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Abstract

This paper builds upon the work of Professor Marley, who, since the

beginning of his long research career, has proposed rigorous axiomatics in

the area of probabilistic choice models. Our study concentrates on models

that can be applied to best and worst choice scaling experiments. We focus

on those among these models that are based on strong assumptions about

the underlying ranking of the alternatives with which the individual is

assumed to be endowed when making the choice. Taking advantage of an

inclusion-exclusion identity that we showed a few years ago, we propose a

variety of best-worst choice probability models that could be implemented

in software packages that are flourishing in this field.
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1 Introduction

Professor Tony Marley, to whom we pay a well-deserved tribute in this special

issue of this journal, is undoubtedly the pioneer of probabilistic choice models

in which we are interested in the best choice, the worst choice, and/or both the

best and the worst choice. His theoretical contributions on the subject can be

traced back to Marley [1968] which can be considered as the seminal paper on

this topic.

This first theoretical work has gained in maturity due to Marley’s collab-

oration with Jordan Louviere who had seen very early and in an independent

way, the interest of best-worst scaling experiments. Their joint work Marley

and Louviere [2005] published in the Journal of Mathematical Psychology set

new milestones in this area.

Since then, the number of works on Best-worst scaling experiments has not

stopped growing. Goggle Scholar currently lists more than six hundred pub-

lished papers on the subject in areas as diverse as Health, Marketing, Trans-

portation, etc. In 2015, their joint book Louviere et al. [2015] published with

Terry Flynn as a third author, makes a major synthesis of theoretical and em-

pirical contributions of the moment.

Meanwhile, a number of packages of R or Python have emerged that allow

users to implement and estimate such models. The most remarkable and com-

prehensive is probably the Apollo package [see Hess and Palma, 2019]. The

majority of the packages implement the MaxDiff model that constructs the

probability of the simultaneous best and worst choices as the product of a logit

best choice probability in the whole choice set, multiplied by a probability, of

the same logit type but with negative sign scales, which represents the worst

choice probability in the set to the exclusion of the best choice. We propose

here other models almost as simple, but with different theoretical foundations.
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In this article, we rely in particular on the research of Marley and Louviere

[2005]. Our objective is to revisit the foundations of these models, with ref-

erence to the theory of choice developed by Luce [1959]. Our objective is to

better position these models, by contributing to the enrichment of the existing

literature on the subject, in particular with respect to the classification and

rationalization of these models.

In this paper, we focus only on models where the individual is supposed

to have a strict underlying ranking of the alternatives, but represented in a

probabilistic way by the modeler. This is the approach we took in de Palma

et al. [2017], even if we had a slightly stronger assumption than here of a Random

Utility Model [RUM, see Anderson et al., 1992, McFadden, 1981, 2001], which

is not really necessary.

We provide here a new general and rather simple proof of an inclusion-

exclusion type identity which seems to us fundamental and which would benefit

from being better known. This would open up many new perspectives for models

designed to analyze best and worst choice experiments. Indeed, we have shown

that the probabilities of the best and worst choices are totally linked by this form

of inclusion-exclusion identity. Any worst choice probability can be obtained

from the best choice probabilities by an alternating identity, and vice versa.

The content of the rest of the paper, which will highlight this modeling, is

described in the paragraphs that immediately follow.

In Section 2, we state the underlying rationality assumption required in the

models we study. We then define the best and worst choice probabilities in this

framework. We then formulate and prove the identity that links these two types

of choice probabilities.

In Section 3, we recall the Luce’s choice axiom [Luce, 1959] based on the best

choice probabilities - in this case, the induced probabilities of the standard Luce
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model are often called the multinomial logit model (MNL). We state another

axiom of the same type, this time based on worst choice probabilities. The

corresponding probabilities of this alternative construct are what we will refer

to as the reverse Luce model or Reverse Multinomial Logit Model (RMNL). The

above identity allows us to explicitly determine the worst choice probabilities

in an MNL and the best choice probabilities in an RMNL. Next, we show that

a model bringing together the two axioms of the standard Luce model and the

inverse Luce model produces a fully symmetric model. This is of little use from

a practical point of view and represents a somewhat impossibility result.

