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Abstract

This article develops a methodology to compute up-to-date quarterly macroeco-

nomic data for emerging countries by adapting a well-known method of temporal

disaggregation to time series with very small sample size and unstable relationships

between them. By incorporating different procedures of structural break detection,

the prediction of higher-frequency estimations of yearly official data can be improved.

A methodology with a model selection procedure and disaggregation formulas is pro-

posed. Its predictive performance is assessed by using empirical advanced countries

data and simulated time series. An application to the Chinese national accounts al-

lows the estimation of the cyclical components of the Chinese expenditure accounts and

shows the Chinese economy to have second-order moments more in line with emerging

countries than advanced economies like the United States.

*This is the last version of a discontinued project which was initially released in June 2019. Most results

have been generalized in a more recent work.
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1 Introduction

In order to analyze the macroeconomic fluctuations of a particular economy, time se-

ries with a frequency higher than annual are preferable. Unfortunately for both the

academic community and the practitioners interested in studying the business cycles

of important but opaque emerging countries such as China or Russia, these frequencies

are not available for such fundamental aggregates as the ones documented in national

accounts. Official free access time series provided by national statistics administrations

are usually insufficient: data with a long history are of annual frequency and data with

higher frequency have a short history. If the annual data can be easily deflated by find-

ing or approximating price indexes for each account, business cycle analyses still require

up-to-date quarterly or monthly series. Chow and Lin (1971) details the interpolation,

distribution, and extrapolation of quarterly data using monthly indicators. Stram and

Wei (1986) and Wei and Stram (1990) exploits the autocorrelation structure of the

initial data without any additional information. While both methods are adaptable for

disaggregating annual data, the first method which relies on related higher frequency

series fits our case of interest considering the much lower abundance of the observable

data. The principle is to incorporate fluctuations from higher-order frequency indica-

tors while retaining the annual aggregated level of the series to disaggregate, and the

procedure is straightforward: an annual prediction model can be estimated by linking

the annual accounts and the annual aggregations of the quarterly or monthly indicator,

then estimated coefficients are applied to the observed quarterly or monthly indicators

to estimate a quarterly or monthly disaggregated national account time series which

are constrained to add up to the observed yearly data. This method assumes a sta-

ble linear relationship between the national accounts series and the indicator series,

which is unlikely to be true for emerging markets. As a consequence, the behavior of

the macroeconomic aggregates and their relationship may also change over the period,

despite the shortness of the series, it is then useful to allow for structural change in

the parameters of the linear relationship.

Hansen (1992a) provides a test for parameter stability with an endogenous (or un-

known) date of structural break which is only valid if the regressors are stationary.

Since annual national accounts data are often found to be non-stationary, especially

for emerging markets, a test of parameter instability with non-stationary regressors is

more adapted, such as proposed by Hansen (1992b). That being said, the validity of

the predicting model resides in the stationarity of the error process, no matter how we

decide to specify the structural changes. Although Chow and Lin (1971) imposes the

stationarity of the series, which can be attained by differencing the data (Fernandez
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(1981)), the residuals may already be stationary if the series are cointegrated, which

would avoid unnecessary transformation of the data. Since conventional cointegration

tests such as residual-based augmented Dickey-Fuller (ADF) tests lose significant power

in the presence of a structural change, Gregory and Hansen (1996) have developed a

test of the null of no cointegration against the alternative of cointegration with a struc-

tural break, which we will use as a first step to select the linear relationship between

the annual national accounts data and the related infra-annual indicators. This test is

better used on long series as it shows significant size distortion in small sample (Cook

(2006)), we therefore need to assess and adapt its use for time series of small or very

small sample sizes beforehand.

Our main objective is to predict quarterly estimates of annual aggregates, which is a

different approach than nowcasting procedures which predicts up-to-date annual aggre-

gates from higher frequency and contemporaneous data. Testing for stationary resid-

uals however does not guarantee a small prediction error. Therefore, we confront the

cointegration with structural break approach with a prediction-focused selection pro-

cess that minimizes an observable prediction error such as the root mean square error

of the annual predicted aggregates. The first section details the different methodologies

we adopt for the disaggregation process. The second section illustrates the competing

methodologies by disaggregating two components of the Chinese national accounts.

The third section assesses the performance of the methodologies in order to deduce a

final disaggregation process, by applying them to the US data where we observe the

quarterly series, then to simulated data to study their performance in terms of power

and prediction error. The final section gives an example of a business cycle study made

possible by the disaggregation of the Chinese national accounts with a basic business

cycle stylized facts study and its comparison to former results in the literature for other

countries.

2 Methodology

The method of disaggregation introduced by Chow and Lin (1971) uses the contem-

porary linear relationship between a given time series and the temporal aggregates of

higher frequency indicators to predict the former, given the stationarity of the residuals

of the relationship. In practice, the test of the stationarity of the residuals of the model

linking the series of interest and its aggregated indicator is identical to a cointegration

test. When studying emerging countries’ data, two problems arise: the available time

series have a very small number of observations (less than fifty for annual data), and
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the linear relationship is likely to be unstable in the sense that its parameters are sub-

jected to at least one structural change. In order to take into account time-varying

parameters in very small samples, we compare two competing methods to modelize and

detect structural breaks: the test of cointegration with an unknown structural break

of Gregory and Hansen (1996) which minimizes the Augmented Dickey-Fuller (ADF)

statistics of the unit root test of the residuals of the model, and a procedure which

minimizes the prediction error of the annual series to disaggregate. In this section we

detail a two-step methodology for the disaggregation of an annual data series using a

related quarterly indicator, by in the first place quickly recalling the case without a

structural change derived initially by Chow and Lin (1971), and then expose the case

with structural change.

2.1 The case without structural change in very small sam-

ple

For the study, we will define T as the length of the low-frequency series and f as

the number of observations of the high frequency related series at each date (f = 4

for quarterly indicators). Uppercase and lowercase letters respectively stand for low

and high-frequency time series. Following Chow and Lin (1971), the underlying high-

frequency model can be written as:

y = zΓ + u (1)

where y =
(
y1, . . . yfT

)′
is the unobserved quarterly series of interest, z =

(
1fT , x

)
with 1p a p-dimensional column vector of ones and x =

(
x1, . . . xm

)
the m quarterly

indicators, xi =
(
xi,1, . . . xi,fT

)′
for i = 1, . . . ,m, and Γ a vector of coefficients. The

residuals u are usually set to follow an AR(1) process such that ut = ρut−1 + εt for

t ∈ {1, . . . , fT}, εt being a white noise disturbance. The non stationary case ρ = 1 will

be given a particular treatment, as in Fernandez (1981).

For the series of interest, only the annual aggregates Y = Ay are observed, where

A= IT ⊗1′f is a (T ×fT ) aggregating matrix, with Ip the p-dimension identity matrix.

Y can be expressed as a linear model of the annual aggregates Z = Az and U = Au

such that:

Y = ZΓ + U. (2)

If u follows an AR(1), it is easily shown that U follows an ARMA(1,1). If u is I(1), U

is also I(1). In practice, the choice between the two specifications will depend on the
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rejection or not of the stationarity of U. A simple method is to test for a unit root in

U. If it is rejected, we can obtain the quarterly prediction ŷ for Y as:

ŷ = zΓ̂ + (D′fTDfT )−1A′(A(D′fTDfT )−1A′)−1(Y−AzΓ̂)

where Γ̂ = (z′A′Az)−1z′A′Y
(3)

where Dp is a ((p − 1) × p) matrix that converts a time series to its first differences,

such that

Dp =


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −1 1

 .

If U is not stationary, the model will be estimated in first difference1, which we define

as the model dO:

DTY = Z∆Γ + V (4)

where Z∆ =
(
1T−1, DTAx

)
. If the intercept coefficient in the model in first differ-

ence is significant, it implies that there is a significant linear trend component. The

disaggregation2 formula is therefore (see proof in Appendix A):

ŷ = ŷ11fT + z∆Γ + (D′fTDfT )−1A′(A(D′fTDfT )−1A′)−1(DTY− Z∆Γ̂)

where Γ̂ = (Z′∆Z∆)−1Z′∆DTY
(5)

where ŷ1 = Y1
f +
(
f−1
2f , (x1 −X1)′

)
Γ̂ and z∆ = {z′∆t}t with z∆t =

(
t−1
f2 , (xt − x1)′

)′
.

