, the household residential distribution and housing prices are 

endogenously determined, as done in some studies about the effects of transportation 

infrastructure improvements on urban configuration (e.g., Getz, 1975; Arnott and MacKinnon, 

1977; McDonald and Osuji, 1995). However, the study of Li et al. (2013) considered a radial 

city without ring roads, and thus cannot properly address the effects of the ring road 

investment. In reality, more and more cities are ring-radial structures through investing in ring 

roads, such as Houston, Moscow, and Chengdu. This paper will extend these previous related 

studies to explore the optimization problem of the number and locations of ring roads in a 

two-dimensional asymmetric ring-radial monocentric city, while accounting for the traffic 

congestion effects and household residential relocation choices. 

 

2.2. Cordon tolling issue 

 

In the past decades, significant progress has been made in design of cordon tolling schemes in 

terms of cordon toll location and/or toll level. The modeling methods adopted in the previous 

literature can be categorized into two major classes: discrete network modeling approach and 

continuum modeling approach. The discrete network models are inclined to develop efficient 

algorithms applicable to actual road networks. Sample studies include May et al. (2002), 

Verhoef (2002), Shepherd and Sumalee (2004), Sumalee (2004), Zhang and Yang (2004), de 

Palma et al. (2005), Maruyama and Sumalee (2007), Fujishima (2011), Liu et al. (2014), and 

Vosough et al. (2020, 2022). The continuum models aim to reveal the fundamental 
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relationships among variables through deriving analytical solutions that are easy to interpret 

and comprehend, and thus can be regarded as a supplement of the discrete models. The 

example studies include Mun et al. (2003, 2005), Ho et al. (2005, 2013), Verhoef (2005), Li et 

al. (2014), Anas and Hiramatsu (2013), Li and Wang (2018), and Tsai and Lu (2018). For 

comprehensive reviews of congestion tolling issues, readers can refer to Tsekeris and Voß 

(2010), Lindsey (2010), and de Palma and Lindsey (2011). In this paper, the continuum 

modelling approach is adopted. 

 

Table 2 Contributions to continuum models for cordon tolling research. 

Reference Decision 
variable(s) 

No. of 
cordons Urban form 

Modeling 
approach of 

urban system 

Considering 
ring road 

Household 
relocation 

Mun et al. 
(2003) 

Toll location and 
toll level Single Linear, 

monocentric Continuum × × 

Mun et al. 
(2005) 

Toll location and 
toll level Single Linear, 

polycentric Continuum × × 

Ho et al. 
(2005) 

Toll location and 
toll level Multiple 

Asymmetric, 
two-dimensional, 

monocentric, 
perfectly divisible 

dense city 

Continuum × × 

Ho et al. 
(2013) Toll level Single 

Asymmetric, 
two-dimensional, 

polycentric, perfectly 
divisible dense city 

Continuum × × 

Verhoef 
(2005) 

Toll location and 
toll level Single Linear, 

monocentric Continuum × √ 

de Palma et 
al. (2011) 

Toll location and 
toll level 

Single 
and 

multiple 

Linear, 
monocentric Continuum × √ 

de Lara et 
al. (2013) 

Toll location and 
toll level Single Linear, 

monocentric Continuum × √ 

Li et al. 
(2014) 

Toll location and 
toll level Single 

Symmetric, 
two-dimensional, 

monocentric, 
perfectly divisible 

dense city 

Continuum × × 

Li and Guo 
(2017) 

Cordon pricing 
timing, cordon 

location, and toll 
level 

Single 

Symmetric, 
two-dimensional, 

monocentric, 
perfectly divisible 

dense city 

Continuum × √ 

Li and 
Wang 
(2018) 

Cordon location 
and toll level Single 

Asymmetric, 
two-dimensional, 

monocentric, radial 

Continuum + 
discrete × √ 

Tsai and 
Lu (2018) 

Multi-cordon 
locations and toll 

levels 
Multiple Linear, 

monocentric Continuum × × 

This paper 
(2023) 

 Number of 
cordons, cordon 
location, and toll 

level 

Multiple 

Asymmetric, 
two-dimensional, 

monocentric, 
ring-radial city 

Continuum + 
discrete √ √ 

 

Table 2 lists some main contributions of analytical continuum models to cordon tolling 
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problems in the field of urban economics, in terms of decision variable(s), number of cordons, 

urban form, modeling approach of urban system, and whether considering ring road 

investment and household residential relocation behavior. It can be seen that the previous 

continuum models mainly focused on a one-dimensional linear city (e.g., Mun et al., 2003, 

2005; Verhoef, 2005; de Palma et al., 2011; de Lara et al., 2013; Tsai and Lu, 2018). The 

assumption of a linear city can facilitate the model building of the problem concerned and the 

derivation of the model solution. However, it cannot well reflect the realistic 

multi-dimensional urban spatial structure and residents’ activity and travel choice behavior in 

the urban network, e.g., the route choice behavior. Some studies have extended the 

one-dimensional linear urban model to two-dimensional cases (e.g., Ho et al., 2005, 2013; Li 

et al., 2013, 2014; Li and Guo, 2017; Li and Wang, 2018). 

 

However, these previous related studies usually considered a two-dimensional radial city or a 

perfectly divisible dense city (i.e., no discrete radial and ring major roads), and did not 

involve a two-dimensional ring-radial city, which is currently a popular urban structure in 

many megacities in the world, as shown in Fig. 1. Moreover, the existing studies related to 

continuum models usually concerned only one charging cordon, except the studies of Ho et al. 

(2005) and Tsai and Lu (2018), which considered multi-cordon pricing issues. However, the 

former considered a dense city continuum without radial and ring roads, whereas the latter 

concerned a one-dimensional linear city. Furthermore, they both did not consider the effects 

of cordon tolling on the household residential relocation behavior, which has been treated in 

some relevant studies, such as Verhoef (2005), de Palma et al. (2011), de Lara et al. (2013), Li 

and Guo (2017), and Li and Wang (2018). In addition, all of the aforementioned studies about 

the cordon tolling did not consider the effects of ring road investment on design of cordon 

tolling scheme, e.g., the role of ring roads as candidate cordons. 

 

3. Basic assumptions 
 

To facilitate the presentation of the essential ideas without loss of generality, the following 

basic assumptions are made in this paper.  

 

A1 The urban system concerned is assumed to be ring-radial, closed and monocentric, in 

which the population size or the total number of total households is exogenously given and 
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fixed, and all job opportunities are located in a highly compact city center or CBD. All the 

land within the city boundary is owned by an absentee landlord and the value of the land 

at/beyond the city boundary equals the agricultural rent or opportunity cost of the land. These 

assumptions have widely been adopted in urban economics literature (e.g., Alonso, 1964; 

Muth, 1969; Mills, 1972; Fujita, 1989; O’Sullivan, 2000; Kraus, 2006; McDonald, 2009; 

Kilani et al., 2010; Li et al., 2013). 

 

A2 There are four types of stakeholders in the urban economy: the authorities, property 

developers, households and commuters. The authorities determine the number and locations 

of ring roads, ring road-based cordon locations and toll levels to maximize the urban system’s 

social welfare. The property developers determine the intensity of their capital investments in 

the land market to maximize their own net profits generated by the housing provisions. Each 

property developer is assumed to adopt a Cobb-Douglas housing production technology (e.g., 

Beckmann, 1974; Quigley, 1984; Li et al., 2013). 

 

A3 All households are homogeneous, i.e., the income level and utility function are the same 

for all households. Each household has a quasi-linear utility function. Such a quasi-linear 

function can facilitate the analysis of social welfare because the household utility level with 

the quasi-linear utility is measured in monetary units, leading to the same units with the land 

rents and toll revenue. The quasi-linear utility function has often been adopted in some 

previous studies, such as Song and Zenou (2006), Baum-Snow (2007), Kono et al. (2012), 

Peng et al. (2017), and Li and Wang (2018). The household income is spent on transportation, 

housing and non-housing goods. Each household aims to maximize its own utility by 

choosing the residential location, housing floor space and the amount of non-housing goods 

within the household’s budget constraints (e.g., Solow, 1972, 1973; Beckmann, 1969, 1974; 

Anas, 1982; Fujita, 1989; Kilani et al., 2010; Li et al., 2013). 

 

A4 This study mainly focuses on workers’ commuting trips between home locations and 

workplace, belonging to compulsory trips. Thus, a household’s number of trips is not affected 

by other factors, such as household’s income level and trip distance. This means that the 

potential demand for travel to the CBD per day is pre-given and fixed. An exponential elastic 

travel demand density function is used to capture the response of travel demand to the travel 

cost between home location and workplace (Ortuzar and Willumsen, 2001). Such a response 

includes switching to other travel modes or other departure times. Commuters choose travel 
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routes that minimize their commuting costs. 

 

A5 The ring-radial urban system concerned consists of three types of roads: ring major roads, 

radial major roads, and dense surface streets (i.e., minor roads). The ring and radial major 

roads in a city usually comprise the backbone of transportation network of that city, carrying a 

large number of travel demand. Hence, the congestion effects on the radial and ring major 

roads cannot be ignored. However, the traffic volume on the dense surface streets or minor 

roads is usually low, and thus the congestion effects on the minor roads can be trivial and thus 

neglected. We assume that the vehicle speed on the ring major roads is fastest, that on the 

minor roads is slowest, and that on the radial major roads is in between. In reality, the radial 

roads of a city are usually first built, and then ring roads, such as for Chengdu and Paris. In 

accordance with the real world, we further assume in this paper that radial roads have been 

build and we are only interested in the construction of ring roads. 

 
4. Urban system equilibrium 
 

As previously assumed, the stakeholders in the city system (the authorities, property 

developers, households and commuters) interact. The authorities maximize the urban system’s 

social welfare by determining the number and locations of ring roads, ring road-based cordon 

locations and toll levels. The property developers maximize their own net profits by 

determining the capital investment intensities. Households maximize their own utilities by 

determining the residential locations and the consumptions of housing and non-housing goods. 

Commuters minimize their commuting costs by choosing travel routes. The sequential 

interactions among these stakeholders lead to Stackelberg equilibria: the commuters’ 

ring-radial route choice equilibrium, the household residential location choice equilibrium, 

and the housing demand-supply equilibrium. These Stackelberg equilibria jointly determine 

the urban spatial structure, which are in turn presented as follows.  

 

4.1. Commuters’ ring-radial route choice equilibrium 

 

4.1.1. Travel cost 

 

As shown in Fig. 2, i represents the ith radial major road of the city, and ( ,θ )ix  represents 

the polar coordinate of a location in the urban system concerned, where x denotes the radial 
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distance of that location from the CBD, and θi  denotes the angle of that location from the 

radial major road i. Let φi  be the angle between adjacent radial major roads i and i+1. 

(φ θ )i i−  is thus the angle between location ( ,θ )ix  and radial major road i+1. Let RADM  be 

the total number of radial major roads in the city, which is pre-given, and suppose that the 

government wishes to make an investment plan of the RINM  ring roads in the city in the 

future, including the locations and number of the ring roads. The subscripts “RAD” and 

“RIN” represent radial major roads and ring major roads, respectively. Both radial and ring 

roads may not be evenly spaced. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Route choices of commuters at location ( ,θ )ix . 

