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Abstract 

Peer-to-peer ridesharing, where drivers are also travellers, can alleviate congestion and emissions that 

plague cities by increasing vehicle occupancy. We propose a socially optimal ridesharing scheme, 

where a social planner matches passengers and drivers in a way that minimizes travel costs (travel 

time and fuel) plus environmental costs. The contribution helps in computing the socially optimal 

ridesharing schemes for networks of any topology within a static framework of route choice with 

exogenously fixed travel times. A linear programming problem is formulated to compute the optimal 

matchings. Existence, integrality and uniqueness properties are investigated. The social planner 

receives a payment from passengers and rewards drivers for the higher costs they bear. Passengers 

and drivers never incur a loss because travelling alone remains always an option, but matchings may 

need to be subsidised. The socially optimal matching solution without environmental costs is proved 

to satisfy the stability property according to which no pair of passenger and driver prefers each other 

to any of the current partners. In the Sioux Falls network, when 20% of individuals are willing to 

rideshare, with 80% of passengers travelling by car and 20% by public transport, 17.37% optimally do 

so, resulting in a 7.05% decrease in CO2 emissions on the all-travel-alone scenario.  

Keywords: environment, matching stability, optimization, ridesharing, socially optimal matching 

JEL classification: C78, R40, R48 

1. Introduction 

Ridesharing, also referred to as carpooling, increases vehicle occupancy by allowing more individuals 

to travel together while sharing their travel costs. Ridesharing is expanding its market penetration as 

innovative mobility service in cities and between cities and became more prevalent worldwide.  

Ridesharing services can be classified as follows. The first type is informal ridesharing. The second type 

is community ridesharing. This ridesharing involves a third party providing the matching functionality 

(e.g. Zimride). Examples of community ridesharing are home-to-work travel by colleagues of the same 

or neighbouring company, or home-to-event travel by event participants (e.g. conference 

participants).  The third type is peer-to-peer ridesharing, where drivers are also travellers (e.g. 
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Blablacar). The provision of the service by drivers is not for profit aims. The platform may charge a 

commission fee, which adds to the transfer payment between passenger and driver. The fourth type 

is ridesharing where drivers are not travellers and provide the service for profit aims. Uber is an 

example of a Transportation Network Company (TNC) providing matching between such drivers and 

passengers (Campbell, 2018). A new job market has been created. Opposition from taxi corporations, 

especially when taxis pay for an expensive driving licence, is a barrier to this type of ridesharing. In 

some countries it is prohibited. As an example, in Italy, UberPool and UberX are prohibited, while 

UberPremium is permitted because it is recognised the status of ‘rent with driver’ service (‘noleggio 

con conducente’) in compliance with existing legislation. Moreover, several studies show that TNCs 

may increase congestion since they decrease, de facto, car occupancy (see more below). 

A reduction of vehicle-kilometres travelled, with benefits in terms of congestion and of environmental 

and safety externalities, is expected from ridesharing. However, the empirical evidence contradicts 

this expectation. A study by Schaller (2021) on Uber and Lyft services in four cities in the United States 

and in suburban areas of California showed that ridesharing led to at least a doubling of vehicle-

kilometres travelled when comparing ridesharing trips with users’ previous mode. This is mainly due 

to addition of dead-head kilometres before each pick-up and to travellers switching to ridesharing 

from public transport, biking and walking. Another study by Diao et. al. (2021) examined the impacts 

of TNCs in the United States. It found that TNCs increased road congestion while transit ridership 

declined with an insignificant change in vehicle ownership.  

The evidence from simulation studies is more ambiguous because it highly depends on the 

assumptions made and on the city structure. As an example, Caulfield (2009) estimated a significant 

amount of CO2 savings from ridesharing in Dublin, when respondents were to rideshare for a return 

trip, 5 days per-week, 44 weeks a year. Ridesharing reduced annual CO2 emissions by 12 674 t with 

respect to travelling alone by car, when only 4% of the respondents rideshare to work. In a simulation 

study conducted over 247 cities worldwide, Tikoudis et al. (2021) found that in public transport 

dependent cities ridesharing may draw users away from this mode contributing to a net increase in 

CO2 emissions. In car dependent urban areas, strong preference for private car and low density may 

attenuate the ridesharing environmental impact mitigation potential. Beojone and Geroliminis (2021) 

found longer travel times in Shenzhen, China, because of higher empty kilometres travelled by idle 

vehicles without assigned passengers.  

These findings make a case for peer-to-peer ridesharing, since it should suffer to a lower extent from 

empty-vehicle travel. Peer-to-peer ridesharing in cities is the focus of the current paper. There are two 

key service features. The first is matching between demand, i.e. passengers, and supply, i.e. drivers. 
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The second is pricing. This refers to the transaction price that is paid by passengers to drivers. Both 

are determined with the support of a digital platform. In the transportation literature, a number of 

authors have adopted an equilibrium approach. At equilibrium, no agent (passenger or driver) has an 

incentive to change choice. Choices include travelling alone versus ridesharing, matching and route.  

Matching and pricing are computed at equilibrium. An up-to-date review of the relevant literature is 

found in Wang et al. (2021).  

Most recently, Chen and Di (2021) have proposed a bi-level network design approach, where pricing 

is optimized under the equilibrium constraints for matching and route choices. Two criteria are 

considered for optimal prices: maximization of social welfare and maximization of platform profit. The 

platform profit criterion is typical of the literature from production economics, which, however, does 

not consider the network dimension of the problem. See, among the others, Özkan (2020) and Dong 

and Leng (2021). The latter reference provides an up-to-date review of this literature.  

No contribution is found where matching is optimised with reference to a social objective in a static 

model. The paper aims to fill this gap. Indeed, peer-to-peer ridesharing appears particularly promising 

when a social planner manages the platform and matching between passengers and drivers minimizes 

the sum of travel costs (travel time and fuel) and environmental costs. The paper evaluates the cost 

savings brought about by a socially optimal ridesharing scheme on the baseline scenario where all 

travel alone by car or public transport. Additionally, the interest is in the distribution analysis to assess 

how the ridesharing scheme impacts the different agents (passengers, drivers and social planner). 

Pricing decisions are determined with the aim of guaranteeing that both passengers and drivers have 

the right incentives to participate in the ridesharing scheme.  

Socially optimal ridesharing has been analysed in the stylised case of a commuting corridor with the 

dynamic bottleneck model (de Palma et al., 2020). We extend the analysis to networks of general 

topology with consideration of traveller’s route choice only. Our framework is static because, 

contrarily from the bottleneck model, departure time choices are not modelled. The paper does not 

exclude that the network is congested, but travel times are considered to be unaffected by 

ridesharing. This is clearly an approximation. Nevertheless, the analysis will provide novel and non-

intuitive insights.    

Our aim is to build on the literature about the economics of matching. This has investigated, in 

particular, college admission, marriage, and the job market where workers are matched with firms. A 

classical reference is Roth and Sotomayor (1990). Galichon (2018) provides a comprehensive 

treatment of the mathematical models of the job market. This market has commonalities with 
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ridesharing because demand of different types (firms and passengers with different origin and 

destination) is matched with supply of different types (workers and drivers with different origin and 

destination) and a price is paid by the buyers (firms and passengers) to the sellers (workers and 

drivers). An environmental externality in the matching problem has not been explored so far in the 

literature. This leads to a new type of problem: social optimal matching with externalities. In this 

approach we assume that travel times are fixed, i.e. that the level of congestion is fixed.  

The optimal matching problem will be formulated as a linear programming problem. Matching flows 

are the decision variables, which are required to be integer. However, we will prove that there is no 

need to formulate an integer linear programming problem, because an integer solution exists to the 

continuous problem and is provided by the commonly used simplex algorithm.  

A key concept in the literature is matching stability: no pair of worker and firm prefers each other to 

any of the current partners. This is a state of equilibrium which does not require the action of a social 

planner. The paper will apply stability to ridesharing. A key finding in the absence of externalities is 

the stability of the matchings that are dictated by a social planner who maximizes the sum of the 

payoffs of worker and firm from matching. The paper will show that this finding applies to ridesharing, 

when congestion and other externalities are not considered. Clearly, different matchings are obtained 

when the social planner minimizes not only the travel costs of passengers and drivers, but 

environmental costs as well. An analysis of the differences between the case with environmental costs 

in the objective function of the social planner and the case without will be provided. 

