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Abstract

Tradable permit schemes (or tolling in tokens) are a form of quantity control, which promise to

be an appealing alternative to congestion pricing (or tolling in dollars) owing to considerations of

revenue neutrality, equity, reduced infrastructure costs, and political acceptability. The comparative

performance of the two instruments under uncertainty in demand and supply has only recently received

attention in the transportation setting, despite being widely studied for emission markets. In this

paper, we add to this literature by considering a tradable permit scheme in a departure time context

wherein users are provided an initial endowment of tokens by the regulator and incur a token charge

(determined prior to all departures) to travel in a specific time period. Tokens can be bought and

sold within a marketplace at a price determined by a market clearing mechanism in each time period.

A key feature of the market model is that the selling decisions of users are explicitly considered,

which enables us to study the impact of selling behavior on performance of the permit system. Travel

demand is modeled using a logit mixture model and supply consists of static congestion.

In the case of uncertain demand/supply wherein the tolls (in dollars and tokens) can be adapted

from day to day (or alternatively demand/supply are deterministic), the two instruments can be shown

analytically to be equivalent. In contrast, when the tolls are not day to day adaptive, the comparison

of the two instruments is performed numerically. Our experiments over a wide range of demand and

supply scenarios show that although neither instrument is consistently superior in terms of efficiency

(overall social welfare), tolling in tokens outperforms tolling in dollars when congestion effects are

more severe (e.g. realistic BPR models and steep congestion functions, high demand levels and high

day-to-day variability). Importantly, we find that the token system is robust in efficiency terms (social
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welfare) with respect to selling behavior in the market, although there can be welfare losses in the

quantity control system when selling behavior in the market is too irrational (relative to a quantity

control system implementing rational selling behavior). Moreover, when the supply of tokens can be

adapted from day to day, the permit system was found to be superior in all tested scenarios in which

the selling behavior of individuals is rational. Finally, even in the case when toll revenues in the

price instrument are equally redistributed (often difficult in practice), tolling in tokens (when tokens

are equally distributed) is marginally more equitable in scenarios where congestion effects are more

severe. These findings make a case for tolling in tokens.

Keywords: Tolls, tradable mobility permits, congestion, dynamic models, efficiency, equity

JEL codes: R, R48

1. Introduction

Congestion is a pervasive problem in most transportation networks worldwide, and the standard

approach to address this issue has been to internalize congestion externalities through a toll in dollars

(congestion pricing). Extensive reviews may be found in de Palma and Lindsey (2011) and Santos

and Verhoef (2011). Pricing, however, has long been beset by issues of inequity, complexity, high

infrastructure costs and public and political acceptability, notwithstanding the redistribution of toll

revenues, whose benefits may take years to be realized (see also Jaensirisak et al. (2005) and de Palma

and Lindsey (2020) for more on the acceptability of road pricing). In contrast, tradable permit schemes

(or tolling in tokens; also called tradable mobility credits) are a form of quantity control typically

characterized by the following features: (Fan and Jiang, 2013): 1) a fixed total number of tokens

(mobility credits) or ‘quota’ is pre-specified by the regulator, 2) an initial endowment allocates or

distributes the tokens to a selected population (all individuals may not receive tokens), 3) individuals

are allowed to buy and sell tokens in a market, 4) use of the road network requires tokens and can be

differentiated by time of day, geography, vehicle type etc., and 5) enforcement is necessary to ensure

valid trading/consumption of tokens.

Tradable permit schemes have several potential advantages over pricing. First, they are revenue

neutral and hence, may not be faced with similar public opposition, more so if the tokens are handed

out for free. Second, they are viewed as being less vertically inequitable than pricing (de Palma

and Lindsey (2020)). Since the number of tokens each user receives may differ, any regressive effect

(very well documented for congestion pricing), which may trigger political opposition will not occur

with tokens. In other words, lower income users who tend to travel less by car can obtain monetary

gains by selling their excess permits. Third, implementation costs may be low given developments

in information and communications technology. Finally, they provide the ability to directly control
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quantity, which may be beneficial in some situations, for example, when the price elasticity of demand

in the short or medium term is low. Note that the distribution of tokens allows the regulator to cap

the maximum number of travellers. This is a pure version of quantity control, which appears to be

more flexible than conventional policies (such as the odd and even licence plate policy, or reduced

speed) to reduce environmental costs.

Despite the large body of literature on tradable credit schemes in the transportation literature,

relatively little attention has been paid to the comparison of the price and quantity control instruments

under uncertainty in a transportation context. In this paper, we consider a tradable permit scheme in

a departure time context wherein users are provided an initial endowment of tokens by the regulator

and incur a token charge (endogenous and determined prior to all departures) to travel in a specific

time period. Tokens can be bought and sold within a marketplace at a price determined by a market

clearing mechanism in each time period. A key feature of the market model is that the selling

decisions of users are explicitly considered, which enables us to study the impact of selling behavior

on performance of the permit system. Travel demand is modeled using a logit mixture model and

supply consists of static congestion specific to each time period.

In the case of uncertain demand/supply wherein the tolls (in dollars and tokens) can be adapted

from day to day (or alternatively demand/supply are deterministic), the two instruments are equiv-

alent. In contrast, when the tolls are not day to day adaptive, we find that the quantity control

instrument is superior in welfare terms when congestion effects are more severe, i.e. steep congestion

functions (realistic BPR models), high demand levels and high day-to-day variability. The optimal

network usage is relatively similar across states for quantity control whereas the optimal toll in dollar

amounts varies significantly across states. Further, non-rational selling behavior, which has the effect

of equalizing token supply across time intervals leads to a deterioration in the performance of the

quantity instrument, although in general the token system is robust (in efficiency terms) with respect

to selling behavior in the market. Moreover, when the token supply can be adapted from day-to-day,

the quantity instrument is superior in all scenarios where selling behavior is rational. Finally, even in

the case when toll revenues in the price instrument are equally redistributed (often difficult in prac-

tice), tolling in tokens (when tokens are equally distributed) is marginally more equitable in scenarios

where congestion effects are more severe. These findings make a potential case for tolling in tokens.

The remainder of the paper is organized as follows. Section 2 reviews the existing literature

on tradable credits and describes our contributions. Section 3 describes the basic model of supply,

demand and equilibrium in the case of deterministic demand (and supply) for both instruments (dollars

and tokens). The comparison of the two instruments in this case can be performed analytically.

Following this, Section 4 describes the model for stochastic demand for which, the comparisons must
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be performed numerically. The numerical experiments and findings are described in Section 5. Finally,

Section 6 provides concluding remarks and directions for future research.

2. Review of Literature

Although discussions on the use of tradable permits in the transportation sector date back to Raux

(2004), Verhoef et al. (1997) and Goddard (1997), they have received significant attention only in the

recent past (detailed reviews may be found in Fan and Jiang (2013) and Grant-Muller and Xu (2014)).

In particular, a variety of tradable permit schemes have been proposed (utilizing largely network and

market equilibrium approaches) in the context of mobility management (at the network level) and

bottleneck management, and these are discussed in turn.

In the context of mobility management, Yang and Wang (2011) propose a scheme wherein the

social planner initially distributes a certain number of credits to all potential travelers, charges a link-

specific number of credits for a given link, and allows trading of the credits among travelers. Supply is

modeled using static congestion (separable link performance functions) and travelers are assumed to

be homogenous. They demonstrate that for a given set of tolls in tokens (or credit rates) in a general

network, the user equilibrium (UE) link flow pattern is unique under standard assumptions, and the

credit price at the market equilibrium is unique under some relatively mild additional assumptions (i.e

if all equilibrium path flow patterns contain at least two paths with different credit charges connecting

the same O–D pair). The proposed network equilibrium formulation is a variant of the standard UE

model with the additional network-wide credit feasibility constraint, which simply states that the total

consumption of tokens at equilibrium is less than or equal to the total credit endowment. Extensions

that consider heterogeneity in the value of time and multiple user classes are proposed in Zhu et al.

(2015) and Wang et al. (2012), whereas He et al. (2013) consider allocations of credits to not just

individual travelers, but to transportation firms such as logistics companies and transit agencies. In a

similar vein, Pareto-improving credit based congestion management schemes on a general two mode

network are investigated in Liu and Nie (2017).

Nie (2012) examines the effect of transaction costs in a tradable permit scheme for two types of

markets: an auction market in which users purchase all of the needed mobility credits through a

competitive bidding process, and a negotiated market in which users initially receive certain amount

of mobility credits from the government and trade with each other through negotiation to meet their

needs. A brokerage service is built into both markets to facilitate transactions and accordingly, the

users have to pay a commission fee proportional to the value of trade. The modified UE formulation of

Yang and Wang (2011) is extended to incorporate transaction costs for both the auction and negotiated

markets. Based on numerical experiments on a toy network, it is shown that an auction market can
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achieve an equilibrium allocation of mobility credits if the government sets the price suitably and the

unit transaction cost is lower than the price that the market would reach in the absence of transaction

costs. The work also highlights the fact that in case of the negotiated market, the initial allocation of

mobility credits may affect the final equilibrium even when marginal transaction costs are constant.

A related stream of research on the use of tradable credits schemes for mobility management exam-

ines the design of these schemes using bi-level optimization formulations (mathematical programming

problems with equilibrium constraints). For instance, Wang et al. (2014b,a) formulate the continuous

network design problem with a tradeable credit scheme as a bi-level programming problem, where the

decision variables for the upper level problem are capacity enhancements for selected links whereas the

lower level problem determines equilibrium link flows and the credit price. Along similar lines Wu et al.