2.2 Taking into account parameter instability

It is known that unit root tests have low power against structural breaks (e.g. Gregory

et al. (1996) for the test of the null of no cointegration). Taking into account parameter

instability in the regression model can therefore avoid unnecessary differentiation of the

variables. Let us define nb as the annual date of structural break in the parameters,

such that some coefficients of the linear relationship change at date t ≥ tb. Four types

of structural break in the coefficient values are considered3 and can be expressed in our

1We are less restrictive than Fernandez (1981) by allowing for an intercept in the differentiated model. If

the intercept is proven not to be significant, its estimate should be small enough so that the resulting model

isn’t quantitatively very different.
2We cannot use the disaggregation formula of Fernandez (1981) as the assumption of constancy of the

first year values does not hold and would considerably impact the estimates considering our small sample

sizes.
3These are the models for which asymptotical properties of the statistics for testing cointegration with

structural breaks have been derived by Gregory and Hansen (1996).

5



framework by redefining the regressors Z and Z∆ and their high-frequency counterparts

z and z∆ (see Appendix B for the proof):

� model C: I(0) residuals with a shift in the intercept

Zt =
(
1, X′t, 1t≥tb

)′
and zt =

(
f−1, x′t, f−11t≥f(tb−1)+1

)′
(6)

� model CS: I(0) residuals with a shift in the intercept and the slope

Zt =
(
1, X′t, 1t≥tb , X′t1t≥tb

)′
and zt =

(
f−1, x′t, f−11t≥f(tb−1)+1, x′t1t≥f(tb−1)+1

)′
(7)

� model dC: I(1) residuals with a shift in the intercept

Z∆t =
(
1, (1− L)X′t, 1t≥tb

)′
and

z∆t =

(
t− 1

f2
, (xt − x1)′,

t− f(tb − 1.5)− 0.5

f2
1t≥f(tb−1)+1

)′ (8)

� model dCS: I(1) residuals with a shift in the intercept and the slope

Z∆t =
(
1, (1− L)X′t, 1t≥tb , (1− L)X′t1t≥tb

)′
and

z∆t =

(
t− 1

f2
, (xt − x1)′,

t− f(tb − 1.5)− 0.5

f2
1t≥f(tb−1)+1,

(
xt −

Xtb−1

f
)′α̂1

)
1t≥f(tb−1)+1

)′
(9)

The date of structural break tb is however unknown. We compare two different ap-

proaches to select it. One approach is to select the date which yields a stationary

model: it is exactly a test of cointegration with an endogenous structural break, as in

Gregory and Hansen (1996). Another approach is to select the date which yields the

best prediction by minimizing the annual prediction errors.

2.3 Model selection by rejecting the absence of cointegra-

tion with an endogenous structural break

The existing method partly consists in checking the absence of a unit root in the

residuals of a model without a structural break. In an approach to consider unit

root testing of the residuals as a model selection criterion, a natural extension of

the existing method is to take into account a structural break in parameters in the

cointegration model. Such a test of no cointegration with an unknown structural break

is developed by Gregory and Hansen (1996). The estimated structural break date t̂b is

selected by minimizing the unit root test statistic of the residuals among models where
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tb ∈ Tb = [[0.15T, 0.85T ]], where [[·]] stands for the integer part function. Since we are

interested in small sample series, we compute the ADF statistics ADF (tb,M) for each

possible date tb and model M ∈M = {O, C, CS, dO, dC, dCS}, where the number of

lags in the ADF model is the smallest for which the residuals of the ADF model are

not serially correlated. For each model M considered, we note the resulting statistics

testing the null hypothesis of no cointegration against the alternative of cointegration

with endogenous structural break ADF ∗(M) such that

ADF ∗(M) = inf
tb∈Tb

ADF (tb,M). (10)

Gregory and Hansen (1996) compute asymptotical critical values for ADF ∗(M), which

are reported in Table 1. They also assess the simulated performance of the test statistics

and show that the ADF-type statistics are negatively biased with respect to the null

in small sample. More precisely, they find that for sample size T = 100 and using the

asymptotical critical value at level 5% for models C and CS on 2 500 replications of

data simulated under the null, the test statistic respectively rejects 8 and 5 percentage

points too often the null hypothesis when the latter is true. For a smaller sample size

T = 50, the size distortion increases to 12 and 8 percentage points respectively.

M 1 % 2.5 % 5 % 10 % 97.5 %
C -5.13 -4.83 -4.61 -4.34 -2.25
CS -5.57 -5.19 -4.95 -4.68 -2.55

Table 1: Asymptotical critical values for the cointegration test of Gregory and Hansen (1996) with

one regressor (m = 1), by model M

The sample sizes we are interested in are much smaller, with T = 50 being a

high upper bound when it comes to emerging countries’ data. We therefore simulate

data with sample size T < 50, using the following calibration under the null of no

cointegration :{
Yt = 1 + 2Xt + Ut, Ut = Ut−1 + εt, εt ∼ NID(0, 1)
Xt = −1 + Vt, Vt = Vt−1 + ηt, ηt ∼ NID(0, 2)

(11)

The chosen parameter values follow Gregory and Hansen (1996), and are nuisance

parameters that do not matter under the null. Table 2 shows the empirical rejection

frequencies (ERFs) under the null hypothesis, using the asymptotical critical values

at the 5% level for 50 000 replications of data generated by (11). Consistently with

Cook (2006), the test expectedly over rejects the null hypothesis as the sample size

decreases, and size distortion can be very large for very small sample sizes, up to 28
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percentage points for both models C and CS. Using asymptotical critical values would

therefore not be adapted in order to select the type of structural break model for our

methodology, especially when the amplitude of size distortion is heterogenous between

the models.

T model C model CS
15 0.28 0.28
20 0.23 0.23
30 0.18 0.17
50 0.12 0.12

Table 2: ERFs at the 5% nominal level using asymptotical critical values from Gregory and Hansen

(1996) with one regressor, by model and sample size T

To correct for size distortion, we compute size-adjusted approximate critical values for

every model. 50 000 replications of time series of size T = 13, ..., 50, 100, 200, 500, 1000

are simulated using the previous data generating process under the null hypothesis. We

also use a response surface method à la MacKinnon (1991) where we fit a polynomial

of 1/T by OLS for each q’th quantile of the simulated distribution of the test statistics

and model M :

Crt(T, q,M) = ψ∞ +
K∑
k=1

ψkT
−k + error.

The order K of the polynomial is selected by minimizing the corrected Akaike infor-

mation criterion (AICc hereafter)4. The polynomial functions of 1/T are mainly of

order 3 or 4 for small quantiles, and of lesser order for higher quantiles. This differs

with Gregory and Hansen (1996) for whom first-order polynomials are fitted. We can

explain it with the fact that they simulate series with T = 50, 100, 150, 250, in which

cases the tests statistics are located in the flatter part of the functions of 1/T . As we

obtain a function of T to estimate the critical values of each quantile, we can compute

an approximate distribution of the test statistic for each model and each sample size.

Table 3 reports the resulting size-adjusted critical values for very small sample sizes

(T ≤ 50), as well as the asymptotic ones which correspond to the estimated intercept of

the polynomial fit. We naturally observe for every type of structural break model that

the critical values increase sharply for very small sample sizes and then converge to the

asymptotic values. Moreover, we succeed in replicating the ones obtained by Gregory

and Hansen (1996). From the cumulative distribution of the test statistics we obtain

4The AICc is the AIC corrected for small sample sizes, such that AICc = AIC+ 2K2+2K
T−K−1 where K is the

number of parameters in the regression.

8



for every sample size T , we can compute p-values which can be used as a selection

criterion for the choice of the model for the regression step of our methodology. More

precisely, we can select the model which rejects the unit root in the residuals, i.e. the

model which yields a p-value associated with the test statistic lower than a selected

level. If several models reject the unit root, we choose one which doesn’t differentiate

the series. If the candidate models are of the same order of differentiation, the one

which fits better the data is selected. The performance of the size-adjusted critical

values in terms of power is discussed in Section 3.