The remainder of the paper is as follows. The ridesharing scheme and associated matching and pricing 

are introduced in Section 2, and illustrated with a worked example related to a simple triangle 

network. Section 3 includes the formulation of the socially optimal matching problem along with the 

equivalence with stable matching. Section 4 provides the numerical analysis of the socially optimal 

ridesharing scheme in the case of the Sioux Falls network. Finally, the results and the directions of 

future work are discussed in Section 5. 

2. The scheme and a simple example 

The socially optimal ridesharing scheme with incentives to participate is as follows. There is a fixed 

number of subscribers, passengers and drivers, to the ridesharing scheme. Part of passengers would 

travel alone by car, part would travel alone by public transport (PT). A driver can be alone or with a 

passenger in the car. The social planner identifies the socially optimal matchings. Individual travel cost 

(travel time and fuel cost) and emission cost are relevant in this regard. All subscribers conform to the 

socially optimal matchings dictated by the social planner. Each driver is matched with only one 
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passenger and each passenger with only one driver. Travelling alone can be socially optimal. Matching 

is termed balanced if we have the same total number of passengers and drivers, unbalanced 

otherwise. Both cases are considered. Since there is very little empirical literature on estimation of 

inconvenience cost, we prefer to ignore it rather than making ad-hoc hypotheses. We assume that 

travel time is constant and focus our attention on the environmental externality.  

The social planner evaluates the maximum willingness to pay of each passenger (it is equal to the cost 

saving when matching, with respect to travelling alone), and the minimum willingness to accept of 

each driver (it is equal to the cost increase when matching, with respect to travelling alone). Travel 

time cost, fuel cost and PT fare are relevant in this regard. The social planner receives the maximum 

willingness to pay from each passenger and pays the minimum willingness to accept to each driver. 

With this mechanism, neither passenger nor driver loses. The social planner gains the difference 

between what is paid by the passenger and what is received by the driver. This difference is never 

negative because there is always the possibility of travelling alone. Additionally, a modified 

mechanism can be designed where every passenger and every driver gains, if each passenger pays 

slightly less than the maximum willingness to pay and each driver receives slightly more than the 

minimum willingness to accept. In this case, there can be matchings with a deficit for the social planner 

which need cross-subsidisation. Post-processing evaluates whether the social planner overall budget 

constraint is satisfied, meaning that a net surplus exists, or not. In the latter case, subsidies to the 

scheme are needed.  

A simple example below illustrates the socially optimal ridesharing scheme from a simple triangle 

network example. Arc lengths (km) are provided for the A-B-C network in Figure 1. Let A, B and C be 

origin and destination nodes. 

 

Fig.1. Triangle network example 
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There are two travellers on the network: one passenger goes from C to B and one driver from A to B. 

Travel speed on the links is 40 km/h, value of travel time is 12.96 €/h, and fuel cost is 0.16 €/km (fuel 

consumption 10km/l and fuel price is 1.6 €/l). Environmental cost is calculated for CO2 emissions. 

Average emission rate is 120 g CO2/vkm for cars (average value in Europe) and it costs 100 €/t CO2, so 

the emission cost is 0.01 €/vkm (It is 1.14 €-cent/vkm in the Handbook on the External Costs of 

Transport by the European Commission, 2019). Walking speed is 3.6 km/h and value of travel time for 

walking is 4.32 €/h. Table 1 shows values of the different cost items by arc. 

Table 1. Cost components by arc in triangle network 

Arc Travel time (minutes) Travel time cost (€) Fuel cost (€) Emission cost (€) 

A-B 15 3.15 1.6 0.114 

A-C 3 0.63 0.32 0.03 

C-B 15.3 3.213 1.632 0.116 

First, a baseline scenario is considered, where everyone travels alone and the costs are computed for 

both travellers on link A-B and C-B. The social planner will match passenger C-B to the driver A-B by 

minimizing the matching cost. To find the optimal match, travel cost (travel time and fuel) and 

emission cost are considered. At optimum, driver will do detour from A to C and will match with 

passenger C-B. The cost of matching and savings when moving from the baseline scenario to the 

socially optimal matching scenario are provided in Table 2. 

In the baseline scenario both passenger and driver will have travel time, fuel and emission costs. When 

they match to share the ride, the fuel and emission costs are only applicable to driver for her trip A-C-

B including detour A-C. Society has a total saving of 0.671 € in terms of total social cost, equal to the 

difference between cost in the baseline scenario and cost in the socially optimal matching scenario. 

This simple network explains the benefit of socially optimal ridesharing that we explore hereafter for 

larger networks. 

Passenger has a maximum willingness to pay of 1.632 € and driver has a minimum willingness to accept 

of 1.045 €. If passenger pays 1.632 € and driver receives 1.045 €, then neither passenger nor driver 

loses, and social planner ends up with a profit of 0.587 €. 
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Table 2. Traveller’s cost in triangle network for the baseline and the socially optimal matching 

scenario 

 Baseline scenario Socially optimal matching scenario 

 OD Route Travel 

time 

cost (€) 

Fuel 

Cost 

(€) 

Emission 

cost (€) 

Total 

Cost (€) 

Route Travel 

time 

cost (€) 

Fuel 

cost 

(€) 

Emission 

cost (€) 

Total 

cost 

(€) 

Passenger C-B C-B 3.213 1.632 0.116 4.961 C-B 3.213 0 0 3.213 

Driver A-B A-B 3.15 1.6 0.114 4.864 A-C-B 3.843 1.952 0.146 5.941 

Society   6.363 3.232 0.23 9.825  7.056 1.952 0.146 9.154 

3. Mathematical formulation of socially optimal ridesharing 

In this section, we look into socially optimal ridesharing, in which the social planner determines 

matchings by minimizing the overall social cost.  

3.1 Notation 

Indexes and superscripts 

𝑎, 𝐴 arc and car index 

𝐵 PT (Public Transport) index 

𝐷 driver superscript 

𝑖,𝑗 passenger and driver OD pair index 

𝑃 passenger superscript 

𝑊 walk index 

Parameters and fixed entities  

𝑐𝐴𝑖, 𝑐𝐵𝑖  social cost of one user travelling alone by car and by PT on OD pair 𝑖 [€/user] 

𝑐𝑖𝑗  social cost of matching a passenger of OD pair 𝑖 with a driver of OD pair 𝑗 [€/user] 

𝑘1𝑎 cost per vehicle-km of fuel consumption on arc 𝑎 (speed dependent) [€/vkm] 

𝑘2𝑎 cost per vehicle-km of emissions on arc 𝑎 (speed dependent) [€/vkm] 

𝐿𝑎 length of arc 𝑎 [km] 

𝑀 number of OD pairs 

𝑁𝑖
𝐷 number of drivers of OD pair 𝑖 [user] 

𝑁𝐴𝑖
𝑃 , 𝑁𝐵𝑖

𝑃  number of car and PT passengers of OD pair 𝑖 in the baseline scenario [user] 
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𝑟𝐴𝑖𝑗,𝑟𝐵𝑖𝑗 reservation price of passengers (maximum willingness to pay) who travel by car 

and by PT in the baseline scenario associated with matching  𝑖𝑗 [€/user] 

𝑟𝐷𝑖𝑗 reservation price of drivers (minimum willingness to accept) associated with 

matching 𝑖𝑗 [€/user] 

𝑅𝐴𝑖,𝑅𝐵𝑖  user optimal travel route by car and by PT of OD pair 𝑖 

𝑅𝑖𝑗
𝐷  socially optimal driver’s travel route when matching OD pair 𝑖 with OD pair 𝑗  

(optimum of four cases) 

𝑅𝑖𝑗
𝑃  socially optimal passenger’s travel route when matching OD pair 𝑖 with OD pair 𝑗  

(optimum of four cases) 

𝑅𝐴𝑖𝑗
𝑃  socially optimal passenger’s route travelled by car when matching OD pair 𝑖 with 

OD pair 𝑗 (optimum of four cases) 

𝑅𝑊𝑖𝑗
𝑃  socially optimal passenger’s route travelled walking when matching OD pair 𝑖 

with OD pair 𝑗 (optimum of four cases) 

𝑡𝐴𝑎, 𝑡𝐵𝑎,𝑡𝑊𝑎 travel time by car, by PT and by walk on arc 𝑎 [hour] 

𝛼𝐴,𝛼𝐵,𝛼𝑊 value of travel time when using a car, PT and when walking [€/hour] 

