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Abstract

We introduce the inverse product differentiation logit (IPDL) model, a

micro-founded inverse market share model for differentiated products that

captures market segmentation according to one or more characteristics. The

IPDL model generalizes the nested logit model to allow richer substitution

patterns, including complementarity in demand, and can be estimated by lin-

ear instrumental variables regression using market-level data. Furthermore,

we provide Monte Carlo experiments that compare the IPDL model to the

workhorse empirical models of the literature. Lastly, we show the empirical
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performance of the IPDL model using a well-known dataset on the ready-to-

eat cereals market.

(JEL: C26, D11, D12, L)

Keywords: Demand estimation, Inverse demand, Logit, Consumer model,

Differentiated products

1 Introduction

We introduce the inverse product differentiation logit (IPDL) model, a micro-founded
inverse market share model that captures market segmentation according to one or
more characteristics. The IPDL model generalizes the nested logit model to allow
richer substitution patterns while retaining its attractive features: it can easily be
estimated by linear instrumental variables regression using market-level data; and it
is consistent with a model of heterogeneous, utility-maximizing consumers, which
makes it useful for analyzing a wide range of economic questions.

The nested logit model is commonly used to estimate demand in differentiated
products markets. It can be estimated by linear instrumental variable regression,
using that its inverse market share function is linear-in-parameters and in closed
form (Berry, 1994). However, it only captures market segmentation according to
one or several characteristics treated hierarchically (i.e., partitioning the choice set
into nests, nests into subnests, etc.), which imposes strong restrictions on substitu-
tion patterns. To avoid these restrictions, several Generalized Extreme Value (GEV)
models (McFadden, 1978) have been proposed, for which, however, a closed-form
inverse market share function does not exist, preventing the use of regression tech-
niques.1 Notably, Bresnahan et al. (1997)’s Product Differentiation Logit (PDL)
model generalizes the nested logit model by treating the grouping characteristics
non-hierarchically. The IPDL model allows the same grouping structure as the
PDL model but builds it into a linear-in-parameters, closed-form inverse market
share function rather than into a closed-form market share function. The IPDL
model is thus not the inversion of the PDL model or any other GEV model but a
novel model we introduce in this paper.

1See Subsection 3.3 for further details on GEV models.

2



The state-of-the-art approach to estimating demand in differentiated products
markets is the random coefficient logit (RCL) model with structural error terms to
allow for unobserved product characteristics, estimated using the methodology de-
veloped by Berry et al. (1995, hereafter BLP).2 The RCL model allows for rich
substitution patterns determined by a random coefficient specification of the dis-
tribution of unobserved preference heterogeneity. The methodology developed by
BLP involves a non-linear, non-convex optimization problem and the simulation
and numerical inversion of the market share function. With the IPDL model, in con-
trast, we specify directly a closed-form, linear-in-parameters inverse market share
function, which generates substitution patterns determined by segmentation of the
differentiated products, and which can be estimated by linear instrumental variables
regression.

By specifying an inverse market share function, we avoid some restrictions em-
bedded in the GEV and the RCL models. In particular, these latter models restrict
products to be substitutes in demand (i.e., a positive cross-price derivative of mar-
ket share). By contrast, the IPDL model allows for complementarity in demand.
Furthermore, we show that the IPDL model is consistent with utility maximization,
which makes it useful for performing counterfactual analyses such as merger simu-
lation. We show the IPDL model is consistent with a representative consumer who
chooses a vector of market shares to maximize her quasi-linear direct utility func-
tion subject to a budget constraint, which is, in turn, consistent with a population of
utility-maximizing, heterogeneous consumers.

However, relying on an inverse market share function entails a cost. Without
additional assumptions about the distribution of preferences in the population of
consumers, the IPDL model cannot be used to address economic questions at the
individual level, such as the distributional effects of any events or policies. Fortu-
nately, many economic questions of interest do not require knowing the distribution

2BLP provide an estimator that allows for rich substitution patterns while handling the endo-
geneity issues related to the modelling of unobserved product characteristics. BLP also propose
an algorithm to compute that estimator. Conlon and Gortmaker (2020) consolidate best estimation
practices in a Python package. Dubé et al. (2012) propose another algorithm to compute the BLP
estimator. Lee and Seo (2015) and Salanié and Wolak (2022) provide approximations of the BLP
estimator that are faster and easier to compute.
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of preferences and can thus be addressed using the IPDL model. Prominent exam-
ples include the measurement of market power, the welfare effects of a merger, a
new product introduced to the market, or regulatory changes, such as tax or trade
policies.

We investigate the empirical properties of the IPDL model using Monte Carlo
experiments. The IPDL model performs well in approximating the substitution pat-
terns generated by the PDL model and the RCL model with independent normal
random coefficients on dummies for groups. Furthermore, even without comple-
mentarity in demand, the IPDL model allows substitution patterns that the RCL
model cannot replicate. We also find that the IPDL model outperforms the RCL
model in approximating the substitution patterns generated by the PDL model.
While there is a concern that the IPDL model may generate complementarity when
there is none in the data, we do not observe this in our experiments.

We then analyze the empirical performance of the IPDL model using a well-
known dataset on the ready-to-eat cereals market, which exhibits segmentation ac-
cording to the brand name of the cereals and the market segment they belong to.
We estimate the corresponding IPDL model and compare to the RCL model with
independent normal random coefficients on dummies for groups. We estimate two
specifications of both models: one with many markets and another with many prod-
ucts. In both specifications, the IPDL model provides a better fit to the data than
the RCL model. Moreover, in both specifications, the IPDL model generates signif-
icantly higher substitution between cereals than the RCL model. The IPDL model
implies markups in line with the literature (Nevo, 2001; Michel et al., 2022), while
the RCL model, in the specification with many products, implies significantly lower
markups.

The Monte Carlo experiments and the empirical application suggest that the
IPDL model is particularly useful in describing markets that exhibit segmentation.
This is the case of many markets: the beers market is segmented by brand and style
(e.g., IPA, Lager, etc.), the cars market by brand and market segment (e.g., com-
pact, luxury), the ready-to-eat cereals market by brand and market segment (e.g.,
kids, adults). Often market segmentation proxies for other (continuous) product
characteristics, including prices: lager beers have lower alcohol content than IPA
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beers; luxury cars are less fuel efficient, larger, and more expensive than compact
cars; cereals for kids are more sugary than cereals for adults. In these cases, the
IPDL model can generate substitution patterns determined, at least indirectly, by
these continuous characteristics. When there is no obvious market segmentation, it
is still possible to use a clustering algorithm to define groups for the IPDL model.

Other approaches exist for estimating demand in differentiated products markets
based on market-level data (e.g., Barnett and Serletis, 2008; Nevo, 2011; Gandhi
and Nevo, 2021). The flexible functional form approach (e.g., the AIDS model of
Deaton and Muellbauer, 1980) provides rich substitution patterns, including com-
plementarity in demand, and has been successfully applied to many economic ques-
tions. However, in this approach, the unobservables enter in a very restrictive way,
there are many parameters to estimate, and the introduction of new products cannot
be addressed. Other authors propose semi- or non-parametric demand models (e.g.,
Pinkse and Slade, 2004; Haag et al., 2009; Blundell et al., 2012; Compiani, 2022)
or the use a more flexible specification of the distribution of the random coefficients
in the RCL model (e.g., Lu et al., 2022; Wang, 2022). Closest to our paper is Com-
piani (2022), who non-parametrically estimates inverse market share functions for
differentiated products based on market-level data. His approach provides rich sub-
stitution patterns but faces the curse of dimensionality that restricts its use to small
choice sets. By contrast, the IPDL model can handle very large choice sets.

The paper is organized as follows. Section 2 presents our general setting and
discusses the role of demand inversion. Section 3 introduces the IPDL model, stud-
ies its properties, and discusses estimation and identification with market-level data.
It further provides Monte Carlo experiments that compare the IPDL model to the
workhorse empirical models of the literature and an extended discussion of its re-
lationship to other demand models. Section 4 analyzes the empirical performance
of the IPDL model using a well-known dataset on the ready-to-eat cereals markets
and compare to the RCL model estimated using the methodology developed by
BLP. Section 5 concludes.
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2 General Setting

We first introduce our setting and discuss the role of demand inversion in estimation.
Consider a population of consumers making choices among a set of J + 1 differen-
tiated products, indexed by J = {0, 1, . . . , J}, where product j = 0 is the outside
good. We consider data on market shares sjt, prices pjt, andK product/market char-
acteristics xjt for each product j = 1, . . . , J in each market t = 1, . . . , T (Berry,
1994; Berry et al., 1995; Nevo, 2001; Berry and Haile, 2021). For each market t,
the market shares sjt are positive and sum to 1, i.e., st = (s0t, . . . , sJt) ∈ ∆◦, where
∆◦ is the set of positive market share vectors.3

Following Berry and Haile (2014), let δjt ∈ R be an index given by

δjt = δ (pjt,xjt, ξjt;θ1) , j ∈ J , t = 1, . . . , T,

where ξjt ∈ R is an unobserved characteristics term for product/market jt, and
where θ1 is a vector of parameters. Consider the system of market share equations

sjt = σj (δt;θ2) , j ∈ J , t = 1, . . . , T, (1)

which relates the vector of observed market shares, st, to the vector of product
indexes δt = (δ0t, . . . , δJt)

ᵀ, through the market share function σ = (σ0, . . . , σJ),
where θ2 is a vector of parameters.

Normalize the index of the outside good by setting δ0t = 0 in each market t so
that δt ∈ D ≡ {δt ∈ RJ+1 : δ0t = 0}, and assume that the function σ(·;θ2) : D →
∆◦ is invertible. Then, the inverse market share function, denoted by σ−1j , maps
from market shares st to each index δjt with

δjt = σ−1j (st;θ2) , j ∈ J , t = 1, . . . , T. (2)

3Formally, ∆◦ is the relative interior of the unit simplex in RJ+1 denoted by ∆ ={
s ∈ [0,∞)J+1 :

∑
j∈J sj = 1

}
.

6



In addition, assume a linear index,

δjt = xjtβ − αpjt + ξjt, j ∈ J , t = 1, . . . , T,

where the vector of parameters β ∈ RK captures the consumers’ taste for charac-
teristics xjt and the parameter α > 0 is the consumers’ marginal utility of income.
Then the unobserved product characteristics terms, ξjt, can be written as a function
of the data and parameters θ1 = (α,β) and θ2 to be estimated,

ξjt = σ−1j (st;θ2) + αpjt − xjtβ, j ∈ J , t = 1, . . . , T. (3)

The product characteristics terms, ξjt, are the structural error terms of the model,
as they are observed by consumers and firms but not by the modeler. Prices are
likely to be endogenous since firms may consider both observed and unobserved
product characteristics when setting prices. Market shares are endogenous by con-
struction since they are defined by the system of Equations (1), where the market
share function of each product depends on the entire vector of endogenous prices
and unobserved product characteristics. Then, following Berry (1994), we can es-
timate the market share function σ based on the conditional moment restrictions
E [ξjt|zt] = 0 for all j ∈ J and t = 1, . . . , J , provided that there exist appropriate
instruments zt for prices and market shares.

Since the seminal papers by Berry (1994) and Berry et al. (1995), the stan-
dard practice of the demand estimation literature with market-level data has been
to specify a GEV or RCL model. For these models, except for the logit and nested
logit models, the implied inverse market share function is not in closed form and
must then computed numerically during estimation, which prevents the use of stan-
dard regression techniques. In this paper, we instead directly specify a closed-form,
invertible, and linear-in-parameters inverse market share function, for which esti-
mation amounts just to linear regression.

Consider as an example the three-level nested logit model, which partitions the
choice set into nests and nests into subnests. This is a special case of the IPDL
model that we introduce in this paper. Let θ2 = (µ1, µ2) be the vector of grouping
parameters, with

∑2
d=1 µd < 1, µ1 ≥ 0 and µ2 ≥ 0 to make the nested logit model
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consistent with utility maximization. The corresponding inverse market share func-
tion is linear in parameters:

σ−1j (st;θ2) =

(
1−

2∑
d=1

µd

)
ln (sjt) +

2∑
d=1

µd ln
(
sd(j),t

)
+ ct = δjt, (4)

where s1(j),t =
∑

k∈1(j) skt and s2(j),t =
∑

k∈2(j) skt, with 1(j) and 2(j) the sets
of products belonging the same nest and to the same subnest as product j, respec-
tively,4 and where ct ∈ R is a market-specific constant determined by the normal-
ization of the vector δt. The three-level nested logit model corresponds to the logit
model when µ1 = 0 and µ2 = 0 and to the two-level nested logit model when
µ1 = 0 or µ2 = 0.