 

Consider a sector area consisting of radial major roads i and i+1 and ring roads j and j+1, 

represented by ( , 1; , 1)i i j j+ +Θ  for ease of presentation. Following the ring-radial travel method 

of Anas and Moses (1979), D'Este (1987), Wong (1994) and Li et al. (2013), the following 

routing rules are applied for the commuters residing at any location ( , 1; , 1)( ,θ )i i i j jx + +∈Θ : 

• Travel first along circumferential minor road (a dense surface street without traffic 

congestion) to radial major road i or i+1, and then travel along the radial major road to 

get to the CBD (called circumferential-radial routing); 

• Travel first along the radial minor road (a dense surface street without traffic congestion) 

to adjacent ring road j or j+1, and then travel along the ring major road to adjacent radial 

major road i or i+1, and finally straight along the radial major road to the CBD (called 

radial-ring-radial routing). 

a 
b 
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e′ 
 

e 
d′ 

i iϕ  

i+1 ( , )ix θ  
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According to the routing rules defined above, one can easily identify six alternative (shortest) 

routes from any location ( ,θ )ix  to the CBD. They include: (1) a-d-f, (2) b-e-h, (3) c-g, (4) 

a- d' - f' , (5) b- e' - h' , and (6) c' - g' , where symbols a to g'  represent the road segments 

(as shown in Fig. 3). It can be observed that routes 3 and 6 belong to the 

circumferential-radial routing, and other routes (i.e., routes 1, 2, 4, and 5) are the 

radial-ring-radial routing. It should be pointed out that the free-flow travel speeds on the 

radial major roads, ring major roads and minor roads are different, defined later. 

 

 

 

 

 

 

 

 

(1) a-d-f      (2) b-e-h       (3) c-g 

 

 

 

 

 

 

 

(4) a- d' - f'      (5) b- e' - h'        (6) c' - g'  

Fig. 3. Six alternative routes. 

 

In order to define the travel costs of all six alternative routes, we first define the travel costs of 

road segments a to g' . Note that segments a, b, c and c′  are the minor roads in the sector 

area ( , 1; , 1)i i j j+ +Θ , and thus have no congestion effects on these segments according to A5. Let 

( ,θ )iaC x , ( ,θ )ibC x , ( ,θ )icC x  and ( , θ )c i ixC ′ ϕ −  be the travel costs on segments a, b, c and 

c′ , respectively. They consist of travel time cost and monetary cost. For ease of presentation, 
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we denote 1 0 1t Vα λ= +α . We thus have 
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λ


 λ


 λ


− = α −

 (1) 

where jR  is the radius of the jth ring road, and 0V  is the travel speed of vehicles on minor 

roads inside the sector area, which is assumed to be a constant due to a congestion-free 

assumption. tλ  is the value of travel time, which is used to convert the travel time into 

equivalent monetary units. 1α  is the marginal cost per unit of length (e.g., fuel cost and 

vehicle maintenance cost) on minor roads. The term with 1α  as coefficient in each equation 

represents the monetary cost, which is assumed to be a linear function of the length of each 

road segment, as assumed in Wang et al. (2004), Liu et al. (2009) and Li et al. (2013).  

 

Segment d  is on ring road j  with congestion effects, meaning that as the traffic volume 

on the segment increases, the travel cost increases. Let , ( ,θ )d j j iRC  be the travel cost on 

segment d . It consists of travel time cost and monetary cost, given as 

 , RIN 2( ,θ ) ( ,θ θ)j id j t j i j iC T R RR +α= λ , (2) 

where RIN ( θ ),j iT R  is the travel time on segment d  of ring major road j from location 

( ),θj iR  to radial major road i. 2α  is the marginal cost per unit of length on major roads. 

2α  is assumed to be smaller than 1α  due to a faster free-flow travel speed on major road 

than on minor road. θj iR  is the length of segment d . 

 

Travel time RIN ( θ ),j iT R  in Eq. (2) is related to the traffic congestion level on ring road j . 

In order to define RIN ( θ ),j iT R , one has first to define the unit travel time on the ring road. Let 

( )( ,jQ Rt θ  be the travel time per unit of length at location ( ),θjR  of ring road j , where 

θ( ),jQ R  is the traffic volume (or total number of vehicles) at location ( ),θjR , which will be 

defined later as an endogenous variable. The flow-dependent travel time ( )( ,jQ Rt θ  can be 
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estimated using the following Bureau of Public Roads (BPR) function: 

 ( )
2

1
RIN RIN

,( )1( , 1 0
θ

.j
jQ

Q Rt
V

R
K

σ  
 θ = + σ     

, (3) 

where RINV  and RINK  are, respectively, the free-flow travel speed and capacity of ring major 

road, which are assumed to be constants in this paper. 1σ  and 2σ  are positive parameters. 

 

Consequently, the travel time of commuters, RIN ( θ ),j iT R , on segment d  with congestion 

effects is an integral of the unit travel time with regard to θ [0 ],θi∈  (i.e., from location 

( ),θj iR  to radial major road i), represented as 

 ( )θ

RIN 0
( ,( ,θ ) i

jj i jQ RT R t R dθ= θ∫ , (4) 

where ( )( ,jQ Rt θ  is given by Eq. (3). 

 

Based on Eqs. (2)-(4), one can define the travel cost on segment e  (denoted as 

, 1 1( ,θ )e j ij RC ++ ) through replacing jR  in , ( ,θ )d j j iRC  by 1jR + . Similarly, the travel cost on 

segment d ′ , denoted as , ( , θ )j id j iC R′ ϕ − , can be determined via replacing θi  in , ( ,θ )d j j iRC  

by θi iϕ − . The travel cost on segment e′ , denoted as , 1 1( , θ )je j i iC R +′ + ϕ − , can be defined 

through replacing θi  in , 1 1( ,θ )e j ij RC ++  by θi iϕ − . For more details, please see Appendix A. 

 

In addition, segment g  is part of radial major road i with congestion effects. The travel cost 

on segment g , denoted as , ( )g iC x , can be defined as 

 , , 2(( ))g i t RAD iC x T x x= λ +α ,  (5) 

where RAD, ( )iT x  is the travel time on segment g  of radial major road i, expressed as  

 ( )RAD, 0
( ) ( )

x

i iT x t Q w dw= ∫ ,  (6) 

where ( )( )it Q x  is the travel time per unit of length on radial major road i, and ( )iQ x  is the 

traffic volume at location x of radial major road i, defined later as an endogenous variable. 

The flow-dependent travel time ( )( )it Q x  can be calculated by 

 ( )
2

1
RAD RAD,

( )1( ) 1.0 i
i

i

Q wt Q w
V K

σ  
 = + σ      

,  (7) 
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where RADV  is the free-flow travel speed of vehicles on radial major road, which is assumed 

to be a constant, and RAD,iK  is the capacity of radial major road i.  

 

Using the same method, one can define the travel costs on segments f  and h  as , ( )f i jC R  

and , 1( )h i jC R + , and travel costs on segments f ′ , g′  and h′ , as , 1( )f i jC R′ + , , 1( )g iC x′ + and 

, 1 1( )h i jC R′ + + . Please also see Appendix A for the details of their definitions. 

 

Based on the above definitions of the travel costs on road segments, one can further define the 

travel costs on six alternative routes shown in Fig. 3, given as 
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 (8) 

where 0α  is the fixed component of route travel cost (e.g., parking charges at the CBD area 

per work trip). kτ  is the cordon toll (if any) for passing through ring road k. The commuters 

using routes 1, 3, 4, and 6 traverse the first j cordon ring roads, and thus the total cordon toll 

to be paid is 
1

j

k
k=

τ∑ . The commuters using routes 2 and 5 pass through the first j+1 cordon 

ring roads, leading to a total cordon toll of 
1

1

j

k
k

+

=

τ∑ .  

 

We conduct the comparative static analyses of the route travel costs with regard to angle θi  

and distance x, and the results are shown in Table A1 of Appendix A.  

 

Proposition 1. For a given sector area ( , 1; , 1)i i j j+ +Θ , as θi  increases, the travel costs of routes 
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1, 2 and 3 increase, whereas the travel costs of routes 4, 5 and 6 decrease. As x  increases, 

the travel costs of routes 1, 3, 4 and 6 increase, whereas the travel costs of routes 2 and 5 

decrease. 

 

Proposition 1 presents the properties of the route travel costs between any trip location and the 

CBD. In the following section, we will further look at the market boundary of each alternative 

route in the ring-radial city. 

 

4.1.2. Market area boundary  

 

According to A5, all commuters choose the route with minimum travel cost for their journeys. 

Let min ( ,θ )ixψ  be the minimum travel cost from location ( ,θ )ix  to the CBD. This means 

 { }minψ ( ,θ ) min ψ ( ,θ ), 1, 2,3, 4,5,6i l ix x l= = .  (9) 

 

Consider a sector area, e.g., ( , 1; , 1)i i j j+ +Θ , there are four major roads, i.e., radial major roads i 

and i+1, and ring major roads j and j+1. Any two of the four major roads compete for travel 

demand. As a result, there is a watershed boundary (also referred to as market area boundary) 

between any two major roads that divides the area between those two major roads into two 

sub-areas, as shown in Fig. 4. Specifically, the competition between radial road i and ring road 

j leads to boundary contour (4)B , which divides the travel demand in the area ( , 1; , 1)i i j j+ +Θ  

into those who use radial road i and those who use ring road j. (5)B  is the boundary contour, 

which divides the travel demand in the area ( , 1; , 1)i i j j+ +Θ  into those who use radial road i and 

those who use ring road j+1. Similarly, (7)B  and (8)B  are the boundary contours between 

radial road i+1 and ring road j and between radial road i+1 and ring road j+1, respectively. In 

addition, the competition between radial roads i and i+1 leads to boundary contours (1)B  and 
(2)B , which divide the travel demand in the area ( , 1; , 1)i i j j+ +Θ  into those who use radial major 

road i+1 via ring roads j and j+1 and those who use radial major road i via ring roads j and j+1. 

It should be pointed out that (1)B  and (2)B  may not be in the same line, i.e., discontinuous, 

when the city is asymmetric. Two possible location relationships exist, i.e., (1)B  is on the 

upper or lower side of (2)B , as shown in Fig. 4a and b, respectively. As a result, the boundary 

contour between ring roads j and j+1 is divided into three segments, represented as (3)B , (6)B  
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and (9)B  (or (9 )B ′ ). However, for a symmetric city, (1)B  and (2)B  in the sector area 

( , 1; , 1)i i j j+ +Θ  are in a line through the city’s radius, and thus the boundary contours (9)B  and 

(9 )B ′  are reduced to one point.  

