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Abstract In this paper, we propose two spatial power indices in political games, taking

into account ideological preferences of players. To do this, we develop an explanatory

spatial model linked to the asymmetry Deegan-Pakel index introduced by Rapoport &

Golan [Rapoport, A., Golan, E., 1985. Assessment of political power in the israeli knesset.

American Political Science Review 79 (3), 673-692], which is the original Deegan-Packel

index readjusted for measuring power according to the spatial preferences of players in

real political games. In addition to extending such a readjustment for the original John-

ston index — transforming it concomitantly into the Johnston spatial power index — this

paper presents both the general versions of these two spatial indices, and their axiomatic

characterizations through new axioms such as the vetoer property and others mainly in-

spired from Lorenzo-Freire et al. [Lorenzo-Freire, S., Alonso-Meijide, J. M., Casas-Méndez,

B., Fiestras-Janeiro, M. G., 2007. Characterizations of the Deegan-Packel and johnston

power indices. European Journal of Operational Research 177 (1), 431-444].

Keywords Game theory · Spatial voting games · Deegan-Packel spatial power index · Johnston

spatial power index · Axiomatic characterizations · Political games.
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One of the main shortcomings mentioned almost in all publications on power indices is

the fact that well-known indices do not take into account the preferences of agents.
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1 Introduction and Background

In game theory, voting systems are widely represented in the abstract way by simple

games. There are many methods of testing the fairness of a voting system, or determining

the influence of each participant (or voter) in the decision-making process via a voting

system. Power indice are relevant tools to measure the influence or voting power of each

voter, and one common way to measure the power of a voter in such a process, is to

determine the number of times that player changes a losing coalition into a winning one.

However, classical power indices are not efficient to predict the coalitions that will be

formed because the formation of coalitions they consider does not depend on the affinities

of players at stake such as habits, outlooks or even ideological preferences. In fact, these

classical indices (also called a priori power indices) are more relevant when it comes to

measure the fairness of constitutional power in the voting system — to design voting

rules in a decision making system, or speaking like Shenoy (1982), to answer questions

like “Is this given decision fair? — Does it distribute power equitably?” This process is

what is usually behind the concept of power indices, which in their a priori context (or

classical forms), assume that voters can form coalitions symmetrically, meaning there is

no prior information that a player a can prefer to join player b rather than player c. In

fact, experiences from real-world case studies indicate that some coalitions of voters are

more likely to form than others. We can explain it by the fact that affinities among the

players, play a central role in the coalition formation process.

In this paper, we focus on political games which are simple games together with the

ideological preferences of the players. Thus, in order to take these ideological prefer-

ences into account in measuring the power of each player, Owen (1971) proposed for the

first time, a modification of the Shapley value — a nonsymmetric generalization of the

Shapley-Shubik power index for political games also known as the Owen-Shapley spatial

power index. Shapley (1977), building on the findings of Owen, pursued his investigation

in terms of both viewpoint and technique, which in turn inspired Shenoy (1982) in a

similar way, to propose a nonsymmetric generalization of the Banzhaf power index for

political games that we call the Banzhaf spatial power index. The next nonsymmetric

generalization in political games — the Deegan-Packel spatial power index — was taken
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in another approach introduced by Rapoport & Golan (1985). In this present paper, we

propose a more general version of this latter spatial index, followed by its first axiomatic

characterizations in spatial models. To date and to the best of our knowledge, no one has

published any spatial generalization of the Johnston power index in political games. This

paper is a first attempt to do so by following the same model as Rapoport & Golan (1985)

did for the Deegan-Packel spatial index. Furthermore, we also give a more general version

of this newly spatial version of the Johnston index and characterize it afterwards.

Further Related Literature. For a relatively recent overview on classical power indices for

simple games see (Andjiga et al. 2003; Benati & Marzetti 2013), among others. The five

widespread power indices in the literature are (Shapley & Shubik 1954; Banzhaf III 1964;

Deegan & Packel 1978; Johnston 1978; Holler & Packel 1983). As aforementioned, most of

these classical indices mostly measure the power of players independently of the issues at

stake, or regardless of the affinities among the players. There are, however, the so-called

spatial power indices which attempt to redress these neglects whenever simple games

turn into political games through spatial models. The pioneer of such approach is Owen

(1971) and he applied his findings upon the eleven-party Israeli Knesset formed in 1965,

but his index is more known as the Owen-Shapley spatial index since it is more applied

with respect to the Shapley’s technique and viewpoint. In fact, the Owen-Shapley spatial

index is so far, the most widely spatial index examined and applied in various parliaments

(USA, Israel, Japan, Russia, Spain, etc.) — see, (Frank & Shapley 1981; Godfrey 2005a,b;

Owen & Shapley 1989; Ono & Muto 1997). However, some significant contributions on

spatial power indices in general, were made by (Shapley 1977; Shenoy 1982; Straffin 1977;

Rapoport & Golan 1985; Bilal et al. 2001), and more recently have been investigated

by (Passarelli & Barr 2007; Alonso-Meijide et al. 2011; Benati & Marzetti 2013; Martin

et al. 2017; Grech 2019)1. To date, the unique axiomatic characterization of any spatial

power index (notably the Owen-Shapley spatial index) was proposed by Peters & Zarzuelo

(2017). Our findings are therefore, the first characterizations for the existing Deegan-

Packel spatial index and for the new one that we propose — the Johnston spatial index.