Assume that the outside good is in a nest by itself, such that σ−10 (st;µ1, µ2) =

ln(s0t) + ct = δ0t, and, in turn, as for the logit model, ct = − ln(s0t) since δ0t = 0.
Then, combining with Equation (4), the three-level nested logit model boils down
to the linear regression model (Verboven, 1996a)

ln

(
sjt
s0t

)
= xjtβ − αpjt +

2∑
d=1

µd ln

(
sjt
sd(j),t

)
+ ξjt, (5)

for all products j = 1, . . . , J in each market t = 1, . . . , T , which requires at least
one instrument for price and two for the endogenous log-share terms for identifica-
tion.

3 The IPDL Model

The nested logit model can be estimated by linear instrumental variable regres-
sion and, due to its parsimony, can handle very large choice sets. However, it
imposes strong restrictions on substitution patterns. In this section, we introduce
the IPDL model, which generalizes the inverse market share function of the nested
logit model while maintaining its desirable features.

4Setting σ1 = µ1+µ2 and σ2 = µ1, where σ1 and σ2 refer to as grouping parameters for subnests
and nests respectively, we recover Equation (10) of Verboven (1996a) with 0 ≤ σ2 ≤ σ1 < 1.
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Setting Suppose that each market exhibits product segmentation according to D
discrete product characteristics, indexed by d. Each of these grouping character-

istics d defines a partition of the set of products, that is, a finite number of groups

of products such that each product belongs to exactly one group for each grouping
characteristic. For example, cars may be grouped by brand, size, and fuel type. We
denote by d(j) ⊆ {1, . . . , J} the set of products grouped with product j according
to grouping characteristic d. The grouping structure is assumed to be exogenous
and common across markets.

Let θ2 = (µ1, . . . , µD) be the vector of grouping parameters, with
∑D

d=1 µd < 1

and µd ≥ 0, d = 1, . . . , D to make the IPDL model consistent with utility maxi-
mization, as we show below. The IPDL model has an inverse market share function
defined by

σ−1j (st;θ2) =

(
1−

D∑
d=1

µd

)
ln (sjt)+

D∑
d=1

µd ln
(
sd(j),t

)
+ct = δjt, j = 1, . . . , J,

(6)
where we recall that sd(j),t =

∑
k∈d(j) skt is the market share of the group d(j).

Two products are of the same type if they belong to the same group according to
all grouping characteristics d. We assume that the outside good is the only product
of its type, that is,

σ−10 (st;θ2) = ln (s0t) + ct = δ0t. (7)

The index for the outside good is normalized to zero, δ0t = 0, and we find that
ct = − ln(s0t).

By construction, the logit and the nested logit models are special cases of the
IPDL model: the logit model is obtained when there is no product segmentation,
and the nested logit model is obtained when the grouping structure is hierarchical.

The IPDL model generalizes the inverse market share function of the nested
logit model by allowing arbitrary, non-hierarchical grouping structures, that is, any
partition of the set of products for each grouping characteristic. In Subsection 3.1,
we show that the non-hierarchical grouping structure allows the IPDL model to
accommodate richer substitution patterns than the nested logit model. The prod-
uct differentiation logit (PDL) model of Bresnahan et al. (1997) allows the same
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non-hierarchical grouping structure but is a specific member of the family of GEV
models. The IPDL model is different: in general, its inverse market share func-
tion does not correspond to any other model. In Subsection 3.1, we show the IPDL
model avoids the restriction, inherent in the GEV and RCL models, that all products
are substitutes in demand.

Note that the inverse market share function σ−1 = (σ−10 , . . . σ−1J ) with elements
given by Equations (6) and (7) is invertible.5 That is, any vector of observed market
shares st ∈ ∆◦ is rationalized by a unique vector of product indexes δt ∈ D, which
is key for identification purposes. However, the market share function of the IPDL
model is not in closed form. Counterfactual analyzes typically require computing
the market share function. This can be done by inverting the inverse market share
function or by solving the utility maximization program (see below), numerically
after estimation.

Micro-foundation In Appendix B.2, we show that the IPDL model is consistent
with a representative consumer model with taste for variety, such as the logit and
nested logit models (Anderson et al., 1988; Verboven, 1996b). Specifically, the
IPDL model is consistent with a representative consumer, endowed with income
y, who chooses a vector st ∈ ∆◦ of positive market shares in market t so as to
maximize her utility function given by

u(st) ≡ αy +
∑
j∈J

δjtsjt − µ0

∑
j∈J

sjt ln (sjt)−
D∑
d=1

µd

 ∑
g∈d∪{0}

sgt ln (sgt)

 , (8)

where µ0 ≡ 1−
∑D

d=1 µd, sgt ≡
∑

k∈g skt, and d is identified with the set of groups
for grouping characteristic d. The second term in Equation (8) captures the net util-
ity derived from the consumption of st absent interaction among products, and the
remaining terms express taste for variety. Specifically, the parameter µ0 measures
taste for variety over the entire choice set, while each parameter µd measures taste
for variety across groups according to characteristic d. A higher value of µd puts
more weight on variety at the group level, which can be interpreted as meaning that

5See Lemma 3 in Appendix B.1.
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products in the same group according to d are more similar. See Verboven (1996b)
for a similar interpretation of the grouping parameter in the nested logit model.

Furthermore, we can show that the utility function (8) belongs to the class of
utilities studied by Allen and Rehbeck (2019b), which can be interpreted as rep-
resenting the behavior of heterogeneous, utility-maximizing consumers. With this
interpretation, the grouping parameters capture consumer heterogeneity in taste,
like the grouping parameters in the random utility interpretation of the nested logit
model.

The IPDL model avoids restrictions inherent in the GEV and RCL models. In
particular, these latter models assume that each consumer chooses the product that
provides her with the highest utility among all the available products. This as-
sumption, known as the single-unit purchase assumption, restricts products to be
substitutes in demand (i.e., a positive cross-price derivative of market share). In
contrast, we do not retain the single-unit purchase assumption. As a result, the
IPDL model allows for complementarity in demand (see Subsection 3.1) and does
not rule out multiple choices by individuals. Some instances of the IPDL model
may be consistent with the single-unit purchase assumption, e.g., when the IPDL
model is equivalent to the logit or nested logit models.

Identification and Estimation Combining Equations (6) and (7) and using that
δ0t = 0 for all t = 1, . . . , T , the IPDL model boils down to the linear regression of
market shares on product characteristics, prices, and log-share terms

ln

(
sjt
s0t

)
= xjtβ − αpjt +

D∑
d=1

µd ln

(
sjt
sd(j),t

)
+ ξjt, (9)

for all products j = 1, . . . , J in each market t = 1, . . . , T .
Equation (9) has the same form as the logit and nested logit equations, except

for the log-share terms. Following the literature, we assume that product character-
istics xjt are exogenous and that prices and log-share terms are endogenous. As a
consequence, the IPDL model reduces to a linear instrumental variable regression,
where identification requires at least one instrument for price and one for each of
the log-share terms.
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As it is well known, instruments for prices include cost shifters and markup
shifters (see, e.g., Berry and Haile, 2014, 2016). The first set of instruments includes
the Hausman instruments, i.e., prices in other markets (Hausman et al., 1994; Nevo,
2001). The second set of instruments includes the BLP instruments, i.e., functions
of the characteristics of competing products (Berry et al., 1995; Gandhi and Houde,
2021) and exogenous market shocks such as mergers (Miller and Weinberg, 2017).
Following Verboven (1996a) and Bresnahan et al. (1997), the BLP instruments for
the IPDL model include, for each grouping characteristic, the sums of character-
istics of other products belonging to the same group, the sums of characteristics
of other products belonging to different groups or, alternatively, the corresponding
squared differences in those characteristics.

Identification of grouping parameters µd requires exogenous variation in the
relative share sjt/sd(j). Intuitively, since they drive substitution patterns among
products, their identification requires instruments that provide exogenous variation
in the choice set, including changes in prices. Thus, both cost shifters and markup
shifters are good candidates for instrumenting the log-share terms.

3.1 Substitution Patterns

The richness of the substitution patterns allowed by the IPDL model can be assessed
by analyzing the matrix of own- and cross-price elasticities of demand as well as
the matrix of diversion ratios. We derive these in Appendix B.3.

We first focus on the price elasticities of market shares. The cross-price elas-
ticity from product j to product k is the percentage change in the market share of
product k following a one-percent increase in the price of product j.

To better understand substitution in the IPDL model, consider the cereals market
segmented by brand (General Mills, Kellogg’s, Quaker) and market segment (all-
family, adults, kids). Recall that two products are of the same type if they belong
to the same group based on each characteristic, which here means they are of the
same brand and market segment. Consider a price decrease of a cereal for kids
sold by Kellogg’s. We show that this price decrease will reduce the market share of
all other cereals of a given type by the same percentage. In other words, the price
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decrease will draw proportionately from all the cereals of a given type. It will, for
example, reduce the market share of each cereal for adults sold by General Mills
by the same percentage or of each cereal for all-family sold by Kellogg’s by (in
general another) constant percentage. This substitution pattern is a manifestation of
the Independence from Irrelevant Alternatives (IIA) property among products of the
same type. Furthermore, this price decrease will draw proportionately more or less
from cereals of different types depending on the value of the grouping parameters
and the number of groups these cereals share. This means that the IIA property does
not hold in general for products of different types. There will be as many different
cross-price elasticities per product as there are different product types.

Turn now to diversion ratios, which offer a better description of substitution
patterns than cross-price elasticities (Conlon and Mortimer, 2021).6 The diversion
ratio from product j to product k is the fraction of consumers leaving product j
following a price increase of product j, who switch to product k.

We use simulations to investigate the patterns of diversion ratios in the IPDL
model. We randomly generate 1, 000 markets with J = 45 products exhibiting
product segmentation according to two grouping characteristics with corresponding
grouping parameters µ1 and µ2, each forming two groups so that there are four prod-
uct types. Figure 1 summarizes the results. For clarity, we group products according
to whether they belong to the same groups according to both grouping character-
istics, belong to the same group only according to the first grouping characteristic,
belong to the same group only according to the second grouping characteristic, or
do not belong to the same group according to either grouping characteristics.

Figure 1 exhibits some clear and intuitive patterns. The diversion ratio is highest
between products of the same type. It is second highest between products of differ-
ent types but belonging to the same group according to the grouping characteristic
with the largest grouping parameter. The diversion ratio is lowest for products of
completely different types, i.e., that do not belong to the same group according to

6Consider Conlon and Mortimer (2021)’s example with three products: the first has a cross-price
elasticity with the third of 0.034 and a market share of 0.1, whereas the second has a cross-price
elasticity with the third of 0.01 and a market share of 0.35. More consumers switch to the second
product than to the first as the price of the third product increases, even though the first product has
a larger cross-price elasticity.
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any grouping characteristic. Moreover, the diversion ratio between products of the
same type increases with the grouping parameters. Conversely, for products of com-
pletely different types, the diversion ratio decreases with the grouping parameters
and becomes negative when the grouping parameters are sufficiently large, making
these products complements in demand.

In the supplement, we provide simulation results investigating the substitution
patterns of the IPDL model. We find that products of the same type are always
substitutes, while products of different types may be substitutes or complements,
and that products closer in the characteristics space used to form product types (i.e.
higher values of the grouping parameters and/or whether products belong to the
same groups or not) have higher diversion ratios.
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Figure 1: Diversion Ratios in the IPDL Model

Notes: The figure displays the mean diversion ratio between products in the IPDL model as a func-
tion of µ2 while keeping the value of µ1 constant. The figure is based on 1, 000 random samples
of markets with 45 products. The red horizontal line corresponds to the threshold between comple-
mentarity and substitutability in demand.

Complementarity The empirical literature has mainly used two definitions of
complementarity (Berry et al., 2014). Products j and k are complements in demand
if the cross-price derivative of market share ∂σj(δt)/∂pkt is negative. They are
complements in utility if the cross-derivative of utility ∂u(st)/∂sjt∂skt is positive.7

By construction, products are always substitutes in utility in the IPDL model.
As shown in Figure 1, however, they can be complements in demand, depending on
the value of the grouping parameters and the grouping structure.

7These definitions apply to differentiable demand functions and continuously differentiable util-
ity functions.

