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Abstract

We provide a model of interrogations with two-sided asymmetric information. The
suspect knows his status as guilty or innocent and the likely strength of the law enforcer’s
evidence, which is informative about the suspect’s status and may also disprove lies. We
compare prosecution errors in the equilibrium of the one-shot interrogation and in the
optimal mechanism under full commitment. We describe a “back and forth” interrogation
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Alessandro Ispano: CY Cergy Paris Université, CNRS, THEMA, F-95000 Cergy, France, alessan-
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1 Introduction

Beyond arousing collective imagination and ensuring the fortunes of many detective stories,1

the interrogation of a suspect is an important investigative resource for law enforcers in most

legal systems. In this paper, we propose a model of interrogations that we use to explore several

questions on their conduct and regulation to determine which institutions enhance information

revelation and yield to more accurate decisions.2

Interrogations exhibit two distinctive features that our model seek to capture. First, as both

common sense and empirical studies indicate (see section 4.3), the strength of the incriminating

evidence as perceived by law enforcers and by the suspect is key. And while law enforcers are

typically better informed about the evidence gathered, the suspect is better informed about how

strong he expects this evidence to be. For example, a meticulous criminal will be more confident

than a clumsy one to have left no trace behind. Likewise, an innocent suspect who was many

miles away from the crime scene should anticipate that law enforcers’ case will be speculative at

best. In spite of the complexity resulting from the correlation between the private information

of the two parties, we provide a handy information structure that incorporates this dimension.3

Besides, interrogations typically involve a dynamic process whereby not only the suspect is

asked questions but also law enforcers may give away information about the evidence, inducing

the suspect to revise his expectation and, possibly, his strategy, e.g. “break” and confess. We

formalize this not always transparent persuasion process and shed light on its effectiveness.

We represent the interrogation as a game of two-sided asymmetric information between a

suspect (he) and a law enforcer (she). The suspect’s private information, or type, can be thought

of as the lawfulness of his behavior measured on a vertical scale, e.g. the care he put into driving

or the distance he stayed from his ex-wife who obtained a restraining order. The suspect is

guilty when his lawfulness falls short of a known threshold, e.g. the carefulness required to

avoid vehicular homicide or the distance specified by the restraining order. The law enforcer’s

1At the moment of writing, a search based on the keyword “interrogation” on the popular IMDB internet
movie database yields 4308 entries (https://www.imdb.com/search/keyword/?keywords=interrogation).

2While we focus on law enforcement as the leading application, interrogations, or comparable situations,
arise in many other contexts ranging from private litigation, e.g. the assessment of an employee’s misconduct,
to fraud in academia, e.g. the investigation of cheating in an exam, and daily life, e.g. the determination of a
spouse’s betrayal.

3For instance, in the related context of plea bargaining, Reinganum (1988) writes:

A more difficult task is to incorporate the discovery process. One way to do this is to assume that
the defendant receives a signal which is (imperfectly) correlated with the strength of the case. If
the prosecutor also observes this signal, then this is basically an exercise in updating priors. [...]
If the signal is private information for the defendant, matters could become considerably more
complicated.
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private information is a piece of evidence that provides a bound on the suspect’s lawfulness, e.g.

a speed his car surely exceeded or a distance at which he was spotted. Thus, the higher the

suspect’s lawfulness, the greater his confidence that the law enforcer’s evidence is weak. After

interacting with the suspect, the law enforcer must decide whether to prosecute him.4

In our baseline model, the suspect makes a claim, interpreted as a reply to the law enforcer’s

inquiry about his type, and then the law enforcer makes a decision. The suspect additionally

incurs some cost if he is caught in a lie, i.e. if his claim is disproved by the evidence. In

equilibrium, innocents are honest. Possibly, some unconfident guilties are honest as well, i.e.

they confess, to avoid the risk of getting caught in a lie. Instead, sufficiently confident guilties

necessarily lie and mimic unconfident innocents. This baseline model yields clear predictions on

players’ equilibrium strategies (proposition 1) and payoffs (corollary 1). Besides, it sheds light

on the relation between the usefulness of interrogating and the elicitation of a confession since

the law enforcer’s payoff is higher than when she relies on the evidence alone if and only if some

guilties indeed confess (remark 1).

We complement the equilibrium analysis with the mechanism design approach, which as-

sumes the law enforcer can commit to a decision based on the suspect’s claims and the evidence.

A comparison between the equilibrium and the optimal mechanism (proposition 2), which can

also be made immune to the law enforcer’s incentives to misrepresent the evidence (remark 2),

identifies a commitment problem inherent to interrogations. The law enforcer would benefit

from committing to prosecute unconfident innocents when the evidence is strong and to let go

confident guilties when the evidence is weak. Besides, while the threat of catching and punishing

lies makes eliciting information from the suspect possible in the first place, the fact that lying

occurs in equilibrium harms the law enforcer and overall efficiency, since too many guilties are

let go relative to the optimal mechanism.

We then investigate the scope for information revelation about the evidence and richer in-

terrogation protocols to compensate for the law enforcer’s lack of commitment over decisions.

Initially, we suppose the law enforcer can credibly commit to an arbitrary revelation policy, or

persuasion rule, and, after the suspect observes a signal accordingly, the interrogation unfolds

as in the baseline model. There exists a persuasion rule such that players’ payoffs are as in the

optimal mechanism (proposition 3). However, in any optimal persuasion rule there are evidence

realizations such that the law enforcer would gain from deviating and understating the strength

of the actual evidence (remark 3). Under natural restrictions on evidence revelation, notably

4The model equivalently applies to any other decision that the law enforcer would want to base on the
suspect’s guilt, e.g. an arrest, and generates disutility to the suspect irrespectively. Until section 4.1.2, we
abstract from details about the separation of roles in the legal system.

2



that the strength of the evidence cannot be overstated but can be understated, this deviation

would always be possible, so that longer communication is needed to attain the optimum.

Indeed, the optimal mechanism can be implemented without any commitment in a “back

and forth” variation of the baseline model (proposition 4) based on the idea of letting the

suspect provide his own account and only then challenging him with the evidence accordingly.

The law enforcer must be able to disclose information about the evidence, possibly vaguely,

as a function of the suspect’s initial claim, who can then reply back. The law enforcer must

also have discretion on whether to punish or forgive lies, which she will use as “carrot and

stick”. When the evidence is sufficiently strong relative to the suspect’s initial claim, the law

enforcer proves it rather than immediately taking a decision. In the second round, a guilty

suspect will step back on his lie, which will be forgiven, and an innocent type will stick to his

story. The equilibrium behavior in this second round is reminiscent of screening outcomes in plea

bargaining (Grossman and Katz, 1983; Reinganum, 1988) and the optimal judicial mechanism of

Siegel and Strulovici (forthcoming), in which only an innocent rejects the plea. However, while

those models require the court to sometimes convict a suspect known to be surely innocent,

in our game the law enforcer’s decisions are sequentially rational at each information set. In

particular, in the second round an innocent suspect is always let go. Since the equilibrium

exhibits an implicit promise of leniency for confession, this result also supports the view that

these kinds of agreements, on which the law is often blurry or controversial, should be allowed.

In the remaining part of the paper, we first discuss our main modeling assumptions and

the robustness of our main findings under some natural variations. In particular, we consider

the case in which the suspect bears no cost for being caught in a lie but enjoys some leniency

for confessing. Also, we consider the possibility that the prosecution process continues after

the interrogation and the suspect’s and the law enforcer’s payoffs are determined by a future

decision of a third party, e.g. conviction or acquittal in court, which may also depend on the un-

covering of new evidence. Next, we demonstrate how some recurrent legal institutions governing

interrogations, namely protection of the suspect’s right to silence (proposition 5) and evidence

strength standards required to interrogate (proposition 6), can alleviate the law enforcer’s com-

mitment problem above and improve decisions. We then describe empirical foundations of our

assumptions and results drawing on literature from other disciplines such as criminology and

psychology. We conclude by discussing important considerations we left aside and avenues for

future research, in particular the use of deceptive interrogations tactics and the strategic choice

to interrogate the suspect. The appendix contains all proofs, while we relegate more technical

material and some examples to the online appendix.
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Relation to the literature. While the judicial process is a prominent field of application

of information economics, suspects’ interrogations have received only limited attention. A no-

table exception is Baliga and Ely (2016), who study the interrogator’s commitment problems

inherent to torture. More closely related is Seidmann (2005), who focuses on how protection

of the suspect’s right to silence affects his communication.5 As detailed in section 4.1.2, we

simultaneously confirm how his results extend to our setting and we offer some new insights

on the issue. Recently, Bull (2022) shows how non-disclosure of the evidence can be superior

to full disclosure at incentivizing confession in a framework in which the interrogator also has

some unverifiable information about the suspect’s guilt. This result also holds in our setting,

which additionally demonstrates how partial disclosure contingent on the suspect’s message can

be even better.

Otherwise, the law and economics literature generally studies the judicial process assuming

prosecution is already undergoing. This paper instead focuses on how interrogating the suspect

contributes to the decision to prosecute. To this end, our framework captures essential features

of the judicial process only in stylized form but accounts for key specificities of interrogations

in the information structure and the nature of communication.6 First, asymmetric information

about the incriminating evidence is presumably more pervasive than further down the judicial

process, where the prosecution is typically subject to mandatory disclosure requirements and

discovery occurs.7 Thus, taking two-sided asymmetric information between the suspect and the

law enforcer a step further than previous work, our model allows for heterogeneity not only

between a guilty and an innocent, but also within guilties and innocents, in the strength of the

incriminating evidence they expect. This heterogeneity explains why different guilties prefer

different strategies. Besides, the information the different parties present to a judicial officer is

typically modeled as hard evidence (Milgrom, 1981), i.e. it can be disclosed or withheld but not

misreported.8 To allow for the possibility of plain lying intrinsic to interrogations, in our model

the suspect’s claims are soft information, i.e. the set of his available messages is independent

5Leshem (2010) extends the analysis to a setting in which even innocent suspects may prefer to exercise the
right to silent as their honest claims may be disproved.

6In particular, we take as given that guilt and reticence entail some punishment without considering the
complex determinants of plea bargaining (Grossman and Katz, 1983; Reinganum, 1988; Baker and Mezzetti,
2001) and sentencing (Siegel and Strulovici, 2019, forthcoming). We thereby ignore considerations on crime
deterrence (and chilling of socially desirable behavior (Kaplow, 2011)), commensurate punishment, endogenous
evidence acquisition and deployment of resources in prosecution.

7The plea bargaining literature features alternative assumptions on when this source of asymmetric informa-
tion exactly resolves, i.e. if already at the plea bargaining stage (Grossman and Katz, 1983) or after (Reinganum,
1988). Daughety and Reinganum (2018, 2020) explore the prosecutor’s incentives to comply with the disclosure
requirements established by the Supreme Court of the United States in Brady v. Maryland (1963). Cuellar
(2020) studies plea bargaining outcomes when the prosecutor can acquire and disclose evidence over time.

8See for instance Shin (1994), Mialon (2005), Bhattacharya and Mukherjee (2013) and Hart et al. (2017).
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from the truth. At the same time, the suspect’s claims are not pure cheap talk (Crawford and

Sobel, 1982) since these might be contradicted by the law enforcer’s evidence, entailing a cost.

Differently from theoretical models of lying (e.g. Kartik (2009), Dziuda and Salas (2018),

Balbuzanov (2019) and Jehiel (2021)), the detectability of a lie and its cost for the suspect derive

from the law enforcer’s private information, which in particular implies that the detectability of

a lie increases with its size.9 Moreover, our framework allows studying communication protocols

with two-sided information revelation and, in particular, the effects of revelation of the law

enforcer’s evidence to the suspect. Our model hence also joins the growing theoretical literature

on strategic communication that, departing from seminal works, considers two-sided asymmetric

information between the sender and the receiver.10 It differs in players’ incentives and the

information structure as well as in the main questions of interest. A recurrent theme in this

literature is that the receiver may sometimes be hurt from her information since as a result

the sender may reveal less. In our setting, absent the possibility that the suspect may be

disproved by the law enforcer’s evidence, the interrogation would be completely uninformative.

Likewise, our model is related to the literature on Bayesian persuasion (Kamenica and Gentzkow,

2011), in particular of a privately informed receiver (Kolotilin et al., 2017). Our back and forth

game resembles the idea of a persuasion mechanism in Kolotilin et al. (2017) in that the way

information is disclosed to the suspect depends on the information he sends. Finally, our model is

also connected to the literature on improvements from multistage communication (e.g. Aumann

and Hart (2003), Krishna and Morgan (2004) and Goltsman et al. (2009)).

2 A simple model of interrogation

2.1 Model

Information structure. There are two players: a suspect (he), denoted by S, and a law

enforcer (she), denoted by R. At the initial stage, S privately observes his type y and R

privately observes her type, or evidence, z. These are drawn from
{
(y, z) ∈ [0, 1]2 : y < z

}
9Kartik (2009) assumes a lie entails a direct cost that increases with its size and he invokes penalties upon

lying detection as a possible interpretation. In both Dziuda and Salas (2018) and Balbuzanov (2019), instead,
any lie has an exogenous chance of being detected and the cost is endogenously determined by the receiver’s
response. Jehiel (2021) considers a repeated communication setting in which a sender who lies then forgets his
message and may hence later contradict himself. Relatedly, in Ioannidis et al. (2022) the message of the sender
determines the receiver’s costly investigation technology. Perez-Richet and Skreta (2022) consider general cost
functions for the sender from manipulating a test that the receiver designs. Also, see Sobel (2020) for a general
definition of lying.

10See de Barreda (2010), Chen (2012), Lai (2014), Ishida and Shimizu (2016), and Pei (2017) for models of
soft information and Ispano (2016) and Frenkel et al. (2020) for models of hard information.
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Figure 1 The sample space, the suspect’s status and the evidence

according to joint density f of the form f(y, z) = k h(y)g(z), where k is a normalizing constant

and functions h and g are densities on [0, 1] satisfying mild regularity conditions.11 Throughout,

H(y) ≡
∫ y

0
h(y)dy and G(z) ≡

∫ z

0
g(z)dz. S is guilty when y < t and innocent when y ≥ t,

where t ∈ (0, 1) is a commonly known parameter.

R’s evidence is a signal about S’s type proving that y < z, the lower the z the stronger the

evidence since S’s guilt becomes more likely. In particular, when z ≤ t we say that the evidence

is conclusive since R knows that S is surely guilty (see figure 1). Likewise, in addition to

his status as guilty or innocent, S’s type determines the strength of the evidence he expects

R to possess, which is stronger the lower the y as he knows that y < z. Note that f can be

thought of as resulting from conditioning on the event that y < z after y and z have been drawn

independently according to h and g, respectively. It can also be thought of as resulting from

first drawing y from [0, 1) (according to density kh(y)(1−G(y))) and then drawing z conditional

on y from (y, 1] (according to density g(z)/(1 − G(y))). In section 4.1.1, we discuss properties

of this tractable information structure, the restrictions it entails and generalizations.

Moves. After y and z have been drawn and players’ information determined accordingly, S

sends a message m ∈ M = [0, 1] to R, who then takes an action a ∈ {0, 1}. Then payoffs realize

as described below.

S’s message is a literal claim about his type. We say that he lies when m ̸= y, that he is

honest when m = y, that he confesses when m < t, and that he denies when m ≥ t. Also,

11Namely, h and g are Lipschitz continuous, bounded from above and bounded away from 0 and, additionally,
g is differentiable with continuous derivative.
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we say that he is caught in a lie when R’s evidence contradicts his claim, i.e. when m ≥ z.

In section 4.2.1, we consider S’s possibility to stay silent. R’s action can be interpreted as a

decision on whether S should be prosecuted, i.e. a = 0, or let go freely, i.e. a = 1.

Payoffs. R’s loss (i.e. the negative of her payoff) is

α a1y<t + (1− α) (1− a)1y≥t, (1)

where 1y<t and 1y≥t are indicator functions for S’s status as guilty and innocent, respectively,

and α ∈ (0, 1) a commonly known parameter. S’s payoff is

a− b1m≥z, (2)

where b > 0 is a commonly known parameter and 1m≥z the indicator function for when S is

caught in a lie.

R aims at prosecuting a guilty and letting an innocent go and α/(1−α) measures the relative

importance of a type II error over a type I error. Therefore, α is the threshold probability of

innocence below which R finds it optimal to prosecute. S aims at being let go regardless of

whether he is innocent or guilty but also incurs some cost b for being caught in a lie. In section

4.1.2, we discuss interpretations of the incentive structure and alternative specifications.

2.2 Equilibrium

Throughout, we restrict our attention to Nash equilibria in pure strategies in which innocent

types are honest.12 Also, after any message which is sent only by guilty types, after a detected

lie and when R has conclusive evidence she must infer that S is surely guilty and prosecute.

Likewise, upon any message only sent by an innocent type R must infer that S is surely innocent

and always let him go. Instead, after messages which are sent by both a guilty and an innocent,

R’s action must be sequentially rational using a generalized version of Bayes rule (see footnote

13 and section B.1 in the online appendix for details).

To ease exposition, we further focus on a particular class of candidate equilibrium strategy

profiles and then explain why doing so is without loss of generality. Accordingly, a strategy of S is

described by a strictly increasing and everywhere differentiable lying function ℓ : [yc, t) → [t, ȳ)

which associates to each guilty type y ∈ [yc, t) a lie ℓ(y) ∈ [t, ȳ) for some yc ∈ [0, t), with the

12In a previous version of the paper (Ispano and Vida, 2021), we derive this restriction as a result under a
truth-leaning equilibrium refinement adapted from Hart et al. (2017).
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understanding that types y < yc (if any, i.e. if yc > 0) confess honestly. We refer to the range

[t, ȳ) of the lying function as to the lying region and to S’s types sending messages in this region

as to pooling types. The behavior of R is described by a cut-off strategy z : [0, 1] → [t, 1],

differentiable on the lying region, which specifies for each message m ∈ [0, 1] and z > m, i.e.

when S is not caught in a lie, a cut-off z(m) ∈ [t, 1] such that a(m, z) = 1 if and only if z ≥ z(m),

i.e. a level of weakness of the evidence above which S is let go. Naturally, z(m) = 1 for m < yc

and z(m) = m for m ≥ ȳ, i.e. guilties and innocents who do not pool are respectively always

prosecuted and always let go. An equilibrium is a pair ⟨ℓ, z⟩ such that the message of each type

of S, including innocents, is optimal given R’s strategy and R’s action upon each message and

evidence realization is optimal given S’s strategy.

Specifically, given S’s strategy, to compute her expected payoff after a message ℓ(y) ∈ [t, ȳ)

such that ℓ(y) < z, by Nash equilibrium R must believe that S is innocent with probability

f(ℓ(y), z)

f(ℓ(y), z) + f(y,z)
ℓ′(y)

, (3)

which, given that f(y, z) = kh(y)g(z), does not depend on z. Intuitively, given that f is a

product, knowing that message m must have been sent either by innocent type m < z or

guilty type ℓ−1(m) < z contains infinitely more information than knowing that y < z. It then

immediately follows from R’s sequential rationality that if in equilibrium z(ℓ(y)) ∈ (ℓ(y), 1), i.e.

if upon message m = ℓ(y) R is neither always prosecuting S nor always letting him go, this

belief must be exactly α, so that she is indifferent between actions.13 Moreover, R’s ex-ante

expected loss in equilibrium is proportional to

(1− α)

∫ ȳ

t

(G (z (y))−G (y))h (y) dy︸ ︷︷ ︸
type I errors

+α

∫ t

yc

(1−G (z (ℓ (y))))h(y)dy︸ ︷︷ ︸
type II errors

=

= (1− α)

∫ ȳ

t

(1−G(y))h(y)dy. (4)

13Formally, by Nash equilibrium, R’s indifference in any rectangle is given by

(1− α)

∫ d

c

∫ b

a

f(m, z)dmdz = α

∫ d

c

∫ ℓ−1(b)

ℓ−1(a)

f(y, z)dydz = α

∫ d

c

∫ b

a

f(ℓ−1(m), z)ℓ−1′(m)dmdz

by substituting ℓ−1(m) = y. Hence, it must be that

(1− α)f(m, z) = αf(ℓ−1(m), z)ℓ−1′(m) = αf(ℓ−1(m), z)
1

ℓ′(ℓ−1(m))
,

which rearranged with respect to α gives expression (3) by writing m = ℓ(y).
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Equation (4) obtains since, given her indifference, R would obtain the same payoff by always

prosecuting S upon a message in the lying region and hence make only type I errors.

We now establish an indifference condition for S that in turn R’s equilibrium strategy will

have to satisfy. We say that S is indifferent among denying messages given z if for any two

messages m,m′ ∈ [t, ȳ) such that m < m′ and for any y ∈ [yc,m]

1−G(z(m))− b(G(m)−G(y)) = 1−G(z(m′))− b(G(m′)−G(y)).

This condition means that type y is indifferent between claiming that he is type m or m′.

Differentiating with respect to m, the condition simplifies to

g(z(m))z′(m) = −bg(m). (5)

From equation (5) it is apparent that z must be strictly decreasing over the lying region, i.e.

higher messages require weaker evidence for S to be let go, to compensate liars for the higher

risk of detection that higher lies entail.

It will become handy to choose z so that this indifference condition and equation (5) extend

to every m ∈ [yc, ȳ), i.e. including unexpected (honest) confessions of types y ∈ [yc, ȳ), who

hence have no strict incentive to do so.14 Since a type y ∈ [yc, ȳ) who sends some m ∈ [y, ȳ) is

then also indifferent to send y, it becomes apparent that his payoff (multiplied by 1−G(y)) can

be written as

1−G(z(m))− b(G(m)−G(y)) = 1−G(z(y)), (6)

which is strictly increasing in y. Therefore, confessors, if any, are necessarily low types, who

expect the evidence to be stronger and hence have a higher probability of being caught in a lie

and incur cost b if they deny. Also, if yc > 0 then 1 − G(z(yc)) = 0, i.e. if some types confess

the smallest liar must be indifferent between lying and confessing. These observations pin down

the equilibrium.

Proposition 1 (Characterization of equilibrium). There exists an equilibrium ⟨ℓ∗, z∗⟩, which

is uniquely determined by the indifference condition of S and the indifference condition of R

together with the appropriate initial and terminal conditions. Namely, there exist a unique

y∗c ∈ [0, t), a unique ȳ∗ ∈ (t, 1) and unique functions ℓ∗ : [y∗c , t) → [t, ȳ∗) and z∗ : [0, 1] → [t, 1]

such that:

14This particular choice for R’s off the equilibrium path behavior simplifies the exposition but is immaterial.
Equivalently, R could always prosecute S upon such messages.
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(i) ℓ∗ is the solution of differential equation

h(ℓ(y))

h(ℓ(y)) + h(y)
ℓ′(y)

= α, (7)

with initial condition ℓ(y∗c ) = t and limy→t ℓ(y) = ȳ∗;

(ii) for m ∈ [y∗c , ȳ
∗) z∗ is the solution of differential equation g(z(m))z′(m) = −bg(m) with

terminal condition z(ȳ∗) = ȳ∗ and min {y∗c , 1−G (z (y∗c ))} = 0.

As an illustration, we report closed formed solutions for the equilibrium when (y, z) is uni-

formly distributed.

Example 1 (Uniform case). Let f(y, z) = 2. Then, ℓ∗(y) = α
1−α

y + ȳ∗ − α
1−α

t and z∗(m) =

ȳ∗ + b(ȳ∗ −m), where

� if b ≤ 1−t−α
t

, then y∗c = 0 and ȳ∗ = t
1−α

;

� while if b > 1−t−α
t

, then y∗c = (1+b)t−(1−α)
b+α

and ȳ∗ = α+bt
α+b

.

Figure 2 displays the payoff of S and the associated type I and type II errors R makes based

on the realization of y and z in the uniform case. Separating guilty types, i.e. types below yc,

get a = 0 and separating innocent types, i.e. types above ȳ, get a = 1, so that R makes no

errors. As for pooling types, R’s action is a = 1 if z ≥ z(m) and a = 0 otherwise. A guilty type

above yc is caught in a lie when z ≤ ℓ(y) and in this case he gets −b. Provided he is not caught,

he gets a = 1 when z is above z (ℓ(y)), so that R makes a type II error, and a = 0 otherwise.

Likewise, an innocent type below ȳ gets a = 1 when z ≥ z (y) and a = 0 otherwise, and in the

latter case R makes a type I error.

We have focused on strategies in which S’s lying is increasing and R’s action policy takes

a natural cut-off form in that she lets S go when the evidence is sufficiently weak. Once one

allows for arbitrary (measurable) strategies, there may exist other equilibria. Nevertheless,

the lying region, the set of confessors and of lying types, and R’s expected action upon each

message remain the same. Importantly, players’ expected payoffs are therefore also the same,

both ex-ante, i.e. before S has observed y and R has observed z, and ex-post.

Corollary 1 (Payoff equivalence). Any other equilibrium is payoff equivalent for S and R to

the one at proposition 1 both from an ex-ante and an ex-post perspective.
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Figure 2 Equilibrium payoffs in the uniform case (t = 1/2, b = 1, α = 1/2)

Due to uniformity, players’ strategies are linear. The thick increasing lines m = y, m = ℓ∗(y), and m = y
represent S’s strategy. Line ℓ∗(y) has 45◦ slope only because α = 1/2, which is also why the interval of liars and
the lying region have equal size (again, uniformity is also important). Decreasing thick lines z∗ (ℓ∗ (y)) and z∗(y)
represent R’s cutoff strategy for pooling messages, whereby S is let go in the region above. There are two lines
of identical height for the same m since R, not knowing whether S is guilty or innocent, must choose identical
actions. Line z∗(y) has −45◦ slope only because b = 1 and line z∗ (ℓ∗ (y)) only because b = 1 and α = 1/2 but
the two lines are always decreasing since R lets S go more often upon higher messages. Finally, the dotted line
represents our particular selection for R’s off the equilibrium path behavior upon unexpected confessions.

The model generates some intuitive comparative statics, which are direct consequence of the

following equation which must hold in any equilibrium

α

∫ t

yc

h(y)dy = (1− α)

∫ ȳ

t

h(y)dy. (8)

Indeed, in the lying region R must be indifferent on average as well given that she is indifferent

upon any m. Thus, weakly more types confess (strictly if y∗c > 0) when S’s cost for being caught

in a lie b is higher, when R is tougher as measured by a higher weight α she attaches to type

II errors, and when the prior likelihood of innocence is lower as measured by a higher t or a

downward shift of density h in the first-order stochastic dominance sense. Also, some types

confess, i.e. y∗c > 0, if and only if

G−1(
1

1 + b
) < H−1(

H(t)

1− α
), (9)

which is more easily satisfied when the evidence is stronger as measured by a downward shift of

density g in the first-order stochastic dominance sense. A higher cost also strictly reduces the

lying region, so that a smaller claim suffices to convince R of S’s innocence. Conversely and

11



less trivially, the lying region is larger with a tougher R, which can be intuitively understood as

that she requires more convincing to let S go.15

Finally, in the context of this simple model, we can ask whether interrogating is useful for

R relative to when she relies only on the evidence to make a decision. In that case, R finds it

strictly optimal to prosecute if and only if the evidence is lower than the RHS of equation (9),

which is also the equilibrium value of ȳ when no type confesses, so that the following remark

obtains.

Remark 1. R strictly benefits from interrogating (relative to relying only on the evidence to

make decisions) if and only if some types confess, i.e. if and only if G−1( 1
1+b

) < H−1(H(t)
1−α

).

3 The optimal interrogation

In this section, we first consider the mechanism design problem of maximizing R’s payoff

with full commitment (and with commitment only over actions). Next, we consider the case

of commitment only over information revelation, i.e. persuasion. Finally, we show how to

implement the optimum without any commitment with back and forth communication.

3.1 Optimal mechanism

In this section, differently from section 2.2, we suppose R can commit to her actions based

on S’s message and her evidence. We are interested in R’s highest attainable ex-ante expected

payoff with full commitment and how it compares to R’s equilibrium payoff. When allowing

for arbitrary mechanisms, the notion of confessing and being caught in lie (m ≥ z) are not

well-defined because S’s message space needs not coincide with M = [0, 1]. Therefore, we

assume that R can now choose actions −b, 0, and 1 and S’s payoff is simply equal to R’s action

a. Besides, since in the baseline model S always has the option to obtain 0 by confessing, we

restrict our attention to mechanisms in which each type y of S can guarantee himself a non-

negative expected payoff. R’s loss is still as at equation (1) with the modification that when R

chooses −b it is zero when S is guilty, just as in the baseline model.16

15Technically, as α increases, equation (8) can be satisfied either with a higher ȳ or with a higher yc. The
result is hence obvious if y∗c = 0. In case y∗c > 0, so that y∗c increases, type y∗c can be indifferent between
confessing and lying, in particular at ȳ∗, only if ȳ∗ increases as well. Equivalently, a tougher R decreases the
payoffs of all types of S, except those who were already confessing and those who still separate.