Level
model 0.01 0.025 0.05 0.1 0.975

T = 15

O -5.13 -4.47 -3.97 -3.47 -0.37
C -7.52 -6.73 -6.16 -5.58 -2.38
CS -8.02 -7.18 -6.57 -5.96 -2.55

T = 20

O -4.79 -4.25 -3.81 -3.37 -0.35
C -6.75 -6.17 -5.73 -5.25 -2.37
CS -7.19 -6.59 -6.11 -5.62 -2.56

T = 30

O -4.48 -4.03 -3.67 -3.28 -0.34
C -6.16 -5.72 -5.35 -4.97 -2.35
CS -6.55 -6.08 -5.72 -5.3 -2.56

T = 50

O -4.24 -3.85 -3.53 -3.18 -0.32
C -5.74 -5.38 -5.08 -4.73 -2.32
CS -6.11 -5.73 -5.42 -5.07 -2.55

T =∞

O -3.9 -3.59 -3.33 -3.04 -0.3
C -5.11 -4.83 -4.59 -4.32 -2.26
CS -5.41 -5.17 -4.94 -4.66 -2.54

Table 3: Approximate size-adjusted critical values for one regressor

2.4 Model selection by minimizing annual prediction er-

rors

Choosing the model which rejects with the widest margin the unit root in the residuals

puts in the model selection more weight on the absence of persistence in the residuals,

which can be at the expense of the error variance. Therefore, we consider an alternative

method that is more direct than testing for a unit root in the residuals by simply

selecting the model and the structural break date which minimizes the error in the

prediction of the annual aggregates, here measured by the root mean squared error.

For a given model M , if Ŷ(nb,M) denotes the annual predictions of Y by the model
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M with a structural break in parameters occurring at nb
5, we obtain for each model

M ∈M a prediction error criterion RMSE(M) such that:

RMSE(M) = min
tb∈N

√√√√ 1

T

T∑
t=1

(
Ŷt(tb,M)− Yt

)2
. (12)

We then select the model which minimizes RMSE(M), i.e. yields min
M∈M

RMSE(M).

3 Monte Carlo simulation

Most emerging and advanced countries disclose their annual national account data for a

particular year around the third quarter of the following year. It implies that quarterly

indicators are disclosed between 3 and 7 quarters ahead of the annual publications of

the national accounts. In order to assess if our method improves the prediction of the

data, we look at its ability to predict the quarterly account series of the concomitant

period to the indicator (in-sample prediction), as well as up to two years ahead of

the last concomitant year (out-of-sample prediction). At first, we use Monte Carlo

Simulations to analyze the performance of our two methods: in terms of power and

predictive performance for one based on the test of cointegration, and in terms of pre-

dictive performance for the other based on minimizing the RMSE. Then we empirically

assess the performance of the method by using US data on consumption expenditure

from which we compare the quarterly disaggregation of annually aggregated real con-

sumption personal expenditures using retail sales data as an indicator with observed

quarterly data.

3.1 Calibration

In order to obtain an assessment of the ability of our method to predict a quarterly

series by disaggregating its annual aggregation using a related series, we simulate small

and independent quarterly series and a related quarterly indicator, for which we will

be able to control for the type of structural break model which generates them. For

each replication of the simulated series, we first simulate the indicator x as a random

walk:

xt = 2 + xt−1 + ηt, ηt ∼ N (0, 10).

5The Ŷ are direct estimates for models estimated in level, or such that Ŷt = ∆̂Y t + Ŷt−1 for t > 1 and

Ŷ1 = Y1 for models estimated in first difference. The RMSE for all models have then the same magnitude

by construction.
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In a typical case of temporal disaggregation, the related series x used as a predictor

must be a good indicator of the series Y we want to disaggregate. As a consequence,

most of the variance of the disaggregated values y must be explained by the variance

of x. Moreover, we want to distinguish the performance of our method with or without

a structural change, so we choose parameter values that match the Chinese national

accounts data but also imply a sharp structural change. For each model, 10 000

replications of a couple of quarterly series {y,x} are simulated, following the subsequent

data generating processes (DGPs):

ut = ρut−1 + εt εt ∼ N (0, 1)

For the models with I(0) residuals:

(O) yt = 8 + 0.9xt + ut

(C)

{
yt = 3 + 0.9xt + ut t < 4tb − 3
yt = 16 + 0.9xt + ut t ≥ 4tb − 3

(CS)

{
yt = −1 + 1.4xt + ut t < 4tb − 3
yt = 19 + 0.9xt + ut t ≥ 4tb − 3

For the models with I(1) residuals, vt = vt−1 + ut and consistently with the data, the

change in the constant coefficient is of much smaller amplitude since it implies a change

of trend in the model in level:

(dO) yt = 1 + t−2.5
16 + 0.8xt + vt

(dC)

{
yt = 1 + 0.3 t−2.5

16 + 0.8xt + vt t < 4tb − 3

yt = 1 + 0.3 t−2.5
16 + 3.3 t−4tb+5.5

16 + 0.8xt + vt t ≥ 4tb − 3

(dCS)

{
yt = 1 + 0.3 t−2.5

16 + 1.4xt + vt t < 4tb − 3

yt = 1 + 0.3 t−2.5
16 + 3.3 t−4tb+5.5

16 + 1.4
Xtb−1

4 + 0.8(xt −
Xtb−1

4 ) + vt t ≥ 4tb − 3

We consider ρ = 0 and ρ = 0.5. For each replication of quarterly series, we can aggre-

gate them to obtain annual series of sample size Ttotal = Tin−sample + 2Tout−of−sample,

such that Tin−sample = T ∈ {15, 20, 25, 30, 50} and Tout−of−sample = 4. The date of

structural break tb is random and, if n ∈ {−3,−2, ..., T, T + 1, ..., T + 4}, is drawn in

from uniform distribution U [[0.15T, 0.85T ]]. In the end, we have 10 000 replications of

quarterly series {y,x} of size T = 92, 112, 132, 152, 232.

3.2 Power of the test of cointegration with endogenous

structural change

Selecting a model which rejects the presence of a unit root in the residuals can help

improve the prediction of the disaggregated estimates. Indeed, the less persistent the
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residuals are, the lesser the discrepancies between the model estimates and the observed

Y will affect the accuracy of the predictions. However, using the rejection of the null

as a selection criterion requires the corresponding test to have good power for the small

samples considered. Table 4 reports the empirical rejection rates at the 5% nominal

level when the alternative of no unit root in the residuals is true and the type of

regression model is the data generating process, for sample sizes 15, 20, 25, 30 and

50 (the complete tables of the regression of each model against each true model are

reported in Appendix C). As expected, the power declines when the serial correlation

ρ = 0 ρ = 0.5
T 15 20 25 30 50 15 20 25 30 50
O 0.589 0.826 0.94 0.985 0.995 0.351 0.572 0.775 0.899 0.994
C 0.174 0.309 0.537 0.865 1 0.095 0.13 0.307 0.725 1
CS 0.263 0.38 0.572 0.796 1 0.188 0.238 0.363 0.606 0.996
dO 0.203 0.417 0.649 0.83 0.99 0.116 0.233 0.406 0.608 0.973
dC 0.092 0.167 0.268 0.406 0.921 0.064 0.101 0.149 0.237 0.7
dCS 0.093 0.171 0.284 0.444 0.941 0.057 0.088 0.138 0.212 0.696

Table 4: Power of the test: ERFs at the 5% nominal level when there is no unit root in the residuals

and the regression model is the true model

ρ increases. More specifically for the models estimated in level with ρ = 0, the test

without structural break rejects the unit root in the residuals when there is none with

59% probability for the smallest sample size T = 15, then with a more reasonable 83%

for T = 20, and at least 94% for T > 25. For the models with structural breaks,

the probability is larger than 50% for T ≥ 25 and larger than 80% for T ≥ 30. This

reveals a low power for the test in level in very small samples, but a reasonable power

as the sample size increases. When the models are estimated in first difference, the

model without structural break has low power in very small sample (20% probability

at T = 15, increasing to a reasonable 65% at T = 25, 84% at T = 30, and larger

than 99% for T ≥ 50), whereas the models with structural break (dC) and (dCS) have

even lower power (probability smaller than 50% for T ≤ 40, and larger than 90% for

T ≥ 50). In general, the test has reasonable power for small sample sizes when there is

no structural change, whereas the power is low for very small sample sizes when there

is a structural change. Therefore, we cannot expect the method relying on a test of

cointegration with endogenous structural break to improve very much the prediction

of the disaggregated estimates for very small samples (T < 30) for the DGPs with I(0)

residuals and for small samples (T < 50) for the DGPs with I(1) residuals.
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3.3 Predictive performance

The main objective of the procedure is to better predict quarterly series than the usual

method which considers neither structural breaks nor very small sample series. We con-

sider three alternatives in selecting the regression model. In the benchmark method,

no structural change is considered. Model O is selected if the unit root in the residuals

is rejected, model dO if not. In the test-approach method, the best model with or

without a structural change which rejects the unit root in the residuals is selected.