(2012) proposed a framework that considers decisions of mode/route choice and trip generation on a

multimodal transportation network to design efficient and equitable congestion pricing and tradable

credit schemes (considering a measure including both net social benefit and equity). They find that

the Pareto frontier (with respect to the two aforementioned objectives) of the credit scheme strictly

dominates that of congestion pricing although the two schemes achieve the same level of maximum

net benefits. Further, their results suggest that tradable credit schemes can be progressive whereas

congestion pricing schemes are largely regressive for the tested network. Finally, the literature on

mobility management also includes a series of studies on credit-based congestion pricing (CBCP),

where credits in CBCPs are allowances used to pay tolls (Kalmanje and Kockelman, 2004; Kockelman

and Kalmanje, 2005). The studies involved the use of destination, mode, and departure time choice

models to examine the potential impacts of using a CBCP scheme.

Researchers have also examined the use of tradeable mobility credits to manage bottleneck conges-

tion and achieve peak spreading in an efficient manner. Nie and Yin (2013) developed an analytical

framework to model a tradable credit scheme that manages commuters’ travel choices in a simple

transportation system consisting of two parallel routes. The scheme attempts to persuade commuters

to spread their departure times evenly within the rush hour and between primary and alternative

routes to mitigate traffic congestion. It defines a ‘peak-time’ window within which users are charged

mobility credits to travel on the primary route and those that avoid either the peak-time window or

the primary route may be rewarded with credits (see also Nie (2015)). Tian et al. (2013) investigate

the efficiency of a tradable travel credit scheme for managing bottleneck congestion and modal split in

a competitive highway/transit network with a continuously distributed value of time. They propose

a tradable credit scheme which emulates the bottleneck congestion pricing and transit subsidy in a

revenue-neutral manner and demonstrate that both the modal split and credit charge at equilibrium

are unique.
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Xiao et al. (2013) examined the efficiency of a tradable credit system in managing morning commute

congestion with both homogenous and heterogeneous users. Similar to other studies in this stream, the

TMC system consists of credits that are universal with regards to time, a time-varying credit is charged

at the bottleneck; the credits can be traded and the price is determined by a competitive market.

They show that even in the presence of heterogeneity, an optimal credit scheme that eliminates the

bottleneck queue always exists under the assumption that late arrival is not allowed. More recently,

Akamatsu and Wada (2017) proposed a tradable bottleneck credit scheme where the regulator issues

link- and time-specific credits permitting passage through a certain link or bottleneck in a pre-specified

time period. They develop a model to describe time-dependent flow patterns at equilibrium under a

system of tradable bottleneck permits for general networks and show that the equilibrium obtained

under this system is efficient in that it minimizes the social transportation cost. Bao et al. (2019) show

that the equilibrium with a tradable credit scheme may not be unique for particular models of traffic

congestion, including the first-best solution for the conventional Vickrey’s bottleneck model. Finally,

Brands et al. (2020) conduct an interesting lab-in-the-field experiment of tradable credit schemes with

virtual mobility behavior and real financial incentives. They adopt a market design, which lets users

trade with a price setting intermediary, termed a virtual bank. An incremental price adjustment

scheme is adopted and their experiments suggest that it ensures that the price stays largely within

the equilibrium range. Overall, their results are promising and indicate that tradable permits can be

a viable alternative to pricing in a parking setting.

In contrast, comparisons of price and quantity control under uncertainty in a transportation context

are relatively sparse (for other contexts see Weitzman (1974); Laffont (1977)). Note that in the

emissions context, agents are not directly impacted by the externality they generate, while in the

transportation context they are (as far as congestion is concerned). For this reason, their results on

stochastic demand and stochastic supply are not directly applicable here, even if they are useful as a

general guideline. Shirmohammadi et al. (2013) examine the performance of tradable permit systems

under demand and supply uncertainty using a toy network. Specifically, they compare the performance

of a link differentiated toll system (in dollars) and a mobility credit system that is differentiated by

link. However, their analysis does not focus on measures of efficiency but rather examines performance

relative to a given target volume of cars. They find strong variations in the permit prices are required

to ensure demand matches the specified volume targets.

de Palma et al. (2018) compare the performance (in efficiency terms) of congestion pricing and

tradable mobility credit schemes under uncertainty using a simple road network in a stochastic route

choice setting (including a public transit alternative). They find that when the tolls (in either dollars

or tokens) cannot be adapted from day to day, the credit scheme performs better typically when the
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slope of the congestion function is steep. Further, when the token supply can be adapted from day to

day, the token system always outperforms congestion pricing.

More recently, de Palma and Lindsey (2020) ranked the efficiency of permits and tolls for one

route, one time period and elastic demand. They consider additive and multiplicative demand and

cost (capacity) shocks and show they may lead to qualitatively different results. Their approach is an-

alytical. They consider linear and non-linear demand (and show the role of the convexity of demand).

They also study the impact of the correlation between demand and supply on the ranking. Rezaeinia

et al. (2021) consider the comparison of tolls and permits in a radial network, within the Vickery

frameswork. User select mode, departure time and route based on a Nested Logit continuous/discrete

framework, and congestion is computed using the METROPOLIS software. Tolls and permits are

independent of the time of the day. They found that tolls outperform permits if capacities shocks are

perfectly correlated. However, the ranking is reverse if capacities shocks are independent.

This paper is an extension of de Palma et al. (2018), who consider static congestion (with parallel

routes) and one time period (i.e. it is a pure static model). Here instead, users decide when to travel

within a multi-period setting, and a market clearing mechanism exists in every time period. Thus, we

consider within-day dynamics and multiple time intervals. Further, a key feature of the market model

is that selling decisions of users are now explicitly considered (this to the best of our knowledge has

not yet been addressed in the literature), which enables us to study the impact of selling behavior

on performance of the permit system. Compared to de Palma and Lindsey (2020) (they consider

a single route with elastic demand), our model is more complex and hence, comparisons of the two

instruments cannot be performed analytically.

3. Multiperiod Model: Deterministic Demand

The transportation network of interest consists of a single origin-destination pair connected by a

single route (this can be extended to multiple OD pairs and routes with no methodological difficulty).

We consider commuting trips performed within a time period T , which is partitioned into three

sub-periods T1, T2, T3 (early morning, peak, off-peak) so that T1

⋃
T2

⋃
T3 = T (this may be easily

extended to model a larger number of time periods). Note that T1, T2, T3 may represent any three time

periods within a day, and are not necessarily contiguous. There are a total of N users who wish to

travel, and each user performs a single trip or activity during the day in any one of the three intervals

or chooses to stay at home (denoted by T0). A glossary of notation can be found in Appendix A.

We assume that the network is subject to time dependent congestion justifying the need for

congestion control in the form of either a price instrument (tolling in dollars) or a quantity instrument

(tolling in tokens). Under the price control instrument, users have to pay a toll in dollars τi to travel in

7



time period Ti (i = 1 . . . 3). In case of the quantity control system, the regulator distributes a certain

number of permits (tokens) M (known in advance) to each potential user at the beginning of the time

period T . The tokens expire at the end of time period T , or in other words their market value is zero

at the end of time period T . Tokens cannot be banked or traded across days (i.e. across periods T ).

Users are required to spend a certain number of tokens to travel in time interval Ti, i = 1 . . . 3, given

by δi (toll in tokens). Further, tokens can be bought and sold within a marketplace. The price of the

token in time interval Ti is denoted pi, and is determined endogenously by the demand and supply

of tokens in the market in time interval Ti. To improve acceptability, we assume that all transactions

take place at the beginning of the period T . Further, note that the regulator has the flexibility to

institute any desired token allocation scheme including ones wherein users receive an unequal number

of tokens. Given that user choices are unaffected by the token allocation (ignoring income effects),

this implies that in principle any desired distribution of equity can be achieved through the initial

token allocation.

In this section, we consider the case of deterministic demand (i.e. the number of users N is

deterministic and known). The transportation model is first described followed by the two instruments

(price and quantity) in turn and a comparison with respect to individual benefits, social benefits, and

equity.

3.1. Transportation Model: Demand, Supply and Equilibrium

The money-metric utility of an individual n to travel in a time period Ti, i = 0 . . . 3 (i = 0 denotes

the stay at home option) is given by,

Un(T0) = Bn0 + µnε0, (1)

Un(Ti) = Bni − αnti(Xi)− piδi + µnεi, i = 1 . . . 3, (quantity control)

Un(Ti) = Bni − αnti(Xi)− τi + µnεi, i = 1 . . . 3, (price control)

where Xi is the flow in time period Ti, εi is an i.i.d. Gumbel disturbance term and µn, B
n
i , α

n

are individual specific parameters with log(µn), Bni , log(αn) normally distributed. The alternative

specific benefit Bni incorporates time-period specific scheduling preferences, or alternatively, time-

period specific schedule delay costs. αn and µn are the value of time and scale parameter, respectively,

for individual n.

A standard BPR type function is assumed to model the travel time ti(Xi) in time period i,

ti(Xi) = tFFi

(
1 + αi (Xi/Ci)

βi

)
, (2)

where tFFi is the free flow time in period i, Ci is a capacity associated with time period i and αi, βi

are function parameters. Note that we assume that the three time periods are independent in the
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sense that congestion does not spillover from one period to the next (in other words we have three

static models).