16If R’s loss when she takes action −b and S is guilty was −b, i.e. R enjoyed utility from punishing a guilty,
then the baseline equilibrium would already yield R’s highest attainable expected payoff. Instead, note that R
suffers disutility from punishing an innocent since in that case when she chooses action −b her loss is 1 + b.
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While the space of such arbitrary, possibly random, mechanisms is large (see the proof of

lemma 1 below for a formal definition), to determine R’s optimum it suffices to consider a very

simple class. A direct deterministic cut-off mechanism z : [0, 1] → [0, 1] specifies for each

message y ∈ [0, 1] a cut-off level z(y) ∈ [y, 1] such that R’s action is a(y, z) = 1 if z ≥ z(y) and

a(y, z) = 0 otherwise. Additionally, such a mechanism satisfies the truth-telling constraint

if for every y, y′ ∈ [0, 1] such that y < y′

1−G(z(y)) ≥ 1−G(z(y′))− b (G(y′)−G(y)) . (10)

Lemma 1 (Revelation principle). For any mechanism, there exists a direct deterministic cut-

off mechanism which satisfies the truth-telling constraint and yields R a weakly higher ex-ante

expected payoff.

Thus, the optimal mechanism minimizes

α

∫ t

0

(1−G(z(y)))h(y)dy + (1− α)

∫ 1

t

(G(z(y))−G(y))h(y)dy (11)

subject to the truth-telling constraint (equation (10)). Candidate solutions can be indexed by

z(t) ∈ [t, 1] and the constraint must bind for types sufficiently close to t, as figure 3 demonstrates

for the uniform case. More precisely, the constraint must bind for all values of y for which

y < z(y) < 1, yielding

g(z(y))z′(y) = −bg(y). (12)

This constraint is just S’s equilibrium indifference condition, i.e. equation (5). It turns out

that the optimal mechanism exactly coincides with the decision rule of R in equilibrium (section

A.5.1 in the appendix provides detailed intuitions), which hence differs only in S’s behavior.

Proposition 2 (Optimal mechanism). R’s equilibrium strategy z∗ at proposition 1 is an optimal

mechanism. The sole difference is that S’s types who lie in equilibrium instead confess honestly.

Hence, type II errors strictly decrease while type I errors remain the same.

A comparison of the optimal mechanism (figure 3) and the equilibrium (figure 2) clarifies the

effects of R’s lack of commitment over decisions. R would benefit from committing to sometimes

prosecute some low innocent types and to sometimes let go some high guilty types. However,

in equilibrium, R can find it sequentially rational to do so only if those types pool in the lying

region. Lying creates an inefficiency because R must let liars go more often than in the optimal

mechanism to compensate them for the cost of getting caught. It turns out that this is the only
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Figure 3 Determination of the optimal mechanism in the uniform case

Given z(t), for guilties and innocents close to t one minimizes respectively type II and type I errors by having
the decreasing portion of z(y) (which is linear due to uniformity) as steep as possible, which would be vertical at
t in R’s first best. Thus, to the right of t constraint (10) binds till z(y) reaches the diagonal z = y, after which
z(y) = y, i.e. R always chooses a = 1. Likewise, to the left of t constraint (10) binds till z(y) reaches line z = 1
(or the vertical axis when the constraint binds for all guilties, e.g. if z(y) is very flat), after which z(y) = 1, i.e.
R always chooses a = 0. The optimal z(t) trades off type I and type II errors made on S’s types for which the
constraint binds.

source of inefficiency. Indeed, all types of S get the same payoff as in the optimal mechanism,

which implies that type I errors are the same and only type II errors are higher.

Optimal mechanism z∗ hinges on R’s commitment to act as promised based on S’s message

m and on the true realized evidence z because R may benefit from misrepresenting her evidence.

It turns out that z∗ can be made immune to such deviations. Therefore, to reach R’s optimum, it

suffices that R can commit to a mechanism which implements possibly random actions depending

on S’s and R’s private reports about their types.17

Remark 2. There exists a direct mechanism such that both R and S find it optimal to truthfully

report their types and their ex-ante expected payoffs are as in the optimal mechanism.

3.2 Implementation with persuasion

In this section, as a counterpart of remark 2, using a Bayesian persuasion perspective we

investigate whether R can compensate for lack of commitment over actions with commitment

over information revelation about the evidence. Namely, R commits to an experiment, or

17Such a mechanism, instead of implementing actions, could give recommendations to R about how to act
depending on the private reports of S and R and then R could freely choose an action. Mechanisms in which R
and S report truthfully and R obeys the recommendations in equilibrium are called communication equilibria (see
Forges (1986) and Myerson (1986). It is easy to see that R cannot attain her optimal payoff in a communication
equilibrium. The reason is that the threat to punish lies of S by action −b becomes less effective because otherwise
R could simply report that her type is t and could always tell apart an innocent (receiving recommendation −b)
and a guilty (receiving recommendations 0 or 1.)
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persuasion rule, which specifies for each z a distribution over signals. S, after observing

his type y and the realized signal, sends a message m to R, who then chooses an action and

payoffs realize as described in section 3.1. Accordingly, the baseline model is a special case in

which R reveals no information about z. Another special case is when R perfectly reveals z

but, in line with common intuition, doing so would always be detrimental to R, since then the

interrogation would necessarily be uninformative.

We can concentrate on simple persuasion rules, which following Elliott et al. (2021) we refer

to as deterministic matchings, in which each signal is sent by two types of R. More precisely, any

such rule specifies a signal realization space D ⊆ [0, 1] and a matching function z : D → [0, 1]

such that each signal d ∈ D is sent by type d and z(d), while unmatched types do not send any

signal (e.g. send a signal ∅ /∈ D).

Proposition 3 (Optimal Persuasion). The deterministic matching with D = [y∗c , ȳ
∗] and match-

ing function z∗ as at proposition 1 is an optimal persuasion rule. The resulting ex-ante expected

payoffs of R and S are as in the optimal mechanism.

Thus, provided R can commit to reveal information about the evidence, and with a suf-

ficiently rich signal space, R can completely dispense with commitment over actions. At the

same time, the effectiveness of this persuasion rule hinges on R’s commitment not to understate

the strength of the evidence. Indeed, any type z ∈ (t, z∗(t)) would gain from deviating and

mimicking type z∗(t), whose signal t always allows to set a guilty and an innocent apart. With

substantially more work, one can show that a similar issue would arise under any other optimal

persuasion rule so that, in contrast to what established at remark 2 for the optimal mechanism,

optimal persuasion cannot be made immune to such deviations.

Remark 3. In any optimal, possibly random, persuasion rule there is necessarily some type z

of R who would strictly benefit from sending a signal sent by some weaker type z′ > z.

Naturally, under any effective persuasion rule, it is also the case that some types of R would

want to overstate the strength of their evidence, i.e. send signals sent by stronger types. Still, as

discussed at the next section, doing so will be plainly impossible under the natural assumption

that R’s private information is hard, i.e. it can be disclosed, possibly vaguely, or withheld but

not fabricated.

3.3 Implementation without commitment

In this section, we show how R’s expected payoff under the optimal mechanism can be

replicated without any commitment in a simple game built on the baseline model that combines
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“back and forth” communication between S and R and discretion for R on whether to punish

detected lies. In modeling R’s information revelation about the evidence z to S, we suppose that

R cannot make false statements, for instance due to the risk of legal action or the inadmissibility

of the interrogation in court. Equivalently, S only believes claims backed up by physical proof.

Still, R can disclose information vaguely and understate the strength of the evidence, i.e. prove

that her evidence is stronger than any given level ζ ≥ z. Technically, we assume that any type z

of R can send a signal ζ ∈ [z, 1] to S. Under these assumptions, remark 3 implies that R cannot

attain her optimal payoff in a “short” game in which first R, then S, reveal information.

We consider the following back and forth game:

� stage 0 S and R privately observe their types y and z as in the baseline model;

� stage 1 S sends a message m ∈ [0, 1];

� stage 2 R either immediately chooses an action a(m, z) ∈ {−b, 0, 1}, so that the game

ends, or sends a signal ζm ∈ [z, 1] and the game continues to stage 3;

� stage 3 S sends a new message m′ ∈ {0,m};

� stage 4 R chooses an action a′(m,m′, z, ζm) ∈ {−b, 0, 1}.

R’s action in stage two or four then determines payoffs as in section 3.1. S’s message in stage

three will be interpreted in equilibrium as an answer to R’s question “Are you guilty or you

stick to your original story m?” and message 0 as a confession.

Proposition 4 (Implementation without commitment). There is an equilibrium of the back and

forth game in which ex-ante expected payoffs are as in the optimal mechanism.

The structure of the equilibrium is intuitive. S’s behavioral strategy in stage one is as in

the equilibrium at proposition 1. R immediately takes the correct action for separating types.

Instead, for pooling types, R’s continues the interrogation provided the evidence is sufficiently

strong relative to S’s claim so that by confronting him with the evidence she will be able to

persuade a guilty type to withdraw his lie. R does so using the threat of more severe expected

punishment. More in detail, when z > ζm, where ζm is an evidence strength level contingent

on m, she immediately makes a decision. As usual, she lets S go if the evidence is sufficiently

weak and prosecutes S if the evidence is strong (but still above ζm). Instead, when z ≤ ζm, she

discloses this information to S and offers him a second opportunity to confess. The appropriate

choice of ζm now makes type ℓ−1(m) barely willing to do so, while innocent type m sticks to his

stage one story anticipating he will be let go. The equilibrium construction entails a combination
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of “carrot and stick” in the treatment of lies. Small lies caught, i.e. equilibrium lies in stage one

are withdrawn in stage three and are forgiven. Conversely, big lies, i.e. off the equilibrium path

lies of a guilty type who mimics an innocent type higher than he is supposed to, would still be

punished immediately in stage two if caught, i.e. when z ≤ ℓ−1(m).

4 Discussion

4.1 Modeling assumptions and extensions

In this section, we discuss our main modeling assumptions concerning the information struc-

ture and the incentive structure and we cover some extensions, namely, more general prior dis-

tributions, no cost for lies caught, leniency for confession, and continuation of the prosecution

process after the interrogation.

4.1.1 Properties, interpretations and generalizations of the information structure

Consider first the joint distribution of S’s status as guilty or innocent and of the evidence

z. Seeing z as a signal about S’s status, the monotone likelihood ratio property holds since

the probability that S is innocent P(y ≥ t|z) is increasing in z, which clarifies in which sense a

higher z represents weaker evidence. Likewise, the distribution of z conditional on S’s innocence

dominates in the first order stochastic dominance sense the corresponding one conditional on S’s

guilt. The information structure allows for heterogeneity within guilty and innocent suspects

and ensures these natural properties extend to the conditional distribution of y given z and of

z given y.

The information structure can also be derived from very simple stories.18 The fact that the

evidence excludes some of S’s types - technically the conditional distribution of y given z does

not have full support - allows for a natural definition of lie catching. The fact that excluded

types are the high ones, e.g. R’s evidence can never prove S’s innocence, captures the idea

that whistleblowing, anonymous tips and voluntary reports to law enforcement authorities are

inherently incriminating, which may also explain why S qualifies as a suspect and is interrogated

in the first place.19

18Consider the following examples in addition to the ones in the introduction:

� A jeweler is selling gold rings whose purity y allegedly falls short of the declared purity t. A forensic test
provides an upper bound z on the purity level;

� A telephone operator left work at time y, allegedly before the time of the end of his shift t. An unanswered
call occurred at time z, proving he had left by then.

19The information structure can be equivalently thought of as arising within the isomorphic model in which
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Finally, the specific family of joint distributions of y and z that we consider has the convenient

property that the private information of each party does not contain information about the

private information of the other beyond the fact that z > y. In section B.2 of the online

appendix, we provide more general conditions on the prior under which the model remains

tractable and explain how our main insights generalize.

4.1.2 Interpretations of the incentive structure and alternative specifications

In our baseline model, S incurs a cost b > 0 when he is caught in a lie. Depending on the

context, this cost have multiple, possibly concurrent, interpretations. First of all, it may be

direct and explicit, e.g. if lying entails a penalty or constitutes an independent offense. Besides,

it may capture reputation costs, e.g. if S’s loss of credibility compromises his position in other

investigations. It may also incorporate psychological costs associated with S’s dishonesty being

exposed. And as formalized in section 3, it may be due to R taking, or threatening to take,

a more unfavorable action when S is proving uncooperative. It has long been recognized, and

criticized, that law enforcers may resort to such discretion even when they do not have formal

authority, which can take many different forms and also be exercised indirectly by influencing

the decisions of other parties along the prosecution process.20

Our results admit the possibility that S incurs no cost or R has no such discretion, i.e.

b = 0, as limit case. However, the model becomes one of pure cheap-talk and, due to the conflict

of interest between S and R, interrogating is then never useful for R, regardless of the game

being played. Also, except for factors outside the model such as surrendering to psychological

pressure or relief for admitting guilt, there would then be no rational reasons for S to change

his communication strategy over time.

Of course, the source of partial alignment of interests between S and R, and of R’s discretion,

may also take different, related, forms. Suppose that S incurs no cost but if he confesses he

obtains a premium u ∈ (0, 1), e.g. a plea bargaining deal. When S obtains u, we specify that

R makes no error if S is guilty and an error of size 1 − u if S is innocent. Let us refer to this

incentive structure as to the “leniency setup” to contrast it to the “punishment setup” of our

model. After an appropriate parametrization, i.e. u = b/(1+ b), R’s baseline equilibrium payoff

y and z are drawn independently from h and g and R, knowing z and whether z ≤ y or z > y, only interrogates
when z > y. When z ≤ y, the evidence is exculpatory in that it excludes some guilty types (all of them if z ≥ t)
and S’s innocence becomes more likely than under the prior.

20See for instance the discussion in Kassin and McNall (1991) and Bull (2022) and the evidence in Bald-
win (1993) and Pearse and Gudjonsson (1999). Also, see Abel (2016) for the involvement of police officers in
plea bargaining. Finally, see the guidelines that the training company John E. Reid and Associates provides
police officers on promises they can, or cannot make (https://reid.com/resources/investigator-tips/
interrogation-procedures-promises-of-leniency).
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in the leniency setup is the same as in the punishment setup. This comparison illustrates in

which sense parameter b can also be thought as capturing leniency for confession. As detailed

in section B.3 of the online appendix, the optimal mechanism in the leniency setup can be

calculated with similar steps as in the punishment setup. Likewise, there is a correspondent

version of the back and forth interrogation in which R grants leniency to types who withdraw

their lie and confess. Thanks to the possibility to disclose information about the evidence and

discretion on whether to forgive lies by being lenient with a late confessor, R’s payoff again

improves relative to the baseline model. The main difference is that now, to attain her optimal

payoff, R must also be lenient with pooling types of S when the interrogation stops early and

the evidence is weak.

Besides, we have assumed that R’s loss can be represented as a weighted sum of type I and

type II errors. In this flexible, reduced-form, specification, R’s exact objective may derive from

features of the legal system, e.g. adversarial or inquisitorial, her preferences, e.g. inclined to

prosecute or mostly concerned with avoiding to detain an innocent, and her precise role, e.g.

police officer or prosecutor. Our analysis can also encompass the case in which payoffs are

determined by a future, uncertain decision of a third party, e.g. conviction at trial, which may

also depend on the strength of the evidence.

To see this, suppose R only cares about judicial errors, i.e. R’s loss is still given by equation

(1) but the court’s decision c to convict (c = 0) or acquit (c = 1) S replaces R’s action a.

If R lets S go, then S faces no trial and is acquitted. If R prosecutes S, then S goes to

court, where he will be acquitted with some given probability σ(z,m) ∈ [0, 1] and convicted

otherwise. Letting µ represent R’s belief that S is innocent, R now prefers to prosecute S if

and only if (1 − µ)ασ(z,m) + µ(1 − α)(1 − σ(z,m)) ≤ α(1 − µ). The inequality simplifies

to µ ≤ α, i.e. the same decision rule of R as in our baseline model, so that equation (1)

still captures her incentives. Moreover, once S’s incentives are also taken into account, the

equilibrium construction of the baseline model easily adjusts so that the equilibrium becomes

one of the game under discussion.21 Likewise, this extended model can accommodate that the

probability of conviction also depends on S’s true status as guilty or innocent rather than only

21Suppose S’s payoff is given by equation (2) but the court’s decision c replaces a and, for simplicity, that
σ(z,m) = 0 whenever S confesses or is caught in a lie. The equilibrium is as at proposition 1 except that,
when S denies and is not caught in a lie, R, which is again indifferent between actions, should now let S

go if and only if z ≥ zσ(m), where zσ(m) solves 1 − G (z∗ (m)) =
∫ zσ(m)

m
σ(z,m)g(z)dz + 1 − G (zσ(m)) . A

solution zσ(m) ∈ [z(m), 1) exists provided σ(z,m) is on average not too high. Then, S’s incentives to follow the
equilibrium strategy are completely unaffected and R obtains the same equilibrium payoff given that her decision
may differ from the one in the equilibrium at proposition 1 only when she is indifferent. If σ(z,m) is on average
too high, instead, the model is essentially equivalent to the case in which when S does not confess he must be
let go when the evidence is too weak (see section 4.2.1).
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on the evidence, e.g. because new evidence is likely to be uncovered in the future. In this case, it

is essentially as if R became tougher.22 The model can also accommodate that R’s preferences

depend directly on the evidence, e.g. because a tougher interrogator is appointed when the

evidence is stronger (see Ispano and Vida (2022)). Finally, while we have assumed that R cares

about S’s communication purely for its informational content, this extended model can account

for why R may attach additional value to some messages of S, most notably to confessions.

This would be the case if there are instances in which R is sure of S’s guilt, for example because

the evidence is conclusive or S has been caught in a lie, but unless S confesses his conviction

remains uncertain.

4.2 Partial commitments

In this section, we show how protection of the suspect’s right to silence and an evidence

strength standard for interrogating can effectively alleviate the law enforcer’s commitment prob-

lem identified in section 3.1.

4.2.1 Protection of silence

The suspect’s right to refuse to answer law enforcers’ questions is recognized in most legal

system. Still, important differences remain in the level of protection this right entails and, in

particular, there is a longstanding debate on whether an adverse inference, i.e. a conclusion

pointing at the suspect’s guilt, can be drawn (see for instance Seidmann and Stein (2000),

Seidmann (2005), and the discussion between O’Reilly (1994) and Ingraham (1995)).

Let us consider the baseline model but augment S’s message space to include the possibility

to stay silent. Given that innocents are honest, R always finds it optimal to prosecute a silent

S. And if doing so is always possible for R, no guilty type has ever an incentive to stay silent in

the first place. Suppose instead that, upon silence, R can prosecute S only if z ≤ Zs, in which

case S’s payoff is −bs, while if z > Zs then she must necessarily let S go, where Zs ∈ (t, 1] and

bs ∈ [0, b] are commonly known parameters.

22Let β = P(c = 1|y < t,m, z) and γ = P(c = 0|y ≥ t,m, z) be the probability that the court makes an error
conditional on the suspect being guilty and innocent, respectively, with β = 0 and γ = 1 when S confesses or is
caught in a lie for simplicity. R now prefers to prosecute S if and only if (1− µ)αβ + µ(1− α)γ ≤ α(1− µ). In

equilibrium, R must again be indifferent in the lying region, so that her belief is now µ = α′ ≡ α(1−β)
(1−α)γ+α(1−β) ∈

(0, 1) and the equilibrium values of ȳ, yc and z are determined by α′ instead of α. As long as γ ≤ 1 − β,
i.e. the court is more likely to convict a guilty than an innocent, α′ > α. The incentives of a guilty type are
again completely unaffected if, rather than according to z as determined by α′, R now lets S go if and only
if z ≥ zβ(m), where zβ(m) solves 1 − G (z (m)) = β (G (zβ(m))−G (m)) + 1 − G (zβ(m)) . Again, a solution
zβ(m) ∈ [z(m), 1) exists provided β is not too high. And as long as γ ≤ 1 − β, innocent types now have even
stronger incentives to be honest since (1− γ) (G (zβ(m))−G (m)) + 1−G (zβ(m)) ≥ 1−G (z (m)) .
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In this flexible specification, Zs represents the evidence strength standard required to prose-

cute a silent S.23 For example, if Zs = H−1
(

H(t)
1−α

)
< 1, R cannot use the informational content

of silence and hence must make her decision as if she relied on the evidence alone (see equation

(13)). Seidmann (2005) refers to this case as to the “American game” to contrast it to the

“English game”, in which an adverse inference is always allowed (Zs = 1, corresponding to our

baseline model). Provided the standard is met, so that prosecution is possible, parameter bs

measures S’s eventual cost of reticence relative to confession, possibly lower than the cost of

being caught in a lie.

The equilibrium of the baseline model easily adjusts for any Zs and bs. Sufficiently low guilty

type, if any, confess, intermediate guilty types, if any, stay silent, and sufficiently high guilty

type lie. Naturally, the interval of silent types enlarges as protection of silence gets stronger as

measured by a lower Zs or a lower bs. Depending on parameters, this enlargement occurs at

the expenses of the interval of confessors, of liars, or of both. This model can hence explain

why confession and silence may coexist as optimal equilibrium strategies. Importantly, it also

demonstrates that R may benefit from stronger protection of silence.

Proposition 5 (Protection of silence). Fix f(y, z) = 2 and b ≤ 1−t−α
t

. There exists a Zs < 1

such that R’s equilibrium payoff is strictly higher than in the baseline model if and only if bs < b.

A level of protection that induces some guilty types to remain silent may be beneficial for R

because, if on the one hand it entails a type II error upon silence when the evidence is weak, on

the other hand it reduces the fraction of liars and hence the pooling of innocents and guilties.

Seidmann (2005) shows that S prefers the “American game” to the “English game”, which is also

the case in our setting, but R never does so. In spite of important differences between the two

settings, proposition 5 also suggests how to reconcile these findings.24 Indeed, for R to benefit

from protection of silence it must necessarily be the case that, when prosecuted, a silent type

obtains a higher payoff than a liar caught (bs < b), so that a sufficiently weak level of protection

suffices to incentivize silence while limiting the associated type II errors. The incentive structure

of Seidmann (2005) does not allow this possibility. For simplicity, the proposition focuses on the

case in which there are no confessors in the baseline model. When there are confessors in the

baseline model, there are still parameter configurations for which R’s payoff improves thanks to

23Equivalently, the standard could apply to any message other than confession. Indeed, in equilibrium, even
an S who denies is always let go whenever the standard is not met.

24Differences concern both the information structure, in particular in our setting R’s evidence cannot prove
S’s innocence but can prove his guilt and guilty types are heterogeneous in the strength of the evidence they
expect, and the incentive structure, in particular Seidmann (2005) considers the leniency setup for S (see section
4.1.2).
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protection of silence and these still require bs < b. However, this condition is no longer sufficient

since stronger protection of silence entails a first-order informational loss whenever it deters

confession.

4.2.2 Standard for interrogating

As in the case of other restraints of individual freedom such as searches and arrests, law

enforcers may be required to hold sufficiently strong evidence to interrogate the suspect in the

first place. To analyze the effect of such evidence strength standard, consider the baseline model

but suppose R can only interrogate if z ≤ Zi, where Zi ∈ (t, 1] is a commonly known parameter.

Therefore, when S is interrogated, he knows R’s evidence meets the standard. For simplicity,

suppose also that when z > Zi then R must necessarily let S go.

The equilibrium analysis of our baseline model, which corresponds to Zi = 1, easily general-

izes. A more stringent standard has the effect to incentivize confession and discourage lying due

to S’s increased pessimism about R’s evidence. Thus, the introduction of the standard entails

a trade-off. R gives up the chance to interrogate S upon weak evidence but can conduct more

informative interrogations upon strong evidence. The positive effect sometimes dominates.

Proposition 6 (Standard for interrogating). Fix f(y, z) = 2 and b ≤ 1−t−α
t

. There always

exists a Zi < 1 such that R’s equilibrium payoff is strictly higher than in the baseline model.

For simplicity, the proposition again focuses on the case in which there are no confessors

in the baseline model. Since the interrogation would otherwise be uninformative (see remark

1), R always strictly benefits from an appropriately chosen standard for interrogating. When

there are confessors in the baseline model, there still exist parameter configurations for which R

benefits from the standard. Also, one can show that in both cases, provided R sets the standard

optimally, she always finds it optimal to indeed let S go when her evidence does not meet the

standard, as we assumed at the outset.25

4.3 Empirical evidence and predictions

Empirical studies on interrogations indicate that the strength of the evidence as perceived

by the suspect and law enforcers is a key predictor of the outcome of the interrogation and,

in particular, of confession (Gudjonsson and Petursson, 1991; Moston et al., 1992; Stephenson

25In fact, the outcome under the optimal standard for interrogating also obtains in equilibrium of the game
in which R reveals information about the evidence to S before he makes a claim, as in section 3.2, but by means
of strategic disclosure without commitment as in section 3.3 (for details, see Ispano and Vida (2021)).
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and Moston, 1994; Redlich et al., 2018). The following quote from Moston et al. (1992) best

illustrates the foundations of our model.

The strength of evidence against a suspect is likely to be a major determinant of both

suspect behaviour and interviewing style.[...] When there is weak evidence, there is

a limited range of interviewing strategies available, but with stronger evidence a

greater range of possibilities emerges. Suspects’ knowledge of the evidence against

them is also likely to be a key predictor of how they will respond to an allegation.

What is important here is the extent to which the suspect knows of the police

evidence [...]. The police may well have strong evidence, such as witnesses and

fingerprints, but if the suspect is unaware of this [...] the suspect may well begin

an interview by denying [...] but later decide to confess as the police points out the

evidence. Strength of evidence as perceived by both police and suspect is central

to the process of interrogation. The interviewer manipulates the suspect’s decision-

making by using the available evidence as a persuasive technique. [...] The suspect’s

initial response is unlikely to bring an immediate end to the interview, particularly

if it is a denial [...]. The initial response may prompt the interviewer to adopt a

different questioning strategy, for example, using techniques to persuade the suspect

that confessing may have its advantages.

Interestingly, early studies document rather poor interviewing techniques whereby suspects

are immediately confronted with the evidence and those who do not confess are rarely induced

to revise their initial claims (Moston et al., 1992; Baldwin, 1993; Stephenson and Moston, 1994).

For example, Stephenson and Moston (1994) report that the accusatorial approach dominates

over the information-gathering one, where

The principal difference between the accusatorial and information-gathering strate-

gies lies in the timing and context of the officer’s “upgrading” of questioning by

the introduction of whatever evidence is at his or her disposal. The standard line

of questioning in the accusatorial style goes from an opening accusation by the in-

terrogator followed by silence or a swift denial by the suspect, to “upgrading” by

the interrogator which may be more or less effective in inducing an admission or

damaging statement [...] By adopting the information-gathering strategy the inter-

viewer increases the probability of eliciting an account from the suspect of what

had occurred. The interviewer can then introduce evidence into questioning which

contradicts this account, either in part or in a whole. In a successful interrogation
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employing this strategy the suspect’s account may be incrementally modified such

that eventually an admission of guilt is finally elicited.

Instead, more recent works report the use of more sophisticated tactics based on evidence

revelation in reaction to the suspect’s account, also as a result of training programs and reforms

promoting a less accusatorial approach in favor of objective information gathering (Kassin et

al., 2007; Soukara et al., 2009; Bull and Soukara, 2010; Walsh and Bull, 2010; Kelly et al., 2016;

Leahy-Harland and Bull, 2017).

Our results speak to the merits of these more sophisticated tactics in that the back and

forth game at section 3.3 can be maximally effective while, as discussed in section 3.2, imme-

diate full evidence revelation makes the interrogation uninformative. Our results also highlight

some empirical challenges from a rigorous test of this prediction, which may also contribute to

explain why the common approach of measuring how the use of different tactics over the course

of the interrogation correlates with confession rates typically yields mixed or only suggestive

evidence. For a start, the game predicts that, as also noted in Soukara et al. (2009), these more

sophisticated tactics are used when the suspect is not already voluntary confessing, which are

by definition tougher cases. Also, the game summarizes in only few stages what in reality is

often a longer, gradual, dynamic process in which the timing of confronting the suspect with the

evidence and the exact content of disclosure are also key (see Kelly et al. (2016)). Importantly,

the game demonstrates how only looking at confession rates as outcome variable may be reduc-

tive since in equilibrium it is also the case that claims of denial become more credible. Finally,

an important aspect of the game is that withdrawn lies are forgiven in equilibrium. This infor-

mation is typically unavailable in the data and hard to detect even by indirect measures, also

considering that a confession obtained by an explicit promise or threat raises validity concerns

in most legal systems. While our theory is agnostic about how equilibrium play is reached, it

is consistent with the fact that an appeal to the suspect’s self-interest from confessing is also

typically part of these tactics (see for instance Kassin et al. (2007)).

Our static baseline model and its extensions also generate clear testable predictions that we

discussed in section 2.2, 4.2.1 and 4.2.2. In particular, these are consistent with the observation

above that the strength of the evidence, and the strength perceived by the suspect, are a key

predictor of the suspect’s strategy and confession. Also, our model at section 4.2.1, like the one

of Seidmann (2005), can account for the stylized fact that a change in the level of protection

of silence may not affect confession rates but simply the fraction of silent types and liars.