As we confront both models in level and in first difference, selection by minimizing

an information criterion is not possible. We select the most parsimonious one, i.e.

in order of preference: O, C, CS, dO, dC, dCS. Model dO is selected when none of

the models rejects the unit root. In the RMSE-approach method, we select the model

which minimizes RMSE(M). Table 5 reports the ratio of the quarterly prediction error

by using the test-approach or the RMSE-approach on the quarterly prediction error

by using the benchmark method.

ρ = 0
test-approach RMSE-approach

T 15 20 25 30 50 15 20 25 30 50
O 1.002 1 1 1 1 1.164 1.101 1.041 1.029 1.002
C 1.168 0.992 0.901 0.827 0.916 0.495 0.592 0.669 0.727 0.848
CS 1.07 0.92 0.855 0.828 0.892 0.868 0.872 0.873 0.822 0.807
dO 1.049 1.047 1.034 1.038 1.039 1.421 1.307 1.254 1.243 1.142
dC 1.02 1.001 0.984 0.975 0.998 0.937 0.845 0.794 0.77 0.733
dCS 1.04 1.043 1.049 1.057 1.09 1.035 0.947 0.909 0.894 0.816

ρ = 0.5
test-approach RMSE-approach

N 15 20 25 30 50 15 20 25 30 50
O 1.007 1.002 1 1 1 1.26 1.108 1.091 1.055 1.009
C 1.229 1.087 1.035 0.929 0.984 0.554 0.625 0.688 0.733 0.838
CS 1.118 1.025 0.952 0.904 0.911 0.866 0.902 0.854 0.837 0.81
dO 1.029 1.037 1.03 1.03 1.035 1.384 1.299 1.255 1.24 1.188
dC 1.025 1.026 1.029 1.029 1.043 1.243 1.152 1.105 1.092 1.019
dCS 1.037 1.034 1.033 1.032 1.046 1.25 1.178 1.129 1.122 1.048

Table 5: Quarterly prediction error by method with structural breaks relative to the prediction

error of the method without structural breaks

For ρ = 0, when the true model is not subject to a structural change (models O and

dO), considering a structural change and selecting the type and date by a cointegration
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with endogenous break test approach does not improve the prediction. The predictions

are in fact almost identical because the procedure would select the models without any

structural change. When there is a structural change for the model with I(0) residuals

(C and CS), there is a slight loss of accuracy for T = 15 but a gain in accuracy of

at least 10% for model C and T ≥ 25 and for model CS and T ≥ 20. The gain in

accuracy is almost inexistent or slightly negative for the cases in first difference for

our calibration, mainly because the true change in parameters is of much smaller mag-

nitude in the regression models. However, selecting the type and date of structural

change by minimizing the annual prediction error significantly improves the predic-

tions when there is indeed a structural change in the true model. For the models with

I(0) residuals, the gain in accuracy is from 15% to 50% for model C, and from 13%

to 20% for model CS, and respectively for the models with I(1) residuals from 6% to

26% and from -4% to 18%. The drawback is that when there is no structural change

in the true model, considering a structural change in the regression implies a loss of

accuracy which becomes very significant for the model in first difference (from -14% to

-42% for model dO against from 0% to -16% for model O). For ρ = 0.5, all predictions

lose accuracy, and there is only a gain for the models with I(0) residuals. However the

RMSE-approach yields less accurate predictions for the models with I(1) residuals in

very small sample.

In conclusion, updating the disaggregation method by considering a parameter insta-

bility in the linear model has different implications depending on the underlying data

generating process. When there is a structural change, selecting its type and date with

the RMSE-approach improves significantly the accuracy of the prediction, and much

more so than selecting them with the test-approach. However, when there is no struc-

tural change, the RMSE-approach implies a loss in accuracy while the test-approach

doesn’t significantly affect it, so it is better not to consider any structural change. As

the true generating process isn’t known practically, a mixed procedure conciliating all

advantages of our methods is proposed as follows: if the test-approach rejects the unit

root in any model with a structural change, one should use the RMSE-approach to

select the date of the structural break for the corresponding type of model. If the

test-approach does not reject the unit root for a model with a structural change, one

should not consider any structural change in the model.
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3.4 Application and empirical performance on US data

3.4.1 The Data

We try to predict the US quarterly series of national accounts representing national

consumption expenditures and net exports of goods and services6. For the former, the

real personal consumption expenditure series (rpce) is considered, for which quarterly

observations of seasonally adjusted data are available for the period from 1959Q1 to

2021Q3. The quarterly indicator used is a seasonally adjusted quarterly series of real

retail sales (rretails), available from 1992Q1 to 2021Q3. For the trade data, the

quarterly series of net exports of goods and services (nxgs) are available from 1947Q1

to 2021Q2, and we use the quarterly series of net exports of goods (nxg) as an indicator,

which is available from 1992Q1 to 2021Q2. After aggregating the quarterly national

accounts data into annual series, we apply the methodology presented in the previous

section.

3.4.2 Predicting the US personal consumption expenditures

Table 6 reports the results from the regression of annual rpce on annual rretails,

for each type of model considered in the previous section. If no structural break is

considered as in the benchmark method, the unit root in the residuals is not rejected

either in the model in level or in first difference, therefore model dO is selected. If

we consider a cointegration model with a structural break in the parameters, there is

also no model for which the unit root in the residual is rejected. In this case, we will

also select dO. However, the annual prediction errors are minimal for model CS with

a break in 2008.

With the selected models, we disaggregate rpce into quarterly estimates which we

compare to the observed quarterly values. Figure 1 represents the prediction errors.

By comparing the estimates by method ŷ to the observations y, we assess the actual

gain in accuracy by using our new methodology. The average quarterly prediction

squared error is calculated for the models selected by each approach:

qerr =

√√√√ 1

119

2021Q3∑
t=1992Q1

(ŷt − yt)2.

Not considering structural changes (benchmark) implies a quarterly root mean square

error of 22.65 (2.73% of observed standard deviation). For this particular case, consid-

ering structural changes but selecting the type and date with the test-based approach

6Source: https://fred.stlouisfed.org/
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t̂b selected by cointegration test
O C CS dO dC dCS

Intercept -1457.49∗∗∗ -773.25∗∗ -516.25 218.96∗∗∗ 155.9. 163.17
(233.17) (260.54) (380.98) (54.47) (81.51) (285.51)

Retail sales 2.89∗∗∗ 2.59∗∗∗ 2.49∗∗∗ 0.99∗∗ 1∗∗ 0.95
(0.06) (0.09) (0.14) (0.32) (0.31) (1.95)

t̂b NA 2006 2006 NA 2000 2000
Intercept after t̂b 757.81∗∗∗ 154.27 81.71 74.25

(197.57) (680.68) (78.68) (291.52)
Retail sales after t̂b 0.17 0.05

(0.19) (1.97)
ADF ∗(M) -2.999 -4.622 -4.821 -2.119 -3.326 -3.33
p-value 0.158 0.18 0.21 0.489 0.718 0.812

t̂b selected by annual prediction error
O C CS dO dC dCS

Intercept -1457.49∗∗∗ -597.01∗∗ -674.39∗∗ 218.96∗∗∗ 118.11 182.95
(233.17) (180.5) (232.2) (54.47) (112.83) (707.62)

Retail sales 2.89∗∗∗ 2.53∗∗∗ 2.56∗∗∗ 0.99∗∗ 0.99∗∗ 0.52
(0.06) (0.06) (0.08) (0.32) (0.31) (5.05)

t̂b NA 2008 2008 NA 1996 1996
Intercept after t̂b 949.49∗∗∗ 1213.84∗ 112.39 47.3

(130.49) (505.85) (110.15) (709.9)
Retail sales after t̂b -0.07 0.47

(0.13) (5.06)
RMSE(M) 10.82 6.21 6.17 9.52 8.16 8.17

Table 6: Model fitting US annual household consumption expenditures and aggregated retail sales

(1992:2020), n = 29

does not actually detect a structural change, therefore there is no gain in accuracy.