Further, let θn = (µn, B
n
i , α

n) denote the vector of parameters for individual n. The probability

of individual n choosing to travel in time period Ti is given by,

p(Ti|θn) =
exp[V n(Ti,θn)]∑

j=0...3 exp[V n(Tj ,θn)]
, (3)

where V n(Ti,θn) is given by,

V n(T0,θn) = (1/µn) (Bn0 ) , (4)

V n(Ti,θn) = (1/µn) (Bni − αnti(Xi)− piδi) , i = 1 . . . 3, (quantity)

V n(Ti,θn) = (1/µn) (Bni − αnti(Xi)− τi) , i = 1 . . . 3, (price)

The number of travellers travelling in the three periods Xi (i = 1 . . . 3), given τi (i = 1 . . . 3) in

the price system and piδi (i = 1 . . . 3) in the quantity system, are obtained by solving the fixed point

problem (note that X0 = N −
∑i=3
i=1Xi),

Xi =

n=N∑
n=1

exp[V n(Ti,θn)]∑
j exp[V n(Tj ,θn)]

, i = 1 . . . 3. (5)

Since the set of demand feasible flows D = (X :
∑
i=0...3Xi = N) forms a closed and convex set,

and the right hand side of Equation 5 is a continuous function of flows, Brouwer’s fixed point theorem

implies that a solution exists to the fixed point problem in Equation 5.

3.2. Tolls in Dollars: Price Control

In the price control system, the regulator is assumed to have knowledge of the demand N and sets

the tolls in dollars τi (i = 1 . . . 3) to maximize total welfare (defined as the sum of consumer surplus

and regulator revenue), formulated as the following optimization problem,

Max
τ1,τ2,τ3

Ωp =

N∑
n=1

µnlog

 ∑
j=0...3

exp[V n(Tj ,θn)]

+
∑
j=1...3

τjXj (6)

s.t

Xi =

N∑
n=1

exp[V n(Ti,θn)]∑
j exp[V n(Tj ,θn)]

, i = 1 . . . 3,

∑
i=0...3

Xi = N, Xi ≥ 0, i = 0 . . . 3.

The optimum welfare obtained by solving 6 above and the corresponding optimum welfare and

tolls in dollars are denoted by Ω∗p and τ∗ = (τ∗i , i = 1 . . . 3) respectively.
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3.3. Tolls in Tokens: Quantity Control

Recall that in the quantity control system, the regulator distributes a certain number of permits

(tokens) M to each potential user at the beginning of a time period time period T , and the number

of tokens required to travel in time interval Ti, i = 1 . . . 3 is given by δi.

3.3.1. Demand for Tokens

For a given set of tolls in tokens and market prices δi, pi (i = 1 . . . 3), the total demand for tokens in

interval Ti is Xiδi and the total amount of tokens possessed by people travelling in period Ti is XiM ,

where M is the initial token endowment. Thus, the demand for tokens in interval Ti (i = 1 . . . 3), is

given by,

Di = XiMax(0, (δi −M)). (7)

where Xi (i = 1 . . . 3) are obtained from the solution to Equation 5. Note that in the above we assume

that the token endowment to each user is equal (M). This assumption can be relaxed.

3.3.2. Supply of Tokens

We assume that the decision to sell tokens is made after the mobility decision and hence, users

sell all unused tokens. Note also that it is assumed that there is some scarcity in the system, namely

that the number of tokens available is less than what would be consumed if the tokens were free.

Formally, if X̄i (i = 0 . . . 3) denotes the equilibrium flows in the absence of tolls, we assume that∑
i=1...3 X̄iδi > MN .

Lemma : In the case that there is no congestion (i.e ti is constant), we have δi = 0 (i = 1 . . . 3), or

equivalently, δi < M (i = 1 . . . 3), and hence, the price of tokens pi (i = 1 . . . 3) is zero and the tokens

have no effect/value.

We focus on the case where congestion effects are present, and hence, it should be the case that

atleast one of δ1, δ3, δ3 is larger than M (note that δ0 = 0), which implies that pi > 0, for at least one

interval Ti. Let the subset of time periods where δi > M be denoted by Ĩ, then the subset of time

periods where δi < M is I \ Ĩ.

In order to avoid speculation, we assume that tokens can only bought if they are needed for travel,

and can only be used for travelling in the chosen time interval. Further, we assume that the regulator

requires the user to sell all her unused tokens in one time interval. This assumption is made from a

practical standpoint to ensure simplicity of the system. Since the tokens are worthless at the end of

the last time interval, no user will keep tokens unused.
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Note that sellers are individuals who have chosen to travel in an interval Tj , j ∈ I \ Ĩ whereas

buyers are individuals who have chosen to travel in Ti, i ∈ Ĩ. We assume that the token price in

interval Ti, i ∈ Ĩ perceived by a seller is given by,

p̃i = pi + εi, (8)

where pi is the true market price of the token and εi is an i.i.d. Gumbel error term with scale parameter

µ̄. The rationale for the additive error term is that since all transactions happen at the beginning

of the time period T (i.e. at the beginning of the day), travelers may have imperfect forecasts or

perceptions of the prevailing market price.

For a seller, we model the choice of a selling interval using a simple logit model based on Equation

8, where the systematic utility of selling in interval Ti, i ∈ Ĩ is the true market price in the interval.

Consider a user n who has decided to travel in period Tj , j ∈ I \ Ĩ. We assume that the amount

of tokens to sell does not influence the time period of selling. The probability of the user n selling

his/her token in interval Ti, i ∈ Ĩ, Qi is assumed to be,

Qi = Prob[p̃i > max
j 6=i;j∈Ĩ

p̃j ] =
exp(pi/µ̄)∑
j∈Ĩ exp(pj/µ̄)

. (9)

The supply of tokens from users travelling in Tj , j ∈ I \ Ĩ who have decided to sell in period

Ti, i ∈ Ĩ is given by,

Si =
∑
j∈I\Ĩ

QiXj (M − δj) +QiX0M.

Or,

Si = Qi

∑
j∈I\Ĩ

Xj (M − δj) +X0M

 i ∈ Ĩ . (10)

The total supply of tokens is given by,

S =
∑
i∈Ĩ

Si =
∑
i∈Ĩ

Qi

∑
j∈I\Ĩ

Xj (M − δj) +X0M



=
∑
j∈I\Ĩ

Xj (M − δj) +X0M. (11)

We next study the market clearing condition.

3.3.3. Market Clearing

The market clearing conditions in each interval Ti, i ∈ Ĩ imply ,

Si = Di,∀i ∈ Ĩ
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⇒ Qi

∑
j∈I\Ĩ

Xj (M − δj) +X0M

 = Xi (δi −M) ,∀i ∈ Ĩ . (12)

Further, the total demand for tokens is given by,

D =
∑
i∈Ĩ

Di =
∑
i∈Ĩ

Xi (δi −M) . (13)

Thus, market clearing requires D = S, or,∑
i∈Ĩ

Xi (δi −M) =
∑
j∈I\Ĩ

Xj (M − δj) +X0M

=⇒
∑
i

Xiδi = M

(∑
i

Xi +X0

)
= MN. (14)

The market clearing conditions in all periods is satisfied, but the demand for tokens and supply of

tokens are not necessarily the same in each time period. The price adjustment of tokens will guarantee

that each market will clear.

3.3.4. Price Adjustment

For a given vector of tolls in tokens (δi, i = 1 . . . 3), the market clearing price can be computed

through the following iterative process, where the price in iteration w + 1 is given by,

pw+1
i = pwi + h(Di − Si), i = 1 . . . 3, (15)

where h′(.) > 0. This is a standard cobweb adjustment process. It should be noted that the price

adjustment process above is merely a numerical method to compute the market clearing prices and

does not imply that the market actually operates in this manner. Otherwise, users could discover

this and make use of the knowledge of this process strategically, which will become a complex game

theoretic problem outside the scope of this paper (and possibly behaviorally unrealistic in any case).

Conjecture : The equilibrium prices for the three time intervals satisfy limµ̄→0 pi = p∗, i = 1 . . . 3

for any δ1, δ2, δ3.

Given this result, when we optimize δi, i = 1 . . . 3, the adjustment process has reached a stationary

state so that p∗1 = p∗2 = p∗3, when µ̄→ 0.

3.3.5. Optimization

As before, let Ĩ denote the subset of time periods where δi > M . We assume that the regulator

has knowledge of the demand N and sets the tolls in tokens for time periods 1 and 3, and the supply
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of tokens M (δ2 is normalized to 1 token without loss of generality) that maximizes total welfare,

formulated as the following optimization problem,

Max
δ1,δ3,M

Ωq =

N∑
n=1

µnlog

 ∑
j=0...3

exp[V n(Tj ,θn)]

+
∑
j=1...3

pjδjXj (16)

s.t

Xi =

N∑
n=1

exp[V n(Ti,θn)]∑
j exp[V n(Tj ,θn)]

, i = 1 . . . 3,

∑
i=0...3

Xi = N ; Xi ≥ 0, i = 0 . . . 3,

where the equilibrium prices p = (p1, p2, p3) satisfy the market equilibrium conditions (and Qi is given

by Equation 9),

Qi

∑
j∈I\Ĩ

Xj (M − δj) +X0M

 = Xi (δi −M) ,∀i ∈ Ĩ .

The optimum welfare obtained by solving 16 above and the corresponding optimal tolls in tokens

are denoted by Ω∗q and δ∗ = (δ∗i , i = 1 . . . 3) respectively. The associated market clearing prices are

denoted by p∗i , i = 1 . . . 3.

3.4. Comparison

In the deterministic case, the comparison of the two instruments is trivial and can be performed

analytically. The two instruments, when optimally chosen, yield identical social welfare. This is shown

in proposition 1 below.