Additionally, it can explain why confessing, staying silent and denying may be optimal for

different guilty types, so that suspects may use all of these strategies even without any change
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in the observable characteristics of a case or the institutional framework.

4.4 Concluding remarks and avenues for future research

We provided a tractable framework to analyze interrogations and derived several implications

for their design. In particular, we identified the commitment problems intrinsic to interrogations

and solutions to alleviate or solve them. While our main objective of interest has been the

accuracy of law enforcers’ decisions, i.e. minimizing errors, all solutions discussed in this paper

are not detrimental to the suspect’s welfare and hence represent Pareto improvements. Also,

while we did not consider the suspect’s choice to engage in unlawful behavior, nor his care in

avoiding to generate incriminating evidence, it seems plausible that, all else being equal, more

accurate interrogations will also serve deterrent purposes.

In deriving these results, we maintained that all aspects of the strategic environment other

than players’ private information are common knowledge. However, law enforcers’ power and

arbitrariness are a major cause of criticism and an important reason behind the general move-

ment towards the mandatory recording of interrogations (see for instance Sullivan (2005)). For

example, there is evidence that suspects who are more fragile, less familiar with the legal system

or not advised by a lawyer are also more prone to confess (see for instance Gudjonsson and

Petursson (1991) and Moston et al. (1992)). Our model directly allows to identify the direction

of the misleading efforts law enforcers would want to engage in if these are tolerated by law or

go undetected and the suspect is prone to deception. Predictions agree with the logic behind

common deceptive interrogations tactics (see for instance Kassin and McNall (1991)).26 While

surely objectionable on other grounds, if successful, these deceptive tactics improve information

elicitation. Also, this improvement needs not come at the cost of extorting false confessions

since innocent would still have no incentives to depart from honesty. As a next step, one could

investigate if these deceptive tactics would remain effective in a framework in which the suspect

is rational but uninformed about some institutional aspects (see Ispano and Vida (2022) for

uncertainty about the interrogator’s preferences). Likewise, since false confessions occur (see for

instance Leo and Ofshe (1998)), it would be important to know how our insights modify when

also innocents can have fundamental reasons not to be honest, for instance because they may

expect even stronger evidence than some guilty types.

26Supposing S plays according to what he perceives as equilibrium behavior while R best responds given the
true environment, we can easily calculate how R would want to mislead the suspect about several parameters
of interest. R would always want to overstate the cost of reticence or the benefits from confessing (increase S’s
perception of b), exaggerate the strength of the incriminating evidence (decrease S’s perception of ζm and Zi as
defined respectively in section 3.3 and 4.2.2) and misrepresent her true preferences over type I and type II errors
(increase or decrease S’s perception of α).
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Besides, we did not consider laws that govern communication about the evidence to the

suspect and we maintained that law enforcers’ statements are voluntary but must be truthful.

If law enforcers can make false claims, instead, new interesting strategic considerations arise

due to the possibility that the suspect may in turn catch law enforcers in a lie, e.g. know

that they are exaggerating the strength of the evidence. Regulation might also affect the law

enforcers’ strategic choice to interrogate the suspect in the first place and whether by means of

a casual conversation or a formal interrogation. For example, by officially marking the start of

a formal interrogation, the legal requirement that the suspect is notified of his right to silence

may implicitly convey information about the presence of incriminating evidence.
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Appendix

A Proofs

A.1 Proof of proposition 1

Suppose that such a ⟨ℓ∗, z∗⟩ exists. We already established sequential rationality of R’s

strategy. Given S’s indifference condition, sequential rationality of S’s strategy is straightfor-

ward. Since S’s payoff is increasing in y, the strategy of confessors, if any, is optimal and no

other type prefers to confess. The strategy of a liar is also optimal, since he is indifferent between

sending any lie m ∈ [y, ȳ] while any lie m > ȳ is strictly dominated. For the same reasons, an

innocent type y ∈ [t, ȳ] is indifferent between being honest and sending any lie m ∈ [y, ȳ], while

he strictly prefers to be honest than to send any lie m > ȳ or m ∈ [t, y). Finally, by being honest

an innocent type y ≥ ȳ earns the maximum attainable payoff.

We are left to show that ⟨ℓ∗, z∗⟩ exists. We can construct an equilibrium of the baseline

model as follows. Let yc, ȳ, and R’s decision rule be determined by the optimal mechanism

(we suppress superscripts ∗ everywhere when this does not cause confusion) as in the proof of

proposition 2. By the Picard-Lindelöf theorem, we can calculate ℓ using equation (7), which

must hold for each y ∈ [yc, t) with initial condition ℓ(yc) = t. Notice that for the solution we

must have limy→t ℓ(y) = ȳ. This will hold because if R is indifferent after every message ℓ(y)

then R is indifferent also on average (without knowing the message), i.e. equation (8) must hold

and we know by lemma 2 (see again the proof of proposition 2) that the optimal mechanism

satisfies this property, i.e. equation (8) indeed holds.

To see by direct calculation that limy→t ℓ(y) = ȳ holds, let ℓ(t) = limy→t ℓ(y). Then

∫ ℓ(t)

ℓ(yc)=t

h(y′)dy′ =

∫ t

yc

h(ℓ(y))ℓ′(y)dy =
α

1− α

∫ t

yc

h(y)dy.

By substituting y′ = ℓ(y), using equation (7) for ℓ′(y), and finally using the average indifference

condition (equation (8)), which holds by lemma 2, we have that ℓ(t) = ȳ.

A.2 Proof of corollary 1

Given some strategy of R, if a type y of S finds it optimal to lie then all types above y find

it optimal to lie and obtain a strictly higher payoff than y. It is also clear that some guilty

type must lie. Indeed, if no guilty types lie then R’s action after message t should be 1 but
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then a guilty type sufficiently close to t would strictly prefer to lie. Hence, we can assume

that S’s equilibrium strategy is always some measurable function ℓ : [yc, t) → [t, ȳ), where ȳ is

the supremum of lies.27 We establish now that the indifference condition for S has to hold as

well in equilibrium and that the range of ℓ is an interval. If this was not the case (say some

y strictly prefers m to m′ < ȳ) than all guilty types would strictly prefer m to m′ and hence

the range of ℓ would not be an interval. In that case R’s action after message m′ should then

be always 1 because no guilty type would send m′. As a consequence, no guilty type would

ever send a message higher than m′ because by sending m′ they could obtain action 1, which

would contradict that ȳ is the supremum of the lies. For the same reasons, it follows that in an

equilibrium in which R uses a cut-off strategy it must be that z(m) > m for m < ȳ and that

z(ȳ) = ȳ. It follows that R’s expected action must make S indifferent, i.e. for a(m, z) we must

have
∫ 1
m a(m,z)g(z)dz

1−G(m)
= 1−G(z(m))

1−G(m)
as the expected payoff of innocent type m fixed, where z is the

equilibrium strategy from proposition 1.

It is also clear that the indifference condition for R must hold as well. After message t her

action cannot be 1 because then a mass of guilty types would like to lie at t which would then

change the optimal action of R to 0. After message t her action cannot be 0 because then no

guilty type would lie to t which would change R’s optimal action to 1. The indifference of R

can be achieved by a lying function inducing a belief of R about the innocence of S equal to

α because her belief cannot depend on z (see section (B.1) in the online appendix). Finally,

given that R’s indifference holds after any denying message it must be that it also holds on

average. It follows that in any equilibrium equation (8) must also hold. Together with the

possibly binding indifference condition for yc between confessing and lying (otherwise yc = 0

binds), the equilibrium values are pinned down just as in proposition 1. It follows that the

payoff equivalence holds in any equilibrium for both S and R, both ex-ante and ex-post.

A.3 Proof of remark 1

When R does not interrogate, as P(y ≥ t|z) = (H(z)−H(t))/H(z), by equation (1) it follows

that R finds it strictly optimal to prosecute if and only if

z < H−1

(
H(t)

1− α

)
. (13)

27Throughout, for simplicity, we adopt the convention that the intervals of confessors, if any, and of lies sent,
are right-open. There may also exist equilibria in which these intervals are right-closed.
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When there are no confessors in equilibrium, i.e. y∗c = 0, by equation (8) ȳ∗ is precisely equal to

the RHS of equation (13). Since when z < ȳ∗ R always prosecutes S, while when z ≥ ȳ∗ R could

equivalently always let R go by the same argument that yields to equation (4), her payoff is

then the same as when not interrogating. Conversely, when there are confessors in equilibrium,

R is strictly better off because when she does not interrogate she necessarily either sometimes

lets go some guilties who would confess or prosecutes some innocents who would separate.

A.4 Proof of lemma 1

Consider an arbitrary mechanism in the form of a measurable message space M̃ and of a

measurable function M̃ × [0, 1] → ∆({−b, 0, 1}) which associates a random action to any pair

(m, z), where m is S’s message, z is R’s actual true evidence and ∆({−b, 0, 1}) is the set of all

probability distributions. The only constraint is that q(y) ≥ 0 for each y ∈ [0, 1], where q(y)

denotes the expected payoff of type y when playing in the mechanism. Fix the resulting lowest

expected loss of R when each type sends only messages which are optimal for him given the

mechanism.

Consider now the deterministic cut-off direct mechanism z that, in expectation with respect

to z, gives each type y exactly q(y) when y reports that his type is y. This direct mechanism

satisfies the truth-telling constraint (equation (10)). Indeed,

q(y) =
1−G(z(y))

1−G(y)
≥ q(y′)

1−G(y′)

1−G(y)
−b

G(y′)−G(y)

1−G(y)
=

1−G(z(y′))

1−G(y′)

1−G(y′)

1−G(y)
−b

G(y′)−G(y)

1−G(y)
,

where the first inequality follows from the fact that, conditional on z ≥ y′, it must be that y′

expects q(y′) and so does any other type y ≤ y′ and that y does not strictly prefer to play as if

he was y′ in the original mechanism, where the worst possibility is that y expects −b conditional

on that y′ ≥ z ≥ y.

Clearly, type I errors are the same in both mechanisms while type II errors may only decrease

when using the direct mechanism. It is not necessarily true though that this direct mechanism is

immune to downward deviations, i.e. some type y may now prefer to report that he is type y′ < y.

Thus, all we can deduce is that the obtained direct mechanism is weakly better for R than the

original mechanism in an environment where downward deviations are not possible. However,

our optimal direct mechanism z∗ is also optimal in the environment where downward deviations

are not possible. Moreover, of course, z∗ is also immune to such deviations. Therefore, focusing

on direct deterministic cut-off mechanisms satisfying the truth-telling constraint is without loss

of generality.
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A.5 Proof of proposition 2

After providing an intuition for the relation between the optimal mechanism and the equi-

librium (section A.5.1), we formally prove its optimality (section A.5.2).

A.5.1 Intuition

As pointed out in the body of the paper and explained in figure 3, in the optimal mechanism

the truth-telling constraint binds for types sufficiently close to t. The exact counterpart of

the truth-telling constraint in the equilibrium of the baseline model is that pooling types are

indifferent among any lie. The optimal choice of z(t) is then determined by the fact that R is

trading off type I and type II errors. Suppose we increase the value of z(t). At the optimum the

marginal increment of type I errors weighted by (1−α) must be equal to the marginal decrement

of type II errors weighted by α. In the uniform case, these are measured by (or are proportional

to) the appropriately weighted lengths of the z(y) line from z(t) respectively to the right of t (till

the diagonal z = y) and to the left of t (till the line z = 1). The exact equilibrium counterpart

of this optimality condition is the required average indifference of R described by equation (8),

relating the measures of liars (t − yc) and of the lying region (ȳ − t). Thus, when projecting

the graph of the optimal z∗ onto the horizontal axis, given linearity, one obtains exactly the

lying region and the set of liars with the equilibrium measures of the baseline model as required

by equation (8). Somewhat surprisingly, the same argument goes through for the non-uniform

case.

A.5.2 Proof

By lemma 1, focusing on direct deterministic cut-off mechanisms satisfying the truth-telling

constraint is without loss of generality. Consider hence any decreasing function z hitting the

vertical axis at some p above the horizontal axis, i.e. p = z(t) and p ∈ [t, 1]. There are

corresponding values of ȳ(p) ∈ [t, 1] and yc(p) ∈ [0, t] such that z(ȳ(p)) = ȳ(p) and either

z(yc(p)) = 1 or there is a function k(p) ∈ [t, 1] such that z(0) = k(p), in which case we set

yc(p) = 0.

Lemma 2. There is a unique optimal direct cut-off mechanism. Moreover the first order con-

dition is binding and it simplifies to R’s indifference condition, i.e. to equation (8):

α

∫ t

yc(p)

h(y)dy = (1− α)

∫ ȳ(p)

t

h(y)dy. (14)
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Proof. As explained in the body of the paper, by the indifference condition of S, z must satisfy

differential equation (12) with initial condition p = z(t). The solution uniquely exists by the

Picard-Lindelöf theorem (by gluing the local solutions together). Let us denote this solution by

z(., p), which is differentiable with respect to p (see for instance Kelley and Peterson (2010)).

Given such a z(., p) and the corresponding values of ȳ(p) and yc(p) (which are also differentiable

with respect to p), using equation (11), the optimal mechanism must minimize

α

∫ t

yc(p)

∫ 1

z(y,p)

h(y)g(z)dzdy + (1− α)

∫ ȳ(p)

t

∫ z(y,p)

y

h(y)g(z)dzdy.

Differentiating with respect to p, using Leibniz integral rule and that z(yc(p), p) = 1 or y′c(p) = 0

and z(ȳ(p), p) = ȳ(p) for every p, the first order condition simplifies to

α

∫ t

yc(p)

h(y)g(z(y, p))
∂z(y, p)

∂p
dy = (1− α)

∫ ȳ(p)

t

h(y)g(z(y, p))
∂z(y, p)

∂p
dy. (15)

Using now the indifference condition between honesty and lying up to y of type yc(p), i.e.

1−G(z(yc(p), p)) = 1−G(z(y, p))− b(G(y)−G(yc(p)),

and differentiating with respect to p yields

g(z(y, p))
∂z(y, p)

∂p
= DpG(z(y, p)) = Dp(G(z(yc(p), p)) + bG(yc(p))) = K(p),

where K(p) ̸= 0 is some function constant in y (in fact it is g(p)). Thus, the first order condition

at equation (15) simplifies to

αK(p)

∫ t

yc(p)

h(y)dy = (1− α)K(p)

∫ ȳ(p)

t

h(y)dy,

i.e. equation (14), where the LHS is the marginal decrement of type II errors and the RHS is

the marginal increment of type I errors as p increases. Finally, it is easy to see that the optimum

is interior, i.e. p ∈ (t, 1) and hence the first order condition is binding. When p = t, we have

that ȳ(p) = t, yc(p) < t, the RHS is 0, and the LHS is positive. When p = 1, we have that

yc(p) = t, ȳ(p) > t, the LHS is 0, and the RHS is positive. It then simply follows from the fact

that h > 0 and that ȳ(p) and yc(p) are increasing in p that the optimum is unique. In fact, by

differentiating the objective function again with respect to p one gets that it is strictly convex in

p. It follows that the optimal mechanism coincides with the equilibrium strategy of R because
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both are determined by exactly the same conditions.

A.6 Proof of remark 2

Consider the following variant of the optimal mechanism z∗ parametrized by Z ∈ [t, ȳ∗]. If

z ≤ Z then a(y, z) = 0 while if z > Z then a(y, z) = 1 with probability (1 − G(z∗(y)))/(1 −

G(max {Z, y})) and a(y, z) = 0 with complementary probability. This mechanism gives S the

same expected payoff for every type y as z∗. To investigate whether R finds it sequentially

rational to report z truthfully we only have to check whether z < Z wants to report z′ > Z and

whether z > Z wants to report z′ < Z. If Z = ȳ∗, then clearly type z = ȳ∗ − ϵ strictly prefers

to report z′ > Z for all ϵ > 0 sufficiently small. To see this, suppose that Z = ȳ∗. Then, by

inducing the random action, z = Z gets

(1− α)

∫ t

y∗c

1−G(z∗(y))

1−G(Z)

h(y)

H(Z)
dy + α

∫ ȳ∗

t

G(z∗(y))−G(Z)

1−G(Z)

h(y)

H(Z)
dy <

(1− α)

∫ t

y∗c

1−G(z∗(t))

1−G(Z)

h(y)

H(Z)
dy + α

∫ ȳ∗

t

G(z∗(t))−G(Z)

1−G(Z)

h(y)

H(Z)
dy =

∫ ȳ∗

t

h(y)

H(Z)
dy,

where the last equality follows from equation (8) and the RHS is the loss by inducing the action

0 (i.e. reporting some z < Z). If Z = t, then clearly type z = t + ϵ strictly prefers to report

z′ < Z for all ϵ > 0 sufficiently small. Hence there must be a Z ∈ [t, ȳ∗] such that type z = Z is

just indifferent and stronger types prefer to induce action 0 while weaker types prefer to induce

the random action. Notice that, when the random action is induced, R has no influence over

the randomization, it only depends on y.

A.7 Proof of proposition 3

As described in the proposition, the persuasion rule matches each d with z∗(d) for d ∈ [y∗c , ȳ
∗]

(hence type ȳ∗ to himself) while types z ∈ [0, y∗c ) ∪ (z∗ (y∗c ) , 1] do not send any signal. Notice

that either [0, y∗c ) or (z∗ (y∗c ) , 1] are empty, or both. In the first case, when there is no signal

guilties lie according to the equilibrium lying function and are let go. In the second case, when

there is no signal guilties confess. When there is a signal d ≤ t types below d confess and are

prosecuted while types above d lie covering the interval [t, z∗ (d)) and are let go. By “covering

the interval” we mean that the lying function induces R’s belief to be constant over the interval.

For signals d ∈ (t, ȳ∗] guilties lie covering the interval [t, d) and are prosecuted. R’s actions are

always sequentially rational and payoffs are exactly as in the optimal mechanism, in particular
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no lies are ever caught. Finally, we show that S’s strategy above is optimal after any signal d.

After signal d ̸= ȳ∗, S’s belief that z = z(d) is just

g(z∗(d))

g(z∗(d)) + g(d)
z∗′(d)

,

while for d = ȳ∗ S believes that z = ȳ∗ with probability one. Hence, by lying above d his

expected payoff is just 0 because z∗ satisfies g(z∗(d))z∗′(d) = −bg(d).

A.8 Proof of remark 3

Given the proof of lemma 1 and proposition 3, in any optimal persuasion rule no signal can

induce a lie of S which is detected (more precisely, this has to be the case with probability one).

Consider an optimal, possibly random persuasion rule P : [0, 1] → ∆D, where D is a Borel

space and ∆(·) is the set of all Borel probability measures, such that after any signal d ∈ D in

the continuation equilibrium innocents are always honest. Assume by contradiction that this

rule satisfies monotonicity, i.e. no type of R has an incentive to deviate to a signal sent by a

weaker type.

Consider any signal d and denote by yd and yd the supremum of the confessors and the

infimum of the innocent types who separate in the continuation equilibrium after signal d re-

spectively (with the convention that yd = 0 if there are no confessors). It must be that yd is also

the supremum of the lies and yd is the infimum of the liars. This is because innocents are honest,

no lies can be detected hence R’s action must be constant in any continuation equilibrium after

any m ∈ [t, yd). We further assume that lies cover [t, yd) and type yd sends the signal d (hence

yd is also the minimum of z ≥ t who send the signal d). Notice that yd may or may not send the

signal d. In case of R’s action is 0 we allow yd to vary if yd does not send the signal d, otherwise

yd is the maximum of z ≤ t who send the signal d and the minimum of the liars. Notice that S’s

type yd knows that the signal was not sent by R’s type yd. Clearly, no z ∈ (yd, y
d) ever sends

the signal d. For y ∈ [0, t) let i(y) ∈ [t, 1] be given by α(t − y) = (1 − α)(i(y) − t). Note that

i(y∗c ) = ȳ∗ and that if yd > i(yd) then R must play action 1 after any equilibrium message m ≥ t

and if yd < i(yd) then R must play 0 after any equilibrium message m < yd and action 1 after

any equilibrium message m > yd. In case yd = i(yd) then R is indifferent between 0 and 1. We

assume that the set of pairs (yd, y
d) induced by the persuasion rule is a Borel set. We proceed

in 4 steps to reach a contradiction. Points (1) and (2) below prove that a monotonic optimal

P must induce a deterministic matching (pooling) of types of R, i.e. types z ∈ [y∗c , t) and type

i(z) ∈ (t, ȳ∗] send the same signal d with probability one and induce a continuation equilibrium
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characterized by yd = z and yd = i(z) (type t can separate). Points (3) and (4) below prove that

a positive measure of types z > ȳ∗ must pool on some signals d with types in z′ ∈ [t, ȳ∗] which

then contradicts monotonicity because then types in z′′ ∈ (z′, ȳ∗] would like to send the signal

d sent by the weaker pooling type z > ȳ∗ (and also by the stronger z′) and induce a measure of

confessors i−1(z′) > i−1(z′′).

(1) It must be that yd ≤ i(yd). To see this suppose that there is an d for which yd > i(yd). We

claim that innocent types in (i(yd), y
d) obtain the same measure of 0-s and hence this contradicts

optimality. Different innocent types y′, y′′ ∈ (i(yd), y
d) may get different measure of 0-s only if

there is a signal d′ for which yd
′ ∈ (y′, y′′) and yd

′ ≤ i(yd′). Namely a signal after which y′ can

receive 0 and y′′ gets 1. But by monotonicity, there is no s′ such that ys
′ ≤ yd and ys′ < yd as

otherwise the type inducing the signal s′, close to ys
′
would like to send the signal d induced

by the weaker type close to yd, induce more confession and catch some lies. Hence, S’s types

in (i(yd), y
d) can receive 0 only if yd

′
> yd and yd

′ ≤ i(yd′) and then they all receive 0 with the

same probability (possibly depending only on yd′ , y
d′).

(2) Conditional on that yd ∈ [y∗c , t) we have that yd = i(yd) with probability one. Given

that the induced set of pairs (yd, y
d) is a Borel set we only have to prove that there can be no

y′, y′′ ∈ [y∗c , t) such that whenever yd ∈ (y′, y′′) we have that yd ̸= i(yd). Suppose by contradiction

that such y′ and y′′ exist. We claim that all types of S in (y′, y′′) receive the same measure of

1-s which contradicts optimality. Two different types ỹ, ŷ ∈ (y′, y′′) may get different measure

of 1-s only if there is a signal d such that yd ∈ (ỹ, ŷ) and yd ≥ i(yd). Namely a signal after which

ỹ confesses and ŷ can get 1 from R. But we know from (1) that if yd ∈ (y′, y′′) we have that

yd < i(yd) and hence these types can get 1 only if yd < y′ and yd = i(yd) in which case all these

types get 1 with the same probability (possibly depending only on yd, y
d).

(3) The following event must have positive probability: (i) S faces signals such that S does

not know whether some signal d came from some type z > ȳ∗ or it came from some type

z′ ∈ [t, ȳ∗] (in this case we say that z, z′ pools on signal d) and (ii) R plays action 0. This is

because if with probability one 0 is played only by types of R in [t, ȳ∗] then the measure of 0-s

allocated to innocent types would be strictly less then it should be in the optimal mechanism.

This is because those types z > ȳ∗ who do not pool can only allocate action 1 with positive

probability to innocents as otherwise type ȳ∗ of S would obtain a payoff of less than 1 which

contradicts optimality. Hence, there must be a positive measure of types above ȳ∗ who pool

with types in [t, ȳ∗] on some signals d and R plays 0 after denials.

(4) It cannot be the case that this positive measure of types (identified in (3)(i)) all pool

with ȳ∗ because then guilty types who do not confess would have an incentive to lie up to ȳ∗
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and get 1 if not caught (which then would be infinitely more likely than getting caught) and

avoid the 0-s. Hence some type z > ȳ∗ must pool with some type z′ < ȳ∗ on some signal d.

Finally, by (2) it follows that types in z′′ ∈ (z′, ȳ∗] would like to deviate and send the signal

d sent by the weaker type z and induce yd = i−1(z′) > 0 confessors (i(yd) = z′) which is strictly

more than what they induce in equilibrium as i(.) is strictly decreasing. This contradicts our

assumption that the persuasion rule is monotonic.

A.9 Proof of proposition 4

First, we complete the description of the equilibrium. S sends the message m as in the

equilibrium at proposition 1 (we suppress superscripts ∗ whenever this does not cause confusion).

When S confesses then the game is over, with action a = 0 and S gets 0 (there is no need to

punish detected false confessions). When m ≥ ȳ, if S is not caught in a lie R lets him go

believing that he is surely innocent, while if S is caught in a lie R immediately prosecutes

him and punishes him at the level of −b believing that he is surely guilty. Consider now some

message m < ȳ and the corresponding guilty type y = ℓ−1(m). When z ≤ y then R immediately

prosecutes him and punishes him at the level of −b believing that he is surely guilty.28 When

z is such that y < z ≤ ζm then R proves to S that her z ≤ ζm and the game proceeds to stage

three, in which case R knows that S is guilty if he was caught in a lie and otherwise believes that

S is innocent with probability α. Finally, when ζm < z ≤ z∗(y) then R prosecutes S and when

z ≥ z∗(y) then R lets S go. In both cases R believes that S is innocent with probability α. The

values of ζm are chosen to satisfy G(m)−G(z∗(m)) = G(ζm)−G(z∗(y)) and to be in [m, z∗(y)].

It is easy to check that the so defined values of ζm will indeed fall in the right interval.

Suppose the game proceeds to stage four. When m′ = m, then R lets S go if he was not

caught in a lie, in which case she believes that S is surely innocent, while if S was caught in a

lie R prosecutes him and punish him at −b. If m′ = 0 then the game is over, with action a = 0

and S gets 0. Finally, in stage three all guilty types send the message 0 and all innocent types

send the message m.

Payoffs are exactly as in the optimal mechanism: m ∈ [t, ȳ) gets (1 − G(z∗(y)) + G(ζm) −

G(m))/(1−G(m)) = (1−G(z∗(m)))/(1−G(m)), and y ∈ [yc, t) gets (1−G(z∗(y)))/(1−G(y)).

Given S’s strategy, it is clear that R’s strategy is optimal. In particular, consider R’s

disclosure behavior. Strong types (z ≤ ζm) have no incentives to deviate since they are able to

perfectly set guilties and innocents apart by sending ζm. Any deviation of weak types (sending

28An alternative and equivalent solution would be to punish type y′ < y when he is asked to confess in stage
three but he confesses that he is some type different from y or he claims that he is y but this lie is detected.
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some ζ ′ > ζ) is discouraged by S’s skeptical, optimistic, belief that the evidence is as weak

as possible consistent with the received message (i.e. ζ ′m), so that the continuation of the

interrogation would be uninformative anyway. Finally, weak types (z > ζm) of course would like

to send the signal ζm but they cannot.

As for S, given R’s strategy, letting ℓ(y) = m and ℓ(y′) = m′, we have to consider eight types

of possible deviations: (1) a guilty type y behaves as a guilty type (a) y′ < y or (b) y′ > y; (2)

a guilty type y behaves as an innocent type (a) m′ < m or (b) m′ > m; (3) an innocent type m

behaves as an innocent type (a) m′ < m or (b) m′ > m; (4) an innocent type m behaves as a

guilty type (a) y′ < y or (b) y′ > y. All these deviations result in a payoff as if the deviator was

claiming to be a different type in the optimal mechanism and hence cannot be profitable.

A.10 Proof of proposition 5

In the uniform case, evaluating the LHS of equation (6) at m = ȳ using that z(ȳ) = ȳ yields

that the expected payoff (multiplied by 1− y) for a guilty type y from lying is 1− ȳ− (ȳ− y)b,

while the one from remaining silent is 1−Zs− (Zs− y)bs. A comparison of the two and the fact

that bs ≤ b demonstrate that a guilty type, if any, strictly prefers to stay silent if and only if

y < ys, where

ys ≡
(b+ 1)ȳ − (bs + 1)Zs

b− bs
.29 (16)

Since there are no confessors in the baseline model, clearly there will not be any confessors for

any Zs < 1 either. Thus, either no guilty types are silent or the set of silent types and liars are

respectively Ys = [0, ys) and Yℓ = [ys, t), in which case ys must be strictly positive. Evaluating

equation (16) for the equilibrium value of ȳ in example 1 yields that no types are silent if

Zs ≥ Z̄s ≡ (1+b)t
1+bs(1−α)

, so that in this case the equilibrium is as in the baseline model. Conversely,

if Zs < Z̄s, ys and ȳ must solve equation (16) and (8) with yc = ys, yielding ȳ∗ = t(b−bs)+(1+bs)Zsα
b−bs(1−α)+α

and y∗s = (1+b)t−(1+bs)Zs(1−α)
b−bs(1−α)+α

.