In section 4, we address the question of the best and worst choices being con-

sidered simultaneously. We refer to their probabilities as the best&worst choice

probabilities. We show that when the MNL is generated through a RUM, even

if the utilities are correlated as in the model we call Gumbel-Strauss model, we

obtain best&worst choice probabilities that are a product of a logit probability

by an alternating sum of logit probabilities. From this, a variety of best and

worst probabilities emerge, enriching the models already known for estimating

experiments where the respondents simultaneously reveal their best and worst

choices.

Finally, in Section 5, we summarize our results and propose theoretical and

empirical research avenues to further extend the scope of best and worst scaling

experiments.
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2 The best and worst choice probabilities iden-

tity

The choice setting

The total master choice set, denoted by T , is assumed to be finite and contain-

ing at least three alternatives (n ≡ |T | ≥ 3, where | · | denotes set cardinality).

Individuals’ preferences for the alternatives are assumed random and are repre-

sented in the following way: An individual selected at random from a population

strictly corresponds to ranked set of alternatives. This signifies that the indi-

vidual orders a number of options according to those they prefer the most, to

those least preferred, and that two alternatives are never equally desired. It is

also feasible that an individual who has to reveal their ranking of alternatives

may modify the order in a seemingly random fashion from one experiment to

another. This last point is often adopted in mathematical psychology, while the

first definition is favored in econometrics.

More formally, a strict linear order, which is similar to a permutation or a

ranking of the alternatives of T , is denoted using the binary relation symbol ≻.

We must read the notation for events in the following manner:1

x ≻ y ⇐⇒ x is better than y ⇐⇒ y is worse than x, (1)

where x and y are two different alternatives belonging to T . The random nature

of preferences is represented by a probability distribution P (·) on the universe

Ω consisting of all the strict linear orders (or rankings for short) on the choice

set T . Recall that the number of rankings of the alternatives of T is factorial

|T |.
1A more rigorous approach for the notation of x ≻ y would be {≻∈ Ω : x ≻ y}. To preserve

notation, we use the former expression.
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The very broad hypotheses we make in this paper are specified below:

Assumption 1. Individual preferences are represented by a probability distri-

bution P (·) on the set of strict linear orders over the total set of alternatives

T .

Best and worst choice probabilities

A more general notation than that we described for two alternatives in (1),

instead puts into practice the use of a subset of alternatives. Let x be any

alternative of T , and Y be any nonempty subset of alternatives within T , which

does not contain x, i.e. x /∈ Y .

The following event

(x ≻ Y ) ≡
⋂
y∈Y

(x ≻ y), (2)

must be understood as the subset of rankings where the alternative x is strictly

preferred over all the alternatives contained within Y . The probabilities of these

events are referred to as the best choice probabilities.

In a symmetrical manner, we can define the following event

(Y ≻ x) ≡
⋂
y∈Y

(y ≻ x), (3)

where x this time represents the worst of all the alternatives contained within

Y . We refer to the probabilities of such events as the worst choice probabilities.

The identity relating the best and the worst choice proba-

bilities

We show that the events in which x is considered as better or worse than other

alternatives is closely related according to particular identities. First of all, let
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us define the best and the worst choice probabilities in the master choice set T

as being respectively the following positive numbers

bx ≡ P (x ≻ T \ {x});wx ≡ P (T \ {x} ≻ x), x ∈ T. (4)

Note that they satisfy the following normalization identity

∑
x∈T

bx =
∑
x∈T

wx = 1. (5)

In this article we shall use the following fairly compact notations

bY ≡
∑
y∈Y

by; wY ≡
∑
y∈Y

wy, ∅ ⊆ Y ⊆ T. (6)

By definition, we have b∅ = w∅ = 0 and bT = wT = 1.