Proposition 1. Under deterministic demand and supply, the two instruments, price and quantity,

when optimally chosen, are equivalent.

Proof. Let Ωp (τ∗) and Ωq (δ∗, p∗) denote the optimum welfare attained by the price and quantity

instruments respectively, where τ ∗ is the optimum vector of tolls (assume τ ∗ > 0 without loss of

generality), δ∗ is a vector of optimum number of tokens required for each time interval, and p∗ is the

vector of market clearing prices. Note that for simplicity (w.l.o.g), we do not adopt the normalization

of δ2 = 1 and instead assume that M is fixed arbitrarily, and the regulator optimizes δ. Further, let

the optimum flows obtained under the price instrument be denoted by Xp = (Xp
i , i = 0 . . . 3). We

wish to show that Ωp (τ∗) = Ωq (δ∗, p∗).

Since τ ∗ is the optimum toll vector, we have

Ω (τ ∗) > Ω (τ ) ∀τ 6= τ ∗. (17)
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First, assume that p∗ is given exogenously. Clearly, if we set δ∗i = τ∗i /p
∗
i , i = 1 . . . 3, the flows

under the quantity instrument satisfy Xq(δ∗, p∗) = Xp, and hence, Ωq (δ∗, p∗) = Ωp (τ∗). The

prices p∗ can be determined from the market clearing conditions in Equation 12, which imply that

(note that since τ ∗ > 0, it must be the case that δi > M, i = 1 . . . 3 and hence, p∗ > 0),

QiX
p
0M = Xp

i (δi −M) ,∀i ∈ I. (18)

Substituting δ∗i = τ∗i /p
∗
i , i = 1 . . . 3, we obtain the market clearing prices,

p∗i =
τ∗i

M

(
1 +

QiX
p
0

Xp
i

) ,∀i ∈ I. (19)

Note that M can be set arbitrarily, the prices will adjust accordingly. Thus, to summarize, by

setting δ∗i = τ∗i /p
∗
i , i = 1 . . . 3, where p∗i is given by Equation 19, we have Ωq (δ∗, p∗) = Ωp (τ∗).

Now, assume that there exists δ = δ
′

and p = p̃ such that Ωq

(
δ

′
, p̃
)
> Ωp (τ∗). Then, setting

τ
′

i = p̃iδ
′

i (i = 1 . . . 3), we have Ωp

(
τ

′
)
> Ωp (τ∗). This contradicts Equation 17 and hence, the result

follows.

4. Multiperiod Model: Stochastic Demand

In the discussion thus far, transportation demand and supply were assumed to be deterministic.

We now turn our attention to the case where the demand is stochastic.

4.1. Transportation Model: Demand, Supply and Equilibrium

Assume that there exist two days or states of nature s1 and s2 (denoted by sk, k = 1, 2), where

the alternative specific benefit to travel for individual n, varies across the days, taking values Bn,s1i

for period i (i = 1, 2, 3) with probability q and values Bn,s2i , i = 1, 2, 3 with probability 1− q. In other

words, the source of day-to-day variability or stochasticity is on the demand side and arises due to

fluctuations in the scheduling preferences of travelers (note that the total number of users is fixed).

The variability in scheduling preferences may be due to special events, weather etc. leading to a higher

number of users who wish to travel during the peak period. Stochasticity may also arise from external

factors affecting supply such as incidents and accidents, or factors affecting both demand and supply.

The methodological framework can be extended in a straightforward manner to model these cases as

well.

The systematic utilities to travel in time period Ti on day sk, k = 1, 2 (denoted by T ski ) are given

by,

V nsk(T sk0 ,θn) = (1/µn) (Bn0 ) , k = 1, 2 (20)
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V nsk(T ski ,θn) = (1/µn)
(
Bn,ski − αnti(Xsk

i )− pski δi
)
, i = 1 . . . 3, k = 1, 2 (quantity)

V nsk(T ski ,θn) = (1/µn)
(
Bn,ski − αnti(Xsk

i )− τi
)
, i = 1 . . . 3, k = 1, 2 (price),

where pski and Xsk
i are the token price and number of individuals travelling in time period T ski

respectively. Note that in case of the price system, the terms pski δi are replaced by τi. As before,

for a given set of tolls in tokens (δi, i = 1...3) and token prices (pski , i = 1...3; k = 1, 2) — or tolls in

dollars (τi, i = 1...3) in the case of price control—, Xsk
i for k = 1, 2 can be determined by solving the

following fixed point problem (note that Xsk
0 = N −

∑i=3
i=1X

sk
i ),

Xsk
i =

n=N∑
n=1

exp[V nsk(T ski ,θn)]∑
j exp[V nsk(T skj ,θn)]

, i = 1 . . . 3. (21)

4.2. Tolls in Dollars: Price Control

In case of the price instrument, we assume that the regulator may not wish to change the tolls from

day to day for reasons of acceptability and ease of implementation (or may not have knowledge of the

specific realization of the state of nature). For instance, in the ERP system of Singapore, tolls are

revised only once every few months and do not vary from day to day. Thus, in the case of stochastic

demand, the regulator sets the tolls in tokens for the three time periods that maximizes expected total

welfare, formulated as the following optimization problem,

Max
τ1,τ2,τ3

q


N∑
n=1

µnlog

 ∑
j=0...3

exp[V ns1(T s1j ,θn)]

+
∑
j=1...3

τjX
s1
j


+(1− q)


N∑
n=1

µnlog

 ∑
j=0...3

exp[V ns2(T s2j ,θn)]

+
∑
j=1...3

τjX
s2
j

 (22)

s.t

Xsk
i =

n=N∑
n=1

exp[V nsk(T ski ,θn)]∑
j exp[V nsk(T skj ,θn)]

, i = 1 . . . 3; k = 1, 2

∑
i=0...3

Xsk
i = N, k = 1, 2; Xsk

i ≥ 0, i = 0 . . . 3, k = 1, 2.

4.3. Tolls in Tokens: Quantity Control

We distinguish two configurations of the quantity control system. First, in the case of adaptive

token supply, the supply of tokens can vary by day and is denoted Ms1 and Ms2, whereas in the

case of fixed token supply, it is assumed that the total supply of tokens is fixed across days i.e.

Ms1 = Ms2 = M . From the standpoint of implementation, adapting the token supply is likely to be

far easier than adapting the tolls in tokens (or dollars), which may involve communicating a complex

tariff structure (in a general network) to commuters.
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The market clearing conditions in Equation 12 now apply in each time interval for both days and

are given by (the same notation as before is used with the added superscript or subscript sk to denote

the day),

Qski

 ∑
j∈I\Ĩsk

Xsk
j

(
Msk − δj

)
+Xsk

0 Msk

 = Xsk
i

(
δi −Msk

)
,∀i ∈ Ĩsk, k = 1, 2. (23)

In the case of fixed token supply, we assume that the regulator does not have knowledge of the

specific realization of the state of nature (or day) and hence, sets the tolls in tokens for time periods

1 and 3, and the supply of tokens M (as before δ2 is normalized to 1 token without loss of generality)

that maximizes expected total welfare, formulated as the following optimization problem,

Max
δ1,δ3,M

q


N∑
n=1

µnlog

∑
j

exp[V ns1(T s1j ,θn)]

+
∑
j

ps1j δjX
s1
j


+(1− q)


N∑
n=1

µnlog

∑
j

exp[V ns2(T s2j ,θn)]

+
∑
j

ps2j δjX
s2
j

 (24)

s.t

Xsk
i =

n=N∑
n=1

exp[V nsk(T ski ,θn)]∑
j exp[V nsk(T skj ,θn)]

, i = 1 . . . 3; k = 1, 2

∑
i=0...3

Xsk
i = N, k = 1, 2; Xsk

i ≥ 0, i = 0 . . . 3, k = 1, 2,

where the equilibrium prices psk = (psk1 , p
sk
2 , p

sk
3 ), k = 1, 2 satisfy the market equilibrium conditions:

Qski

 ∑
j∈I\Ĩsk

Xsk
j (M − δj) +Xsk

0 M

 = Xsk
i (δi −M) ,∀i ∈ Ĩsk, k = 1, 2.

In the case of adaptive token supply, we assume that the regulator has knowledge of the specific

realization of the state of nature (or day) and sets the tolls in tokens for time periods 1 and 3, and

the supply of tokens Ms1,Ms2 (as before δ2 is normalized to 1 token without loss of generality) that

maximizes expected total welfare, formulated as the following optimization problem,

Max
δ1,δ3,Ms1,Ms2

q


N∑
n=1

µnlog

∑
j

exp[V ns1(T s1j ,θn)]

+
∑
j

ps1j δjX
s1
j


+(1− q)


N∑
n=1

µnlog

∑
j

exp[V ns2(T s2j ,θn)]

+
∑
j

ps2j δjX
s2
j

 (25)

s.t

Xsk
i =

n=N∑
n=1

exp[V nsk(T ski ,θn)]∑
j exp[V nsk(T skj ,θn)]

, i = 1 . . . 3; k = 1, 2
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∑
i=0...3

Xsk
i = N, k = 1, 2; Xsk

i ≥ 0, i = 0 . . . 3, k = 1, 2.

where the equilibrium prices psk = (psk1 , p
sk
2 , p

sk
3 ), k = 1, 2 satisfy the market equilibrium conditions,

⇒ Qski

 ∑
j∈I\Ĩsk

Xsk
j

(
Msk − δj

)
+Xsk

0 Msk

 = Xsk
i

(
δi −Msk

)
,∀i ∈ Ĩsk, k = 1, 2.

