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Abstract 

We propose an analytically solvable model for the residential location choices of 

heterogeneous households in a linear monocentric city corridor with bottleneck congestion. 

Residents have heterogeneous income, and make a joint choice of residential location and 

departure time. There is a bottleneck with a fixed or with a stochastic location between central 

downtown and adjacent suburb of the city. The urban system equilibrium and the effects of 

bottleneck capacity expansion on the city system are analytically investigated, together with 

the design of the bottleneck capacity. We show that the residents spatially sort themselves 

along the city corridor from CBD outward in a descending order of their values of time. 

Expanding bottleneck capacity leads to an increase in the commuting costs of the downtown 

residents but a decrease in the commuting costs of the suburban residents. All residents of the 

city benefit from the bottleneck capacity expansion, with the highest benefit for the relatively 

mid-income residents, and the lowest benefit for the lowest-income or the highest-income 

residents, depending on the status quo of the bottleneck capacity. Expanding the bottleneck 

capacity leads to urban sprawl, and a decrease in total net land rent. Ignoring the effects of the 

bottleneck capacity expansion on the urban spatial structure overestimates the social surplus. 

The bottleneck location's stochasticity smoothes the residential distribution, increases the 

system's transportation cost, and decreases household utility and social surplus. 

 

Keywords: Residential location choice; linear monocentric city; heterogeneous residents; 

stochastic bottleneck; bottleneck capacity expansion. 
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1. Introduction 
 

It has been widely recognized that commuting cost significantly affects households’ 

residential location choices, whereas traffic congestion dynamics due to diversities of 

commuters’ departure time choices directly affect commuting cost. Dynamic traffic 

congestion during peak periods may thus be a vital factor influencing households’ residential 

location choices. Therefore, as pointed out by Ross and Yinger (2000), there is a need to 

incorporate the interactions between traffic congestion dynamics (time dimension) and 

households’ residential location choices (spatial dimension) in the urban models. 

 

In the literature, there are several studies involving both dynamic bottleneck congestion and 

urban spatial equilibrium models. These studies can be classified into two major types of 

modeling methods: discrete spatial approaches (e.g., Arnott, 1998; Xu et al., 2018; Fosgerau 

and Kim, 2019) and continuum spatial approaches (e.g., Fosgerau and de Palma, 2012; 

Gubins and Verhoef, 2014; Takayama and Kuwahara, 2017; Fosgerau et al., 2018; Takayama, 

2020). The discrete approaches usually concern two discrete residential zones (a downtown 

and a suburb) connected by a bottleneck-constrained highway. Urban residents make 

residential location choices and trip schedules between the two zones. The spatial aspects (e.g., 

housing/land space and price at each location) within each zone in the discrete approaches are 

generally neglected in order to focus on the inter-zone transportation. By contrast, the 

continuous approaches consider a city as a continuum, in which the spatial structure of the 

city is explicitly treated. The discrete approaches can thus be seen as a special case of the 

continuous ones. 

 

We have summarized in Table 1 some major contributions to the combined model of dynamic 

bottleneck congestion and residential location choice in terms of the modeling approach, form 

of solution, resident’s heterogeneity, stochasticity of bottleneck locations, and bottleneck 

capacity expansion and design. Table 1 shows that most of the existing studies considered 

residents to be homogeneous in terms of income or value of time (VOT). More realistically, 

residents’ income/VOT levels are generally different, depending on various factors, such as 

occupations and skills. This leads to differential tastes in the residential location choice and 

the response to transport policies (Li and Peng, 2016; Li et al., 2020). Two recent studies by 

Takayama and Kuwahara (2017) and Takayama (2020) considered the resident’s VOT 
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heterogeneity in a discrete form, in which the city’s residents are classified into limited 

discrete groups, and the residents in the same group are assumed to be homogeneous. 

However, their studies cannot derive a closed-form solution, and thus the relations among 

variables or parameters cannot explicitly be identified.  

 

Table 1 Contributions to a combination of dynamic bottleneck and residential location choice. 

Reference Modeling 
approach 

Analytical 
solution 

Income 
heterogeneity 

Stochastic 
bottleneck 
location 

Bottleneck 
capacity 
expansion 
and design 

Arnott (1998) Discrete × × × × 

Fosgerau and de Palma (2012) Continuous × × × × 
Gubins and Verhoef (2014) Continuous × × × × 

Takayama and Kuwahara 
(2017) 

Continuous √ Discrete × × 

Fosgerau et al. (2018) Continuous  × × × × 

Xu et al. (2018) Discrete √ × × × 

Fosgerau and Kim (2019) Discrete × × × × 

Takayama (2020) Continuous √ Discrete × 
 

× 
 

This paper Continuous √ Continuous √ √ 

 

The previous studies about the combined issue of the dynamic bottleneck and the residential 

location choice often considered a deterministic case. Although one can find some bottleneck 

model studies involving the randomness of bottleneck capacity, travel demand, or travel time 

(e.g., see Arnott et al., 1999; Fosgerau and Lindsey, 2013; Xiao et al., 2014, 2015; Tian and 

Huang, 2015), the bottleneck’s location was usually assumed to be fixed, like for bridges and 

tunnels. However, in practice, the bottleneck on a road may be caused by various random 

factors, such as adverse weather, road works, traffic accidents, and vehicle lane change. The 

location of the bottleneck may thus stochastically change on a roadway (e.g., a stretch of 

narrow highway with a larger capacity in its upstream and downstream links) due to random 

incidents by time of day, day of week, and season. In essence, the deterministic case of 

bottleneck congestion location falls into a class of recurrent congestion, whereas the 

stochastic case belongs to non-recurrent congestion. Both types of congestion are widespread 

in the real life. Skabardonis et al. (2003) conducted an empirical study of three highways in 

Los Angeles and San Francisco, and found that 13%-30% of the rush-hour delays belong to 

non-recurrent congestion. A report released by the World Bank in 2010 showed that for 11 
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corridors in Cairo, Egypt, 60% of the commuting delay costs were caused by nonrecurrent 

congestion.1 A recent program implemented by the U.S. Department of Transportation further 

disclosed that about half of the congestion experienced by Americans is nonrecurrent.2 

Therefore, besides the fixed bottleneck, there is also a need to investigate the case of 

stochastic bottleneck locations, which is never involved in the previous related studies. 

 

In addition, the effects of the bottleneck capacity expansion on the corridor system were not 

analytically explored, and the analytical expression for the optimal bottleneck capacity that 

maximizes the social surplus was not determined in the previous studies. Although a 

simulation method can be used to numerically serve these purposes, the conclusions obtained 

about the relations among the bottleneck capacity expansion, household relocation behavior 

(household utility), and the system performance (e.g., housing/land price, city size, social 

surplus) may not be robust because they depend very much on the values of model’s input 

parameters. Consequently, it is meaningful to analytically investigate the effects of the 

bottleneck capacity expansion, and to derive the analytical solution for the optimal bottleneck 

capacity. 

 

In view of the above discussion, this paper addresses the combined issue of the residential 

location choices of heterogeneous households and the dynamic bottleneck congestion in a 

linear monocentric city corridor. The main contributions of this paper are threefold. First, an 

analytically continuous solvable model that simultaneously incorporates the bottleneck 

congestion and residential location choices of heterogeneous households is proposed. The 

heterogeneity of residents’ VOTs is considered as a continuous form. The urban system 

equilibrium is formulated as a solution of a system of differential equations. Second, in our 

setting, bottleneck congestion may occur at a fixed location (recurrent congestion) or a 

stochastic location on a road segment (non-recurrent congestion). The stochastic bottleneck 

location case has never been investigated in the literature. This paper attempts to fill this 

research gap. Third, the effects of bottleneck capacity expansion on the residents and the 

urban system are investigated, and the optimal bottleneck capacity that maximizes the social 

surplus of the system is determined. Analytical solutions for the bottleneck capacity 

                                                 
1 https://documents.worldbank.org/en/publication/documents-reports/documentdetail/650141468248419267/egyp

t-cairo-traffic-congestion-study-phase-1. 
2 https://ops.fhwa.dot.gov/program_areas/reduce-non-cong.htm. 
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expansion and the optimal bottleneck capacity design are derived for the fixed bottleneck 

location case. The proposed methodology provides a new framework for investigating the 

urban system equilibrium with heterogeneous residents and bottleneck congestion and for 

identifying the effects of various urban policies on the urban spatial structure. 

 

The remainder of this paper is organized as follows. In the next section, the urban system 

equilibrium with heterogeneous residents and a fixed bottleneck is formulated. Section 3 

carries out the comparative statics analysis of bottleneck capacity expansion. Section 4 

designs the optimal bottleneck capacity to maximize the social surplus of the system. In 

Section 5, the urban system equilibrium is analyzed for the stochastic bottleneck case. In 

Section 6, a numerical study is provided to illustrate the properties and applications of the 

proposed model. Section 7 concludes this paper and provides suggestions for further studies. 

Several proofs and mathematical derivations are given in the appendices.  

 

2. Urban system equilibrium with heterogeneous residents and a fixed 

bottleneck 
 

2.1. Basic setup 

 

Consider a transportation corridor located in a closed, linear, and monocentric city, with a 

population size of N. The city’s residents continuously distribute along the corridor. Residents 

have different income levels and thus different values of time (VOT). We represent α  as the 

resident’s VOT, with [ , ]α∈ α α  in which α  and α  are the lower and upper bounds of 

resident’s VOT, respectively. Suppose that there is a bottleneck with a capacity of q at 

location a of the corridor from the CBD, as shown in Fig. 1. This bottleneck divides the 

corridor into two areas: downtown area (i.e., [0, )a ), and suburb area (i.e., [ , ]a B ). Traffic 

congestion during the commuting peak period occurs at the bottleneck due to its limited 

capacity. The length of the corridor (or city boundary) is B, endogenously determined. 

 

 
Fig. 1. A transportation corridor with a fixed bottleneck. 
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All job opportunities are located in the CBD area. Every morning, commuters travel from 

their home locations to the CBD along the bottleneck-constrained corridor. The commuters’ 

travel costs depend on their home locations in the corridor. Commuters originating in the 

downtown do not need to pass through the bottleneck, and thus do not face bottleneck 

congestion during their commutes. However, the commuters originating in the suburb suffer 

from bottleneck congestion during their commutes. In the following, we define the 

commuting costs of the commuters originating in the downtown and suburban areas. For ease 

of presentation, the words “commuter”, “resident” and “household” are interchangeable in 

this paper. 

 

Since the commuters residing in the downtown area do not encounter the bottleneck during 

their commutes, all of them prefer punctual arrivals at the workplace without causing any 

schedule delay so as to minimize their commuting costs. Their commuting costs thus include 

only the free-flow travel time cost along the corridor. Let ( , )Dc x α  be the (one-way) 

commuting cost of the commuters with VOT α  residing at location x of the corridor 

( 0 x a≤ ≤ ) from the CBD in the downtown area. The downtown commuting cost ( , )Dc x α  is 

given as 

 ( , )Dc x xα = τ α , (1) 

where the subscript “D” represents the downtown area, and τ  denotes the free-flow travel 

time per unit of distance along the corridor, and thus xτ  represents the free-flow travel time 

from location x to the CBD. The VOT parameter α  is used to convert time units into 

equivalent monetary cost units. 

 

By contrast, the commuters residing in the suburban area need to traverse the bottleneck on 

their way to work, thus incurring a queuing delay. Similar to most of bottleneck congestion 

studies, the queue at the bottleneck is assumed to be vertical and has no physical length.3 For 

simplicity, we assume that no late arrivals are permitted, and thus commuters may arrive early 

or punctually. Therefore, their departure time choices will be based on a trade-off between the 

bottleneck queuing delay and the schedule delay of arriving early. Let ( , )Sc x α  be the 

commuting cost of the commuters with VOT α  residing at location x of the corridor 

                                                 
3 For the model with considering physical vehicle queue length, readers can refer to Mun (1999). 
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( a x B≤ ≤ ). According to the bottleneck model theory with continuous VOT distribution (see 

e.g., Xiao and Zhang, 2014; Xiao et al., 2011; Van den Berg and Verhoef, 2011), ( , )Sc x α  

can be expressed as 

 
ˆ ˆ

( , ) ,S S
S

N Nc x x x
q q

α = β+ τ α = ηα + τ α  (2) 

where the subscript “S” represents the suburban area. ˆ
SN  is the total number of commuters 

in the suburban area (i.e., those who need to traverse the bottleneck), which is endogenously 

determined. β  is the value of early arrival time. For presentation purpose, we denote by η  

the ratio of the value of early arrival time β  to the VOT α , i.e., η = β α . In this paper, we 

assume η  is a constant across residents, as in some previous bottleneck models (e.g., 

Vickrey, 1973; Arnott et al., 1994; Xiao and Zhang, 2014). The first term on the right-hand 

side of Eq. (2) is the equilibrium bottleneck congestion cost (i.e., the sum of the bottleneck 

congestion delay cost and the schedule delay cost of early arrival). The second term is the 

free-flow travel time cost. The detailed derivation of Eq. (2) is provided in Appendix A. 