15



Whether two products are complements or substitutes in demand depends on
their relationship to other products (Samuelson, 1974). Assume that all products are
substitutes in utility. Then, an increase in the price of product 1, for example, has
two opposite effects on the market share of product 2. There is a direct substitution
effect that increases the market share of product 2 as the market share of product
1 decreases. Note that the market shares of all the other products, including the
outside good, also increase following the increase in the price of product 1. There
is also an indirect substitution effect via all the products other than products 1 and
2, including the outside good: substitution between product 2 and these products
implies that an increase in the market shares of these products causes the market
share of product 2 to decrease. If the indirect effect is larger than the direct effect,
then an increase in the price of product 1 leads to a decrease in the market shares of
both products 1 and 2, making these products complements in demand, even though
they are substitutes in utility.

Ogaki (1990) presents a method for computing the direct substitution effect be-
tween products 1 and 2 from the estimates of the price derivatives of market shares.
He shows that the direct effect can be obtained by removing the effect of the other
products (all the products other than products 1 and 2, including the outside good),
that is, by considering a change in the market share of product 2 while keeping
those of the other products constant. When the direct (resp., indirect) substitution
effect is positive, the products are called direct (resp., indirect) substitutes; when it
is negative, they are called direct (resp., indirect) complements. See Appendix B.5
for further details.

In the IPDL model, products are necessarily direct substitutes. However, they
may be indirect substitutes or complements depending on the value of the grouping
parameters and the grouping structure. Therefore, in the IPDL model, complemen-
tarity in demand is necessarily due to a negative indirect substitution effect that is
larger than a positive direct substitution effect.

To get further intuition on the mechanism generating complementarity in de-
mand in the IPDL model, we consider an example with J = 3 products and one
outside good. Market shares are equal to s0t = 1/2 and s1t = s2t = s3t = 1/6

and α = 1. Products are grouped according to two grouping characteristics: the
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grouping is {1}, {2, 3} for the first characteristic and {1, 2}, {3} for the second
characteristic. This grouping structure induces products 1 and 2 as well as prod-
ucts 2 and 3 to be substitutes in demand. However, depending on the values of
the grouping parameters, products 1 and 3 may be substitutes or complements in
demand.

In particular, with µ1 = 1/4 and µ2 = 1/3, the direct effect (which equals
0.0976) is larger than the indirect effect (which equals -0.0770), which makes prod-
ucts 1 and 3 substitutes in demand with a cross-price derivative of market share be-
tween products 1 and 3 equal to 0.0205. In contrast, with µ1 = 3/5 and µ2 = 1/3,
the indirect effect (which equals -0.1194) is larger than the direct effect (which
equals 0.1087), which makes products 1 and 3 complements in demand, with a
cross-price derivative of market share between products 1 and 3 equal to -0.0107.
The intuition is that a higher µ1 (from 1/4 to 3/5) makes products 2 and 3 more
substitutable as they belong to the same group for the first grouping characteristic,
which translates into a larger indirect effect. See Proposition 3 in Appendix B.3 for
details.

3.2 Experiments with Simulated Data

The IPDL model is appealing because it generalizes the nested logit model while
retaining its computational simplicity. To highlight the advantages of the IPDL
model, we consider three Monte Carlo experiments. The experiments have three
main goals: (i) to assess the ability of the IPDL model to approximate the true pat-
terns of substitution and implied markups under different models; (ii) to compare
the IPDL model to the state-of-the-art RCL model; and (iii) to check that the IPDL
model does not generate complementarity in demand when there is none in the data.
We assess approximations and compare models in terms of estimated diversion ra-
tios and implied markups using the Mean Squared Error (MSE). We also report the
bias and standard error (S.E.) of these estimates.

For each experiment, we generate 50 datasets consisting of T = 200 indepen-
dent markets with J = 45 products, where markets exhibit segmentation according
to two grouping characteristics forming four product types. We generate a fully
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structural model of supply and demand, where the supply side is a static price com-
petition model with five multi-product firms, each with nine products. This allows
us to compare models in terms of substitution patterns and markups. See Appendix
C for details.

Experiment 1: Data from the IPDL Model We generate data from the IPDL
model and fit the two possible nested logit models and the RCL model with inde-
pendent normal random coefficients on dummies for groups. This experiment helps
assess the bias that results from imposing a hierarchical grouping structure when
the true grouping structure is non-hierarchical. It also allows us to check whether
the IPDL model allows substitution patterns that the RCL model cannot accommo-
date. We simulate four IPDL models, varying the values of the grouping parameters
such that complementarity in demand occurs in the last two models but not in the
first two ones.

We present the results in Table 1. Column (1) shows the true diversion ratios
between products of the same type, products that belong to the same group only ac-
cording to the first grouping characteristic, products that belong to the same group
only according to the second grouping characteristic, and products that do not be-
long to the same group according to either grouping characteristic, as well as the
true markups. Columns (2) to (5) compare the estimates of these diversion ratios
and markup from the different models we fit in terms of MSE, bias, and standard
error. Column (2) provides results for the IPDL model. Column (3) provides results
for the nested logit model where the first grouping characteristic defines nests and
the second grouping characteristic defines subnests. Column (4) provides results
for the nested logit model where the second grouping characteristic defines nests
and the first grouping characteristic defines subnests. Finally, Column (5) provides
results for the RCL model.

We find first that the correctly specified IPDL model produces estimates that are
very close to the truth and with small standard errors. Second, the two nested logit
models lead to biased estimates with relatively small standard errors. The bias and
standard errors increase when the IPDL model exhibits complementarity in demand
since the nested logit models shrink the negative diversion ratios towards zero. This
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means that imposing a hierarchical grouping structure can substantially affect the
estimated patterns of substitution and implied markups. Third, the RCL model also
leads to substantially biased estimates with relatively small standard errors. These
biases are even larger when the IPDL model exhibits complementarity in demand.
This shows that the IPDL model can produce patterns of substitution and implied
markups that the RCL model may fail to approximate, even when the IPDL model
does not produce complementarity in demand.

Table 1: Simulation Results when the DGP is the IPDL Model

(1) (2) (3) (4) (5)
True IPDL Model NL Model 1 NL Model 2 RCL Model

Bias S.E. MSE Bias S.E. MSE Bias S.E. MSE Bias S.E. MSE
Diversion Ratios DGP: IPDL Model with µ1 = 0.10 and µ2 = 0.10

Same Product Type 1.280 -0.005 0.065 0.004 -0.045 0.074 0.008 -0.270 0.177 0.105 -0.649 0.057 0.424
Same group - grouping characteristic 1 0.867 0.021 0.066 0.005 -0.270 0.105 0.084 -0.344 0.010 0.118 -0.246 0.038 0.062
Same group - grouping characteristic 2 0.878 0.020 0.066 0.005 -0.338 0.011 0.114 0.003 0.090 0.008 -0.267 0.025 0.072
Different groups 0.420 0.031 0.019 0.001 0.133 0.011 0.018 0.108 0.013 0.012 0.181 0.015 0.033

Markups 37.29 0.052 1.029 1.062 -0.405 1.020 1.204 -0.553 1.067 1.444 -0.613 1.033 1.443
Diversion Ratios DGP: IPDL Model with µ1 = 0.15 and µ2 = 0.20

Same Product Type 1.782 -0.007 0.067 0.005 -0.079 0.084 0.013 -0.180 0.200 0.072 -1.250 0.096 1.572
Same group - grouping characteristic 1 0.908 0.034 0.072 0.006 -0.572 0.121 0.342 -0.536 0.009 0.288 -0.380 0.085 0.152
Same group - grouping characteristic 2 1.112 0.040 0.072 0.007 -0.710 0.011 0.505 -0.221 0.107 0.060 -0.618 0.034 0.383
Different groups 0.138 0.037 0.025 0.002 0.283 0.010 0.080 0.245 0.011 0.060 0.351 0.020 0.124

Markups 33.04 0.081 0.918 0.850 -0.751 0.896 1.366 -0.574 0.954 1.240 -1.125 0.975 2.216
Diversion Ratios DGP: IPDL Model with µ1 = 0.20 and µ2 = 0.30

Same Product Type 2.399 -0.016 0.069 0.005 -0.095 0.098 0.019 -0.014 0.226 0.051 -1.944 0.116 3.792
Same group - grouping characteristic 1 1.018 0.042 0.077 0.008 -0.887 0.143 0.807 -0.762 0.008 0.580 -0.569 0.093 0.332
Same group - grouping characteristic 2 1.394 0.058 0.078 0.010 -1.103 0.011 1.216 -0.507 0.126 0.273 -0.987 0.041 0.977
Different groups -0.162 0.014 0.032 0.001 0.475 0.010 0.226 0.431 0.008 0.186 0.563 0.020 0.317

Markups 28.12 0.075 0.788 0.626 -0.984 0.762 1.549 -0.523 0.826 0.956 -1.572 0.871 3.231
Diversion Ratios DGP: IPDL Model with µ1 = 0.25 and µ2 = 0.40
Same Product Type 3.104 0.002 0.067 0.005 -0.039 0.118 0.016 0.302 0.249 0.153 -2.646 0.222 7.050
Same group - grouping characteristic 1 1.184 0.063 0.080 0.010 -1.178 0.172 1.416 -1.015 0.009 1.030 -0.772 0.157 0.621
Same group - grouping characteristic 2 1.698 0.077 0.082 0.013 -1.493 0.013 2.228 -0.878 0.144 0.792 -1.334 0.108 1.791
Different groups -0.463 -0.090 0.041 0.010 0.691 0.013 0.478 0.647 0.001 0.418 0.793 0.032 0.630
Markups 22.26 0.036 0.630 0.399 -1.055 0.616 1.493 -0.379 0.679 0.605 -1.839 0.717 3.895
Notes: Summary statistics across 50 Monte Carlo replications. In the first two DGPs, there is no complementarity in demand. In the last two DGPs, 21% of the pairs
of products exhibit complementarity in demand.

Experiment 2: Data from Bresnahan et al. (1997)’s PDL Model We generate
data from the PDL model and fit the IPDL model and the RCL model with indepen-
dent normal random coefficients on dummies for groups. This second experiment
helps assess the performance of the IPDL model in predicting the patterns of sub-
stitutions and markups generated by another model of segmentation. It also allows
us to compare the IPDL model to the RCL model when both are misspecified. In
addition, the experiment tests whether the IPDL model may wrongly generate com-
plementarity in demand in a case where products are substitutes in demand. We
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simulate four PDL models, varying the values of the grouping parameters µ1 and
µ2 that control substitution between products.

Table 2 presents the results. Column (1) provides the true diversion ratios be-
tween products and the true markups. Columns (2) to (4) compare the estimates of
these diversion ratios and the markup from the PDL model, the IPDL model, and
the RCL model, respectively.

Table 2: Simulation Results when the DGP is the PDL Model

(1) (2) (3) (4)
True PDL Model IPDL Model RCL Model
MSE Bias S.E. MSE Bias S.E. MSE Bias S.E. MSE

Diversion Ratios DGP: PDL Model with µ1 = 0.50 and µ2 = 0.30
Same Product Type 2.932 -0.006 0.071 0.005 -0.257 0.077 0.072 -1.405 0.415 2.146
Same group - grouping characteristic 1 1.813 0.004 0.043 0.002 0.059 0.097 0.013 -0.422 0.249 0.240
Same group - grouping characteristic 2 1.627 -0.005 0.025 0.001 -0.116 0.010 0.023 -0.362 0.206 0.174
Different groups 0.594 0.002 0.028 0.001 -0.136 0.056 0.022 0.570 0.235 0.381

Markups 26.05 -0.030 0.732 0.536 0.002 0.689 0.475 -0.676 0.854 1.186
Diversion Ratios DGP: PDL Model with µ1 = 0.50 and µ2 = 0.50

Same Product Type 2.716 0.017 0.075 0.006 -0.144 0.063 0.025 -1.199 0.354 1.562
Same group - grouping characteristic 1 1.711 -0.006 0.101 0.010 -0.025 0.083 0.008 -0.281 0.171 0.108
Same group - grouping characteristic 2 1.705 0.014 0.099 0.010 -0.007 0.083 0.007 -0.367 0.142 0.155
Different groups 0.730 -0.011 0.034 0.001 -0.127 0.047 0.018 0.544 0.208 0.340

Markups 29.25 -0.108 0.870 0.769 -0.169 0.819 0.700 -0.707 0.879 1.272
Diversion Ratios DGP: PDL Model with µ1 = 0.50 and µ2 = 0.70

Same Product Type 2.469 0.012 0.079 0.006 -0.124 0.058 0.019 -0.896 0.516 1.068
Same group - grouping characteristic 1 1.931 0.015 0.112 0.013 -0.163 0.077 0.033 -0.473 0.173 0.254
Same group - grouping characteristic 2 1.463 -0.009 0.093 0.009 0.123 0.075 0.021 -0.039 0.130 0.018
Different groups 0.912 -0.008 0.041 0.002 -0.047 0.043 0.004 0.461 0.210 0.257

Markups 32.93 -0.007 0.939 0.882 -0.074 0.907 0.829 -0.762 0.915 1.419
Diversion Ratios DGP: PDL Model with µ1 = 0.50 and µ2 = 0.90

Same Product Type 2.355 0.019 0.068 0.005 -0.144 0.059 0.024 -0.776 0.250 0.664
Same group - grouping characteristic 1 2.376 -0.003 0.075 0.006 -0.282 0.076 0.085 -0.945 0.179 0.926
Same group - grouping characteristic 2 1.030 0.008 0.056 0.003 0.196 0.073 0.044 0.490 0.188 0.275
Different groups 0.982 -0.010 0.039 0.002 0.040 0.045 0.004 0.389 0.184 0.186

Markups 34.60 0.011 0.952 0.907 -0.125 0.911 0.845 -1.401 0.878 2.734
Notes:Summary statistics across 50 Monte Carlo replications.