First note that if only two alternatives x and y are involved, the event or

the subset of rankings such that (y ≻ x) is the complement of (x ≻ y). By the

complement rule in probability, we obtain the following identity for the binary

case

P (y ≻ x) = 1− P (x ≻ y). (7)

Conversely, we can also interpret this simple relation as the probability that y

is the best choice rewritten as a function of the probability that y is the worst

choice.

Then, for three different alternatives x,y,z ∈ T , as long as the complement

of the intersection is the same as the union of the complement, the subset

of rankings such that ({y,z} ≻ x) is the complement of (x ≻ y) ∪ (x ≻ z).

Applying both the complement and addition rules in probability, we get the
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following identity for the trinary case

P ({y,z} ≻ x) = 1− P (x ≻ y)− P (x ≻ z) + P (x ≻ {y,z}). (8)

The left side is the worst choice probability associated to the alternative x,

while the right side contains nothing but best choice probabilities for this same

alternative x. We can also rearrange and rewrite this using simple algebra and

binary case identity (7). The previous identity becomes

P (x ≻ {y,z}) = 1− P (y ≻ x)− P (z ≻ x) + P ({y,z} ≻ x).

The generalization of such binary and trinary identities is possible as demon-

strated in the next theorem. We will artificially and for notational convenience

extend the notations (2) and (3) to the case where Y is the empty set by setting

P (x ≻ ∅) = P (∅ ≻ x) ≡ 1. We have:

Theorem 1. Under Assumption 1, the worst choice probabilities are related to

the best choice probabilities by the following identity:

P (Y ≻ x) =
∑

∅⊆Y ′⊆Y

(−1)|Y
′|P (x ≻ Y ′). (9)

Conversely, the best choice probabilities are related to the worst choice probabil-

ities by:

P (x ≻ Y ) =
∑

∅⊆Y ′⊆Y

(−1)|Y
′|P (Y ′ ≻ x). (10)

Proof. First note that I(Y ≻ x) =
∏

y∈Y I(y ≻ x),where I(·) is the event

indicator function. The above displayed expression can be rewritten as follows

I(Y ≻ x) =
∏
y∈Y

(1− I(x ≻ y)).
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Expansion of the product of the above expression yields

I(Y ≻ x) = 1 +
∑

Y ′⊆Y

(−1)|Y
′|
∏
y∈Y ′

I(x ≻ y),

which can be rewritten as follows

I(Y ≻ x) = 1 +
∑

Y ′⊆Y

(−1)|Y
′|I(x ≻ Y ′).

Since by convention we set: (x ≻ ∅) ≡ Ω so that I(x ≻ ∅) = 1, the above

displayed equation, can be rewritten in a slightly more compact form by adding

the empty set to the sum of its RHS

I(Y ≻ x) =
∑

∅⊆Y ′⊆Y

(−1)|Y
′|I(x ≻ Y ′).

Applying the expectation operator to both sides of that equation, and by the

linearity of that operator, the indicator function I(·) can be replaced by the

probability function P (·), obtaining (9). The proof of (10) goes along the same

lines as above by systematically switching the positions of x, Y and Y ′ with

respect to the symbol ≻.

3 Models à la Luce

We introduce here some axiomatic models in the same vein as Luce [1959]. We

start by the standard Luce model of which the hypotheses shed light on the best

choice probabilities, and we recall the classic form of best choice probabilities

induced by this axiom. Thanks to our identity outlined in Theorem 1, the

form of worst choice probabilities is subsequently obtained. Next, we propose

an axiomatic symmetry, that of Luce, but one which supports the worst choice
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probabilities called the Reverse Luce Axiom. We derive this according to the

same principle as for the standard model, both for the worst choice probabilities

and best choice probabilities introduced by our identity. Finally, in our last sub-

section, we demonstrate a model that verifies that both axioms are perfectly

symmetrical and offer little interest from a practical point of view.

Luce’s axiom

We start by recalling one of the fundamental results of axiomatic random pref-

erences, that is to say, Luce’s axiom.