𝛾 gain factor 

𝜑 PT fare per trip [€/user] 

Decision variables 

𝑥𝑖𝑗  number of passengers of OD pair 𝑖 matched with drivers of OD pair 𝑗 [user] 

𝑥𝐴𝑖𝑗  number of passengers who travel by car in the baseline scenario of OD pair 𝑖 and 

who are matched with drivers of OD pair 𝑗 [user] 

𝑥𝐵𝑖𝑗  number of passengers who travel by PT in the baseline scenario of OD pair 𝑖 and 

who are matched with drivers of OD pair 𝑗 [user] 

Other variables 

𝑝𝑖𝑗  transfer payment in matching 𝑖𝑗 [€/user] 

𝑆𝑖𝑗 social planner cost for matching 𝑖𝑗 [€] 

𝑇𝑖𝑗 social planner revenue for matching 𝑖𝑗 [€] 

𝑢𝐴𝑖  surplus of passenger (reservation price minus transfer payment) of OD pair 𝑖 who 

travels by car in the baseline scenario [€/user] 

𝑢𝐵𝑖 surplus of passenger (reservation price minus transfer payment) of OD pair 𝑖 who 

travels by PT in the baseline scenario [€/user] 

𝑣𝑗 surplus of driver (transfer payment minus reservation price) of OD pair 𝑗 [€/user] 
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3.2 Social costs 

Matching cost 

The social cost associated with matching of one passenger of OD pair 𝑖 with one driver of OD pair 𝑗 is 

given by the cost of passenger’s travel time, plus the cost of driver’s travel time, plus fuel consumption 

cost, plus environmental cost: 

𝑐𝑖𝑗 = ∑ 𝛼𝑤𝑡𝑤𝑎 + ∑ 𝛼𝐴𝑡𝐴𝑎 +𝑎∈𝑅𝐴𝑖𝑗
𝑃𝑎∈𝑅𝑤𝑖𝑗

𝑃 ∑ 𝛼𝐴𝑡𝐴𝑎 + ∑ 𝑘1𝑎𝐿𝑎 + ∑ 𝑘2𝑎𝐿𝑎𝑎∈𝑅𝑖𝑗
𝐷𝑎∈𝑅𝑖𝑗

𝐷𝑎∈𝑅𝑖𝑗
𝐷 . (1) 

Notice that fuel cost and environmental cost are assumed proportional to vehicle-km travelled. 

Environmental costs account for emissions of CO2 and local pollutants. 

Cost of travelling alone 

The social cost of one user travelling by car is given by the cost of travel time plus fuel cost plus 

environmental cost:  

𝑐𝐴𝑖 = ∑ 𝛼𝐴𝑡𝐴𝑎 + ∑ 𝑘1𝑎𝐿𝑎 + ∑ 𝑘2𝑎𝐿𝑎𝑎∈𝑅𝐴𝑖𝑎∈𝑅𝐴𝑖𝑎∈𝑅𝐴𝑖
. (2) 

The social cost of one user travelling by PT is given by the cost of travel time: 

𝑐𝐵𝑖 = ∑ 𝛼𝐵𝑡𝐵𝑎𝑎∈𝑅𝐵𝑖
. (3) 

A situation of under capacity is assumed for PT. This means that the marginal user does not add to 

vehicle-km and, therefore, fuel costs and environmental costs are omitted. 

3.3 Optimal routes 

A user's route is the route the individual selects to her destination. The optimal route in matching is 

the route that twins a passenger with a driver minimising social cost for given origin and destination.  

Optimal routes associated with matching 

Optimal route for matching is identified as soon as the social planner decides who will do detour 

between driver and passenger at both origin and destination. Matching in our case will happen either 

at drivers’ origin or at passengers’ origin and the same applies for the destination. Four matching cases 

are considered to take all possibilities into account (Fig. 2). In case 1: passenger walks to driver origin 

then both travels together to driver destination and then again passenger walks to her destination. In 

case 2: passenger detours at origin and driver detours at destination. In case 3: driver detours at origin 

and passenger detours at destination. In case 4: driver detours at both origin and destination.  
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Routes 𝑅𝑖𝑗
𝑃 = 𝑅𝑊𝑖𝑗

𝑃 ∪ 𝑅𝐴𝑖𝑗
𝑃  chosen by passengers when matched, and routes 𝑅𝑖𝑗

𝐷  chosen by drivers 

when matched, are identified off-line based on the optimum, i.e., minimum social cost 𝑐𝑖𝑗, of the four 

cases illustrated in the figure. It is implicitly assumed that vehicles are guided in their route choice.  

 

Fig. 2. The four matching cases of driver to passenger, where either passenger or 

driver detours at origin and destination 

Here, just one passenger matching is evaluated to keep the formulation simple. It is straightforward 

to extend to multiple matchings i.e., matchings involving several driver-passenger pairs.   

Optimal routes associated with travelling alone 

The routes 𝑅𝐴𝑖  travelled by users by car and the routes  𝑅𝐵𝑖  travelled by users by PT when matching is 

not implemented are identified based on minimum travel time cost. The shortest route cost considers 

only travel time cost and not social cost.  

3.4 Socially optimal matching 

We formulate the socially optimal matching problem in the general case, where travelling alone can 

be socially optimal, and where the total number of passengers can be higher than, equal to or lower 

than the total number of drivers. There are 𝑀 OD pairs that are identical for passengers and drivers.  

We introduce a dummy passenger OD pair denoted by the index 𝑀 + 1. If a driver is assigned to this 

dummy passenger OD pair, then it means that the driver is not matched and travels alone. 

We introduce a dummy driver OD pair denoted by the index 𝑀 + 1. If a passenger is assigned to this 

dummy driver OD pair, then it means that the passenger is not matched and travels alone by car or by 

PT as in the baseline scenario. 

The decision variables are: 
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𝑥𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑀 flow of passengers of OD pair 𝑖 who are matched with drivers of OD pair 𝑗 

𝑥𝐴𝑖,𝑀+1, 𝑖 = 1, … , 𝑀 flow of passengers of OD pair 𝑖 who travel by car in the baseline and who 

are not matched 

𝑥𝐵𝑖,𝑀+1, 𝑖 = 1, … , 𝑀 flow of passengers of OD pair 𝑖 who travel by PT in the baseline and who 

are not matched 

𝑥𝑀+1,𝑗, 𝑗 = 1, … , 𝑀 flow of drivers of OD pair 𝑗 who are not matched. 

Formulation of Problem 𝑷𝟏 - Socially optimal matching: the total social cost of matchings and travel 

alone is minimised subject to the assignment constraints and the non-negativity constraints 

min  ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗 +𝑗=1,…,𝑀𝑖=1,…,𝑀 ∑ 𝑐𝐴𝑖𝑥𝐴𝑖,𝑀+1 + ∑ 𝑐𝐵𝑖𝑥𝐵𝑖,𝑀+1𝑖=1,…𝑀𝑖=1,…𝑀 +∑ 𝑐𝐴𝑗𝑥𝑀+1,𝑗,𝑗=1,…,𝑀  (4) 

subject to: 

∑ 𝑥𝑖𝑗 + 𝑥𝐴𝑖,𝑀+1 + 𝑥𝐵𝑖,𝑀+1𝑗=1,…,𝑀 = 𝑁𝐴𝑖
𝑃 + 𝑁𝐵𝑖

𝑃 , 𝑥𝐴𝑖,𝑀+1 ≤ 𝑁𝐴𝑖
𝑃 , 𝑥𝐵𝑖,𝑀+1 ≤ 𝑁𝐵𝑖

𝑃 , 𝑖 = 1, … , 𝑀,  (5) 

∑ 𝑥𝑖𝑗 + 𝑥𝑀+1,𝑗𝑖=1,…,𝑀 = 𝑁𝑗
𝐷 ,    𝑗 = 1, … , 𝑀,  (6) 

𝑥𝑖𝑗 ≥ 0, 𝑖 = 1, … , 𝑀; 𝑗 = 1, … , 𝑀,  (7a) 

𝑥𝐴𝑖,𝑀+1 ≥ 0, 𝑥𝐵𝑖,𝑀+1 ≥ 0 ,    𝑖 = 1, … 𝑀,  (7b) 

𝑥𝑀+1,𝑗 ≥ 0,    𝑗 = 1, … , 𝑀. (7c) 

The objective function in Eq. (4) equals the social cost of all matchings plus the social cost of not 

matching passengers who travel by car in the baseline, plus the social cost of not matching passengers 

who travel by PT in the baseline, plus the social cost of not matching drivers.  