The estimates from the correctly specified PDL model are very close to the
true values, with small standard errors. The estimates from the IPDL model are
also close to the true values but not as close as the correctly specified PDL model,
with small standard errors. We also find that the IPDL model does not wrongly
produce complementarity in demand. Finally, as in the previous experiment, the
RCL model leads to substantially biased estimates, and with larger standard errors.
This experiment provides thus a case where the IPDL model outperforms the RCL
model.
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Experiment 3: Data from the RCL Model In this experiment, we generate data
from the RCL model with independent normal random coefficients on dummies for
groups. This third experiment helps assess the ability of the IPDL model to approx-
imate the patterns of substitution and implied markups generated by the popular
RCL model. It also allows us to check whether the IPDL model wrongly generates
complementarity in demand in another case where products are substitutes in de-
mand. We simulate four RCL models, varying the values of the standard deviations
of the normal random coefficients RC1 and RC2.

Table 3: Simulation Results when the DGP is the RCL Model

True RCL Model IPDL Model
Bias S.E. MSE Bias S.E. MSE

Diversion Ratios DGP: RCL Model with RC1 = 0.50 and RC2 = 1.00
Same Product Type 2.267 0.001 0.021 0.001 -0.002 0.019 0.001
Same group - grouping characteristic 1 2.127 0.005 0.035 0.001 0.022 0.038 0.002
Same group - grouping characteristic 2 2.142 -0.004 0.032 0.001 0.035 0.028 0.002
Different groups 1.929 0.001 0.028 0.001 0.013 0.028 0.001

Markups 30.16 0.109 0.417 0.186 0.025 0.420 0.177
Diversion Ratios DGP: RCL Model with RC1 = 1.00 and RC2 = 2.00

Same Product Type 2.512 -0.001 0.019 0.000 -0.067 0.018 0.005
Same group - grouping characteristic 1 1.947 0.003 0.035 0.001 0.247 0.041 0.063
Same group - grouping characteristic 2 2.058 -0.001 0.034 0.001 0.095 0.026 0.010
Different groups 1.414 0.002 0.017 0.000 0.015 0.031 0.001

Markups 30.29 0.112 0.422 0.190 -0.105 0.437 0.202
Diversion Ratios DGP: RCL Model with RC1 = 1.50 and RC2 = 3.00

Same Product Type 2.795 -0.002 0.024 0.001 -0.162 0.017 0.027
Same group - grouping characteristic 1 1.765 0.001 0.026 0.001 0.598 0.042 0.359
Same group - grouping characteristic 2 1.912 0.001 0.037 0.001 0.194 0.025 0.038
Different groups 1.007 0.002 0.017 0.000 -0.130 0.032 0.018

Markups 30.43 0.110 0.428 0.195 -0.254 0.475 0.289
Diversion Ratios DGP: RCL Model with RC1 = 2.00 and RC2 = 4.00

Same Product Type 3.053 -0.001 0.016 0.000 -0.264 0.016 0.070
Same group - grouping characteristic 1 1.604 0.002 0.018 0.000 0.975 0.042 0.953
Same group - grouping characteristic 2 1.744 -0.001 0.024 0.001 0.314 0.024 0.010
Different groups 0.735 0.001 0.009 0.000 -0.354 0.033 0.127

Markups 30.54 0.116 0.428 0.196 -0.412 0.529 0.449
Notes:Summary statistics across 50 Monte Carlo replications.

Table 3 presents the results. Column (1) provides the true diversion ratios be-
tween products and the true markups. Columns (2) and (3) compare the estimates
of these diversion ratios and markups from the RCL model and the IPDL model,
respectively.

We find first that the correctly specified RCL model produces estimates very
close to the true values and with small standard errors. Second, the IPDL model
generates estimates reasonably close to the true values with small standard errors.
The biases increase with the standard deviations of the normal random coefficients,
meaning it becomes harder to approximate the RCL model as it deviates more from
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the logit model. However, the biases remain small, except for the diversion ratios
between products sharing one group on the first grouping characteristic. These
simulations thus show that the IPDL model can approximate the rich substitution
patterns of the RCL model, at least when the standard deviations of the normal
random coefficients are not too large. We find, once again, that the IPDL model
does not wrongly produce complementarity in demand.

3.3 The IPDL Model versus Other Models

GEV Models The GEV family of models encompasses all additive random util-
ity models in which the random utility terms follow a multivariate extreme value
distribution (McFadden, 1978; Anderson et al., 1992; Fosgerau et al., 2013).

Except for the logit model, the nested logit model is the simplest and most popu-
lar GEV model. The nested logit model market share function is closed form. It par-
titions the choice set into nests, nests into subnests, etc. This hierarchical grouping
structure imposes restrictions on substitution patterns.8 Despite these restrictions,
the nested logit model is commonly used in applied work with market-level data
due to its computational simplicity. Indeed, it is estimated by linear instrumental
variables regression, using that its inverse market share function has a linear-in-
parameters, closed-form expression (Berry, 1994).

Bresnahan et al. (1997) propose the PDL model, a GEV model that accommo-
dates richer substitution patterns than the nested logit model by allowing a non-
hierarchical grouping structure. Like the nested logit model, the PDL market share
function is in closed form. However, the PDL model inverse market share func-
tion is not in closed form. The PDL model cannot, therefore, be estimated simply
by linear instrumental variable regression. Instead, estimation of the PDL requires
minimizing a non-linear, non-convex generalized method of moments objective,
which must be computed by inverting the PDL market share function numerically.

8In the three-level nested logit model, for example, there are only three different cross-price elas-
ticities per product: one for products within the same subnest, another lower cross-price elasticity
for products from different subnests within the same nest, and an even lower cross-price elasticity for
products from different nests. The cross-price elasticities are necessarily positive, i.e., all products
are substitutes in demand.
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The IPDL model generalizes the nested logit model by allowing the same non-
hierarchical grouping structure as the PDL model. In contrast to the PDL model,
the IPDL model can be estimated by linear instrumental variable regression but its
market share function is not generally in closed form. In contrast to the nested
logit and the PDL models, the IPDL model allows complementarity in demand. In
summary, the IPDL model allows richer substitution patterns than the nested logit
model while retaining its simplicity of estimation. It allows substitution patterns
not accommodated by the PDL model while being simpler to estimate with market-
level data.

A range of GEV models has been proposed using various grouping structures
other than that of the PDL model. Prominent examples include the ordered logit
(Small, 1987), the paired combinatorial logit (Koppelman and Wen, 2000), the
flexible coefficient multinomial logit (Davis and Schiraldi, 2014), and the ordered
nested logit (Grigolon, 2021). It is straightforward to extend the IPDL model to use
the grouping structures of these GEV models. All such models would still have a
linear-in-parameter inverse market share function and would, therefore, still be es-
timated by linear instrumental variable regression. This is, for example, part of the
strategy proposed by Monardo (2021), who builds an inverse market share model,
which, like Koppelman and Wen (2000) and Davis and Schiraldi (2014)’s models,
employs a grouping structure with a group for each pair of products. See Fosgerau
et al. (2021) and the supplement for further details. Finally, using our setting, Hor-
taçsu et al. (2020) propose a method to estimate the grouping structure from the
data.

The generalized nested logit (Wen and Koppelman, 2001) and the cross-nested
logit (Vovsha, 1997; Ben-Akiva and Bierlaire, 1999) go further and allow partial
group membership, with an additional set of parameters controlling for the degree
of group memberships. It is possible to extend the IPDL model via a similar con-
struction. In such extensions, the inverse market share function would not be lin-
ear in the parameters controlling for the degree of group membership. Estimation
would, therefore, require more complex non-linear instrumental variable regression.
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The Random Coefficient Logit Model The RCL model has been the state-of-
the-art model in the literature since the seminal paper by Berry et al. (1995). The
RCL model extends the logit model by incorporating unobserved preference hetero-
geneity through the specification of random coefficients on product characteristics,
including prices. Most papers that estimate the RCL model with market-level data
assume independent normal random coefficients and use the estimation algorithm
proposed by Berry et al. (1995), known as the BLP method. The RCL model ac-
commodates rich substitution patterns determined by how close products are in the
space of product characteristics that receive a random coefficient. However, the
BLP method is computationally demanding as it involves a non-linear, non-convex
optimization problem and the simulation and numerical inversion of the market
share function.

Furthermore, when the RCL model has random coefficients on dummies for
groups, it produces substitution determined by the random coefficients distribution
and by the group memberships. Similarly, the IPDL model delivers substitution
determined by the grouping structure and the corresponding grouping parameters.

As shown by Cardell (1997) and further studied by Galichon (2021), the (two-
level) nested logit model is an RCL model for which the dummy variables that form
the grouping structure receive a random coefficient with a specific distribution. This
observation motivates the open question of whether an IPDL model is equivalent to
some RCL model. We can immediately rule out IPDL models exhibiting comple-
mentarity in demand since products can only be substitutes in demand in the RCL
model.

Furthermore, the RCL model, with negative coefficients on prices, satisfies the
condition that the higher order partial derivatives of the market share function σi
(i ∈ J ) with respect to any set of distinct prices other than pi are non-negative
(see Theorem 3.1 Anderson et al., 1992, page 67). This condition rules out com-
plementarity in demand. By contrast, the IPDL model does not necessarily satisfy
this condition, even when there is no complementarity in demand. This means that
the IPDL model allows behavior that cannot be accommodated by any RCL model,
even when all products are substitutes in demand. See Appendix B.4 for details.
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Figure 2: Relationship between Grouping Parameters in the IPDL model and Ran-
dom Coefficients in the RCL model

To gain further insights on the comparison between the IPDL model and the
RCL model with random coefficients on dummies for groups, we consider again
Experiment 3, where we simulate four RCL models with independent normal ran-
dom coefficients on two dummies for groups, varying the values of the random
coefficients, i.e., the standard deviations of the normal random coefficients. Fig-
ure 2 shows the mean of the estimated grouping parameters in the misspecified
IPDL models against the true value of the random coefficients in the RCL mod-
els for the four designs.9 As expected, we find an increasing relationship between
the estimated grouping parameters and the true random coefficients: higher ran-
dom coefficients in the RCL model means greater deviations from the logit model,
and the same does higher grouping parameters in the IPDL model. It suggests, as
mentioned above, that the grouping parameters in the IPDL model are consumer
heterogeneity parameters, like the random coefficients in the RCL model and the
grouping parameters in the nested logit model. This interpretation of the grouping
parameters is consistent with the interpretation of the IPDL model as a model of

9Grigolon and Verboven (2014) propose a similar figure and discussion for the nested logit
model.
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utility-maximizing, heterogeneous consumers. Furthermore, the grouping param-
eters are increasing in the random coefficients at a decreasing rate such that their
values remain low enough to be consistent with the assumptions of the IPDL model
(i.e., with two grouping characteristics, µ1 ≥ 0, µ2 ≥ 0, and µ1 + µ2 < 1).

Models with Complementarity The literature has allowed for complementarity
in two main ways. The first strand of empirical literature incorporates complemen-
tarity in demand through micro-founded demand systems. Prominent examples
include the AIDS model of Deaton and Muellbauer (1980), the EASI model of
Lewbel and Pendakur (2009), and the linear demand model (see, e.g., Pinkse and
Slade, 2004; Thomassen et al., 2017; Lewbel and Nesheim, 2019). The IPDL model
belongs to this strand. The IPDL model, however, differs from these papers regard-
ing how unobservables enter the model. In all these models, the unobservables enter
in a very restrictive way: the unobservables of a given product affect only its own
demand, whereas the IPDL model, via the terms ξjt, allows the unobservables of
a given product to affect both its own demand (market share) and those of all its
competing products.