 

As shown in Fig. 4a and b, the boundary contours (1)B , (2)B , …, (9)B  (or (9 )B ′ ) divide the 

sector area ( , 1; , 1)i i j j+ +Θ  into six sub-areas, represented as I , II , III , IV , V  and VI .4 At 

equilibrium, the costs of traveling along different routes from any point on a boundary 

contour to the CBD are equal. For convenience of readers, the equilibrium conditions of all 

boundary contours are summarized in Table B1 of Appendix B.  

 

 

 

 

 

 

 

 

 

 

              (a) With (9)B           (b) With (9 )B ′  

Fig. 4. Route boundary contours. 

 

The following proposition shows a property of the boundary contours (1)B  and (2)B . Its 

proof is also provided in Appendix B. 

 

Proposition 2. Given a ring-radial city,  

(1) For any sector area ( , 1; , 1)i i j j+ +Θ , the boundary contours (1)
( , 1; , 1)i i j jB + +  and (2)

( , 1; , 1)i i j jB + +  must be 

straight line segments in the radial directions of the ring-radial city.  

(2) For two concentric sector areas ( , 1; , 1)i i j j+ +Θ  and ( , 1; 1, )i i j j+ −Θ , (1)
( , 1; , 1)i i j jB + +  and (2)

( , 1; 1, )i i j jB + −  

 
4 The boundary contours (1)B , (2)B , …, (9)B  (or (9 )B ′ )  and the sub-areas I, II, III, IV, V, VI are associated 
with the sector area 

( , 1; , 1)i i j j+ +Θ , consisting of radial major roads i and i+1, and ring major roads j and j+1. Thus, (i, 
i+1; j, j+1) should be used as the subscript of these symbols. However, herein it can be omitted without causing 
any confusion. 
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must be in the same line and they intersect with ring road j at location ˆ( ,θ )j iR  where θ̂i  is 

the solution of equation system 1 4
ˆ ˆ( ,θ ) ( , θ )ij ij iR Rψ = ψ ϕ −  and 2 5

ˆ ˆ( ,θ ) ( , θ )ij ij iR Rψ = ψ ϕ − . 

 

According to Proposition 2, for a congestion-free and symmetric city, the boundary contours 
(1)B  and (2)B  are just the angular bisector of the sector area ( , 1; , 1)i i j j+ +Θ . The following 

proposition further shows the property of the travel costs of the ring roads. Its proof is given 

in Appendix C. 

 

Proposition 3. For a given ring road j, the solution θ̂i  of equation 

1 4
ˆ ˆ( ,θ ) ( , θ )ij ij iR Rψ = ψ ϕ −  or 2 5

ˆ ˆ( ,θ ) ( , θ )ij ij iR Rψ = ψ ϕ −  must satisfy 

 
RAD RAD

1
, ,

1
( ,θ ) ( , θ )

M

d j

M

i ij jd i
i

j
i

RC CR ′
==

= ϕ −∑∑   , (10) 

where the left side is the sum of the travel costs on segments d of all ring roads 

RAD1,2,...,j M=  (i.e., all the circumferences θi jR  from ( ,θ )ijR   to radial major road i). The 

right side is the sum of the travel costs on segments d ′  of all ring roads RAD1,2,...,j M=  (i.e., 

all the circumferences ( θ )ii jRϕ −   from ˆ( ,θ )j iR  to radial major road i+1). 

 

Proposition 3 shows that for a given ring road, the travel costs on different-directional 

segments d and d ′  of that ring road are interdependent through Eq. (10). It should be 

pointed out that if the traffic congestion effects on the ring roads can be ignored, then the 

solution θ̂i  satisfies Eq. (11): 

 
RAD

1
θ̂ π

M

i
i=

=∑ , (11) 

which means that the traffic volumes on different radial major roads are interdependent, i.e., 

an increase in the traffic volume on one radial major road causes a decrease on the other radial 

major roads, and vice versa. 

 

4.1.3. Travel demand 

 

Define 0 ( ,θ )iq x  as the potential hourly density of travel demand at location ( , )ix θ , 

measured in number of commuters per unit of area. Let η  be the average number of daily 
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trips to the CBD per household, and ξ  be the peak-hour factor (i.e., the ratio of peak-hour 

flow to daily flow), which is used to convert the travel demand from a daily basis to an hourly 

basis (Li et al., 2013; Li and Guo, 2017). 0 ( ,θ )iq x  can be given as 

 0 ( , ) ( )i iq x n x,θ = ξη θ , (12) 

where ( )in x,θ  is the household residential density at location ( , )ix θ , defined later. 

 

As previously stated, the travel demand is sensitive to the travel cost, and thus is elastic. From 

A4, an exponential elastic demand density function is adopted to capture the effects of the 

travel demand elasticity. Let ( ,θ )iq x  be the actual travel demand density, defined as 

 ( )0 min( ,θ ) ( ,θ ) exp ( ,θ )i i iq x q x x= −ωψ ,  (13) 

where travel cost min ( ,θ )ixψ  can be calculated by Eq. (9), and ω  is a parameter for 

measuring the sensitivity of the demand density to the travel cost. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Location ( ),θj iR  on ring road j      (b) Location ˆ( ,0)x  on major radial road i 

Fig. 5. Catchment area of any location on ring road and major radial road.  

 

In order to calculate the travel times on the ring/radial major roads, ( )( ,jQ Rt θ  and 

( )( )it Q x , as defined in Eqs. (3) and (7), one has to determine the travel demand at any 

location of ring/radial major roads. Let θ( ),j iQ R  be the travel demand at location ( ),θj iR  
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(i.e., a location on ring road j with an angle θi  from radial major road i). According to Figs. 

3 and 4, location ( ),θj iR  may be on segment d or d ′ . As θ̂i iθ ≤ , location ( ),θj iR  is on 

segment d. From Proposition 2 and Fig. 4, the traffic volume at location ( ),θj iR  equals the 

cumulative travel demand from the area encircled by ( , 1; , 1)i i j jI + + , ( , 1; 1, )i i j jII + − , and ˆθ θi iθ ≤ ≤ , 

which is denoted as area Ω1 in Fig. 5a. Contrarily, as θ̂i iθ > , location ( ),θj iR  is on segment 

d ′ , and the travel volume at location ( ),θj iR  is the cumulative travel demand from the area 

encircled by ( , 1; , 1)i i j jIV + + , ( , 1; 1, )i i j jV + − , and θ̂ θ θi i≤ ≤ , which is denoted as area Ω2 in Fig. 5a. 

Consequently, θ( ),j iQ R  can be expressed as 
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  (14) 

 

In the following, we define the travel demand at any location of a radial major road. Let 

ˆ( )iQ x  be the travel demand of location x̂  or ˆ( ,0)x  ( 1 ˆj jR x R− < ≤ ) on radial major road i. 

Referring to Fig. 5b, ˆ( )iQ x  consists of two components: (1) the cumulative travel demand 

from the catchment areas of radial major road i, namely ( )RIN
( , 1; , 1)1 ( 1, ; , 1)

M
i i k k ik j i k kIII VI= − + + − +  , 

subject to ˆx x> , which is the light blue area shown in Fig. 5b; and (2) the cumulative travel 

demand entering radial major road i from all ring roads with ˆx x>  (i.e., beyond ring road 

j-1), with the catchment areas ( )RIN
( , 1; 1, 2)1 ( , 1; , 1)i i k k i i k k

M
k j I II+ + + += − +   and 

( )RIN
( 1, ; 1, 2) ( 1, ; ,1 1)i i k k k

M
j i i kk IV V− + + −= − +  , which is the yellow area shown in Fig. 5b. ˆ( )iQ x  can be 

mathematically expressed as 

( ) { }RIN RIN
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+ + − +Ω

− −
= − =≥=

= θ Ω+ + ϕ < ≤∑ ∑∫∫
 

,  (15) 

where ( ,0)kQ R  is the cumulative travel demand over the catchment area 

( , 1; 1, 2) ( , 1; , 1)i i k k i i k kI II+ + + + + , and 1( , )k iQ R −ϕ  is the cumulative travel demand over the catchment 

area ( 1, ; 1, 2) ( 1, ; , 1)i i k k i i k kIV V− + + − + . Both can be determined by Eq. (14). The first term on the 
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right-hand side of Eq. (15) represents the total travel demand from the catchment areas of 

radial major road i, and the second term is the total travel demand arriving at radial major 

road i along all the ring roads. 

 
4.1.4. Comparison of proposed continuum modeling method and traditional method 

 

In the previous subsections, we have finished the description of the disaggregate supply 

model of the city system using a continuum modeling method. In this subsection, we identify 

the gap between the proposed continuum modeling method above and the traditional 

(four-step) traffic simulation method. The traditional method estimates the trip generation and 

trip distribution through constructing a centroid connector between traffic areas, as shown in 

Fig. 6(a). That is to say, the centroid node of each traffic area is considered as the trip origin 

or destination. By contrast, the continuum modeling method proposed in this paper considers 

any locations in each area as the trip origin or destination. 

 

 

 

 

 

 

 

 
 

(a) Traditional method             (b) Continuum modeling method of this paper 
 

Fig. 6. Difference between modeling methods. 

 

For quantifying the difference of both methods, we take the area ( , 1; , 1)i i j j+ +Θ  as an example, 

as shown in Fig. 6. Let ( , 1; , 1)i i j jN + +  be the total number of households in this area. With the 

traditional modeling method, the travel distance from the centroid node O of this area to the 

CBD is 1
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1 1
2 0 ( , 1; , 1)
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t i i j j
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+ +
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+ + 
α + λ +α 
 

, where the first term in the bracket is the travel 

time cost and the other two terms are the monetary cost. However, the total travel cost with 

the proposed continuum modeling method is 
VI

min
I

( , ) ( , )
i

i
i

x n x d
= Ω

ψ θ θ Ω∑∫∫ . We represent 

( , 1; , 1)i i j j+ +∆ψ  as the difference of the total travel costs with the two methods, and thus have 

 

Proposition 4. The travel cost’s difference ( , 1; , 1)i i j j+ +∆ψ  is equal to 

VI
1 1
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i i j j i t i i j j

i

R R R R
x n x d N

V
+ +

+ + + +
= Ω

+ + 
∆ψ = ψ θ θ Ω − α + λ +α 

 
∑∫∫ .   (16) 

Moreover, ( , 1; , 1) 0i i j j+ +∆ψ ≥  holds, meaning that the traditional modeling method would 

underestimate the total travel cost of the system compared to the proposed method. 

 

The non-negativity result in Proposition 4 is due to a congestion-free assumption and a rough 

treatment of the trip generation in the traditional method. Its detailed proof is omitted here, 

but is available from authors upon request. Therefore, the traditional method can lead to a 

biased decision. For illustration purpose, we provide an example below. 

 

Example 1. For simplicity, we assume that there are no congestion effects and no cordon tolls 

in the system. The parameters are set as follows: 5.0jR = km, 1 10.0jR + = km, 0 20V = km/h, 

RAD 80V = km/h, RIN 100V = km/h, 0 10α = RMB, 1α 0.8= RMB/km, 2α 0.6= RMB/km, 

60iϕ = ° , λ 60t = RMB/h, and 0ω = . Under these parameter settings, one can determine the 

six sub-areas I-VI for area ( , 1; , 1)i i j j+ +Θ , as shown in Fig. 6(b). We further assume a uniform 

population distribution across the area ( , 1; , 1)i i j j+ +Θ  with a total size of 200,000 households. 