Therefore, when Zs < Z̄s, R’s expected loss is proportional to

E(Zs) ≡ (1− α)

∫ ȳ∗

t

(1− y) dy + α(1− Zs)y
∗
s

=
(Zs − t)(1− α)α (1 + bs) (2(1− t) (b− bs) + (2− t− Zs)α (1 + bs))

2 (b+ α− (1− α)bs) 2

+ α(1− Zs)
(1 + b)t− (1 + bs)Zs(1− α)

b− bs(1− α) + α
,

29For the sake of precision, if bs = b, then the identity of liars and silent types will not be uniquely pinned
down in equilibrium, only their measure. However, payoffs in any other equilibrium are the same as in the one
we are selecting.
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where the second term represent type II errors on silent types. Since the expression is convex in

Zs with E ′(Zs)|Zs=t = −tα < 0, there exists a Zs < Z̄s such that E(Zs) is strictly lower than for

Zs ≥ Z̄s (i.e. the baseline model) if and only if E ′(Zs)|Zs=Z̄s
= (b−bs)tα

b−bs(1−α)+α
> 0, which holds if

and only if b > bs. Finally, in such case E(Zs)|Zs=Z̄s
−E(Zs)|Zs=t/(1−α) =

(b−bs)2t2α2

2(1−α)(b−bs(1−α)+α)2
> 0,

meaning R prefers the American game to the English game.

A.11 Proof of proposition 6

For any given standard for interrogating Zi ∈ (t, 1], in the uniform case, evaluating the LHS

of equation (6) at m = ȳ using that z(ȳ) = ȳ yields that the expected payoff (multiplied by

Zi − y) for a guilty type y from lying is (Zi − ȳ) − (ȳ − y)b. Thus, denoting again by yc the

smallest guilty type to lie, we have that yc > 0, i.e. some types confess, if and only if

yc =
ȳ(1 + b)− Zi

b
> 0. (17)

Evaluating equation (17) for the equilibrium value of ȳ in example 1 when there are no confessors

yields that no types confess if Zi ≥ Z̄i ≡ (1+b)t
1−α

∈ (t, 1), in which case the equilibrium of the

interrogation is as in the baseline model. Conversely, if Zi < Z̄i, yc and ȳ must solve equation

(17) and (8), yielding ȳ∗ = bt+Ziα
b+α

and y∗c = t+bt−(1−α)Zi

b+α
.

Therefore, when Zi < Z̄i, R’s expected loss is proportional to

E(Zi) ≡(1− α)

∫ ȳ∗

t

(1− y) dy + αt(1− Zi)

=
(t− Zi)

2(1− α)α(2b+ α)

2(b+ α)2
+ αt(1− Zi),

where the second term is due to the fact that when z > Zi now R lets S go and hence makes

a type II error when facing a guilty type. Since E ′(Zi)|Zi=Z̄i
= btα

b+α
> 0, there always exists a

Zi < Z̄i such that E(Zi) is strictly lower than for Zi = Z̄i. Finally, note that if Zi ≥ Z̄i, then

R’s overall payoff is the same as in the equilibrium of the baseline model with no confessors or,

equivalently, as if she does not interrogate. Indeed, in this case ȳ∗ = t/(1 − α) < Zi, so that

when z < ȳ∗ then R always prosecutes while when z ≥ ȳ∗ she could just always let R go (see

the proof of remark 1).
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B Online appendix

B.1 Lying and equilibrium updating

In this section, we show how to compute R’s belief upon a message in the lying region for

an arbitrary measurable lying function ℓ and, in particular, that, as in the case in which ℓ is

strictly increasing and differentiable, this belief is independent from z and hence must be equal

to α in equilibrium, i.e. R’s indifference condition must hold. We show this result without any

reference to belief restrictions, using only the concept of Nash equilibrium. Let d(λ◦ℓ−1)
dλ

denote

the Radon-Nikodym derivative, where λ is the adequate dimensional Lebesgue measure (here

one-dimensional). Also, define β as dβ
dλ

= f (here λ is two-dimensional) and let id denote

the identity function. Then, for any two-dimensional Lebesgue measurable set A with positive

measure, if R is indifferent at the elements in A we must have by Nash equilibrium that the

payoffs (integrated over A) from letting S go and to prosecute him are the same, namely

(1− α)

∫
A

dβ = α

∫
A

d(β ◦ (ℓ−1, id)) = α

∫
A

d(β ◦ (ℓ−1, id))

dβ
dβ,

where β◦(ℓ−1, id) is the pushforward measure and ℓ−1 is the inverse correspondence of ℓ. Thus,

we must have (β−almost surely) that

(1− α) = α
d(β ◦ (ℓ−1, id))

dβ
.

Manipulating the RHS,

d(β ◦ (ℓ−1, id))

dβ
= f ◦ (ℓ−1, id)

d(λ ◦ (ℓ−1, id))

dβ
=

f ◦ (ℓ−1, id)

f

d(λ ◦ (ℓ−1, id))

dλ

which, using our assumptions on f (see the more general sufficient condition at equation (20)

in section B.2.1), simplifies to h(ℓ−1)
h

d(λ◦ℓ−1)
dλ

, so that

1− α = α
h(ℓ−1)

h

d(λ ◦ ℓ−1)

dλ
. (18)

In particular, when ℓ is strictly increasing and differentiable, d(λ◦ℓ−1)
dλ

= 1
ℓ′(ℓ−1)

, so that equation

(7) obtains.
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B.2 More general distributions

B.2.1 Sufficient conditions on the prior

Let f be the joint density of y and z over the unit square and let it be 0 if and only if z ≤ y.

To ensure tractability of the model, f must satisfy the two following properties:

(i) there is a function g such that for every y

f(y, z)∫ 1

y
f(y, z)dz

=
g(z)∫ 1

y
g(z)dz

; (19)

(ii) there is a function h such that for every z, y < t and y′ > t

f(y, z)

f(y′, z)
=

h(y)

h(y′)
. (20)

Property (19) ensures that we can calculate R’s strategy z so that it satisfies S’ indifference

condition. Property (20) ensures that R’s belief about S’s innocence in the lying region does not

depend on z (i.e. that equation (18) obtains). Both properties are straightforwardly satisfied

when, as assumed in the paper, f(y, z) = kh(y)g(z).

B.2.2 A nonlinear example

As an addition to example 1, we show how to calculate the equilibrium and the optimal

mechanism for the case when h(y) = 1, i.e. y is still uniform, and g(z) = 2z. We fix α = t = 1/2

and b = 1. The baseline equilibrium values (we suppress the superscript ∗) of yc and ȳ are

given by R’s indifference condition ȳ − 1/2 = 1/2 − yc (because α = t = 1/2) and by type yc’s

indifference condition ∫ 1

ȳ

2zdz −
∫ ȳ

yc

2zdz = 0,

from which yc = 2 −
√
3 and ȳ =

√
3 − 1 (alternatively, one solves first for the differential

equation (see below) and determines p, yc, ȳ from the three equations (initial condition, terminal

condition and R’s indifference condition)). By the indifference condition for S for types between

yc and ȳ
zp(y)

y
z′p(y) = −1,

from which zp(y) =
√
p− y2. Then, p is determined by any of the following conditions: zp(ȳ) = ȳ

or zp(yc) = 1, yielding p = 8 − 4
√
3. The equilibrium lying function is linear (with slope one)

and covers the interval [t, ȳ).
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We now show directly that proposition 2 holds. R’s loss in proportional to

∫ 1/2

yc(p)

∫ 1

√
p−y2

2zdzdy +

∫ ȳ(p)

1/2

∫ √
p−y2

y

2zdzdy,

where yc(p), ȳ(p) are determined by zp(ȳ(p)) = ȳ(p) and zp(yc(p)) = 1. The expression is

minimized exactly for p = 8− 4
√
3.

B.2.3 Biased type I errors in equilibrium

We now consider an example in which f(y, z) ̸= kh(y)g(z) but the two properties at section

B.2.1 still hold. We calculate the optimal mechanism now for the case when y is drawn uniformly

and then z is drawn from (y, 1] according to the density g(z) = 2z
1−y2

and show that the optimal

mechanism is different from R’s equilibrium decision rule. Notice that the equilibrium is the

same as at section B.2.2 because R’s indifference condition does not change and the indifference

condition of type y of S’s is just scaled by the factor 1
1−y2

. However, the optimal mechanism is

different and the equilibrium is biased in the sense that there R makes too many type I errors.

We are looking for the p now which minimizes

∫ 1/2

yc(p)

∫ 1

√
p−y2

2z

1− y2
dzdy +

∫ ȳ(p)

1/2

∫ √
p−y2

y

2z

1− y2
dzdy,

which happens for p ≈ 1.04 < 8 − 4
√
3 ≈ 1.0718. Clearly, the optimal mechanism shifts

downward and to the left relative to the equilibrium because as y increases the density of z

increases, i.e. the evidence gets weaker. Hence, under the equilibrium decision rule R makes

too many type I errors. It follows that, while the equilibrium of the back and forth game at

proposition 4 improves on the baseline model because withdrawn lies are forgiven, it does not

implement the optimal mechanism. The same situation would arise if z was drawn uniformly

from (y, 1) according to g(z) = 1/(1− y) once y has been drawn uniformly.

B.2.4 Implementing the optimal mechanism with upwardly biased type I errors

Continuing the example at section B.2.3, we now show that as long as the optimal mechanism

is not too far off from the equilibrium we still can implement the optimal mechanism by the

same game described in section 3.3 but by constructing a different equilibrium. The idea is as

follows. To reach the optimum, we must produce less type I errors and more guilty types should

expect a positive payoff. Hence more guilties should lie. To keep R indifferent it means that

these guilties should pool with more innocent types, some of which however, should expect a
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payoff of 1. We can achieve this by never prosecuting these innocent types but letting them go

(together with the associated guilty types with whom they pool) and otherwise R proves that

the evidence is sufficiently strong.

Formally, let us denote by yc(p) ≈ 0.2 < yc = 2 −
√
3 and ȳ(p) ≈ 0.72 < ȳ =

√
3 − 1 the

values for which zp(yc(p)) = 1 and zp(ȳ(p)) = ȳ(p) for the optimal p ≈ 1.04. Let S lie above

yc(p) according to a linear lying function j with slope one covering the interval [1/2, ỹ), where

ỹ − 1/2 = 1/2 − yc(p) so that R is indifferent (recall that t = α = 1/2). Notice that unlike in

the equilibrium of proposition 4, where types who get payoff 1 separate immediately, here, to

make R indifferent some of these types, namely those in [ȳ(p), ỹ) will pool first and will separate

only later with probability one (or they are let go) because after messages m ∈ [ȳ(p), ỹ) R

always proves that her evidence is stronger than zp(j
−1(m)) and then guilty types confess (see

the definition of ζm in what follows).

Again, large lies are immediately punished at −b. R lets S go when S separates (i.e. after

m > ỹ) and after message m ∈ [1/2, ỹ) if z > zp(j
−1(m)). Note that it should be the case

that zp(j
−1(m)) ≥ m which is indeed the case as zp(j

−1(ỹ)) = zp(1/2) ≈ 0.8888 > 0.8 ≈ ỹ. R

prosecutes S if z ∈ [ζm, zp(j
−1(m)) and proves that her evidence is stronger than ζm otherwise.

ζm is chosen to satisfy the followings: G(zp(m)) − G(m) = G(zp(j
−1(m))) − G(ζm) for m ∈

[1/2, ȳ(p)) and for m ∈ [ȳ(p), ỹ) we have that zp(j
−1(m)) = ζm. One can easily check (similarly

to the proof of proposition 4) that the equilibrium conditions hold. This is because the payoffs

are as in the optimal mechanism and any deviation can be identified with a deviation in the

optimal mechanism.

To see by direct computation that guilty type j−1(m) has incentive to confess and withdraw

his lie we must have that for m < ȳ(p)

G(ζm)−G(m) ≤ b(G(m)−G(j−1(m))).

This holds because we know that G(ζm)−G(m) = G(zp(j
−1(m)))−G(zp(m)) by construction

and zp(m) is such that

1−G(zp(m))− b(G(m)−G(y)) = 1−G(zp(y))

for any y ∈ [yc(p), ȳ(p)) and m ∈ [y, ȳ(p)) and hence for y = j−1(m) as well. For m ∈ [ȳ(p), ỹ)

we must have that

G(zp(j
−1(m)))−G(m) ≤ b(G(m)−G(j−1(m)))
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because by construction ζm = zp(j
−1(m)) for such m-s. But this condition holds because we

know that

1−G(m)− b(G(m)−G(y)) < 1−G(zp(y))

for any y ∈ [yc(p), ȳ(p)) for m > ȳ(p).

In general, when in the optimal mechanism there are less type I errors than in equilibrium,

the above construction works as long as ỹ can be chosen to make R indifferent and so that

zp(j
−1(ỹ)) > ỹ. When instead in the optimal mechanism there are more type I errors than in

equilibrium, a similar construction works as long as now one can include sufficiently many guilty

types to lie in the first stage (among those who get payoff 0 in the optimal mechanism so that

they will not separate and confess immediately in the first stage) - see the demonstration of

the idea in section B.3.1. These conditions are satisfied as long as the optimal mechanism is

not too far from the equilibrium decision rule. We were unable to find an example where these

conditions are not met. But even if one can find such an example, it is still unclear whether these

conditions are necessary to implement the corresponding optimal mechanism with the back and

forth game that we consider at section 3.3.

B.3 Leniency for confession instead of punishment of lies

In this section, we suppose that S gets −b whenever he is prosecuted and did not confess

while he gets 0 if he confesses. R’s loss is (1+b) when −b is given to an innocent and it is 0 when

−b is given to a guilty. Note that all the statements and constructions of this section directly

translate to the “leniency setup” described in the body of the paper, i.e. when an S who is

prosecuted gets 0 unless he confesses, in which case he gets u = b/(1+ b), and R’s loss is 0 when

giving u to a confessor and 1− u when giving u to an innocent.30 Importantly, differently from

our main model, R faces the constraint that in equilibrium she cannot give leniency (0 instead

of −b, or u instead of 0 in the “leniency setup”) to S unless he confesses. Absent this constraint,

the two models become equivalent and the same equilibrium construction of the back and forth

game at section 3.3 always implements the optimum. After highlighting the main differences

with respect our baseline setup, we explain how, despite such constraint, R can improve her

payoff using a slight variant of the equilibrium construction of the back and forth game used

for proposition 4 (section B.3.1) and even attain the optimum if additionally innocents depart

30The only difference is that in such leniency setup the equilibrium cut-offs remain the same as in our baseline
equilibrium while the optimal mechanism shifts away from the equilibrium and hence from the optimal mechanism
at section 3.1. It is because in the optimal mechanism R uses only actions 1 and u instead of 1 and 0 and,
differently from our baseline setup, R’s optimality condition does not translate into R’s average indifference
condition in equilibrium.
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from honesty (section B.3.2).

Even though lemma 1 holds under such payoffs, proposition 2 does not hold because: (1)

R’s indifferent condition in equilibrium now changes to

(1− α)µ(1 + b) = α(1− µ),

where µ is her belief that S is innocent; (2) the equilibrium cut-off decision rule of R must be

constant at z(m) = ȳ as lies are not punished relative to prosecution; (3) the optimal mechanism

remains unchanged. Fixing the parameters to t = α = 1/2 and b = 1, in the uniform case in

equilibrium now yc = 1/4, ȳ = 5/8, ℓ′ = 1/2 and z = 5/8, with µ = 1/3 < α. In equilibrium

R makes 1/64 type I errors and 3/32 type II errors while in our baseline equilibrium these are

1/36 and 1/24, respectively. In both cases, in the optimal mechanism these are 1/36 and 1/72,

respectively. Henceforth, we report all losses without multiplying them by α and by 2 (the

density).

B.3.1 Further improvement on payoffs with downwardly biased type I errors

Consider the following equilibrium of the multistage game. First, S communicates as in

equilibrium. After separating messages R immediately makes a correct decision, i.e. gives 0 to

confessors and 1 to innocents. Also R gives −b immediately after lies which should not happen

in equilibrium, lets S go when z > z̃(m), prosecutes S if z ∈ [ζm, z̃(m)] and S gets −b (notice

that R is indeed indifferent because her belief about S’s innocence is exactly µ = 1/3), and

proves that his evidence is stronger than ζm otherwise.

Now ζm and z̃(m) are chosen to satisfy (1) ζm−m = m−ℓ−1(m) and (2) z̃(m)−ζm = 5/8−m.

These choices of cut-offs ensure that all types get the same payoff as in equilibrium and that

guilty types confess after learning that the evidence is stronger than ζm (in fact they are just

indifferent by (1)). As a consequence, the strategies above indeed constitute an equilibrium

because any deviation is equivalent to a deviation in the equilibrium of the one-shot game which

is not profitable. The resulting type I and type II errors are 1/64 and 3/64, respectively.

In equilibrium some guilty types still get −b which is inefficient, moreover, there are still too

few type I errors and too many type II errors relative to the optimal mechanism. We now show

how to reach the optimal level of type I errors and hence the only source of inefficiency which

will remain is that still some guilty types get −b. The reason why guilty types must get −b is

that innocents cannot ever get 0 but must get −b when they are prosecuted when pooled with

a guilty, and hence guilty types must also get −b. The fact that innocent types may get −b
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(resulting in a loss of 2) causes no inefficiencies in itself because this loss is exactly compensated

by the smaller probability of making these mistakes in the following equilibrium.

One could further improve R’s payoff by playing an equilibrium of the multistage game

similar to the one described in subsection B.2.4. However, the situation is the reverse now. In

section B.2.4, the optimal mechanism shifted downward and to the left relative to the equilibrium

and hence when implementing the optimum we needed to involve more pooling innocent types

(some of those who get 1 under the optimal mechanism) to maintain the indifference of R. Now

we would like to produce more type I errors (as compared to the one-shot equilibrium or to

the one above) and hence we need more guilty types (some of those who get 0 in the optimal

mechanism) to lie so as to keep R indifferent. The same technique is much simpler when 0 could

be given to someone who is prosecuted. The exact construction is as follows.

Recall that in the optimal mechanism types below 1/3 get 0 and types above 2/3 get 1.

Hence, let now S types in [1/6, 1/2) lie and cover the interval [1/2, 2/3) according to a lying

function with slope 1/2. This ensures the indifference of R whenever she chooses prosecution

(−b) or lets S go. Confessors get 0, separating innocents are let go and non-equilibrium liars

get prosecuted and get −b immediately when caught. R lets S go when z ∈ [z̃(m), 1] prosecutes

when z ∈ [ζm, z̃(m)) and reveals that her evidence is stronger than ζm otherwise. For messages

m ∈ [1/2, 7/12) (which are sent by types in [1/6, 1/3) who all should expect 0) z̃(m) = 1/3+m

and ζm = 2m− 1/3. For messages m ∈ [7/12, 2/3) we set z̃(m) = 3/2−m and ζm = 5/6. One

can check that all types of S gets the same payoff as in the optimal mechanism and that S’s type

sending message m ≥ 7/12, observing that R’s evidence is stronger that ζm is just indifferent

between confessing or sticking to the story m (types sending m < 7/12 strictly prefer to confess

after observing ζm). This proves that the construction is indeed an equilibrium resulting in

1/36 of type I error (as in the optimal mechanism) and 1/24 type II errors. These errors are

exactly as in the one-shot equilibrium of the baseline model where lies are punished relative

to prosecution. Type II errors cannot be further decreased without further increasing type I

errors, which in principle still could be an improvement. However, the optimal payoffs cannot

be reached. Therefore, under these payoff specifications and the constraint that R cannot offer

leniency unless S confesses the optimal mechanism cannot be implemented with our game in

section 3.3, at least under the restriction that innocents are honest.

B.3.2 Implementation of the optimal mechanism with confessions of innocents

Assuming now that innocents are not always honest, we explain how to implement the

optimum. Consider the equilibrium construction described in the proof of proposition 4 with

48



the difference that when z > ζm the game continues and R invites each type of S to confess or

stick to his story. Now if S confesses R plays 0 or 1 according to the cut-off described in the

proof and if (off the equilibrium path) S sticks to his story R gives S a lower payoff (together

with the appropriate belief that makes this behavior sequentially rational). Then, the optimal

mechanism is implemented.
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1 Introduction

In most legal systems, the interrogation of a suspect is an important resource in the inves-

tigation phase that may lead to his prosecution. Comparable situations arise in the assessment

of an employee’s misconduct, the investigation of a student’s fraud, the determination of a

spouse’s betrayal, etc. With law enforcement as leading application, this paper develops a the-

oretical framework that describes how interrogations unfold. It then explores several questions

on the design, conduct and regulation of interrogations to determine which institutions enhance

information revelation and yield to more accurate decisions.

An interrogation can be represented as a game of two-sided asymmetric information between

the suspect (henceforth he), who aims to convince the law enforcer of his innocence and be let

go, and the law enforcer (henceforth she), who aims to obtain truthful information to minimize

some weighted sum of type I (prosecuting an innocent) and type II (letting a guilty go) errors.1

The suspect is privately informed about his status as guilty or innocent and the likely strength

of the evidence against him. The law enforcer is privately informed about the actual evidence.

In spite of the potential complexity resulting from the correlation between the private infor-

mation of the two parties, we provide a handy information structure.2 To fix ideas, consider the

following stories, in which y and z represent the private information, or “type”, of the suspect

and the law enforcer, respectively, and the suspect is guilty when y < t, where t is known:

• Due to a restraining order, a husband’s distance y to the house of his wife cannot be less

than t. A caring neighbor living at distance z spotted the husband from the window;

• A jeweler is selling gold rings whose purity y allegedly falls short of the declared purity t.

A forensic test provides an upper bound z on the purity level;

• A telephone operator left work at time y, allegedly before the time of the end of his shift

t. An unanswered call occurred at time z, proving he had left by then.

1In this flexible specification, the law enforcer’s exact objective may derive from fundamental features of
the legal system, e.g. adversarial or inquisitorial, and her precise role, e.g. police officer or prosecutor. From
a normative perspective, it can be thought of as reflecting the social costs of each error. Throughout, we
abstract from details about the separation of roles in the legal system and assume the law enforcer directly takes
prosecution decisions. The model can equivalently apply to any other decision that the law enforcer would want
to base on the suspect’s guilt, e.g. an arrest, and generates disutility to the suspect irrespectively.

2For instance, in the related context of plea bargaining, Reinganum (1988) writes:

A more difficult task is to incorporate the discovery process. One way to do this is to assume that
the defendant receives a signal which is (imperfectly) correlated with the strength of the case. If
the prosecutor also observes this signal, then this is basically an exercise in updating priors. [...]
If the signal is private information for the defendant, matters could become considerably more
complicated.
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In our baseline model, the suspect sends a single message (m), which must be interpreted as

a claim about his type, if any, in reply to the law enforcer’s inquiry, and the law enforcer makes a

decision. The suspect additionally incurs some costs if he is caught in a lie (m > z), or if he stays

silent and the evidence is unambiguously incriminating (z < t). Under an equilibrium refinement

that gives prominence to honesty adapted from Hart et al. (2017), innocent types and confessors

(types whose m < t), if any, claim the truth (proposition 0). Conversely, some sufficiently

high, unsuspicious, guilty types necessarily lie and mimic low innocent types. Sufficiently high

innocent types separate, instead, so that high, strong, claims of denial are credible. Clear

predictions then obtain on players’ equilibrium strategies (proposition 1) and payoffs (corollary

1).

This baseline model already sheds light on some fundamental aspects of interrogations, start-

ing from their purpose in relation to the right to silence and the elicitation of a confession. The

suspect’s right to refuse to answer law enforcers’ questions is recognized in most legal system.

Still, important differences remain in the level of protection this right entails and, in particular,

there is a longstanding debate on whether an adverse inference, i.e. a conclusion pointing at the

suspect’s guilt, can be drawn (see for instance Seidmann and Stein (2000), Seidmann (2005), and

the discussion between O’Reilly (1994) and Ingraham (1995)). In our model, these differences

are parametrized by the evidence strength standard required to prosecute the suspect when he

stays silent, which in equilibrium is equivalent to a standard for prosecuting in the absence of a

confession (remark 1). A basic purpose of interrogating is hence the possibility to elicit a confes-

sion from a suspect who otherwise would sometimes necessarily be let go. And conversely, when

prosecution is always possible, interrogating is useful if and only if some types indeed confess

(remark 2). Still, the optimal standard for prosecuting (proposition 2) is not always minimal.

Indeed, anticipating that by staying silent he will sometimes be let go, the suspect has less need

to lie, which enhances information transmission. As a result, not only guilties and innocents

alike benefit, as Seidmann (2005) points out, but also the accuracy of the law enforcer’s deci-

sions sometimes increases. Thus, while in accordance with the logic behind adverse inferences a

silent suspect is necessarily guilty in our setting, our results provide a purely information based

justification for adverse inferences being insufficient to trigger prosecution without additional

supporting evidence.3

As in the case of other restraints of individual freedom such as searches and arrests, the

3For instance, in the United Kingdom, ss 34 of the CJPOA 1994 establishes that adverse inferences can be
drawn from the accused’s failure to mention facts when questioned under caution, i.e. having being warned
about his right to silence. At the same time, ss 38 states that “A person shall not have the proceedings against
him transferred to the Crown Court for trial, have a case to answer or be convicted of an offence solely on such
a failure or refusal.”
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law enforcer may be required to hold sufficiently strong evidence to interrogate the suspect in

the first place. When the suspect is interrogated, he then knows that the evidence must be

sufficiently strong. Under a more stringent standard for interrogating, a guilty suspect is less

inclined to lie and more inclined to confess, so that the interrogation becomes more informative.

Therefore, even assuming that the suspect must be let go when the standard is not met, the

optimal standard for interrogating (proposition 3) is often not minimal. Moreover, it is never

optimal to set the standard for interrogating so that the suspect is ever prosecuted without

being interrogated (remark 3).

We then enrich the baseline model by supposing that the law enforcer can directly confront

the suspect with the evidence before he makes a claim. Uncertainty about what the law en-

forcer knows is crucial. Indeed, if the suspect perfectly observes the evidence the interrogation

becomes uninformative (proposition 4). Therefore, mandatory disclosure requirements about

the evidence, which are typically in place further down the prosecution process, would be detri-

mental if extended to interrogations. As for voluntary disclosure, when the law enforcer can only

reveal the exact evidence or nothing there are both equilibria with no evidence revelation, so that

the interrogation unfolds as in the baseline model, and equilibria with full evidence revelation, so

that the interrogation is uninformative (corollary 2). The latter are sustained by the suspect’s

skeptical, optimistic, belief that undisclosed evidence is the weakest, i.e. the notorious “You

have nothing on me”. When partial disclosure is also possible, instead, and the law enforcer can

understate the strength of her evidence, there exist partially revealing equilibria in which types

with sufficiently strong evidence pool (corollary 3). This type of equilibrium can replicate the

outcome under the optimal standard for interrogating, making such standard redundant and

sometimes improving the informativeness of the interrogation relative to the baseline model.

The law enforcer can do even better by means of gradual evidence revelation, so as to inter-

temporally screen suspects and benefit from each and every piece of her information. We present

a dynamic interrogation policy in which, by revealing that the evidence is stronger and stronger

as time passes, the law enforcer is able to invite more and more confessions from guilties and

credible denials from innocents. We calculate the optimal interrogation policy of given length

and then show that the law enforcer always prefers longer interrogations (proposition 5).

Overall, the design instruments we considered can be effective because they serve as partial

commitment devices for the law enforcer’s prosecution decisions, which must always be sequen-

tially rational in equilibrium. We complement the analysis with the alternative mechanism

design approach, which assumes full commitment on the outcome of the interrogation based on
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the suspect’s claim and the evidence.4 A comparison of the optimal mechanism (proposition 6)

and the equilibrium of the baseline model clarifies the exact nature of the law enforcer’s commit-

ment problem. The law enforcer would benefit from committing to sometimes prosecute some

innocents and to let some guilties go. And while the possibility of catching and punishing lies

makes interrogations informative in the first place, actually punishing lies is inefficient. Also, as

the dynamic interrogation policy described above gets infinitely long, payoffs converge to those

under the optimal mechanism.

The optimal mechanism can be implemented in equilibrium of a two-round variation of the

baseline model (proposition 7). The law enforcer must be able to reveal information about her

evidence in reaction to the suspect’s claim, who can then reply back, and she must have discretion

on whether to punish lies. When the evidence is sufficiently strong relative to the suspect’s claim

in the first round, the law enforcer proves it rather than immediately taking a decision. In the

second round, a guilty suspect will step back on his lie, which will be forgiven, and an innocent

type will stick to his story. The equilibrium behavior in this second round is reminiscent of

screening outcomes in plea bargaining (Grossman and Katz, 1983; Reinganum, 1988) and the

optimal judicial mechanism of Siegel and Strulovici (2018), in which only innocents reject the

plea. However, while those models require the court to sometimes convict a suspect known to

be surely innocent, in our game the law enforcer’s decisions are sequentially rational at each

information set. In particular, in the second round an innocent suspect is always let go. Since

the equilibrium exhibits an implicit promise of leniency for confession, our results also support

the view that these kinds of agreements, on which the law is often blurry or controversial, should

not be disallowed.5

The paper is structured as follows. After a discussion of the related literature here below,

section 2 presents the baseline model and its equilibria. Section 3 explores its implications.