1 To understand more about spatial models of voting, we refer the reader to Enelow & Hinich (1984).
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Organization of the paper. Preliminaries on simple games and classical power indices are

presented in the next section. Sect. 3 introduces the spatial model and presents spatial

probabilities. Our main results are presented both, in Sect. 4 by providing the spatial

power indices of the paper, and in Sect. 5 by characterizing all of them. Lastly, Sect. 6 is

devoted to concluding comments, and all the proofs are given in the Appendix.

2 Preliminaries

The purpose of this section is twofold, specify the notations and concepts that we will

use and, introduce some elements of game theory that we will refer to. First, recall that,

a game is a real-valued function defined on the subsets of a given nonempty finite set N ,

which vanishes on the empty set. The elements of N are usually called players.

Notations and Definitions. Throughout this document, we will use the following basic

notations. Let N ≡ {1, 2, ..., n} denote the finite set of all players indexed by the first

n natural numbers. Any nonempty subset of N is called coalition. Let 2N denote the

set of all nonempty coalitions. By |E| we mean the cardinality of any set E. Next, we

recall the formal definition of simple games, which are particularly attractive in political

structures such as parliaments and committees. A simple game can be represented by a

pair (N,W), where W is the set of winning coalitions such that: (i) ∅ /∈ W , N ∈ W , and

(ii) if (S ∈ W and S ⊂ T ), then T ∈ W . Any coalition which is not winning is losing,

and a simple game is said to be proper if and only if the complement of every winning

coalition is losing. Henceforth, we only consider simple games that are proper.

There are three types of players in simple games, which deserve mentioning in this

paper. The first one — a veto player — is a member who belongs to every winning

coalition. The second one — a dummy player — is a player in a simple game who can

never, by joining a losing coalition, change it into a winning one. The third one is related

to a given winning coalition S, and called decisive player for S — it is a player whose

by leaving S, makes the remaining coalition losing. We will denote by η(S) the set of

decisive players in a coalition S, and by Qi(W) the set of coalitions for which the player

i is decisive. A minimal winning coalition is a winning coalition in which all its players
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are decisive. We denote by M(W) (respectively Mi(W)) the set of minimal winning

coalitions (respectively the set of minimal winning coalitions containing the player i).

A quasi-minimal winning coalition is a winning coalition in which at least one player

is decisive. We denote by Q(W) the set of all quasi-minimal winning coalitions. More

formally, Q(W) := ∪i∈NQi(W). In case of no confusion, the sets Q(W), Qi(W),M(W)

andMi(W) will be simply rewritten by Q,Qi,M andMi. Using the concepts and tools

mentioned so far, we can now introduce the concept of power index as well as many

well-known examples.

Power indices are relevant tools for measuring the influence of players on game deci-

sions. A power index is a function Ψ which assigns to each simple game (N,W) a vector

Ψ(N,W) ∈ Rm,m ∈ N, where each component Ψi(N,W) provides a measure of power

to the player i in the simple game (N,W). As aforementioned, in the literature several

classical power indices have been introduced whereby, the five most well-known are the in-

dices of Shapley-Shubik, Banzhaf, Holler-Packel, Deegan-Packel and Johnston. However,

in this paper we focus on the two latter ones, which are recalled below.

Deegan-Packel power index (Deegan & Packel 1978) (DP). The main idea about this

index is to assume that only minimal winning coalitions will emerge, but there are other

criteria. Indeed, the Deegan-Packel index denoted by DP is formally given for any simple

game (N,W) and any i ∈ N , by:

DPi(N,W) :=
1

|M(W)|
∑

S∈Mi(W)

1

|S|
.

To go deeper into details, the following assumptions are those whereby the DP index

is obtained: (i) only minimal winning coalitions will form; (ii) the spoils in each minimal

winning coalition is divided equally among all its members; and (iii) each minimal winning

coalition has the same probability of forming.