Table 3 summarizes the total travel costs and cost components of all commuters under the 

traditional method and the continuum modeling method proposed in this paper. 

 

It can be seen in Table 3 that the results for sub-areas I, II and III and for sub-areas IV, V and 

VI are, respectively, symmetric due to the assumptions of congestion-free and uniform 

population distribution. In the traditional modeling method, the total travel time spent by all 

commuters is 18.75 thousand hours, and the total monetary cost is 2900 thousand RMB. 
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However, in the proposed continuum modeling method, the total travel time and total 

monetary cost are 33.16 thousand hours and 3301.4 thousand RMB, respectively. As a result, 

the total travel costs of all commuters in these two modeling methods are 4025 thousand 

RMB and 5291 thousand RMB, respectively. This means that the traditional modeling method 

underestimates the total travel cost by 1086 thousand RMB, implying a decreased accuracy of 

about 20.5% for the traditional method. 

 

Table 3 Comparison of results with traditional method and the proposed method in this paper. 

Modeling method 
Proposed continuum modeling method Traditional 

method I II III IV V VI Σ 

Total travel time (103
 hours) 6.55 4.50 5.53 6.55 4.50 5.53 33.16 18.75 

Total monetary cost (103
 RMB) 613.3 452.1 585.3 613.3 452.1 585.3 3301.4 2900 

Total travel cost (103 RMB) 1006.3 722.1 917.1 1006.3 722.1 917.1 5291 4025 

Note: “Σ” represents the sum of I, II, III, IV, V, and VI. 

 

4.2. Household residential location choice 

 

According to A3, each household in the urban system chooses the residential location to 

maximize its own utility subject to a budget constraint. In this paper, a quasi-linear household 

utility function is adopted. We represent ( ,θ )iU x  as the utility of households at location 

( , )ix θ . The household utility maximization problem can be expressed as 

 ,
max  ( ,θ ) ( ,θ ) log ( ,θ )i i iz g

U x z x g x= +α , (17) 

 s.t. ( ,θ ) ( ,θ ) ( ,θ ) ( ,θ )i i i iz x p x g x Y E x+ = − ,  (18) 

where ( , )iz x θ  is the composite non-housing goods consumption per household at location 

( , )ix θ  and its price is normalized to 1. ( , )ig x θ  is the consumption of housing per 

household at location ( , )ix θ , which is measured in square meters of floor space. ( , )ip x θ  is 

the annual housing rental price per unit of housing floor area at location ( , )ix θ . Y is the 

annual household income, and ( , )iE x θ  is the annual travel cost from location ( , )ix θ  to the 

CBD in the ring-radial city. α  is a positive parameter. 

 

The annual travel cost ( , )iE x θ  can be estimated by 

 min( ,θ ) 2ρψ ( ,θ )i iE x x= , (19) 
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where the number “2” denotes a round journey of commuters between home location ( , )ix θ  

and their workplace located in the CBD, and ρ  is the average annual number of trips to the 

CBD per household. The one-way average travel cost, minψ ( ,θ )ix , from location ( , )ix θ  to 

the CBD can be determined by Eq. (9). 

 

From the first-order optimality of maximization problem (17) and (18), one can derive 

 
α( ,θ )

( ,θ )i
i

g x
p x

= . (20) 

When the household residential location choice equilibrium state is reached, all households in 

the city have the same utility level regardless of their residential location choices. Let u be the 

common utility level. From Eqs. (17), (18) and (20), one can obtain 

 
1( ,θ , ) exp ( ( ,θ ) α)
αi ig x u u Y E x = − + + 

 
, (21) 

 
1( ,θ , ) α exp ( ( ,θ ) α)
αi ip x u u Y E x = − − + + 

 
, and (22) 

 ( ,θ ) ( ,θ ) αi iz x Y E x= − − . (23) 

 

Eqs. (21)-(23) define the equilibrium amount of housing floor space per household at location 

( , )ix θ , the equilibrium housing rental price per unit of housing floor space at ( , )ix θ , and the 

equilibrium consumption of non-housing goods per household at ( , )ix θ , respectively.  

 

4.3. Housing market equilibrium 

 

4.3.1. Property developers’ housing production behavior 

 

We now consider the housing supply side. According to A2, each property developer follows 

a Cobb-Douglas housing production function, given as 

 ( ( ,θ )) μ ( ,θ ) ,0 1b
i ih S x S x b= ⋅ < < , (24) 

where ( ( ,θ ))ih S x  is the housing production per unit of land area at location ( , )ix θ , and 

( ,θ )iS x  is the capital investment per unit of land area (i.e., capital investment intensity) at 

location ( , )ix θ . µ  and b are positive parameters. 
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In this paper, the property developers aim to maximize their own net profits by determining 

the capital investment intensity at any location of the urban system, in terms of A2. The profit 

maximization problem can be represented as 

 ( ) ( )max  ( , ) ( , ) ( , ) ( , ) ( , )i i i i iS
x p x h S x r x kS xΛ θ = θ θ − θ + θ , (25) 

where ( , )ixΛ θ  is the net profit per unit of housing floor area at location ( , )ix θ , ( , )ir x θ  is 

the rental price per unit of land area at location ( , )ix θ , and k is the interest rate of capital. 

The housing rental price ( , )ip x θ  can be given by Eq. (22). The first term on the right-hand 

side of Eq. (25) is the total revenue from housing rents, and the last two terms are the land 

rent cost and the capital cost, respectively. 

 

From the first-order optimality condition of maximization problem (25), one obtains 

 ( )
1

11 1( , , ) exp ( , )
b

i iS x u bk u Y E x
−−  θ = αµ − − + θ +α  α  

. (26) 

 

Under perfect competition, each property developer earns zero profit and we thus have 

 ( )( , ) ( , ) ( , ) ( , )b
i i i ir x p x S x kS xθ = µ θ θ − θ . (27) 

Substituting Eqs. (22) and (26) into Eq. (27), one obtains 

 ( )
1

1
11 1( , , ) 1 exp ( , )

b

i ir x u k bk u Y E x
b

−
−    θ = − αµ − − + θ +α    α    

. (28) 

Eq. (28) shows that given the utility level u, the land rental price monotonically decreases 

with an increase of the commuting cost or the interest rate, and vice versa. 

 

4.3.2. Housing demand-supply equilibrium 

 

When the housing market equilibrium is reached, the total amount of housing supply equals 

the total housing demand, expressed as 

 ( ( ,θ , )) ( ,θ ) ( ,θ , )i i ih S x u n x g x u= , (29) 
where ( , )in x θ  is the household residential density at location ( , )ix θ . The equilibrium 

amount of housing floor space per household, ( , , )ig x uθ , at location ( , )ix θ  is given by Eq. 

(21). Therefore, the household residential density, ( , )in x θ , at location ( , )ix θ  can be 

calculated by 
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 ( ) ( ) ( )
1 (1 )

1( , , ) 1( , ) exp ( , )
( , , )

b
bi

i i
i

h S x u
n x bk u Y E x

g x u

−
−θ   θ = = µ α − − + θ +α  θ α  

. (30) 

 

By A1, the city concerned in this paper is closed, meaning that all households are exactly 

inside the city boundary, i.e., 

 
RAD (θ)

0 0
1

( , ) θi i
M x

i
i

n x xdxd N
ϕ

=

θ =∑ ∫ ∫ , (31) 

where N is the total number of households in the city. ( )ix θ  is the distance from the city 

boundary to the CBD along radial major road i. 

 

On the other hand, the value of the land at/beyond the city boundary equals the agricultural 

rent or the opportunity cost of the land in terms of A1, which means 

 ( (θ), , )i Ar x u Rθ = . (32) 

Substituting Eq. (28) into Eq. (32) yields 

 ( )
1

1
11 11 exp ( ( ), )

b

i Ak bk u Y E x R
b

−
−    − αµ − − + θ θ +α =    α    

. (33) 

In Eqs. (31) and (33), given the household income Y, there are two unknown parameters: 

household utility u and city boundary (θ)ix . Solving the system of equations (31) and (33) 

using Gauss-Seidel iterative method, one can obtain the values of u and (θ)ix . The details of 

the solution method are omitted here, but are available from authors on request. 

 

Note that the household income Y appears in Eqs. (18), (21), (22), (23), (26), (28), (30), (31), 

and (33). In order to conduct a welfare analysis, it is assumed that the total net land rent 

revenue and congestion toll revenue are equally redistributed to all residents of the city (see 

Arnott et al., 1998; Brueckner, 2007), and the ring road investment costs are borne on an 

equal per capita basis (see Saphores and Boarnet, 2006). Therefore, the household income Y 

should include the redistributed land rents and congestion tolls minus the borne ring road 

investment cost, defined as 

 0 rent toll icY Y Y Y Y= + + − , (34) 

where 0Y , rentY , tollY  and icY  are the annual work salary, annual redistributed land rents per 

household, annual redistributed tolls per household and the annual borne ring road investment 

cost per household, respectively.  
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rentY , tollY  and icY  are defined as 

 ( )
φ (θ )

rent 0 0
1

1 ( ,θ) θ
RAD

i i
M x

A
i

Y r x R xd dx
N =

 
= − 

 
∑ ∫ ∫ , (35) 

 
RINRAD

toll
1 1

( )1 2ρ
η ξ

MM
i j

j
i j

Q R
Y

N
τ

= =

 
=  

 
∑ ∑ , and (36) 

 
RIN

ic
1

ζ M

j
j

Y
N =

= Φ∑ , (37) 

where Eq. (35) defines the revenue from the redistributed net land rents per household. In Eq. 

(36), 
RIN1 2( , ,..., )Mτ τ τ  is the vector of toll levels on all cordons, and 2ρ η  is the total 

number of round commuting journeys between home location and the CBD per household per 

year. ( )i jQ R  is the hourly travel demand passing through ring road j along radial road i, 

which can be determined by Eq. (15). ( ) ξi jQ R  is the daily travel demand. In Eq. (37), ζ  

is a parameter used to convert the total investment cost of all ring roads into average annual 

cost. jΦ  is the investment cost of ring road j, which is defined as a function of ring road j’s 

length 2 jRπ  and capacity jK  (see Yang and Meng, 2000), expressed as 

 2j j jR KΦ = δπ , (38) 

where δ  is a positive constant. Eq. (38) indicates that the investment cost of a ring road is 

proportional to the length and width of that ring road. 

 

Till now, we have formulated the supply side model, the demand side model, and the 

demand-supply equilibrium model. They provide a useful tool for analyzing the change of 

urban system performance with a policy made by the authorities.  

 

5. Optimal ring road locations and cordon tolling schemes 

 

In this section, we explore how to determine the optimal concentric ring road locations and 

the optimal cordon tolling schemes in terms of the cordon locations and toll levels. As 

previously stated, ring roads have been introduced in many large cities in the world, such as 

Houston and Chengdu. The ring roads constructed in these cities can serve as candidate 

cordon locations, because they provide convenient conditions for implementation of cordon 

tolling schemes. Although such schemes are not implemented in mainland China yet, some 
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local governments are planning to introduce them in near future, such as Beijing, Shanghai, 

Shenzhen, and Chengdu, as mentioned before.  