Axiom 1 (Luce’s axiom). The best choice probabilities satisfy, for any x,y ∈

T, x ̸= y, and any Z ⊂ T \ {x,y}, the following property:

P (x ≻ {y} ∪ Z)

P (y ≻ {x} ∪ Z)
=

bx
by

. (11)

This axiom suggests that ratio between the probability that x is the best

choice and probability that y is the best choice, does not depend on the presence

of other alternatives. In other words, the alternatives of Z, are described as

irrelevant alternatives. This ratio must, among other things, correspond with

the ratio of choice probabilities when all the alternatives of the master set T are

implicated in the choice. We sometimes refer to this axiom as Independence of

Irrelevant Alternatives (IIA) property.

One of the fundamental results published in Luce [1959] and which is the

basic of the MNL, is reiterated and demonstrated once again in the following

proposition:

Theorem 2 (Luce, 1959). The best choice probabilities satisfy Luce’s choice
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axiom (Axiom 1) iff the best choice probabilities have the MNL form given by:

P (x ≻ Y ) =
bx

bx + bY
. (12)

Proof. By the law of total probability, we have the following normalizing identity

P (x ≻ Y ) +
∑
y∈Y

P (y ≻ {x} ∪ Y \ {y}) = 1.

Then, by Axiom 1, we have

P (y ≻ {x} ∪ Y \ {y})
P (x ≻ Y )

=
P (y ≻ {x} ∪ (Y \ {y})
P (x ≻ {y} ∪ (Y \ {y})

=
by
bx

,

implying

P (y ≻ {x} ∪ Y \ {y})) = by
bx

P (x ≻ Y ).

Therefore, the above normalizing identity leads to

P (x ≻ Y ) =
1

1 + by/bx
,

which can be rewritten as in (12).

We can go on to use the previously outlined theorems so as to deduce the

form of worst choice probabilities. We adopt the usual convention that an empty

sum is zero, i.e.
∑

y∈∅ by = 0.

Proposition 1. Luce’s axiom (Axiom 1) holds iff the worst choice probabilities

have the following form:

P (Y ≻ x) =
∑

∅⊆Y ′⊆Y

(−1)|Y
′| bx
bx + bY ′

. (13)

Proof. Applying Identity (9) of Theorem 1 with the best , we get the worst
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choice probabilities formula provided in (13).

The obtained result is a necessary and sufficient condition as long as Theorem

1 gives us a relation which links the worst choice probabilities to the best choice

probabilities whose form is given by Theorem 2, which itself gives necessary and

sufficient conditions.

Reverse Luce’s axiom

A natural extension of the previous MNL involves transferring the IIA property

from the best choice probabilities to the worst choice probabilities. We call this

the Reverse Luce choice axiom that we will now outline.

Axiom 2 (Reverse Luce’s choice axiom). The worst choice probabilities satisfy,

for any different alternatives x,y ∈ T , and any Z ⊂ T \ {x,y}, the following

property:

P ({x} ∪ Z ≻ y)

P ({y} ∪ Z ≻ x)
=

wx

wy
. (14)

It appears obvious that this axiom implies that this time the worst choice

probabilities take the MNL form.

Theorem 3. The reverse Luce’s choice axiom (Axiom 2) holds iff the worst

choice probabilities have the RMNL form given by:

P (Y ≻ x) =
wx

wx + wY
. (15)

Proof. The proof goes along the same lines as the proof of Theorem 2. In

a straightforward manner, we can systematically change the positions of the

alternatives x and y, besides the subset Y in comparison to the preference

≻.

In the same way as outlined previously, we can combine our fundamental
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theorem, Theorem 1, with Theorem 3, which expresses the form of the worst

choice probabilities, in order to obtain the form of the best choice probabilities.

Corollary 1. Luce’s axiom (Axiom 2) holds iff the best choice probabilities have

the following form:

P (x ≻ Y ) =
∑

∅⊆Y ′⊆Y

(−1)|Y
′| wx

wx + wY ′
.