 

To sum up, the commuting cost, ( , )c x α , of the commuters with VOT α  at any location x of 

the corridor can be represented as 

 
( , ),  for 0 ,

( , )
( , ),  for .

D

S

c x x a
c x

c x a x B
α ≤ <

α =  α ≤ ≤
 (3) 

 

2.2. Equilibrium household residential distribution 

 

The traditional urban models usually assume that all households in the city are homogeneous 

in terms of their income or VOTs. Income across households varies and depends on their 

occupations and skills. This translates into different values of time, explicitly modeled in this 

paper, and into different budget constraints. In the following, we explore the difference of 

households’ residential location choice behavior due to their heterogeneities in VOT. 

 

Household utility depends on land/housing consumption and non-land goods consumption. 

The price of the non-land good is normalized to one, and that of the land is endogenously 

determined by the model. The utility of a household with VOT α  residing at location x, 

denoted as ( , )u x α , follows a hyperbolic utility function, expressed as 
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 ( , ) ( , )
2 ( , )

ku x z x
h x

α = α −
α

, (4) 

where ( , )z x α  is the consumption of the non-land goods (numéraire), measured in monetary 

units. ( , )h x α  is the land consumption, measured in land areas consumed. A positive 

constant, k, indicates the preference of households for land. A larger value of k represents a 

stronger preference for land consumption, and vice versa. The second term on the right-hand 

side of Eq. (4) represents the households’ utility derived from land consumption, measured in 

monetary units. Such a hyperbolic utility function has been adopted in some previous 

household residential location choice models (see e.g., Mossay and Picard, 2011; Picard and 

Tabuchi, 2013; Blanchet et al., 2016; Akamatsu et al., 2017; Picard and Tran, 2021).4 Eq. (4) 

measures the utility in monetary units, i.e., cardinal utility, which facilitates the comparison of 

utilities of households with different VOTs, and the calculation of social surplus. 

 

Since households’ income is spent on non-land goods consumption, land consumption, and 

commuting, the household income budget constraint can be expressed as 

 ( ) ( , ) ( ) ( , ) ( , )w z x p x h x c xα = α + α + α , (5) 

where ( )w α  is the income of the households with VOT α . Following Becker (1965) and 

Small (2012), households’ income is assumed to be proportional to their VOTs, i.e., 

( )w α = ϕα  in which ϕ  is a positive constant. ( )p x  is the rental price per unit of land, and 

thus ( ) ( , )p x h x α  is the land consumption of the household with VOT α  at location x, 

measured in monetary units. It is assumed that the condition ( ) ( , ) 0w c xα − α >  always holds, 

meaning that household income can at least cover the commuting cost regardless of 

residential location and VOT α . 

 

Each household chooses a residential location, land area, and amount of non-land goods 

consumption to maximize its utility subject to the income budget constraint. From Eqs. (4) 

and (5), the utility maximization problem for the household with VOT α  residing at location 

x can be expressed as 

                                                 
4 The hyperbolic and logarithmic preferences (see e.g., Beckmann, 1976; Fujita and Thisse, 2002) for the land 

are two frequent instances of the same class of preferences 1( 1) / (1 )h −ρ − −ρ  where ρ = 2 and ρ → 1 

respectively, which yield iso-elastic demands for residential space with price elasticity equal to 1/2 and 1, 

respectively. Therefore, the present hyperbolic preference represents an intermediate case between Beckmann’s 

demand and the inelastic demand for residential space that is standard in urban economics. 
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 max  ( , ) ( ) ( ) ( , ) ( , )
2 ( , )h

ku x w p x h x c x
h x

α = α − α − α −
α

. (6) 

From the first-order optimality condition of maximization problem (6), i.e., 0du dh = , one 

can easily obtain the expression of the consumed land area as 

 ( ) .
2 ( )

kh x
p x

=  (7) 

 

Eq. (7) shows that for a given location x, the demand for land area ( )h x  is only related to the 

land rental price ( )p x  and independent of household’s VOT α , i.e., the households with 

any VOTs at a given location consume the same amount of land. For this reason, we skip the 

argument α  in the function ( )h ⋅ . Substituting Eq. (7) into Eq. (6) yields the household 

indirect utility as 

 ( , ) ( ) ( , ) 2 ( )u x w c x kp xα = α − α − . (8) 

At equilibrium, no household has an incentive to unilaterally change its residential location, 

i.e., ( , ) 0u x x∂ α ∂ =  holds. From Eq. (8), we have 

 ( ) 2 ( ) 0dp x p x
dx k

= −τα < . (9) 

 

Eq. (9) shows that as the distance from the CBD increases, the land rental price decreases. 

Note that for a given residential location, the commuting cost of a household is determined by 

Eqs. (1) and (2). According to Eqs. (1), (2) and (9), given the land/housing area consumed, 

one can find that for any commuter with VOT α , the ratio, ( , ) ( ) ( )c x p x h xα , of the travel 

cost ( , )c x α  to the housing consumption cost ( ) ( )p x h x  increases with the increase in the 

distance x from the CBD. That is, there is a trade-off between commuting cost and land rental 

price: a residential location closer to the CBD can reduce the commuting cost but suffers a 

higher housing cost, whereas a residential location farther from the CBD may benefit from a 

lower housing cost but bears a higher commuting cost. 

 

Using the indirect utility function and the classical bid-rent theory in urban economics (Fujita, 

1989), we immediately derive the following important property about households’ residential 

location choices. 
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Proposition 1. At equilibrium, households spatially sort themselves in a descending order of 

VOTs from the CBD outward, i.e., a household with a higher VOT would reside closer to the 

CBD, while a household with a lower VOT would reside closer to the suburb. 

 

The proof of Proposition 1 is relegated to Appendix B. Proposition 1 indicates that the 

household’s residential location is determined by its VOT. Specifically, the higher a 

household’s VOT is, the stronger its willingness to live closer to the CBD, and vice versa. 

This is because households with a higher VOT prefer to avoid a higher commuting time cost 

compared to a higher land rental price. A similar residential sorting has also been shown in 

Takayama and Kuwahara (2017), but with a discrete households’ VOT distribution. This 

sorting is also optimal, and specific to some Chinese and European cities, like Beijing, 

Shanghai, Paris or London where high-income residents mainly live near or in the CBD. 

 

2.3. Equilibrium household residential density 

 

We have derived the law for household residential sorting along the corridor in the previous 

section. In this section, we further derive the household residential density along the corridor. 

According to Eqs. (1) and (2), the commuting cost ( , )c x α  for the downtown and suburban 

areas is discontinuous at the bottleneck (an upward jump). Thereby, the household residential 

densities (i.e., the number of households per unit of land area) for these two areas are different, 

which are in turn derived as follows. 

 

Let ( )Dn x  be the household residential density at location x  in the downtown area 

( 0 x a≤ < ), and ( )DN x  be the cumulative number of households from the CBD to location x, 

with ( ) ( )D DdN x dx n x= . The land supply at any location of the city is assumed to be a 

constant. Without loss of generality, it is normalized to 1. The relationship between ( )h x  and 

( )Dn x  can thus be expressed as: 

 1( )
( )D

h x
n x

= . (10) 

Substituting Eq. (10) into Eq. (7), the land rental price ( )p x  can be expressed as a function 

of the residential density ( )Dn x : 
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 ( )2( ) ( ) .
2 D
kp x n x=  (11) 

Substituting Eq. (11) into the equilibrium condition Eq. (9), one can obtain the following  

first-order ordinary differential equation of the residential density: 

 ( ) 0Ddn xk
dx

τα + = . (12) 

 

It is assumed that households’ VOTs are uniformly distributed, i.e., ~ [ , ]Uα α α . Since 

households are spatially distributed in a descending order of VOTs outward (see Proposition 

1), there is a one-to-one correspondence between location x and VOT α . The VOTs of the 

households living at the CBD and at the city boundary are exactly α  and α , respectively. 

Let ∗α  be the VOT of the households at the bottleneck (also referred to as critical VOT). It 

is endogenously determined. For ease of presentation, we introduce a concept of VOT’s 

density as the number of households per unit of VOT. Given that VOT is uniformly 

distributed, the VOT’s density is thus a constant, denoted as b , i.e., ( )b N= α −α . We can 

then represent the total number of households in the downtown and suburban areas as 

 *ˆ ( )DN b= α −α , and *ˆ ( )SN b= α −α , (13) 

where ˆ
DN  and ˆ

SN  are the number of households residing in the downtown and suburb, 

respectively.  

 

For any downtown location x with VOT α , the cumulative number of households, ( )DN x , 

from CBD to x is ( ) ( )DN x b= α −α . Substituting it into Eq. (12) to remove variable α , and 

using the relationship D DdN dx n= , one can obtain the following important second-order 

ordinary differential equation for the cumulative number of households ( )DN x : 

 
2

2

( ) ( ) , (0, )D
D

d N x N x x a
dx kb k

τ τα
− = − ∈ . (14) 

 

Note that the cumulative number of households over an infinitesimal slice at the CBD is 0 , 

and the cumulative number of households from the CBD to the bottleneck location a is ˆ
DN , 

as shown in Eq. (13). Hence, the boundary conditions for Eq. (14) is (0) 0DN =  and 

*ˆ( ) ( ).D DN a N b= = α −α  The analytical solution for ( )DN x  in Eq. (14) can thus be further 
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derived as 

 1 2( ) , (0, ),rx rx
DN x c e c e b x a−= + + α ∈  (15) 

where r , 1c , and 2c  are constants, with 

 r
kb
τ

= , 1 2 1

ra

ra

b e bc
e

∗α − α
=

−
, and 2 2

( )
1

ra ra

ra

e e b bc
e

∗− α + α
=

−
. (16) 

From Eq. (16), 0r >  and 2 0c <  hold, while the sign of 1c  is ambiguous. Taking the 

first-order derivative of ( )DN x  in Eq. (15) with respect to x, one can obtain the residential 

density function of any location x  in the downtown area as 

 1 2( ) , (0, ).rx rx
Dn x c re c re x a−= − ∈  (17) 

 

Similarly, for the suburban area, a one-to-one correspondence exists between location x and 

VOT α . Let ( )Sn x  be the household residential density at location x  ( a x B< < ) with 

VOT α  in the suburban area, and ( )SN x  be the cumulative number of households from the 

CBD to location x  with VOT α . ( )SN x  can be expressed as 

 ( ) ( )SN x b= α −α . (18) 

This leads to a second-order differential equation for ( )SN x : 

 
2

2

( ) ( ) , ( , )S
S

d N x N x x a B
dx kb k

τ τα
− = − ∈ , (19) 

with the boundary conditions: *ˆ( ) ( )S DN a N b= = α −α , ( ) ( )SN B N b= = α −α , and 

( ) Ap B r= . Here Ar  is the exogenous agricultural land rent, and ( )p B  is the land rental 

price at the city boundary B, equal to 2 ( ) 2Skn B  by Eq. (11). These boundary conditions 

mean that the cumulative number of households from the CBD to the bottleneck is the total 

number of households ˆ
DN  in the downtown area, and that from the CBD to the city 

boundary is the total number of households N  in the city corridor, and the land rental price 

at the city boundary is equal to the exogenous agricultural land rent Ar . 

 

Based on Eq. (19) and the associated boundary conditions, the cumulative number of 

households ( )SN x  can be solved as 

 3 4( ) ,  ( , )rx rx
SN x c e c e b x a B−= + + α ∈ , (20) 

where 3c  and 4c  are constants, given by  
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2 2 2

3

( ) ( ) 2 ( )
2

Ara b b b r kr
c e

∗ ∗
− − α + α − α +

=  and 
2 2 2

4

( ) ( ) 2 ( )
2

Ara b b b r kr
c e

∗ ∗− α − α − α +
= . (21) 

From Eq. (21), 4 0c <  holds, while the sign of 3c  is undetermined.  