 

In this paper, two decision mechanisms are considered for the ring road investment and 

cordon tolling: one is two-stage (or two-step) decision, and the other is simultaneous decision. 

In the two-stage model, the first stage is to determine the number and locations of ring roads 

to be invested in a city. At this moment, the fact that the infrastructure will be tolled later on is 

ignored. In the second stage, the optimal cordon tolling scheme (including cordon locations 

and toll level) is determined through considering the ring roads identified in the first stage as 

the candidate cordon locations. Such a two-stage decision process reflects that the 

demand-side management lags behind the supply-side investment, which is often the case in 

reality. In this paper, the government with such a two-stage decision process is called “a 

short-sighted government”. By contrast, a simultaneous decision of the ring road locations 

and cordon tolling schemes jointly considers both the supply-side and demand-side decisions. 

Such a decision process can be modeled as the behavior of “a far-sighted government”. In the 

following, we in turn formulate the decision models for the short-sighted and far-sighted 

governments. 

 

5.1. A short-sighted government 

 

A short-sighted government chooses the ring road locations and the cordon tolling schemes to 

maximize the social welfare of the urban system in a sequential or two-stage Stackelberg way, 

in which the number and locations of ring roads first are determined, and then the cordon 

locations and toll levels are chosen. The social welfare is the total benefits of all stakeholders 

in the urban system, which is the sum of the total utility of all households in the city, the 

aggregate net land rent and the total toll revenue minus the total ring road investment cost. As 

stated before, the net land rents, congestion tolls and the ring road investment cost are 

uniformly redistributed to the city’s households (see Eq. (34)), and thus the social welfare is 

equal to the total utility of all households in the city (i.e., consumer surplus). The first-stage 

model for the social welfare maximum problem is thus formulated as 

 ( )RINRIN 1max  , ,..., MSW M R R uN= , (39) 

where the decision variables include the number RINM  and locations ( )RIN1 2, ,..., MR R R  of 

the ring roads. 
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Given the number and locations of the ring roads determined in the first stage, the second 

stage of the model is to determine the cordon locations and toll levels, where the cordon 

locations are chosen from the set of the locations of all the ring roads. The second-stage 

problem can be formulated as 

 
RIN1 2max  ( , ,..., )MSW uNτ τ τ = , (40) 

where 
RIN1 2( , ,..., )Mτ τ τ  is the vector of toll levels on all cordons.  

 

It should be pointed out that as a byproduct, the second-stage problem (40) can be used to 

examine the optimal solutions of multi-cordon vs. single-cordon tolling schemes through 

imposing some constraints on the toll level vector RIN1 2( , ,..., )Mτ τ τ . Specifically, as there are 

no constraints on 
RIN1 2( , ,..., )Mτ τ τ , it leads to a multi-cordon tolling solution. As only one jτ  

is not zero (while all others jτ  are zero), a single-cordon tolling solution is incurred. In the 

next section, we will compare the solutions of the multi-cordon vs. single-cordon tolling 

schemes. 

 

5.2. A far-sighted government 

 

Different from a short-sighted government that sequentially determines the ring road 

investment and cordon tolling schemes, a far-sighted government will optimize these 

variables simultaneously. The simultaneous optimization model for the far-sighted 

government is expressed as 

 ( )RIN RINRIN 1 1 2max  , ,..., , , ,...,M MSW M R R uNτ τ τ = .  (41) 
The decision variables of the above model include the number and locations of the ring roads, 

and cordon locations and toll levels. Again, one can compare the optimal solutions of the 

multi-cordon vs. single-cordon tolling schemes through imposing the constraints that only one 

cordon toll is not zero and all others are zero. 

 

The models (39)-(41) are mixed integer programming problems, and are difficult to solve 

because they are usually non-linear and non-convex. In this paper, the Hooke-Jeeves approach, 

as a multidimensional search procedure, is applied to solve these models. An advantage of this 

approach is that it does not require explicit knowledge of the derivative information of 

objective functions (39)-(41). The basic idea behind the approach is to carry out two kinds of 
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searches sequentially: an exploratory search and a pattern search. Such a solution approach 

can converge to the optimal solution of the models. For more details of the Hooke-Jeeves 

approach, readers can refer to Bazaraa et al. (2006).  

 

6. A case study: Application to Chengdu 

 

In this section, a case study is provided to illustrate the applications of the proposed models 

and the contributions of this paper. The case study aims to: (i) ascertain the effects of the ring 

road investment and the cordon tolling schemes on the urban system with a given number of 

radial major roads, (ii) identify the differences between the short-sighted and far-sighted 

decisions, and (iii) examine the effects of ignoring household residential relocation behavior. 

To do so, some performance measures are defined as follows: 

City size or area = RAD
( )

1 0 0

i ixM

i
xdxd

ϕ θ

=
θ∑ ∫ ∫ ,  (42a) 

Average household residential density = N / city area,  (42b) 

Average housing space per family = RAD
( )

1 0 0
( , ) ( , )i ixM

i
g x n x xdxd N

ϕ θ

=
θ θ θ∑ ∫ ∫ ,  (42c) 

Average housing price = RAD RAD
( ) ( )

1 10 0 0 0
( , ) ( ( , )) ( ( , ))i i i ix xM M

i i
p x h S x xdxd h S x xdxd

ϕ θ ϕ θ

= =
θ θ θ θ θ∑ ∑∫ ∫ ∫ ∫ ,  (42d) 

Average land value = RAD
( )

1 0 0
( , ) city areai ixM

i
r x xdxd

ϕ θ

=
θ θ∑ ∫ ∫ ,  (42e) 

Average capital investment intensity = RAD
( )

1 0 0
( , ) city areai ixM

i
S x xdxd

ϕ θ

=
θ θ∑ ∫ ∫ .  (42f) 

 

Applying the first-best toll scheme to a city can yield the social optimal solution in terms of 

social welfare. The social-optimal or first-best toll scheme can hardly be implemented in 

reality due to its continuous change over space and/or time (causing high technical 

requirement and low public acceptability). It can provide an upper bound of urban system 

performance, and can thus serve as a benchmark for evaluating the efficacy of the ring road 

investment. At first-best toll scheme, the road tolls equal the congestion externalities that an 

additional auto trip imposes on the existing vehicles in the system. By A5 and marginal cost 

pricing principle, the first-best toll level at any location x of radial major road i is 

 
2 1

1 2
0 0

RAD RAD, RAD,

( ) ( ) ( )( ) ( )
( )

x xi i i
i t i t

i i i

t Q w Q wx Q w dw dw
Q w V K K

σ −
 ∂ ⋅ σ σ

τ = λ = λ   ∂  
∫ ∫ . (43) 

Eq. (43) represents the marginal effects of an additional auto trip at location x of radial major 
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road i on the total travel cost of all auto users between location x on that radial major road and 

the CBD. 

 

6.1. Parameter specifications 

 

In this case study, Chengdu network, as shown in Fig. 1c, is adopted. Chengdu, as the capital 

city of Sichuan province, is located at the West China. Chengdu network can be simplified as 

an asymmetric urban system with five radial major roads connecting the CBD and the city 

boundary, as shown in Fig. 7.5 The angles among these five radial major roads are 65°, 85°, 

35°, 65° and 110°, with capacities of 20000, 23000, 20000, 21000 and 25000 vehicles per 

hour, respectively. Without loss of generality, it is assumed that the capacities of all ring roads 

are identical, with 12000 vehicles per hour. Given the five radial major roads, we employ the 

proposed models in the previous sections to determine the optimal ring road investment 

scheme and the optimal cordon tolling scheme with ring roads as candidate cordons. 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Chengdu road network with five radial major roads. 

 

The total number of households N in the urban area is about 3.5 million. The annual income 

per household Y is about RMB100,000. The parameter α in the household’s utility function 

(17) is set as RMB20,000, implying that the annual housing consumption accounts for 20% of 

the annual income. This is currently the case in many large Chinese cities, such as Beijing, 

Shanghai, and Chengdu. 6  The agricultural rent AR  at the city boundary is set as 

RMB300,000 per square kilometer. 
 

5 https://map.baidu.com/@11585451,3556256.75,12z. 
6 https://research.ke.com/121/ArticleDetail?id=480. 
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Table 4 Input parameters for the numerical illustration. 

Parameter Definition Baseline value 

1 2,σ σ  Parameters of BPR function 0.15, 4.0 

0α  Fixed component of monetary travel cost (RMB) 10 

1 2,α α  Variable component of monetary travel cost (RMB/veh-km) 0.8, 0.6 
k Interest rate 5% 
N Total number of households in the city 3,500,000 
RA Agricultural rent at the city boundary (RMB/km2) 300,000 

RADV  Free-flow travel speed on radial major roads (km/h) 1/80 

RINV  Free-flow travel speed on ring roads (km/h) 1/100 

0V  Free-flow travel speed on minor roads (km/h) 1/20 
Y0 Annual household income (RMB/year) 100,000 
α  Parameter in household’s utility function (RMB/year) 20,000 
b , μ  Parameters in housing production function 0.75, 6.0×10−3 

tλ  Value of travel time (RMB/h) 60 
η  Average daily number of trips to the CBD per household 1.0 
ρ  Average annual number of trips to the CBD per household 365 
ξ  Peak-hour factor 10% 

δ  A positive parameter in road construction cost function 3.5×103 

ω  A parameter that reflects demand sensitivity to travel cost 3×10−3 

ζ  A parameter for converting total construction cost into annual cost 1/30 
Note: The data are mainly from Li and Guo (2017) and Li and Wang (2018). 

 

The free-flow travel speeds on the ring roads, radial major roads and minor roads, RINV , 

RADV , and 0V , are 100, 80 and 20 km per hour, respectively. The value of travel time tλ  is 

RMB60 per hour. The average daily number of trips to the CBD per household, η , is 

assumed to be 1.0, and thus the total annual number of trips to the CBD per household, ρ , is 

365. The peak-hour factor, ξ , is set as 10%. The interest rate k is set as 5%. The parameters, 

1σ  and 2σ , in the BPR travel time functions (3) and (7) are 0.15 and 4.0, respectively. The 

fixed component of the monetary travel cost, 0α , is RMB10 per trip, and the variable 

components, 1α  and 2α , of the monetary travel cost on the minor roads and the major roads 

are RMB0.8 and RMB0.6 per km, respectively. The parameters ω  in the travel demand 

function (13) is 0.003. The parameters δ  in the road investment cost function (38) is 3500. 

The parameter ζ , used to convert the total investment cost of all ring roads into average 

annual cost, is 1/30. The parameters b and μ in the housing production function (24) are set as 
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0.75 and 36.0 10−× , respectively. The baseline values of the model input parameters are 

summarized in Table 4. In the following analyses, unless specifically stated otherwise, the 

input data are identical to the baseline values. The computer program codes in Java language 

for the numerical study are available from the authors on request. 