Another strand of literature incorporates complementarity by building demands
for baskets of products. Prominent examples include Gentzkow (2007), Iaria and
Wang (2020), and Ershov et al. (2021), who directly extend the RCL model to allow
each consumer to choose among baskets of products rather than products alone. In
their models, complementarity arises from positive demand synergies: products are
complements in utility if the utility that a consumer derives from consuming the
basket is higher than the sum of the utilities she derives from consuming the prod-
ucts separately. Products can also be complements in demand. Another example
is Iaria and Wang (2021), who, similarly to us, build a demand model based on a
grouping structure, which can be inverted to obtain an inverse market share function
that can easily be estimated even with large choice sets. Our paper thus differs from
these papers regarding the channel through which products are complements in de-
mand. Further, we only need to observe purchases at the product level, whereas
these approaches rely on purchases at the basket level.
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Summary We illustrate the relationship between the logit, nested logit, RCL and
IPDL models in Figure 3. As is well known, the logit model is a special case of
the nested logit model. Besides, all nested logit models are both IPDL models and
RCL models. Otherwise, the sets of RCL models and IPDL models are generally
different. We cannot exclude that some IPDL models are equivalent to some RCL
models. Finding general conditions under which this is the case, as for the nested
logit model, is a hard mathematical problem that we leave for future research.

Figure 3: Relationships between logit, nested logit, RCL, and IPDL models

4 Empirical Application

In this section, we use the IPDL model to estimate the demand in the ready-to-
eat cereals market, which has been studied extensively (Nevo, 2000, 2001; Conlon
et al., 2021; Michel et al., 2022). We have three main goals: (i) to show how the
IPDL model works with a well-known dataset; (ii) to investigate the computational
performances of the IPDL model when there are many markets or many products;
(iii) to compare the IPDL model to the RCL model estimated using the methodol-
ogy developed by BLP in terms of computational performance and goodness-of-fit.
Details for this section are provided in Appendix D.
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4.1 Data

Data Sources We use data from the Dominick’s Dataset, which is made publicly
available by the James M. Kilts Center, University of Chicago Booth School of
Business. This is weekly store-level scanner data, comprising information on 30
categories of packaged products at the Universal Product Code (UPC) level for all
Dominick’s Finer Foods chain stores in the Chicago metropolitan area over the pe-
riod 1989-1997. The data are supplemented by store-specific information, including
average household size and daily store traffic.

For our analysis, we consider the ready-to-eat cereals category during the period
1991 –1996. We use data from 25 Dominick’s stores, and we aggregate UPCs into
what we call brand-name cereals (e.g., Kellogg’s Special K). We select 45 brand-
name cereals from 6 national manufacturers (General Mills, Kellogg’s, Nabisco,
Post, Quaker and Ralston), representing around 75% of each manufacturer’s total
sales on the period.10 We define three market segments, namely Adults, Kids and
All-family, according to the classification provided by the website cerealfacts.org.

Prices are retail prices calculated as the volume-weighted average price per
ounce of the UPCs that form the product, deflated by the monthly Consumer Price
Index for All Urban Consumers in the Chicago-Naperville-Elgin area from the U.S.
Bureau of Labor Statistics. We compute the potential market size by multiplying
the total number of persons in a market by the monthly per capita consumption of
cereals. We compute the total volume of a product sold in a market, which we di-
vide by the potential market size to obtain the product’s market share. The market
share of the outside good is then the difference between one and the sum of the 45

products’ market shares.
We supplement Dominick’s Dataset with information on the nutrient content

(fiber, sugar, and calories) of the cereals from the USDA Nutrient Database for
Standard Reference (release SR11, year 1996) and on the type of grains (rice, wheat,
corn, and oats) using manufacturers’ websites and different websites collecting nu-
tritional information. We also use monthly input prices from the websites index-
mundi.com (corn, rice, sugar, and wheat) and macrotrends.net (oats) to construct

10Only package sizes between 10 and 32 ounces are included. The 45 brand-name cereals account
for around 58% of the national market (see, e.g., Corts, 1996).
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cost-based instruments.

Descriptive Statistics Table 4 presents descriptive statistics on market shares and
retail prices of cereals by brand and market segment. Kellogg’s and General Mills
are the largest two brands and are active in all market segments. Market segments
have about equal market shares, and cereals for kids have higher prices on average.
Taken together, Kellogg’s and General Mills account for around 73 percent of the
market, excluding the outside good. Furthermore, cereals for kids tend to be more
expensive than their competitors, cereals for adults tend to be cheaper, General
Mills and Ralston set higher prices, and Quaker lower prices.

Table 4: Shares and prices by brand and market segment

All-family Adults Kids Total
shares prices shares prices shares prices shares prices

General Mills 3.39 20.12 2.04 20.18 3.23 21.04 8.66 20.48
Kellogg’s 1.29 17.04 6.10 16.84 6.34 18.39 13.73 17.57
Nabisco – – 0.69 18.07 – – 0.69 18.07
Post 0.84 16.44 1.63 15.98 0.97 21.91 3.44 17.77
Quaker 2.09 15.79 1.19 14.45 – – 3.28 15.30
Ralston 0.75 20.91 – – 0.19 24.55 0.94 21.65
Total 8.36 18.26 11.65 17.13 10.73 19.61 30.74 18.69
Outside good 69.26
Notes: Shares and prices refer to average (across markets) market shares in percent and retail prices (in
cents) per ounce, respectively

Table 5 shows the average nutrient content of the cereals by brand and mar-
ket segment. Cereals offered by Nabisco contain, on average, less sugar, fat, and
sodium and more fat and protein than those of its competitors. In contrast, cere-
als offered by General Mills and Post are, on average, more sugary, cereals offered
by Quaker have more fat and are rather sugary, and those offered by Nabisco and
Ralston have less fat. Cereals offered by Kellogg’s are rather sugary. Furthermore,
cereals for kids contain more sugar than cereals of the other segments; they also
contain less fiber and protein. By contrast, cereals for adults tend to have less sugar
and sodium but more fiber.
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Table 5: Nutrients content by brand and market segment

Sugar Fiber Fat Protein Sodium #
g/ounce g/ounce g/ounce g/ounce mg/ounce

Brands
General Mills 8.50 1.68 0.25 0.59 194.82 10
Kellogg’s 7.85 1.32 0.23 0.59 149.59 15
Nabisco 0.24 3.25 0.057 0.83 1.98 2
Post 8.68 1.91 0.28 0.57 170.48 9
Quaker 7.85 1.50 0.76 0.69 143.56 5
Ralston 5.02 1.10 0.11 0.54 239.91 4

Segments
All-family 7.04 1.64 0.23 0.62 195.68 12
Adults 5.17 2.19 0.32 0.77 135.56 19
Kids 11.29 0.77 0.29 0.36 177.43 14

All 7.57 1.60 0.29 0.60 164.62 45
Notes: Nutrient content refers to (unweighted) averages across cereals, by brand and market
segment. Column # gives the number of products by brand and market segment.

Overall, we can view the brands and market segments as proxying, at least par-
tially, the nutrient content of the cereals as well as their prices. As a result, consider
an IPDL model that groups cereals according to the brands and market segments.
This IPDL model has substitution patterns depending on this grouping structure
and, thus, indirectly on the nutrient content and prices.

4.2 Specification and Identification

Specification We specify an IPDL model with two grouping characteristics: i)
the market segment the cereals belong to (F for All-family, A for Adults, and K for
Kids), and ii) the brand the cereals belong to (G for General Mills, K for Kellogg’s,
N for Nabisco, P for Post,Q for Quaker, andR for Ralston). We estimate this IPDL
model using the linear instrumental variables regression (9) with D = 2 grouping
characteristics, where xjt includes a constant and a yearly trend, and where d1 =

{F,A,K}, and d2 = {G,K,N,P,Q,R}.
We compare the IPDL model to the RCL model. We specify an RCL model with

independent normal random coefficients on a constant and on the dummies for the
groups F, K, N-R, and P-Q.11 We estimate this RCL model using the methodology

11For the sake of parsimony, we divide brands into three groups according to their popularity
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developed by Berry et al. (1995) and implementing the best practices as advocated
by Conlon and Gortmaker (2020).

We estimate two specifications of the IPDL and RCL models, varying the def-
inition of products and markets. In the first specification (large T ), we define a
product as a brand-name cereal and a market as a store-month pair. As a result, the
sample covers J = 45 in T = 1, 675 markets. In the second specification (large J),
we define a product as a brand-name cereal/store pair and a market as a month. As
a result, the sample covers J = 1, 125 in T = 67 markets. In both specifications,
we include fixed effects for products and months. We further include fixed effects
for stores in the first specification.

Identification To identify the substitution patterns, we rely on two sets of instru-
ments. The first set uses a second-order polynomial of cost shifters and continuous
exogenous characteristics. The cost shifters are the input prices (sugar, corn, oats,
rice, and wheat) multiplied by the corresponding characteristics so that they vary
by brand-name cereals and across time. The product characteristics are sugar, fiber,
fat, protein, and sodium content.

The second set consists of BLP-type instruments. Specifically, we use the
quadratic version of Gandhi and Houde (2021)’s differentiation IVs. For each ex-
ogenous continuous product characteristic xk and for each pair (i, j) of products, we
compute the differences dki,j,t = xkjt−xkit. The differentiation IVs we consider are all
quadratic interactions of these differences, summed over products belonging to the
same brand, to a competing brand, to the same market segment, and to a competing
segment. Furthermore, we compute exogenous price indices, p̂jt, as the predicted
values from a linear regression of the price variable on the two sets of instruments
and a constant. We then compute the differences dp̂i,j,t = p̂jt− p̂it, which we interact
with itself and the other differences to construct additional differentiation IVs.

For the IPDL models, we use the exogenous price index as an instrument and
construct instruments for the two log-share terms as the predicted values from re-
gressions of these terms on the two sets of instruments and a constant.12 For the

measured in terms of market shares: General Mills and Kellogg’s, Nabisco and Ralston, and Post
and Quaker.

12A potential problem is weak identification, which occurs when instruments are only weakly
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RCL models, we first estimate using the exogenous price index, the two sets of
instruments, and a constant as instruments. Then, based on these estimates, we
compute the optimal instruments and estimate using these instruments.

4.3 Results

Table 6 presents the estimation results. Columns (1) and (2) provide the results for
the large T and the large J specifications of the IPDL model. Columns (3) and (4)
provide the results for the large T and the large J specifications of the RCL model.

Demand Parameters The estimated parameter on the negative of price (α) has
the expected sign and is significantly different from zero in both specifications of
the IPDL and the RCL models. For the IPDL model, the estimates of α have the
same magnitude in the two specifications. By contrast, for the RCL model, it is
significantly higher in the large J specification than in the large T specification.

For both specifications of the IPDL model, the grouping parameters are pre-
cisely estimated and satisfy the assumptions of the IPDL model.13 Furthermore,
the grouping parameter for brand name is higher than that for market segment (i.e.,
µ1 > µ2), which indicates that brand reputation confers more protection from sub-
stitution than does the market segment, i.e., cereals of the same brand are more
protected from cereals from other brands than cereals of the same market segment
are from cereals from different market segments.

For the RCL model, only two and three of the five random coefficients are pre-
cisely estimated in the large T and large J specifications, respectively. This is
consistent with the literature, which has found that it may be hard in practice to
identify random coefficients on dummies when product fixed effects are included
in the model (e.g., Conlon and Mortimer, 2013). Moreover, random coefficients do
not have the same magnitude in the two specifications.

correlated with the endogenous variables. In both specifications, the Sanderson and Windmeijer
(2016)’s F-statistics to test whether each endogenous variable is weakly identified are far above 10,
the rule-of-thumb usually used for linear instrumental variables regressions, thereby suggesting that
instruments are not weak.