Section 4 considers evidence revelation. Section 5 presents the optimal mechanism and its

game implementation. Section 6 concludes by considering extensions and additional questions,

namely properties and interpretations of the information structure, alternative moves and payoffs

(more severe punishment for perjury, no punishment but leniency for confession, continuous law

enforcer’s actions), asymmetric information about the law and deceptive tactics, and regulation

of evidence revelation. The appendix contains additional material (section A and C) and all

proofs (section B).

4See the discussion about the design of the legal system in Hart et al. (2017), who consider a class of
persuasion games with one-sided asymmetric information in which the outcome with and without commitment
on behalf of the uninformed party is the same.

5See for instance Kassin and McNall (1991).
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Relation to the literature. While the entire judicial process is a prominent field of applica-

tion of information economics, suspects’ interrogations have received only limited attention. A

notable exception is Baliga and Ely (2016), who study the interrogator’s commitment problems

inherent to torture. Most closely related is Seidmann (2005), who considers how adverse infer-

ences affect the suspect’s strategy in the interrogation.6 We offer new results on the issue, which

we compare to those of Seidmann (2005) in detail in section 6.2, and we consider several other

design aspects. Otherwise, the law and economics literature generally studies the judicial pro-

cess assuming prosecution is already undergoing. This paper instead focuses explicitly on how

communication in the interrogation contributes to the decision to prosecute. Hence, capturing

essential features of the judicial process only in stylized form, our framework accounts for im-

portant specificities that arise in interrogations due to the information structure and the nature

of communication.7 First, asymmetric information about the incriminating evidence is presum-

ably more pervasive than further down the judicial process, where the prosecution is typically

subject to mandatory disclosure requirements and discovery occurs.8 Thus, taking two-sided

asymmetric information between the suspect and the law enforcer a step further than previous

work, our model allows for heterogeneity not only between a guilty and an innocent, but also

within guilties and innocents, in the strength of the incriminating evidence they expect. This

heterogeneity explains why different guilty types prefer different strategies and, for instance,

some “break” and others do not. Besides, the information different parties acquire and present

in front of a judicial officer, including the defendant’s claims, is typically modeled as hard evi-

dence (Milgrom, 1981), i.e. it can be disclosed or withheld but not misreported.9 To allow for

the possibility of plain lying that is intrinsic to interrogations, in our model the suspect’s claims

are soft information, i.e. the set of his available messages is independent from the truth. At

the same time, the suspect’s claims are not pure cheap talk (Crawford and Sobel, 1982) since

these might be contradicted by the law enforcer’s evidence, entailing a cost. Differently from

theoretical models of lying (e.g. Kartik (2009), Dziuda and Salas (2018), Balbuzanov (2019) and

6Leshem (2010) extends the analysis to a setting in which even innocent suspects may prefer to exercise the
right to silent as their honest claims may be disproved.

7In particular, we take as given that guilt and reticence entail some punishment without considering the
complex determinants of plea bargaining (Grossman and Katz, 1983; Reinganum, 1988; Baker and Mezzetti,
2001) and sentencing (Siegel and Strulovici, 2018, 2019). We thereby ignore considerations on crime deterrence
(and chilling of socially desirable behavior (Kaplow, 2011)), commensurate punishment, endogenous evidence
acquisition and deployment of resources in prosecution.

8The plea bargaining literature features alternative assumptions on when this source of asymmetric informa-
tion exactly resolves, i.e. if already at the plea bargaining stage (Grossman and Katz, 1983) or after (Reinganum,
1988). Daughety and Reinganum (2018, 2020) explore the prosecutor’s incentives to comply with the disclosure
requirements established by the Supreme Court of the United States in Brady v. Maryland (1963). Cuellar
(2020) studies plea bargaining outcomes when the prosecutor can acquire and disclose evidence over time.

9See for instance Shin (1994), Mialon (2005), Bhattacharya and Mukherjee (2013) and Hart et al. (2017).
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Jehiel (2021)), the detectability of a lie and its cost for the suspect derive explicitly from the

law enforcer’s private information, which in particular naturally implies that the detectability of

a lie increases with its size.10 Moreover, our framework therefore allows studying the effects of

revelation of the law enforcer’s private information to the suspect. Our model hence also joins

the growing literature on strategic communication that, departing from seminal works, considers

two-sided asymmetric information between the sender and the receiver.11 It differs in players’

incentives and the information structure as well as in the main questions of interest. A recurrent

theme in this literature is that the receiver may sometimes be hurt from her information since as

a result the sender may reveal less. In our setting, absent the possibility that the suspect may be

disproved by the law enforcer’s evidence, the interrogation would be completely uninformative.

2 A simple model of interrogations

2.1 Model

Information structure. There are two players: a suspect (he), denoted by S, and a law

enforcer (she), denoted by R. At the initial stage, S privately observes his type y and R

privately observes her evidence z, drawn uniformly from
{

(y, z) ∈ [0, 1]2 : y < z
}

. S is guilty

when y < t and innocent when y ≥ t, where t ∈ (0, 1) is a commonly known parameter.

R’s evidence is a signal about S’s type proving that y < z, the lower the z the stronger the

evidence since S’s guilt becomes more likely. In particular, when z ≤ t we say that the evidence

is conclusive since it proves that S is surely guilty (see figure 1). Likewise, in addition to his

status as guilty or innocent, S’s type determines the strength of the evidence he expects R to

possess, which is stronger the lower the y as he knows that z > y. While ensuring tractability,

the information structure respects natural properties, which we discuss in section 6.1.

Moves. After y and z have been drawn and the information structure determined accordingly,

S sends a message m ∈M = [0, 1]∪{s} to R, who then takes an action a ∈ {0, 1}. Then payoffs

realize as described below.

10Kartik (2009) assumes a lie entails a direct cost that increases with its size and he invokes penalties upon
lying detection as a possible interpretation. In both Dziuda and Salas (2018) and Balbuzanov (2019), instead,
any lie has an equal exogenous chance of being detected and the cost is endogenously determined by the receiver’s
response. Jehiel (2021) considers a repeated communication setting in which a sender who lies then forgets his
message and may hence later contradict himself. Relatedly, in Ioannidis et al. (2020) the message of the sender
determines the receiver’s costly investigation technology. Perez-Richet and Skreta (2020) consider general cost
functions for the sender from manipulating a test that the receiver designs. Also, see Sobel (2020) for a general
definition of lying.

11See de Barreda (2010), Chen (2012), Lai (2014), Ishida and Shimizu (2016), and Pei (2017) for models of
soft information and Ispano (2016) and Frenkel et al. (2020) for models of hard information.
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Figure 1 The sample space, the suspect’s status and the evidence

S’s message must be interpreted as a literal claim about his type and m = s represents his

choice to stay silent. Provided S does not stay silent, we say that he lies when m 6= y, that he

is honest when m = y, that he confesses when m < t, and that he denies when m ≥ t. Also,

we say that he is caught in a lie when R’s evidence contradicts his claim, i.e. when m ≥ z.

R’s action can be interpreted as a decision on whether S should be prosecuted, i.e. a = 0, or let

go freely without charges, i.e. a = 1.

Payoffs. R’s loss (i.e. the negative of her payoff) is

α a1y<t + (1− α) (1− a)1y≥t, (1)

where 1y<t and 1y≥t are indicator functions for S’s status as guilty and innocent, respectively,

and α ∈ (0, 1) a commonly known parameter. S’s payoff is

a− b1m≥z or (m=s and z≤t), (2)

where b > 0 is a commonly known parameter and 1m≥z or (m=s and z≤t) the indicator function for

when S is caught in a lie or when he is silent but the evidence is conclusive.

R aims at prosecuting a guilty and letting an innocent go and α measures the relative

importance of a type II error over a type I error. S aims at being let go but also incurs some cost

b for being caught in a lie, or for refusing to answer R’s question when the evidence is already

unambiguously incriminating. This punishment for reticence may be direct and explicit,
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e.g. a penalty for lying, or be due to R taking a more unfavorable action when S is proving

uncooperative. Section C.1 in the appendix formalizes the latter interpretation. In section 6.2,

we allow S’s cost when he is silent but the evidence is conclusive to be lower (possibly zero)

than when he is caught in a lie. We also consider the alternative but closely related incentive

structure in which S bears no costs but enjoys some leniency for confessing.

Equilibrium selection. Throughout, we restrict our attention to equilibria in which innocent

types and (guilty) confessors are honest. In section C of the appendix we derive this restriction

as a result in a more general game using an extremely weak, possibly-mixed, equilibrium concept

and requiring only a very weak form of truth-leaning adapted from Hart et al. (2017) (proposition

C.0 in the appendix contains a more formal and complete statement).

Proposition 0 (Honesty of innocents and confessors). Under a truth-leaning refinement, in

equilibrium innocent types and confessor are honest.

Thus, R always finds it optimal to prosecute when S confesses and/or S is caught in a lie

(and/or the evidence is conclusive). Likewise, since a silent type is necessarily guilty, R always

finds it optimal to prosecute upon silence. And anticipating R’s action, no guilty type finds it

optimal to stay silent (even if there was no punishment for doing so). However, we consider

a more general version of the model in which when S is silent, R must necessarily let S go if

z > Zs, where Zs ∈ (t, 1] is a commonly known parameter. Again by proposition 0, which holds

for any arbitrary action policy of R upon silence, R therefore chooses

a(s, z) =

0 if z ≤ Zs

1 if z > Zs,

(3)

where a(s, z) denote R’s action upon m = s and evidence z. Zs can be interpreted as the

evidence strength standard required to prosecute S, inversely related to the level of protection

of silence. If Zs = 1, prosecution is always possible, while in the limit case Zs = t prosecution

is possible only with conclusive evidence. If Zs = t/(1−α) < 1, R cannot use the informational

content of silence and hence takes the optimal decision based on the evidence alone, a situation

Seidmann (2005) refers to as the “American game” to contrast it to the “English game” (Zs = 1).

2.2 Equilibrium

Because of proposition 0, a pure strategy of S is fully described by a partition of the set of

guilty types into the sets Yc, Ys and Y`, denoting the set of guilty types who confess, remain
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silent and lie, respectively, and a lying function ` which associates to each type y ∈ Y` a lie

`(y) ∈ [t, 1]. We impose that ` is measurable and we denote its range `(Y`) by L. Likewise, we

can concentrate on R’s actions at information sets in which S denies and he is not caught in a

lie, i.e. in the set {(m, z)|m ∈ [t, 1], z > m}, since in all other instances R’s sequentially rational

behavior follows straightforwardly from proposition 0. A pure strategy a of R specifies an

action a(m, z) for each message m and evidence realization z. We impose that for all m ≥ t the

Lebesgue integral A(m) ≡
∫
{z:z>m} a(m, z)/(1 −m)dλ exists, which is also the expected payoff

of innocent type m from being honest. R’s belief system µ specifies a probability µ(m, z) =

P(y ≥ t|m, z) that S is innocent. Without loss of generality, to ease exposition we focus on

pure strategies only.12 The relevant solution concept (henceforth: equilibrium) is weak perfect

Bayesian equilibrium, that is, a triple 〈`,a,µ〉 together with the sets Yc, Ys, Y` such that:

(i) the message of each type of S is optimal given R’s strategy;

(ii) R’s action after each message m and evidence z is optimal given her belief;

(iii) R’s belief system is consistent with (a generalized version of) Bayes’ rule.13

The following proposition describes an equilibrium and some properties of all equilibria (see

proposition B.1 in the appendix for a more formal and complete version of the statement).

Proposition 1 (Equilibrium). There is an equilibrium in which:

(i) low guilty types confess, middle guilty types are silent and high guilty types lie (only the

interval of liars is always non-empty);

(ii) liars lie according to an increasing lying function and pool low innocent types, while suffi-

ciently high innocent types separate;

(iii) upon a pooling message and not catching S in a lie R is indifferent and lets S go if and

only if the evidence is sufficiently weak, where higher messages require weaker evidence;

(iv) all guilty types who do not confess are indifferent with respect to any of their equilibrium

messages.

Moreover, any other equilibrium has the same interval of confessors and lies sent, measure of

liars and silent types, and expected action A(m) of R upon each message.

12All of our results hold after appropriately accommodating for mixed strategies.
13More precisely, we require that beliefs are derived from a regular conditional probability (see appendix A for

details). In addition to consistency with Bayes’ rule, among other things this requirement implies that for zero
probability but on the equilibrium path messages: almost surely µ(m, z) = 1 if m is only sent by an innocent
type; almost surely µ(m, z) does not depend on z. Purely for ease of exposition, we are going to assume that
these two conditions hold exactly for each m.
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Thus, lying is an indissoluble part of the interrogation. Indeed, if sufficiently low denying

claims were only sent by innocent types and hence be fully persuasive of S’s innocence, these

would be too tempting for sufficiently high guilty types. As the distribution of messages of

innocent types is atomless, so must be the one of liars for them to disguise effectively. Over the

lying region L, R’s expected action upon not detecting a lie must increase with m to compensate

liars for the higher risk of detection that higher lies entail. Simultaneously, the strategy of liars

must ensure that R indeed finds it rational to choose her actions accordingly, which can only

be the case if she is indifferent between prosecuting S and letting him go. In particular, her

belief about S’s innocence does not depend on the evidence since knowing that message m must

have been sent either by innocent type m < z or guilty type `−1(m) < z contains infinitely more

information than knowing that y < z. Once S’s incentives to confess or stay silent are also taken

into account, these observations pin down the equilibrium fraction of guilty types who confess,

are silent and lie as well as the lies sent and R’s expected action upon each m. Equilibria may

only differ in the exact identity of silent types and liars, in the exact shape of their lying function

and in the exact action policy of R. In the equilibrium singled out in the proposition the set

of liars is the interval containing the highest guilties, the lying function is increasing, and R’s

action policy takes a natural cutoff form in that she lets S go when the evidence is sufficiently

weak.

The model generates some intuitive comparative statics that are common to all equilibria

and follow from simple inspection of closed-form solutions for the respective objects of interest,

which can all be found in the appendix. Weakly more types confess when the punishment for

reticence b is higher, when R is tougher as measured by a higher weight α she attaches to type

II errors, when the prior likelihood of innocence is lower as measured by a higher t and when

protection of silence is weaker as measured by a less stringent prosecution standard (i.e. a higher

Zs). Likewise, a guilty type may resort to his right to silence only if doing so entails enough

protection. A higher punishment also reduces the lying region, so that a smaller claim suffices

to convince R of S’s innocence. Conversely, the lying region is larger with a tougher R, which

can be intuitively understood as that she requires more convincing to let S go.

Moreover, the model yields unique welfare predictions, in that players’ expected payoffs are
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Figure 2 Equilibrium payoffs

(t = 1/2, b = 1, α = 1/2, Zs ≥ 5/6)

the same in every equilibrium. In particular, R’s ex-ante expected loss is14

(1− α)

∫
L

(1− y) (1− A (y)) dλ︸ ︷︷ ︸
type I errors

+α

∫
Y`

(1− ` (y))A (` (y)) dλ︸ ︷︷ ︸
type II errors on liars

+α (1− Zs)λ(Ys).︸ ︷︷ ︸
type II errors on silents

(4)

It turns out that the expression only depends on the measures of liars and silent types, which

are identical across equilibria. Also, for both S and R, payoff equivalence not only holds from

an ex-ante perspective, i.e. before S has observed y and R has observed z, but also ex-post.

Corollary 1 (Payoff equivalence). Every equilibrium is payoff equivalent for S and R both from

an ex-ante and an ex-post perspective.

Figure 2 displays the equilibrium payoff of S and the associated type I and type II errors

R makes based on the realization of y and z, where no type is silent given the parameter

configuration chosen. Separating guilty types, i.e. types below yc, get a = 0 and separating

innocent types, i.e. types above ȳ, get a = 1, so that R makes no errors. As for pooling types,

R’s action is a = 1 if z ≥ z̄(m) and a = 0 otherwise. A guilty type above yc is caught in a lie

when z ≤ `(y) and in this case he gets −b. Provided he is not caught, he gets a = 1 when z

is above z̄ (`(y)), so that R makes a type II error, and a = 0 otherwise. Likewise, an innocent

type below ȳ gets a = 1 when z ≥ z̄ (y) and a = 0 otherwise, and in the latter case R makes a

type I error.

14For the sake of precision, the expression should be multiplied by two since the joint density of y and z is
f(y, z) = 2. Throughout, we ignore this scaling factor when computing expected payoffs.
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3 Implications

The model directly yields two implications for the purpose of interrogations and, in particular,

the idea that the possibility of eliciting a confession plays a central role.

Remark 1 (Protection of silence as a standard for prosecuting). In the equilibrium at proposition

1, if S does not confess he is always let go whenever the evidence is weaker than the standard Zs

required to prosecute a silent type. Therefore, Zs can be equivalently thought of as the standard

required to prosecute S unless he confesses.

The intuition behind this remark is that R’s action policy upon a denying message not

contradicted by the evidence is always weakly more lenient than upon silence, i.e. z̄(m) ≤ Zs.

Also, no guilty type ever sends a lie that would be caught by evidence which is weaker than

the standard, i.e. it must be that ȳ ≤ Zs. Hence, by interrogating, R has a chance to obtain

a confession and prosecute some guilty types that would otherwise necessarily be let go when

the evidence is too weak (z > Zs). Additionally, when the evidence is sufficiently strong to

prosecute but inconclusive, R may be able to tell a guilty and an innocent apart, e.g. because S

is caught in a lie. However, if prosecution is always possible (Zs = 1), so that no type elects to

stay silent, this informational benefit is still indissolubly related to the possibility of obtaining

a confession.

Remark 2 (Informational benefit of confession). Suppose that prosecution is always possible

(Zs = 1). R’s expected payoff from interrogating is strictly higher than when she relies only on

the evidence to take a decision if and only if some types confess.

Somehow more surprisingly, a more stringent standard for prosecuting, or equivalently a

higher level of protection of silence, sometimes increases the accuracy of prosecution decisions.

Proposition 2 (Optimal standard for prosecuting). Let Z?
s denote R’s optimal standard for

prosecuting (i.e. unless S confesses, R can prosecute if and only if z ≤ Z?
s ).

• If no types confess when prosecution is always possible (Zs = 1), then the optimal standard

for prosecuting is more stringent (Z?
s < 1) and such that some types stay silent.

• If instead some types confess when prosecution is always possible (Zs = 1):

– having no standard for prosecution is optimal (Z?
s=1) if t, α and b are large;15

15That is, there exists a known cutoff t̂ (b, α) > 0 such that under Z?
s we have that λ (Ys) = 0 if t > t̂ (b, α),

where t̂ (b, α) is decreasing in b and α.
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– if the optimal standard for prosecuting is more stringent (Z?
s < 1) and such that some

types stay silent, then it is also such that no types confess.

A binding standard for prosecuting, i.e. a level that induces a positive measure of types to

remain silent, may be optimal for R because, if on the one hand it entails a type II error upon

silence when evidence is weak, on the other hand it reduces the fraction of liars and hence the

pooling of innocents and guilties. When without any standard all guilty types lie, the interroga-

tion is uninformative (see remark 2). A binding standard is then always optimal since the loss

introduced on silent types is initially negligible relative to the benefits of increased separation.

Instead, a more stringent standard has less clear benefits for R when it also discourages some

guilties from confessing. As shown in the proof of the proposition, this negative effect always

dominates at the margin. If the extent of voluntary confession absent any standard is large and

type II errors are rather costly for R, i.e. if t, α and b are large, R’s expected loss is always

increasing as the standard gets more stringent. Otherwise, R’s expected loss is non-monotone

and a binding standard can be optimal if it is stringent enough so that only liars and silent

types, but no confessors, remain. While the proposition is expressed in terms of R’s welfare, it

also implies that imposing a binding standard is sometimes unambiguously Pareto improving

since S always favors a lower Zs.

Finally, we consider the effects of a standard for interrogating, denoted by Zi, i.e. R can

only interrogate if z ≤ Zi. Since Zi is observable by law, when S is interrogated he knows R’s

evidence meets the standard. The equilibrium analysis of our baseline model, which corresponds

to Zi = 1, easily generalizes to describe the outcome of the interrogation under any standard

Zi ∈ (t, 1].16 For the moment, we suppose the standard for prosecuting (Zs) is also fixed at

Zi, so that when z > Zi then R must let S go. A more stringent standard for interrogating

has the effect to incentivize confession and discourage lying due to S’s increased pessimism

about R’s evidence. Thus, the introduction of the standard entails a trade-off for R. On the

negative side, R gives up the chance to interrogate S upon weak evidence, which may entail

a loss of information transmission and introduce a type II error for types that would have

confessed anyway. On the positive side, R can conduct more informative interrogations upon

strong evidence.

Proposition 3 (Optimal standard for interrogating). Let Z?
i denote R’s optimal standard for

interrogating (i.e. she interrogates if and only if z ≤ Z?
i and otherwise she lets S go).

16If Zi ≤ t, when the interrogation occurs R knows S is surely guilty and all types will confess. Our analysis
for Zi > t encompasses Zi = t as limit case and demonstrates that such a stringent standard is naturally always
suboptimal for R.
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• If no types confess when interrogating is always possible (Zi = 1), then the optimal standard

for interrogating is more stringent (Z?
i < 1).

• If instead some types confess when interrogating is always possible (Zi = 1), then:

– the optimal standard for interrogating is more stringent (Z?
i < 1) if and only if t, b

and α are small;17

– in particular, having no standard for interrogating is optimal (Z?
i = 1) if some types

always confess for any b, i.e. if α ≥ 1− t.

The general message of the proposition is that a stringent standard for interrogating is

optimal when the extent of voluntary confession is otherwise low. A rough intuition behind

this result is that confession has a major informational benefit that is always worth reaping.

However, the result is also driven by the importance of the loss from not interrogating that

the standard generates. When the extent of voluntary confession is low this loss is low because

interrogations would be rather uninformative anyway. It is also low because of the conditions

that explain low confession in the first place, namely a low weight α R attaches to type II errors

and a lower prior that S is guilty (a lower t).

While we have assumed that Zs = Zi, i.e. that the standard for prosecuting coincides

with the standard for interrogating, there is no gain for R from setting a weaker standard for

prosecuting than for interrogating, i.e. to sometimes prosecute without interrogation.

Remark 3 (No prosecution without interrogation). It is never optimal for R to set the stan-

dards for prosecuting and interrogating in such a way that she sometimes prosecutes without

interrogating (i.e. such that Zi < Zs). In particular, under the optimal standard for interrogat-

ing, whenever R does not interrogate she indeed finds it sequentially rational not to prosecute S.

The ultimate difference between a standard for prosecuting and a standard for interrogating

is that under the latter S learns that the standard is met. In the next section, we study what

happens when there is no standard in place but R can directly disclose information about the

evidence to S. From now on, unless stated otherwise, we assume that Zs = 1 (and also Zi = 1),

i.e. silence is given no protection, or equivalently prosecution is always possible, so that no type

is silent in equilibrium.

17That is, there exists a known cutoff t̄ (b, α) > 0 such that Z?
i < 1 if and only if t < t̄ (b, α), where t̄ (b, α) is

decreasing in b and α.
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Assumption (NS). Henceforth, silence is given no protection or, equivalently, prosecution is

always possible (Zs = 1), so that without loss of generality we can restrict S’s message space to

M = [0, 1].

4 Confronting the suspect with the evidence

4.1 One-shot revelation

Common intuition suggests that R should not give away to S what she knows, at least not

exactly and not immediately. The next proposition formalizes this argument.

Proposition 4 (Public evidence). Consider the baseline model but suppose R’s evidence z is

observed by S as well. Then, an equilibrium exists and any equilibrium is uninformative, i.e.

the expected payoff of each type z of R is the same as when R makes decisions relying on z only.

Once S knows z, unless R holds conclusive evidence, in which case she always prosecutes

S regardless of the game being played, innocents cannot be set apart from guilties since these

know how to tailor their lies to ensure they are not caught.

We now consider R’s equilibrium incentives to voluntarily reveal her information to S, de-

pending also on her available messages. Throughout, we maintain that R cannot make false

claims, due to the risk of legal action or the inadmissibility of the interrogation in court. Equiv-

alently, S only believes claims backed up by physical proof.

Consider the baseline game and assume that, before S sends his message, R can choose

whether to disclose her exact type z or not to do so.

Corollary 2 (Exact disclosure). When R can disclose z or nothing, there is an equilibrium in

which she never discloses and the continuation is as in the baseline model. There is another

equilibrium in which she always discloses and the continuation is as at proposition 4.

The first part of the corollary is a direct consequence of proposition 4 since, provided S

expects no disclosure, each type ofR holding inconclusive evidence is weakly harmed by deviating

and revealing z. The second part is reminiscent of the familiar unraveling argument in persuasion

games (Milgrom, 1981). R’s skeptical off the equilibrium path belief that undisclosed evidence

is the weakest, i.e. z = 1, makes disclosure weakly optimal for each type.

While these observations may suggest that the possibility to reveal information to S is

unhelpful or detrimental for R, this need not be the case when partial revelation is possible.

Suppose now R can disclose garbled information about her type z in the sense that she can prove
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that her evidence is stronger than ζ for any ζ ≥ z. Alternatively, z can disclose any degraded

evidence ζ ≥ z. Technically, we assume that any type z of R sends a signal ζ ∈ [z, 1] to S,

where signal z = 1 is equivalent to nondisclosure.

Corollary 3 (Partial disclosure). When R can disclose that her evidence is stronger than ζ for

any ζ ≥ z, for any Z > t there is an equilibrium in which types z ≤ Z pool on the signal Z and

each type z > Z separates and discloses her type by sending the signal z.

The pool does not unravel because even a type with inconclusive evidence stronger than Z

has no incentives to reveal herself. Upon a deviation to some ζ < Z, S would again skeptically

think R’s type is the weakest who could have possibly sent ζ, i.e. type ζ. Combining corollary

3 with proposition 3 and remark 3, it follows that R can replicate the effect of a standard for

interrogating and sometimes strictly improve her payoff relative to the baseline model.

4.2 Gradual revelation

The main drawback for R of revealing in one-shot that her evidence is sufficiently strong is

that when her evidence is weak she obtains no information from S. Revealing less, i.e. that

her evidence is stronger than a weaker level, would still suffice to set some types apart. Indeed,

some low guilties may still be willing to confess and some sufficiently high innocents may still

credibly separate by means of strong claims of denial that no guilty is willing to make. We

now describe a dynamic interrogation in which R attenuates this problem thanks to gradual

information revelation and inter-temporal screening. As time passes, R proves that her evidence

is stronger and stronger provided she can, and otherwise she stops the interrogation and makes

a decision. The more information R discloses, the higher the guilty type she can successfully

invite to confess and the lower the innocent type she can invite to credibly deny. Once R has

reached the end of the screening phase and revealed the maximal desired amount of information

but S has not identified himself with any of the invited types, then S must make a final claim

about his type and R makes a decision.

Formally, R commits to an interrogation policy (ζτ , y
g
τ , y

i
τ )0≤τ≤T where, as τ increases from

0 to T , ζτ is a continuously decreasing (hence, stronger) evidence strength level to be proven,

ygτ is a continuously increasing guilty type invited to confess and yiτ is a continuously decreasing

innocent type invited to deny.18 Whenever R takes an action, i.e. a prosecution decision, the

game is over. The timing and the terminal payoffs are as follows. If R cannot prove at time

0 that her evidence is weakly stronger than ζ0, then she must take an action. At time τ , if

18At time 0, R invites all types below yg0 to confess and all types above yi0 to deny.
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reached, R must prove that her evidence is weakly stronger than ζτ and ask the following two

questions:“Are you type ygτ?” and “Are you type yiτ?”. R’s answer to each of the two question

must be “Yes” or “No” but only one can be answered with “Yes”. If one answer is “Yes”, then

R must take an action. When R detects a lie, i.e. z ≤ ygτ in case of confession or z ≤ yiτ in case

of denial, then she prosecutes S who gets a payoff of −b. When she does not detect a lie, she

prosecutes a type who confesses and she lets go a type who denies. If both answers are “No”

and z = ζτ , then R must take an action. If time T has passed without R taking any action, i.e.

the screening phase is over, then in the last phase of the interrogation S must send a message

m ∈ [ygT , y
i
T ], after which R must take an action and payoffs realize as in the baseline model.

S’s incentives are best summarized by the fictitious speech R could give at time τ > 0 after

she has proven that her evidence is stronger than ζτ :

“You see, my evidence is stronger than ζτ so if you are guilty type ygτ you should tell me

now and get a payoff of 0. You can wait and try to confess later at some time τ ′ > τ

but then I will accept only the confession of some specific type ygτ ′ > ygτ and you will get

punished at −b if I catch you in a lie. Of course, you are trading this risk off with the

chance that I decide to let you go because my evidence is not stronger than ζτ ′ . You

can also decide not to confess at all and wait until time T to see whether my evidence is

stronger than ζT . However, by then I will only accept confessions larger than ygT because

you have answered with ‘No’ to all of my question and you will again get punished at −b

if caught in a lie. Of course, you can also try and claim any time τ ′ that you are yiτ ′ but

there is a chance that I catch you.

If you are innocent type yiτ then please tell me and I let you go. If you are a lower innocent

type you can try to convince me, but I might catch you in a lie.