Johnston power index (Johnston 1978) (J). This index is quite similar to the DP power

index, where in fact instead of considering minimal winning coalitions, we must consider

quasi-minimal coalitions. Intuitively, Johnston estimates that the measure of power must

depend on the number of decisive players in any coalition. His idea is the following, the
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larger the number of decisive players in a coalition, the lower the power of any decisive

player in that coalition. Furthermore, he suggests that the power in a winning coalition

must be shared equally among all its decisive players. Then, relatedly, Johnston index

denoted by J is given for any simple game (N,W) and any i ∈ N , by:

Ji(N,W) :=
1

|Q(W)|
∑

S∈Qi(W)

1

|η(S)|
,

3 The spatial model

This section, representing the groundwork of this paper, concerns what are known as

spatial games, based on empirical political games. Roughly speaking, these kinds of games

are defined as simple voting games correlated with players spatial preferences in the m−

dimensional euclidean space Rm. Arguably, the linear structure of Rm will help us to

capture some intuitive ideas like moderation and extremism, among others. For instance,

when m = 1, we can think of R1 as the left to right spectrum of political ideology.

Actually, in Rm, each dimension represents a political or ideological parameter, such

as left/right in economics policy, or left/right in internationalism policy, or economic

growth/environment, etc.

Therefore, spatial games represent in the best way many political games in which each

player has her ideal point2 assumed to be, related to the ideological context, her most

preferred point in a given subdomain D of Rm (voters are represented in this space by ideal

points denoting their most preferred positions on the issues). The domain D is therefore

called the ideological space associated to the spatial game, and players are identified by

their ideal points in D. Furthermore, each player’s beliefs are led by euclidean preferences

in the sense that, the more a point is close to her ideal point the more she prefers that

point. In other words, each player prefers points that are closer to her ideal point to those

further away. So far, with respect to spatial power indices, there are very few spatial

framework in the literature, but the one we will consider is presented below.

A spatial game V defined on an m-dimensional space D ⊂ Rm, is a triplet (N,W , QN),

satisfying the two following items: (i) (N,W) is a simple game, with a characteristic

2 Those kinds of points represent ideological descriptions or political profiles of players in the Euclidean space.
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function V : 2N−→{0, 1} such that V (S) = 1 if and only if S ∈ W ; and (ii) QN :=

{Qi}i∈N , where Qi ∈ D represents the ideal point of player i. We denote the spatial

game in the ideological space D ⊆ Rm by V(D) := (N,W , QN), and QN ∈ Dn is called a

constellation over N . Furthermore Gs, GNs , and Gs(QN), represent respectively the set of

all spatial games, the set of all spatial games on N , and the set of all spatial games with

the constellation QN .

3.1 Spatial framework

We assume in our model that, there is no restriction about ideal points’ positions on the

political space. In other words, our space D is the whole m−dimensional space Rm, and

for the sake of convenience V(Rm) would be simply denoted by V , with V ≡ (N,W , QN).

In addition, players are allowed to have the same ideal points3. Since players do not

necessarily have the same preferences, a useful tool for measuring the affinity’s degree

between two players, is the so-called inter-player distance defined below.

Inter-player distance. Let N be the player set, QN any constellation over N , and i, j ∈ N

two players (not necessarily with distinct ideal points). The inter-player distance between

i and j denoted by d(i, j), is the euclidean distance between Qi and Qj. Formally,

d(i, j) :=

(
m∑
k=1

(
Qi
k −Q

j
k

)2

) 1
2

. (3A)

The notion of inter-player distance allows us to define the following concept.

Mean distance. Let S ∈ 2N be any coalition, and s := |S|. The mean distance of S denoted

by d(S), is formally defined from (3A) as follows,

d(S) := 0 if s = 0 ; and d(S) :=
1

hS

∑
i,j∈S
i<j

d(i, j) otherwise.

The parameter hS := s(s − 1)/2, represents the total number of pairs in the coalition

S. The mean distance of any coalition may be interpreted as a measure of the internal

3 In fact, some other spatial approaches (e.g. Shapley (1977), Alonso-Meijide et al. (2011)), do not allow this possibility;
however we think that, it is the more natural case to fit the simple game without prior information, since players are all
supposed to have basically the same preferences.
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cohesiveness among all its members. Thus, and relatedly, we argue that, the more cohesive

the coalition, the more likely it will form.

3.2 Spatial probabilities

Following the same approach as our considered classical power indices, we will see in the

present paper that, coalitions of players play a decisive role in the computation of the

Deegan-Packel and Johnston spatial indices that we will define in the next section. For

the spatial probabilities about coalition formation, we will first consider a collection of

coalitions Γ ⊆ 2N , and then spatially determine the probability of formations of any of

those coalitions in Γ . The occurrence probability for any coalition solely depends on the

weight of that coalition, which is introduced as follows.

Weight functions on coalitions. Given any decreasing non negative function φ defined on

[0,+∞[, the weight function denoted by W , is defined as follows:

W : Γ −→ [0,+∞[

T 7−→ φ (d(T )) .