4.4. Comparison

In contrast with the deterministic case, when demand (or supply) is stochastic, the comparison of

the price and quantity control instruments cannot be performed analytically. Hence, we perform the

comparison numerically.

5. Numerical Experiments: Stochastic Demand

5.1. Experimental Design

The two instruments are compared using a synthetic example across a wide range of demand and

supply inputs. The setting considered is identical to the formulation in Section 4, wherein there are

N potential travelers who may choose to either travel in one of three time periods (Ti, i = 1 . . . 3)

or cancel their trip (option T0). The stochasticity or variability in demand –as noted in Section 4–

is modeled by varying the levels of the alternative specific benefit to travel (in time periods) on the

two days, Bn,ski , i = 1 . . . 3, k = 1, 2 (refer Equation 20). Thus, the source of day-to-day variability

or stochasticity is on the demand side and arises due to fluctuations in the scheduling preferences of

travelers, which may arise due to special events, weather etc. leading to a higher number of users

who wish to travel. The mean and standard deviation of the alternative specific benefit to cancel trip

(Bn,sk0 k = 1, 2) are normalized to zero, and the probability q is assumed to be 0.5.

Table 1: Fixed Factors

Parameter
Time Period

T1 T2 T3

Bn,s1i [Mean] ($) 7.5 10.0 7.5

Bn,s1i [SD] ($) 0.25 0.25 0.25

Free flow time (min) 13 13 13

Capacity (vehicles/time period) 350 350 350

α (BPR parameter) 0.175 0.15 0.2

The values of the fixed factors are shown in Table 1. The capacities are set based on the range

of demand values (varies with scenario, see Table 2) to yield a ratio of congested to free flow travel
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time (in the absence of tolls) in the range 1.25 − 2.5. The free flow travel time is set to be 13

minutes (assuming a free flow speed of 60 km/hr, this corresponds to a trip length of 13 km, which

is in the range of average trip lengths in typical urban transportation networks). The mean of the

alternative specific benefit is assumed to be higher in period two to represent peaking effects and

commute behavior (note that the table describes the distribution of the alternative specific benefits

in the different time periods for day s1; the values on day s2 vary with the scenario, and are part of

the experimental design, which is described later in the section). The coefficient of variation of the

alternative specific benefit is assumed to be lower in period T2 reflecting a morning commute context

where work start times are largely in this time interval. Further, we introduce some asymmetry in

periods T1 and T3 through the BPR congestion function, which could potentially reflect choices of

different routes in these periods. The mean and standard deviation of the value of time are assumed

to be 0.33$ per min (around 20$ per hr) and 0.067$ per min (around 4$ per hr) respectively (refer

Prato et al. (2014); Hess et al. (2005); Cirillo and Axhausen (2006) for empirical evidence; note that

the literature reports a wide range of values for the coefficient of variation, we adopt a conservative

value of 0.2).

Table 2: Variable Factors and Levels

Factors Levels

COV of mobility model scale µn 0.0 0.2 0.33 0.5

Scale of selling model (µ̄) 1 1.5 2 100000

Number of travelers (N) 1400 1550 1700

BPR Congestion coefficient (β) 3 4 6

Benefit Difference in $ (∆) 3 4 5

In the experimental design, five factors are varied, which include the coefficient of variation (COV)

of the scale parameter µn in the mobility model (the mean of µn is fixed at 1.5), the scale parameter

of the selling model µ̄, total number of users N , the congestion coefficient β, and the benefit difference

between the two days ∆. The factor levels are shown in Table 2. A total of 432 test instances or

scenarios (42 × 33) were simulated.

Several additional points are noteworthy. First, in all the scenarios wherein µn is deterministic (in

other words, COV of µn is zero), the standard deviations of all other randomly distributed parameters

(i.e. αn;Bn,ski , i = 1 . . . 3, k = 1, 2) are also set to zero. Thus, this subset of scenarios represents the

setting with no heterogeneity in the mobility model. Second, in order to set the values of the alternative

specific benefits for a given scenario with a benefit difference ∆, the values of Bn,s1i , i = 1 . . . 3, are

first sampled (based on the mean and standard deviation in Table 1), and Bn,s2i , i = 1 . . . 3 is given
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by, Bn,s2i = Bn,s1i +∆, i = 1 . . . 3. Third, the scenarios with µ̄ = 100000 represent non-rational market

behavior or a purely random selling model (i.e. µ̄→∞).

The two instruments (tolling in dollars and tolling in tokens) are compared across the 432 test

instances based on the optimum social welfare obtained by solving the optimization problems in Equa-

tions 22, 24 and 25. In case of the price control system, the optimization problem in Equation 22 is

solved as a bi-level problem using MATLAB. The fmincon routine is used for the upper level (the

sequential quadratic programming algorithm is applied which is known to work well for non-convex

problems, Meng et al. (2004)) and the lsqnonlin routine is used for the lower level equilibrium prob-

lem. Given the non-convexity of the problem, 25 randomly generated starting points are used for

the optimization algorithm (the value of 25 was arrived at empirically based on preliminary exper-

iments wherein it was found that increasing the number of starting points beyond 25 did not yield

improvements in the objective value). A similar approach is used for the quantity control system. At

the upper level, the fmincon routine is used, and for each candidate solution of the tolls in tokens

δi, i = 1...3, a simple bisection method is applied to compute the prices that ensure market clearing

in all intervals (for a given vector of tolls in tokens and market prices, the lsqnonlin routine is used

to solve the lower level equilibrium problem).

5.2. Results and Discussion

The results from the numerical experiments and their implications are discussed in this section.

After a description of the overall results in terms of optimum social welfare, the effects of congestion,

extent of day to day variability, selling model, and heterogeneity are discussed in turn.

5.2.1. Welfare

Summary statistics (across the 432 scenarios) of the welfare differences between various instruments

under stochastic demand are presented in Table 3. The following abbreviations are used: NT for the

no-toll equilibrium, SP for the price system or tolling in dollars, SQ for the quantity system or tolling

in tokens. We also include a benchmark (abbreviated ADP) in which the tolls (in either dollars or

tokens) are adaptive across the two days and set by the regulator based on the realization of demand.

Clearly, in this case, the price and quantity instruments are equivalent (as shown in Section 3.4), and

this benchmark represents the maximum welfare that can be attained in case of stochastic demand.

NS denotes the number of scenarios.

The results show that in the case of the fixed token supply, neither instrument is consistently

superior across all scenarios (column SQ-SP in Table 3). The quantity system is superior in around

81% of the tested scenarios, with the absolute welfare difference (SQ-SP) ranging between -545$ and

700.7$, and mean and median values of 126.6 $ and 90.4 $ respectively. To put these differences in
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Table 3: Summary Statistics: Welfare Differences

Statistic
Welfare Difference ($) Percentage Diff. Welfare ($)

ADP-NT SP-NT SQ-NT SQ-SP ADP-SP (SQ-SP)/NT (SQ-SP)/ADP NT ADP

Mean 1776.1 1554.7 1681.3 126.6 221.5 2.0 1.4 7347.3 9123.4

Median 1569.1 1416.1 1501.1 90.4 169.1 1.2 1.0 7442.9 9131.7

Min 575.4 516.6 104.4 -545.0 38.5 -6.8 -6.2 4645.1 8023.9

Max 4667.1 3889.7 4590.4 700.7 777.5 13.9 7.2 9021.2 10336.3

25th per. 1003.0 867.2 874.4 15.1 103.4 0.2 0.2 6613.1 8668.3

75 per. 2180.9 1895.6 2075.6 213.3 285.5 3.3 2.4 8131.2 9540.3

NS(>0) 432 432 432 351 432 351 351 - -

NS 432 432 432 432 432 432 432 432 432

%>0 100 100 100 81.3 100 81.3 81.3 - -

context, the total welfare of the no toll equilibrium ranges between 4645.1$ and 9021.2$ while that of

the benchmark ranges between 8023.9$ and 10336.3$; the total toll revenue in the benchmark system

ranges between 4239.6$ and 7026.8$. The percentage difference in welfare (SQ-SP) relative to the

welfare of the no-toll equilibrium ranges between -6.8% and 13.9%, with mean and median percentage

differences of 2% and 1.2% respectively. Note that all welfare values (ADP, SQ, SP, NT) can be

considered as being relative to a situation where all travelers stay at home (i.e for example, due to

very large travel times), which will yield zero welfare due to the normalization of the utility of the

cancel trip option. The percentage differences need to be interpreted in this context.

(a) Empirical CDF (b) Kernel density

Figure 1: Distribution of Welfare Differences

Moreover, an examination of the average welfare difference between the price and quantity instru-

ment (column SQ-SP in Table 3) relative to the average welfare difference between the price instrument

and the adaptive benchmark (column ADP-SP in Table 3) suggests that the added flexibility of the

permit market allows us to recover a little over 57% of the welfare lost due to the tolls in dollars and
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tokens being fixed across days. This is also evident when looking at the welfare differences between the

price and quantity instruments relative to the adaptive benchmark (column (SQ-SP)/ADP in Table

3), which ranges between -6.2% and 7.2% with a mean value of 1.4%.

The overall distribution of welfare differences (SQ-SP) is shown in Figures 1a and 1b (the kernel

density is plotted assuming a normal kernel function), which as noted before indicate that when the

supply of tokens is fixed across days, neither instrument is consistently superior in terms of efficiency.

In order to gain more insights into the conditions under which the quantity instrument is superior,

we next examine the impacts of the shape of the congestion function, selling behavior, the benefit

difference across days and the extent of heterogeneity.