However, selecting the type and date by minimizing the annual prediction error im-

plies a quarterly error of 40.29 (4.95% of observed standard deviation), therefore a 77%

loss in accuracy (2,16% of observed standard deviation).

3.4.3 Predicting the US net exports of goods and services

Table 7 reports the results from the regression of annualized nxgs by annualized nxg,

for the same models as above. As the unit root in residuals is never rejected at the 5%

level, model dO is selected in both the benchmark and the test-approach method. If

the structural change model and date are selected by minimizing the annual prediction

error, model CS with a shift in 2009 is retained. Figure 2 represents the quarterly

prediction errors of nxgs.

Numerically, the benchmark method provides estimations with a quarterly root mean

square error of 4.86 (8.16% of observed standard deviation). No model with structural
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Figure 1: Quarterly prediction errors of US quarterly household consumption expenditures
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Figure 2: Quarterly prediction errors of US net exports of goods and services

change with stationary residuals is found by the test-approach, so no gain in accuracy

is possible. Selecting a structural break model and date by minimizing the annual
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t̂b selected by cointegration test
O C CS dO dC dCS

Intercept 23.52 68.45∗∗∗ 78.44∗∗∗ 6.76. -4.75 -2.31
(31.83) (14.65) (12.29) (3.36) (4.33) (6.17)

Net exports of goods 0.82∗∗∗ 0.99∗∗∗ 1.03∗∗∗ 0.98∗∗∗ 0.96∗∗∗ 1.01∗∗∗

(0.05) (0.03) (0.02) (0.04) (0.03) (0.1)
t̂b NA 2012 2009 NA 2005 2005
Intercept after t̂b 167.55∗∗∗ -246.83∗∗∗ 19.04∗∗ 16.49∗

(15.76) (56.41) (5.45) (7.14)
Net exports of goods after t̂b -0.54∗∗∗ -0.06

(0.08) (0.1)
ADF ∗(M) -2.432 -3.036 -4.409 -2.724 -3.591 -3.79
p-value 0.347 0.832 0.349 0.239 0.591 0.623

t̂b selected by annual prediction error
O C CS dO dC dCS

Intercept 23.52 71.33∗∗∗ 78.44∗∗∗ 6.76. -3.82 -0.21
(31.83) (14.28) (12.29) (3.36) (4.93) (6.78)

Net exports of goods 0.82∗∗∗ 1∗∗∗ 1.03∗∗∗ 0.98∗∗∗ 0.97∗∗∗ 1.06∗∗∗

(0.05) (0.03) (0.02) (0.04) (0.03) (0.13)
t̂b NA 2011 2009 NA 2003 2003
Intercept after t̂b 169.23∗∗∗ -246.83∗∗∗ 16.14∗ 12.34

(15.34) (56.41) (5.94) (7.71)
Net exports of goods after t̂b -0.54∗∗∗ -0.1

(0.08) (0.13)
RMSE(M) 30.26 12.69 10.53 28.24 13.18 12.85

Table 7: Model fitting US net exports of goods and services and aggregated net exports of goods

(1992:2020), n = 29

prediction yields a quarterly RMSE of 7.94 (13.3% of observed standard deviation).

Considering a structural break for predicting the US net exports, therefore, implies a

loss of prediction accuracy of 63.1% (5.15% relatively to the observed standard devia-

tion).

By failing to detect a model with structural change using the US national accounts,

we don’t improve the accuracy of the prediction of the quarterly series. Consistently

with our simulations, considering a structural change when there is none would worsen

the prediction accuracy. In the next section, we apply the methodology to the Chinese

national accounts for which we expect to detect a structural change in the parameters.
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4 Business cycle stylized facts of the Chinese

national accounts

Abeysinghe and Rajaguru (2004) disaggregate the Chinese GDP using two indicators

(nominal M1 money supply and nominal total exports). In this section, we construct

the series of the Chinese quarterly GDP by the expenditure approach, namely the sum

of consumption, investment, and net exports, by estimating the quarterly series for

the national accounts7. This will allow us to undertake a business cycle stylized facts

analysis à la Backus et al. (1992), which quantitatively assesses the relevance of various

dynamic and stochastic general equilibrium (DSGE) business cycles models in the case

of the United States from 1954Q1 to 1989Q4 by computing second-order moments.

In order to compute comparable relative volatility and correlation tables between the

components of the Chinese national accounts from 1998Q1 to 2016Q2, we construct

quarterly estimates of the Chinese household consumption expenditures, net exports,

capital formation, and government consumption expenditures.

4.1 Disaggregating the Chinese national accounts

We detail the procedure for disaggregating the household consumption expenditures

and the net exports. The two series differ significantly in terms of volatility around

their respective trend, with the consumption data being the most stable one over time.

For capital formation and government consumption expenditures, the estimated models

are detailed in Appendix D. Figure 3 shows the time series representation of both data

series: the scatter points stand for the observed annual national account, the bold

lines for their associated quarterly indicator, that is to say, national retail sales for

consumption, and net exports of goods for net exports. In order to disaggregate the

annual observations into quarterly observations using the quarterly indicator, we want

to find the best model that links the annual observations of the national account data

to the annual aggregate of their respective quarterly indicator, either in level or in first

difference8.

Table 8 reports the results for the household consumption expenditures using size-

adjusted Gregory and Hansen (1996) test in the upper part, or minimizing the annual

prediction errors in the lower part. Not considering structural breaks only rejects

the unit root in the residuals for model dO. When considering endogenous structural

7Source: http://www.stats.gov.cn/
8Graphically, we want to find the best fit the scatter of representations in Appendix E.
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Figure 3: Chinese household consumption expenditure and retail sales of consumer goods(left), net

exports of goods and services and net exports of goods (right)

breaks, the presence of a unit root in the residuals is rejected at the 5% level for

model CS, dC and dCS. The most parsimonious of them is model CS with a break in

2005 as it does not need differentiating the series. This model is therefore a potential

candidate for our data. When minimizing the annual prediction errors for the same

model, the structural break date is 2003. Figure 4 represents the fit of the data by the

selected model. The quarterly series of household consumption expenditures can then

be estimated by applying the disaggregation formula in equation (7). We apply the

same procedure to disaggregate the Chinese net exports of goods and services using

net exports of goods. The right panel of Figure 3 shows this time series to be more

volatile and less driven by a deterministic trend than the data used for disaggregating

annual consumption. Table 9 reports the results of the regression of each model. In the

benchmark method without considering a structural break, model dO rejects the unit

root in the residuals, which is then selected. The unit root is also rejected at the 5%

level for models dC and dCS. The model dCS however shows a significant coefficient

for the structural change in the slope. Hence it seems reasonable to select model dCS.

For such a model, minimizing the annual prediction error selects 2011 as the date of

structural change. Figure 5 represents the fitted model for the data.