Recall that this formulation of best choice probabilities was obtained by

Anderson and de Palma [1999] who conceived it by inverting the signs of the

random utility variables in an Additive Random Utility Model (ARUM). Our

use here is rather in the spirit of fundamental theory with respect to more

general Luce models and their ilk.

An impossibility result

It seems reasonable within the context of this paper to ask ourselves what model

is produced when we simultaneously apply the two Axioms 1 and 2? We obtain

the following:

Theorem 4 (Impossibility result). The probabilistic preferences satisfy simul-

taneously Axioms 1 and 2 iff:

P (x ≻ Y ) = P (Y ≻ x) =
1

1 + |Y |
. (16)

Proof. If the conditions for Axioms 1 and 2 are met, the probabilities for binary

choices is written as:

P (x ≻ y) =
bx

bx + by
=

wy

wx + wy
,

this entails the equality of the following ratios wy/wx = bx/by. Taking into
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account the constraints of normalization given by (5), we arrive at

wx =
1/bx∑
y∈T 1/by

. (17)

We can now remind ourselves of the identity given by Eq. (8), which is applicable

when we have three different alternatives x,y,z ∈ T . Therefore bringing us to:

1− bx
bx + by

− bx
bx + bz

+
bx

bx + by + bz
− 1/bx

1/bx + 1/by + 1/bz
= 0,

which can be rewritten as follows

1− bx
bx + by

− bx
bx + bz

+
bx

bx + by + bz
− bybz

bybz + bxbz + bxby
= 0.

Regrouping the first three terms as well as the fourth and fifth terms, we obtain

bybz − b2x
(bx + by)(bx + bz)

+
b2xbz + b2xby − b2ybz − byb

2
z

(bx + by + bz)(bybz + bxbz + bxby)
= 0,

which can be further factorized as follows

(bybz − b2x)

(
1

(bx + by)(bx + bz)
− by + bz

(bx + by + bz)(bybz + bxbz + bxby)

)
= 0.

After some algebraic manipulations, the second term into parentheses can be

factorized, obtaining

(bybz − b2x)
bxbybz

(bx + by)(bx + bz)(bx + by + bz)(bybz + bxbz + bxby)
= 0.

Therefore, we have necessary that: b2x = bybz. This type of equality is also valid

for any permutation of the alternatives x,y,z, for instance providing us with

b2y = bxbz. Using the ratios of last two equality relationships, we can identify:
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bx/by = 1. In view of the normalization (5) we can deduct bx = 1/n. Next,

using Eq. (17), we have the same form wx = 1/n. Finally, using the Eqs. (12)

and (13), we obtain Eq. (16).

So this result gives us a strong impossibility result, describing how it is not

possible to construct a model which satisfies Luce’s two axioms at the same

time - the original and the reverse - other than in a purely symmetric model,

limiting this construction. We will discover in the next section that it is possible

to obtain all the best and worse probabilities for each axiom thanks to a general

identity that connects these probabilities.

4 Best&worst choice probabilities

We are now interested in the simultaneous choice of the best and worst alter-

natives. More formally, if x and z are two different alternatives of T , and Y is

a non-empty subset of T that does not contain either of these two alternatives,

we are interested in computing the probability that x is considered the best al-

ternative while z is the worst alternative when the choice set contains x,Y, and

z. The probabilities of these events will be called best&worst choice probabilities

and are defined by

P (x ≻ Y ≻ z) ≡ P ((x ≻ Y ) ∩ (Y ≻ z)). (18)

The aim here is not to reconstruct an exhaustive theory of identities that can

exist in all choice subsets of T as we have done for the best choice and the worst

choice probabilities separately. Extensive discussions are made in Marley and

Louviere [2005], in de Palma et al. [2017] and Delle Site et al. [2019].