As already mentioned, the farther the ideal points of some players, the less likely those

players will form a coalition. Thus, in terms of weights, the higher the weight of a coalition

is, the more that coalition is likely to form. However, from φ and given any T ∈ Γ , the

weight W (T ) only depends on d(T ), then the lower the mean distance d(T ), the higher

the weight W (T ).4

Let us consider the two particular examples that we will also consider in the next

section. For any T ∈ Γ ,

if φ is the Inverse function (i.e. φ(x) := 1/x) , then W (T ) =
1

d(T )
. (3B)

if φ is rather exponential
(
i.e. φ(x) := e−x

)
, then W (T ) = e−d(T ). (3C)

4 Note: such functions φ, provide a family of weight functions Wφ on Γ . For staters, the reader may consider first, the
two examples given below.
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Probability of occurrence. Given any weight function W on Γ , we now define the proba-

bility of occurrence PW
Γ (S), for any S ∈ Γ as follows.

PW
Γ (S) :=

W (S)∑
T∈Γ W (T )

. (3D)

Thus,
{
PW
Γ (T )

}
T∈Γ form a probability distribution on Γ . Intuitively, the equiproba-

bility case will bring us to the assumptions of a priori power indices. So, under which

conditions could we obtain equiprobable distribution?

Case of equiprobability. It suffices to have the same non-zero weight for each possible

coalition, which would happen whenever at least one of the three following conditions,

would be satisfied5:

(C0) : all ideal points are the same;

(C1) : all inter-player distances d(i, j) are the same for all i, j ∈ N ;

(C2) : all the coalitions S ∈ Γ have the same mean distance d(S).

Remark. From the probability approach about the equiprobability case, the natural and

intuitive condition is (C0). Indeed, whenever all players have the same ideal points, there

are no longer differences between them, and hence we are brought to classical assumptions

of the a priori index. In fact, we will see next that, any spatial power index allowing this

hypothesis6, will straightforwardly coincide with its a priori version whenever the condition

(C0) occurs.

4 Deegan-Packel and Johnston spatial power indices

This section mainly represents the heart of our work. Let V ≡ (N,W , QN) be a spatial

game. We generalize below, in view of our spatial model, the two classical power indices

previously recalled. No need to argue that, by contrast to the other spatial models in

the literature such as in Owen (1971), Shapley (1977), Shenoy (1982), in our spatial

model, a huge advantage is the fact that we do not need to reduce the dimension of

5 In those three conditions, (C0) and (C1) are particular cases of (C2).
6 Actually, some of our spatial power indices constraint players to have different ideal points one another.
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data for computing any spatial power index. Therefore, in our model, we do not lose any

information in computations.

4.1 Spatial approaches of the Deegan-Packel power index

Following the same approach as Rapoport & Golan (1985) did, we consider the two first

hypotheses of the classical Deegan-Packel index unchanged, what changes now is the third

assumption, and we will spatially modify it in many ways.

4.1.1 Distance Deegan-Packel spatial index

For every spatial game V , the (Distance) Deegan-Packel spatial index denoted by ΨDDP :=(
ΨDDPi

)
i∈N , is defined for any player i as follows,

ΨDDPi (V) :=
∑
S∈Mi

1

s
PW
M(S) =

∑
S∈Mi

1

s

1/d(S)∑
T∈M 1/d(T )

, with s := |S|.

Where
(
PW
M(S)

)
S∈M is the probability distribution obtained from (3D).

To obtain the classical Deegan-Packel power index, it suffices to make d(S) be the same

non zero constant for every coalition S ∈M (condition (C2)). To do this, it suffices that

all interplayer distances are all equal to the same value, let’s say α0. Then, we will have,

PW
M(S) =

1/d(S)∑
T∈M 1/d(T )

=
1/α0∑

T∈M 1/α0

=
1

|M|
.

Thus,

ΨDDPi (V) =
∑
S∈M

1

s

1

|M|
= DPi(N,W).

Remark. If we allow players to have same ideal points, then it could happen that d(S) = 0.

In that case, 1
d(S)

would make no sense for computing the Distance Deegan-Packel spatial

index. Therefore, we require for the application of this index that, players have different

ideal points from one to another. But if it happens that some players have same ideal

points, one might consider the spatial power index we propose below.
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4.1.2 The Exponential Deegan-Packel spatial index

An alternative to the previous spatial index, is the one that we call the Exponential

Deegan-Pakel spatial index, allowing players to have same ideal points. In fact, inspired

from Bilal et al. (2001), we defined the Exponential Deegan-Packel spatial index denoted

ΨEDP :=
(
ΨEDPi

)
i∈N as follows: for every spatial game V and any i ∈ N ,

ΨEDPi (V) :=
∑
S∈Mi

1

s

exp (−d(S))∑
T∈M exp (−d(T ))

with s := |S|.