 

The resultant city boundary B can be solved as 

 
2

3

2 ( )1 ln .
2

Ab r kr
B

r c

 − α +
 =
 
 

 (22) 

 

Since S SdN dx n= , one can obtain the residential density at any suburban location x as 

 3 4( ) , ( , )rx rx
Sn x c re c re x a B−= − ∈ . (23) 

 

Thus far, we have solved the equilibrium household residential density in the downtown and 

suburban areas for the given critical VOT ∗α  that is the VOT of the households at the 

bottleneck. In the following, we determine the critical VOT ∗α . Substituting the expression 

for ( )p x  into Eq. (8) yields the indirect utilities for the downtown and suburban residents as 

 ( , ) ( ) ( , ) ( ),  , .i i iu x w c x kn x i D Sα = α − α − =  (24) 

 

Note that at the equilibrium, the utilities of households with VOT ∗α  at the bottleneck are 

equal regardless of the downtown and suburb areas, i.e., ( , ) ( , )D Su a u a∗ ∗α = α . According to 

Eqs. (1), (2), (17), (23), and (24), the equilibrium condition for VOT ∗α  can be expressed as 

 
2

2 2 2
2 2

1 2( ) ( ) 2 ( ) ( )
1 1

ra ra

Ara ra

e e bkr b kr b b r kr b kr
e q e

∗ ∗ ∗ ∗+ η α
α + α − α + + α −α α =

− −
. (25) 

The critical VOT ∗α  can be uniquely determined by Eq. (25) because the left-hand side of 

Eq. (25) is monotonously increasing with regard to ∗α . Once ∗α  is solved by Eq. (25), one 

can then uniquely determine the equilibrium cumulative number of households, and the 

equilibrium residential density at any location according to Eqs. (15), (17), (20), and (23). In 

light of the above, we have the following property. Its proof is relegated to Appendix C. 

 

Proposition 2. For the fixed bottleneck case, the equilibrium household residential density 

and land rental price along the city’s corridor, determined by Eqs. (17), (23), and (11), 

respectively, monotonically decrease with the distance from the CBD, and are discontinuous 
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at the bottleneck (a downward jump). 

 

Proposition 2 indicates that the bottleneck congestion cost does have an important impact on 

the land/housing price, as expected. The bottleneck congestion reduces the accessibility to the 

CBD for the suburban households, thus lowering their willingness to pay for the suburban 

land. Such discontinuity of the accessibility at the bottleneck eventually causes the 

discontinuity (a downward jump) of the land/housing price and residential density. Similar 

discontinuity has also been observed when implementing cordon toll. For example, Mun et al. 

(2003) and De Lara et al. (2013) showed that the cordon toll causes a discontinuity in the 

household density and the land rent. Tang (2016) empirically found that after imposing a 

cordon toll in the Western Extension Zone London, households moving into the cordoned 

zone pay more for houses than those outside the cordoned zone, which means a downward 

discontinuity of housing price and residential density from the cordon outward.  

 

2.4. Equilibrium residential location and utility 

 

In the previous section, we have determined the equilibrium household residential density. 

However, for an arbitrary resident with VOT α , where he/she resides and how about the 

utility he/she gains at equilibrium are still unresolved. In what follows, we derive the 

equilibrium residential location and utility for each resident. 

 

Due to a one-on-one correspondence between VOT α  and location x, we denote ( )Dx α  and 

( )Sx α  as the residential location of the households with any VOT α  in the downtown and 

suburban areas, respectively. Combining Eqs. (13) and (15), we can solve ( )Dx α  as 

 
2

1 2

1

( ) 41( ) ln , ( , )
2D

b b c c
x

r c
∗

 − α + α −
 α = α∈ α α
 
 

, (26) 

where ∗α  is determined by Eq. (25), and 1c  and 2c  are given by Eq. (16).  

 

Combining Eqs. (13) and (20) can yield the solution of ( )Sx α : 

 
2 2 2

3

( ) ( ) 2 ( )1( ) ln , ( , ),
2

A
S

b b b r kr
x

r c
∗

 − α + α − α +
 α = α∈ α α
 
 

 (27) 

where 3c  and 4c  are given by Eq. (21).  
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From Eqs. (26) and (27), one can easily obtain ( ) 0idx dα α < , ,i D S= . This means that the 

residential location is negatively related to VOT α , regardless of the downtown or suburban 

area. This is consistent with Proposition 1.  

 

We denote ( )Du α  as the utility of the households with any VOT α  in the downtown area, 

and ( )Su α  as the utility of the households with any VOT α  in the suburban area. From Eq. 

(24), the equilibrium utilities ( )Du α  and ( )Su α  can be given as 

 ( ) ( )
( ) ( )

( ) ( ) ( ), ( ) ,  for ( , ),

( ) ( ) ( ), ( ) ,  for ( , ),
D D D D D

S S S S S

u w c x kn x

u w c x kn x

∗

∗

 α = α − α α − α α∈ α α


α = α − α α − α α∈ α α
 (28) 

where Dn  and Sn  are given by Eqs. (17) and (23), and Dx  and Sx  are given by Eqs. (26) 

and (27), respectively. 

 

Based on the above discussion, the households with different VOTs have different tastes for 

residential location and land consumption. In particular, low-VOT households bear a 

relatively low land/housing price since they reside farther from the CBD. However, they 

suffer a long commuting distance. This raises one interesting question: how do the fractions of 

a household’s income devoted to commuting (i.e., ( , ) ( )c x wα α ) and to housing consumption 

(i.e., ( ) ( ) ( )p x h x w α ) change with the household’s VOT/income? The following proposition 

answers this question, and its proof is relegated to Appendix D. 

 

Proposition 3. Income allocations of heterogeneous households between commuting costs 

and housing consumption have the following properties: 

(i) For the city system, the residents with a higher VOT will devote a smaller fraction of their 

income to commuting, compared to those with a lower VOT.  

(ii) For the downtown area, as 1 0c = , all the downtown residents would have the same 

fraction of income for housing; as 1 0c >  (or 1 0c < ), the downtown residents with a higher 

VOT will devote a smaller (or a bigger) fraction of their income to housing. For the suburban 

area, as 3 0c = , all the suburban residents would have the same fraction of income for 

housing; as 3 0c >  (or 3 0c < ), the suburban residents with a higher VOT will devote a 

smaller (or a bigger) fraction of their income to housing. 
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As stated in Proposition 1, the low-income households reside farther from the CBD. Hence, 

the low-income residents would definitely use a bigger fraction of their income for 

commuting than the high-income residents due to their longer travel distances, as shown in 

Proposition 3. However, the relationship between the ratio of housing/land consumption to 

income and the VOT is ambiguous, depending on the signs of the coefficients 1c  and 3c . In 

fact, from Eqs. (16), (21) and (25) we can judge that both 1c  and 3c  increase with the 

exogenous agricultural land rent Ar , and vice versa. Accordingly, given the downtown or 

suburban area, for an enough big Ar  that leads to positive values of 1c  and 3c , the 

households with a lower VOT (those who reside farther from the CBD) will use a greater 

fraction of income for housing compared to the households with a higher VOT; and for a 

sufficiently small Ar  causing negative values of 1c  and 3c , the households with a higher 

VOT (those who reside closer to the CBD) will use a greater fraction of income for housing 

compared to the households with a lower VOT. 

 

3. Comparative statics analysis of bottleneck capacity expansion 
 

The bottleneck congestion is a deadweight loss for the society, and the bottleneck capacity 

expansion is considered to be an efficient measure to alleviate the bottleneck congestion. In a 

long run, the bottleneck capacity expansion may change household’s commuting schedule and 

residential location choice, and thus the urban spatial structure. This section aims to look at 

the effects of bottleneck capacity expansion.  

 

3.1. Effect on residential migration, bottleneck congestion, and commuting cost 

 

It is plausible that the bottleneck capacity expansion may lead some residents in the 

downtown area to have a motivation to migrate into the suburban area due to improved 

bottleneck capacity. To confirm this, we check the sign of the marginal effect of capacity 

expansion on the critical VOT using Eq. (25), expressed as  

 
1

2 2

2 22 2 2

1 (2 ) ( ) 0
1 ( ) ( ) 2 ( )

ra

ra
A

d e b b bkr b kr
dq e q qb b r kr

−
∗ ∗ ∗ ∗ ∗

∗

 α + α η α −α η α −α α = + + >
 − α − α + 

. (29) 

This means that as the bottleneck capacity expands, the critical VOT ∗α  of households at the 
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bottleneck increases. From Proposition 1, households spatially sort themselves in a 

descending order of VOTs from the CBD outward. This shows that some high-VOT 

households would like to migrate into the suburban area when the bottleneck capacity 

increases. As a result, the number of commuters passing through the bottleneck during the 

commuting peak period increases due to the increased number of households in the suburb. 

This raises an interesting question of whether the bottleneck congestion during the peak 

period is alleviated after the bottleneck capacity expansion.  

 

Note that the peak-period duration ˆ
SN q , which is equal to ( )b q∗α −α , can be used as a 

proxy of the bottleneck congestion degree. In order to examine the effect of the bottleneck 

capacity expansion on the bottleneck congestion degree, one needs to check the sign of 

( )( )d b q dq∗α −α . From Eq. (25), one can obtain: 

 ( ) 2 2

2 2 2 2

( ) 1 1 ( ) 0.
1 ( ) ( ) 2 ( )

ra

ra
A

d b q e b dkr b kr b
dq e q dqb b r kr

∗ ∗ ∗
∗

∗ ∗

 α −α + α η α = − + + α −α <
 ηα − α − α + 

 (30) 

This implies that the bottleneck congestion duration is reduced after the bottleneck capacity 

expansion. 

 

We now examine the effects of the bottleneck capacity expansion on the residential locations 

and commuting costs of residents at any locations along the corridor. From Eqs. (26) and (27), 

we can derive the change of residential locations per unit of capacity increase for the 

downtown households as 

 ( )
( )

22 2
1 2 1 1 2

2 2 2
1 1 2 1 2

2 2 ( ) 4( ) 0
1 ( ) 4 ( ) 4

ra
D

ra

c c c b b b c cdx e b d
dq e dqrc b b c c b c c

∗− − + α − α α −α α
= >

− − α + α − α −
, (31) 

and that for the suburban households as 

 
*

2 2 2

( ) 1 0
( ) ( ) 2 ( )

S

A

dx b d
dq r dqb b r kr∗

α α
= >

α − α +
. (32) 

 

Based on Eqs. (1), (2), and (29)-(32), we further obtain the change of commuting costs per 

unit of capacity increase for the downtown households as 

 ( , ) ( ) 0D Ddc x dx
dq dq

α α
= τα > , (33) 

and that for the suburban households as 
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2

2

( , ) 1 ( ) 0,
1

ra
S

ra

dc x e dkrb b
dq e q dq

∗
∗

∗

 α α + η α
= − + α −α < α − 

 (34) 

where ( )Ddx dqα  is given by Eq. (31). The derivations of Eqs. (31)-(34) are provided in 

Appendix E. Summarizing Eqs. (29)-(34), we have the following proposition. 

 

Proposition 4. After the bottleneck capacity is expanded, 

(i) All households reside farther from the CBD. Particularly, the downtown residents living 

nearby the bottleneck will migrate to the suburb. 

(ii) The bottleneck congestion duration will be decreased.  

(iii) Commuting cost is increased for the downtown residents, but is decreased for the 

suburban residents. 

 

Proposition 4 shows that every household will migrate outward in response to the improved 

bottleneck capacity and thus the number of bottleneck users increases. However, the 

decreased congestion effect due to the expanded bottleneck capacity dominates the increased 

congestion effect due to the increased number of bottleneck users. As a result, the bottleneck 

congestion duration decreases. By item (iii), the bottleneck capacity expansion has an entirely 

opposite impact on the downtown and suburban households in terms of the commuting cost. 

The commuting cost of the downtown residents always increases due to an increased travel 

distance under the outward migration after the bottleneck capacity expansion. However, for 

the suburban residents, the decreased bottleneck congestion would dominate the increased 

travel distance, and thus their commuting costs would decrease. 

 

3.2. Effect on city’s spatial structure 

 

We now look at the effect of bottleneck capacity expansion on city’s spatial structure, 

including city boundary, residential density, and land rental price.  