 

6.2. Comparison of models’ solutions 

 

Fig. 8 shows the changes of the social welfare with the number of ring roads under the 

short-sighted and far-sighted decision mechanisms (two-stage vs. simultaneous decisions). It 

can be seen that the social welfare curve with the far-sighted model is always above that with 

the short-sighted model, meaning that the far-sighted decision would be superior to the 

short-sighted decision, in terms of the social welfare. As the number of the ring roads 

increases, the social welfare first increases and then decreases regardless of the decision 

mechanisms adopted. The maximum social welfare, respectively, occurs at 3 and 5 ring roads 

for the short-sighted and far-sighted decision mechanisms, causing social welfares of 373.126 

and 374.34 billion RMB per year. 
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Fig. 8. Changes of social welfare with number of ring roads under short-sighted and 

far-sighted decisions. 
 

Table 5 further summarizes the solutions of the models under different scenarios. It can be 

(3, 373.126) 

(5, 374.34) 
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seen that for the short-sighted (or two-stage) decision, the optimal locations of 3 ring roads to 

be introduced in Stage I (i.e., ring road investment stage) are 8.8, 11.3 and 14.6 km from the 

CBD, respectively. Given the 3 ring roads generated in Stage I as candidate cordon locations, 

the optimal cordon tolls in Stage II (i.e., cordon charging stage) are RMB3.86, RMB0.25 and 

RMB0.34 for the 3 ring roads, respectively. This means that the commuters living beyond the 

third ring road need to pay a total toll of RMB4.45 for a journey from their home locations to 

the CBD, while the commuters between Rings 2 and 3 and between Rings 1 and 2 have to pay 

tolls of RMB4.11 and RMB3.86 for their CBD trips, respectively. For the far-sighted 

(simultaneous) decision, the optimal locations of the 5 ring roads to be introduced are 5.8, 7.5, 

9.6, 11.8 and 15.0 km from the CBD, with tolls of RMB5.09, RMB0.3, RMB0.75, RMB0.57 

and RMB0.21 under the cordon tolling scheme, respectively. Thereby, the commuters living 

beyond the fifth ring road need to pay a total toll of RMB6.92 for their CBD commutes, while 

the commuters between Rings 5 and 4, Rings 4 and 3, Rings 3 and 2, and Rings 2 and 1 need 

to pay tolls of RMB6.71, RMB6.14, RMB5.39, RMB5.09, respectively.  

 

Table 5 also shows that the do-nothing case (i.e., no ring road investment) leads to the lowest 

social welfare of RMB372.587 billion per year, whereas the first-best tolling scheme yields 

the highest social welfare of RMB375.565 billion per year (i.e., social optimal solution), 

implying a welfare gain of RMB2.978 billion per year compared to the do-nothing case. This 

verifies that the first-best tolling scheme is the most efficient scheme that leads to the social 

optimal urban system. The welfare gains of the short-sighted and far-sighted decisions are 

RMB1.276 billion and RMB1.753 billion per year with regard to the do-nothing case, which 

are 42.8% and 58.9% of the welfare gain of the first-best scheme, respectively. This means 

that the far-sighted decision approximates to the first-best scheme (or social optimum) more 

closely than the short-sighted decision.  

 

In order to compare the efficiencies of the multi-cordon vs. single-cordon tolling schemes, the 

optimal solutions for the single-cordon tolling schemes under the short-sighted and 

far-sighted decisions are also shown in Table 5. It can be seen that for each decision 

mechanism, the optimal multi-cordon tolling scheme outperforms the optimal single-cordon 

tolling scheme in terms of the social welfare. However, the gap of the welfare gains between 

the single-cordon and multi-cordon tolling schemes is trivial. Specifically, the gaps of the 

welfare gains are, respectively, 1.0% and 2.0% for the short-sighted and far-sighted decisions. 

It should be mentioned that the toll collection cost is not considered here due to data 
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unavailability. Such a cost includes the investment cost of toll-collection equipment, the 

installation, operating and maintenance costs of the equipment, and the tolling transaction cost 

(Persad et al., 2007; Odeck and Welde, 2010; Li and Guo, 2017). Therefore, when choosing 

the number of tolling cordons in practice, it is necessary for the authorities to tradeoff the 

benefit of the cordon tolling schemes and the toll collection cost.  

 

In addition, Table 5 shows that the ring road investment leads to an expanded city, whereas 

congestion tolling causes a decrease in the city size. Specifically, compared to the do-nothing 

case, the city size under the first-best scheme decreases by 47 square kilometers (from 1285 to 

1238). The city size under the two-stage short-sighted decision first increases in Stage I and 

then decreases in Stage II: the ring road investment in Stage I leads to an expansion in the city 

size by 170 square kilometers (from 1285 to 1455), due to provision of more alternative 

routes. However, after implementing the cordon tolling scheme in Stage II, the city size 

becomes 1316 square kilometers, which is 139 square kilometers (from 1455 to 1316) smaller 

than before cordon tolling implementation (i.e., Stage I), but 31 square kilometers (from 1285 

to 1316) larger than the do-nothing case. This is because the dispersion effect caused by the 

ring road investment in Stage I exceeds the concentration effect caused by the cordon tolling 

in Stage II. Different from the two-step short-sighted decision, the far-sighted decision causes 

a slight decrease in the city size by 24 square kilometers (from 1285 to 1261). Again, this is a 

result of trade-off between city decentralization effect due to ring road investment and city 

concentration effect due to cordon tolling.  

 

To sum up, the ring road investment and the cordon tolling can enhance not only the social 

welfare of the system, but also the household utility level under the redistributions of the net 

land rents and cordon tolls. A “win-win” situation takes place for the city system and 

residents. 
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Table 5 Comparison of solutions of the models under different decision mechanisms. 

Performance index 

Before 
investing in 
ring roads 
(do-nothing) 

Short-sighted (two-step) decision Far-sighted (simultaneous) decision 
First-best 

toll 
scheme 

Stage I: 
introducing ring 
roads 

Stage II: 
introducing 
cordon tolling 

Stage II': a 
single-cordon 
tolling scheme 

All ring roads as 
candidate cordons 

(multi-cordon) 

A single-cordon 
tolling scheme 

Number of ring roads ─ 3 3 3 5 5 ─ 
Locations of ring roads / cordons (km) ─ (8.8, 11.3, 14.6) (8.8, 11.3, 14.6) (8.8, 11.3, 14.6) (5.8, 7.5, 9.6, 11.8, 

15.0) 
(5.8, 7.7, 11.1, 13.1, 

16.6) 
─ 

Toll level (RMB) ─ ─ (3.86, 0.25, 0.34) (3.5, 0, 0) (5.09, 0.3, 0.75, 
0.57, 0.21) 

(5.57, 0, 0, 0, 0) ─ 

City size (km2) 1285 1455 1316 1353 1261 1385 1238 
Average household residential density 
(households/km2) 

2723 2405 2659 2588 2775 2525 2825 

Average housing rental price 
(RMB/m2) 

2452 2298 2433 2406 2516 2462 2516 

Average housing space per family 
(m2/household) 

8.11 8.65 8.19 8.27 7.93 8.10 7.90 

Average land value (million 
RMB/km2) 

13.6 12.0 13.3 12.9 13.9 12.6 14.1 

Average capital investment intensity 
(million RMB/km2) 

817 722 790 771 818 746 847 

Aggregate land rent (billion 
RMB/year) 

17.11 17.06 17.11 17.10 17.12 17.08 17.13 

Total toll revenue (billion RMB/year) ─ ─ 2.00 1.83 4.40 4.28 6.06 
Average annual ring road investment 
cost (million RMB/year) 

─ 305 305 305 437 478 ─ 

Household utility level (RMB/year) 106453 106607 106818 106808 106954 106937 107304 
Annual social welfare (billion 
RMB/year) 

372.587 373.126 373.863 373.831 374.340 374.281 375.565 
(0%) (18.1%) (42.8%) (41.8%) (58.9%) (56.9%) (100%) 

Note: The percentage in the last row represents the ratio of welfare gain to the first-best tolling scheme.
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    (a)           (b) 

   
          (c)           (d) 

Fig. 9. Catchment areas of ring/radial roads under different cases: (a) do-nothing; (b) first-best 

tolling; (c) stage I of short-sighted decision (i.e., ring road investment stage); (d) far-sighted 

decision. Different colors represent the catchment areas of associated ring/radial road 

segments. 

 

6.3. Effects of ring road investment and cordon tolling on commuters’ route choices 

 

In order to intuitively look at the effects of the ring road investment and cordon tolling on 

commuters’ route choices, we adopted a graphical approach to show the commuters’ route 

choices under different cases, as shown in Fig. 9a-d. These different cases include: (a) 

do-nothing (no ring road investment); (b) first-best tolling; (c) stage I of short-sighted 

decision; and (d) far-sighted decision. In Fig. 9a and b, the blue part represents a residential 

area in which the commuters go to the CBD through dense minor roads directly. The green 

part represents a residential area in which the commuters first travel along a minor 
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circumferential road to get to the radial major road, and then proceed along the radial major 

road to reach the CBD. The part between any two radial major roads is divided into three 

areas: blue area in the middle and green areas on both sides. Comparing Fig. 9a and b, we can 

find that the blue area becomes bigger after introducing the first-best tolling scheme. This 

means that the first-best tolling scheme will lead more commuters to arrive directly at the 

CBD using the minor roads. 

 

In Fig. 9c and d, various colors (e.g., red, yellow, pink, blue, green) represent the catchment 

areas of associated ring road or radial major road. It can be observed that after introducing the 

ring roads, the city boundary between any two radial major roads becomes bulge outward, and 

the areas of the blue and green parts within the innermost ring road significantly decrease, 

compared to Fig. 9a and b. Moreover, the ring spacing in Fig. 9c with three ring roads is 

bigger than that in Fig. 9d with five ring roads. These observations imply that the ring road 

investment plays an important role in reshaping the urban spatial structure. 

 

6.4. Effects of ring road investment and cordon tolling on urban spatial structure 

 

In order to examine the effects of ring road investment and cordon tolling on the urban spatial 

structure, Fig. 10a-d and a'-d' further plot the contours of the household residential density and 

housing price across the city under the cases of do-nothing, first-best tolling, Stage I of 

short-sighted decision, and far-sighted decision, respectively. It can be seen that after 

implementing the first-best toll, the household residential density at any location of the city 

becomes denser, particularly, the household residential density in the CBD increases by 5963 

(from 34895 to 40858) households per square kilometer (see Fig. 10a and b). The residential 

density in the CBD decreases by 2474 (from 34895 to 32421) households per square 

kilometer after introducing three ring roads (see Fig. 10a and c), but increases by 4903 (from 

34895 to 39798) households per square kilometer after introducing five ring roads and cordon 

tolling schemes (see Fig. 10a and d), respectively. 

 

 

 



 

 40 

129.3

129.3

12
9.

3

12
9.

3

129.3

12
9.