5.2.2. Effect of Congestion Function

In order to gain insights into the scenarios where the quantity control instrument is superior, we first

examine the nature of the congestion function, and draw on recent theoretical insights from de Palma

and Lindsey (2020), who study tradable permit schemes in a setting with homogeneous agents and a

single congestible facility. They conjecture (and explore through simple numerical examples) that in

the case of variable demand and a fixed, but nonlinear cost function, the performance of a quantity

control system dominates that of a price control system when the cost function is more steeply curved.

This relates to their general finding that a quantity control system is relatively efficient if optimal

usage levels are similar across states whereas a congestion fee achieves high efficiency if the first-best

fee varies little over states.

(a) BPR Congestion Coefficient (b) Demand

Figure 2: Welfare Difference: Effect of BPR Congestion Coefficient and Demand

The results from our experiments support these findings. First, the BPR congestion coefficient

has a statistically significant effect (level of significance α = 0.01) on the difference in total welfare

between the quantity and price control systems. The average difference increases from $2.1 at β = 3
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to $63.8 at β = 4, and $313.9 at β = 6. Moreover, the percentage of scenarios where the quantity

control system is superior increases from 61.8% at β = 3 to 82.6% at β = 4 and 99.3% at β = 6. The

effect of β on the welfare difference is shown in the box plot in Figure 2a where it can be seen that

the quantity control mechanism is superior in terms of total welfare typically when congestion curve

is steeper or more convex (high value of β = 4, 6). In the box plot, the lower and upper edges of the

blue box represent the 25th and 75th percentile respectively, the red line represents the median, and

the notch represents a 95% confidence interval for the median.

A similar trend of increasing and statistically significant (α = 0.01) welfare differences (SQ-SP)

is observed as the demand level increases (under fixed capacity, i.e. congestion levels increase). The

average difference increases from $26.9 at N = 1400 to $138.6 at N = 1550, and 214.4$ at N = 1700.

Moreover, the percentage of scenarios where the quantity control system is superior increases from

50.7% at N = 1400 to 93.1% at N = 1550 and 100% at N = 1700. The effect of total demand

(number of travelers) on the welfare differences between the quantity and price instruments is shown

in the box plot in Figure 2b.

Table 4: Illustrative Scenarios: Effect of BPR Congestion Coefficient β

Instrument
Flows Optimal/Equivalent Tolls

T1 T2 T3 T0 T1 T2 T3

Scenario 1

No Toll (NT)
s1 377 542 367 115

0 0 0
s2 419 567 407 8

Stochastic Price (SP)
s1 326 404 315 356

2.59 4.31 2.63
s2 436 498 421 45

Stochastic Quantity (SQ)
s1 374 459 351 216 1.16 2.67 1.33

s2 395 428 365 212 5.85 8.07 6.11

Benchmark (ADP)
s1 338 416 327 319 2.26 3.96 2.30

s2 411 474 397 118 4.60 6.36 4.64

Scenario 2

No Toll (NT)
s1 389 469 382 160

0 0 0
s2 441 498 432 28

Stochastic Price (SP)
s1 287 337 281 495

3.17 4.90 3.21
s2 419 443 410 128

Stochastic Quantity (SQ)
s1 343 401 340 316 1.52 2.84 1.63

s2 360 372 355 313 6.22 8.27 6.42

Benchmark (ADP)
s1 326 366 319 389 2.59 4.30 2.63

s2 372 401 364 263 5.29 7.06 5.33

In order to gain more insight into the effect of the BPR congestion coefficient and the total demand

(number of users), we examine several illustrative scenarios. First, we compare two scenarios (referred

to as 1 and 2) with β = 3, N = 1400,∆ = 5 and β = 6, N = 1400,∆ = 5, respectively. All

other factors including the scale of the mobility model and selling model are the same. The welfare
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difference between the quantity and price instruments (SQ-SP) are -72.9$ and 271.0$ in scenario 1

and 2 respectively.

Table 5: Illustrative Scenarios: Effect of Demand

Instrument
Flows Optimal Tolls

T1 T2 T3 T0 T1 T2 T3

Scenario 1

No Toll (NT)
s1 377 542 367 115

0 0 0
s2 419 567 407 8

Stochastic Price (SP)
s1 326 404 315 356

2.59 4.31 2.63
s2 436 498 421 45

Stochastic Quantity (SQ)
s1 374 459 351 216 1.16 2.67 1.33

s2 395 428 365 212 5.85 8.07 6.11

Benchmark (ADP)
s1 338 416 327 319 2.26 3.96 2.30

s2 411 474 397 118 4.60 6.36 4.64

Scenario 2

No Toll (NT)
s1 446 586 432 235

0 0 0
s2 522 638 505 35

Stochastic Price (SP)
s1 321 399 311 668

3.65 5.39 3.69
s2 493 549 476 182

Stochastic Quantity (SQ)
s1 399 498 387 416 1.85 3.04 1.86

s2 416 469 401 414 6.58 8.50 6.62

Benchmark (ADP)
s1 362 435 350 553 2.84 4.57 2.88

s2 441 500 426 333 5.77 7.55 5.80

Table 4 summarizes the flows in different time periods and the tolls in dollar amounts (note that

for the price instrument this is directly the toll in dollars whereas for the quantity instrument it

is the product of the toll in tokens and the token market price). First, observe that the for both

scenarios, as expected, under the price instrument (SP), the number of individuals traveling (total

flow in periods T1, T2, T3) varies significantly across the days s1 and s2 (also evident from the number

of travelers cancelling trip, i.e. flow in T0) whereas the toll in dollar amounts is fixed. In contrast,

under the quantity instrument, the number of travelers traveling is roughly the same across the two

days whereas the toll in dollar amounts varies significantly. Next, we see that the optimal usage of

the network (or number of people traveling) under the adaptive benchmark ADP varies more across

the states S1 and S2 in scenario 1 than in scenario 2 (difference in the optimal flows for T0 across

days is 319 − 118 = 201 for scenario 1 versus 389 − 263 = 126 in scenario 2). Conversely, looking

at optimal tolls under the benchmark ADP, one can see that the toll difference across s1 and s2 is

higher in scenario 2 compared to scenario 1 (in interval T2, 7.06 − 4.30 = 2.76 for scenario 2 versus

6.36−3.96 = 2.40 for scenario 1). Thus, the results suggest that at higher BPR coefficients or steeper

congestion functions, the optimal usage levels of the network are relatively more similar across states

leading to superiority of the quantity instrument. More intuition for this is provided analytically by
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de Palma and Lindsey (2020) who look at the welfare losses of the two instruments using a single

congested alternative under linear and non-linear demand.

Along similar lines, to examine the effect of the total number of travelers N , we compare two

different scenarios (referred to as 1 and 2) with β = 3, N = 1400,∆ = 5 and β = 3, N = 1700,∆ = 5

respectively. All other factors including the scale of the mobility model and selling model are the

same. The welfare difference between the quantity and price instruments (SQ-SP) are -72.9$ and

88.73$ in scenario 1 and 2 respectively. Table 5 presents the flows in different time periods and the

tolls in dollar amounts for these two scenarios. We observe – as before in the case of higher β –

that when the overall demand level is higher (scenario 2), the difference in optimal toll rates across

s1 and s2 is higher compared to scenario 1 (in interval T2, 7.55 − 4.57 = 2.98 for scenario 2 versus

6.36− 3.96 = 2.40 for scenario 1). Thus, at higher demand levels (and hence, more severe congestion

effects) the optimal toll rates vary more across states, once again leading to superior performance of

the quantity control instrument relative to scenarios with lower demand levels.

(a) Selling model scale parameter µ̄ (b) Interaction between m̄u and BPR β

Figure 3: Welfare Difference: Effect of Selling Model

5.2.3. Selling Model

The explicit treatment of selling behavior is an important characteristic of the proposed model,

and allows us to examine the impact of the selling decisions on the performance of the quantity control

system. Figure 3a presents a box plot of the effect of the scale parameter of the selling model on the

difference between the quantity and price instruments. The value of µ̄ = 100000 , which corresponds

to µ̄ → ∞ represents a purely random selling model (or a non-rational market) and has the impact

of equalizing the supply of tokens across the three time periods (consequently, the demand of tokens

as well). As the results show, this has the effect of a deterioration in the performance of the quantity

control system, reflected in the mean difference in welfare between the two instruments (Quantity
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- price), which takes a mean value of 85.7 S$ at µ̄ = 100000 versus 140.2 S$ for µ̄ ∈ [1, 2]. Note

that within the range of µ̄ ∈ [1, 2], performance of the quantity control does not vary substantially.

However, interestingly, even with in the case of a non-rational market, the quantity instrument remains

superior to the price instrument in cases where congestion effects are severe (e.g. β = 6 in Figure

3b). In other words, the advantages of the quantity control system noted in Section 5.2.2 remain even

if users are not perfectly rational in the selling market, although the extent of welfare difference is

marginally lower.

Figure 4: Effect of µ̄ on welfare of quantity control (SQ))

The impact of market behavior is illustrated in Figure 4 for a few selected scenarios which yield

the highest deterioration in welfare for µ̄ = 100000 compared to the corresponding scenarios with

µ̄ = 1, 1.5, 2. Each marker type or series represents scenarios where all parameters are identical except

µ̄. Note that the interpolating lines between each point are not meant to be indicative of the actual

trend but are used to simply make the figure more legible. As noted above, we observe that within the

range µ̄ ∈ [1, 2], the differences in welfare of the quantity instrument are negligible whereas the welfare

deteriorates if users are more irrational in the selling market. Thus, the findings suggest that market

design aspects of the quantity control instrument are important and can have effects on efficiency.