 

Actually, according to the outward migration of residents (see item (i) in Proposition 4), we 

can obtain that bottleneck capacity expansion would make the city boundary move outward, 

i.e., urban sprawl. To further confirm this, from Eq. (22) we derive: 

 
2 2 2

1 0
( ) ( ) 2 ( )A

dB b d
dq r dqb b r kr

∗

∗

α
= >

α − α +
, (35) 
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where d dq∗α  is given by Eq. (29) and is larger than 0. Eq. (35) quantifies the movement of 

the city boundary with increased bottleneck capacity. A similar phenomenon regarding urban 

sprawl has also been observed in Gubins and Verhoef (2014), in which the bottleneck is 

assumed to be at the entrance to the CBD and the bottleneck capacity expansion leads the city 

boundary to move outward. This also theoretically confirms the result of empirical studies, 

such as Tennøy et al. (2019), which verified that road capacity expansion causes urban sprawl. 

 

We next examine the effect of bottleneck capacity expansion on the residential density. From 

Eqs. (16) and (17), one can derive the change of the downtown residential density with the 

bottleneck capacity expansion as 

 2 2

( ) ( ) 0.
1 1

ra ra
rx rxD D

ra ra

dn x dn x d e b e b dre re
dq d dq e e dq

∗ ∗
−

∗

 α α
= = − − < α − − 

 (36) 

This shows that the residential density at any downtown location  ( )x x a<  decreases with 

the larger bottleneck capacity.  

 

Similarly, from Eqs. (21) and (23) one can derive the change of the suburban residential 

density with the improved bottleneck capacity as 

 ( )3 42 2 2

( ) ( ) 0.
( ) ( ) 2 ( )

rx rxS S

A

dn x dn x d br dc e c e
dq d dq dqb b r kr

∗ ∗
−

∗ ∗

α − α
= = + >

α α − α +
 (37) 

The sign of Eq. (37) can be judged from Eq. (29) and 3 4 0rx rxc e c e−+ <  in terms of 

( )SN x N<  (referring to Eq. (20)). Eq. (37) implies that the residential density at any 

suburban location  ( )x x a≥  increases with larger bottleneck capacity. 

 

Note that the land rental price and the residential density are a one-to-one relationship with 

the same changing direction in terms of Eq. (11). We thus have the following proposition. 

 

Proposition 5. After bottleneck capacity expansion, the residential density and the land rental 

price at any downtown location decrease, whereas those at any suburban location increase. 

 

As stated in Proposition 2, the residential density and the land rental price in the downtown 

are larger than in the suburb. From Proposition 5, we can deduce that the differences in 

residential density and in land rental price between the downtown and suburban areas would 
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decrease after the bottleneck capacity expansion. In other words, increasing bottleneck 

capacity would flatten the residential density and land rental price.  

 

3.3. Effect on equilibrium household utility 

 

According to Eqs. (1) and (17), the utility function for the downtown households in Eq. (28) 

can be written as: 

 ( )( ) ( )
1 2( ) ( ) ( ) D Drx rx

D Du w x kr c e c eα − αα = α − τα α − − , (38) 

where ( )Dx α  is given by Eq. (26). 

 

Based on Eq. (38), we can identify the sign of the derivative of utility function for the 

downtown households with regard to the bottleneck capacity expansion 

 
2

1 2 1
22

1 1 2

( ) 4( ) 2 0,  [ , ].
2 1( ) 4

ra
D

ra

b b c cdu c e krb d
dq c e dqb b c c

∗
∗

 − α + α −α α = + > α∈ α α
  −− α + α − 

 (39) 

 

Similarly, according to Eqs. (2) and (23), the utility function for the suburban households in 

Eq. (28) can be rewritten as: 

 ( )( ) ( )
3 4

( )( ) ( ) ( ) S Srx rx
S S

bu w x kr c e c e
q

∗
α − αα −α

α = α − τα α − ηα − − . (40) 

After some operations, one can identify the sign of the derivative of utility function for the 

suburban households with regard to the bottleneck capacity expansion  

 
2

2

( ) 1 ( )+ 0,  [ , ].
1

ra
S

ra

du e b dkrb
dq e q dq

∗ ∗
∗

∗

 α + η α −α α α
= > α∈ α α − α 

 (41) 

The detailed derivations of Eqs. (39) and (41) are provided in Appendix F. 

 

To judge who benefit more after the bottleneck capacity expansion, from Eqs. (39) and (41), 

one can further obtain the derivatives of the marginal utilities with respect to VOT α  as 

 
22

1 2 1
22

1 1 2

( ) 4( ) 2 1 0,
2 1( ) 4

ra
D

ra

b b c cd u c e krb dd
dqd c d e dqb b c c

∗ − α + α −α α = + <
 α α −− α + α − 

 (42) 

and  

 
2 2

2

( ) 1 ( ) 1+ 0
1

ra
S

ra

d u e b dkrb
dqd e q dq

∗ ∗

∗

 α + η α −α α
= > α − α 

. (43) 
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The above results can be summarized as follows. 

 

Proposition 6. The utility of each household in the city increases after the bottleneck capacity 

expansion. However, the marginal utility increments (i.e., the utility increments caused by one 

unit of bottleneck capacity expansion) are different for the downtown and suburban 

households. Specifically, for the downtown households, the lower the VOT is, the larger the 

marginal utility increment is. However, for the suburban households, the higher the VOT is, 

the larger the marginal utility increment is. 

 

Note that the residents sort themselves in a descending order of VOT along the corridor, as 

stated in Proposition 1. The residents with VOTs α  and α  thus reside at the CBD and the 

city boundary, respectively. Let α = α  in Eq. (39) and α = α  in Eq. (41), and compute the 

marginal utility increments of the residents with the highest VOT and with the lowest VOT, 

respectively. Based on Proposition 6, we have the following property. 

 

Corollary 1. After the bottleneck capacity expansion, 

(i) The marginal utility increment for the relatively mid-VOT residents residing nearby the 

bottleneck is the highest, whereas that for other residents is smaller. 

(ii) If the condition 
2

2 2

1 ( ) 2+
1 1

ar ar

ar ar

e e krkr
e q e

∗

∗

 + η α −α α
> − α − 

 holds, then the marginal utility 

increment for the CBD residents with the highest VOT is the smallest; otherwise, that for the 

residents at the city boundary with the lowest VOT is the smallest. 

 

Corollary 1 (ii) provides a sufficient and necessary condition to compare the marginal benefits 

from bottleneck capacity expansion between the highest-VOT and lowest-VOT residents. 

Note that the term on its right-hand side is independent of bottleneck capacity q, while the 

term on its left-hand side decreases with the increased capacity q according to Eqs. (29) and 

(30). Therefore, there must exist a unique critical capacity q  which satisfies the equation: 

2

2 2

1 ( ) 2+
1 1

ar ar

ar ar

e e krkr
e q e

∗

∗

 + η α −α α
= − α − 

. We further have the following property. 

 

Corollary 2. If the bottleneck capacity q q> , then the marginal utility increment for the 
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lowest-VOT resident is the smallest; otherwise, that for the highest-VOT resident is the 

smallest. 

 

Corollary 2 shows among the richest and the poorest residents, who benefit more from the 

bottleneck capacity expansion depends on the status quo of capacity q. If the status-quo 

capacity q is enough large (i.e., q q> ), the richest benefit more; otherwise, the poorest 

benefit more. These properties will also be illustrated in the later numerical study. 

 

4. Optimal design of bottleneck capacity 
 

In this section, we discuss the optimal design issue of bottleneck capacity, with an objective to 

maximize the social surplus of the system from the society’s perspective. The social surplus of 

the urban system is defined as the sum of the total utility of all households and the aggregate 

net land rent received by absentee landlords, minus the bottleneck capacity construction cost. 

 

The total utility of all households, TU , is defined as 

 1 1ˆ ˆ( ) ( )D D S STU N u d N u d
∗

∗

α α

∗ ∗α α
= α α + α α

α −α α −α∫ ∫ , (44) 

where ˆ
DN , ˆ

SN , ( )Du α  and ( )Su α  are given by Eqs. (13) and (24), respectively, and ∗α  

is determined by Eq. (25). 1 ( )∗α −α  and 1 ( )∗α −α  are the conditional density functions 

of VOT α  of the downtown and suburban residents, respectively. The first term is the total 

utility of all the households in the downtown area, and the second term is the total utility of all 

the households in the suburban area.  

 

The aggregate net land rent, LR , is the total land rent within the city minus the total 

agricultural land rent (or land opportunity cost), expressed as 

 
0

( ( ) )
B

ALR p x r dx= −∫ , (45) 

where the land rent ( )p x  is given by Eq. (11), and the city boundary B is given by Eq. (22). 

 

The bottleneck capacity construction cost, CC , is assumed to be positively related to the 

bottleneck capacity. Following Arnott et al. (1990), a linear bottleneck capacity construction 

cost function is adopted in this paper, expressed as 
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 CC q= δ , (46) 

where δ  is the marginal cost per unit of bottleneck capacity improvement. 

 

As shown in Proposition 6, the bottleneck capacity expansion can increase the total utility of 

all households. The effect of the bottleneck capacity expansion on the aggregate net land rent 

is below:  

( ) ( ) ( )
( )

2 2 2 2 2 2 2
2

22 2 2 2 2

1 2 ( ) ( ) 1 2
0,

2 1 2 ( ) ( ) 2 ( ) 1

ra ra ra ra ra

ra ra
A

e b e b krb b b e e b e bdLR krb dkr a
dq e dqb b r kr e

∗ ∗ ∗ ∗

∗

 + α − α α − α − + α + α α = + + <
 − α − α + − 

 (47) 

where ∗α  is determined by Eq. (25), and d dq∗α  is given by Eq. (29).  

 

The total effect of the bottleneck capacity expansion on the sum of the aggregate net land rent 

and households’ utility is 

( ) ( ) ( )( )2 2 2 22 2

2 2 2 2

( ) ( ) ( ) ( )1 0.
2 1 22 ( ) ( ) 2 ( )

ra

ra
A

krb b b b bd LR TU krb e b db
dq e q dqb b r kr

∗ ∗ ∗ ∗
∗

∗ ∗∗

 α − α η α − α α −α+  + α α = α − + + >  − α αα − α +  
 (48) 

The detailed derivations of Eqs. (47) and (48) are provided in Appendix G. 

 

The above results can be summarized as follows. 

 

Proposition 7. Bottleneck capacity expansion would increase the total utility of households, 

but reduce the aggregate net land rent revenue. As a result of the trade-off, the sum of total 

household utility and aggregate net land rent revenue still increases. 

 

Proposition 7 shows that the bottleneck capacity expansion would benefit all the households 

in the city, but has an adverse effect on the absentee landlords due to the decreased total net 

land rent revenue. This is because after expanding the bottleneck capacity, the residents 

migrate outward according to Proposition 5, thus leading the land rent in the downtown to 

decrease, but the land rent in the suburb to increase. The decreased downtown land rent 

dominates the increased suburban land rent. As a result, the total net land rent revenue 

decreases. 

 

The optimal bottleneck capacity design issue aims to determine the optimal bottleneck 

capacity so as to maximize the social surplus of the system, formulated as 

 max
q

SS TU LR CC= + − , (49) 
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where SS  represents the social surplus of the urban system. 

 

The first-order optimality condition of the maximization problem (49) requires 0dSS dq = , 

i.e., 

( ) ( )( )2 2 2 22 2

2 2 2 2

( ) ( ) ( ) ( )1 0
2 1 22 ( ) ( ) 2 ( )

ra

ra
A

krb b b b bkrb e b db
e q dqb b r kr

∗ ∗ ∗ ∗
∗

∗ ∗∗

 α − α η α − α α −α + α α α − + + −δ =  − α αα − α +  

, (50) 

where d dq∗α  is given by Eq. (29). The first term on the left-hand side of Eq. (50) 

represents the marginal contribution per unit of bottleneck capacity expansion on the sum of 

households’ utility and aggregate net land rent revenue, while the second term is the marginal 

cost of bottleneck capacity expansion. Eq. (50) implies that the bottleneck capacity should be 

optimally designed such that the marginal contribution to the society equals the marginal cost 

of bottleneck capacity expansion. 