The first set of constraints of Eqs (5) is the assignment of passengers of each OD pair to drivers (true 

drivers and dummy driver). The second set of constraints of Eqs (6) is the assignment of drivers of each 

OD pair to passengers (true passengers and dummy passenger). The third set of constraints of Eqs 

(7a), (7b) and (7c) is non-negativity of decision variables. 

An existence theorem is provided in Proposition 1 below. 

The optimal solution allocates each total passenger OD flow to the different true driver od pairs. The 

solution is indeterminate in terms of optimal allocation of passenger flows who used car in the 

baseline scenario, and of passenger flows who used PT in the baseline scenario. Therefore, we 

introduce the additional decision variables: 
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𝑥𝐴𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑀 flow of passengers of OD pair 𝑖 who travel by car in the baseline and who 

are matched with driver OD pair 𝑗 

𝑥𝐵𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑀 flow of passengers of OD pair 𝑖 who travel by PT in the baseline and who 

are matched with driver OD pair 𝑗. 

The reason why we have not formulated the problem in terms of these decision variables is 

indeterminacy: the matching cost in the objective function depends on the total matching flow 𝑥𝑖𝑗 =

𝑥𝐴𝑖𝑗 + 𝑥𝐵𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑀. To find the values of 𝑥𝐴𝑖𝑗 , 𝑥𝐵𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑀, we maximise the profit of 

the social planner. 

The social planner matches drivers and passengers, and for each matching passengers have some 

willingness to pay and drivers have some willingness to accept. The maximum willingness to pay for 

the passenger is the difference between the cost travelling alone and the cost ridesharing. The extra 

money she will save by sharing a ride will be equal to her maximum willingness to pay. Since the 

passenger is the buyer, her maximum willingness to pay is her reservation price. The minimum 

willingness to accept for the driver is the difference between the cost ridesharing and the cost 

travelling alone. The extra money she will pay when sharing a ride will be equal to her minimum 

willingness to accept. Since the driver is the seller, her minimum willingness to accept is her 

reservation price. If passenger or driver travels alone, then her reservation price is zero. 

Given the matching 𝑖𝑗, 𝑖, 𝑗 = 1, … , 𝑀, the following hold. 

The reservation price of a passenger (maximum willingness to pay) of od pair 𝑖 travelling alone by car 

is the difference between the cost of car passenger travelling alone (travel time cost by car and fuel 

cost) and cost of ridesharing (travel time cost walking and by car): 

𝑟𝐴𝑖𝑗 =   ∑ 𝛼𝐴𝑡𝐴𝑎𝑎∈𝑅𝐴𝑖
+  ∑ 𝑘1𝑎𝐿𝑎𝑎∈𝑅𝐴𝑖

−  ( ∑ 𝛼𝑤𝑡𝑤𝑎𝑎∈𝑅𝑤𝑖𝑗
𝑃 +  ∑ 𝛼𝐴𝑡𝐴𝑎𝑎∈𝑅𝐴𝑖𝑗

𝑃 ).  (8) 

The reservation price of a passenger (maximum willingness to pay) of od pair 𝑖 travelling alone by PT 

is the difference between the cost of PT passenger travelling alone (travel time cost by PT and trip 

fare) and cost of ridesharing (travel time cost walking and by car): 

𝑟𝐵𝑖𝑗 =  ∑ 𝛼𝐵𝑡𝐵𝑎𝑎∈𝑅𝐵𝑖
+   𝜑 − ( ∑ 𝛼𝑤𝑡𝑤𝑎𝑎∈𝑅𝑤𝑖𝑗

𝑃 +   ∑ 𝛼𝐴𝑡𝐴𝑎𝑎∈𝑅𝐴𝑖𝑗
𝑃 ). (9) 

The reservation price of a driver (minimum willingness to accept) of od pair 𝑗 is: the difference 

between the cost of driver ridesharing (travel time cost by car and fuel cost when matched) and cost 

of travelling alone (travel time cost by car and fuel cost).  
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𝑟𝐷𝑖𝑗 =  ∑ 𝛼𝐴𝑡𝐴𝑎𝑎∈𝑅𝑖𝑗
𝐷 +  ∑ 𝑘1𝑎𝐿𝑎𝑎∈𝑅𝑖𝑗

𝐷  − ( ∑ 𝛼𝐴𝑡𝐴𝑎𝑎∈𝑅𝐴𝑗
+   ∑ 𝑘1𝑎𝐿𝑎𝑎∈𝑅𝐴𝑗

). (10) 

Assume that the social planner receives from the passenger her maximum willingness to pay and pays 

to the driver her minimum willingness to accept. In that case, the passenger and the driver are neutral, 

i.e. they incur neither gain nor loss. The profit of the social planner equals the difference between the 

maximum willingness to pay of the passenger and the minimum willingness to accept of the driver. If 

the profit is positive, then the social planner will have a surplus. If the profit is negative, then the social 

planner will have a deficit. However, it is to see that, since there is the option of travelling alone, the 

profit is never negative. The sum of profits of all matchings equals the total social planner profit. 

More generally, assume that the passenger and the driver are neutral or gain. Let 𝛾 ≥ 0 be the gain 

factor. It measures the fraction of maximum willingness to pay that is not paid by the passenger. It 

also measures the fraction of minimum willingness to accept that is received in addition by the driver. 

If 𝛾 = 0 there is no gain for passengers and drivers (the previous neutrality case). The higher the 𝛾 

value we consider, the higher the gain for drivers and passengers and the lower the budget available 

for the social planner. This is because the passenger pays less than her maximum willingness to pay 

and the driver receives more than her minimum willingness to accept. 

For matching 𝑖𝑗, the social planner revenue is the sum of the payments by passengers who would 

travel alone by car plus the payments by passengers who would travel alone by PT:  

𝑇𝑖𝑗 = (1 − 𝛾)𝑟𝐴𝑖𝑗𝑥𝐴𝑖𝑗 + (1 − 𝛾)𝑟𝐵𝑖𝑗𝑥𝐵𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑀, (11) 

while the social planner cost is the sum of the payments to drivers: 

𝑆𝑖𝑗 = (1 + 𝛾)𝑟𝐷𝑖𝑗𝑥𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑀. (12) 

Formulation of Problem 𝑷𝟐 - Socially optimal matching step 2: the social planner’s profit, equal to 

the difference between revenues and costs, is maximised subject to the demand conservation 

constraints and the non-negativity constraints 

max ∑ ∑ (𝑇𝑖𝑗 − 𝑆𝑖𝑗),𝑀
𝑗=1

𝑀
𝑖=1           (13) 

subject to: 

𝑥𝐴𝑖𝑗 + 𝑥𝐵𝑖𝑗 = 𝑥𝑖𝑗, 𝑖, 𝑗 = 1, … , 𝑀,  (14) 

∑ 𝑥𝐴𝑖𝑗 + 𝑥𝐴𝑖,𝑀+1𝑗=1,…,𝑀 = 𝑁𝐴𝑖
𝑃 ,    𝑖 = 1, … , 𝑀, (15a) 

∑ 𝑥𝐵𝑖𝑗 + 𝑥𝐵𝑖,𝑀+1𝑗=1,…,𝑀 = 𝑁𝐵𝑖
𝑃 ,    𝑖 = 1, … , 𝑀,  (15b) 
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𝑥𝐴𝑖𝑗 ≥ 0, 𝑥𝐵𝑖𝑗 ≥ 0, 𝑖 = 1, … , 𝑀; 𝑗 = 1, … , 𝑀. (16) 

The objective function in Eq. (13) is the total profit of the social planner. The first set of constraints of 

Eqs (14) is the flow conservation for each matching. The second set of constraints of Eqs (15a) and 

(15b) is the flow conservation for each passenger OD pair. The third set of constraints of Eqs (16) is 

non-negativity of decision variables. 

The two optimization Problems 𝑃1 and 𝑃2 need to be solved in two steps in series. Both optimization 

problems are linear. The following proposition justifies why integrality constraints on the flow decision 

variables are un-necessary. 

Proposition 1. Consider Problems 𝑃1 and 𝑃2. If the constants of the constraints are integer, then there 

exists one optimal integer solution to each problem. Solution to Problems 𝑃1 and 𝑃2 provided by the 

simplex algorithm are integer. 