This new spatial index is more intuitive when all players have the same ideal points

(condition (C0)), which means that players are all symmetric and therefore, the index cor-

responds to the third hypothesis of the original Deegan-Packel power index, in which our

new spatial index coincides, since d(S) = 0 implies that ΨEDPi (V) = DP i(N,W). To ob-

tain the original Deegan-Packel power index, it suffices that players behave symmetrically,

whereas, the Distance Deegan-Packel spatial index requires more complex hypotheses to

do so, especially in higher dimensions m (where we should have at least m ≥ n− 1).

4.1.3 Generalized Deegan-Packel spatial index

Basically, the classical Deegan-Packel power index is defined from conditions given in

Sect. 2. The two first are retained, but the third one is replaced by the spatial probability

of forming coalition with respect to our spatial model. Given any weight function W on

Γ := M, the probability of forming any coalition S ∈ Γ is given from the probability

distribution
(
PW
M(S)

)
S∈M defined in (3D). Then, we straightforwardly obtain the Gen-

eralized Deegan-Packel spatial index denoted ΨGDP :=
(
ΨGDPi

)
i∈N and defined for any

i ∈ N as follows:

ΨGDPi (V) :=
∑
S∈Mi

1

s

W (S)∑
T∈MW (T )

where s := |S|. (?)

Under condition (C2), we are reduced to the original Deegan-Packel index. On the other

hand, from (?), when W : T 7→ 1/d(T ), we obtain the Distance Deegan-Packel spatial

index, while when W : T 7→ e−d(T ) we get the Exponential Deegan-Packel spatial index.
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4.2 Spatial approaches of the Johnston power index

Following the two previous approaches, we now define the Johnston spatial index version

with respect to our spatial model as follows.

4.2.1 Distance Johnston spatial power index

For every spatial game V = (N,W , QN), the Distance Johnston spatial power index

ΨDJ :=
(
ΨDJi

)
i∈N , is given for each player i ∈ N by,

ΨDJi (V) :=
∑
S∈Qi

1

|η(S)|
PW
Q (S) =

∑
S∈Qi

1

|η(S)|
1/d(S)∑
T∈Q 1/d(T )

.

Where
(
PW
Q (S)

)
S∈Q is the probability distribution obtained from (3D).

We clearly obtain the original Johnston power index under condition (C2).

4.2.2 The Exponential Johnston spatial index

An alternative spatial version of the Johnston power index from the previous one), which

allows players to have the same ideal points, is what we call the Exponential Johnston

spatial index denoted by ΨEJ :=
(
ΨEJi

)
i∈N and defined as follows. For everym-dimensional

spatial game V the vector ΨEJ(V) is such that, for each i ∈ N ,

ΨEJi (V) :=
∑
S∈Qi

1

|η(S)|
exp (−d(S))∑
T∈Q exp (−d(T ))

.

As above, this new spatial index is more intuitive under condition (C0), which means

that players are all symmetric and therefore, corresponds to the third hypothesis of the

original Johnston power index, in which this new spatial index coincides. To obtain the

original Johnston power index, it suffices that players behave symmetrically, which is not

the case for the Distance Johnston spatial index.

4.2.3 Generalized Johnston spatial power index

Basically, the Johnston power index is defined as given in Sect. 2. Now, we focus on the

last assumption, the one related to the coalition formation. Below is its general form with

respect to our spatial model. Given any weight function W on Γ := Q, the probability
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of forming any coalition S ∈ Γ is PW
Γ (S), as defined in (3D) . Once done, we straightfor-

wardly obtain the Generalized Johnston spatial power index denoted ΨGJ :=
(
ΨGJi

)
i∈N

which is given for each i ∈ N by:

ΨGJi (V) :=
∑
S∈Qi

1

|η(S)|
W (S)∑
T∈QW (T )

. (??)

Under condition (C2), we are reduced to the original Johnston index. On the other hand,

from (??), when W : T 7→ 1/d(T ), we obtain the Distance Johnston spatial index, while

when W : T 7→ e−d(T ) we get the Exponential Johnston spatial index.

5 Axiomatic characterizations

We first need to define some essential notions.

Unanimous spatial games. Let V ≡ (N,W , QN) be a spatial game; V is said to be unan-

imous if it has a unique minimal winning coalition. Thus, there exist S ∈ 2N such

that M(W) = {S}, and V would be henceforth denoted by VS ≡ (N,WS, QN) with

M(WS) = {S}.

Mergeable spatial games. Let V1 ≡ (N,W1, QN) and V2 ≡ (N,W2, QN) be two spatial

games. Then, V1,V2, are mergeable if, in addition to have the same constellation, they

satisfy the following property:

if S1 ∈M(W1) and S2 ∈M2(W2), then S1 * S2.

This definition says that both games have no overlap in the sense that no minimal winning

coalition in one game can be winning in the other.