 

From the optimality condition Eq. (50), one can solve the optimal capacity q∗  as 

 
( ) ( )( )

( )

22 3 2 2

1 2

2 2 ( )

2 2

b b
q

b

∗ ∗ ∗
∗

∗ ∗
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, (51) 

where ∗α  is determined by Eq. (25), and 1ξ  and 2ξ  are the parameters related to ∗α , 

defined as 
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

+ αξ = + − α − α +

 (52) 

Combining Eqs. (51) and (25), one can immediately obtain the optimal bottleneck capacity 

q∗  together with the critical VOT ∗α  at the bottleneck. 

 

Traditional bottleneck studies without urban spatial structure consideration, e.g., Arnott et al. 

(1990, 1993), have shown that the optimal bottleneck capacity should be such that the 

marginal construction cost of the bottleneck capacity expansion is equal to the marginal 

benefit to commuters/households. However, when involving urban spatial structure, such an 

optimality condition would not hold since the bottleneck capacity expansion also affects the 

aggregate net land revenue (a negative effect, see Eq. (47)), besides the effects on the 

household utility and the capacity construction cost. In other words, traditional studies may 
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overestimate the benefits of bottleneck capacity expansion since they ignored such a negative 

effect on land rent, thus causing an over-investment in the bottleneck capacity construction. 

Therefore, there is indeed a need to incorporate the effects on the urban spatial structure in the 

design of the bottleneck capacity.  

 

So far, for the fixed bottleneck location case, it has been shown that residents sort themselves 

along the corridor in a descending order of VOT/income, and the equilibrium residential 

densities have been derived. The effects of bottleneck capacity expansion have analytically 

been examined, and the uneven benefits for different-income residents have been revealed and 

explained. The bottleneck capacity design problem has also been addressed. In the next 

section, we turn to the stochastic bottleneck location case. 

 

5. Stochastic bottleneck 
 

In the previous sections, we have analyzed the equilibrium problem of an urban continuum 

system with a fixed bottleneck and the issues of the bottleneck capacity expansion. However, 

the bottleneck location may randomly change on a road segment due to various non-recurrent 

random incidents, such as traffic accidents, vehicle breakdowns, road works, signal failures, 

adverse weather, and earthquakes. In this section, we thus investigate the transportation 

corridor equilibrium with stochastic bottleneck location. 

 

 
Fig. 2. A transportation corridor with stochastic bottleneck. 

 

Referring to Fig. 2, suppose that the bottleneck congestion stochastically occurs at a segment 

of the corridor, denoted as 1 2[ , ]a a .5 For example, it may be a stretch of road which has a 

smaller capacity than its upstream and downstream roads. This is often the case at the 

entrance of the downtown area where road capacity is typically smaller. The bottleneck 

                                                 
5 “ 1 2a a= ” means that the stochastic bottleneck segment length is 0, and thus the stochastic bottleneck case is 

reduced to the fixed bottleneck case. This means that the fixed bottleneck case is a special case of the stochastic 

bottleneck case. 



26 

segment 1 2[ , ]a a  divides the corridor into three segments: downtown area 1[0, ]a , bottleneck 

segment 1 2[ , ]a a , and suburban area 2[ , ]a B . We use the subscripts “D”, “M”, and “S” to 

represent these three areas, respectively. Here, “M” means the middle part of the corridor, i.e., 

the bottleneck segment. It is assumed that different locations on the bottleneck segment 

1 2[ , ]a a  have a uniform capacity of q. The congestion stochastically occurs within the 

bottleneck segment 1 2[ , ]a a , and the commuters only know the distribution of the bottleneck 

congestion locations, but do not know the specific location of the bottleneck congestion 

occurring at any time. Define ( )g x  as the probability density that the bottleneck congestion 

occurs at location 1 2[ , ]x a a∈ , satisfying 2

1

( ) 1
a

a
g x dx =∫ . 

 

The commuting costs for the three segments are defined as follows. The households in the 

downtown area never face the bottleneck congestion, and their commuting costs only include 

the free-flow travel time cost, which is given by Eq. (1). The households on the bottleneck 

segment face the bottleneck congestion with a certain probability. The cumulative probability 

of the bottleneck congestion occurring for the households residing at location 1 2[ , ]x a a∈  is 

1

( )
x

a
g y dy∫ . Let ( )MN x  be the cumulative number of commuters from the CBD to location x 

at the bottleneck segment. If the bottleneck congestion occurs at 1 2[ , ]x a a∈ , then the total 

number of commuters passing through the bottleneck is ( )MN N x− , and thus the bottleneck 

congestion cost for a commuter with VOT α  is ( )( )MN N x q− ηα  in terms of Eq. (2). 

Therefore, the expected commuting cost ( , )Mc x α  for a commuter with VOT α  residing at 

location x can be expressed as 

 
1

1 2
( )( , ) ( ) ,  [ , ]

x
M

M a

N N yc x g y dy x x a a
q

−
α = ηα + τ α ∈∫ , (53) 

where the first term on the right-hand side represents the expected bottleneck congestion cost, 

while the second term is the free-flow travel time cost.  

 

The households located in the suburban area definitely suffer the bottleneck congestion with a 

variable level of congestion, since the location of the bottleneck is uncertain. For a suburban 

household with VOT α  at location 2[ , ]x a B∈ , the expected commuting cost can be 

represented as 
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 2

1
2

( )( , ) ( ) ,  [ , ]
a

M
S a

N N yc x g y dy x x a B
q

−
α = ηα + τ α ∈∫ . (54) 

The first term on the right-hand side is the expected bottleneck congestion cost which is a 

constant independent of location x, and the second term is the free-flow travel time cost. 

 

From Eqs. (1), (53) and (54), one can easily show that the commuting cost function of the 

corridor is continuous and monotonically increasing with respect to location x, which is 

different from the fixed bottleneck location case where the commuting cost function is 

discontinuous at the bottleneck. Following a similar procedure presented in Section 2.2, one 

can obtain the indirect utility function ( , )u x α  (c.f. Eq. (8)), and the residents in the city 

corridor still sort in a decreasing order of VOTs from the CBD to the city boundary. Similar to 

Section 2.3, one can derive the cumulative number of households at any location x for the 

downtown area, bottleneck segment, and suburban area, as follows. 

 

Let 1
∗α  and 2

∗α  be the equilibrium critical VOTs at locations 1a  and 2a , respectively. 

Similar to the fixed bottleneck case, we derive the equilibrium differential equation for the 

cumulative number of households at any downtown location, using the condition 

( , ) 0u x x∂ α ∂ = , as 

 
2

12

( ) ( ) , for (0, )D
D

d N x N x x a
dx kb k

τ τα
− = − ∈ , (55) 

with boundary conditions (0) 0DN =  and 1 1( ) ( )DN a b ∗= α −α . 

 

The cumulative number of households at any location of the suburban area satisfies the 

following second-order differential equation: 

 
2
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( ) ( ) , for ( , )S
S

d N x N x x a B
dx kb k

τ τα
− = − ∈ , (56) 

with three boundary conditions 2 2( ) ( )SN a b ∗= α −α , ( ) ( )SN B b= α −α , and ( ) Ap B r= , 

where ( )p B  is the land rental price at the city boundary, equal to 2 ( ) 2Skn B  according to 

Eq. (11).  

 

However, the cumulative number of households at the bottleneck segment ( )MN x  is closely 

related to the probability density function ( )g x  of the bottleneck location. In this paper, two 
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types of probability density functions are considered below: uniform distribution and 

exponential distribution.  

 

(a) Uniformly distributed bottleneck location 

 

Under the uniform distribution, the probability density function ( )g x  of the bottleneck 

congestion occurring at any location x is  

 1 2
2 1

1( ) , [ , ]g x x a a
a a

= ∈
−

. (57) 

As an example, Fig. 3 gives a uniformly distributed probability density function ( )g x  with 

1 8a =  and 2 12a = , yielding an expected bottleneck location of 10 km. 

 

 
Fig. 3. Probability density function of stochastic bottlenecks: 1 8a =  and 2 12a = km for 

uniform bottleneck; and 0.3λ = , 1 8a = , and 2 12a = km for exponential bottleneck.  

 

Substituting Eqs. (53) and (57) into (24), the indirect utility function of the households on the 

bottleneck segment 1 2[ , ]a a  can be rewritten as: 

 
1 2 1

( )1( , ) ( ) ( )
x

M
M Ma

N N yu x w dy x kn x
a a q

−
α = α − ηα − τ α −

−∫ , (58) 

where ( )Mn x  is the residential density of location x on the bottleneck segment 1 2[ , ]a a . 

Using the equilibrium conditions ( , ) 0Mu x x∂ α ∂ =  and ( ) ( )MN x b= α −α , we derive the 

following second-order differential equation with regard to ( )MN x : 

2
2

2
2 1 2 1 2 1 2 1

( ) ( ) ( )
( ) ( ) ( ) ( )

M
M M

d N x N NN x N x
dx a a qbk kb a a qbk a a qk k a a qk

   η τ η ηα τ η
+ − + + = − + α   − − − −   

, (59) 

Fixed bottleneck 
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with the boundary conditions 1 1( ) ( )MN a b ∗= α −α  and 2 2( ) ( )MN a b ∗= α −α . 

 

Since the commuting cost function is continuous over the corridor according to Eqs. (1), (53), 

and (54), the equilibrium conditions of the whole corridor system are given by 

 
1 1 2 2

( )( ) ( ) ( ),  and ,SD M M
x a x a x a x a

dN xdN x dN x dN x
dx dx dx dx= = = == =  (60) 

which means that the residential densities at locations 1a  and 2a  are continuous. From Eq. 

(60), the critical VOTs 1
∗α  and 2

∗α  can be solved. 

 

(b) Exponentially distributed bottleneck location 

 

In reality, the traffic density at the CBD area is generally higher than that at the suburban area, 

and thus the probability that bottleneck congestion occurs at the CBD area is generally larger 

than that at the suburban area. In order to model the realism, we introduce a truncated 

exponential bottleneck congestion probability density function ( )g x : 

 
1 2 1 2( ) , [ , ]

x

a a
eg x x a a

e e

−λ

−λ −λ

λ
= ∈

−
, (61) 

where λ  is a positive parameter.  

 

Obviously, ( ) 0dg x dx <  holds, implying that the probability of the bottleneck congestion 

occurring is decreasing with location x. For illustration purpose, Fig. 3 shows an example of 

an exponentially distributed bottleneck congestion probability density function with 0.3λ = , 

1 8a =  and 2 12a = km. 

 

Substituting Eqs. (53) and (61) into (24), the indirect utility function for the households on the 

bottleneck segment can be rewritten as: 

 
1 21

( )( , ) ( ) ( )
yx

M
M Ma aa

N N yeu x w dy x kn x
e e q

−λ

−λ −λ

−λ
α = α − ηα − τ α −

−∫ . (62) 

Again, using the equilibrium conditions ( , ) 0Mu x x∂ α ∂ =  and ( ) ( )MN x b= α −α , one can 

obtain the equilibrium differential equation about ( )MN x  as:  

( )
( )
( ) ( )1 2 1 2 1 2

2
2

2

2( ) ( ) ( )
xx x

M
M Ma a a a a a

ed N x e N eN x N x
dx kb kkqb e e kq e e kq e e

−λ−λ −λ

−λ −λ −λ −λ −λ −λ

   ηλ α −αηλ τ τα ηλ α   + − + = − +
   − − −   

, (63) 
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subject to boundary conditions 1 1( ) ( )MN a b ∗= α −α  and 2 2( ) ( )MN a b ∗= α −α . Besides, the 

equilibrium conditions for the whole urban corridor system are given by Eq. (60). 

 

With stochastic bottleneck locations, given 1
∗α  and 2

∗α , then DN  and SN  can be 

analytically solved by Eqs. (55) and (56). However, the closed-form solution for MN  is 

unavailable for the uniformly and exponentially distributed stochastic bottleneck cases, 

because the differential equations about MN  in Eqs. (59) and (63) involve a non-linear term 

2 ( )MN x . Therefore, a numerical approach, such as finite difference method (see e.g., Atkinson 

et al., 2011), is used for solving MN . The step-by-step procedure of the finite difference 

method for solving the cumulative number of households ( DN , MN , and SN ) and the 

critical VOTs ( 1
∗α  and 2

∗α ) for the stochastic bottleneck case is not provided here in order to 

save paper space, but is available from authors upon request.  