It is also worth noting in the same vein of results and as a complement

the interesting result of Colonius [2021] which gives necessary and sufficient
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conditions for a system of best&worst choice probabilities, i.e. all probabilities

of the type P (x ≻ Y ≻ z), so that they are rationalizable. The author thus

obtains an extension of the result of Falmagne [1978] who showed that the

non-negativity of the polynomials exhibited in Block and Marschak which are

derived from the best choice pobabilities is a necessary and sufficient condition

for rationalizability [see also the short proof of Fiorini, 2004]

Our goal here is rather to identify forms of best&worst choice probabilities

that remain compatible with the Luce axiom for best choice probabilities (Axiom

1), or equivalently, models compatible with the reverse Luce axiom for worst

choice probabilities (Axiom 2). These models could be interesting to test for

future empirical applications.

Lemma 1. Under Assumption 1, the best&worst choice probabilities are related

to joint best choice probabilities by the following identity:

P (x ≻ Y ≻ z) =
∑

∅⊆Y ′⊆Y

(−1)|Y
′|P ((x ≻ (Y \ Y ′) ∪ {z}) ∩ (z ≻ Y ′)). (19)

Similarly, the best&worst are related to joint worst choice probabilities by:

P (x ≻ Y ≻ z) =
∑

∅⊆Y ′⊆Y

(−1)|Y
′|P ((Y ′ ≻ x) ∩ {x} ∪ ((Y \ Y ′) ≻ z)). (20)

Proof. First, we note that by transitivity of the preference relation ≻, we have

(x ≻ Y ≻ z) = (x ≻ Y ∪ {z}) ∩ (Y ≻ z),

which implies, by using the indicator function I(·), the following equality

I(x ≻ Y ≻ z) = I(x ≻ Y ∪ {z})× I(Y ≻ z).
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Using the fact that

I(Y ≻ z) =
∑

∅⊆Y ′⊆Y

(−1)|Y
′|I(z ≻ Y ′),

we get then

I(x ≻ Y ≻ z) =
∑

∅⊆Y ′⊆Y

(−1)|Y
′|I(x ≻ Y ∪ {z})× I(z ≻ Y ′).

For any y ∈ Y ′, if z ≻ y and x ≻ z, we have necessarily x ≻ y which allows us

to remove this redundancy by writing

I(x ≻ Y ≻ z) =
∑

∅⊆Y ′⊆Y

(−1)|Y
′|I(x ≻ (Y \ Y ′) ∪ {z})× I(z ≻ Y ′).

Applying the mathematical expectation to both members of this equality and

by linearity of expectation, we obtain Eq. (19).

Alternately, we can also write

I(x ≻ Y ≻ z) = I(x ≻ Y ) ∩ ({x} ∪ Y ≻ z).

Then using the identity

I(x ≻ Y ) =
∑

∅⊆Y ′⊆Y

(−1)|Y
′|I(Y ′ ≻ x),

and by similar arguments as above, we get

I(x ≻ Y ≻ z) =
∑

∅⊆Y ′⊆Y

(−1)|Y
′|I(Y ′ ≻ x)× I({x} ∪ (Y \ Y ′) ≻ z).

Applying the mathematical expectation then gives us Eq. (20).
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Thus, the best&worst choice probabilities in the formulation (19) appear

as an alternating sum of joint best choice probabilities where z is preferred to

a subset of Y while x is preferred to all the other alternatives, including z.

In the formulation (20), it is rather an alternating sum of joint worst choice

probabilities where x is worse than any subset of Y while z is worse than all the

remaining alternatives, including x.

At this stage, Lemma 1 is not fully operational with such broad assumptions

about preferences, even if we restrict ourselves to models where Axiom 1 (resp.

Axiom 2) is satisfied. de Palma et al. [2017] have successfully used this type

of identity to compute the best&worst choice probabilities in the generalized

exteme value model.

The Gumbel-Strauss model

In this section we will compute the various choice probabilities seen above in

a class of RUMs, i.e. in models where each alternative x is assigned a specific

random utility Ux, where the best choice probabilities verify the axiom 1. We

are interested in a particular RUM where the multivariate distribution of the

utility vector is described by its CDF given by

P

(⋂
x∈T

(Ux ≤ ux)

)
= exp

−(∑
x∈T

bxe
−αux

)1/α
 , (21)

where α ≥ 1. Thus, the margins are Gumbel distributions, and α allows to

introduce correlations between utilities. We notice that the limiting case α = 1

corresponds to the independence of the utilities.