Before stating the axioms, we need to define the operations ∨ and ∧ as follows. Let

N be a player set, QN ∈ Rm, and V1,V2 ∈ Gs(QN), we have V1 ∨ V2, V1 ∧ V2 ∈ Gs(QN)

where:

W(V1 ∨ V2) =W(V1) ∪W(V2) and W(V1 ∧ V2) =W(V1) ∩W(V2).

Here are our first axioms.
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A1. (Efficiency) Let V ≡ (N,W , QN) be a spatial game.

∑
i∈N

Ψi(V) = 1.

This appealing property, together with both axioms A2 - A3 below, will appear in

each forthcoming characterization.

A2. (Strong Dummy property) A player i is dummy if and only if Ψi(V) = 0.

This property ensures that only dummy players have a null power. Some spatial power

indices like the Owen-Shapley index (Shapley 1977), do not satisfy this axiom.

A3. (Vetoer property) If i, j ∈ N are veto players, then Ψi(V) = Ψj(V).

This new axiom that we propose, says that any veto player in a spatial game has the

same power, which is a desirable property since without all veto players, a coalition

can never win. Throughout this section, we will consider this axiom rather than the

standard symmetric axiom given by Shapley (1953).7

Our new axiom Vetoer property along with both the Strong Dummy property and

Efficiency, are crucial for all our three characterizations in this paper (since they appear

in each of our characterizations). Therefore, they will be maintained for the remainder of

this section. For the sake of convenience, we posit ∆(V) :=
∑

T∈M(W) W (T ).

A4. (DP-mergeability) Let V1 ≡ (N,W1, QN) and V2 ≡ (N,W2, QN) be two mergeable

spatial games. Then,

Ψi(V1 ∨ V2) =
1

∆(V1) +∆(V2)
[∆(V1)Ψi(V1) +∆(V2)Ψi(V2)] .

This is similar in spirit to Deegan & Packel (1978), p 27. It requires that power in

the merged game must be the weighted mean of powers in the component games, with

respect to ∆(V1)/[∆(V1) +∆(V2)] and ∆(V2)/[∆(V1) +∆(V2)] as weights.

Here is our first axiomatic characterization.

7 Our new axiom weakens the standard symmetric property proposed by Shapley (1953) and we argue that we can replace
the symmetric axiom by the Vetoer axiom in a large number of axiomatic characterizations, without many changes in their
corresponding proofs.
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Theorem 1 The unique spatial power index satisfying the four axioms A1 - A4 is the

Generalized Deegan-Packel spatial power index ΨGDP .

The second axiomatic characterization requires the next axiom.

A5. (DP-minimal monotonicity) Let V1 ≡ (N,W1, QN) and V2 ≡ (N,W2, QN) be two

spatial games. Then,

Ψi(V1)×∆(V1) ≥ Ψi(V2)×∆(V2),

for all player i ∈ N , such that Mi(W1) ⊆Mj(W2).

This axiom is similar to the strong monotonicity proposed in Young (1985), p 69. Here

is our second axiomatic characterization.

Theorem 2 The unique spatial power index satisfying the four axioms A1 - A3, A5 is

the Generalized Deegan-Packel spatial power index ΨGDP .

It is worth mentioning that, when the function weight W is given by, W : T 7−→

1/d(T ), the two theorems above become the first axiomatic characterizations (to be best

of our knowledge) of the Deegan-Packel spatial index proposed by Rapoport & Golan

(1985).

Now, the next axiom is mainly inspired from Lorenzo-Freire et al. (2007). Recall that

for all S ∈ 2N ,VS ≡ (N,WS, QN), with M(WS) := {S}.

A6. (J-mergeability) Let V ≡ (N,W , QN) be any spatial game such that M(W) :=

{S1, . . . , Sm}. Let M := {1, . . . ,m}, and for all S ∈ 2N , we posit, Q(S,W) :=

{T ∈ Q(W) : η(T ) = S}. Then, for each i ∈ N ,

Ψi(V) =
1∑

T∈Q(W) W (T )

∑
S∈F

∑
R∈Q(S,W)

W (R)Ψi(VS).

Where F :=
{⋂

j∈R Sj :
⋂
j∈R Sj 6= ∅, R ⊆M

}
.

Below is the first characterization of the Generalized Johnston spatial power index.