 

Once the equilibrium cumulative number of households is solved, the residential location 

( )x α  and the household utility ( )u α  can then be obtained. With stochastically distributed 

bottleneck locations, it is still true that residents sort themselves in a descending order of VOT 

from the CBD outward. However, the commuting cost function is continuous with regard to 

location x, which is different from the fixed bottleneck case where the commuting cost 

function is discontinuous at the bottleneck. As a result, the household residential density 

function is also continuous, which can be determined by a second-order ordinary differential 

equation system. Nevertheless, the optimal bottleneck capacity design issue cannot be 

analytically derived, and a numerical method (e.g., grid search) is thus needed. Numerical 

illustrations are provided in the next section. 

 

6. Numerical study 
 

6.1. Parameter specifications 

 

We now apply a numerical example to illustrate the properties of the proposed model. 

Consider one transportation corridor connecting the suburban area with the CBD. The total 

number of households along the corridor is 20,000 households, i.e., 20,000N = . For the 
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fixed bottleneck case, the bottleneck is assumed to be located at 10 km from the CBD, i.e., 

10a = km, as shown in Fig. 3. For the stochastic cases (uniform and exponential), the 

bottleneck congestion stochastically occurs at the corridor’s segment of 8 to 12 km from the 

CBD. The parameter λ  in the exponential density function takes 0.3. Bottleneck capacity q 

and the agricultural rent Ar  are, respectively, assumed to be 4000 veh/hq =  (two lanes) and 

$200/dayAr = . The average auto free-flow travel speed is 40 km per hour, i.e., 1 40τ =  

h/km. The ratio, η , of the value of early arrival time to the VOT is 0.6, as in Arnott et al. 

(1990). The parameter ϕ  in the income function ( )w α  is assumed to be 8, i.e., ( ) 8w α = α . 

The lower and upper bounds of the daily wage are assumed to be $240 and $800 per day, thus 

leading the lower and upper bounds of VOT α  to be $30α =  and $100α =  per hour, 

respectively. The parameter k in the hyperbolic utility function (see Eq. (4)) is assumed to be 

0.05. Besides, the discounted daily construction cost per unit of bottleneck capacity expansion 

is $30 per day, i.e., $30δ = /day. These input data are used as the baseline values.  

 

6.2. Discussion of results 

 

Fig. 4 shows the effects of the bottleneck capacity expansion on the residential density under 

the fixed, uniformly distributed, and exponentially distributed bottleneck locations. The 

bottleneck capacities considered here include three levels: 4000 veh/h (base case), 2000 veh/h 

(scaling the base capacity 0.5 time down) and 6000 veh/h (scaling the base capacity 0.5 time 

up). The main findings are presented as follows. 

(i) The residential density monotonically decreases as the distance from CBD, regardless of 

the fixed or stochastic bottleneck. The residential density curves are continuous for the 

stochastic bottleneck case (see Figs. 4b and c), but not continuous for the fixed bottleneck 

case with the bottleneck location of 10x = km as the discontinuity point (see Fig. 4a). 

These illustrate the results of Proposition 2. It shows the stochasticity of the bottleneck 

location can smooth the residential density curve. 

(ii) The bottleneck capacity expansion increases the length of the corridor. It can be seen in 

Fig. 4 that regardless of the fixed or stochastic bottleneck case, as the bottleneck capacity 

expands from 2000 to 6000 vehicles per hour, the city boundary moves from about 27 km 

to about 33 km from the CBD outward.  

(iii) The bottleneck capacity expansion leads to a decrease in the residential densities in the 

downtown area, but an increase in the suburban area. The distance of the critical location 
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from the CBD for such a residential density switch is different for different bottleneck 

distributions. Specifically, the critical location is exactly 10 km for the fixed bottleneck 

case, 9.95 km for the uniform distribution case, and 9.46 km for the exponential 

distribution case. 

 

 
(a)                      (b)                      (c) 

Fig. 4. Residential densities under different bottleneck capacities: (a) fixed bottleneck, (b) 

uniformly distributed bottleneck, and (c) exponentially distributed bottleneck. 

 

    
(a)                                     (b) 

Fig. 5. Change of household utility with bottleneck capacity expansion: (a) from 2000 to 4000 

veh/h, and (b) from 4000 to 6000 veh/h. 

 

For illustrating the effects of bottleneck capacity expansion, Fig. 5 shows the changes of 

different-VOT households’ utilities when the bottleneck capacity is scaled 0.5 time down and 

up (i.e., q changes from 2000 to 4000 veh/h, and from 4000 to 6000 veh/h) for the fixed and 

stochastic bottleneck cases, respectively. Some insightful findings can be summarized as 

follows.  

(i)  Regardless of fixed or stochastic bottlenecks, the utility change for all households is 
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positive. This implies that all households can benefit from the bottleneck capacity 

expansion, as stated in Proposition 6. Particularly, the relatively mid-income residents can 

always obtain the largest benefits. Taking the fixed bottleneck case as an example, as q 

expands from 2000 to 4000 veh/h, the households with a VOT of $44/h gain the largest 

utility increment by $12.3 (see Fig. 5a). As q continues to expand to 6000 veh/h, the 

largest utility increment is $6.7 for the households with a VOT of $48/h (see Fig. 5b). The 

increasing VOT from $44 to $48 per hour means that as the bottleneck capacity increases, 

the rich households gradually benefit more than the poor. This is because as the 

bottleneck capacity expands, more residents migrate to the suburb from the downtown, 

and thus the suburb becomes increasingly crowded. As a result, the effects of the 

bottleneck capacity expansion on the bottleneck congestion alleviation marginally 

decrease, and thus the rich living the downtown area gradually benefit more than the poor 

because they do not need to pass through the bottleneck.  

(ii) Those who obtain the smallest utility increments are the lowest-VOT or highest-VOT 

households, depending on the value of the status-quo bottleneck capacity. As the 

status-quo capacity is relatively small (e.g., q is 2000 veh/h), the largest-VOT households 

benefit the least (see Fig. 5a). However, when the status-quo capacity is relatively large 

(e.g., q is 4000 veh/h), the smallest-VOT households benefit the least (see Fig. 5b).  

(iii) Among the three utility increment curves, the curve for the exponential bottleneck case 

would be at the top, that for the fixed bottleneck case would be at the bottom, and that for 

the uniform bottleneck case is in between. This means that the marginal benefit from the 

bottleneck capacity expansion ranks in an order of the exponential, uniform, and fixed 

bottleneck cases. This is attributed to the large spatial heterogeneity in congestion 

occurring probability along the corridor.  

 

Fig. 6 indicates the effects of bottleneck capacity expansion on the total net land rent revenue, 

the sum of the total household utility and the total net land rent revenue, and the social surplus. 

Some main findings are as follows.  

(i) The bottleneck capacity expansion would lead to a decrease in the total net land rent 

revenue (see Fig. 6a), but an increase in the sum of the total household utility and the 

total net land rent revenue (see Fig. 6b), regardless of the fixed or stochastic bottleneck 

cases.  

(ii) The social surplus curves are concave regardless of the fixed or stochastic bottleneck 

cases, meaning that there exists an optimal bottleneck capacity to maximize the social 
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surplus, as shown in Fig. 6c. The optimal bottleneck capacities that maximize the social 

surplus are 3400, 4300, and 4600 veh/h for fixed, uniform, and exponential bottleneck 

cases, respectively. 

(iii) The stochasticity of the bottleneck congestion location brings a loss to the urban corridor 

system. As a matter of fact, given a bottleneck capacity, the aggregate land rent revenue 

for the fixed bottleneck case is lower than that for the stochastic bottleneck cases (see Fig. 

6a), whereas the sum of total household utility and land rent revenue for the fixed 

bottleneck case is higher than that for the stochastic bottleneck cases (see Fig. 6b). This 

means that the total household utility for the fixed case is larger than that for the 

stochastic cases. As a result, the social surplus under the fixed case for a given bottleneck 

capacity is highest among the three cases (see Fig. 6c). This is attributed to the adoption 

of a risk-averse utility function with regard to housing/land consumption (i.e., 
2 2 0d u dh < , see Eq. (4)), and thus the households prefer to reside in the downtown area 

under the stochastic bottleneck cases, causing a higher housing/land price and thus a 

higher total net land rent revenue. By contrast, under the fixed bottleneck case, some 

households would like to live in the suburb area such that they can enjoy large housing 

spaces, which bring a high household utility and social surplus as well. 

 

 
 (a)                        (b)                        (c) 

Fig. 6. Effects of bottleneck capacity expansion on: (a) aggregate net land rent revenue, (b) 

sum of total household utility and aggregate net land rent revenue, and (c) social surplus. 

 

In order to examine the effects of the stochastic bottleneck’s coverage, we conduct a 

sensitivity analysis of the bottleneck segment length 2 1a a−  by symmetrically extending its 

length with regard to the location of 10 km. Fig. 7 shows the effects of 2 1a a−  on the total 

commuting cost, total household utility, and social surplus. It can be seen that the total 
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commuting cost of the corridor system increases with the bottleneck segment length (see Fig. 

7a), which leads to a decrease in the household utility and thus in the social surplus (see Figs. 

7b and c). The fixed bottleneck case (which is associated with a zero bottleneck segment 

length) induces the highest social surplus. For a given bottleneck segment length, the uniform 

bottleneck case always leads to a lower commuting cost, a higher household utility, and thus a 

higher social surplus compared to the exponential bottleneck case. These observations further 

illustrate the properties of the model and the results previously presented. 

 

 
  (a)                        (b)                       (c) 

Fig. 7. Effects of bottleneck segment length on: (a) total commuting cost, (b) total household 

utility, and (c) social surplus. 

 

To sum up, the above numerical studies have verified some important properties of the 

proposed model in this paper, and have also revealed some new insights. It shows that the 

bottleneck capacity expansion can benefit all households, but the benefit level is different 

across households. Particularly, when the status-quo bottleneck capacity is large, the poorest 

residents gain the least benefit from the bottleneck capacity expansion. Therefore, the 

authority should carefully make the decision of the bottleneck capacity expansion and 

especially care for the inequity issue due to the expansion. The distribution of stochastic 

bottleneck congestion locations significantly affects the urban system performance. In 

particular, in terms of the social surplus, the fixed bottleneck case is the most efficient, the 

exponential case is the least efficient, and the uniform case is in between. For all the cases, the 

social surplus curve is concave about the bottleneck capacity. In addition, the bottleneck 

congestion segment length also plays an important role in the household residential 

distribution and urban system performance. Therefore, the authority should strengthen the 

real-time dynamic monitoring of bottleneck congestion locations so as to timely take actions 
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to control the bottleneck congestion.  

 

7. Conclusion and further studies 
 

We present a novel modeling framework that combines the household residential location 

choice and bottleneck congestion. The residents were assumed to be continuously distributed 

along the linear city corridor. There is a bottleneck with a fixed or with a stochastic location in 

the city corridor, causing traffic congestion during the morning commute. Residents have 

different values of time. For the fixed bottleneck case, we derived analytical solutions for the 

urban system equilibrium and the bottleneck capacity design, together with the effects of the 

bottleneck capacity expansion. For the stochastic bottleneck case, we considered uniform and 

exponential bottleneck location distributions. We established differential equations for the 

urban system equilibrium, and examined numerically the effects of the bottleneck capacity 

expansion and the optimal bottleneck capacity design. 

 

The following findings were obtained. First, residents spatially sort themselves outwards in a 

descending order of value of time along the corridor, and low-income residents would use a 

larger fraction of their income for commuting than high-income residents. The residential 

density and land rental price decrease with the distance from the CBD, and they are not 

continuous for the fixed bottleneck case. Second, all residents benefit from the bottleneck 

capacity expansion, but not equally. The mid-income residents residing nearby the bottleneck 

benefit the most, whereas those who benefit the least are the richest or the poorest, depending 

on the status-quo bottleneck capacity. Specifically, if the status-quo bottleneck capacity is 

enough small, then the richest residents benefit the least, and otherwise the poorest residents 

benefit the least. Third, the bottleneck capacity expansion leads to an increase in the city size 

(i.e., urban sprawl), total household utility and the bottleneck capacity investment cost, but to 

a decrease in the aggregate net land rent revenue. As a result, ignoring the effects of the 

bottleneck capacity expansion on the urban spatial structure (e.g., aggregate net land rent) 

leads to an overestimate of the social surplus. With the bottleneck capacity expanded, the 

bottleneck congestion duration decreases; the commuting costs of the downtown residents 

increase, while those of the suburban residents decrease. Fourth, the stochasticity of 

bottleneck location harms the system due to a decreased social surplus. Such stochasticity 

smooths the residential distribution, and increases the transportation cost of the system. As a 
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result, the household utility and the social surplus are decreased compared to the fixed 

bottleneck case. The proposed model can help understand the interrelationship between 

bottleneck congestion and urban spatial structure, and can serve as a useful tool for efficient 

evaluation and design of anti-congestion policies in practice, such as congestion toll and auto 

ownership rationing. 