We will refer to this model as the Gumbel-Strauss model insofar as the

distribution of random utilities is a generalized Gumbel distribution, and that

the authorship of the use of this distribution in the framework of RUMs is
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attributed to Strauss [1979].

We will again demonstrate that the best choice probabilities do indeed take

the form MNL. The proof will be inspiring for upcoming results.

Lemma 2. The best choice probabilities corresponding to the Gumbel-Strauss

model, where the utilities have a CDF given by (21), take the MNL form given

by (12).

Proof. By definition, we have

P (x ≻ Y ) ≡ P

⋂
y∈Y

(Uy ≤ Ux)

 = P (UY ≤ Ux),

where UY ≡ maxy∈Y Uy. The CDF of the couple composed of the variables Ux

and UY and given by F2(ux,uY ) ≡ P (Ux ≤ ux,UY ≤ uY ), satisfies

F2(ux,uY ) = exp

−(bxe−αux + bY e
−αuY

)1/α
 .

We then have to calculate the following double integral

P (x ≻ Y ) =

∫ +∞

−∞

∫ ux

−∞

∂2F2(ux,uY )

∂ux∂uY
duY dux.

A first integration of the inner integral yields the following simplification

P (x ≻ Y ) =

∫ +∞

−∞

∂F2(ux,ux)

∂ux
dux.

As

∂F2(ux,ux)

∂ux
=

bx
bx + bY

Ae−ux exp
(
−Ae−ux

)
.
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where A ≡ (bx + bY )
1/α > 0, then using the fact that

∫ +∞

−∞
Ae−ux exp

(
−Ae−ux

)
dux = 1,

we obtain

P (x ≻ Y ) =
bx

bx + bY
.

An immediate consequence of the previous result is the following one which

gives the form of the worst choice probabilities for this model:

Proposition 2. The worst choice probabilities corresponding to the Gumbel-

Strauss model, take the alternate form given by (13).

Proof. Since the best choice probabilities are of the MNL type, it is sufficient to

use the Proposition 1 which provides the alternating form of the worst choice

probabilities.

We are now fully prepared for the computation of the simultaneous best and

worst choice probabilities for the Gumbel-Strauss model. We have derived the

following result:

Proposition 3. The best&worst choice probabilities corresponding to the Gumbel-

Strauss model, take the alternate form given by

P (x ≻ T \ {x,z} ≻ z) = bx
∑

∅⊆Z⊆T\{x,z}

(−1)|Z| bz
bz + bZ

. (22)

Proof. We will use for our proof the Identity (19) of Lemma 1. It allows us to

write the probabilities of the best and worst choice as follows

P (x ≻ T \ {x,z} ≻ z) =
∑

∅⊆Z⊆T\{x,z}

(−1)|Z|θZ ,
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where

θZ =


P (Ux ≥ UT\{x,z}, Z = ∅;

P (Ux ≥ max(UX ,Uz);Uz ≥ UZ), ∅ ⊊ Z ⊊ T \ {x,z};

P (Ux ≥ Uz ≥ UT\{x,z}) Z = T \ {x,z},

where X ≡ T \ {x,z} \ Z. We have clearly

θ∅ = bx
bz

bz + b∅

since it corresponds to the probability that x is the best choice in T . We also

have θT\{x,z} is the probability that x is the best choice and z is the second-best

choice in T . It satisfies

θT\{x,z} = P (Uz ≥ UT\{x,z})−P (Uz ≥ UT\{z}) =
bz

1− bx
−bz = bx

bz
bz + bT\{x,z}

.