This is explained in more detail next.

In order to gain more intuition into the effect of selling behavior in the market, we examine two

illustrative scenarios, one with µ̄ = 1 and the second with µ̄ = 100000 (β = 4, N = 1550,∆ = 3 in

both scenarios). Thus, the two scenarios are identical in all respects except the scale parameter of the

selling model. The welfare of the scenario with µ̄ = 1 is higher than that with µ̄ = 100000 by 104.2$.

Table 6 summarizes the flows in different time periods, the tolls in dollar amounts (note that is the

product of the toll in tokens and the token market price) and the demand and supply of tokens for all
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Table 6: Illustrative Scenarios: Effect of selling behavior

Instrument
Flows Optimal Tolls

T1 T2 T3 T0 T1 T2 T3

Stochastic Quantity (SQ) s1 366 440 353 391 2.22 3.77 2.29

µ̄ = 1.0 s2 381 418 365 386 5.00 7.10 5.09

Stochastic Quantity (SQ) s1 355 378 341 476 2.72 5.06 2.82

µ̄ = 100000 s2 355 378 341 476 5.72 8.06 5.82

Benchmark (ADP)
s1 346 409 336 459 2.26 3.96 2.30

s2 391 444 380 335 4.60 6.36 4.64

Demand for Tokens Supply of Tokens

T1 T2 T3 T0 T1 T2 T3

Stochastic Quantity (SQ) s1 53.89 148.93 56.04 - 53.89 148.93 56.04

µ̄ = 1.0 s2 56.07 141.53 57.96 - 56.05 141.53 57.95

Stochastic Quantity (SQ) s1 111.81 111.81 111.81 - 111.81 111.81 111.81

µ̄ = 100000 s2 111.81 111.81 111.81 - 111.81 111.81 111.81

time intervals and both days s1 and s2. First, note that non-rational selling behavior or µ̄ = 100000

has the effect of equalizing the probability of selling in all three time intervals and hence, equalizes the

supply of tokens for all three intervals (last two rows in Table 6). Interestingly, this also causes the

token supply to be equal on both days s1 and s2 (for all three intervals). Thus, we see that the optimal

tolls (SQ with µ̄ = 100000) on days s1 and s2 differ by an additive constant of 3$ (which is exactly

equal to the benefit difference between the two days, ∆ = 3$) resulting in identical token supply and

also, identical flows on both days s1 and s2. Moreover, the equal token supply results in lower flows

in interval T2 (for example, 440 on s1 for µ̄ = 1 versus 378 on s1 for µ̄ = 100000). This results in a

significantly higher number of travelers cancelling trip (choosing T0) in the scenario with µ̄ = 100000

(476) versus the scenario with µ̄ = 1 (391 and 386) leading to a loss in welfare. In summary, we see

that the quantity control instrument is robust with respect to selling behavior in the market and is

still superior even with irrational sellers when congestion effects are more severe. However, there is a

deterioration in welfare when the behavior of sellers is more irrational, which causes the equilibrium

price of tokens to increase leading to less travel.

5.2.4. Difference between states of nature

The benefit difference between the two days or states of nature (∆) is a measure of the extent of

day to day variability, and the results indicate —similar to the congestion coefficient and demand—

that it significantly affects the relative performance of the two instruments (α = 0.05). The average

difference increases from $81 at ∆ = 3 to $125 at ∆ = 4, and 175.4$ at ∆ = 5. Further, the variance

in difference between the two instruments also increases as is evident from the boxplot in Figure 5a.

This can be better understood by examining the interaction effects of the benefit difference with the
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BPR congestion coefficient. Thus, when the congestion curve is steeper, a larger degree of day of

day variability results in a greater advantage for the quantity control system (β = 6,∆ = 5 versus

β = 6,∆ = 3 in Figure 5b). On the hand, congestion effects are less severe, an increase in day to

day variation (β = 3,∆ = 5 versus β = 3,∆ = 3 in Figure 5b) results in a poorer performance of the

quantity control system.

(a) Benefit Difference (∆) (b) Interaction between ∆ and BPR Coefficient β

Figure 5: Welfare Difference: Effect of Benefit Difference and Interaction between Benefit Difference/Beta

This can be explained once again by the fact that at higher levels of the benefit difference (or

day to day variability) and BPR coefficient, the optimal toll rates (in dollar amounts) tend to vary

significantly across the states s1 and s2, leading to superior performance of the quantity instrument.

5.2.5. Heterogeneity

The impact of the coefficient of variation (COV) of the scale parameter µn in the mobility model

(note that µn is assumed to be lognormally distributed across the population of travelers) is shown

in the boxplot in Figure 6. First, it can be observed that as the COV increases from µn = 0.2 to

µn = 0.5, the mean difference in welfare between the quantity and price instruments increases only

marginally from 109.8 $ to 123.1 $ (statistically insignificant at α = 0.05).

In contrast, when we examine the effect of overall heterogeneity in the mobility model (recall

that the scenarios with µn = 0 represent the homogeneous case where all other parameters in the

mobility model are also assumed to be deterministic), we see a significant effect (α = 0.05). The mean

difference between the quantity and price control systems for the homogeneous scenarios is in fact

higher at 158$ (scenarios with COV of µn = 0 in Figure 6) compared to 115$ when heterogeneity is

considered (scenarios with COV of µn = 0.2, 0.33, 0.5 in Figure 6) . This has important implications

and suggests that ignoring heterogeneity can potentially overestimate the benefits of the quantity

27



Figure 6: Welfare Difference: Effect of Heterogeneity and COV of mobility scale

control system. This contrasts with the findings in de Palma et al. (2018) where heterogeneity was

found to slightly increase the average welfare difference between the two instruments. The intuition

for these differences is hard to arrive at, one potential cause may be differences in the nature of

variability, which arises from scheduling preferences in our case as opposed to the total number of

users in their case.

5.2.6. Equity

Equity is a key consideration in the comparison between the price and quantity control instruments.

In this section, we compare the two instruments using the Gini coefficient computed based on the

logsum (a measure of user benefits). For a detailed discussion of measures of inequality and welfare

in the transportation context, we refer the readers to Trannoy (2011) and Delle Site et al. (2021). We

first discuss the computation of the Gini coefficient followed by a discussion of findings.

Consider the population of N travelers (k = 1 . . . N), and let UB(k) denote the user benefit of

individual k in $ amounts. In the case of the no toll equilibrium (denoted NT) and tolling in dollars

with no redistribution of toll revenues (denoted SPN), UB(k) is simply the logsum of individual k. In

the case of tolling in dollars with an equal redistribution of toll revenues (denoted SP), UB(k) is the

logsum of individual k plus the average toll revenue per individual. Finally, in the case of tolling in

tokens (denoted SQ), UB(k) is the logsum of individual k plus the market value of the initial token

endowment (since tokens are distributed for free and no tokens are unused at the end of the day).

28



Assume that drivers arranged in increasing order of their user benefit and let x = k/N . Define,

g(x) =

∑xN
j=1 UB(j)∑N
j=1 UB(j)

. (26)

where g(x) represents the Lorenz curve, which is the cumulative share of total user benefits (based on

the logsum measure) obtained by the bottom xN individuals in the population (note that xN is an

integer). The Gini coefficient of user benefits (denoted GC) is computed as,

GC =

∣∣∣∣0.5− ∫ 1

0

g(x)dx

∣∣∣∣
0.5

. (27)

The Gini coefficient is a measure of equity and takes a value between 0 and 1; a value equal to zero

implies total equity and a value of 1 indicates total inequity. The larger it is, the more inequitable is

the policy.

Table 7: Summary Statistics: Gini Coefficient

Statistic GCNT

Percentage Difference in Gini Coefficient

(SPN-NT)/NT (SP-NT)/NT (SQ-NT)/NT (SQ-SP)/SP

Mean 0.183 28.7 −43.7 −43.7 −0.6

Median 0.175 32.3 −43.0 −43.9 0.0

Minimum 0.123 −2.4 −65.9 −68.9 −11.2

Maximum 0.275 46.2 −22.9 −1.9 40.1

25th Percentile 0.155 21.7 −51.8 −52.2 −3.3

75th Percentile 0.208 38.1 −34.2 −34.3 1.4

Scenarios >0 324 312 0 0 156

% Scenarios >0 100 96.3 0 0 48.1

NS 324

Table 7 summarizes the distribution of the Gini coefficient (across the 324 scenarios with het-

erogeneity) for the NT equilibrium (denoted by GCNT ) and percentage differences between the Gini

coefficient for the different instruments. First, observe that with tolling in dollars wherein toll rev-

enues are not redistributed, in a majority of the scenarios (96.3%), the Gini coefficent increases (i.e is

more inequitable) relative to the No Toll equilibrium, and is on average 28.7% higher (column three of

Table 7). This is in line with the general observation that pricing is vertically inequitable and benefits

the rich (here the individuals with high value of time) more than the poor. The scatter plots (Figure

7) of logsum difference (between SP and NT) versus value of time (a proxy for income) corroborate

this observation, where we see that the benefits clearly increase with an increase in value of time.