 

Although theoretical frameworks proposed in this paper can be used to model the relationship 

between bottleneck congestion and households’ residential location choice, and to design the 

optimal bottleneck capacity from the social perspective, some extensions should be made as 

follows. First, the household utility function was assumed to be a quasi-linear utility function 

of land consumption. Such an assumption needs to be further justified using real survey data. 

Moreover, empirical calibrations of the utility function are also beneficial for the applications 

of the proposed model in realistic cases. Second, a uniform household income distribution 

was assumed in this paper. It may be more realistic to consider the effects of other income 

distributions, such as lognormal distribution. Of course, it may be difficult to derive a 

closed-form solution for a general distribution, and thus a simulation method may be needed 

in this case. Third, this paper considered a linear form of urban structure. However, in reality 

many cities have a radial and/or a circular structure (Li et al., 2013; Li and Wang, 2018). 

There is thus a need to extend the proposed model to consider other urban forms. Fourth, this 

paper focused on a monocentric city in which all business and commercial activities occur at 

the CBD area. However, modern cities usually have multiple business and commercial centers 

and thus a polycentric urban model should be developed (see e.g., Anas and Kim, 1996; Anas 

and Xu, 1999). Finally, this paper did not explicitly consider the commuter parking price and 

parking space availability, which can significantly affect the commuter parking behavior and 

commuting schedule (Arnott et al., 1991). Therefore, it is meaningful to extend the proposed 

model to take into account the parking issue in a further study.  
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Appendix A: Derivation of Eq. (2) 
 

For the resident residing at location ( )x x a>  with VOT α , his/her commuting cost 

( , )Sc x α  is composed of three parts: queuing delay cost at the bottleneck, the early-arrival 

penalty, and the free-flow travel time cost, expressed as 

 1( , ) ( ) ( ) ( ) ,Sc x m t t t xα = α ⋅ +β α ⋅ − + τ α  (A.1) 

where ( )β α  is the value of early arrival time for the resident with VOT α , t is the arrival 

time at the CBD, 1t  is the desired work time, and ( )m t  is the queuing delay time at the 

bottleneck. As assumed in Section 2.1, the residents with different VOTs have the same ratio, 

η , of value of early arrival time to VOT, i.e., 

 ( ) , [ , ].β α
η = ∀α∈ α α

α
 (A.2) 

At equilibrium, any resident in the suburb cannot unilaterally change his/her schedule so as to 

reduce commuting cost, i.e., ( , ) 0Sdc x
dt

α
=  holds. Combining it with Eq. (A.1) yields  

 ( ) ( ) 0.dm t
dt

α −β α =  (A.3) 

 

Let 0t  be the arrival time of the earliest arriver at the CBD. Obviously, there is no queue for 

the first arriver, i.e., 0( ) 0m t = . Using this condition, one can derive ( )m t  from Eqs. (A.2) 

and (A.3) as 

 0( ) ( )m t t t= η⋅ − . (A.4) 

Since late arrival is not allowed, the work start time 1t  is also the latest arrival time at the 

CBD, and thus the peak period lasts for 1 0t t−  units of time. The bottleneck runs at the full 

capacity during the peak period. We thus have 

 1 0

ˆ
.SN t t

q
= −  (A.5) 

Substituting Eqs. (A.2), (A.4), and (A.5) into (A.1), the commuting cost for the suburban 

residents residing at x with VOT α  can be obtained as 

 
ˆ

( , ) .S
S

Nc x x
q

α = ηα + τ α  (A.6) 

This completes the derivation of Eq. (2).
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Appendix B: Proof of Proposition 1 

 

According to the bid-rent theory, all residents in the city compete for the limited land subject 

to a budget constraint, and the land is offered to the residents with the highest bid. Let ( )u α  

be the equilibrium utility of the residents with VOT α  at the urban system equilibrium. By 

the budget constrain in Eq. (5), the bid-rent function ( , )p x α  for the residents with VOT α  

at location x, i.e., the highest bid for the land they are willing to pay at location x, can be 

written as 

 ( , ) ( ),

( ) ( , ) ( , )( , , ( )) max
( , ) u x uh z

w z x c xp x u
h x α = α

α − α − α
α α =

α
. (B.1) 

Using ( , ) ( )u x uα = α  to replace variable ( , )z x α , Eq. (B.1) can be rewritten as 

 ( ) (2 ) ( ) ( , )( , , ( )) max
h

w k h u c xp x u
h

α − − α − α
α α = . (B.2) 

From the first-order optimality condition, one can obtain 

 ( ) ( ) ( , )k h w u c x= α − α − α . (B.3) 

Substituting Eq. (B.3) into (B.2), one can obtain the bid-rent function as 

 ( )21( , , ( )) ( ) ( ) ( , ) .
2

p x u w u c x
k

α α = α − α − α  (B.4) 

 

In the following, we derive the residential order of households. We first consider any two 

residents simultaneously from the downtown area or the suburban area, called “Resident 1” 

and “Resident 2”. They are associated with VOTs 1α  and 2α , and equilibrium utility levels 

1( )u α  and 2( )u α , respectively. Without loss of generality, we assume 1 2α > α . Suppose 

that at location x, the bid-rent functions of these two residents are equal, i.e.,  

 ( ) ( )2 2
1 1 1 2 2 2

1 1( ) ( ) ( , ) ( ) ( ) ( , )
2 2

w u c x w u c x
k k

α − α − α = α − α − α . (B.5) 

We thus have 

 1 1 1 2 2 2( ) ( ) ( , ) ( ) ( ) ( , )w u c x w u c xα − α − α = α − α − α . (B.6) 

By Eq. (B.6), we have 

 ( ) ( )1 1 1 1 2 2 2 2
1 1( ) ( ) ( , ) ( ) ( ) ( ) ( , ) ( )w u c x w u c x
k k

α − α − α ⋅ τα > α − α − α ⋅ τα . (B.7) 

From Eqs. (B.4) and (B.7), one obtains 
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 1 1 2 2( , , ( )) ( , , ( ))p x u p x u
x x

∂ α α ∂ α α
− > −

∂ ∂
. (B.8) 

According to Fujita (1989), Eq. (B.8) means that the bid-rent function of Resident 1 is steeper 

than that of Resident 2, which shows that Resident 1 with a higher VOT resides closer to the 

CBD than Resident 2 with a lower VOT. 

 

We now consider the case in which any two residents are from different areas. Suppose that 

Resident 1 residing at location 1x  with VOT 1α  is from the downtown area, i.e., 1x a< , 

and Resident 2 residing at location 2x  with VOT 2α  is from the suburban area, i.e., 2x a> . 

Their equilibrium utilities are 1 1( , )u x α  and 2 2( , )u x α  respectively. Since any resident’s 

utility under equilibrium is maximized, interchanging their locations inevitably reduces their 

total utility, i.e., 

 1 1 2 2 2 1 1 2( , ) ( , ) ( , ) ( , )u x u x u x u xα + α > α + α . (B.9) 

Substituting Eq. (8) into (B.9) yields 

 2 1 1 2

ˆ
( ) ( ) 0.SN x x

q
 

η+ τ − α −α > 
 

 (B.10) 

Owing to 2 1x x> , 1 2α > α  holds, which means that the downtown residents has a higher 

VOT than the suburban residents. This completes the proof of Proposition 1. 
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Appendix C: Proof of Proposition 2 

 

Taking the derivative of ( )Dn x  with respect to x in terms of Eq. (17) yields 

 2
1 2

( ) ( )rx rxDdn x r c e c e
dx

−= + . (C.1) 

Since ˆ( )D DN x N<  always holds, comparing Eqs. (13) and (15) yields 

 1 2 0rx rxc e c e−+ < . (C.2) 

From Eq. (C.1), one immediately obtains 

 ( ) 0Ddn x
dx

< . (C.3) 

Similarly, one obtains 

 ( ) 0Sdn x
dx

< . (C.4) 

Since ( , ) ( , )D Su a u a∗ ∗α = α  holds, from Eqs. (1), (2), and (24), one obtains 

 
ˆ1( ) ( ) 0S

D S
Nn a n a

k q
∗− = ηα > . (C.5) 

Eq. (C.5) shows that the residential density is not continuous (a downward jump) at the 

bottleneck. From Eqs. (C.3)-(C.5), it can be seen that the residential density is monotonically 

decreasing for the downtown and suburban areas, respectively. 

 

According to Eq. (11), for each of the downtown and suburban areas, the land rent and 

residential density have a one-to-one relation. They have the same continuity and 

monotonicity for each area. This completes the proof of Proposition 2. 
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Appendix D: Proof of Proposition 3 

 

For the downtown residents, from Eq. (1) the fraction of commuting cost to income is 

 ( , ) ( ) ( ).
( )

D D
D

c x x x
w

α τ α α τ
= = α

α ϕα ϕ
 (D.1) 

From Eq. (26), one can further derive 

 ( ) 0.Dd x
d

τ α ϕ
<

α
 (D.2) 

For the suburban residents, from Eq. (2) the fraction of commuting cost to income is  

 
ˆ( , ) ( ) .

( )
S S

D
c x Nx

w q
α τ

= α + η
α ϕ ϕ

 (D.3) 

From Eq. (27), one can further derive 

 
( )( )ˆ( )

0
D Sd x N q

d

τ α ϕ+ η ϕ
<

α
. (D.4) 

Eqs. (D.2) and (D.4) show that the fraction of commuting cost to income decreases with VOT 

α . This completes the proof of Proposition 3(i). 

 

We next prove Proposition 3(ii). Considering that VOT α  and location x have a one-to-one 

correspondence, i.e., ( ) ( ),  ,iN x b i D S= α −α = , from Eqs. (15) and (20), we can obtain the 

VOT of a household at any location x as 

 

1 2

3 4

,  for (0, ),
( )

,  for ( , ).

rx rx

rx rx

c e c e x a
bx

c e c e x a B
b

−

−

 +
− ∈α = 

+− ∈

 (D.5) 

 

For the downtown residents at location x, the housing consumption is ( ) ( )p x h x  and the 

income is ( )xϕα . From Eqs. (10), (11), (17) and (D.5), the ratio of housing consumption to 

income is 

 1
2

1 2

( ) 2 2( ) ( ) 1 ,  (0, ).
( ( )) ( ) 2

D
rx

kn x cp x h x krb x a
w x x c c e−

 
= = + ∈ α ϕα ϕ − − 

 (D.6) 

From Eq. (D.6), if 1 0c = , all downtown residents have the same ratio of housing 

consumption to income, equal to 
2
krb
ϕ

. If 1 0c ≠ , we further derive 
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( ) ( )

( ) ( )
1

1

( ) ( ) ( ( )) ( ) ( ) ( ( )) ( ) 0,  if 0,

( ) ( ) ( ( )) ( ) ( ) ( ( )) ( ) 0,  if 0.

D

D

d p x h x w x d p x h x w x dx c
d dx d

d p x h x w x d p x h x w x dx c
d dx d

α α α
= < > α α


α α α = > < α α

 (D.7) 

 

Similarly, for the suburban residents, the ratio of housing consumption to income can be 

written as 

 3
2

3 4

( ) 2 2( ) ( ) 1 ,  ( , ).
( ( )) ( ) 2

S
rx

kn x cp x h x krb x a B
w x x c c e−

 
= = + ∈ α ϕα ϕ − − 

 (D.8) 

Again, from Eq. (D.8), if 3 0c = , all suburban residents have the same ratio of housing 

consumption to income, equal to 
2
krb
ϕ

. If 3 0c ≠ , we further derive 

 

( ) ( )

( ) ( )
3

3

( ) ( ) ( ( )) ( ) ( ) ( ( )) ( ) 0,  if 0,

( ) ( ) ( ( )) ( ) ( ) ( ( )) ( ) 0,  if 0.