Proof.  First, we need to re-formulate the constraints of both problems in compact form as 𝐴𝑥 ≤

𝑏, 𝑥 ≥ 0. Then, in the light of Farkas lemma, a solvability theorem for a finite system of linear 

inequalities (Gale et al., 1951), a feasible solution exists. The constraints define a polyhedron which is 

not unbounded in the direction of the gradient of the objective functions. Therefore, an optimal 

solution exists. Additionally, the matrix 𝐴 is totally unimodular, in the light of theorem 5.24 in Korte 

and Vygen (2008), because there is a partition of the lines of matrix 𝐴 such that, for each column, the 

sum of the elements in the first partition minus the sum of the elements in the second partition is 

equal to either 0, 1 or -1.  

As a consequence of total unimodularity of 𝐴 and integrality of 𝑏, in the light of the Hoffman and 

Kruskal theorem (corollary 19.2a in Schrijver, 1998), the polyhedron defined by the constraints has 

vertices with all integer coordinates. This proves that an optimal integer solution exists, because there 

exists an optimal solution which is at a vertex, by the maximum principle for convex functions 

(theorem 3.10.11 in Niculescu and Persson, 2018). Finally, the simplex algorithm provides optimal 

integer solutions, because the algorithm provides optimal solutions at vertices of the polyhedron 

(Dasgupta et al., 2008).   

Uniqueness of the solution, though, is not guaranteed. This implies that we can obtain the same 

optimal objective function for different values of the decision variables. 

3.5 Relationship between socially optimal matching and stability 

This section is based on the assignment model of workers to firms found in chapter 3 in Galichon 

(2018) and chapter 8 in Roth and Sotomayor (1990). Galichon considers the case where workers of 
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one type are matched with firms of more than one type. He does not allow unmatched agents. In 

contrast, Roth and Sotomayor (1990) considers the case of one-to-one matching. They allow for 

unmatched agents. Our setting needs adaptation of both sources, since we deal with the case where 

passengers of the same type are matched with drivers of different types and unmatched agents are 

allowed. 

Consider a setting where passengers are matched with drivers and a price is paid by each passenger 

to the matched driver. Assume that passenger of OD pair 𝑖 who travels by car or by PT in the baseline 

is matched with driver of OD pair 𝑗. The surplus 𝑢𝐴𝑖  or 𝑢𝐵𝑖 of passenger from the matching is the 

difference 𝑟𝐴𝑖𝑗 − 𝑝𝑖𝑗  or 𝑟𝐵𝑖𝑗 − 𝑝𝑖𝑗  between her reservation price and the price actually paid. The 

surplus 𝑣𝑗 of the driver is the difference 𝑝𝑖𝑗−𝑟𝐷𝑖𝑗 between the price actually paid and her reservation 

price. The profit of the matching is the sum of passenger surplus plus driver surplus. This equals the 

difference 𝑟𝐴𝑖𝑗−𝑟𝐷𝑖𝑗 or 𝑟𝐵𝑖𝑗−𝑟𝐷𝑖𝑗 between the reservation prices of the two agents.  

Notice that if passenger travels alone, then 𝑢𝐴𝑖 = 0 or 𝑢𝐵𝑖 = 0. Similarly, if driver travels alone, then 

𝑣𝑗 = 0. Notice also that if passengers who travel by car in the baseline of a given OD pair are matched 

with drivers of different OD pairs, then they gain the same surplus while the price actually paid is 

differentiated by OD pair. The same holds for passengers who travel by PT in the baseline. 

Symmetrically, if drivers of a given OD pair are matched with passengers of different OD pairs, then 

they gain the same surplus while the price actually paid is differentiated by OD pair. 

Definition 1 (outcome). An outcome is the specification (𝑥, 𝑢, 𝑣 ) of the matching flow for each pair 𝑖𝑗 

including travelling alone, of the passenger surplus for each true passenger 𝑖, and of the driver surplus 

for each true driver 𝑗.  

Definition 2 (outcome feasibility). An outcome (𝑥, 𝑢, 𝑣 ) is feasible if the total profit generated from 

matching is equal to the total quantity of profit redistributed to passengers and drivers:  

∑ ∑ [(𝑟𝐴𝑖𝑗−𝑟𝐷𝑖𝑗)𝑥𝐴𝑖𝑗 + (𝑟𝐵𝑖𝑗−𝑟𝐷𝑖𝑗)𝑥𝐵𝑖𝑗] = ∑ (𝑢𝐴𝑖𝑁𝐴𝑖
𝑃 + 𝑢𝐵𝑖𝑁𝐵𝑖

𝑃 )𝑀
𝑖=1

𝑀
𝑗=1

𝑀
𝑖=1 + ∑ 𝑣𝑗𝑁𝑖

𝐷𝑀
𝑗=1 . (17) 

Eq. (17) shows how the total profit generated at the pairwise level (left-hand side) is redistributed at 

the individual level (right-hand side). 

Definition 3 (outcome stability). A feasible outcome (𝑥, 𝑢, 𝑣 ) is stable if the following conditions are 

satisfied: 

𝑢𝐴𝑖 , 𝑢𝐵𝑖 ≥ 0, 𝑖 = 1, … , 𝑀; 𝑣𝑗 ≥ 0, 𝑗 = 1, … , 𝑀, (18) 

𝑢𝐴𝑖 + 𝑣𝑗 ≥ 𝑟𝐴𝑖𝑗−𝑟𝐷𝑖𝑗, 𝑢𝐵𝑖 + 𝑣𝑗 ≥ 𝑟𝐵𝑖𝑗−𝑟𝐷𝑖𝑗, 𝑖, 𝑗 = 1, … , 𝑀. (19) 
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Conditions in Eqs (19) express the absence of a blocking pair. Explanation is as follows. Consider an 

outcome (𝑥, 𝑢, 𝑣 ) and assume that there is a passenger of OD pair 𝑖 and a driver of OD pair 𝑗 such 

that 𝑢𝐴𝑖 + 𝑣𝑗 < 𝑟𝐴𝑖𝑗−𝑟𝐷𝑖𝑗 or 𝑢𝐵𝑖 + 𝑣𝑗 < 𝑟𝐵𝑖𝑗−𝑟𝐷𝑖𝑗. Then, this passenger and this driver will have an 

incentive to break the current matching (say with, respectively, driver 𝑙, and with passenger 𝑚) and 

match together. Such a situation would form a blocking pair which we want to rule out. Notice that 

inequalities (19) should hold for every pair 𝑖𝑗 not only for the matched pair.  

On the basis of the definition of stability, an outcome is stable if and only if no driver and no passenger 

has an incentive to change the current matching and match together. It is a concept of equilibrium. 

We now state the main proposition which sets the relationship between social optimum without 

environmental costs and outcome stability. 

Proposition 2. An outcome (𝑥, 𝑢, 𝑣 ) is stable if and only if the matching flow pattern 𝑥 is socially 

optimal for Problem 𝑃1 without environmental costs. Additionally, if at social optimum without 

environmental costs 𝑥𝐴𝑖𝑗 > 0 or 𝑥𝐵𝑖𝑗 > 0, 𝑖, 𝑗 = 1, … , 𝑀, then the surplus of passenger and driver is 

equal to the profit from matching: 

𝑢𝐴𝑖 + 𝑣𝑗 = 𝑟𝐴𝑖𝑗−𝑟𝐷𝑖𝑗, (20a) 

𝑢𝐵𝑖 + 𝑣𝑗 = 𝑟𝐵𝑖𝑗−𝑟𝐷𝑖𝑗. (20b) 

Proof. First, we show that our socially optimal matching Problem 𝑃1 without environmental costs can 

be formulated as the problem where the total profit from matchings is maximized. Then, we introduce 

the dual problem and use some duality theorems.  