The plots represent two illustrative scenarios for the s2 day and each point in the plot represents

an individual. Interestingly, there are a small number of scenarios (3.7%), where the Gini coefficient

reduces even when toll revenues are not redistributed. This occurs in scenarios where the congestion

effects are the most severe (BPR coefficient of 6 and highest demand level).
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(a) Scenario 1 (β = 6, N = 1400,∆ = 5) (b) Scenario 2 (β = 3, N = 1550,∆ = 4)

Figure 7: User Benefits versus Value of Time

Our second observation is that both in case of the quantity instrument and the price instrument

(when toll revenues are equally redistributed), there is a significant improvement of equity, by an

average of 43.7%, relative to the No Toll equilibrium (column four and five of Table 7). This is a

key finding and implies that both instruments favour the poor (low value of time individuals) since

there is a large reduction in the Gini coefficient across all scenarios relative to the No Toll equilibrium.

The primary reason is that an equal redistribution of toll revenues (price instrument) and the equal

allocation of tokens (quantity instrument) results in an increase in the cumulative share of benefits

obtained by lower income travelers, leading to an improvement in equity. Further, note that in case

of the quantity instrument, a further improvement in equity can be achieved through any progressive

allocation of the tokens.

Finally, comparing the Gini coefficient for the quantity instrument and the price instrument with

equal redistribution of toll revenues (column six of Table 7), we see that neither instrument is consis-

tently superior in terms of equity, although the quantity instrument is on average marginally better

(average difference of 0.6%). Moreover, similar to the comparative performance with respect to wel-

fare, we find that the quantity instrument is superior in terms of equity in scenarios with more severe

congestions effects (high BPR congestion coefficient of 4 and 6) and when the selling behavior of

individuals is rational. These findings make an additional case for tolling in tokens.

5.3. Adaptive Token Supply

The experiments in Section 5.2 consider a quantity control system wherein the token supply is

fixed across days and the results indicate the tolling in tokens is not consistently superior to tolling

in dollars. The results also suggest that the price system is typically superior when congestion effects

are less severe (slope of the congestion function is less steep, demand is lower). In these cases, as seen
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in the illustrative scenarios in Section 5.2.2, the quantity targets may be too lax on the s1 day and

thus, the performance of the quantity control system can be improved by allowing the token supply

to be adapted across days in response to the realization of demand (Equation 25).

In this section, we examine the comparative performance of the two instruments when the token

supply is adaptive. Note that, in this case certain parameters of the quantity control system (Ms1,Ms2

in Equation 25) are dependent on the state of nature. This is in contrast with the adaptive tradable

permit system (TPS) considered in de Palma and Lindsey (2020) where, the regulator issues a certain

number of permits, but in addition, offers to sell further permits at a price s, and buy permits at a

price r, where r < s This limits the price of permits to the range [r, s], where r and s are fixed and

state independent.

Table 8: Summary Statistics: Welfare Differences (Adaptive token supply)

Statistic
Welfare Difference ($) Percentage Diff.

NT Welfare ($)
SP-NT SQ A-NT SQ-SP SQ A-SP ADP-SP (SQ A-SP)/NT

Mean 1554.7 1744.6 126.7 190.0 221.5 2.9 7347.3

Median 1416.1 1560.8 90.4 157.6 169.1 2.1 7442.9

Min 516.6 348.0 -545.0 -177.4 38.5 -2.0 4645.1

Max 3889.7 4656.2 700.7 766.6 777.5 15.2 9021.2

25th per. 867.2 952.4 15.1 81.6 103.4 1.0 6613.1

75th per. 1895.6 2143.2 213.3 262.5 285.5 4.0 8131.2

NS > 0 432 432 351 410 432 410 -

%>0 100 100 81.3 94.9 100 94.9 -

The results are summarized in Table 8 and as expected, indicate that the quantity control system

with adaptive supply is superior to that with fixed supply in all scenarios. The mean welfare difference

between the quantity system with adaptive supply (denoted SQ A) and the price system is 190.0 $

compared to 126.6 $ with fixed supply (refer columns SQ-SP and SQ A - SP). Moreover, a comparison

of these numbers against the mean difference of 221.5$ between the adaptive benchmark and the price

system (ADP-SP) reveals the extent of welfare improvements that can be attained by adapting the

token supply across days. Thus, while the quantity instrument with fixed token supply recovers a little

over 57% of the welfare loss due to fixing the tolls (in dollars and tokens) across days, the quantity

instrument with adaptive token supply recovers almost 86% of this welfare loss.

However, contrary to intuition, even with adaptive token supply, the quantity control system is

still not consistently superior to the price control system although it yields a higher welfare in 94.9%

of tested the tested scenarios. This is in contrast with the findings in de Palma et al. (2018) for a

single period setting where the quantity control with adaptive token supply is consistently superior.

A more detailed examination shows that the scenarios where the price control is superior are in fact

all scenarios where the selling behavior is non-rational or completely random (i.e µ̄ → ∞) as shown
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Figure 8: Welfare Differences (adaptive token supply): Effect of selling model

in the box plot in Figure 8. As shown in Section 5.2.3 this has the effect of forcing the token supply

to be equal across time periods, reducing the efficiency of the quantity control system in a manner

that is not redressed even with the adaptive token supply. This once again highlights the importance

of market design in the efficiency of the quantity control system.

6. Conclusions

This paper develops a methodology to compare price control (tolling in dollars) and quantity

control (tolling in tokens) instruments in the context of a within-day setting with departure time

choice. In the quantity control system, users are provided an initial endowment of tokens by the

regulator and incur a token charge to travel in a specific time period. Tokens can be bought and sold

within a marketplace at a price determined by a market clearing mechanism in each time period. A

key feature of the market model is that the selling decisions of users are explicitly considered.

Numerical experiments across a wide range of scenarios with demand uncertainty yield the following

key insights. First, when the tolls (in dollars and tokens) can be adapted from day to day, the two

instruments are equivalent. Second, when the token supply is fixed across days or states of nature

and the tolls (in dollars and tokens) are non-adaptive, the quantity control instrument is superior in

welfare terms when congestion effects are more severe, i.e. steep congestion functions (realistic BPR

models), high demand levels and high day-to-day variability. In these scenarios, the optimal network

usage is relatively similar across states whereas the optimal toll in dollar amounts varies significantly

across states. Third, non-rational selling behavior, which has the effect of equalizing token supply

across time intervals leads to a deterioration in the performance of the quantity instrument. However,

in general the token system is robust (in welfare terms) with respect to selling behavior in the market.

Fourth, when the token supply can be adapted from day-to-day, the quantity instrument is superior
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in all scenarios where selling behavior is rational. Finally, when toll revenues in the price instrument

are equally redistributed (typically difficult to implement in practice) and tokens (in the quantity

instrument) are equally distributed, tolling in tokens is marginally more equitable in scenarios where

congestion effects are more severe. These findings make a potential case for quantity control.

Several points are however noteworthy. First, income effects and second order effects on the use

of toll revenues are not considered. Second, transaction costs associated with the trading of permits,

the process of finding a buyer or seller, negotiating a price, etc. are ignored. These are likely to affect

the overall welfare of the quantity control system (see Nie (2012)). However, as noted by Brands

et al. (2020), transaction costs may be minimized through suitable market designs. For instance,

they make use of a price setting intermediary with whom users trade, and point out that this can

significantly reduce transaction and negotiation costs compared to designs that include consumer to

consumer trading (and over existing designs such as Dutch and English auctions, sealed-bid auctions

and Vickerey auction markets). Third, the public acceptability of tradable permits is not necessarily

guaranteed and will depend on the initial allocation of permits and the extent of volatility in the

permit market.

There are several avenues of further research including the use of more realistic network and

congestion models, the consideration of both departure time and route/mode choice, and the inclusion

of income effects and transaction costs.
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Appendix A: Glossary

Notation

Symbol Description

Bn
i Alternative specific benefit for individual n in time interval Ti (i = 0 . . . 3)

Ci Capacity in time interval Ti (i = 1 . . . 3)

Di Demand for tokens in time interval Ti, i ∈ Ĩ
I Set of time intervals (Ti, i = 0 . . . 3)

Ĩ Subset of time intervals Ti where δi > M

M Token endowment per traveler

Msk Token endowment per traveler on day sk (k = 1, 2)

N Number of travelers

pi Token market price in time interval Ti (i = 1 . . . 3)

p̄i Perceived token market price for time interval Ti (i = 1 . . . 3)

pski Token market price in time interval Ti (i = 1 . . . 3) on day sk (k = 1, 2)

Qi Probability of selling in time interval Ti, i ∈ Ĩ
sk State of nature or day (k = 1, 2)

Si Supply of tokens in time interval Ti, i ∈ Ĩ
tFF
i Free flow travel time in interval Ti (i = 1 . . . 3)

ti Congested travel time in interval Ti (i = 1 . . . 3)

Ti Time interval i (i = 0 . . . 3)

Un(Ti) Utility of time interval i for individual n

V n(Ti) Systematic utility of time interval i for individual n

V n
sk(T sk

i ) Systematic utility of time interval i on day sk for individual n

Xi Flow in time interval Ti (i = 1 . . . 3)

Xsk
i Flow in time interval Ti (i = 1 . . . 3) on day sk (k = 1, 2)

αn Value of time of individual n

αi BPR function parameter for interval Ti (i = 1 . . . 3)

βi BPR function parameter for interval Ti (i = 1 . . . 3)

δi Toll in tokens for time interval Ti (i = 1 . . . 3)

εi Error term in utility for time interval Ti

µn Scale parameter of individual n (mobility decision)

µ̄ Scale parameter of selling model

ΩP Optimum welfare of price instrument

ΩQ Optimum welfare of quantity instrument

τi Toll in dollars for time interval Ti (i = 1 . . . 3)
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