If we reach time T and you have not yet confessed or convinced me about your innocence,

you will have to make a claim about your type and then I will not be able to tell the

different types apart.”

We concentrate on interrogation policies of R that induce no lying until T in equilibrium

and upon which R cannot improve given ζT .19 It follows that, for any given ζT , after time T the

continuation is as in the equilibrium of the game with one-shot revelation described in corollary

3 after the pooling signal ζT , with the difference that guilties who confess and innocents who

separate in the one-shot game have already done so at some time τ ≤ T . This equilibrium

condition and no lying pin down S’s behavior all along the game and R’s behavior in the last

19Lying necessarily happens in the last phase. This last phase must be part of the interrogation to maintain
the equilibrium because since ζT > t there is an interval of types left, including t, after the screening phase.

17



stage. Solving backward, the equilibrium conditions for S and R, whose prosecution decisions

must always be sequentially rational, and the optimality of the interrogation policy given ζT pin

down the whole interrogation.

Proposition 5 (Dynamic policy). For any given ζT > t there exists a unique interrogation policy

(ζτ , y
g
τ , y

i
τ )0≤τ≤T , and a corresponding equilibrium with no lying before time T , that maximizes

R’s payoff among these policies. Furthermore, all types of R prefer a lower ζT .

In this equilibrium, each type z ≥ ζT of R is satisfied in the sense that she identifies exactly

the same confessors and credible deniers as in the one-shot revelation equilibrium with pooling

signal Z = z (hence, she obtains the same payoff), while when she has to make a decision only

knowing that S’s type does not belong to either of these sets she is again indifferent between

prosecuting and letting S go. R’s indifference is crucial for her to be able to give S the right

incentives during the entire screening phase so as to receive from him the right, optimal amount

of information, which in turn makes her indifferent. Each type of R higher than t can be satisfied

in this sense by choosing ζT above but arbitrarily close to t. And in fact, as ζT approaches t,

payoffs get arbitrarily close to those under the optimal mechanism described at the next section

(see the proof of proposition 5 and 6). However, the equilibrium ceases to exist when ζT = t

because type t cannot reveal himself, so that R’s optimum could only be attained by means of

an endless interrogation policy.20

5 The optimal interrogation

5.1 Optimal mechanism under full commitment

In this section we suppose R can commit to her action a(m, z) based on the message m

received from S and her evidence z. We are interested in R’s lowest attainable ex ante expected

loss in a deterministic direct mechanism21 in which S only receives payoffs a(m, z) ∈ {0, 1} but,

as before, detected lies are punished at a level of −b. We can further restrict our attention to

cutoff mechanisms ẑ : [0, 1]→ [0, 1] which specify for each message y a cutoff level ẑ(y) ∈ [y, 1]

such that a(y, z) = 1 if and only if z ≥ ẑ(y).

20Type t would never have an opportunity to reveal himself since if z = t, then y < t. Still, the nonexistence
problem of the equilibrium for ζT = t is deeper. For instance, even if type t of S could reveal himself, say because
R’s evidence z proved that y ≤ z, R would then necessarily let him go with probability one, and some other
types would find it profitable to wait until t. R’s best interrogation policy is endless in that R must ask questions
for each y ∈ (t, 1], which is left-open, even though the probability that the interrogation actually never stops is
zero since so is the probability that S’s type is exactly t.

21As shown in section B.6.3 in the appendix, when looking for the optimal mechanism all the imposed
restrictions on the class of mechanisms are without loss of generality.
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Figure 3 Determination of the optimal mechanism

Accordingly, the optimal direct mechanism minimizes

α

∫ t

0

(1− ẑ(y))dy + (1− α)

∫ 1

t

(ẑ(y)− y) dy. (5)

subject to the constraint that each type finds it weakly optimal to be honest and not lie upward,

i.e. for every y, y′ ∈ [0, 1] such that y < y′

1− ẑ(y) ≥ 1− ẑ(y′)− b (y′ − y) .22 (6)

This constraint can be rewritten as ẑ(y) − ẑ(y′) ≤ b (y′ − y), which clarifies that if y pretends

to be y′ > y then he can get an additional measure ẑ(y)− ẑ(y′) of a = 1 if z > y′ but he will be

caught in a lie when z ∈ (y, y′] and receive punishment −b.

Technically, this is an optimal control problem with a jump in the state variable at t. How-

ever, its solution is extremely simple. Candidate solutions can be indexed by ẑ(t) ∈ [t, 1] and

the constraint must bind for types sufficiently close to t. Thus, in that region ẑ(y) is linear

with slope −b, as figure 3 demonstrates. We distinguished two cases depending on whether only

sufficiently high types obtain a positive expected payoff (figure 3a) or all types do so (figure 3b).

The optimal mechanism, denoted by ẑ?, has a close relation with the equilibrium of the

baseline model (section B.6.1 in the appendix provides detailed intuitions). Let us use the nota-

22We could introduce further constraints. First, we could require that the mechanism is immune to downward
lies. Second, we could require that a participation constraint also holds assuming the possibility of silence. As
we will see, however, downward lies will be clearly suboptimal in our mechanism. Also, provided that the level
of protection of silence is sufficiently low, the participation constraint will also be satisfied.
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tion introduced at section 2.2 and take the highest confessor yc, the lowest separating innocent

ȳ, and R’s cutoff action policy z̄(m) at their equilibrium levels (with yc = 0 by convention if

λ (Yc) = 0). For types who pool in the equilibrium of the baseline model, i.e. for y ∈ [yc, ȳ), R

still uses the same cutoff strategy as in equilibrium and extends it to honest confessions of types

who lied. That is, defining m(y) = `(y) for a guilty type and m(y) = y for an innocent type,

let ẑ?(y) be such that 1− ẑ?(y) = 1− z̄(m(y))− (m (y)− y) b = 1− z̄(y). Besides, guilty types

and innocent types who separate in the equilibrium of the baseline model still get always 0 and

1, respectively, i.e. ẑ?(y) = 1 for y < yc and ẑ?(y) = y for y ≥ ȳ.

Proposition 6 (Optimal mechanism). Mechanism ẑ?, described above, is optimal. Accordingly:

• the expected payoff of each type of S is the same as in equilibrium;

• R’s expected loss is strictly lower than in equilibrium due to the decreased amount of type

II errors, while type I errors are the same.

A comparison of R’s decision rule in the optimal mechanism (figure 3a) and in equilibrium

(figure 2) clarifies the effects of R’s lack of commitment. R would benefit from committing

to sometimes prosecute some innocents who deny and to sometimes let go some guilties who

confess. However, anticipating they will be prosecuted, in equilibrium those guilty types elect

to lie instead. As a result, R’s optimal decision rule for innocent types becomes sequentially

rational, which explains why type I errors are the same. Instead, since liars are punished when

caught, in order to preserve S’s sequential rationality, R’s decision rule when they are not caught

must be more lenient than the optimal one, which explains why type II errors are higher.

5.2 Implementation without commitment

R’s expected loss under the optimal mechanism can be replicated in equilibrium of a sim-

ple two-stage game built on the baseline model that combines “back and forth” information

revelation and discretion for R on whether to punish detected lies. Consider the following game:

• Stage 0 S and R observe their private information as in the baseline model;

• Stage 1 S sends a message m ∈ [0, 1]. R can either immediately choose an action a(m, z),

so that the game is over and payoffs realize as in the baseline model, or disclose that her

evidence is such that z ≤ ζm (i.e. as in section 4.1, type z of R sends a signal ζ ∈ [z, 1])

and continue to stage 2;
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• Stage 2 S sends a new message m′ ∈ {0,m}. R chooses a new action a′(m,m′, z) and

payoffs realize as in the baseline model with a′ replacing a.

S’s message in stage two should be interpreted as an answer to R’s question “Are you guilty?”

and message 0 as a confession. Besides, when in the first stage S denies and is caught in lie it is

now R’s discretion to decide whether she stops the interrogation, in which case S immediately

gets −b, or continue to the second stage. In the latter case, if S’s new message is m, i.e. he

insists that he is innocent, then he gets −b.

Proposition 7 (Implementation without commitment). There is an equilibrium of this two-

stage game with discretionary punishment of lies in which expected payoffs are as in the optimal

mechanism and S’s behavioral strategy in stage 1 is as in the equilibrium at proposition 1.

The structure of the equilibrium is intuitive. R immediately takes the correct action for

separating types. Instead, for pooling types, R’s continues the interrogation provided the evi-

dence is sufficiently strong relative to S’s claim so that by confronting him with the evidence

she will be able to set a guilty and an innocent apart. More in detail, when z > ζm, where ζm

is an evidence strength level contingent on m, she immediately makes a decision. As usual, she

lets S go if the evidence is sufficiently weak and prosecutes S if the evidence is strong (but still

above ζm). Instead, when z ≤ ζm, she discloses this information to S and offers him a second

opportunity to confess. The appropriate choice of ζm now makes type `−1(m) barely willing

to do so. Instead, innocent type m sticks to his stage one story anticipating he will be let go.

This game entails a combination of “carrot and stick” in the treatment of lies. Small lies, i.e.

equilibrium lies in stage one are forgiven. Conversely, big lies, i.e. off the equilibrium path

lies of a guilty type who mimics an innocent type higher than he is supposed to, would still be

punished immediately in stage one if caught (z ≤ `−1(m)).

6 Discussion

We provided a tractable framework to analyze interrogations and derived several implications

for their design. This section covers some extensions and additional questions.

6.1 Properties and interpretations of the information structure

Consider first the joint distribution of S’s status as guilty or innocent and the evidence.

Seeing z as a signal about S’s status, the monotone likelihood ratio property holds since the

probability that S is guilty P(y < t|z) = min {t/z, 1} is decreasing, which clarifies in which
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sense a lower z represents stronger evidence. Likewise, the distribution of z conditional on S’s

guilt is dominated in the sense of first order stochastic dominance by the corresponding one

conditional on S’s innocence. Our information structure allows for heterogeneity within guilty

and innocent suspects and ensures these natural properties extend to the joint distribution of S’s

type and the evidence.23 The fact that the evidence excludes some of S’s types - technically the

conditional distribution of y given z does not have full support - allows for a natural definition of

lie catching. The fact that excluded types are the high ones, e.g. R’s evidence can never prove

S’s innocence, captures the idea that whistleblowing, anonymous tips and voluntary reports to

law enforcement authorities are inherently incriminating. The specific joint distribution of y

and z we consider has the convenient property that conditional distributions are uniform.

The information structure can be equivalently thought of as arising within an isomorphic

model in which y and z are drawn independently and uniformly from [0, 1] but S is only inter-

rogated when z > y.24 A first interpretation for this simplifying assumption is then that in the

case z ≤ y R does not observe any evidence and is not even aware of S. Alternatively, as S’s

guilt becomes less likely than under the prior, R does not find it worth it or has no legal ground

to go after S. Ultimately, in this isomorphic model the interrogation process is not random.

The prior probability that S is guilty is t but becomes (2− t)t when S is interrogated, which is

higher (and increasing in t).

6.2 Alternative moves and payoffs

In this section, we discuss how the equilibrium of the baseline model modifies under some

natural variations.

Lower punishment for silence. Suppose S’s punishment for staying silent when evidence

is conclusive is lower than when he is caught in a lie, i.e. equation (2) becomes a − b`1m≥z −

bs1m=s and z≤t with b` > bs ≥ 0. Then, in any equilibrium the set of silent types and liars neces-

sarily have the same interval form and order as in the equilibrium singled out in proposition 1.

All points of the proposition still hold with b` replacing b and the difference that, provided some

types indeed stay silent, the highest confessor, the lowest liar, the lowest separating innocent type

and R’s action policy will adjust based on bs. In particular, the lowest liar y` will be indifferent

23Related to assumption 2 in Reinganum (1988), for any interval δ ⊆ [0, 1], E [z|z ∈ δ, y < t] ≤ E [z|z ∈ δ, y ≥ t]
(provided that the evidence is not conclusive, so that these expectations are well defined). Additionally, in our
setting, for any type y and y′ such that y < y′ (which are not excluded by δ, so that again expectations are well
defined), Ey [z|z ∈ δ] ≤ Ey′ [z|z ∈ δ], where Ey and Ey′ denote the expectations respectively of type y and y′.

24This model can also accommodate the alternative assumption that, when z ≤ y, R can still interrogate S.
In this case, R’s private information is z and whether z > y or z ≤ y, while S’s private information is y.
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between lying, say at m = t, and staying silent, i.e. (1−t)A(t)−b`(t−y`) = (1−t)A(s)−bs(t−y`),

where A(s) =
∫

[t,1]
a(s, z)/(1− t)dλ.

No punishment. If S incurs no costs, i.e. b = 0, then proposition 0 still holds, i.e. innocents

and confessors are honest in any truth-leaning equilibrium, and proposition 1 also holds whenever

t/(1−α) < 1.25 In particular, ȳ = t/(1−α) = z̄(m) for all m ∈ L as long as Zs ≥ t/(1−α), all

guilty types lie and the equilibrium is uninformative. When Zs < t/(1−α) then ȳ = Zs = z̄(m)

for all m ∈ L and there are also some silent types but obviously no confessors. In this case,

since some guilties remain silent, the equilibrium is informative but R’s payoff is even worse

than when she relies only on the evidence z to make a decision because protection of silence is

too strong, i.e. Zs is too low.

No punishment and leniency for confession. Suppose again that S incurs no costs, i.e.

b = 0 as above, but that by confessing he obtains a premium U ∈ (0, 1) in addition to R’s action.

The incentive structure is then as in Seidmann (2005), who considers the two levels of protection

of silence Zs = 1 (the “English game”) and Zs = min {1, t/(1− α)} (the “American game”).

We highlight four main points from a comparison of this leniency setup with the baseline model:

(i) in the leniency setup in both the American and the English games no (positive measure

of) types are silent, hence the American level of protection of silence can never hurt R, as

opposed to Seidmann (2005);

(ii) after an appropriate rescaling, equilibrium payoffs in these games are the same as in our

baseline model (as long as no types are silent also in the baseline model);

(iii) in the leniency setup, R cannot benefit from protection of silence no matter its level, as

in Seidmann (2005) for the American level, and she is hurt when protection of silence is

stronger than the American level;

(iv) instead, in the baseline model, R sometimes benefits and sometimes she is hurt from the

American level of protection of silence.

For points (i) and (ii), given that innocents and confessors are honest, the equilibria in both

games are described in the previous paragraph, with the difference that now there might be

some types who confess and there are no silent types. Since there are no silent types, the

informativeness of the equilibria is as described by remark 2 and payoffs are exactly as in our

25When t/(1− α) ≥ 1 then all innocents pool, i.e. ȳ = 1 as opposed to ȳ < 1 as described in the proposition.
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baseline model with b = U/(1 − U) and, say, Zs = 1.26 Point (iii) holds as in the leniency

setup it turns out that R is harmed from choosing any Zs < t/(1− α) which induces a positive

measure of silent types. It demonstrates that the finding of Seidmann (2005) is robust to our

information structure, which is remarkable given that there are important differences, such as

the fact that R’s evidence cannot prove S’s innocence and can prove his guilt and guilty types

are heterogeneous in the strength of the evidence they expect. Point (iv), which simply follows

from proposition 2, stands instead in stark contrast with Seidmann (2005) as it implies that

protection of silence can even result in a Pareto improvement. This difference holds because

in our baseline model there are levels of protection of silence which can induce some types to

stay silent while under the same levels there is no silent type in the leniency setup. Beyond

equilibrium forces, the reason is that, differently from the leniency setup, in our baseline model

silent types never get punished when the evidence is inconclusive, i.e. R is sometimes lenient

even with silent types (see footnote 26).

Continuous actions. The equilibrium of the baseline model remains unaffected if R chooses

her action continuously from [0, 1], e.g. if she must decide at which intensity to prosecute S.

Indeed, for any pooling message, upon not catching S in a lie R would again be indifferent among

actions. If simultaneously R’s loss becomes quadratic, e.g. a2
1y<t + (1− a)2

1y≥t when α = 1/2

(the argument easily adapts to any α ∈ (0, 1)), then the equilibrium construction changes only

in that when R receives the message m she should believe that S is innocent with probability

A(m) and take action a = A(m). R’s incentives to do so can be achieved by choosing a lying

function for which µ(m, z) = 1
1+`−1′(m)

= A(m). Of course, the value of A(m) might change as

well as the measure of liars and the measure of the lying region accordingly. In both models

higher undetected lies are more rewarding in that they induce a higher expected action. In this

alternative specification they are also more credible in that R becomes more convinced of S’s

innocence.

26Indeed, after appropriately rescaling S’s payoff (i.e. −b to 0, 0 to U and 1 to 1 or the other way around)
the equilibrium measure of confessors and the lying region L are determined exactly by the same conditions
in both models, the only difference being that in the leniency setup z̄(m) = ȳ while in the baseline model
z̄(m) = ȳ + b(ȳ −m) for all m ∈ L. Yet, given that in the baseline model when z > ȳ lies are never detected
and R is indifferent when m ∈ L, R could just as well let everyone go whenever z > ȳ, which is exactly what
happens in the equilibrium of the leniency setup. Finally, note that even after rescaling payoffs, the two setups
are different because while in our setup liars may get −b, 0 or 1 (or 0, U or 1) in the leniency setup liars always
get −b or 1 but never 0 (or equivalently, 0 or 1 but never U). The same difference holds for silent types.
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6.3 Asymmetric information about the law and deceptive tactics

Throughout we maintained that all aspects of the strategic environment, other than the

players’ private information, are common knowledge and outside the law enforcer’s control.

However, law enforcers’ arbitrariness is a major cause of criticism and an important reason

behind the general movement towards the mandatory recording of interrogations.27 Our model

directly allows to identify the direction of the misleading efforts R would want to engage in if

these are tolerated by law or go undetected and S is prone to deception. Indeed, supposing S

plays according to what he perceives as equilibrium behavior while R best responds given the

true environment, we can easily calculate how R would want to mislead the suspect about several

parameters of interest. In accordance with the logic behind common interrogations tactics,28

R would always want to overstate the punishment for reticence (increase S’s perception of b),

exaggerate the strength of the incriminating evidence (decrease S’s perception of Zi and Z as

defined in section 3 and 4) and misrepresent her true preferences over type I and type II errors

(increase or decrease S’s perception of α). Besides, R would sometimes benefit from concealing

the right to silence to an otherwise unaware S. While surely objectionable on other grounds, if

successful these deceptive tactics improve information elicitation. Also, this improvement does

not come at the cost of extorting false confessions since the only possibility for these tactics to

induce innocent types to depart from honesty is if they generate a shift away from truth-leaning

(see section C in the appendix). As a next step, one could investigate if these deceptive tactics

would remain effective in a persuasion framework where S is rational but uninformed.

Parameters b and Zs can be directly thought of as expectations of S about random variables

whose realizations are private information of R. We now explain how also the parameter α can be

made R’s private information. In the equilibrium of the baseline model, R has to be indifferent

between actions upon each pooling message and there is a cutoff z̄(m) for each message m above

which R chooses a = 1 and below which R chooses a = 0, resulting in the appropriate A(m).

Now the role of these cutoffs is played by cutoffs ᾱ(m) such that nicer types of R choose a = 1

and tougher types of R choose a = 0 and the measures of nicer and tougher types induce the

appropriate A(m). The indifference between actions for type ᾱ(m) can be ensured by choosing a

lying function for which 1
1+`−1′ (m)

= ᾱ(m). This differential equation pins down the lying region

and the set of liars.

27See for instance Sullivan (2005).
28See for instance Kassin and McNall (1991).
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6.4 Regulating evidence revelation

We did not consider comprehensively laws that govern communication about the evidence to

the suspect. In particular, we maintained that the law enforcer’s statements must be truthful.

If the law enforcer can make false claims, instead, new interesting strategic considerations arise

due to the possibility that the suspect may in turn catch the law enforcer in a lie, e.g. know

that she is exaggerating the strength of the evidence. Importantly, regulation might also affect

the law enforcer’s choice to interrogate the suspect in the first place, and whether by means of

a casual conversation or a formal interrogation. For example, by officially marking the start of

a formal interrogation, the legal requirement that the suspect is explicitly notified of his right

to silence may implicitly convey additional information.29
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Appendix

A Lying and equilibrium updating

Given the lying function ` of guilty types with range L, let the inverse lying correspondence

g = `−1 : L → Y` associate to each lie m the set of guilty types in Y` for which `(y) = m. We

allow g to also take sets as arguments, i.e. g(A) = {y ∈ Y` : `(y) ∈ A} for any set A ⊆ L. We

impose the following restriction on equilibrium beliefs.

(RCP) R’s equilibrium beliefs must be derived form a regular conditional probability.

Lemma A.1. Under restriction RCP, R’s equilibrium belief µ(m, z) is such that

(µ.i) µ(m, z) obtains from Bayes’ rule whenever λ(g(m)) > 0, so that then µ(m, z) = 0;

(µ.ii) λ ◦ g-almost surely µ(m, z) = 1 if m /∈ L;

(µ.iii) λ ◦ g-almost surely µ(m, z) = µ(m, z′) for all z, z′ ≥ m.

Proof. Point (µ.i) and (µ.ii) are trivial. For point (µ.iii), given the strategy of liars ` and

evidence z, the total pushforward measure of the Lebesgue measure λ (i.e. both by the liars and

the innocents) on the messages [t, z) is λ ◦ g + λ, since innocent types are honest and no liar

is excluded by z from g ([t, z)) . If µ(., z, .) is a regular conditional probability then, for every

m ∈ [t, z), for every measurable A ⊆ [t, z) and B ∈ [0, 1] we have that:

λ(B ∩ (g(A) ∪ A)) =

∫
A

µ(m, z,B)d(λ ◦ g + λ). (7)

Choosing B = [t, z) we have that µ(m, z,B) = µ(m, z) and for any A ⊆ B we have that

λ(A) =
∫
A
µ(m, z)d(λ ◦ g + λ). For any other z′ > z we have that for all measurable A ⊆ B

∫
A

µ(m, z,B)d(λ ◦ g + λ) =

∫
A

µ(m, z′, B′)d(λ ◦ g + λ),

where B′ = [t, z′) and µ(m, z′) = µ(m, z′, B′) hence λ ◦ g-almost surely µ(m, z) = µ(m, z′) for

m ∈ [t, z).
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Throughout, for ease of exposition we assume that restriction µ.ii and µ.iii hold for each m

rather than only λ ◦ g-almost surely, that is,

(µ.ii∗) µ(m, z) = 1 if m /∈ L;

(µ.iii∗) µ(m, z) = µ(m, z′) for all z, z′ ≥ m.

B Proofs

B.1 Proof of proposition 1

We will prove this formal version of proposition 1.

Proposition B.1 (Equilibrium). There is an equilibrium in which:

(i) Yc = [0, yc), Ys = [yc, y`) and Y` = [y`, t) or Yc and/or Ys are empty;

(ii) ` : Y` → L with L = [t, ȳ), ȳ ∈ (t, 1) and `(y) = t+ α
1−α(y − y`);

(iii) µ(m, z) = 1
1+`−1′ (m)

= α for all (m, z) if m ∈ L, so that R is indifferent between actions;

(iv) A(m) = 1−ȳ−b(ȳ−m)
1−m for m ∈ L and A(m) = 1 for m ≥ ȳ, so A(m) is continuous, increasing

and such that all types in Ys ∪ Y` are indifferent to any message m ∈ L and, provided Ys

is non-empty, staying silent;

(v) for all (m, z):

a(m, z) =

0 if z ≤ z̄(m)

1 if z > z̄(m)

, (8)

where z̄(m) = 1− A(m)(1−m).

Moreover, in any other equilibrium point (iii) and (iv) hold, Yc and L are the same (except these

intervals can be right closed), λ (Y`) and λ (Ys) are the same and A(m) is the same.

First, we identify some properties that must hold in any equilibrium (section B.1.1). Then,

we distinguish three possible cases (all guilty types lie, some guilty types lie and the rest confess,

some guilty types are silent) and show that in each case the set of confessors, the lying region

and the measure of liars and silent types are uniquely pinned down (section B.1.2). Next, we

show that the three cases do not overlap and span the whole parameter space (section B.1.3).

Finally, we show that in each case the equilibrium singled out in proposition B.1 indeed exists

(section B.1.4).
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B.1.1 Preliminary observations

In any equilibrium, the expected payoff of any type30 from confessing with a message m ≤ y

is πc = 0, while confessing with a message m > y yields 0− b(m− y) < πc. The expected payoff

of type y from denying by lying upward, i.e. from sending a message such that m > y and m ≥ t

is

π`(m; y) = (1−m)A(m)︸ ︷︷ ︸
lie not detected

− (m− y)b︸ ︷︷ ︸
lie detected

. (9)

The expected payoff of type y from remaining silent when he is guilty is

πs,g(y) = 1− Zs︸ ︷︷ ︸
inconclusive evidence

− (t− y)b︸ ︷︷ ︸
conclusive evidence

(10)

and when he is innocent is

πs,i(y) = 1− Zs1y≤Zs . (11)

The expected payoff of innocent type y from denying by lying downward, i.e. form sending a

message m ∈ [t, y) is

πd`,i(m; y) =

∫ 1

y

a(m, z)dz. (12)

Finally, the expected payoff of innocent type y from being honest is simply equation (9), or

equivalently equation (12), evaluated in m = y

πh,i(y) = (1− y)A(y). (13)

Let us say that type y separates if no other type sends m = y.

Lemma B.1. In any equilibrium:

(i) there exists a ȳ ∈ (t, 1) such that innocent types y > ȳ separate and innocent types y < ȳ

do not, i.e. L = [t, ȳ) or L = [t, ȳ];

(ii) each m ∈ L is sent by a set of guilty types of measure zero;

(iii) each m ∈ L gives a liar the same payoff;

30Formally, the expected payoff of each type y is defined conditional on z > y. From the perspective of type y,
this conditioning amount to a payoff normalization (a division by 1−y), which we can hence ignore. Throughout,

with a slight abuse of terminology, we simply refer to
∫ 1

y
π
(
y,m, z, a (m, z)

)
dz as to the expected payoff of type

y.
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(iv) A(m) is continuous and increasing and converges to 1 in ȳ. In particular, for m ∈ L

A(m) =
1− ȳ − b (ȳ −m)

1−m
. (14)

Proof. Point (i):

• A sufficiently high innocent type separates. Consider message mε = 1−ε > t, where

ε > 0 is arbitrarily small. This message is sent by innocent type y = mε. Suppose there is

a guilty type yε who also sends this message. Using equation (9), yε earns εA(mε)− (1−

ε − yε)b, which letting ε go to 0 converges to −(1 − yε)b. There is therefore an arbitrary

small ε such that type yε could profitably deviate to confessing honestly.

• If an innocent type separates, so do higher types. Suppose by contradiction that

innocent type y separates but innocent type y′ > y does not. As A(y) = 1 by restriction

µ.ii∗, from equation (9) it is apparent that guilty types strictly prefer m = y to m = y′

and hence also type y′ must separate.

• A sufficiently low innocent type does not separate. Suppose innocent type t sep-

arates so that, by restriction µ.ii∗, A(t) = 1 and consider type t−ε = t − ε, where ε > 0

is arbitrarily small. From equation (9) it is apparent that the expected payoff of type t−ε

from lying to m ≥ t is decreasing in m. As he is not sending t, he must then earn the

maximum between the expected payoff from confessing honestly, i.e. 0, and staying silent,

i.e. πs,g(t
−
ε ) = 1−Zs− bε by equation (10). The expected payoff of type t−ε from deviating

to m = t is 1− t− bε, which for ε arbitrarily small is arbitrarily close to 1− t so that the

deviation is profitable.

Point (ii): Each message m ∈ L is sent by innocent type y = m, a set that has zero measure.

By point (i), it is also sent by at least a guilty type. If the set of guilty types who send m has

positive measure, by restriction µ.i, i.e. Bayes’ rule, A(m) = 0. Then, comparing equation (9)

and (10) clarifies that each guilty type sending m could profitably deviate to staying silent or

confessing honestly.

Point (iii): From equation (9) it is apparent that the expected payoff difference π`(m; y) −

π`(m
′; y) from any two messages m and m′ such that m > m′ ≥ y is independent from y.

Therefore, if in equilibrium m and m′ are sent by two distinct types y ≤ m′ and y′ ≤ m′, any

type y′′ ≤ m′ is indifferent between the two messages.

Point (iv): By point (i) and (iii), π`(m; y), which is defined in equation (9) and represents the

expected payoff of guilty type y who lies and denies, must be must constant in m over L. Solving
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π`(m; y) = k with respect to A(m), where k is a constant, yields A(m) = (k+b(m−y))/(1−m),

from which it is apparent that A(m) is continuous and strictly increasing in m over L. Also,

A(m) must converge to 1 at m = ȳ since, by point (i) and restriction µ.ii∗, A(m) = 1 for each

m > ȳ, so that if A(ȳ) < 1 type y could profitably deviate to m = ȳ + ε for ε > 0 arbitrarily

small. As A(m) is also differentiable, so is π`(m; y). Thus, differentiating equation (9) with

respect to m and setting the expression equals to zero, as required by the indifference of type y

to any m ∈ L, yields

(1−m)A′(m)︸ ︷︷ ︸
benefit of increase in action if lie undetected

= b+ A(m)︸ ︷︷ ︸
cost of higher chance of lie being detected

.