By applying the same method for the remaining national accounts, we select a model

with a break in the intercept and the slope in 2012 for fixed capital formation and a

model with a break in the intercept in 2016 for government consumption expenditure

(estimation details are provided in Appendix D). All expenditure components of GDP
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t̂b selected by cointegration test
O C CS dO dC dCS

(Intercept) 9779.07∗∗∗ 4339.36∗ -2.23 1685.21 345.12 544.22
(1714.66) (1616.06) (1965.65) (1110.86) (2121.78) (6008.83)

X 0.89∗∗∗ 0.86∗∗∗ 1.31∗∗∗ 0.79∗∗∗ 0.77∗∗∗ 0.54
(0.01) (0.01) (0.08) (0.07) (0.07) (6.45)

d 13320.35∗∗∗ 18955.91∗∗∗ 1830.86 1631.36
(2458.9) (3615.34) (2463.36) (6152.04)

dX -0.46∗∗∗ 0.23
(0.08) (6.46)

rmse.a 6.88 5 4.57 12.03 11.42 11.42
sb date NA 1997 2005 NA 1990 1990
inf ADF -2.624 -4.613 -5.917 -4.99 -4.913 -4.915
pval 0.267 0.157 0.026 0.003 0.095 0.161

t̂b selected by annual prediction error
O C CS dO dC dCS

(Intercept) 9779.07∗∗∗ 3034.4. -789.73 1685.21 2158.59. 1080.17
(1714.66) (1716.32) (2087.81) (1110.86) (1066.33) (717.68)

X 0.89∗∗∗ 0.86∗∗∗ 1.37∗∗∗ 0.79∗∗∗ 0.66∗∗∗ 0.8∗∗∗

(0.01) (0.01) (0.1) (0.07) (0.08) (0.06)
d 13637.86∗∗∗ 20257.06∗∗∗ 6171.56∗ 36651.8∗∗∗

(2403.27) (3260.01) (2701.44) (4948.37)
dX -0.52∗∗∗ -1.13∗∗∗

(0.1) (0.17)
rmse.a 6.88 4.89 4.5 12.03 10.32 3.51
sb date NA 1995 2003 NA 2014 2014

Table 8: Model fitting Chinese annual household consumption expenditures and aggregated retail

sales (1984:2019), n = 36

have been disaggregated into quarterly time series, which can then be aggregated9

to obtain our quarterly estimates of nominal GDP which we compare to the official

GDP data. Figure 6 represents both estimated (in red) and official nominal GDP (in

blue) after seasonal adjustment by X13-ARIMA-SEATS, in level and in their cyclical

components obtained by Hodrick-Prescott filtering. In terms of level magnitude, our

estimates are similar to the official data, which means that our methodology doesn’t

alter the consistency of the annual national account data. Looking at the cyclical

components of log nominal GDP, we reproduce the general fluctuations of the official

data, especially troughs around 2003 and before 2010, peaks around 2008 and 2012,

and a recession phase since 2012. However, our estimates show more volatile cyclical

components10. We are now able to compute the moments of second-order of the cyclical

9We omit the variation of stocks for lack of a related indicator.
10Our results may be underestimated because of the omission of the variation of stocks.
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t̂b selected by cointegration test
O C CS dO dC dCS

(Intercept) 3761.9∗ 748.31 881.63 -492.77 662.61 -70.67
(1493.57) (828.6) (838.56) (473.29) (537.27) (430.45)

X 0.5∗∗∗ 1.04∗∗∗ 0.97∗∗∗ 0.78∗∗∗ 0.76∗∗∗ 1.12∗∗∗

(0.08) (0.08) (0.07) (0.1) (0.08) (0.13)
d -1.7e+04∗∗∗ -2e+04∗∗ -2474.59∗∗ -1812.54∗

(2042.11) (7033.7) (774.48) (806.95)
dX 0.11 -0.46∗

(0.23) (0.16)
rmse.a 61.54 30.08 28.93 103.01 28.55 23.94
sb date NA 2014 2015 NA 2009 2013
inf ADF -0.98 -4.575 -4.228 -4.314 -6.294 -10.657
pval 0.909 0.205 0.435 0.018 0.013 0.001

t̂b selected by annual prediction error
O C CS dO dC dCS

(Intercept) 3761.9∗ 780.72 154.6 -492.77 338.43 86.33
(1493.57) (798.6) (800.9) (473.29) (512.56) (447.18)

X 0.5∗∗∗ 0.98∗∗∗ 1.11∗∗∗ 0.78∗∗∗ 0.81∗∗∗ 1.15∗∗∗

(0.08) (0.07) (0.08) (0.1) (0.09) (0.14)
d -1.7e+04∗∗∗ -5918.51 -2311.32∗ -1786.32∗

(1950.82) (5211.08) (836.87) (738.49)
dX -0.42∗ -0.48∗∗

(0.18) (0.16)
rmse.a 61.54 29.1 26.88 103.01 23.8 15.09
sb date NA 2015 2014 NA 2011 2011

Table 9: Model fitting Chinese net exports of goods and services and aggregated net exports of

goods (1995:2016), n = 22

components of the Chinese national accounts.

4.2 Second-order moments of the cyclical components

Business cycle stylized facts are computed from the cyclical components of the loga-

rithmic transformation of seasonally adjusted and deflated time series, except for net

exports which are considered the non-logarithmic share of GDP. Considering what has

been done in the previous sections, we still have to deflate the series in such a way

that the components of the GDP are consistent with the GDP data in volume. A

common use is to apply the GDP deflator to the nominal data in levels. An implied

GDP deflator can be retrieved from the official data by dividing the quarterly nominal

GDP by the quarterly real GDP. The latter is constructed by applying the quarterly

year-over-year real growth rates (available for 1992Q1-2016Q2) to the quarterly real

GDP in level (available for 2011Q1-2016Q2). However, we showed that the official
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Figure 6: Estimated Chinese quarterly nominal GDP

GDP quarterly data show less volatility than the fluctuations implied by our quarterly

estimates of the national accounts data. If we want to be agnostic about the use of the

official data, we would rather not apply the implied GDP deflator to our estimates.

Therefore, we consider two alternatives as GDP quarterly data and deflator: (i) the

official GDP quarterly data and implied deflator, (ii) our GDP estimates and the offi-

cial quarterly Consumer Price Index (CPI)11 as a deflator.

Having disaggregated the nominal annual Chinese national accounts into nominal quar-

terly estimates, we deflate the series with the implicit deflator of the Chinese GDP or

the CPI, then we seasonally adjust the resulting real series and finally recover the

cyclical components by Hodrick-Prescott (HP) filtering (with smoothing parameter

λ = 1600). Figure 7 represents the cyclical components of the selected disaggregated

national accounts, compared to the cyclical components of the Chinese GDP for the

11Computed as the quarterly average of the official monthly CPI.
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two cases of GDP estimates previously mentioned. Table 10 reports the moments of

Figure 7: Cycle components of the estimated Chinese quarterly national accounts, by GDP esti-

mates and deflator

second-order of the cyclical components of the Chinese national accounts, also when

considering the two alternatives measures of GDP values and deflator. We consider

only the period 2000Q1:2014Q4 in order to mitigate the effects of the estimation in

the border period dates from the HP filtering and in the most recent dates which

are subject to regular revisions. By looking at the standard deviations, we observe

that after deflating the series, our estimates of the quarterly GDP have almost twice

as volatile cyclical components as the official data. This difference is also translated

into the relative volatilities between GDP and the expenditure components. When

we consider the official GDP data, Chinese consumption is 2.17 times as volatile as

the GDP, which implies no consumption smoothing at the national level, therefore no

precautionary savings. It shows very little persistence (autocorrelation of 0.15) and
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procyclicality (contemporary correlation of 0.19 with GDP). Investment is 3 times as

volatile as GDP, highly persistent and countercyclical (ρ(cft, gdpt) = −0.32). Govern-

ment consumption expenditure are even more volatile (4.89 times as volatile as GDP)

and slightly procyclical (ρ(gt, gdpt) = 0.16), while net exports are 1.34 times as volatile

as GDP and procyclical (ρ(nx/gdpt, gdpt) = 0.29). Our GDP estimates deflated by

the CPI show the same results qualitatively but with lesser volatilities, and higher

correlations to GDP for the national accounts, except for capital formation which have

a lower correlation to GDP.