S

S

d p x h x w x d p x h x w x dx c
d dx d

d p x h x w x d p x h x w x dx c
d dx d

α α α
= < > α α


α α α = > < α α

 (D.9) 

This completes the proof of Proposition 3(ii). 
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Appendix E: Derivations of Eqs. (31)-(34) 
 

From Eqs. (16) and (26), we can derive 

 ( )

( )
( )

1 2
2 1 1

21 1
1 222 2

11 2 1 2

22 2
1 2 1 1 2

2 2 2
1 1 2 1 2

( ) ( )

4 4
1 1 ( ) 4

( ) 4 2 ( ) 4

2 2 ( ) 4
1 ( ) 4 ( ) 4

D D

ra

ra

dx dx d
dq d dq

dc dcc c c
c dc dd d b b c c

r c d dqb b c c b c c

c c c b b b c ce b d
e dqrc b b c c b c c

∗

∗

∗∗ ∗

∗

∗

α α α
=

α

  − −   αα α  = − − α + α −
α − α + α − α −

 
 

− − + α − α α − α
=

− − α + α − α −
.

 (E.1) 

In terms of Eq. (26), we can judge ( )2
1 1 2( ) 4 0c b b c c− α + α − > , and thus the sign of 

( )Ddx
dq
α  in Eq. (E.1) relies on the sign of ( )22 2

1 2 1 1 22 2 ( ) 4c c c b b b c c− − + α − α α − . 

 

From Eq. (16), we have 2 0c < , but the sign of 1c  is ambiguous. If 1 0c > , we can derive 

( )2 2
1 2( ) 4

0
d b b b c c

d

 α − α α −  >
α

.  

 

Since [ , ]∗α∈ α α , we have 

 ( ) ( )222 2 2 2
1 2 1 1 2 1 2 1 1 22 2 ( ) 4 2 2 ( ) 4c c c b b b c c c c c b b b c c∗ ∗ ∗− − + α − α α − ≥ − − + α − α α − . (E.2) 

Since ( )Dx a∗α = , using 1 0c >  and Eq. (26), we can further derive Eq. (E.2) as 

 
( )

( )

22 2 2
1 2 1 1 2 1 2 1 1

1

2 2 ( ) 4 2 2 2

2 0.

ra

ra

c c c b b b c c c c c b e c

c b b e

∗

∗

− − + α − α α − ≥ − − − α

= α − α >
 (E.3) 

If 1 0c < , we can derive 
( )2 2

1 2( ) 4
0

d b b b c c

d

 α − α α −  <
α

. Similar to Eq. (E.2), we have 

 ( ) ( )2 22 2 2 2
1 2 1 1 2 1 2 1 1 22 2 ( ) 4 2 2 ( ) 4c c c b b b c c c c c b b b c c− − + α − α α − ≥ − − + α − α α − . (E.4) 

Since ( ) 0Dx α = , using Eq. (26), we can further derive Eq. (E.4) as 

 ( )22 2 2
1 2 1 1 2 1 2 1 12 2 ( ) 4 2 2 2 0c c c b b b c c c c c c b− − + α − α α − ≥ − − − α = . (E.5) 
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Combining Eqs. (E.3) and (E.5), we can judge ( )Ddx
dq
α  in Eq. (E.1) is larger than 0. This 

completes the derivation of Eq. (31). 

 

From Eqs. (21) and (27), we can derive 

 
* * *

3
* * 2 2 2

3

( ) ( ) 1 1 1 0
( ) ( ) 2 ( )

S S

A

dx dx dcd d b d
dq d dq r c d dq r dqb b r kr∗

α α α α α
= = − = >

α α α − α +
. (E.6) 

This completes the derivation of Eq. (32) 

 

In Eq. (1), taking the first-order derivative of ( , )Dc x α  with respect to q can yield Eq. (33). 

 

According to Eq. (2), the effect of capacity expansion on the commuting cost of suburban 

households is 

 
( )( )( , ) ( )S S

d b qdc x dx
dq dq dq

∗α −αα α
= τα +ηα . (E.7) 

Substituting Eqs. (E.6) and (30) into (E.7), we have 
* 2 2

22 2 2 2 2 2

2

2

( , ) 1 1 ( )
1( ) ( ) 2 ( ) ( ) ( ) 2 ( )

1 ( ) 0.
1

ra
S

ra
A A

ra

ra

dc x b d e b dkr b kr b
dq r dq e q dqb b r kr b b r kr

e dkr b b
e q dq

∗ ∗
∗

∗∗ ∗

∗
∗

∗

   α α α + α η α   = τα − + + α −α
   α −α − α + α − α +   

 α + η α
= − + α −α < α − 

 (E.8) 

This completes the derivation of Eq. (34). 
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Appendix F: Derivations of Eqs. (39) and (41) 
 

We first derive Eq. (39). From Eq. (38), we have 

 
* *

1 2
* *

1 2

( ) ( ) ( ) ( ) ( )
( )

D D D D D

D

du u dx u dc u dcd d
dq x dq c d dq c d dq
α ∂ α α ∂ α ∂ αα α

= + +
∂ α ∂ α ∂ α

. (F.1) 

At equilibrium, ( , ) 0Du x
x

∂ α
=

∂
 holds. One can further derive 

 
*

( ) ( )1 2
* *

( )
D Drx rxDdu dc dc de e kr

dq d d dq
α − αα α = − + α α 

. (F.2) 

According to Eqs. (16) and (26), after some operations, Eq. (F.2) can be further calculated as 

 
2

1 2 1
22

1 1 2

( ) 4( ) 2 0.
2 1( ) 4

ra
D

ra

b b c cdu c e krb d
dq c e dqb b c c

∗ − α + α −α α = + >
  −− α + α − 

 (F.3) 

 

We next derive Eq. (41). According to Eq. (21), we can derive 

 

3
32 2 2

4
42 2 2

,
( ) ( ) 2 ( )

.
( ) ( ) 2 ( )

A

A

dc b c
d b b r kr
dc b c
d b b r kr

∗ ∗

∗ ∗

− = α α − α +

 =
 α α − α +

 (F.4) 

At equilibrium, ( , ) 0Su x
x

∂ α
=

∂
. Taking the first-order derivative of ( )Su α  in Eq. (40) yields 

 
( ) ( ) ( )3 4

* *

( )( ) ( ) ( )
( )

S Srx rxS S S

S

d b qdu u dx dc dc dkr e e
dq x dq dq d d dq

∗ ∗
α − α

α −αα ∂ α α α = −ηα − − ∂ α α α 
. (F.5) 

 

Substituting Eqs. (27), (30), and (F.4) into (F.5) yields 

 

2

2 2 2 2

2 2 2

2 2 2

2 2

2 2 2 2 2 2

1 2 2 2
1 ( ) ( ) 2 ( )

( ) ( ) 2 ( )( ) =
2 ( ) ( ) 2 ( )

( ) 2 ( ) 1
( ) ( ) 2 ( ) ( ) ( ) 2 ( )

ra

ra
A

AS

A

A

A A

e b
e kr q b b r kr

b b b r krdu krb d
dq b b r kr

b r kr
b b r kr b b b r kr

∗

∗ ∗ ∗

∗

∗

 + α η α −α α α
+ + − α α α − α + 

 
− α + α − α +α α + α − α + 

 − α + − ⋅
 α − α + − α + α − α + 

.
dq

∗
 (F.6) 

After some operations, one can derive that the sum of the final three terms in the bracket of 

Eq. (F.6) is equal to 0, and thus Eq. (F.6) can further be simplified as 
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2

2

( ) 1 ( )+ 0.
1

ra
S

ra

du e b dkrb
dq e q dq

∗ ∗

∗

 α + α −α α α
= η > − α 

 (F.7) 

This completes the derivation of Eq. (41).
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Appendix G: Derivations of Eqs. (47) and (48) 
 

We first derive Eq. (47). From Eq. (11), the total net land rent LR  in Eq. (45) can be 

rewritten as 

 2 2

0
( ) ( )

2 2
a B

D S Aa

k kLR n x dx n x dx r B= + −∫ ∫ . (G.1) 

From Eqs. (16) and (17), we have 

( )

( ) ( )
( )( ) ( )

( )

2 2 2 2 2 2
1 2 1 20 0

2 2 2 2 2 2 2
1 2 1 2

2 2 2 2 2 2 3 2 2 2
2

22 2

( ) 2
2 2

1 1
4 4

1 ( ) ( ) 4 ( ) ( )
.

4 1 1

a a rx rx
D

ra ra

ra ra ra ra ra ra

ra ra

k kn x dx r c e c e c c dx

k kr c e r c e kr c c a

e b b e b e b e e b e bkr kr a
e e

−

−

∗ ∗ ∗ ∗

= + −

= − − − −

+ α + α − αα α − + αα + α
= +

− −

∫ ∫
 (G.2) 

 

Similarly, from Eqs. (21) and (23), we have 

( )

( ) ( ) ( )

( ) ( )

2 2 2 2 2 2
3 4 3 4

2 2 2 2 2 2 2
3 4 3 4

2 2
2 2 2 2 2

( ) 2
2 2

4 4
( ) 2 ( )2 ( ) ( ) ( ) 2 ( ) .

4 4 4

B B rx rx
Sa a

rB ra rB ra

A
A A

k kn x dx r c e c e c c dx
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−

− −

∗ ∗

= + −

= − − − − −

α −
= − α + α α − α + − −

∫ ∫
(G.3) 

 

Substituting Eqs. (G.2) and (G.3) into (G.1), and using equilibrium condition Eqs. (25) and 

(35), one can derive 
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α
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< + α − α + +

− ( )

2 2

22

2
,

1

ra

ra

e b d
dqe

∗ ∗ α + α α 
 − 

 (G.4) 

where d
dq

∗α  is given by Eq. (29). 

 

According to equilibrium condition Eq. (25), one can obtain 

 
( )2

2 2 2
2

1 2
( ) ( ) 2 ( ) 0

2 1 2

ra ra

Ara

e b e bkrb krb b b r kr
e

∗
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. (G.5) 
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Owing to ∗α > α , we thus have 

 ( )
( )

2 2 2 2
2

22

1 2
0

1

ra ra ra

ra

e e b e b
kr a

e

∗− + α + α
<

−
. (G.6) 

In terms of Eqs. (G.4), (G.5) and (G.6), one can immediately obtain 0dLR
dq

< .  

 

We now look at Eq. (48). According to Eqs. (28) and (D.5), the utility of the household at 

location x can be written as 

 ( ) ( ( )) ( , ( )) ( )u x w x c x x kn x= α − α − , (G.7) 

where ( ) ( )Dn x n x=  for (0, )x a∈ , and ( ) ( )Sn x n x=  for ( , )x a B∈ . ( , )c x α  is 

determined by Eq. (3). 

 

From Eq. (G.7), the total utility of all households in the city can thus be given as 

 2

0 0 0 0
( ) ( ) ( ( )) ( ) ( , ( )) ( ) ( ) .

B B B B
TU u x n x dx w x n x dx c x x n x dx kn x dx= = α − α −∫ ∫ ∫ ∫  (G.8) 

Combining it with Eq. (G.1), we have 

 
0 0

( ( )) ( ) ( , ( )) ( ) 2
B B

ATU LR w x n x dx c x x n x dx LR r B+ = α − α − −∫ ∫ . (G.9) 

From Eqs. (1), (2), (13), (17), and (23), we have 
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 (G.10) 

 

According to Eqs. (30), (35) and (G.10), one can derive 
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∫  (G.11) 
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In addition, from Eq. (35), we have 

 
2
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2 ( ) ( ) 2 ( )

A
A

A

r krdB krb dr
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∗
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α
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Note that the first integral term on the right-hand side of Eq. (G.9) represents the total income 

of all households, which is independent of the bottleneck capacity q. We thus have 
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( , ( )) ( )( ) 2

B

A

d c x x n x dxd TU LR dLR dBr
dq dq dq dq

α+
= − − −

∫
. (G.13) 

Substituting Eqs. (G.4), (G.11) and (G.12) into Eq. (G.13) and using the equilibrium condition 

Eq. (25), one can obtain 

( ) ( )( )2 2 2 22 2

2 2 2 2

( ) ( ) ( ) ( )( ) 1 0,
2 1 22 ( ) ( ) 2 ( )
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ra
A
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 α − α η α − α α −α + + α α = α − + + >  − α αα − α +  

 (G.14) 

where d
dq

∗α  is given by Eq. (29). 

This completes the derivations of Eqs. (47) and (48). 
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