Consider Problem 𝑃1 without environmental costs. Using Eqs (11), we introduce the decision variables 

𝑥𝐴𝑖𝑗  and 𝑥𝐵𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑀 and replace constraints (5) with constraints (15a) and (15b). This problem 

is equivalent to the maximization problem with objective function equal to the difference between 

the costs perceived by passengers and drivers in the baseline and the costs perceived by passengers 

and drivers when matching. Indeed, the costs perceived by passengers and drivers in the baseline are 

a constant. By simple algebra, we obtain the following socially optimal matching problem without 

environmental costs termed Problem 𝑷𝟑:  

max ∑ ∑ (𝑟𝐴𝑖𝑗−𝑟𝐷𝑖𝑗)𝑥𝐴𝑖𝑗 + ∑ ∑ (𝑟𝐵𝑖𝑗−𝑟𝐷𝑖𝑗)𝑥𝐵𝑖𝑗
𝑀
𝑗=1

𝑀
𝑖=1

𝑀
𝑗=1

𝑀
𝑖=1 , (21) 

subject to: 

∑ 𝑥𝐴𝑖𝑗 = 𝑁𝐴𝑖
𝑃 ,𝑀+1

𝑗=1  𝑖 = 1, … , 𝑀, (15a) 

∑ 𝑥𝐵𝑖𝑗 = 𝑁𝐵𝑖
𝑃 ,𝑀+1

𝑗=1  𝑖 = 1, … , 𝑀 (15b) 
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∑ (𝑥𝐴𝑖𝑗 + 𝑥𝐵𝑖𝑗) = 𝑁𝑗
𝐷 ,𝑀+1

𝑖=1  𝑗 = 1, … , 𝑀, (22) 

𝑥𝐴𝑖𝑗 ≥ 0, 𝑥𝐵𝑖𝑗 ≥ 0  𝑖 = 1, … , 𝑀; 𝑗 = 1, … , 𝑀,  (16) 

𝑥𝐴𝑖,𝑀+1 ≥ 0, 𝑥𝐵𝑖,𝑀+1 ≥ 0 ,    𝑖 = 1, … 𝑀,  (7b) 

𝑥𝐴,𝑀+1,𝑗 ≥ 0, 𝑥𝐵,𝑀+1,𝑗 ≥ 0   𝑗 = 1, … , 𝑀. (23) 

Problem 𝑃3 is equivalent to the following problem with inequality constraints, termed Problem 𝑷𝟒: 

max ∑ ∑ (𝑟𝐴𝑖𝑗−𝑟𝐷𝑖𝑗)𝑥𝐴𝑖𝑗 + ∑ ∑ (𝑟𝐵𝑖𝑗−𝑟𝐷𝑖𝑗)𝑥𝐵𝑖𝑗
𝑀
𝑗=1

𝑀
𝑖=1

𝑀
𝑗=1

𝑀
𝑖=1 , (24) 

subject to: 

∑ 𝑥𝐴𝑖𝑗 ≤ 𝑁𝐴𝑖
𝑃 ,𝑀

𝑗=1  𝑖 = 1, … , 𝑀, (25a) 

∑ 𝑥𝐵𝑖𝑗 ≤ 𝑁𝐵𝑖
𝑃 ,𝑀

𝑗=1  𝑖 = 1, … , 𝑀, (25b) 

∑ (𝑥𝐴𝑖𝑗 + 𝑥𝐵𝑖𝑗) ≤ 𝑁𝑗
𝐷 ,𝑀

𝑖=1  𝑗 = 1, … , 𝑀, (26) 

𝑥𝐴𝑖𝑗 ≥ 0, 𝑥𝐵𝑖𝑗 ≥ 0  𝑖 = 1, … , 𝑀; 𝑗 = 1, … , 𝑀. (16) 

Consider now the dual of Problem 𝑃4, termed Problem 𝑷𝟓: 

min ∑ (𝑢𝐴𝑖𝑁𝐴𝑖
𝑃 + 𝑢𝐵𝑖𝑁𝐵𝑖

𝑃 )𝑀
𝑖=1 + ∑ 𝑣𝑗𝑁𝑖

𝐷𝑀
𝑗=1 , (27) 

subject to: 

𝑢𝐴𝑖 , 𝑢𝐵𝑖 ≥ 0, 𝑖 = 1, … , 𝑀; 𝑣𝑗 ≥ 0, 𝑗 = 1, … , 𝑀, (18) 

𝑢𝐴𝑖 + 𝑣𝑗 ≥ 𝑟𝐴𝑖𝑗−𝑟𝐷𝑖𝑗, 𝑢𝐵𝑖 + 𝑣𝑗 ≥ 𝑟𝐵𝑖𝑗−𝑟𝐷𝑖𝑗, 𝑖, 𝑗 = 1, … , 𝑀. (19) 

At optimum, the objective function of the primal Problem 𝑃4 equals the objective function of the dual 

Problem 𝑃5 (theorem 4.8 in Eiselt and Sandblom, 2010). This proves the first part of the theorem. 

Eqs (20a) and (20b) are a consequence of the complementary slackness conditions which hold at 

optimum (theorem 4.9 in Eiselt and Sandblom, 2010).  

4. Numerical analysis: Sioux Falls network 

4.1 The network 

The network of Sioux Falls city is used to implement the mathematical model and investigate the 

impacts of ridesharing. It was first considered by LeBlanc (1975). The Sioux Falls network is frequently 
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used by researchers for test and implementation of models and algorithms. In this network, there are 

24 nodes, 76 links, and 24 zones as shown in Figure 3.  

The network includes 24x23 = 552 OD pairs. Drivers and passengers are considered in each zone and 

they are willing to share a ride. There is a total of 360 600 travellers on the network, 10% of them are 

considered to be passengers and 10% are considered to be drivers willing to share the ride. Driver and 

passenger OD flows are generated randomly keeping the sum of flows for each OD equal to 20% of 

the total flow. The social planner will match 36 060 drivers to 36 060 passengers optimally for 

ridesharing (balanced case). Travellers are considered to use car and PT in the baseline scenario and 

the ratio is fixed exogenously. There is a total of 28 838 (80%) passengers travelling by car and  

7 222 (20%) by PT. 

Free-flow travel times are considered for cars. PT travel times are 50% higher than by car because of 

lower speed and delay at stops. The following parameter values are assumed: value of time by car is 

12.96 €/h, value of time by PT is 18 €/h, value of time walking is 4.32 €/h, fuel cost is 0.16 €/km, cost 

of emissions, restricted to CO2, is 0.01 €/vkm. PT fare is 1.5 €/user.  

 

Fig.3. Sioux Falls network 

N
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4.2 Results 

Optimal matchings result from solutions to Problems 𝑃1 and 𝑃2. Solution to Problem 𝑃1 provides 

optimal social costs, while social planner’s budget analysis is carried out on the basis of solution to 

Problem 𝑃2. The code is written in Python language. PuLP library and the simplex algorithm are used 

for optimization. 

Matching with environmental costs 

The results are computed here for both the baseline scenario (no ridesharing) and the socially optimal 

matching scenario with environmental costs in the objective function. First, the shortest route 

between all the zones is calculated using Dijkstra algorithm. Baseline scenario costs are computed 

using the travel time cost, fuel cost and environmental cost based on the shortest travel routes. In the 

baseline scenario there are 72 120 drivers and passengers travelling alone between different OD using 

car or PT.  

In the socially optimal matching scenario, drivers and passengers are allowed to match. Socially 

optimal costs are computed using the best of the four matching cases described in Figure 2. Then, the 

optimal matchings between passengers and drivers are computed.  

Total cost for the baseline scenario for all users travelling alone (Eq. 2 and 3) is 214 465 €. PT 

passengers have high travel time cost because their travel times on the network are considered 50% 

higher than by car and they have comparatively high travel time cost per kilometre. When matched, 

total travel time cost decrease because now PT passengers are sharing ride with car drivers and have 

lower travel time cost. Also, the fuel cost and emission cost decrease in the matching scenario due to 

less vehicle-kilometres travelled on the network. The total cost when drivers and passengers match 

optimally (Eq. 4) is 175 716 €. The overall effect of ridesharing on cost saving is positive and there is a 

net saving of 38 749 € (around 18%) on the baseline scenario. Fuel cost in the baseline scenario is 61 

106 €, it is reduced to 39 556 € in the matching scenario and it has the greater effect on the overall 

cost saving. 

Total vehicle-kilometres travelled on the network in the baseline scenario are 381 912 vkm, which are 

reduced to 247 225 vkm in the matching scenario. This helps reduce congestion since there is overall 

35% less vehicle-kilometres on the network in the matching scenario. Less vehicle-kilometres travelled 

also help reduce the CO2 emissions. At the rate of 120 g CO2/vkm, the social optimal ridesharing can 

save a total of 16 162 kg of CO2. Table 3 and Table 4 explain in detail the different costs for the baseline 

and the matching scenarios. In the socially optimal matching, we can see that there are no solo PT 
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passengers since they have higher cost of travelling alone. Therefore, when cost is optimized, they 

match before the car passengers for each OD. 