3

1842.3

1842.3

1842.3

8281.4

8281.4

34895.4

-30 -20 -10 0 10 20 30

Distance from the CBD (km)

-20

-10

0

10

20

D
is

ta
nc

e 
fr

om
 th

e 
C

B
D

 (k
m

)

107.4

107.4

10
7.

4

10
7.

4

107.4

10
7.

4

1532.3

1532.3

1532.3

7123.3

7123.3

40857.6

-30 -20 -10 0 10 20 30

Distance from the CBD (km)

-20

-10

0

10

20

D
is

ta
nc

e 
fr

om
 th

e 
C

B
D

 (k
m

)

 

110.7

110.7

110.7
110.7

110.7

1926.5

1926.5

1926.5

1926.5

1926.5

6937.4

6937.4

32421.7

-30 -20 -10 0 10 20 30

Distance from the CBD (km)

-20

-10

0

10

20

D
is

ta
nc

e 
fr

om
 th

e 
C

B
D

 (k
m

)

 

69.9

69.9

69.9

69.9 69.9

1489.3

1489.3

1489.3

7024.3

39798.1

-30 -20 -10 0 10 20 30

Distance from the CBD (km)

-20

-10

0

10

20

D
is

ta
nc

e 
fr

om
 th

e 
C

B
D

 (k
m

)

 
(a)  (b) (c) (d) 

876.9

876.9

87
6.

9

87
6.

9

876.9

87
6.

9

1703.6

1703.6

1703.6

2480.6

2480.6

3554.1

-30 -20 -10 0 10 20 30

Distance from the CBD (km)

-20

-10

0

10

20

D
is

ta
nc

e 
fr

om
 th

e 
C

B
D

 (k
m

)

837.2

837.2

83
7.

2

83
7.

2

837.2

83
7.

2

1627

1627

1627

2389

2389

3697.2

-30 -20 -10 0 10 20 30

Distance from the CBD (km)

-20

-10

0

10

20

D
is

ta
nc

e 
fr

om
 th

e 
C

B
D

 (k
m

)

 

843.5

843.5

843.5
843.5

843.5

1722.8

1722.8

1722.8

1722.8

1722.8

2373.2

2373.2

3489.4

-30 -20 -10 0 10 20 30

Distance from the CBD (km)

-20

-10

0

10

20

D
is

ta
nc

e 
fr

om
 th

e 
C

B
D

 (k
m

)

 

751.9

751.9

751.9

751.9 751.9

1615.4

1615.4

1615.4

2380.5

3672.8

-30 -20 -10 0 10 20 30

Distance from the CBD (km)

-20

-10

0

10

20

D
is

ta
nc

e 
fr

om
 th

e 
C

B
D

 (k
m

)

 
 (a') (b') (c') (d') 

Fig. 10. (a)-(d) represent household residential density (household/m2) under the cases of do-nothing, first-best tolling, Stage I of short-sighted 

decision, and far-sighted decision, respectively. (a')-(d') represent associated housing rental price (RMB/m2).  



It can also be seen that for the no ring road cases (i.e., do-nothing and first-best tolling), the 

household residential density curves and housing price curves are monotonically decreasing 

with the distance from the CBD, as shown in Fig. 10a, a', b and b'. However, after investing in 

the ring roads, such a monotonicity is destroyed. Specifically, the household residential 

density and housing price first decrease from the CBD outward, then increase nearby the ring 

major roads and decrease with the distance from the ring major roads outward, and reach the 

peaks (locally maximum) on the ring major roads, as shown in Fig. 10c, c', d and d'. These 

results further illustrate the effects of the ring road investment on the urban spatial structure. 

 

6.5. Effects of ignoring household residential relocation behavior 

 

Finally, we look at the effects of ignoring household residential relocation behavior in the 

model, which can be considered as a short-run case. Ignoring the household residential 

relocation behavior means that the urban spatial structures (including household residential 

distributions, housing spaces and housing prices) before and after ring road investment and 

cordon tolling remain unchanged. Table 6 summarizes the solutions of the models under 

different scenarios when the household residential relocation behavior is not considered. It 

can be seen that the optimal number of ring roads under both the short-sighted and far-sighted 

decisions is 3. The optimal locations of the three ring roads to be introduced in Stage I of the 

short-sighted decision are, respectively, 7.7, 10.0 and 13.0 km from the CBD, and the 

associated optimal cordon tolls in Stage II of the short-sighted decision are RMB0.19, 0, 0.2, 

respectively. For the far-sighted decision, the optimal ring road locations are 7.8, 9.8 and 12.6 

km from the CBD, and the optimal cordon tolls are RMB0.15, 0.35 and 0.15, respectively.  

 

It can also be seen that comparing Tables 5 and 6, after household residential relocation 

behavior is ignored, the total toll revenue significantly decreases for both the short-sighted 

and far-sighted decisions due to underestimating the number of suburban residents, but 

significantly increases for the first-best toll scheme due to overestimating the number of 

suburban residents. In addition, the average household utility and the social welfare decrease. 

This is because ignoring household relocation behavior is equivalent to adding some extra 

constraints in the model, including the constraints on residential location, housing and 

non-housing goods consumption. As a result, the feasible region of the model solution is 

reduced, thus leading to a sub-optimal solution. 
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Table 6 Solutions of models without considering household residential relocation behavior. 

 Before 

investing in 

ring roads 

(do-nothing) 

Short-sighted (two-step) decision Far-sighted 

(simultaneous) 

decision 

First-best 

toll 

scheme Stage I: 

introducing 

ring roads 

Stage II: 

introducing 

cordon tolling 

Number of ring roads ─ 3 3 3 ─ 

Locations of ring roads / 

cordons (km) 

─ (7.7, 10.0, 13.0) (7.7, 10.0, 13.0) (7.8, 9.8, 12.6) ─ 

Toll level (RMB) ─ ─ (0.19, 0, 0.2) (0.15, 0.35, 0.15) ─ 

Total toll revenue (billion 

RMB/year) 

─ ─ 0.16 0.27 7.18 

Average annual ring road 

investment cost (million 

RMB/year) 

─ 270 270 265 ─ 

Average household utility 

level (RMB/year) 

106453 106651 106655 106656 107134 

Annual social welfare 

(billion RMB/year) 

372.587 

(0%) 

373.278 

(29.0%) 

373.293 

(29.7%) 

373.297 

(29.8%) 

374.968 

(100%) 

  

7. Conclusion and policy implications 

 
This paper investigated the issues of ring road investment and cordon toll pricing in a 

two-dimensional city. The urban system concerned includes four types of stakeholders: local 

authorities, property developers, households and commuters. The interdependences among 

these parties via some interrelated equilibria were considered: housing demand-supply 

equilibrium, household residential location choice equilibrium and commuters’ ring-radial 

route choice equilibrium. Based on the urban system equilibria analysis, two models for 

determining the number and locations of ring roads and the cordon tolling locations and levels, 

a short-sighted and a far-sighted decision model, were proposed for maximizing the social 

welfare of urban system. In the proposed models, the household residential distribution, 

capital investment intensity, land values, housing prices and housing space can all be 

endogenously determined. The proposed models allowed for an understanding of intra-area 

travel that is often poorly treated in traffic simulation models. A case study of Chengdu, China 

was given to illustrate the applications of the proposed models in the ring road investment and 

cordon toll design. The effects of ignoring the household relocation behavior due to ring road 
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investment and cordon toll pricing on the urban system were also examined. 

 

There are some important policy implications from the findings of this study. First, the 

decision mechanisms have significant impacts on the optimal solutions for the ring road 

investment and cordon tolling schemes. For example, for the case of Chengdu China, 

investment in three ring roads is enough under the short-sighted decision. However, it needs 

to invest in five ring roads under the far-sighted decision. The far-sighted decision (i.e., 

simultaneous decision on ring road investment and cordon tolling) outperforms the 

short-sighted decision (a two-step decision) in terms of the social welfare, and more 

approximates the best-first tolling scheme, and thus can be used as a substitute for the 

best-first scheme. Second, the ring road investment and cordon tolling can reshape the urban 

spatial structure. Specifically, the ring road investment can lead to urban sprawl, but the 

cordon tolling can cause a decrease in city size. The interaction between the dispersion effects 

caused by the ring road investment and the concentration effects caused by the cordon tolling 

jointly affects the urban form. The ring road investment and cordon tolling can also lead to a 

win-win situation for the city system and the residents, in terms of social welfare and 

household utility. Third, the optimal multi-cordon tolling scheme is superior to the optimal 

single-cordon tolling scheme in terms of the social welfare. However, the gap of the welfare 

gains between the single-cordon and multi-cordon tolling schemes is not significant. In 

practice, it is necessary for the authorities to tradeoff the benefit of the multi-cordon tolling 

schemes and the cost of the toll collection system. Finally, ignoring the household residential 

relocation behavior in the models could lead to significantly biased decisions on the ring road 

investment and cordon tolling, e.g., underestimates of the average household utility, total toll 

revenue and the social welfare. Therefore, the authorities should take into account the 

externalities caused by transport infrastructure investment and congestion tolling in the 

decision model. 

 

Although this paper provides a new method for modeling the interactions among land use, 

housing market, transportation infrastructure improvements and cordon tolling in a general 

city network, further extensions are necessary. First, this paper focused on auto mode, and 

thus ignored the competition and substitution effects between auto and public transit. To 

incorporate the interaction and competition between different modes, the single-mode 

transport system can be extended to consider a multi-modal transport system (Capozza, 1976; 

Anas and Moses, 1979; Li and Wang, 2018). Second, all households in this paper were 
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assumed to be homogenous. However, an empirical study by Kwon (2003) showed that 

household income level may significantly vary with their residential location choices. 