Theorem 3 The unique spatial power index satisfying the four axioms A1 - A3, A6 is

the Generalized Johnston spatial power index ΨGJ .
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6 Concluding Comments

Although the Owen-Shapley index is the most known spatial power index in the litera-

ture, the Banzhaf spatial power index proposed by Shenoy, can perform better in some real

case studies as Rapoport & Golan (1985) have known. This suggests that the widespread

Owen-Shapley spatial index can be defeated by other spatial indices in some cases —

including the ones presented in this paper. On another hand, when we need to obtain

the original power indices from the spatial ones, our indices perform better. In effect, the

restriction of the Owen-Shapley index upon its original form is “quite hard”: it requires

n = m for coinciding with the classic case. However, whenever n is bigger than 3, the com-

putation is overwhelming. So for more than four players, we get stuck on how we could

restrict to the classic case; and to overcome this latter problem, some scholars usually

use some dimensionality reduction techniques (but at the cost of lost of data). However,

and in contrast to the Owen-Shapley index, our spatial indices easily coincide with their

original forms, since it suffices to restrict all the ideal points to the same point (which

basically means that all voters have symmetric behaviors — a fundamental assumption

to the original power indices’ concept, as we already know).

Our paper might reply to the observation raised by Fuad Aleskerov in his article Power

indices taking into account agents’ preferences, which says that: “One of the main short-

comings mentioned almost in all publications on power indices is the fact that well-known

indices do not take into account the preferences of agents”. Indeed, our paper develops two

alternatives power indices which consider the preferences of the players — the Deegan-

Packel spatial index and the Johnston spatial index — but we argue that a large amount

of classical power indices can be generalized in our spatial model, a straightforward ex-

ample (among others), is the Andjiga-Berg index (Andjiga et al., 2003 p. 120). In fact,

we argue that, through the spatial model detailed in the present paper, we are able to

consistently generalize, using the same hypotheses, the most classical power indices so

that we will henceforth obtain a uniform family of spatial power indices. Another spatial

index which deserves mentioning is the generalization of the Shapley-Subik power index,

proposed by Alonso-Meijide et al. (2011) and called “Distance index”. They proposed it

along with some properties in the goal of characterizing, but without doing it. We argue
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that, with respect to our methodology of generalization using weight functions W , we can

also generalize their index, but a similar axiomatic characterization is not guaranteed so

far.

Apart from the six axioms presented in the paper, one might also investigate many

other relevant and “desirable” properties that our spatial power indices could ideally

satisfy, such as the null player property proposed by (Alonso-Meijide et al. 2011) or the

rotational invariance axiom defined in Peters & Zarzuelo (2017). Obviously, our results

can be seen as the beginning of a sequence of future researches in which we will deeply

investigate about the properties of these spatial indices. Lastly, and empirically speaking,

applications of our spatial power indices to real case studies (such as any parliament of any

country in the European Union, or others), are beyond the scope of this paper, however,

there are devoted to future works. Furthermore, the fundamental conception of power is

not discussed in this paper. Thus, whether some indices are P-power or I-power8, we just

wanted to consider the preferences of voters through their ideal points to some of the

existing power indices, and we did it.
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The support of CY Cergy Paris Université under their CY Initiative project (ANR16

IDEX 0008) is gratefully acknowledged.

Appendix: Proofs

The next lemma is useful to demonstrate our theorems. We will also need to refer to the

assumption (H0) specified below.

Lemma 1 Let N be a player set, and V1,V2 ∈ Gs(QN) be two mergeable games. Then,

1. M(W1 ∨W2) =M(W1)
⋃
M(W2), and M(W1)

⋂
M(W2) = ∅.

2. Mi(W1 ∨W2) =Mi(W1)
⋃
Mi(W2), and Mi(W1)

⋂
Mi(W2) = ∅, for all i ∈ N .

3. ∆(V1 ∨ V2) = ∆(V1) +∆(V2).

Proof. Clearly obvious by definitions.

8 See more about P-Power and I-power in Felsenthal et al. (1998)
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Assumption (H0): V ≡ (N,W , QN) is a spatial game such that M(W) := {S1, . . . , Sm},

M := {1, . . . ,m}, and for all p ∈M,Vp ≡ (N,Wp, QN), with M(Wp) := {Sp}.

Proof of Theorem 1.

Existence : obviously, ΨGDP satisfies the three axioms A1 - A3. For the last one A4,

let V1,V2 be two spatial games, then with i ∈ N we have :

ΨGDPi (V1 ∨ V2) :=
∑

S∈Mi(W1∨W2)

1

|S|
W (S)

∆(V1 ∨ V2)
=

1

∆(V1 ∨ V2)

∑
S∈Mi(W1∨W2)

W (S)

|S|

(∗)

1

∆(V1 ∨ V2)

 ∑
S∈Mi(W1)

W (S)

|S|
+

∑
S∈Mi(W2)

W (S)

|S|


(†)

1

∆(V1 ∨ V2)

[
∆(V1)ΨGDPi (V1) +∆(V2)ΨGDPi (V2)

]
.

Where (∗) is by Lemma 1, and (†) by definition of ΨGDP . Therefore A4 is satisfied.