13i.e., µ1 ≥ 0, µ2 ≥ 0, and µ1 + µ2 < 1. We impose no constraints on the parameters during the
estimation.
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Table 6: Estimation Results

(1) (2) (3) (4)
IPDL Model IPDL Model RCL Model RCL Model

Large T Large J Large T Large J
Prices (−α) -12.848 -12.208 -16.380 -25.513

(0.3123) (0.2704) (1.840) (0.7372)
Grouping Parameters

Brand name (µ1) 0.4699 0.4886 – –
(0.0200) (0.0179) – –

Market segment (µ2) 0.2856 0.2825 – –
(0.0222) (0.0199) – –

Random Coefficients
Constant – – 1.023 0.8455

– – (1.024) (1.416)
Nabisco-Ralston – – 0.7566 1.154

– – (1.017) (0.3121)
Post-Quaker – – 0.3978 0.8485

– – (0.2143) (0.4014)
Kids – – 0.8823 4.792

– – (0.5935) (0.7102)
All-family – – 0.1184 2.415

– – (2.037) (1.580)
Product Fixed Effects 45 1125 45 1125
Month Fixed Effects 11 11 11 11
Store Fixed Effects 24 – 24 –
Time 5sec 2min ∼1h50 ∼2h30
Cross-validated MSE 0.169 0.212 0.347 0.341
Complementarity

Complements (%) 5.25 5.74 0 0
Mean Diversion Ratios

Same product type 10.04 0.383 1.28 0.126
Same group - brand name 5.27 0.190 1.01 0.018
Same group - market segment 3.04 0.110 1.17 0.107
Different groups 0.371 0.013 0.883 0.030

Mean Markup 36.51% 38.47% 38.76% 26.75%
Notes: The number of observations is 75,375. Robust standard errors are shown in parentheses. A constant
and a yearly trend are included.

Computational time We compare the computational time of the IPDL and the
RCL models, measured as the execution time from the computation of the instru-
ments to the estimation of the model. We find that the IPDL model is much faster
to estimate than the RCL model. The IPDL model takes 5 seconds to estimate the
large T specification and 2 minutes to estimate the large J specification, against
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1h50 and 2h30, respectively, for the RCL model.

Goodness-of-fit We compare the goodness-of-fit of the IPDL and the RCL mod-
els. Like Compiani (2022), we measure goodness-of-fit based on the cross-validated
mean squared error (MSE) to evaluate how models perform out-of-sample. In both
specifications, we find a lower cross-validated MSE for the IPDL model than for
the RCL model, meaning that the IPDL model fits the data better than the RCL
model.14

Substitution Patterns and Markups We provide the diversion ratios between
cereals averaged across markets and products according to whether they are of the
same types, have the same brand name, belong to the same market segment, or do
not have the same brand name and do not belong to the same market segment. We
find significantly different diversion ratios between the IPDL and the RCL models.
For the large T specification, in the IPDL model, diversion ratios are determined
by segmentation, whereas in the RCL model, the diversion ratios do not seem to be
determined by segmentation. For the large J specification, both the IPDL and RCL
models generate diversion ratios depending on segmentation. However, they lead
to different qualitative results. For example, the IPDL model predicts that cereals
with the same brand name are closer substitutes than cereals belonging to the same
market segment, and conversely for the RCL model. Lastly, in both specifications,
the IPDL model generates significantly higher substitution between cereals than the
RCL model.

We also provide the percentage of pairs of complements in demand in the IPDL
model, determined by the percentage of significantly negative diversion ratios. This
takes into account that some pairs of cereals exhibiting negative diversion ratios
may actually be independent and not complements in demand. We find that the
IPDL model generates a small amount of complementarity in demand, as only
around 5% of the pairs of products exhibit complementarity in demand. To verify
that complementarity in demand is not a model artifact, we compute the diversion

14We have also tested more usual specifications of the RCL model, where continuous product
characteristics (sugar, fiber, and fat) and price receive a random coefficient and are interacted with
demographics (income and child). None of these specifications provided a better fit to the data.
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ratios using different values of the grouping parameters from the estimated values.
We find that parameter values exist such that the model does not exhibit comple-
mentarity in demand.

Finally, we provide markups, averaged across markets and products, computed
by assuming static oligopolistic price competition between firms. We find that the
IPDL model yields markups that have the same magnitude across the two speci-
fications and are in line with the literature (Nevo, 2001; Michel et al., 2022). By
contrast, the RCL model yields similar markups as the IPDL model in the large T
specification but significantly lower than the IPDL model in the large J specifica-
tion (because of the large estimates of the parameter α).

5 Concluding Comments

We have introduced the IPDL model, a micro-founded inverse market share model
for differentiated products. The IPDL model generalizes the nested logit model
to allow richer substitution patterns, including complementarity in demand. Like
the nested logit model, the IPDL model can be estimated by linear instrumental
variable regression using market-level data, and it is consistent with a model of
heterogeneous, utility-maximizing consumers.

Our Monte Carlo experiments show that the IPDL model can reasonably ap-
proximate the substitution patterns generated by the workhorse models of the lit-
erature. Our empirical application, using a well-known dataset on the ready-to-eat
cereals market, shows that the IPDL model fits the data better than a similar RCL
model while being much faster to estimate. With the IPDL model, we find evidence
of complementarity in demand due to the indirect substitution effect, a result that
would not be possible with the RCL model. These results suggest that the IPDL
model can be useful for describing markets that exhibit segmentation.

This paper opens several avenues for future work. First, it would be interest-
ing to see applications of the IPDL model to different markets and economic is-
sues. The IPDL model may lead to qualitatively different conclusions from the
workhorse models of the literature, particularly when there is complementarity in
demand. Second, it seems worthwhile to extend the IPDL model to allow for un-
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observed heterogeneity in preferences through random coefficients, in analogy with
what has been done with the logit and nested logit models. Third, a natural next step
would be to develop an estimation method for the IPDL model using individual-
level data rather than market-level data. Finally, it would be interesting to incor-
porate forward-looking consumer behavior in the IPDL model and to develop a
corresponding estimation procedure.

Appendix

A Mathematical Appendix

Notation We use italics for scalar variables and real-valued functions, boldface
for vectors, matrices and vector-valued functions, and calligraphic for sets. R+ is
the set of non-negative real numbers, R++ is the set of positive real numbers, and
RJ+1

++ = (0,∞)J+1. As default, vectors are column vectors: s = (s0, . . . , sJ)ᵀ ∈
RJ+1.

∆ ⊂ RJ+1 is the unit simplex : ∆ =
{
s ∈ [0,∞)J+1 :

∑
j∈J sj = 1

}
, and

∆◦ =
{
s ∈ (0,∞)J+1 :

∑
j∈J sj = 1

}
is its relative interior.

Let G = (G0, . . . , GJ) : RJ+1 → RJ+1 be a vector function composed of
functions Gj : RJ+1 → R. The matrix Js

G(s) ∈ R(J+1)×(J+1) with entries (i +

1, j + 1) given by ∂Gi(s)
∂sj

denotes the Jacobian matrix of G with respect to s at point
s.

A univariate function R → R applied to a vector is a coordinate-wise applica-
tion of the function, e.g., ln (s) = (ln (s0) , . . . , ln (sJ)). 1 = (1, . . . , 1)ᵀ ∈ RJ+1 is
a vector consisting of ones, and I ∈ R(J+1)×(J+1) denotes the identity matrix.

Preliminaries This section provides some preliminary mathematical definitions
and a result used in the proofs that follow.

Definition 1. Gj : RJ+1
++ → RJ+1 is linearly homogeneous if Gj(λs) = λGj(s) for

all λ > 0 and s ∈ RJ+1
++ . G is homogeneous if each of its component Gj is.
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Definition 2. A matrix A ∈ R(J+1)×(J+1) is positive quasi-definite if its symmetric
part, defined by 1

2
(A + Aᵀ), is positive definite.

It follows that a symmetric and positive definite matrix is positive quasi-definite.

Lemma 1 (Gale and Nikaido 1965, Theorem 6). If a differentiable mapping F :

Θ → RJ+1, where Θ is a convex region (either closed or non-closed) of RJ+1, has
a Jacobian matrix that is everywhere quasi-definite in Θ, then F is injective on Θ.

B Properties of the IPDL Model

Recall first that d(j) is the set of products that are grouped with product j according
to grouping characteristic d and that sd(j) =

∑
k∈d(j) sk denotes the market share of

group d (j). To ease exposition, we omit the notation for parameters θ2 and markets
t. Recall then that the IPDL model is defined by

σ−1j (s) = lnGj (s) + c = δj, j ∈ J , (10)

where the function G : RJ+1
++ → RJ+1

++ is defined by

lnGj (s) =

(
1−

D∑
d=1

µd

)
ln (sj) +

D∑
d=1

µd ln
(
sd(j)

)
, j = 1, . . . , J, (11)

lnG0 (s) = ln (s0) , (12)

with
∑D

d=1 µd < 1 and µd ≥ 0, d = 1, . . . , D.

Lemma 2. Let lnG ≡ (lnG0, . . . , lnGJ).

1. The Jacobian matrix Js
lnG(s) of the function lnG with respect to s has entries

∂ lnGi(s)

∂sj
=



1−
∑D

d=1 µd
si

+
∑D

d=1

µd
sd(i)

, i = j > 0,∑D
d=1

µd
sd(i)

1{j ∈ d(i)}, i 6= j, i > 0, j > 0,

1

s0
, i = j = 0

0, otherwise.

(13)
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It is positive definite for all s ∈ RJ+1
++ .

2. The function

s→− sᵀ lnG(s) = −
∑
j∈J

sj lnGj (s)

= −

[(
1−

D∑
d=1

µd

)∑
j∈J

sj ln (sj) +
D∑
d=1

µd

(∑
g∈d

sg ln (sg)

)]

is strictly concave on ∆◦.

3. The function s→ G(s) is linearly homogeneous.

Proof of Lemma 2.
1. Js

lnG(s) is positive definite for all s ∈ RJ+1
++ , as it is a symmetric, strictly di-

agonally dominant matrix with positive diagonal entries (Horn and Johnson, 2012,
Theorem 6.1.10.)
2. Consider s ∈ ∆◦. The Hessian of −sᵀ lnG(s) is −Js

lnG (s), which is negative
definite (by part 1).
3. Note that G0(s) = s0 and

Gj(s) = s
1−

∑D
d=1 µd

j

D∏
d=1

(
sd(j)

)µd , j = 1, . . . , J.

G linearly homogeneous since for any λ > 0, for all j = 1, . . . , J

Gj(λs) = (λsj)
1−

∑D
d=1 µd

D∏
d=1

∑
k∈d(j)

λsk

µd

,

=

[
λ1−

∑D
d=1 µd

D∏
d=1

λµd

][
s
1−

∑D
d=1 µd

j

D∏
d=1

(
sd(j)

)µd]
= λ1−

∑D
d=1 µd+

∑D
d=1 µdGj(s)

= λGj(s),

and G0(λs) = λs0 = λG0(s).
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B.1 Invertibility

As stated in the following proposition, the function is lnG injective and hence
invertible on its range.

Proposition 1. The function lnG with G defined by Equations (11) and (12) is
injective, with range equal to RJ+1.

Proof of Proposition 1. The function lnG is differentiable on the convex region
RJ+1

++ . The Jacobian matrix Js
lnG(s) is positive quasi-definite since it is symmetric

and positive definite by Lemma 2. Then, lnG is injective by Lemma 1.
Also by Lemma 2, the function s→

∑
j∈J sj lnGj(s) is strictly convex. Hence,

for any δ ∈ RJ+1, the maximization problem sups∈RJ+1{
∑

j∈J sj(δj − lnGj(s))}
has a unique solution. Lastly, note that | lnG(s)| → ∞ whenever s → s0, where
s0 is on the boundary of RJ+1, which means that at least one component of lnG

tends to infinity as s approaches the boundary of RJ+1 and ensures that the solution
is interior. Then, the solution is given by the first-order condition, which is δ =

lnG(s).
Invertibility of lnG is equivalent to invertibility of the IPDL inverse market

share function. Consider any vector of market shares s ∈ ∆◦. Then, holding δ0 = 0,
the injectivity of the IPDL inverse market share function ensures that there exists a
unique vector of indexes δ ∈ D that rationalizes demand, i.e., s = σ (δ).

Lemma 3. The IPDL inverse market share function σ−1 defined by Equations (10)
– (12) is invertible.

As shown above, the IPDL model allows complementarity in demand, as de-
fined by a negative cross-price derivative of market share. We cannot, therefore,
use Berry (1994)’s and Berry et al. (2013)’s invertibility results, which strictly rule
out such a form of complementarity. Berry et al. (2013) show invertibility for any
market share function satisfying their “connected substitutes” conditions. The con-
nected substitutes structure requires two conditions: (i) products are weak gross
substitutes, that is, everything else equal, an increase in δi weakly decreases market
share σj for all other products; and (ii) the “connected strict substitution” condi-
tion holds, i.e., there is sufficient strict substitution between products to treat them
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in one demand system. The first requirement strictly rules out complementarity in
demand defined by a negative cross-price derivative of market share.

Their result can, however, cover demand systems with some form of comple-
mentarity in demand: this happens when the demand function qj(δt) has a negative
cross-price derivative with respect to price pi, whereas its transformation to a mar-
ket share function qj(δt)/

∑
k∈J qk(δt) does not (Example 1 in Berry et al. (2013)

and Section 4.3 in Compiani (2022)). In contrast to us, Berry et al. (2013) do not
require that the demand function is differentiable.