In the baseline scenario, PT passengers have only travel time cost and solo car drivers and passengers 

have travel time, fuel and emission cost. In the matching scenario, 13% (9480/72120) of the total users 

do not match, and detour accounts for 8% of the total CO2 emissions.  

We also notice that there is a total of 251 km walking by 172 passengers who match with drivers. 

Walking time cost is 301 €. The maximum distance a passenger walks to match is 2 km. 

Table 3. Travel costs in the baseline scenario (no matching) 

 Number of 

travellers 

Travel time 

cost (€) 

Fuel cost (€) Emission  

cost (€) 

Total cost (€) 

Solo 

drivers 

36 060 67 671 34 372 2 148 104 191 

Solo car 

passengers 

28 838 53 632 26 734 1 671 82 037 

Solo PT 

passengers 

7 222 28 237 0 0 28 237 

Society 72 120 149 540 61 106 3 819 214 465 

Table 4. Travel costs in the socially optimal matching with environmental costs 

From the social planner’s perspective, the budget from matching is important since it can be used to 

operate the system or can be invested elsewhere, as an example to improve public transport. The 

total profit of social planner is the difference between total revenue and total cost (Eq. 13). Figure 4 

shows some results of the social planner’s budget analysis.  

 Number of 

travellers 

Travel time 

cost (€) 

Fuel cost (€) Emission  

cost (€) 

Total cost  (€) 

Matching 62 640 117 939 31 557 1 972 151 468 

Solo 

drivers 

4 740 5 887 2 990 187 9 064 

Solo car 

passengers 

4 740 9 862 5 009 313 15 184 

Solo PT 

passengers 

0 0 0 0 0 

Society 72 120 133 688 39 556 2 472 175 716 
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When the gain factor is zero, the social planner has surplus in all the matchings. Total revenue gain 

from car matchings is 21 544 €, from PT matching is 25 845 €, and total cost for matching drivers is 

524 €. The social planner profit for matching drivers to passengers is 46 864 € and it shows an average 

profit of 1.5 € per each of the 31 320 matchings. This shows that there is a monetary gain for society 

from the ridesharing scheme. When we increase the gain factor for drivers and passengers (Eq. 11 and 

12), the social planner incurs deficit for some matchings and her profit decreases.  

  

  

Fig. 4. Socially optimal matching with environmental costs: social planner’s budget analysis 

Matching without environmental costs 

Earlier in the socially optimal matching, we included environmental costs in the objective function. 

Now, we will check the matching without environmental costs in the objective function and evaluate 

the difference. The baseline scenario remains the same. Results in the matching scenario in Table 5 

show that we have higher total social cost, because we are optimizing the costs without considering 

environmental costs. The matchings are also less, while fuel and environmental costs increase. 

Therefore, when passengers are matched with passengers without considering environmental costs, 

fuel and emission cost savings are comparatively less.  

We also notice that there is total of 112 km walking by 96 passengers who match with drivers. Total 

walking time cost is 134 €. The maximum distance a passenger walks to match is 1.3 km. All values are 

lower than those in the with environmental costs case. 
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The results of the social planner’s budget analysis are shown in Figure 5. The budget without 

environmental costs is higher than the budget with environmental costs. 

Table 5. Travel costs in the socially optimal matching without environmental costs  

 

  

  

Fig. 5. Socially optimal matching without environmental costs: social planner’s budget analysis 

Sensitivity analysis with respect to percentage of PT passengers in the baseline scenario 

Our analysis until now has been focused on a fixed 20 percentage of PT passengers in the baseline 

scenario, but when the ratio of PT and car passengers changes, so do the matchings, as well as the 

social optimal cost and social planner’s budget. Sensitivity analysis is addressed to see these variations 

 Number of 

travellers 

Travel time 

cost (€) 

Fuel cost (€) Emission cost 

(€) 

Total Cost  (€) 

Matching 62 496 1 19 250 32 211 2 014 153 475 

Solo 

drivers 

4 812 4 570 2 321 145 7 036 

Solo car 

passengers 

4 812 10 106 5 133 321 15 560 

Solo PT 

passengers 

0 0 0 0 0 

Society 72 120 133 926 39 665 2 480 176 071 
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with respect to change in the percentage of PT passengers. Results are in Figure 6. Cost of travelling 

alone for PT passengers is high compared to car passengers in the baseline scenario, so, when 

matched, PT passengers are preferred to match first. When the number of PT passengers is low, they 

are all matched, and the cost remains constant; when the percentage of PT passengers increases, they 

also travel alone optimally, and the cost begins to rise.  

  

  

  

Fig. 6. Sensitivity analysis with respect to the percentage of PT passengers in the baseline scenario 

We also obtain more matchings when the share of PT passengers is high, because their cost of 

travelling alone cost is high. The social planner’s budget per matching increases with the percentage 

of PT passengers. 
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Matching with externality cost 

Externality cost is explained as the externality generated by adding a car on network. Externality cost 

considered here is equal to the cost of travelling alone. When externality cost is so high, car passengers 

generate higher externality, thus they are preferred to match because travelling alone will double the 

externality. 

Considering high externality cost helps us understand the situation where other environmental 

externalities or congestion externality will impact ridesharing. The results in Table 6 reveal a higher 

number of matchings and lower fuel costs and more car passengers’ matchings than PT passengers, 

implying less vehicle-kilometres travelled on the network. 

Table 6. Comparison between the cost of socially optimal matching with environmental costs, 

without environmental costs and with externality cost 

Impact of variation of passenger OD flow matrix on driver OD flow matrix 

The difference between the OD flows of drivers and the OD flows of passengers is critical for matching 

ease and overall cost saving. Consider the driver OD flow matrix. It is realistic to assume that the 

passenger OD flow matrix will show a similar OD flow pattern. The interest is in evaluating the impact 

on the matching pattern, and the associated total social cost, of the variation of the passenger OD 

flow matrix on the driver OD flow matrix. This analysis can be carried out using the Dirichlet 

distribution (see Appendix).  

The Dirichlet distribution can be used to cut a string into 𝑛 pieces with different lengths, where each 

piece has, on average, a designated average length, while allowing some variation in the relative sizes 

of the pieces. In our case, the average length of one piece is the driver OD flow. From the Dirichlet 

distribution, 200 passenger OD flow matrices were generated for a given fixed driver OD flow matrix.  

Matching Number of 

matchings 

Travel time 

cost (€) 

Fuel cost (€) Emission/exter

-nality cost (€) 

Total Cost  

(€) 

Socially optimal 31 320 133 688 39 556 2 472 175 716 

Without 

environmental costs 

31 248 133 926 39 665 2 480 176 071 

With externality  

cost 

33 192 144 936 34 696 103 170 282 802 
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A first analysis considers the driver OD flow matrix with random flows that was used in the previous 

sections. From this matrix, 200 passenger OD flow matrices were generated using the Dirichlet 

distribution.  

For each drawn passenger matrix, we computed the Euclidean distance (see Appendix) between the 

driver OD flow matrix and the passenger OD flow matrix. Sensitivity analysis of optimal cost with 

respect to the Euclidean distance between the two matrices is examined. Optimal cost with respect 

to Euclidean distance for all matrices is shown in the north-west chart of Figure 7. 

There is an increasing trend in the variation of the optimal social cost with the Euclidean distance. This 

is expected. Additionally, there is large variability within the results. For the same Euclidean distance, 

we have low and high optimal costs. If more passengers are assigned to an OD with higher travel cost, 

then optimal travel cost increases. If more passengers are assigned to an OD with lower travel cost, 

then optimal travel cost decreases. The results are robust with respect to the variation of the 

passenger OD flow distribution because the optimal cost variation is rather limited.  

A second analysis considers a uniform driver OD flow matrix. In this case, the differences between the 

Dirichlet-generated passenger OD flow matrices and the driver OD flow matrix can be measured by 

either the Euclidean distance, or the Gini coefficient or the entropy.  

The Gini coefficient is used to measure inequality in a distribution (see Appendix). A higher Gini 

coefficient indicates greater inequality. The coefficient ranges between 0 to 1, with 0 representing 

perfect equality (uniform distribution) and 1 representing perfect inequality. Entropy is used to 

measure a state of disorder, randomness, or uncertainty (see Appendix). The maximum entropy is 

obtained when the distribution is uniform and can be more than unity. 