Uniqueness : let φ be a spatial power index satisfying all the four axioms A1 - A4. Let

V be a spatial game from assumption (H0), then by the three axioms A1 - A3, we

have for any i ∈ N ,

φi(Vp) =


1
|Sp| if i ∈ Sp

0 otherwise.
(E1)

Thus, axiom A4 implies that,

φi(V) = φi(V1 ∨ V2 ∨ · · · ∨ Vm) =
1

∆(V)

∑
p∈M

∆(Vp)φi(Vp).

Then, φi(V)
(∗)

1

∆(V)

∑
p∈M

W (Sp)φi(Vp) (E1)

1

∆(V)

∑
S∈Mi(W)

W (S)

|S|
= ΨGDPi (V).

Where (∗) is by definition of ∆(Vp). 2

Proof of Theorem 2.

Existence : clearly, ΨGDP satisfies the three axioms A1 - A3. Now, let V1,V2 be two

spatial games and i ∈ N be such that Mi(W1) ⊆Mi(W2), then:
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ΨGDPi (V1) =
∑

S∈Mi(W1)

1

|S|
W (S)

∆(V1)
.

Furthermore, ΨGDPi (V2) :=
∑

S∈Mi(W2)

1

|S|
W (S)

∆(V2)

=
1

∆(V2)

 ∑
S∈Mi(W1)

W (S)

|S|
+

∑
S∈Mi(W2)\Mi(W1)

W (S)

|S|

 .
Thus, ΨGDPi (V2)×∆(V2) ≥ ΨGDPi (V1)×∆(V1). Therefore, A5 is satisfied.

Uniqueness : let φ be a spatial power index satisfying the four axioms of the theorem.

The uniqueness of φ will be proved by induction.

Let V ∈ Gs(QN) with |M(W)| = 1, then there is S ∈ 2N such that M(W) := {S}.

Clearly, the three axioms A1 - A3 imply that φi(V) =


1
|S| if i ∈ S

0 otherwise
.

Then, the solution φ is unique when |M(W)| = 1.

Next, assume the uniqueness of φ whenever |M(W)| ≤ m − 1 with m > 1, and let

V be any spatial game with |M(W)| = m. We posit M(W) := {S1, S2, . . . , Sm}.

Let R be the set of veto players
(
i.e R :=

⋂
S∈W S

)
. Consider for all i ∈ N with i /∈ R,

the spatial game Vi ≡ (N,Wi, QN) where M(Wi) := {S ∈M(W) : i ∈ S}. Given that

Mi(Wi) =Mi(W), by axiom A5 we obtain φi(V)×∆(V) = φi(Vi)×∆(Vi). Therefore,

for all i /∈ R, it holds that: φi(V) = ∆(Vi)
∆(V)

φi(Vi). However, for all i /∈ R, |M(Wi)| < m,

and then, by the induction basis, φi(Vi) is unique. That is to say, φi(V) is unique for

all i /∈ R.

Henceforth, it remains to show the uniqueness of φi(V) when i ∈ R. Indeed, through

axiom A3, there exists a constant c, such that for all i ∈ R, φi(V) = c. Since φi(V) is

unique for all i /∈ R, axiom A1 enforces the uniqueness of c. 2

Proof of Theorem 3. For this proof, we consider a game V as given in assumption (H0).
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Existence : clearly, ΨGJ satisfies the three axioms A1 - A3. Thus, to show that it

also satisfies axiom A6, let us consider for all S ∈ 2N , the unanimous spatial game

VS ≡ (N,WS, QN). Hence, by definition of such a game, we have for each i ∈ N :

ΨGJi (VS) =


1
|S| if i ∈ S

0 otherwise .
(E2)

Next, take any spatial game V and any player i ∈ N . We have by definition of ΨGJ ,[∑
T∈Q

W (T )

]
ΨGJi (V) =

∑
R∈Qi(W)

W (R)

|η(R)|
=

∑
S∈F

∑
R∈Q,η(R)=S

W (R)ΨGJi (VS)

Thus,

[∑
T∈Q

W (T )

]
ΨGJi (V)

(E2)

∑
S∈F

ΨGJi (VS)
∑

R∈Qi(S,W)

W (R).

Hence, Ψi(V) =
∑
S∈F

∑
R∈Q(S,W) W (R)∑
T∈Q(W) W (T )

ΨGJi (VS), which means that ΨGJ satisfies A6.

Uniqueness : let φ be any spatial index satisfying the four axioms in the theorem.

Consider S ∈ 2N and the unanimous game VS, then by the axioms A1 - A3, we

have :

for all i ∈ N, φi(VS) =


1
|S| if i ∈ S

0 otherwise
= ΨGJi (VS).

Now, let V be any spatial game, by axiom A6 we have:

for all i ∈ N, φi(V) =
∑
S∈F

∑
R∈Q(S,W) W (R)∑
T∈Q(W) W (T )

φi(VS).

However, for all i ∈ N φi(VS) = ΨGJi (VS), which implies that φi(V) = ΨGJi (V). 2
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