Let H = G−1 denote the inverse of G: H(eδ) = (H0(e
δ), . . . , HJ(eδ)) =

G−1(eδ). We show that H is linearly homogeneous.

Lemma 4. The function eδ → H(eδ) is linearly homogeneous.

Proof. Let G(s) = eδ or equivalently s = H(eδ). Then, for any λ > 0,

H(λeδ) = H(λG(s)) = H(G(λs)) = λs = λH(eδ).

B.2 Micro-foundation

Consider a representative consumer facing the choice set of differentiated products,
J , and a homogeneous numéraire good, with demands for the differentiated prod-
ucts summing to one. Let pj and vj be the price and the quality of product j ∈ J ,
respectively. The price of the numéraire good is normalized to 1, and the represen-
tative consumer’s income y is sufficiently high (y > maxj∈J pj) to guarantee that
consumption of the numéraire good is positive.

In this subsection, we show that the IPDL inverse market share function is con-
sistent with a representative consumer who chooses a vector s ∈ ∆ of market shares
of the differentiated products and a quantity z ≥ 0 of the numéraire good so as to
maximize her direct utility function

αz +
∑
j∈J

vjsj −

(1−
D∑
d=1

µd

)∑
j∈J

sj ln (sj) +
D∑
d=1

µd

 ∑
g∈d∪{0}

sg ln (sg)

 ,
(14)
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subject to the budget constraint and the constraint that the market share vector sums
to one, ∑

j∈J

pjsj + z ≤ y and
∑
j∈J

sj = 1, (15)

where α > 0 is the marginal utility of income, sg =
∑

k∈g sk, and d is identified
with the set of groups for grouping characteristic d.

The first two terms of the direct utility (14) describe the utility that the represen-
tative consumer derives from the consumption (s, z) of the differentiated products
and the numéraire in the absence of interaction among them. The third term is a
strictly concave function of s that expresses her taste for variety (Lemma 2 above).

We further show that the direct utility function (14) gives the indirect utility
function

αy + ln

(∑
k∈J

Hk

(
eδ
))

, (16)

where the second term is, up to an additive constant, the consumer surplus CS(δ).
We summarize these results as follows.

Proposition 2. The IPDL model (10) – (12) is consistent with a representative
consumer who maximizes her direct utility (14) subject to constraints (15). Further,
the direct utility (14) gives the indirect utility (16), where the second term is the
convex consumer surplus function.

Proof. Consider the representative consumer maximizing utility (14) subject to
constraints (15). The budget constraint is always binding since α > 0 and y >

maxj∈J pj . Substituting the budget constraint into the direct utility (14), the repre-
sentative consumer then chooses s ∈ ∆ to maximize

u (s) = αy+
∑
j∈J

δjsj−

(1−
D∑
d=1

µd

)∑
j∈J

sj ln (sj) +
D∑
d=1

µd

 ∑
g∈d∪{0}

sg ln (sg)


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where δj = vj−αpj . The Lagrangian of the utility maximization program given by

L (s, λ) = u (s) + λ

(
1−

∑
j∈J

sj

)

yields
∑

j∈J sj = 1 as well as the first-order conditions

δj −

[(
1−

D∑
d=1

µd

)
(ln(sj) + 1) +

D∑
d=1

µd
(
ln
(
sd(j)

)
+ 1
)]
− λ = 0

which can be simplified as

δj −

[(
1−

D∑
d=1

µd

)
ln(sj) +

D∑
d=1

µd ln
(
sd(j)

)
+ 1

]
− λ = 0,

for all j = 1, . . . , J , and δ0 − (ln(s0) + 1)− λ = 0 for the outside good.
The first-order condition for an interior solution has a unique solution since the

objective is strictly concave by Lemma 2; hence, the utility-maximizing demand
exists uniquely. Setting c = 1+λ, we show that the representative consumer model
leads to the IPDL inverse market share function.

Exponentiating and applying H on both sides of Equation (10) leads to

s = H(eδe−c) = H(eδ)e−c,

where the last equality uses the homogeneity of H (Lemma 4). Using that demands
sum to 1, we find that

ec =
∑
k∈J

Hk

(
eδ
)
, (17)

so that the IPDL market share function is given by

σj (δ) =
Hj

(
eδ
)∑

k∈J Hk (eδ)
, j ∈ J . (18)

Finally, substituting the market share functions (18) with the market shares sj
gives the indirect utility function (16).
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By Roy’s identity, the Hessian of the consumer surplus is Jδ
σ (δ), which by

Proposition 3 (part 2.) is positive semi-definite. Convexity of the consumer surplus
then follows.

Anderson et al. (1988) and Verboven (1996b) show that the logit and nested logit
models are consistent with a utility-maximizing representative consumer model.
Proposition 2 extends these results to the IPDL model.

Furthermore, as shown by Allen and Rehbeck (2019b), utility (14) can be ob-
tained, by aggregating across heterogeneous, utility-maximizing consumers, from
the class of latent utility models with additively separable unobservable hetero-
geneity called perturbed utility.15 This implies that the IPDL model embodies
consumer heterogeneity and can be rationalized by a model with heterogeneous,
utility-maximizing consumers.

B.3 Substitution Patterns

Proposition 3. The IPDL model has the following properties.

1. The independence from irrelevant alternatives (IIA) property holds for prod-
ucts of the same type; but does not hold in general for products of different
types.

2. The matrix of price derivatives of market share Jp
σ(δ) with entries ∂σi(δ)/∂pj

is equal to
Jp
σ(δ) = −α

(
[Js

lnG(s)]−1 − ssᵀ
)
, (19)

with s = σ(δ) and where Js
lnG(s) has entries given by Equation (13). In

the absence of income effects, the matrix of price derivatives of demand is
the Slutsky matrix. It is symmetric and positive semi-definite, which implies
that the IPDL market share functions are non-decreasing in their own index
δj , ∂σj(δ)/∂δj ≥ 0. The cross-price elasticity from product j to product k
is given by (∂σk(δt)/∂pjt)(pjt/σk(δt)). The diversion ratio from product j to
product k is given in percentage terms by−100(∂σk(δ)/∂pj)/(∂σj(δ)/∂pj)).

15See Hofbauer and Sandholm (2002), McFadden and Fosgerau (2012) and Fudenberg et al.
(2015) for more details on perturbed utility models. Allen and Rehbeck (2019a) show that some
perturbed utility models allow for complementarity in demand.
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3. Products can be substitutes or complements in demand.

4. Products are substitutes in utility.

Proof of Proposition 3.
1. Using Equation (6), for any pair of products j and k we have

σj (δ)

σk (δ)
= exp

(
δj − δk

1−
∑D

d=1 µd
+

D∑
d=1

µd

1−
∑D

d=1 µd
ln

(
σd(k) (δ)

σd(j) (δ)

))
. (20)

For products j and k of the same type (i.e., with d (k) = d (j) for all d), Equation
(20) reduces to σj(δ)

σk(δ)
= exp

(
δj−δk

1−
∑D

d=1 µd

)
, which is independent of the characteris-

tics or existence of all other products, that is, IIA holds for products of the same
type. When products are of different types, the ratio can depend on the characteris-
tics of other products, which means that IIA does not hold in general.

2. Recall that the IPDL model is defined by

lnGj(s) + CS(δ) = δj, j ∈ J , (21)

where lnGj is given by Equations (11) – (12) and where we have used that c =

ln
(∑

k∈J Hk

(
eδ
))
≡ CS(δ).

Differentiate this equation with respect to δ, then I = Js
lnG (s)Jδ

σ (δ) + 1sᵀ,
with s = σ (δ), and where we have used Roy’s identity. Js

lnG (s) is invertible.
Then, Jδ

σ (δ) = [Js
lnG (s)]−1 [I− 1sᵀ] = [Js

lnG (s)]−1 − [Js
lnG (s)]−1 1sᵀ. Finally,

note that Js
lnG (s) s = 1, so that [Js

lnG (s)]−1 1sᵀ = ssᵀ.
Consequently, Jδ

σ (δ) is symmetric. As Js
lnG (s) is positive definite, the square-

root matrix [Js
lnG (s)]1/2 exists and is also positive definite. Then

[Js
lnG (s)]1/2Js

σ (δ) [Js
lnG (s)]1/2 = [Js

lnG (s)]−1/2(I− 1sᵀ)[Js
lnG (s)]1/2,

is symmetric and idempotent and thus positive semi-definite. Then Jδ
σ (δ) is posi-

tive semi-definite.

3. Suppose there are J = 3 products and one outside good. Products are grouped
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according to two grouping characteristics: the grouping is {1}, {2, 3} for the first
characteristic and {1, 2}, {3} for the second characteristic.

Let σ(δ) = s. Using Proposition 3 (part 2.), we show that

∂σ1 (δ)

∂p3
= s1s3

[
1 +

µ1µ2s2
D

]
, (22)

where D = −(1 − µ1 − µ2)(s1 + s2)(s2 + s3) − µ1µ2s2(1 − s0) < 0. Products 1

and 3 are then complements in demand if and only if ∂σ1(δ)
∂p3

< 0, that is, if and only
if (1− µ1 − µ2) (s1 + s2) (s2 + s3)− µ1µ2s0s2 < 0.
4. The IPDL model restricts products to be substitutes in utility, since

∂u(s)

∂si∂sj
= −

D∑
d=1

µd
sd(j)

1{i ∈ d(j)} − µ0

s0
. (23)

is negative.

B.4 Higher-Order Partial Derivatives of Demand in the RCL
Model

Consider an additive random utility model (ARUM) in which the vector of random
utility components follows a joint distribution with finite means that is absolutely
continuous and independent of δ. The logit and nested logit models are special
cases of this.

The ARUM market share functions (or choice probabilities) satisfy a range of
general conditions, one of which is that the partial derivatives of the market share
function σi (i ∈ J ) with respect to any set of distinct prices other than pi are non-
negative if the coefficients on prices are negative, i.e.,

∂σ1(δ)

∂p2
≥ 0;

∂σ1(δ)

∂p2∂p3
≥ 0;

∂σ1(δ)

∂p2∂p3∂p4
≥ 0, etc. (24)

In particular, this condition rules out complementarity in demand in the ARUM.
The RCL market share function is a mixture of logit market share functions,

and thus it also satisfies the non-negativity condition when price coefficients are
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negative (almost surely).
By contrast, the IPDL model does not necessarily satisfy the non-negativity

condition. To show this, we consider, again, the example of Subsection 3.1 with
J = 3 products and one outside good. Market shares are equal to s0 = 1/2 and
s1 = s2 = s3 = 1/6 and α = 1. Products are grouped according to two grouping
characteristics: the grouping is {1}, {2, 3} for the first characteristic and {1, 2}, {3}
for the second characteristic.

When µ1 = 1/4 and µ2 = 1/3, all products are substitutes in demand, but the
non-negativity condition does not hold for the second-order partial derivatives:

∂σ1(δ)

∂p3
= 0.0205 ≥ 0;

∂σ1(δ)

∂p3∂p2
= −0.0204 ≤ 0. (25)

When µ1 = 3/5 and µ2 = 1/3, products 1 and 3 are complements in demand,
but the non-negativity condition holds for the second order mixed derivatives:

∂σ1(δ)

∂p3
= −0.0107 ≤ 0;

∂σ1(δ)

∂p3∂p2
= 0.0052 ≥ 0. (26)

B.5 Direct and Indirect Substitution Effects

We follow Ogaki (1990) to decompose the substitution effect between products i
and j into the indirect substitution effect and the direct substitution effect.

Let Jp
σ be the matrix of market share derivatives with respect to prices. Recall

that J = {0, 1, . . . , J} denotes the choice set. Then, J−(i,j) denotes the choice
set without products i and j, and Jp

σ[J−(i,j),J−(i,j)] denotes the matrix Jp
σ after

removing the rows and columns involving products i and j.
The indirect substitution effect between product i and j, S i

ij , is equal to

S i
ij = Jp

σ[i,J−(i,j)]
[
Jp
σ[J−(i,j),J−(i,j)]

]−1
Jp
σ[J−(i,j), j]. (27)

The direct substitution effect between product i and j, Sd
ij , is then equal to

Sd
ij =

∂σj(δ)

∂pi
− S i

ij. (28)

46



Products i and j are direct complements if Sd
ij < 0, and direct substitutes if

Sd
ij > 0.