Solving this differential equation with terminal condition A(ȳ) = 1 yields equation (14).

Lemma B.2. In any equilibrium:

(i) whenever A(m) ∈ (0, 1) R is indifferent between actions, i.e.

µ(m, z) = α; (15)

(ii) it must be that (1−α)λ = α(λ ◦g) over measurable subsets of L and hence, in particular,

λ (Y`)

λ (L)
=

1− α
α

. (16)

Proof. Point (i) follows directly from equation (1) and restriction µ.iii∗. For point (ii), by the

previous point and point (iv) of lemma B.1, µ(m, z, L) = µ(m, z) = α for all m ∈ L except

possibly m = t (if A(t) = 0) and m = ȳ (if L = [t, ȳ]). Choosing z = 1 and B = L in equation

(7) yields λ(A) = αλ(g(A)) + αλ(A) and hence the result. Equation (16) follows from choosing

A = L.

Evaluating equation (14) in t shows that there must be a one to one relationship between

A(t) and ȳ, i.e.

A(t) =
1− ȳ − b (ȳ − t)

1− t
or, equivalently, (17)

ȳ =
1− (1− t)A(t) + bt

1 + b
. (18)

Also, as by lemma B.1 at least some guilty type y must send t and y must be indifferent to any
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pooling lie, evaluating equation (9) in t yields the expected payoff from lying for type y

π`(y) = (1− t)A(t)− (t− y)b. (19)

Let us denote by v the expected payoff for a guilty type from remaining silent conditional on

evidence being inconclusive, i.e., from equation (3),

v ≡ P (z > Zs | inconclusive evidence, y < t) =
1− Zs
1− t

. (20)

Lemma B.3. In any equilibrium, lying yields a guilty type at least the same expected payoff as

staying silent, i.e.

A(t) ≥ v, (21)

with equality if the set of silent types Ys is non-empty.

Proof. Replacing equation (20) in (10) and subtracting from equation (19) yields π`(y)−πs,g(y) =

A(t)− v. If inequality (21) was violated, no type would lie as required by lemma B.1. Likewise,

a guilty type can find it optimal to stay silent only if the inequality is not strict.

Lemma B.4. In any equilibrium, if non-empty the set of confessors Yc is [0, yc) or [0, yc], where

yc ≡
bt− (1− t)A(t)

b
, (22)

and Yc has positive measure if and only if

b >
1− t
t

A(t). (23)

Proof. By lemma B.4, π`(y), which is defined in equation (19), represents the equilibrium ex-

pected payoff for a guilty type who does not confess. As the expression is strictly increasing in

y and positive for y = t, while confessing (honestly) yields 0, yc as defined in equation (22) is

the unique solution to π`(t; y) = 0. Also, yc > 0 if and only if equation (23) holds.

B.1.2 Possible cases

Throughout superscripts index the respective cases. Also, we innocuously ignore sub-cases

in which the set of confessors Yc and/or of silent types Ys are non-empty but have zero measure.

Case I: some guilty types lie and the rest confess. Suppose λ
(
Y I
s

)
= 0 but λ

(
Y I
c

)
> 0.

It must then be that yIc is as in equation (22) and λ
(
Y I
`

)
= t − yc so that, by equation (16),
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(17) and (18), ȳI = α+bt
α+b

, AI(t) = (1−α)b
b+α

and yIc = (1+b)t−(1−α)
b+α

. By equation (23), this case can

only occur if b > 1−t−α
t

.

Case II: all guilty types lie. Suppose λ
(
Y I
s

)
= 0 and λ

(
Y I
c

)
= 0, so that λ

(
Y II
`

)
= t. By

equation (16), (17) and (18) it then follows that ȳII = t
1−α and that AII(t) = 1−t−(1+bt)α

(1−t)(1−α)
. This

case can only occur if b ≤ 1−t−α
t

, so that equation (23) is violated (then, indeed ȳII < 1 and

AII(t) > 0).

Case III: some guilty types are silent. Suppose λ
(
Y I
s

)
> 0. It must then be that AIII(t) =

v by equation (21), so that, by equation (18), ȳIII = 1−(1−t)v+bt
1+b

(where, using equation (20),

indeed ȳIII < Zs). By equation (16), λ
(
Y III
`

)
= (1−α)(1−t)(1−v)

α(b+1)
. To determine λ

(
Y III
s

)
, we must

then distinguish two subcases depending on whether λ (Yc) > 0. From equation (23), λ (Yc) > 0

if and only if

v < vIIIa ≡
tb

(1− t)
. (24)

• Case IIIa: some types confess. When v < vIIIa, from equation (22), λ
(
Y III
c

)
= yIIIc =

bt−(1−t)v
b

> 0, so that λ
(
Y III
s

)
= t− λ

(
Y III
`

)
− λ

(
Y III
c

)
= (1−t)(vα−b(1−v−α))

b(1+b)α
.

• Case IIIb: no types confess. When v ≥ vIIIa, λ
(
Y III
s

)
= t − λ

(
Y III
`

)
= t −

(1−α)(1−t)(1−v)
α(b+1)

.

B.1.3 Equilibrium regions

Lemma B.5. Every equilibrium has the same λ (Yc), λ (Ys) and λ (Y`). In particular,

• λ (Ys) > 0 iff
1− Zs
1− t

> max

{
(1− α)b

b+ α
,
1− t− (1 + bt)α

(1− t)(1− α)

}
; (25)

• λ (Yc) > 0 iff

b >
1− t
t

max

{
1− Zs
1− t

,
(1− α)b

b+ α

}
, (26)

which if λ (Ys) = 0 simplifies to

b >
1− t− α

t
. (27)

Proof. In each of the three cases described at section B.1.2, λ (Yc), λ (Ys) and λ (Y`) are uniquely

pinned down. To prove the statement, hence it suffices to show the three cases do not overlap

and span the whole parameter space. Case I and case II do not overlap since case I requires

b > 1−t−α
t

and case II the reverse inequality. However, case III cannot overlap with case I and
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II either. Consider for instance case I (the argument for case II is analogous). If AIII(t) =

v > AI(t), the candidate equilibrium at case I cannot exist by lemma B.3. Suppose instead

AIII(t) = v ≤ AI(t) and both equilibria exist. From equation (22), it must be that yIc ≤ yIIIc , so

that λ
(
Y I
c

)
≥ λ

(
Y III
c

)
. Moreover, λ

(
Y I
`

)
= t − λ

(
Y I
c

)
> λ

(
Y III
`

)
= t − λ

(
Y III
c

)
− λ

(
Y III
s

)
.

Since in equilibrium ȳ is strictly increasing in λ (Y`) by lemma B.2, it follows that ȳI > ȳIII and,

from equation (17), that AI(t) > AIII(t), yielding a contradiction. It follows that the prevalence

of case I, II or III is uniquely determined by t, b, v and α:

• when b ≤ 1−t−α
t

: case II occurs if v ≤ AII(t) and case III otherwise;

• when b > 1−t−α
t

: case I occurs if v ≤ AI(t) and case III otherwise.

A(t) can hence be written as

A(t) =

max
{
v, 1−t−(1+bt)α

(1−t)(1−α)

}
if b ≤ 1−t−α

t

max
{
v, (1−α)b

b+α

}
if b > 1−t−α

t
.

(28)

Using the definition of v (equation (20)), equation (25) is simply the condition for the prevailing

of case III after noting that AII(t) > AI(t) if and only if b < 1−t−α
t

. Using again the defi-

nition of v, equation (26) obtains by evaluating equation (23) using equation (28) and noting

that λ (Yc) = 0 by construction whenever case II occurs. Finally, equation (27) obtains by

taking max
{

1−Zs
1−t ,

(1−α)b
b+α

}
= (1−α)b

b+α
in equation (26), which by the previous observations must

necessarily be the case when λ (Ys) = 0.

B.1.4 Existence

The previous observations clarify that the strategy of confessors is optimal and that no other

type prefers to confess. The strategy of a guilty type who does not confess is also optimal.

Indeed, he is indifferent between sending any lie m ∈ [t, ȳ], he prefers doing so rather than

to stay silent whenever no type is silent in equilibrium and he is indifferent to remain silent

otherwise. Conversely, any m > ȳ is strictly dominated for him since, as A(m) = 1, it is

apparent from equation (9) that his expected payoff is strictly decreasing in m in that region.

For the same reasons, an innocent type y ∈ [t, ȳ) is indifferent between being honest and sending

any lie m ∈ [y, ȳ) and he strictly prefers to be honest rather than to send any lie m > ȳ. From

a comparison of equation (12) and (13) and the fact that A(m) is increasing, he also strictly

prefers to be honest rather than to deny with a message m < y. From a comparison of equation

(11) and (13) and the fact that A(t) ≥ v and A(m) is increasing, he also strictly prefers to be
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honest rather than to be silent (except type t, who might be indifferent). Finally, as A(m) = 1

for each m ≥ ȳ by lemma B.1, by being honest an innocent type y ≥ ȳ earns the maximum

attainable payoff.

To conclude, in any of the three cases described at section B.1.2, one can always take Y` =

[y`, t), where y` = t−(1−α)ȳ
α

, so that equation (16) is satisfied and λ(Y`)+λ(Yc)+λ(Ys) = t. Also,

the lying function at point (ii) of the proposition has image L = [t, ȳ) and satisfies restriction

RCP and equation (15). Indeed, by equation (7), µ(m, z) = 1

1+
d(λ◦g)

dλ
(m)

, where d(λ◦g)
dλ

denotes the

Radon-Nikodym derivative, and d(λ◦g)
dλ

(m) = 1
`′(y)

= 1−α
α

and hence µ(m, z) = α. Finally, since

µ(m, z) is independent from z for any m, there are multiple choices of a(m, z) for which A(m)

satisfies equation (14) over L as required by lemma B.1. In particular, so does the strategy

described at point (v) of the proposition with z̄(m) ≡ ȳ + b(ȳ −m) for m ∈ L and z̄(m) ≡ m

otherwise.

B.2 Proof of corollary 1

Suppose there are silent types in the equilibrium singled out in proposition 1. Then equilibria

can only differ in the identity of liars and silent types, and in the exact shape of the lying function.

However, by construction, these types are always indifferent between any pooling lie or staying

silent. If there are no silent types in the equilibrium singled out in proposition 1, equilibria can

only differ in the exact shape of the lying function. But again, liars are indifferent between any

pooling lie. Hence, for S, the result follows directly from these indifference conditions.

As for R, her ex-ante expected loss (equation (4)) can be rewritten as

(1− α)

∫
L

(1− y) (1− A (y)) dλ+ α
1− α
α

∫
L

(1− y) (A (y)) dλ+ α(1− Zs)λ(Ys) (29)

=(1− α)

∫
L

(1− y) dλ+ αλ (Ys) (1− Zs) (30)

=αλ (Y`)

(
1− t− αλ (Y`)

2(1− α)

)
+ αλ (Ys) (1− Zs). (31)

Equation (29) obtains by a change of variables under pushforward integrability where, by lemma

B.2, (1− α)λ = α (λ ◦ g). Equation (30) obtains because the first term of equation (29) is zero

whenever the second term is one. Intuitively, this can be understood as R being indifferent

between always choosing a = 1, which only generates type II errors, and always choosing a = 0,

which only generates type I errors. Since L and λ (Ys) are the same in every equilibrium,

the result obtains. Equation (31) is for future use and, after some rearranging, obtains by

substituting back the length of the pooling interval as a function of the measure of liars using
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equation (16).

Ex-post, i.e. once z has realized, if z ≤ t, R’s loss is zero. Otherwise, using analogous

simplifications as above, R’s expected loss is

(1− α)

∫
L:y<z

(1− a (y, z)) dλ+ α

∫
Y`:`(y)<z

a (` (y) , z) dλ+ αλ (Ys)1z>Zs

=(1− α)

∫
L:y<z

dλ+ αλ (Ys)1z>Zs ,

which is again identical across equilibria.

B.3 Proofs for section 3

B.3.1 Proof of remark 1

The statement follows directly from the observation that R’s equilibrium action policy upon

a pooling message is such that ȳ ≤ z̄(m) ≤ Zs.

B.3.2 Proof of remark 2

Suppose that R must rely on z only to make a decision. Obviously, R finds it optimal to

prosecutes if z ≤ t, while for z > t, she prosecutes if and only if αt/z ≥ (1− α)(1− t/z), i.e. if

z ≤ t

1− α
. (32)

Consider now R’s decisions in the baseline model when Zs = 1 for each realization of R’s type

z. When z ≤ t again R always prosecutes. If z ∈ (t, ȳ), then equation (32) holds and R always

prosecutes even when she does not catch S in a lie (because z̄(m) ≥ ȳ). If z ≥ ȳ and there are

no confessors in the baseline equilibrium then we also have z ≥ t
1−α . Again, since z is indifferent

in the baseline equilibrium she could just as well let everyone go while keeping the same payoff

as when she does not interrogate because she never catches a lie. Instead, if z > ȳ and there

are confessors then R is strictly better off in the baseline equilibrium because when she does

not interrogate she either lets go guilties who confess in the baseline equilibrium or prosecutes

innocents between ȳ and z who separate in the baseline equilibrium.

B.3.3 Proof of proposition 2

In light of remark 1, we prove the proposition with reference to the level of protection of

silence, defined in terms of v = 1−Zs
1−t rather than Zs as per equation (20). We first prove the
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first statement. Note first of all that requiring λ (Yc) > 0 even without any protection of silence,

i.e. for v = 0, is equivalent to condition b ≤ 1−t−α
t

by inequality (27), since inequality (25)

for having λ (Ys) > 0 is violated at v = 0 (and hence for any v). Thus, suppose that indeed

b ≤ 1−t−α
t

. Using the results of section B.1.2 and B.1.3,

• if v ≤ AII(t), case II of section B.1.2 obtains, i.e. all guilty types lie;

• if v > AII(t) case IIIb of section B.1.2 obtains, i.e. some guilty types lie and the rest are

silent.

Assume case IIIb obtains (case II then obtains by continuity for v = AII(t) and R’s expected

loss is independent from v for any v ≤ AII(t) since then λ(Ys) = 0). Replacing the equilibrium

measures of λ (Y`) and λ(Ys) in equation (31), R’s expected loss is

E(v) =(1− α)
(1− t)

(
1− t− (1−t)(1−v)

2(1+b)

)
(1− v)

1 + b

+α(1− t)v
(
t− (1− t)(1− v)(1− α)

(1 + b)α

)
.

(33)

As E ′(v)|v=AII(t) = −αb(1−t)t
b+1

< 0, E ′(v)|v=1 = α(1 − t)t > 0 and E ′′(v) = (1+2b)(1−t)2(1−α)
(1+b)2

> 0,

the FOC gives a unique minimum

ṽ =
1− t− α− b2tα + 2b(1− t− α)

(1 + 2b)(1− t)(1− α)
∈
(
AII(t), 1

)
. (34)

Thus, R’s optimal protection level is always such that λ (Ys) > 0 and given by ṽ.

Suppose now that b > 1−t−α
t

, instead, so that the value of v can affect whether λ (Yc) > 0.

By the results of section B.1.2 and B.1.3, case II of section B.1.2 cannot occur since some guilty

types will necessarily confess or be silent. Thus,

• if v ≤ AI(t), case I of section B.1.2 obtains, i.e. some guilty types lie and the rest confess;

• otherwise, recalling that vIIIa > AI(t) as defined in equation (24) represents the level of

protection of silence above which λ (Yc) = 0,

– if v ∈
(
AI(t), vIIIa

)
case IIIa of section B.1.2 obtains, i.e. some guilty types lie, some

are silent, and some confess;

– if v ≥ vIIIa, case IIIb obtains, i.e. some guilty types lie and the rest are silent.

Consider first the region of case IIIa (case I then obtains by continuity for v = AI(t) and

R’s expected loss is independent from v for any v ≤ AI(t) since λ(Ys) = 0). Replacing the
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equilibrium measures of λ (Y`) and λ(Ys) in equation (31), R’s expected loss is

E(v) =(1− α)
(1− t)

(
1− t− (1−t)(1−v)

2(1+b)

)
(1− v)

1 + b

+α(1− t)v
(
t− bt− (1− t)v

b
− (1− t)(1− v)(1− α)

(1 + b)α

)
.

(35)

Since E(v) is convex31 and E ′(v)|v=AI(t) = (1−t)2(1−α)α
(1+b)(b+α)

> 0, in this region R’s expected loss is

minimized at v = AI(t), i.e. for a level of protection such that λ (Ys) = 0, yielding

E(v) |v=AI(t) =
(1− t)2(1− α)α(2b+ α)

2(b+ α)2
. (36)

Consider now the region v ≥ vIIIa. R’s expected loss in this region is again given by equation

(33) which, as seen above, is convex and, absent the constraint v ≥ vIIIa, it is uniquely minimized

in ṽ as defined in equation (34). Thus, if ṽ ≤ vIIIa, i.e. if

t ≥ t̂(α, b) ≡ (1 + 2b)(1− α)

(1 + b)(1 + b(2− α))
,

where t̂(α, b) is strictly decreasing in its arguments,32 E ′(v) |v=vIIIa
≥ 0 and R’s global optimal

level of protection is v = AI(t), i.e. it is such that λ (Ys) = 0. Indeed, R’s expected loss is always

continuous in v (i.e. equation (33) and (35) coincide when v = vIIIa) and it is then increasing

in v for any v ≥ AI(t). If instead ṽ > vIIIa, so that E ′(v) |v=vIIIa
< 0, R’s optimal level of

protection is either v = AI(t), i.e. such that λ (Ys) = 0, or it is such that λ (Ys) > 0 and equal

to ṽ, depending on whether equation (33) evaluated at ṽ is greater or lower than equation (36)

(and there exist parameter combinations for which the optimal level is such that λ (Ys) > 0, as

for instance t = 17/64, α = 1/2 and b = 1).

B.3.4 Proof of proposition 3

Throughout this section, let us modify the definition of A(m) in the baseline model to

A(m) =

∫
z∈(m,Zi]

a(m, z)dλ

Zi −m
.

31

E′′(v) =
(1− t)2

(
b+ 2b2 + 2α+ 3bα

)
b(1 + b)2

> 0.

32

∂t̂ (b, α)

∂b
= − (1− α)((1− α) + 2b(1 + b)(2− α))

(1 + b)2(1− b(α− 2))2
< 0

∂t̂ (b, α)

∂α
= − 1 + 2b

(1 + b(2− α))2
< 0.
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For any given standard Zi ∈ (t, 1], the analysis at section B.1 easily generalizes to characterize

the equilibrium when S is indeed interrogated. In particular, lemma B.1 still holds with ȳ < Zi

replacing ȳ < 1, where ȳ hence the lying region L may now depend on Zi, and

A(m) =
Zi − ȳ(Zi)− b (ȳ(Zi)−m)

Zi −m
(37)

replacing equation (14). Equation (17) and (18) become respectively

A(t) =
Zi − ȳ(Zi)− b (ȳ(Zi)− t)

Zi − t
and (38)

ȳ(Zi) =
Zi − (Zi − t)A(t) + bt

1 + b
. (39)

Also, equation (19), i.e. the expected payoff from lying in the lying region for a guilty type, is

π`(y) = (Zi − t)A(t)− (t− y)b,

so that equation (22), i.e. the highest confessor (if any), becomes

yc(Zi) ≡
bt− (Zi − t)A(t)

b
(40)

and the necessary and sufficient condition (23) to have that λ (Yc) > 0 becomes

b >
Zi − t
t

A(t). (41)

Since Zi = Zs and S knows that z ≤ Zi, no type is ever silent. Similar to section B.1.2, we

distinguish two possible cases.

Case I: some guilty types lie and the rest confess. If λ (Yc) > 0, λ
(
Y I
`

)
= t − yc(Zi),

where yc(Zi) is defined in equation (40). Using equation (16) and (38), ȳI(Zi) = bt+Ziα
b+α

, AI(t) =

(1−α)b
b+α

and yIc (Zi) = t+bt−(1−α)Zi
b+α

. This case can only occur if b > (1−α)Zi−t
t

, i.e. if Zi <
(1+b)t
1−α

(which is satisfied for any b and Zi if t ≥ 1 − α), so that condition (41) holds (this then

automatically implies that ȳI < Zi).

Case II: all guilty types lie. If λ (Yc) = 0, the measure of liars Y II
` is then λ

(
Y II
`

)
= t.

Using equation (16) and (38), it then follows that ȳII = t
1−α and AII(t) = (1−α)Zi−t(1+bα)

(Zi−t)(1−α)
. By

equation (41), this case can only occur if b ≤ (1−α)Zi−t
t

(this then automatically implies that

ȳII < Zi and AII(t) > 0).
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For any Zi the two cases do not overlap and span the whole parameter space. The proof of

the existence of the equilibrium and of payoff irrelevance of any multiplicity follows analogous

steps as section B.1.4 and B.2. R’s expected loss under interrogation standard Zi is then

E(Zi) = (1− α)

∫
L(Zi)

(Zi − y)dλ+ α t(1− Zi) (42)

= αλ (Y` (Zi))

(
Zi − t−

αλ (Y` (Zi))

2(1− α)

)
+ α t(1− Zi) (43)

The first term in equation (42) obtains by analogous simplifications as at equation (30), while

the second term is due to the fact that when z > Zi now R takes action a = 1 and hence makes

a type II error when facing a guilty type. Equation (43) follows from some rearranging using

equation (16).

Assume for the moment that given Zi case I above obtains, i.e. λ (Yc) > 0. Then, using that

λ (Y`) = (1−α)(Zi−t)
α+b

, equation (43) becomes

E(Zi) =
(t− Zi)2(1− α)α(2b+ α)

2(b+ α)2
+ t(1− Zi)α. (44)

As E ′′(Zi) = (1−α)α(2b+α)
(b+α)2

> 0, E ′(Zi)|Zi=t = −tα < 0 and E ′(Zi)|Zi=1 = −tα + (1−t)(1−α)α(2b+α)
(b+α)2

,

the optimal Zi, denoted by Z?
i , is interior if and only if E ′(Zi)|Zi=1 > 0, i.e. if and only if

t < t̄ (b, α) ≡ (1− α)(2b+ α)

2b+ α + b2
, (45)

where t̄ (b, α) is strictly decreasing in its arguments.33 In such a case, the FOC gives

Z̃i =
t(b(2 + b) + α)

(1− α)(2b+ α)
. (46)

Now, if case I above obtains even at Zi = 1, condition (45) is necessary and sufficient for an

interior standard to be optimal. If λ (Yc) = 0 for Zi = 1, instead, equation (44) on which the

minimization was taken over represents R’s expected loss only in the region Zi < Ẑi ≡ (1+b)t
1−α .

However, in such case the optimal standard is always interior and hence given by equation (46).

Indeed, when Zi ≥ Ẑi, by remark 2 the interrogation is uninformative and, since by equation

(32) R would choose anyway a = 1 whenever Zi ≥ Ẑi if allowed to, R’s payoff is as in an

uninformative equilibrium. Therefore, a Zi that induces λ (Yc) > 0 is strictly optimal for R.

33

∂t̄ (b, α)

∂b
= −2b(1− α)(b+ α)

(b(2 + b) + α)2
< 0

∂t̄ (b, α)

∂α
= − (b+ α)(b(3 + 2b) + α)

(b(2 + b) + α)2
< 0.
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B.3.5 Proof of remark 3

We prove the statement by showing that whenever R would find it optimal to prosecute

for some z > Zi, where Zi is the standard for interrogating, then R’s expected loss E(Zi) is

decreasing in Zi. For the moment, fix the standard for prosecuting, which by assumption is such

that Zi ≤ Zs, at Zs = 1, so that R’s action when S is not interrogated is unconstrained. Suppose

first that equation (32) holds, i.e. t/(1−α) > 1, so that, for any Zi < 1, R always finds it optimal

to prosecute whenever z > Zi. Then, E(Zi) is given by the sum of the first term of equation (44),

i.e. R’s loss when she interrogates, and (1−α)(1−2t+Zi)/2, i.e. type I errors on innocents when

she does not interrogate. Indeed E ′(Zi) = − (1−α)b2(Zi−t)
(α+b)2

< 0, so that R prefers Zi = 1. Next,

suppose that Zi ≤ t/(1−α) ≤ 1, so that, when z > Zi, R finds it optimal to prosecute if and only

if z ≤ t/(1−α). Then, E(Zi) is given by the sum of three terms: the first term of equation (44),

i.e. R’s loss when she interrogates, (1−α)(t/(1−α)−2t+Zi)(t/(1−α)−Zi)/2, i.e. type I errors

on innocents when she does not interrogate and prosecutes, and αt(1−t/(1−α), i.e. type II errors

on guilties when she does not interrogate and lets S go. Again, E ′(Zi) = − (1−α)b2(Zi−t)
(α+b)2

< 0,

so that R prefers Zi = t/(1 − α). Since in both cases R would like to increase Zi as much as

possible, this must be even more the case when Zs < 1, since then when z > Zi she is also

sometimes constrained in her action. The second part of the remark is a direct implication of

the first. It can also be seen directly from the fact that whenever Z∗i < 1, so that Z∗i is as

in equation (46), Z∗i >
t

1−α , which by equation (32) is the cutoff for z above which R finds it

optimal to let S go.

B.4 Proofs for section 4.1

B.4.1 Proof of proposition 4

Since S knows z, he will never send a message m ≥ z, which will be surely caught in a

lie. It follows that upon any on the equilibrium path message m and m′, a(m, z) = a(m′, z),

since otherwise S would always choose the message upon which a = 1. Likewise, S will never

confess if a(m, z) = 1 for some m > t and z > t, which means that whenever S confesses R is

always choosing a = 0 anyway. It follows that any equilibrium is necessarily uninformative. The

following lemma describes one equilibrium, for which checking sequential rationality of both S

and R is straightforward.

Lemma B.6 (An equilibrium when S knows z). The following is an equilibrium. If z ≤ t then all

types of S confess. If z > t then S uses the following strategy, where yz = max(0, t−(z− t)1−α
α

):

y < yz confesses, y ∈ [yz, t) lies according to `z(y) = t + (y − yz) α
1−α . R then lets S go after
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any message t ≤ m < z if z > t
1−α and prosecutes S if z ≤ t

1−α (for the sake of precision

if z = t
1−α then both type of equilibria exist). In both cases, R’s belief is α after any pooling

message. Hence, the strategy of S is the same for all z ≥ t
1−α because then t − (z − t)1−α

α
≤ 0

and `z(t) ≤ z. Notice that for z = ȳ we have that `ȳ = `.

B.4.2 Proof of corollary 2

The first statement is obvious once one defines the out of equilibrium path behavior of S

and R as in one of the equilibria of proposition 4 (see for example lemma B.6). For the second

statement, we define the out of equilibrium path strategies and beliefs after nondisclosure from

R as follows. S believes that z = 1, and type z = 1 and S play as described in lemma B.6 for

z = 1. All we have to check is that no type z > t wants to deviate to nondisclosure. If z ≤ t
1−α

then z prosecutes everyone in equilibrium. Deviating to nondisclosure is not profitable because

those ys who are now caught in a lie were prosecuted before as well, while when z has to move

she is in the same situation as on the equilibrium path, namely she is indifferent given that

her belief is still α. If z > t
1−α then z lets all types of S go on the equilibrium path but then

deviating to nondisclosure does not change the strategy of S (the strategy of S is the same for

all z ≥ t
1−α , see lemma B.6).

B.4.3 Proof of corollary 3

We start by completing the description of the equilibrium. After signal Z, S and R play as

in the equilibrium of the game described at section B.3.4 in which the standard for interrogation

Zi is Z. After any signal ζ > Z, type ζ and S play according to the strategy described in lemma

B.6 for z = ζ. After any out of equilibrium signal ζ < Z, S believes that z = ζ, and S and type

ζ of R play as described in lemma B.6 for z = ζ.

First, we check that no type z > Z wants to deviate to a signal ζ > z. If t
1−α ≤ Z then each

z > Z lets all types of S go on the equilibrium path and deviating to some ζ > z does not change

the strategy of S (the strategy of S is the same for all z ≥ t
1−α , see lemma B.6). If z ≥ t

1−α > Z

the same argument applies. If t
1−α > Z but z < t

1−α then z prosecutes everyone in equilibrium.

Deviating is not profitable because those ys who are now caught in a lie were prosecuted before

as well and when z has to move she is in the same situation as on the equilibrium path, namely

she is indifferent given that her belief is still α.