Therefore, the proposed models should be extended to consider the behavioral difference of 

heterogeneous households with different income levels and demographic characteristics in a 

further study. Third, in this paper, only traffic congestion externality was considered and other 

externalities such as environmental externalities were ignored (Yin et al., 2013; Li et al., 2014; 

Vosough et al., 2020, 2022). Further studies can be conducted to incorporate the effects of 

vehicle emissions externalities in a dynamic traffic model (de Palma et al., 2005) to create an 

environmentally sustainable urban system. Finally, parking issue was not considered in this 

paper. This is an important factor influencing the transport expenses of urban residents and 

thus the residential location and travel choices (Arnott et al., 1991; Fosgerau and de Palma, 

2013). Therefore, there is indeed a need to extend the proposed models to incorporate the 

parking issue.  
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Appendix A: Definitions of travel costs and proof of Proposition 1 
 

(1) Travel costs of segments , , , , , ,e d e f h f g′ ′ ′ ′  and h′  

 

Based on Fig. 3 and Eqs. (2)-(4), we can define the travel cost of segment e  (denoted as 

, 1 1( ,θ )e j ij RC ++ ) through replacing jR  in , ( ,θ )d j j iRC  by 1jR + , as follows: 

 , 1 1 RIN 1 2 1( ,θ ) λ ( ,φ ) α θe j j i t j i j iC R T R R+ + + += + . (A.1) 
The travel cost of segment d ′ , denoted as , ( , θ )j id j iC R′ ϕ − , can be defined by replacing θi  

in , ( ,θ )d j j iRC  by θi iϕ −  below: 

 , RIN 2( ,φ θ ) λ ( ,φ θ ) α (φ θ )d j j i i t j i i j i iC R T R R′ − = − + − . (A.2) 
The travel cost of segment e′ , denoted as , 1 1( , θ )je j i iC R +′ + ϕ − , can be defined through 

replacing θi  in , 1 1( ,θ )e j ij RC ++  by θi iϕ − , given as 

 , 1 RIN +11 2 +1( , θ ) ( , θ ) ( )θj i i i i ie j t j j iC T R RR′ ++ ϕ − = ϕ − +α ϕ −λ . (A.3) 

 

Based on Fig. 3 and Eqs. (5)-(7), the travel costs of segments f  and h , denoted as 

, ( )f i jC R  and , 1( )h i jC R + , can, respectively, be defined through replacing x in , ( )g iC x  by jR  

and 1jR +  as 

 , , 2( ( ))f i j t RAD i j jC R T R Rλ +α= , (A.4) 

 , 1 , 1 2 1( ) ( )h i j t RAD i j jC R T R R+ + += λ +α . (A.5) 

Similarly, the travel costs of segments f ′ , g′  and h′ , denoted as , 1( )f i jC R′ + , , 1( )g iC x′ +  

and , 1 1( )h i jC R′ + + , can, respectively, be defined as 

 , 1 , 1 2( ) ( )f i j t RAD i j jC R T R R′ + +λ + α= , (A.6) 

 , 1 , 1 2( )) (g i t RAD iC xx T x′ + += λ +α , (A.7) 

 , 1 1 , 1 1 2 1( )( )h i j t RAD i j jC R T R R′ + + + + ++ α= λ . (A.8) 

 

(2) Proposition 1: Comparative static results of route travel costs 
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Table A1 Comparative static analysis of route travel costs. 

Route no. Derivatives with regard to angle θi  Derivatives with regard to distance x from CBD 
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Appendix B: Equilibrium conditions of boundary contours and Proof of 

Proposition 2 

 
(1) Equilibrium conditions of boundary contours 

 

Table B1 Equilibrium conditions of all boundary contours in the ring-radial city. 

Boundary 
contours Competing routes Equilibrium condition 

(1)B  Routes 1 and 4 (1)
1 4( ,θ ) ( , θ ),   ( ,θ )i i i ix x x Bψ = ψ ϕ − ∈  

(2)B  Routes 2 and 5 (2)
2 5( ,θ ) ( , θ ),   ( ,θ )i i i ix x x Bψ = ψ ϕ − ∈  

(3)B  Routes 1 and 2 (3)
1 2( ,θ ) ( ,θ ),   ( ,θ )i i ix x x Bψ = ψ ∈  

(4)B  Routes 1 and 3 (4)
1 3( ,θ ) ( ,θ ),   ( ,θ )i i ix x x Bψ = ψ ∈  

(5)B  Routes 2 and 3 (5)
2 3( ,θ ) ( ,θ ),   ( ,θ )i i ix x x Bψ = ψ ∈  

(6)B  Routes 4 and 5 (6)
4 5( , θ ) ( , θ ),   ( ,θ )i i i i ix x x Bψ ϕ − = ψ ϕ − ∈  

(7)B  Routes 4 and 6 (7)
4 6( , θ ) ( , θ ),   ( ,θ )i i i i ix x x Bψ ϕ − = ψ ϕ − ∈  

(8)B  Routes 5 and 6 (8)
5 6( , θ ) ( , θ ),   ( ,θ )i i i i ix x x Bψ ϕ − = ψ ϕ − ∈  

(9)B  Routes 1 and 5 (9)
1 5( ,θ ) ( , θ ),   ( ,θ )i i i ix x x Bψ = ψ ϕ − ∈  

(9 )B ′  Routes 2 and 4 (9 )
2 4( ,θ ) ( , θ ),   ( ,θ )i i i ix x x B ′ψ = ψ ϕ − ∈  

 

(2) Proof of Proposition 2 

 

We first prove that boundary contour (1)
( , 1; , 1)i i j jB + +  must be a straight line. To do so, one needs 

to prove that the angle ˆ
iθ  of any location on (1)

( , 1; , 1)i i j jB + +  is identical, or equivalently, the 

angle ˆ
iθ  of the intersection between (1)

( , 1; , 1)i i j jB + +  and jR  has a sole solution. Note that for 

any point (1)
( , 1; , 1)

ˆˆ( ,θ )i i i j jx B + +∈ , 1 4
ˆ ˆˆ ˆ( ,θ ) ( , θ ) 0i i ix xψ −ψ ϕ − =  holds. Combing it and Eq. (8), 

one can obtain 

 ( ), , , , 1
ˆ ˆ ˆ ˆˆ ˆ( ,θ ) ( ,θ ) ( ) ( , θ ) ( , θ ) ( ) 0i j i j i i j i i ja d j f i a d j f ix R R x R RC C C C C C′ ′ ++ + − ϕ − + ϕ − + = . (B.1) 

According to Eq. (1), ˆ ˆˆ ˆ( ,θ ) ( , θ )a ai i iCxC x= ϕ −  holds. Substituting it into Eq. (B.1) yields 

 ( ), , , , 1
ˆ ˆ( , ) ( ) ( , ) ( ) 0d j f i d jj i j j i jf iiC CR R RC CR′ ′ +θ + − ϕ −θ + = . (B.2) 

Denote 14
ˆ( )i∆ θ  as the left-hand side of Eq. (B.2), i.e., 

  ( ),14 , , , 1
ˆ ˆ ˆ( ) ( , ) ( ) ( , ) ( )i j i j jd j f i d j i ii f jR R R RC C C C′ ′ +∆ θ = θ + − ϕ −θ +

.  (B.3) 
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One can then derive 

 ( )14
2

ˆ( ) ˆ2 ( ( ,θ ) 0
θ̂

i
t j i j

i

t Q R R∆
+ >

∂
=

θ λ α . (B.4) 

Eq. (B.4) implies that 14
ˆ( )i∆ θ  is monotonically increasing with regard to angle ˆ

iθ . In 

addition, 14 (0) 0∆ <  and 14 ( ) 0i∆ ϕ > . According to the zero-point theorem, ˆ
iθ  in Eq. (B.2) 

has one root (or solution) only within the interval [0, ]iϕ . 

 

Similarly, for any point (2)
( , 1; , 1)( ,θ )i i i j jx B + +∈

 , 2 5( ,θ ) ( , θ ) 0i i ix xψ −ψ ϕ − = 

   holds. From Eqs. (1) 

and (8), we have  

 ( ), 1 , , 1 , 11 1 1 1( ,θ ) ( ) ( , θ ) ( ) 0e j h i e jj i j jij i i hR R R RC C C C+ ′ +′+ ++ + ++ − ϕ − + =  . (B.5) 

Denote 25 (θ )i∆   as the left-hand side of Eq. (B.5). One can derive 

 ( )25
1 2 1

(θ ) 2 ( ( ,θ ) 0
θ

i
t j i j

i

t Q R R+ +

∂∆
+ >

∂
=







λ α . (B.6) 

This means that 25 (θ )i∆   is monotonically increasing with regard to angle θi
 . In addition, 

25 (0) 0∆ <  and 25 ( ) 0i∆ ϕ > . Therefore, θi
  in Eq. (B.5) has a sole solution within the 

interval [0, ]iϕ . This means that the angle θi
  of any location on (2)

( , 1; , 1)i i j jB + +  is identical. 

 

In light of the above, (1)
( , 1; , 1)i i j jB + +  and (2)

( , 1; 1, )i i j jB + − , which are from two concentric sector areas 

( , 1; , 1)i i j j+ +Θ  and ( , 1; 1, )i i j j+ −Θ , are straight line segments. For any point ˆ( , )j iR θ  on the 

boundary contour (1)
( , 1; , 1)i i j jB + + , θ̂i  is the solution to Eq. (B.2). For any point ( , )j iR θ  on the 

boundary contour (2)
( , 1; 1, )i i j jB + − , from Eqs. (1) and (8), iθ  is the solution to the following 

equation 

 ( ), , , , 1( ,θ ) ( ) ( , θ ) ( ) 0e j h i e jj i j j i i jh iC C C CR R R R′ ′ ++ − ϕ − + =  . (B.7) 

Note that segments e , h , e′  and h′  in the sector area ( , 1; 1, )i i j j+ −Θ  are just segments d , 

f , d ′ , and f ′  in the sector area ( , 1; , 1)i i j j+ +Θ , respectively. Hence, Eq. (B.7) is actually 

equivalent to Eq. (B.2). Therefore, θi i= θ
  holds, and thus (1)

( , 1; , 1)i i j jB + +  and (2)
( , 1; 1, )i i j jB + −  are in 

the same line. 
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Appendix C: Proof of Proposition 3 

 

Suppose that ˆ
iθ  is the solution of equation 1 4( , ) ( , )j ji i iR Rψ θ = ψ ϕ −θ . From Eqs. (1) and 

(8), one can obtain 

 , , , ,
ˆ ˆ( ,θ ) ( ) ( ,φ θ ) ( )d j j i f i j d j j i i f i jC R C R C R C R′ ′+ = − + . (C.1) 

 

Summing both sides of Eq. (C.1) from i = 1 to RADM  yields 

 ( ) ( )
R DA RAD

, , ,
1

, 1
1

ˆ ˆ( ,θ ) ( ) ( , θ ) ( )
M

j i j j

M

d j f i d j f i
i

i i j
i

R RC C C R RC′ ′ +
= =

+ = ϕ − +∑ ∑ . (C.2) 

According to Fig. 3 and Appendix A, , +1 , 1( ) ( )j jf i f iC CR R′ +=  and RAD, 1 ,1( ) ( )j jf M fR C RC ′ + =  

hold. Accordingly, we obtain 

   
RAD RAD

, , 1
1 1

( ) ( )
M

f i f i
i

M

j j
i

C CR R′
=

+
=

=∑ ∑ .  (C.3) 

From Eqs. (C.2) and (C.3), we have 

 
RAD RAD

, ,
1 1

ˆ ˆ( ,θ ) ( , θ )
M

d j

M

dj i j i i
i

j
i

C RCR ′
==

= ϕ −∑ ∑ . (C.4) 

 

If the traffic congestion effects on the ring roads can be ignored, from the definitions of 

,
ˆ( ,θ )j id jC R  and ,

ˆ( , θ )j id ijC R′ ϕ −  (see Eqs. (2) and (A.2)), we have 

 
D RADRA

2 2
,11 ,
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M
j i j
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i i

i i
i

R R
R R

V V= =

 ϕ −
+α = +α ϕ −  

 
λ λ 

 


 
∑ ∑ . (C.5) 

From Eq. (C.5), one can immediately obtain 

 
RAD RAD

11

ˆ
2

θ
M

i
i

M
i

i= =

ϕ
= = π∑ ∑ . (C.6) 

 

 