Official GDP with implied GDP deflator
ρ(xt, gdpt+k), where k=

x σ(x)
σ(x)

σ(gdp)
ρ1(x) -4 -3 -2 -1 0 1 2 3 4

gdp 0.87 1 0.9 0.28 0.52 0.74 0.9 1 0.9 0.74 0.52 0.28
cons 2.17 2.5 0.15 0.02 0.08 0.06 0.1 0.19 0.18 0.2 0.13 0.06
cf 2.55 2.94 0.94 -0.21 -0.32 -0.4 -0.39 -0.32 -0.24 -0.14 -0.08 -0.03
g 4.24 4.89 0.32 0.34 0.3 0.2 0.16 0.16 0.19 0.19 0.14 0.08
nx/gdp 1.34 ... 0.72 0.26 0.34 0.33 0.32 0.29 0.36 0.44 0.47 0.43

Estimated GDP with the official CPI as deflator
ρ(xt, gdpt+k), where k=

x σ(x)
σ(x)

σ(gdp)
ρ1(x) -4 -3 -2 -1 0 1 2 3 4

gdp 1.53 1 0.69 -0.1 0.13 0.4 0.69 1 0.69 0.4 0.13 -0.1
cons 2.24 1.46 0.21 0.05 0.31 0.31 0.35 0.54 0.23 0.13 0.05 -0.06
cf 2.51 1.64 0.95 -0.36 -0.26 -0.2 -0.15 -0.1 -0.12 -0.08 -0.01 0.1
g 4.13 2.7 0.41 0.12 0.24 0.54 0.58 0.6 0.35 0.13 -0.05 -0.16
nx/gdp 1.3 ... 0.76 0.12 0.03 0.13 0.38 0.55 0.56 0.42 0.15 -0.06

Note: Statistics are calculated on HP-filtered season-adjusted deflated data. Except for net ex-

ports/output, all series are in logarithms.

gdp : Gross domestic product, cons: household personal consumption expenditures, cf : fixed capital

formation (private investment), g: government consumption expenditures, nx: net exports of goods and

services

Table 10: Second order moments of the business cycles of the Chinese economy 2000Q1:2014Q4

As a matter of comparison, we proceed to compute the stylized facts of the US business

cycles for the same period in Table 11. The second-order moments computed when con-

sidering the official GDP data take values very far from what we usually find for other

countries, where in general investment is procyclical and net exports countercyclical.

Also in developed countries, the relative volatility of consumption is much smaller and

implies consumption smoothing (relative volatility of 0.86 for the US in the same pe-

riod). However, Aguiar and Gopinath (2007) calculate the business cycles stylized facts
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for various emerging markets in the last decades of the last century and our computed

relative volatility of consumption is of the same magnitude as Brazil in 1991Q1:2002Q1

(2.01), Ecuador in 1980Q1:2002Q2 (2.39) or Slovakia in 1993Q1:2003Q1 (2.04). The

ρ(xt, gdpt+k), where k=

x σ(x)
σ(x)

σ(gdp)
ρ1(x) -4 -3 -2 -1 0 1 2 3 4

gdp 1.29 1 0.89 0.31 0.51 0.72 0.89 1 0.89 0.72 0.51 0.31
cons 1.11 0.86 0.87 0.32 0.5 0.69 0.86 0.93 0.84 0.63 0.39 0.15
cf 7.5 5.83 0.91 0.22 0.44 0.68 0.86 0.94 0.86 0.73 0.57 0.42
g 1.3 1.01 0.9 -0.29 -0.38 -0.46 -0.48 -0.48 -0.53 -0.58 -0.59 -0.52
nx/gdp 0.49 ... 0.79 -0.03 -0.26 -0.51 -0.71 -0.76 -0.72 -0.56 -0.39 -0.26

Note: Statistics are calculated on HP-filtered season-adjusted deflated data. Except for net ex-

ports/output, all series are in logarithms.

Table 11: Second order moments of the business cycles for the United States 2000Q1:2014Q4

cyclical components of our quarterly estimates have a low contemporaneous correlation

with the cyclical component of the official quarterly GDP. Since GDP is the aggrega-

tion of the national accounts, it indicates that the cyclical components of the official

GDP data are inadequate for our estimated fluctuation data. Therefore using our own

estimates of GDP data, computed as the sum of the quarterly estimates of the national

accounts data, as well as the CPI as an aggregate price deflator, allows us to perform

a more reliable analysis of the business cycle stylized facts. Indeed, when we consider

our estimates of the quarterly GDP, the contemporaneous correlation of consumption,

government expenditures, and share of net exports to GDP are significantly higher,

with respective values of 0.54, 0.6, and 0.55. The correlation of investment to GDP

however drops from -0.32 to -0.1, which can indicate either inadequacy of the CPI

as a deflator for investment or the investment of fixed assets as an indicator of the

fluctuations, but we note that all components of GDP retain the same sign of contem-

poraneous correlation as previously. Consistently with the higher volatility of our GDP

estimates, the relative volatilities of the expenditure accounts to GDP drop to 1.46 for

consumption, 1.64 for investment, and 2.7 for government expenditures. The lower but

still high relative volatility of consumption which implies an absence of consumption

smoothing at the national level is more in line with mid-range emerging markets (in

terms of consumption smoothing) such as Argentina in 1993Q1:2002Q4 (1.38), Israel

in 1980Q1:2003Q1 (1.6) or South Africa in 1980Q1:2003Q1 (1.61). It is however still

almost twice as large as its US analog for the same period.
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Concluding remarks

We develop in this chapter a methodology to construct quarterly data for emerging

economies with an application to the Chinese economy based on a mixed procedure

of endogenous structural break test and prediction error minimization. Simulations

confirm that non-linear parametrization improves the accuracy of the quarterly disag-

gregation of time series which behave like recent data from emerging markets such as

China. It allows us to compute the so-called stylized facts of its quarterly business

cycles. We find that the Chinese business cycles fluctuate in a different way from ad-

vanced economies such as the US, but have similarities with other emerging countries,

namely exacerbated volatilities of the expenditure accounts relative to GDP and an

absence of consumption smoothing at the national level. In addition, we find the low

persistence of the cyclical components of both private and public consumption, as well

as a much lower procyclicality of consumption and a countercyclical capital formation

and procyclical government spending and net exports. We haven’t taken any insta-

bility in the volatility into account. Even though we find it reasonable for the very

small samples considered, it might be a good research topic for the future. Direct

extensions of our methodology would be to consider multiple indicators and structural

breaks while considering the limits due to the small sample size of the time series we

are interested in. Also, a more thorough parametrization of the alternative hypothesis

could provide a better assessment of the power of the test procedure. This will be

investigated in the next chapters.
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A Estimating the trend component in the case

of models estimated in first difference

When estimating a model in first difference, a siginificant intercept is translated into

a trend component for the annual estimates in level, thus also for the dissagregated

estimates. Estimating model (dO) yields predicted first difference values :

∆Ŷ =
(
1T−1 ∆X

)(µ̂
α̂

)
where µ is the intercept and α the vector of slope coefficients. The equation implies

that the predicted level values are defined up to an initial value Ŷ1. We set the latter

to the initial observed annual value Y1, therefore :{
Ŷ1 = Y1

Ŷt = Ŷt−1 + µ̂+ (Xt −Xt−1)′α̂ for t = 2, ..., T

or equivalently,{
Ŷ1 = Y1

Ŷt = Y1 + (t− 1)µ̂+ (Xt −X1)′α̂ for t = 2, ..., T
(13)

which we write matricially

Ŷ =
(
1T T(T ) X

)Y1 − µ̂−X ′1α̂
µ̂
α̂


where T(T ) =

(
1 . . . T

)′
. The presence of an annual trend component implies also

that the predicted values at the disaggregated level also have a trend component:

ŷt = ŷt−1 + (g(t)− g(t− 1)) µ̂+ (xt − xt−1)′α̂ (14)

for t = 1, . . . fT , where g(t) is a quarterly trend component, i.e for a constant ν

g(t) = g(t− 1) + ν for t ∈ {2, ...fT}

therefore

g(t) = g(1) + (t− 1)ν for t ∈ {2, ...fT}. (15)

By backward induction we can rewrite (14) up to an initial value ŷ1.

ŷt = ŷ1 + (g(t)− g(1)) µ̂+ (xt − x1)′α̂

therefore

ŷt = ŷ1 + (t− 1)νµ̂+ (xt − x1)′α̂. (16)
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The first difference of the annual aggregation must sum up to the first difference of

the annual estimates, i.e. in the case of a disaggregation to a higher frequency f :

ft∑
s=f(t−1)+1

ŷs −
f(t−1)∑

s=f(t−2)+1

ŷs = Ŷt − Ŷt−1 for t ∈ {2, ..., T}.

It implies for t = 2:

µ̂ν

 2f∑
s=f+1

(s− 1)−
f∑

s=1

(s− 1)

+

 2f∑
s=f+1

xs −
f∑

s=1

xs

′ α̂ = Ŷ2 − Ŷ1

µ̂ν

2f−1∑
s=f

s−
f−1∑
s=0

s

+ (X2 −X1)′α̂ = Y1 + µ̂+ α̂(X2 −X1)− Y1

therefore

ν =

2f−1∑
s=f

s−
f−1∑
s=0

s

−1

=

(
2f−1∑
s=0

s− 2

f−1∑
s=0

s

)−1

=

(
(2f − 1)2f

2
− 2

(f − 1)f

2

)−1

= f−2.