Next, we check that no type z ≤ Z wants to deviate to a signal ζ ∈ [z, 1]. The arguments

are very similar. Consider the usual equilibrium construction (on path), in which in the pooling

region R’s belief is α, induced by the strictly increasing lying function `Z : [yc(Z), t)→ [t, ȳ(Z))
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with slope α
1−α . Using the notation introduced in lemma B.6, notice that `Z = `ȳ(Z) and

yc(Z) = yȳ(Z), so if ζ = ȳ(Z) then S’s behavior does not change. If ζ < ȳ(Z), then the set of

confessors increases relative to the one on the equilibrium path by yc(Z) − yζ . But now z no

longer catches in a lie exactly the same measure of guilty types. And whenever R has to move

out of the equilibrium path, she is in the same situation as on path given that her belief is kept

at α. If ζ > ȳ(Z), then the set of confessors decreases by −(yc(Z)− yζ). But now z additionally

catches in a lie the same measure of guilty types. Again, z cannot be better off by deviating

because when she has to move out of the equilibrium path, her belief is just as on path.34

B.5 Proof of proposition 5

We use the notation and calculations developed in section B.3.4. To simplify notation, we

drop the time index τ and write ζτ = ζ, yg,iτ = yg,i(ζ), we fix ζT = Z and we keep ζ0. We

write az for the prosecution decision when ζ = z and there was neither confession nor denial.

We give first the interrogation policy conjectured to be optimal given Z and the corresponding

equilibrium. Then we argue that the policy is indeed optimal given Z. Finally, we show that R

always prefers a lower Z.

If λ(Yc(Z)) = 0 then the interrogation is trivial: T = 0, R lets S go when z > Z and

otherwise she proves that z ≤ Z, yg(Z) = 0, yi(Z) = ȳ(Z) = ȳ and the last phase strategies

are as in the baseline model with the appropriate adjustment on A(m). Hence, suppose that

λ(Yc(Z)) > 0. Let us define ζ0 = sup{1 ≥ ζ|yc(ζ) > 0}, set

yg(ζ) = yc(ζ) =
t+ bt− (1− α)ζ

α + b

and

yi(ζ) = ȳ(ζ) =
bt+ αζ

α + b

for ζ ∈ [Z, ζ0] (so ζ is going from ζ0 to Z). R lets S go when z > ζ0. For ζ ∈ [Z, ζ0], R’s

prosecution decision az is random and she lets S go with probability b(1−α)
α+b

(alternatively think

of az ∈ [0, 1], since as mentioned in section 6.2 all of our statements are still valid). In the last

phase S and R plays as in the one-shot revelation game after the pooling signal Z (for simplicity

we assume that type yc(Z) does not confess at time T but lies up to t so we have the increasing

34This is exactly the reason why we had to construct the out of equilibrium behavior of S carefully and keep
the belief of R at α on an interval including [t, ȳ(Z)). Otherwise some type z close to t could “pretend” that
her evidence is relatively weak by sending some signal ζ such that ζ >> z. She could “convince” types of S
who lie below z on the equilibrium path to lie above z. She can then catch these lies and when she has to move
after messages in the interval [t, z) let S go because she becomes more confident (in fact now sure) about his
innocence.
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lying function).

Checking equilibrium conditions for R is simple. Indeed, if z > ζ0 it is sequentially rational

to let S go and by definition of the interrogation policy when the action az must be taken R

knows that S’s type is between yc(z) and ȳ(z) so she is indeed indifferent between prosecuting

and letting S go. In the last phase, by definition R plays sequentially rationally, where the

same is true for S. What is left is to check is that the no lying conditions hold. First, direct

calculations show that when z ≤ ζ is revealed the expected payoff of each y still in the game

(i.e. y ∈ [yc(z), ȳ(z)]) is:
(ζ(1−α)−t−bt)b

α+b
+ by

ζ − y
.

Notice that this expression is 0 for y = yc(ζ) and 1 for y = ȳ(ζ), strictly decreases in ζ for all

y > t, strictly increases for all y < t and it is constant with value b(1−α)
α+b

for y = t (remember

that ζ decreases in equilibrium). Now any y who decides to claim that he is yi(ζ) = ȳ(ζ) > y or

decides to play as if he was any y′ > y gets

(ζ(1−α)−t−bt)b
α+b

+by′

ζ−y′ (ζ − y′)− b(y′ − y)

ζ − y
,

which is exactly his equilibrium payoff, and in fact these are S’s baseline equilibrium payoffs as

well. What is left to check is that no guilty type y can profit from waiting with his confession,

say until z ≤ ζ is revealed, and then claiming that he is ȳ(ζ) if the interrogation continues until

then. But this deviation is payoff equivalent to play as if he was type yc(ζ), which as we checked

already is not beneficial. In fact, all types of S are completely indifferent with respect to their

strategy during the interrogation, as they always get their baseline equilibrium payoff.

We now show that the given policy is indeed optimal. R’s payoff is completely determined

by the payoffs the different types of S expect before R reveals any information. Given that

R has no control over her payoff when S’s type is in [yg(Z), yi(Z)] the question is how much

types of S outside this interval should expect to get to have R’s payoff maximized. The binding

no-lying condition, however, immediately determines these expectations once the expectation

of an arbitrary type from this interval, say type t’s, is pinned down. Direct calculation shows

(exactly as in the proof of proposition 6, see also the intuition in section B.6.1) that R’s payoff is

maximal if type t’s and hence all types’ expected payoff is exactly as in the baseline equilibrium

and that our policy provides exactly these expectations for S. It follows that R’s optimal payoff

is what R gets under the optimal mechanism (see proposition 6) minus α times the type II

errors she makes due to compensating the punished caught lies when z < yi(Z). Hence, as Z
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converges to t, this payoff converges to the one under the optimal mechanism.

We now argue that the optimal policy is uniquely pinned down. Given thatR must randomize

to provide these payoffs for S when z = ζ and R knows only that S’s type is in (yg(ζ), yi(ζ))

it follows that R must be indifferent. Among the many possible policy in which R is indeed

indifferent, the one that we have singled out gives the most information to R, because under

more informative such policies yg(ζ) could profitably claim that he is yi(ζ) for any ζ ∈ [Z, ζ0].

We still have to show that R prefers a lower Z. This is also simple. Let us choose a

Z ′ ∈ (t, Z). We cannot say that all zs are strictly better off because for types z ≥ Z nothing

changes, the screening phase is the same till ζ = Z. Also types below ȳ(Z ′) are indifferent

between the two options because even though types y ∈ [yc(Z
′), yc(Z)] do not reveal themselves

under Z but they do under Z ′, a type z below ȳ(Z ′) will catch the same measure of guilties in a

lie under Z. These types of R do not care about identifying “less” innocents because those are

all below their own z. Types z ∈ [ȳ(Z ′), Z) however, strictly prefer Z ′ to Z because the pooling

region shrinks and they can identify more types of S on both sides. Finally, notice that when

Z = t, we have that yg(t) = yc(t) = yi(t) = ȳ(t) = t, so t cannot reveal himself.

B.6 Proof of proposition 6

After providing an intuition for the relation between the optimal mechanism and the equi-

librium (section B.6.1), we prove its optimality in the class of mechanisms considered in the

main body of the paper (section B.6.2). We then show how arbitrary mechanisms offer no

improvement (section B.6.3).

B.6.1 Intuition

As pointed out in the body of the paper, in the optimal mechanism the truth-telling con-

straint must be binding for types sufficiently close to t. Clearly, for any given value of ẑ(t),

for types to the right of t one minimizes type I errors by having the constraint binding till ẑ

reaches the diagonal z = y. Likewise, for types to the left of t one minimizes type II errors by

having the constraint binding till the line z = 1 (the case of figure 3a) or the vertical axis (the

case of figure 3b). The exact counterpart of the truth-telling constraint in the equilibrium of

the baseline model is that pooling types are indifferent between any lie. The optimal choice of

ẑ(t) is then determined by the fact that R is trading off type I and type II errors. Suppose one

increases ẑ(t). In the (interior) optimum the marginal increment of type I errors weighted by

(1 − α) must be equal to the marginal decrement of type II errors weighted by α. These are
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measured by the appropriately weighted lengths of the ẑ line from ẑ(t) respectively to the right

of t (till the diagonal z = y) and to the left of t (till the line z = 1 or till the vertical axis).

The exact equilibrium counterpart of this constraint is the required indifference of R, i.e. the

condition at lemma B.2 relating the measure of liars with the measure of the lying region. Thus,

when projecting the optimal ẑ? onto the horizontal axis, given linearity, one obtains exactly the

lying region and the set of liars with the equilibrium measures of the baseline model as required

by lemma B.2. It follows that each type obtains the same payoff as in equilibrium and only type

II errors become smaller in the optimal mechanism.

B.6.2 Optimality

Let yc (ẑ (t)) and ȳ (ẑ (t)) denote respectively the smallest guilty type and the largest innocent

type for which constraint (6) binds. The line with slope −b passing through the point (t, ẑ(t))

has equation −by + ẑ(t) + bt, so that ȳ (ẑ(t)) = ẑ(t)+bt
1+b

. Also,

yc (ẑ(t)) = max

{
ẑ(t) + bt− 1

b
, 0

}

and yc(t) > 0, i.e the case of figure 3a, obtains if and only if (1 + b)t > 1. Suppose first this is

indeed the case. Then R’s expected loss, i.e. equation (5), becomes

Eyc>0(ẑ(t)) = α

∫ t

ẑ(t)+bt−1
b

(1− (−by + ẑ(t) + bt))dy + (1− α)

∫ ẑ(t)+bt
1+b

t

(−by + ẑ(t) + bt− y) dy

= α
(1− ẑ(t))2

2
+ (1− α)

(ẑ(t)− t)2

2(1 + b)
.

As E
′′
yc>0(ẑ(t)) = b+α

b(1+b)
> 0, i.e. Eyc>0(ẑ(t)) is convex, with E ′yc>0(t) = − (1−t)α

b
< 0 and

E ′yc>0(1) = (1−α)(1−t)
b+1

> 0, the FOC identifies the unique minimizer

ẑ?yc>0(t) =
α + b(t+ α− tα)

b+ α
. (47)

Suppose now that (1 + b)t ≤ 1, instead, so that yc(t) = 0, i.e the case of figure 3b obtains.

Then, R’s expected loss is as before if ẑ(t) > 1− bt, while if ẑ(t) ≤ 1− bt, it is

Eyc=0(ẑ(t)) = α

∫ t

0

(1− (−by + ẑ(t) + bt))dy + (1− α)

∫ ẑ(t)+bt
1+b

t

(−by + ẑ(t) + bt− y) dy

= α
t(2− 2ẑ(t)− bt)

2
+ (1− α)

(ẑ(t)− t)2

2(1 + b)
.
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As E
′′
yc=0(ẑ(t)) = 1−α

1+b
, Eyc=0 is again convex and, moreover, E

′
yc=0(t) = −tα. It follows that the

minimizer differs from the one at equation (47) if and only if E ′yc=0(ẑ(t)) |ẑ(t)=(1−bt) = 1−t−bt−α
1+b

≥

0, i.e. if and only if b ≤ 1−t−α
t

. In such a case, it is uniquely identified by the FOC, which gives

ẑ?yc=0(t) =
t+ btα

1− α
.

Thus, to summarize, the optimum is

ẑ?(t) =

ẑ
?
yc=0(t) if b ≤ 1−t−α

t

ẑ?yc>0(t) otherwise.

It follows that conditions for the optimal mechanism to yield that yc (ẑ?(t)) > 0 are identical

to the equilibrium conditions for which the measure of confessors is positive. One can also

easily verify that yc (ẑ?(t)) = yc and ȳ (ẑ?(t)) = ȳ as in the equilibrium, so that guilty types

for which the constraint does not bind get respectively 0 and 1 in both cases. Finally, define

ẑ?(y) = ẑ(y)|ẑ(t)=ẑ?(t). Using the equilibrium value of z̄(m), guilty types for which the constraint

binds get 1 − ẑ?(y) = 1 − z̄(t) − (t − y)b as in equilibrium. Likewise, innocent types for which

the constraint binds get 1− ẑ?(y) = 1− z̄(y) as in equilibrium.

B.6.3 Arbitrary mechanisms

Let us consider some arbitrary, possibly non-direct and random, mechanism in which S can

receive payoffs of −b, 0 and 1 with the single constraint that the expected payoff p(y) of each

type y must be weakly larger than 0 (and can be calculated). We assume, as before, that when

−b is given to a guilty type, R makes no error. However, when −b is given to an innocent type,

R makes an error of size 1 + b. Fix the resulting expected loss of R when each type sends only

messages which are optimal for him given the mechanism (which can be calculated and is the

lowest in case of multiplicity). Consider now the deterministic cutoff direct mechanism using

only 0s and 1s which, in expectation with respect to z, gives each type y exactly p(y) when y

reports that his type is y. First, note that this direct mechanism satisfies the constraint

1− ẑ(y) ≥ 1− ẑ(y′)− b (y′ − y)

for each y, y′ for which y′ ≥ y. Indeed,

p(y) =
1− ẑ(y)

1− y
≥ p(y′)

1− y′

1− y
− by

′ − y
1− y

=
1− ẑ(y′)

1− y′
1− y′

1− y
− by

′ − y
1− y

,
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where the first inequality follows from the fact that, conditional on z ≥ y′, it must be that y′

expects p(y′) and so does any other type y ≤ y′ and that y does not strictly prefer to play as if

he was y′ in the original mechanism, where the worst possibility is that y expects −b conditional

on that y′ ≥ z ≥ y.

Clearly, type I errors are the same in both mechanisms while type II errors may only decrease

when using the direct mechanism. It is not necessarily true though that this direct mechanism

is immune to downward deviations, i.e. some type y now may prefer to report that he is type

y′ < y. Thus, all we can say is that the obtained direct mechanism is weakly better for R than

the original mechanism in an environment where downward deviations are not feasible for S.

However, our optimal direct mechanism is also optimal in the environment where downward

deviations are not possible. Moreover, of course, our optimal mechanism is also immune to such

deviations. Therefore, our restrictions are without loss of generality.

B.7 Proof of proposition 7

First we complete the description of the equilibrium. S sends the message m as in the

baseline equilibrium using the strictly increasing lying function `. When S confesses then the

game is over, with automatic action a = 0 and S gets 0 (there is no need to punish detected

false confessions). When m ≥ ȳ, if S is not caught in a lie R lets him go believing that he is

surely innocent, while if S is caught in a lie R immediately prosecutes him and punishes him

at the level of −b believing that he is surely guilty. Consider now some message m < ȳ and

the corresponding guilty type y = `−1(m). When z ≤ y then R immediately prosecutes him

and punishes him at the level of −b believing that he is surely guilty.35 When z is such that

y < z ≤ m + b(m − y) = ζm then R proves to S that her z ≤ ζm and the game proceeds to

stage two, in which case R knows that S is guilty if he was caught in a lie and otherwise believes

that S is innocent with probability α. Finally, when ζm < z ≤ ẑ∗(y) then R prosecutes S and

when z ≥ ẑ∗(y) then R lets S go. In both cases R believes that S is innocent with probability

α. Suppose the game proceeds to stage two. When m′ = m, then R lets S go if he was not

caught in a lie, in which case she believes that S is surely innocent, while if S was caught in a

lie R automatically prosecutes him and punish him at −b. If m′ = 0 then the game is over, with

automatic action a = 0 and S gets 0. Finally, in stage two all guilty types send the message 0

and all innocent types send the message m.

We now verify that the strategy of R is indeed a strategy. Namely, we have to show that

35An alternative and equivalent solution would be to punish type y′ < y when he is asked to confess in stage
2 but he confesses that he is some type different from y or he claims that he is y but this lie is detected.
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m + b(m − y) = ζm ≤ ẑ∗(y). This is clear from the fact that y expects a non-negative payoff

in the baseline equilibrium just as in the optimal mechanism. Formally, we have that ẑ?(y) =

z̄(m) + b(m − y) and z̄(m) ≥ m. Payoffs are exactly as in the optimal mechanism: m ∈ [t, ȳ)

gets b(m− y) + 1− ẑ?(y) = 1− z̄(m) = 1− ẑ?(m), and y ∈ [yc, t) gets 1− ẑ?(y).

Given S’s strategy it is clear that R’s strategy is optimal (type z > ζm of R of course would

like to send the signal ζm but she cannot). Given R’s strategy we have to consider 8 types of

possible deviations for S. Let `(y) = m and `(y′) = m′. (1) a guilty type y behaves as a guilty

type (a) y′ < y or (b) y′ > y. (2) a guilty type y behaves as an innocent type (a) m′ < m or (b)

m′ > m. (3) an innocent type m behaves as an innocent type (a) m′ < m or (b) m′ > m. (4)

an innocent type m behaves as a guilty type (a) y′ < y or (b) y′ > y. 1(a), 3(a) and 4(a),(b) are

clearly suboptimal for S. We show that in the rest of the cases S obtains exactly his equilibrium

payoff. 1(b) gives 1− ẑ?(y′)−b(y′−y) = 1− ẑ?(y). 2(a) gives 1− ẑ?(y′)+b(m′−y′)−b(m′−y) =

1 − ẑ?(y). 2(b) gives 1 − ẑ?(y′) − b(y′ − y) − b(m′ − y′) + b(m′ − y′) = 1 − ẑ?(y). 3(b) gives

1− ẑ?(y′) + b(m′− y′)− b(m′−m) = 1− ẑ?(y′) + b(m− y′) = 1− ẑ?(y) + b(y′− y) + b(m− y′) =

1− ẑ?(y) + b(m− y) = 1− ẑ?(m).

C Truth-leaning and honesty

Consider the game described at section 2.1 with the following more general payoff of S:

a− b`1m≥z − bs1m=s and z≤t, (48)

where 1m≥z and 1m=s and z≤t are indicator functions for when S is caught in a lie and for when

he is silent but the evidence is conclusive, respectively, and b` and bs are commonly known

parameters such that b` ≥ bs ≥ 0.

We say that 〈M ,a〉 is a quasi-equilibrium if M = (My)y∈[0,1] and (1) for all y ∈ [0, 1] :

∅ 6= My ⊆ M and for every m ∈ My, m is optimal for y given a and (2) if m ∈ My for some y

then a(m, z) = 0 if m ≥ z and there is no y′ ∈ [t, z) such that m ∈My′ . Notice that R’s action

can be arbitrary off the path (i.e. when @y : m ∈My) and most of the time on the path as well,

the only restriction is that when R knows that an on path lie was sent by a guilty for sure then

she must prosecute him as described by (2). This equilibrium notion can be easily applied to

any perturbed game, possibly with infinite type and action sets, and, after adjusting notation

slightly, an equilibrium as defined in the main body is a quasi-equilibrium.

We think of My as the support of the behavioral strategy of type y (which is a regular
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conditional probability if strategies are distributional), while A(m) as defined in section 2.2

represents the expected payoff of type m from choosing message m determined by a. For

m = s, A(s) can be arbitrary and may depend on y and we write Ay(s) =
∫

[y,1]
a(s, z)/(1− y)dλ

for y ≥ t and A(s) = Ay(s) =
∫

[t,1]
a(s, z)/(1−t)dλ for y < t. Also, if some type y sends a message

m 6= s we write Ay(m) =
∫

[y,1]
a(m, z)/(1 − y)dλ and write yA(m) =

∫
[y,m]

a(m, z)/(1 − y)dλ

when m > y. Notice that Am(m) = A(m) and Ay(m) = (1 −m)A(m)/(1 − y) + yA(m) when

m > y.

A truth-leaning test sequence of the baseline game with (εny )y∈[0,1] → 0, where εny ≥ εn > 0

for all y and for all n, is a sequence of games such that each type y ∈ [0, 1] obtains an extra

εny > 0 when choosing m = y relative to its baseline game payoff and if for each m ∈ [0, 1] we

have that: if t ≤ m /∈ ∪y<tMn
y then An(m) = 1 and if t > m /∈ ∪y≥tMn

y then An(m) = 0.

Namely, there is a small reward for honesty and if a denying message is never sent by guilty

types or a confessing message is never sent by innocent types then R’s action, provided that S

is not caught in a lie, is 1 and 0, respectively.

〈M ,a〉 is a truth-leaning quasi-equilibrium if there is a truth-leaning test sequence and

a corresponding sequence 〈Mn,an〉 of quasi-equilibria of the perturbed games such that for all

y ∈ [0, 1],My ⊆ lim supn→∞M
n
y = {m ∈ M|∃(nk)k∈N,mnk ∈ Mnk

y : limk→∞mnk = m} and for

all m : Ank(m)→ A(m).

Proposition C.0. In any truth-leaning quasi-equilibrium My = {y} for y ≥ t, i.e. innocents

are honest, and if t > m ∈ My then My = {y}, i.e. confessors are honest. Moreover, the

equilibrium at proposition 1 is a truth-leaning quasi-equilibrium.

Proof. Consider a truth-leaning quasi-equilibrium and a test sequence justifying it. First we

show that innocents are honest. Suppose by contradiction that ∃y ≥ t,m 6= y : m ∈ My.

Then we must have mn 6= y in Mn
y for some n in the nearby equilibrium. Consider in this

nearby equilibrium the smallest y ≥ t such that we have mn 6= y in Mn
y .36 There must be some

y′ < t : y ∈ Mn
y′ . We have to distinguish four cases: mn > y > y′, mn = s, y′ ≤ mn < y

and mn ≤ y′ < y. For each case there are two weak inequalities that must hold in the quasi-

equilibrium of the nearby game, the first saying that y weakly prefers mn to y and the second

36If the minimum does not exist then the following argument goes through for some y with this property
sufficiently close (less than εny ≥ εn) to the infimum of these y-s.
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saying that y′ weakly prefers y to mn, yielding respectively:

(1− y)An(y) + εny ≤ (1−mn)An(mn) + yA
n(mn)(1− y)− b`(mn − y)

(1−mn)An(mn) + Any′(m
n)(1− y′)− b`(mn − y′) ≤ (1− y)An(y) + Any′(y)(1− y′)− b`(y − y′);

(1− y)An(y) + εny ≤ (1− y)Any (s)

(1− t)An(s)− bs(t− y′) ≤ (1− y)An(y) + Any′(y)(1− y′)− b`(y − y′);

(1− y)An(y) + εny ≤ (1− y)Any (mn) = (1−m)An(mn)

(1−mn)An(mn) + Any′(m
n)(1− y′)− b`(mn − y′) ≤ (1− y)An(y) + Any′(y)(1− y′)− b`(y − y′);

(1− y)An(y) + εny ≤ (1− y)Any (mn) = (1−mn)An(mn)

(1− y′)Any′(mn) = (1−mn)An(mn) ≤ (1− y)An(y) + Any′(y)(1− y′)− b`(y − y′).

For each case we can decrease both sides of the inequality for y by b`(y − y′) and get a contra-

diction by showing that the RHS of the inequality for y is less than or equal to the LHS of the

inequality for y′ by noting that Any′(y)(1 − y′) = 0 (or arbitrarily close to it, i.e. less than εny

- see footnote 36) by (2) from the definition of quasi-equilibrium because no innocent type is

lying to y since y is the smallest such type and that clearly Any (mn)(1 − y) ≤ Any′(m
n)(1 − y′)

holds. For the second pair of inequalities one should also use the facts that b` ≥ bs and

(1 − t)An(s) ≥ (1 − y)Any (s). In all the cases the intuition is that y must be indifferent be-

tween y and mn as otherwise y′ would strictly prefer mn to y. But even if y is indifferent, y′ will

strictly prefer mn to y because y′ does not obtain the extra εny .

Given that innocents are honest, by the definition of truth-leaning test sequence, in the

quasi-equilibrium of the nearby game after confession R’s action upon not catching S in a lie

must be 0, so that confessors obtain 0 and honest confessors additionally obtain εn. It follows

that in the limit confessors indeed are honest and obtain 0 as we assumed in the body of the

paper.

Finally, the second statement is trivial if there is a positive measure of silent types or there are

no confessors. To be precise, if there are confessors and silent types we must choose Yc = [0, yc]

and Ys = (yc, y`). Then, for any perturbation there is a nearby quasi-equilibrium which differs

from the equilibrium in proposition 1 only in that some silent types become confessors. If instead

there are no confessors then there is a quasi-equilibrium of the nearby game which is exactly

the same as the equilibrium in proposition 1, no matter whether there are silent types or not.

Consider hence the case in which there are no silent types but there are confessors and we

have the strictly increasing lying function from Y` = [yc, t) to [t, ȳ). For simplicity we describe
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the proof for a fixed parameter combination, which can be then easily generalized. Consider the

case with parameter values: Zs = 1, α = t = 1/2, b` = bs = 1. In this case yc = 1/6, ȳ = 5/6, and

A(1/2) = 2/3. The rest of the equilibrium description clearly follows from these values given

that the lying function is strictly increasing. Fix an ηn > 0. Consider a perturbation such that

εny = (ηn/2 + (y− yc))/(1− y) for y ∈ [yc, yc + ηn] and set εny sufficiently small otherwise. There

is an equilibrium of the perturbed game with strictly increasing lying function which is similar

in its structure to the one in proposition 1, with the difference that the values which pin down

the equilibrium are: An(1/2) = 2/3 + ηn, ync = yc + ηn, and ȳn = ȳ− ηn. These equilibria almost

justify the truth-leaning property of the equilibrium in proposition 1. The only problem is that

for yc we have that t /∈ lim supn→∞M
n
yc = {yc}. But given that yc is indifferent between yc and

t in the nearby equilibria of the nearby games, we can choose Mn
yc = {t} instead of Mn

yc = {yc}

without violating any of the equilibrium conditions. This sequence now completely justifies the

truth-leaning property of the limit equilibrium which is the one described in proposition 1.37

C.1 The full-fledged game

Consider now the most general game where S’s payoff depends directly only on the action

of R, and only for simplicity and brevity take b` = bs = b. Thus, we allow R to take actions

from the set {−b, 0, 1} and S’s payoff is equal to R’s action. We tailor property (2) of the

quasi-equilibrium defined above to the current setup as follows:

(2a) a(s, z) ∈ {0, 1} if z > t and a(s, z) = −b if z ≤ t;

(2b) suppose that m ∈ My for some y. Then a(m, z) ∈ {0, 1} if m ≥ z and there is a

y′ ∈ [t, z) : m ∈My′ and a(m, z) = −b if m ≥ z and there is no y′ ∈ [t, z) : m ∈My′ .

Point (2a) is natural. As for point (2b), it requires on the one hand that if there is an innocent

who could have sent the lie m then R will not choose action −b because choosing action 0 is a

better response. On the other hand, if the liar is surely guilty then R punishes him at the level

of −b. Condition (2) is required to hold only after on the equilibrium path messages. Hence,

the main difference to the previous game is that now an equilibrium lie of an innocent type will

37Notice that in the justifying sequence the nearby quasi-equilibria are in fact equilibria. Nevertheless, one
could still object that this notion of convergence is too weak. In this case, instead of the strictly increasing lying
function of the equilibrium in proposition 1, one can consider another lying function, induced by a distributional
strategy, in which liars choose messages according to the uniform distribution over [t, ȳ] and where yc confesses
(for simplicity). One can then choose the same perturbation as before. Observe that any y ∈ (ync , t) is indifferent
between any lie m ∈ [t, ȳn] in the nearby equilibrium of the nearby game described above. Hence, each type
y > ync can choose now messages uniformly from [t, ȳn] in the nearby equilibrium and one gets convergence in
distribution (or setwise convergence of the corresponding measures) for each type y.
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not be punished at the level of −b and so sometimes the lies of guilties are covered by the lies

of innocents and are not punished. Now we prove the corresponding version of proposition C.0.

We only have to prove that in truth-leaning quasi-equilibria innocents are honest and the rest

of the proposition trivially follows. The structure of the proof is the same as before but now we

have to write the inequalities as follows:

(1− y)An(y) + εny ≤ (1−mn)An(mn) + Any (mn)(1− y)

(1−mn)An(mn) + y′A
n(mn)(1− y′) ≤ (1− y)An(y) + Any′(y)(1− y′);

(1− y)An(y) + εny ≤ (1− y)Any (s)

(1− t)An(s)− b(t− y′) ≤ (1− y)An(y) + Any′(y)(1− y′);

(1− y)An(y) + εny ≤ (1− y)Any (mn) = (1−m)An(mn)

(1−mn)An(mn) + Any′(m
n)(1− y′) ≤ (1− y)An(y) + Any′(y)(1− y′);

(1− y)An(y) + εny ≤ (1− y)Any (mn) = (1−mn)An(mn)

(1− y′)Any′(mn) = (1−mn)An(mn) ≤ (1− y)An(y) + Any′(y)(1− y′).

We can reach a contradiction in all the four cases by adding Any′(y)(1− y′) to both sides of the

inequalities for y. For the first pair, observe that Any′(y)(1−y′)+Any (mn)(1−y) = Any′(m
n)(1−y′)

(or gets arbitrarily close to it) because, using (2b), no innocents smaller than y are lying up

to y or to mn (or those are arbitrarily close to y). Then subtracting the LHS of the inequality

for y from the RHS of the inequality for y′ and vice versa we get that −εny is larger than a

quantity which is arbitrarily close to 0. For the second pair of inequalities one observes that

Any′(y)(1 − y′) ≤ b(t − y′) (again using (2b) and (2a) with equality for sure if y = t) and that

(1−y)Any (s) ≤ (1− t)An(s). For the third pair, Any′(y)(1−y′) ≤ Any′(m
n)(1−y′) because y > mn

and y′ gets punished more with such a lie using again (2b). For the fourth pair we have exact

equality of the RHS of the inequality for y (after adding Any′(y)(1− y′)) and the LHS of the one

for y′.
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