More generally, we shall prove that we always have θZ = bxbz/(bz + bZ). For

∅ ⊊ Z ⊊ T \ {x,z}, we can then use the multivariate cumulative distribution

function of the quadruplet (Ux,UX ,Uz,UZ) which is given by

F4(ux,uX ,uz,uZ) =

exp
[
−
(
bxe

−αux + bXe−αuX + bze
−αuz + bZe

−αuZ
)1/α]

.

We need to compute the quadruple integral given below

θZ =

∫ +∞

−∞

∫ ux

−∞

∫ ux

−∞

∫ uz

−∞

∂4F4(ux,uX ,uz,uZ)

∂ux∂uX∂uz∂uZ
duZduzduXdux.
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By simplifying two inner integrals, we obtain a double integral

θZ =

∫ +∞

−∞

∫ ux

−∞

∂2F4(ux,ux,uz,uz)

∂ux∂uz
duzdux.

By differentiating F4 twice, we obtain

∂2F4(ux,ux,uz,uz)

∂ux∂uz
= bxbze

−αuxe−αuz (A+ α− 1)A1−2αe−A,

where A is a function of the couple (ux,uz) defined by

A ≡ [(bx + bX)e−αux + (bz + bZ)e
−αuz ]1/α,

By performing a first change of variable at the level of the inner integral, and

noticing that we have bx + bX + bz + bZ = bT = 1, we get

θZ = C × bx
bz

bz + bZ

where C is a constant equal to

C ≡
∫ ∞

−∞

∫ ∞

e−u

(A+ α− 1)A−αe−AdAe−αudu.

We have thus proven that

P (x ≻ T \ {x,z} ≻ z) = C × bx
∑

∅⊆Z⊆T\{x,z}

(−1)|Z| bz
bz + bZ

.

It remains to show to finally prove our result that the constant C is indeed 1.

Noting that the alternating sum is nothing but a worst choice probability, we

have

P (x ≻ T \ {x,z} ≻ z) = C × bxP (T \ {x,z} ≻ z).
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By summing over all of the z ∈ T \ {x} both members of the previous equation,

we find

bx = C × bx,

which indeed implies that C = 1.

As a conclusion to this section, we note that the best&worst probabilities

for the Gumbel-Strauss model take the following form

P (x ≻ T \ {x,z} ≻ z) = P (x ≻ T \ {x})× P (T \ {x,z} ≻ z).

This multiplicative form specific to the logit model generated by independent

Gumbel distributions, which corresponds to α = 1 for the distribution given by

(21), had been previously pointed out [Marley and Louviere, 2005, Proposition

9]. Here we generalize this interesting result in two ways: first, we determine

the complete analytical form of the best&worst choice probabilities, and second,

we show that this result remains valid even if the utilities are correlated in some

way.

Alternatively, one can, without any further difficulty, consider the reverse

model of the one given by Equation (22) which would have best&worst choice

probabilities given by

P (x ≻ T \ {x,z} ≻ z) = wz

∑
∅⊆X⊆T\{x,z}

(−1)|X| wx

wx + wX
. (23)

5 Concluding remarks

In this paper we conducted a review of models that involve the best, the worst,

and the best&worst choices in a choice set. We have focused on models that as-

sume an underlying rationality, i.e. these probabilities are induced by a random
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order of preference over the alternatives.

It can be interesting in empirical applications to use models that have an ex-

plicit expression of these various probabilities. This is why we have concentrated

our efforts on models of the MNL type where all the probabilities of interest to

us are explicit and where a worst choice probability has an alternating form of

best choice probabilities.

The best and worst probabilities considered simultaneously are the prod-

ucts of logit and alternating logit probabilities. We have also proposed reversed

models where the worst probabilities have an MNL expression while the best

probabilities have the alternating form. In future research, it would be interest-

ing to implement these models in packages such as Apollo and to confront them

with the current models already implemented, such as the MaxDiff model. This

would open up interesting and new research paths.
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Simon P. Anderson and André de Palma. Reverse discrete choice models. Re-

gional Science and Urban Economics, 29(6):745–764, 1999.
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