We have computed the variation in optimal cost with Euclidean distance, Gini coefficient and entropy 

for all 200 passenger OD matrices when the driver OD flows are assumed uniform. The three charts 

are in Figure 7. The trends are increasing when the Euclidean distance and the Gini coefficient are 

used. These results are expected. By contrast, when entropy is used, the trend is decreasing because 

the higher the entropy the closer is the passenger OD flow distribution to the uniform distribution. 

The variation in the optimal cost for the same Euclidean distance, Gini coefficient and entropy can be 

explained with the distribution of travel costs. Again, the optimal matching solution appears robust in 

terms of total cost with respect to variation of the passenger OD flow matrix on the driver OD flow 

matrix. 
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Fig. 7. Socially optimal matching with environmental costs: variation of optimal total social cost 

when passenger OD matrix diverges from driver OD flow matrix 

5. Conclusions 

In this paper, socially optimal matching and social planner’s budget are investigated. Results from the 

triangle network and the Sioux Falls network help us understand the benefit of ridesharing in terms 

of savings in travel and emission costs. In the Sioux Falls network, with reference to the population of 

passengers and drivers who are willing to match, there is a total cost saving of around 18% on the all-

travel-alone scenario, when in this scenario the share of those travelling by PT is 20%. Total vehicle-

kilometres travelled by this population are reduced by around 35%. When matching is considered, 

there are two main drawbacks. The first is drivers and passengers who are required to travel alone, 

who account for 13% of total passengers and drivers willing to match. The second is detours, which 

account for 8% of total emissions. 

The socially optimal matching solution where environmental costs are considered is better than the 

matching solution without considering environmental costs, since it offers a higher number of 

matchings and higher fuel and emission cost savings. The social planner’s budget analysis shows that 

there is a net gain for the social planner. For each matching she has an average gain of 1.5 €, which 

can be used to operate the ridesharing scheme or can be re-invested elsewhere. The individual’s 

preference of matching is not the same as the socially optimal matching, because individuals generally 
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do not take into account the environmental costs when matching. Therefore, there is scope for a 

scheme like the one studied in this paper to reach socially optimal matching. 

Our formulation and network analysis are restricted to the case where arc travel times are given 

exogenously and independent of the time of the day. When congestion is affected by ridesharing, it 

will be reduced by socially optimal matching, and the savings of travel costs (time and fuel) are 

expected to be higher. The endogenous congestion case needs to be formulated as one-step 

optimization problem with equilibrium constraints. The matching flows are the integer decision 

variables. However, for tractability reasons, they will be assumed as continuous. In a first stage, the 

problem can be tackled by iteratively solving the matching optimization problem and the traffic 

equilibrium problem with congestion. We have considered a uniform value of travel time. Future 

research may consider heterogeneity. Also pooling, where more than one passenger shares the ride 

with the driver, is left for future research.  

For the implementation of the scheme, one needs to gather “lab” data on the value of time when 

travelling alone and when two or more individuals share the vehicle. Many parameters need to be 

estimated, including the psychological inconvenience and the risk attitude.  For example, the rape and 

murder of a young passenger in the coastal city of Wenzhou led a partial boycott of Didi. 

We expect the matching model to be used in many transport sectors, as it is already the case in many 

economic sectors, job, housing and marriage markets in particular. Taking account of global 

externalities in such markets may be worth economists’ attention. We believe that our matching 

model is a necessary precursor of the matching model of autonomous vehicles. For now, the future of 

autonomous vehicles remains somewhat uncertain, but we believe transport economists’ 

contribution is needed to set the stage. Note that the automobile industry and other stakeholders, 

like TNCs, do not necessarily have the same objective function (user equilibrium) as the transport 

economist (social optimum, including congestion and, possibly, environment). For example, it is well 

documented that congestion has increased in many cities after Uber has entered the market in the US 

(Schaller, 2021). The reason is that car occupancy is already low (for example 1.1 in Ile-de-France, Paris 

area) and it is likely to be even lower when the driver is a professional driver or a robot: an empty 

vehicle still creates congestion. 

In the autonomous vehicle case, when the autonomous vehicles are individually owned, matching 

could work in a similar way as it does in this paper. Either the car picks up the passenger at the origin 

and does a minimal detour, or the passenger has to walk. The same discussion can be made at the 

destination. The setting differs when the vehicles are owned by a private or a government body (robot 
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taxis). In this latter case the vehicle can circulate 24 hours. Of course, a new degree of freedom 

appears: where is each vehicle positioned for the next ride? We expect that in most cases the vehicles 

will be repositioned to meet the next ride. This latter issue requires a complex demand estimation and 

optimization problem, involving repositioning of vehicles from surplus areas to deficit areas, 

consideration of waiting times, and matching as the key step. 
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Appendix 

A.1 Dirichlet distribution 

The Dirichlet distribution is a family of continuous multivariate probability distributions parameterized 

by a vector of positive reals (Ng et al., 2011). It is a multivariate generalisation of the Beta distribution. 

Given the random vector 𝑥 = (𝑥1, … , 𝑥𝑛), where 𝑥𝑖є(0,1), 𝑖 = 1, … , 𝑛, and ∑ 𝑥𝑖 = 1𝑛
𝑖=1 , the Dirichlet 

probability density function is: 

𝑓(𝑥) =
𝛤(∑ 𝛼𝑖

𝑛
𝑖=1 )

∏ 𝛤(𝑛
𝑖=1 𝛼𝑖)

∏ 𝑥𝑖
𝛼𝑖−1𝑛

𝑖=1  , 

where 𝛼 = (𝛼1, … , 𝛼𝑛) is a positive parameter vector and 𝛤 is the Gamma function. The mean of the 

𝑖-th component is: 

𝔼[𝑥𝑖] =
𝛼𝑖

∑ 𝛼𝑖
𝑛
𝑖=1

. 

When all 𝛼𝑖 → 0, the distribution becomes noninformative. When 𝑛 = 2, the Dirichlet distribution 

reduces to the Beta distribution.  

A.2 Euclidean distance 

The Euclidean distance provides a measure of the distance between two real-valued vectors (Horn 

and Johnson, 1990). Let 𝑁𝑖
𝑃 = 𝑁𝐴𝑖

𝑃 + 𝑁𝐵𝑖
𝑃 . The Euclidean distance between the driver and the 

passengers OD flow matrix is: 

𝑑 =  √∑ (𝑁𝑖
𝐷 − 𝑁𝑖

𝑃)
2𝑀

𝑖=1 . 
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A.3 Gini coefficient 

The Gini coefficient provides a measure of inequality in a distribution. It is commonly used to measure 

inequality in a distribution of non-negative income or wealth. The coefficient ranges from 0 (or 0%) to 

1 (or 100%), with 0 representing perfect equality and 1 representing perfect inequality.  

Let 𝑁𝑖
𝑃 = 𝑁𝐴𝑖

𝑃 + 𝑁𝐵𝑖
𝑃 . The Gini coefficient related to the distribution of our passengers OD matrices can 

be computed using the formula (Dixon et al., 1988): 

𝐺 =  
𝑀+1

𝑀
−

2 ∑ (𝑀+1−𝑖)𝑁𝑖
𝑃𝑀

𝑖=1

𝑀 ∑ 𝑁𝑖
𝑃𝑀

𝑖=1

, 

where 𝑁𝑖
𝑃, 𝑖 = 1, … , 𝑀, are indexed in increasing order of OD flow. 

A.4 Entropy 

Entropy is used to measure a state of disorder, randomness, or uncertainty. Let 𝑁𝑖
𝑃 = 𝑁𝐴𝑖

𝑃 + 𝑁𝐵𝑖
𝑃 . The 

uncertainty in our generated passenger OD flow matrices is expressed by the following equation 

(Shannon, 1948): 

𝐻 =  − ∑ 𝑝𝑖 log2 𝑝𝑖
𝑀
𝑖=1 , 

where 𝐻 is the entropy and 𝑝𝑖  = 𝑁𝑖
𝑃/ ∑ 𝑁𝑖

𝑃𝑀
𝑖=1  is the probability of passengers being in OD pair 𝑖. For 

a given number of OD pairs 𝑀, 𝐻 is maximum and equal to log2 𝑀 when 𝑝𝑖  are uniform and equal to 

1/𝑀. This is also intuitively the most uncertain situation. 
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