C Details on the Experiments

C.1 Simulated Data

For each experiment, we generate 50 datasets consisting of T = 200 independent
markets with J = 45 products, where the markets exhibit product segmentation
according to two grouping characteristics forming four product types. The grouping
structure is simulated using binomial distributions and is common across markets.

In each experiment, we simulate a fully structural model of demand and supply,
where the observed characteristic xjt and the cost-shifter zjt are i.i.d. U(0, 1). The
unobserved product characteristic is ξjt = u1t + u2t and the unobserved cost com-
ponent is ωjt = u1t + u3t, where u1t, u2t, and u3t are i.i.d. U(−0.5, 0.5). Prices
and market shares are determined endogenously. The supply side is a static price
competition model among five multi-product firms, each with nine products and
with constant marginal cost given by cjt = 2 + xjt + zjt + wjt.

Experiment 1 We simulate four IPDL models, varying the values of the grouping
parameters µ1 and µ2 (Table 1). In each model, we set δjt = −3+2xjt−0.5pjt+ξjt.

Experiment 2 We simulate four PDL models, varying the values of the group-
ing parameters µ1 and µ2 (Table 2). The PDL model is a GEV model. Its mar-
ket share function is given by σj(δ) = eδj(∂Gj(e

δ)/∂eδj)/G(eδ), where G(eδ) =

a1

[∑2
g=1

∑
j∈G1g

(
eδj/µ1

)µ1]
+a2

[∑2
g=1

∑
j∈G2g

(
eδj/µ2

)µ2], with a1 = (1−µ1)/(2−
µ1 − µ2) and a2 = 1− a1. In each model, we set δjt = −1 + 2xjt − 0.5pjt + ξjt.

Experiment 3 We simulate four RCL models with independent normal random
coefficients on dummies for groups, varying the values of the standard deviations
of the normal random coefficients RC1 and RC2 (Table 3). In each model, the
mean utility of product j in market t is given by δjt = 3 − pjt + xjt + ξjt. We
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use the package PyBLP from Conlon and Gortmaker (2020) to simulate the RCL
models. We use 100 Halton draws over the standard normal distribution to integrate
the market share functions numerically. Each dimension of integration of Halton
draws uses a different prime, discards the first 1,000 points, and then scrambles the
sequence.

C.2 Estimation Procedures

Nested Logit and IPDL Models We estimate the nested logit and IPDL mod-
els using the two-stage least squares estimator. We compute instruments as the
predicted values from regressions of the endogenous variables (i.e., price vari-
able and two log-share terms) on a constant, the product characteristic xjt, the
cost shifter zjt, and the differentiation IVs

∑
k∈d1(j)

(
dxj,k,t

)2,∑k/∈d1(j)
(
dxj,k,t

)2, and∑
k∈d2(j)

(
dxj,k,t

)2, with dxj,k,t ≡ xkt − xjt.

PDL Models We estimate the PDL models using the following two-step estima-
tion procedure, which is standard in the literature. First, we solve for the error term
ξjt as a function of the parameters µ1 and µ2. That is, given values for µ1 and µ2,
we numerically compute the values δjt(µ1, µ2) of δjt that equate the observed to
the predicted market shares, and compute ξ̂jt = δjt(µ1, µ2) − β0 − β̂xjt + α̂pjt,
where α̂ and β̂ are the estimates of the Berry (1994)’s regression based on δjt =

β0 + βxjt − αpjt + ξjt. Second, we interact ξ̂jt with instruments to form the gener-
alized method of moments objective function that we minimize over µ1 and µ2.

RCL Models We estimate the RCL models using the nested-fixed point approach
proposed by BLP. We use the package PyBLP by Conlon and Gortmaker (2020) and
implement their best practices. That is, we numerically integrate the market share
functions using 100 Halton draws over the standard normal distribution; we nu-
merically compute the δjt’s that equate the observed to the predicted market shares
using the SQUAREM accelerated fixed point algorithm; we minimize the gener-
alized method of moments objective function using the Knitro 13.1 Interior/Direct
algorithm; and we use the "approximate" version of the feasible optimal instru-
ments.
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D Details on the Empirical Application

Potential market size. We compute the potential market size by multiplying the
total number of persons in a market by the monthly per capita consumption of
cereals. For each store in a month, we compute the total number of persons as the
weekly average number of households who visited that store in that given month,
multiplied by the average household size. First, we compute the weekly average
number of households using the information on the daily traffic store and assuming
that consumers visit stores twice a week. Lastly, we compute the monthly per capita
consumption of cereals using the information from the USDA’s Economic Research
Service that per capita US consumption of cereals was equal to 13.4 pounds in 1991,
13.9 in 1992, 14.6 in 1993, 14.8 in 1994, 14.6 in 1995 and 14.3 in 1996.

Estimations We estimate the IPDL and RCL models using the procedures de-
scribed in Appendix C.2. For the RCL models, we also absorb the fixed effects
using the package PyHDFE.

Computational Time We run all the estimations on a personal computer with
2.50 GHz Intel Core i7-11850H CPU and 16.0 GB RAM, Windows operating sys-
tem (Windows 10), Python version 3.9. We obtain the computational time using
Python’s timeit() function that returns the number of seconds it took to execute the
code.

Goodness-of-fit We measure goodness-of-fit using a two-fold cross-validated pro-
cedure: (i) we randomly split the sample into two sub-samples of (approximate)
equal size; (ii) we estimate both specifications of the IPDL and RCL models us-
ing the first sub-sample and compute the Mean Square Error (MSE) for the second
sub-sample; (iii) we repeat (ii) by inverting the role of the two sub-samples; (iv) we
compute the average of the two MSE. The model that obtains the lowest average
MSE, called cross-validated MSE, best fits the data.

Complementarity in Demand We compute the percentage of pairs of comple-
ments in demand while accounting for the fact that some pairs of cereals exhibiting
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negative diversion ratios may be independent and not complements in demand. For
this purpose, we use 95% confidence intervals for the diversion ratios. We compute
them using a parametric bootstrap: we repeatedly draw from the estimated joint
distribution of parameters; for each draw, we compute the average (over markets)
diversion ratios for all pairs of products, thus generating a bootstrap distribution.
We take 500 draws.
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Abstract

We present simulations investigating some properties of the Inverse Prod-

uct Differentiation Logit (IPDL) model.

Notation We use italics for scalar variables and real-valued functions, boldface
for vectors, matrices and vector-valued functions, and calligraphic for sets. R+ is
the set of non-negative real numbers, R++ is the set of positive real numbers, and
RJ+1

++ = (0,∞)J+1. As default, vectors are column vectors: s = (s0, . . . , sJ)ᵀ ∈
RJ+1.

∆J ⊂ RJ+1 is the unit simplex : ∆J =
{
s ∈ [0,∞)J+1 :

∑
j∈J sj = 1

}
, and

∆◦J =
{
s ∈ (0,∞)J+1 :

∑
j∈J sj = 1

}
is its relative interior.

Let G = (G0, . . . , GJ) : RJ+1 → RJ+1 be a vector function composed of
functions Gj : RJ+1 → R. The matrix Js

G(s) ∈ R(J+1)×(J+1) with entries (i +

1, j + 1) given by ∂Gi(s)
∂sj

denotes the Jacobian of G with respect to s at point s.
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A univariate function R → R applied to a vector is a coordinate-wise applica-
tion of the function, e.g., ln (s) = (ln (s0) , . . . , ln (sJ)). |s̃| =

∑
j∈J |s̃j| denotes

the 1-norm of vector s̃.

The IPDL model Recall first that d(j) is the set of products that are grouped
with product j according to grouping characteristic d and that sd(j) =

∑
k∈d(j) sk

denotes the market share of group d (j). To ease exposition, we omit notation for
parameters θ2 and markets t.

In the IPDL model, the matrix of derivatives of the market share function σ

with respect to prices p, Jp
σ(δ), has entries ∂σi(δ)/∂pj equal to

Jp
σ(δ) = −α

(
[Js

lnG(s)]−1 − ssᵀ
)
, (1)

with s = σ(δ) and where Js
lnG(s) has entries given by

∂ lnGi(s)
∂sj

=



1−
∑D

d=1 µd

si
+
∑D

d=1

µd

sd(i)
, i = j > 0,∑D

d=1

µd

sd(i)
1{j ∈ d(i)}, i 6= j, i > 0, j > 0,

1

s0
, i = j = 0

0, otherwise.

(2)

We cannot obtain closed-form formulae for the entries of the matrix price deriva-
tives, and in turn, for the diversion ratios between products. We therefore perform
simulations to better understand the substitution patterns of the IPDL model. We
focus on the diversion ratios.

The diversion ratio from product j to product k is the fraction of consumers
leaving product j following a price increase of product j, who switch to product k.
It is given in percentage terms by −100(∂σk(δt)/∂pjt)/(∂σj(δt)/∂pjt)).

Simulated Data We simulate markets with 45 products and an outside good. For
this, we first simulate:

• 20 different grouping structures according to 3 grouping characteristics, and
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with 3 groups per characteristic. We obtain a grouping structure by simulat-
ing a 20 × 3 matrix of random numbers following a generalized Bernoulli
distribution.

• 20 different vectors of grouping parameters µ = (µ0, . . . , µ3). We obtain a
vector of µ by simulating a 4-vector of uniformly distributed random num-
bers, where the first element is µ0, then normalizing so that µ ∈ ∆◦3. This
normalization ensures that we simulate markets with very low and very high
values for µ0.

• 20 different vectors of market shares s = (s0, . . . , s45). We obtain a vector
of market shares by simulating a 461-vector of uniformly distributed random
numbers, where the first element is s0, then by normalizing the vector of
market shares of products so that s ∈ ∆◦45. This normalization ensures that
we simulate markets with very low and very high values for s0.

Then, we combine the grouping structures, the grouping parameters and the
market shares to form 8, 000 markets. Table 1 gives summary statistics.

Table 1: Summary Statistics on the Simulated Data

Variable Mean Min Max
q0 0.5297 0.0015 0.9452
q 0.0105 9e-06 0.0494
µ0 0.4662 0.0697 0.9532
µ1 0.2014 0.0135 0.8480
µ2 0.1420 0.0175 0.4036
µ3 0.1904 0.0059 0.5212

Grouping Structures Table 2 shows the distribution of the diversion ratios be-
tween products according to the number of common groups.

Diversion ratios can be either negative (complementarity) or positive (substi-
tutability). Products of the same type are always substitutes. Otherwise, products
can be either substitutes or complements. Products are more likely to be comple-
ments as they become more different.
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Table 2: Diversion Ratios according to the Number of Common Groups

# Common groups Median Mean Complements
0 (None) -0.020 -0.320 52.29%
1 0.953 1.442 8.93%
2 2.314 3.269 0.00%
3 (All) 3.665 5.219 0.00%
Notes: Column "Complements" gives the percentage of negative diversion ratios
according to the number of common groups. E.g., 52.29% of the pairs of products
sharing zero group are complements.

.

Grouping Parameters Table 3 shows the distribution of diversion ratios accord-
ing to the proximity of products into the characteristics space used to form product
types, as measured by µjk =

∑3
d=1 µd1 {j ∈ Gd (k)} for two products j and k.

As the parameter µjk becomes larger, we observe that (i) the diversion ratios in-
crease in values, and that (ii) the share of complements decreases. This is because
higher µd means that products of the same group according to grouping character-
istic d become more similar.

Table 3: Percentage of Complements according to the Value of µjk

µjk Median Mean Complements
[0, 0.1[ 0.181 -4.529 36.09%

[0.1, 0.2[ 1.262 1.540 3.14%
[0.2, 0.3[ 1.611 1.973 5.66%
[0.3, 0.4[ 1.955 2.531 4.28%
[0.4, 0.5[ 2.192 2.856 5.64%
[0.5, 0.6[ 3.902 4.692 0.00%
[0.6, 0.7[ 5.110 5.759 0.00%
[0.7, 0.8[ 5.793 6.478 0.00%
[0.8, 0.9[ 4.915 5.856 0.00%
[0.9, 1[ 10.559 11.322 0.00%

Notes: Column "Complements" gives the percentage of negative di-
version ratios according to the number of common groups. E.g.,
52.29% of the pairs of products sharing zero group are complements.
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Summary In the IPDL model,

1. (Grouping structure) Products of the same type are always substitutes. Prod-
ucts of different types may be substitutes or complements, depending on the
degree of closeness between products as measured by the value of the param-
eters µd and by the closeness of the products into the characteristics space
used to form product types. The closer two products are, the more likely they
are to be substitutes.

2. (Grouping parameters) The size of the diversion ratios depends on the degree
of closeness. The closer two products are, the higher is their diversion ratio.
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