The higher frequency estimates become, for t = 1, . . . fT :

ŷt = ŷ1 + µ̂
t− 1

f2
+ (xt − x1)′α̂. (17)

Now we want the first annual aggregation to equal the first annual observation Y1,

therefore:

f∑
s=1

ŷ1 + µ̂

f∑
s=1

s− 1

f2
+
∑̂f

s=1
(xt − x1)′α̂ = Y1

f(ŷ1 − x′1α̂)− f − 1

2f
µ̂+X ′1α̂ = Y1

ŷ1 =
1

f

(
Y1 −X ′1α̂−

f − 1

2f
µ̂

)
+ x′1α̂.

The quarterly estimates ŷt when the model is estimated in first difference are therefore

:

ŷt =
Y1

f
+ µ̂

t− 0.5(f + 1)

f2
+

(
xt −

X1

f

)′
α̂ ∀t ∈ {1, ..., fT}. (18)

B Structural break variables and disaggregation

formulas

We demonstrate the case m = 1. The generalization to the matricial form is straight-

forward.
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B.1 Model C

ŷt =
µ̂

f
+ x′tα̂+

µ̂1

f
1t≥f(tb−1)+1, t = 1, . . . fT

⇒ Ŷt = µ̂+X ′tα̂+ µ̂11t≥tb , t = 1, . . . T

Proof:

It can be easy shown that for t = 1, . . . T ,
0∑

i=−f+1

ŷft+i = Ŷt.

B.2 Model CS

ŷt =
µ̂

f
+ x′tα̂+ (

µ̂1

f
+ x′tα̂1)1t≥f(tb−1)+1, t = 1, . . . fT

⇒ Ŷt = µ̂+X ′tα̂+ (µ̂1 +X ′tα̂1)1t≥tb t = 1, . . . T

Proof:

It can be shown again that for t = 1, . . . T ,
0∑

i=−f+1

ŷft+i = Ŷt.

B.3 Model dC

ŷt =
Y1

f
+ µ̂

t− 0.5(f + 1)

f2
+

(
xt −

X1

f

)′
α̂+ µ̂1

t− f(tb − 1.5)− 0.5

f2
1t≥f(tb−1)+1, t = 2, . . . fT

⇒ ∆Ŷt = µ̂+ ∆X ′tα̂+ µ̂11t≥tb t = 1, . . . T

Proof:

The quarterly estimates in level have an implicit quarterly trend like in the case in first

difference without a structural break but that changes at the structural break, so have

the following form for t = 1, . . . fT :

ŷt =
Y1

f
+ µ̂

t− 0.5(f + 1)

f2
+

(
xt −

X1

f

)′
α̂+ µ̂1h(t, tb)

where

h(t, tb) =

{
0 for t < f(tb − 1) + 1
g(t) for t ≥ f(tb − 1) + 1

= g(t)1t≥f(tb−1)+1

with
g(t) = g(t− 1) + ν for t ∈ {f(tb − 1) + 1, ..., fN}

= g(f(tb − 1) + 1) + (t− f(tb − 1)− 1)ν

and

ft∑
s=f(t−1)+1

g(t) = t− tb + 1 for t ∈ {tb, ..., T}
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. It can be shown again that ν = f−2. At the structural break date t = tb:

ftb∑
s=f(tb−1)+1

g(s) = 1

⇔
ftb∑

s=f(tb−1)+1

(
g(f(tb − 1) + 1) +

s− f(tb − 1)− 1

f2

)
= 1

⇔ fg(f(tb − 1) + 1) + f−2

 ftb∑
s=1

s−
f(tb−1)∑
s=1

s− f2(tb − 1)− f

 = 1

⇔ fg(f(tb − 1) + 1) + f−2

(
ftb(ftb + 1)

2
− f(tb − 1)(f(tb − 1) + 1)

2
− f2(tb − 1)− f

)
= 1

⇔ fg(f(tb − 1) + 1) + f−2
(
0.5f2 − 0.5f

)
= 1

⇔ fg(f(tb − 1) + 1) + 0.5− 0.5

f
= 1.

Hence

g(f(tb − 1) + 1) =
0.5f + 0.5

f2
.

Therefore, for t = 1, . . . fT :

h(t, tb) =
t− f(tb − 1.5)− 0.5

f2
1t≥f(tb−1)+1. (19)

B.4 Model dCS

ŷt =
Y1

f
+ µ̂

t− 0.5(f + 1)

f2
+

(
xt −

X1

f

)′
α̂+

(
µ̂1
t− f(tb − 1.5)− 0.5

f2
+ (xt −

Xtb−1

f
)′α̂1

)
1t≥f(tb−1)+1,

t = 2, . . . fT

⇒ ∆Ŷt = µ̂+ ∆X ′tα̂+
(
µ̂1 + ∆X ′tα̂1

)
1t≥tb , t = 1, . . . T

Proof:

ft∑
s=f(t−1)+1

ŷt −
f(t−1)∑

s=f(t−2)+1

ŷs = Ŷt − Ŷt−1 for t ∈ {2, ..., T}.

For t > tb:

ftb∑
s=f(tb−1)+1

ŷs −
f(tb−1)∑

s=f(tb−2)+1

ŷs = ∆Ŷtb

µ̂+ ∆X ′tα̂+ µ̂1 +

∆Xt +

ftb∑
s=f(tb−1)+1

h(s, tb)−
f(tb−1)∑

s=f(tb−2)+1

h(s, tb)

′ α̂1 = µ̂+ ∆X ′tα̂+ µ̂1 + ∆X ′tα̂1.

Therefore
ftb∑

s=f(tb−1)+1

h(s, tb) =

f(tb−1)∑
s=f(tb−2)+1

h(s, tb) (20)
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which means that for t > tb the annual sum of the adjustment to xt must be equal to

the preceding annual sum. At the break location n = tb:

ftb∑
t=f(tb−1)+1

ŷt −
f(tb−1)∑

t=f(tb−2)+1

ŷt = ∆Ŷtb

µ̂+ ∆X ′tbα̂+ µ̂1 +

Xtb −
f(tb−1)∑

t=f(tb−2)+1

h(t, tb)

′ α̂1 = µ̂+ ∆X ′tbα̂+ µ̂1 + ∆X ′tbα̂1.

Therefore
f(tb−1)∑

t=f(tb−2)+1

h(t, tb) = Xtb−1 (21)

which means that for t > tb the annual sum of the adjustment to xt must be equal to

the annual sum of the indicator at the year preceding the structural break location. A

simple condition satisfying (20) and (21) would be :

h(t, tb) =
Xtb−1

f
for t ∈ {1, ..., fT}. (22)
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C Power of the cointegration test

ρ = 0 ρ = 0.5
N 15 20 25 30 50 15 20 25 30 50
O 0.589 0.826 0.94 0.985 0.995 0.351 0.572 0.775 0.899 0.994
C 0.017 0.01 0.007 0.005 0.006 0.019 0.013 0.01 0.007 0.009
CS 0.04 0.039 0.038 0.041 0.049 0.039 0.04 0.04 0.047 0.057
dO 0.039 0.041 0.04 0.042 0.051 0.051 0.058 0.053 0.055 0.066
dC 0.02 0.016 0.018 0.016 0.017 0.03 0.028 0.025 0.023 0.021
dCS 0.031 0.031 0.03 0.029 0.032 0.035 0.036 0.035 0.033 0.037

Table 12: Power of the test by true model, for regression model (O)

ρ = 0 ρ = 0.5
N 15 20 25 30 50 15 20 25 30 50
O 0.307 0.521 0.731 0.871 0.997 0.175 0.294 0.449 0.613 0.969
C 0.174 0.309 0.537 0.865 1 0.095 0.13 0.307 0.725 1
CS 0.145 0.174 0.279 0.512 0.615 0.108 0.132 0.247 0.482 0.612
dO 0.04 0.037 0.032 0.035 0.037 0.041 0.04 0.041 0.041 0.052
dC 0.02 0.013 0.014 0.01 0.012 0.024 0.022 0.018 0.019 0.017
dCS 0.033 0.036 0.036 0.037 0.045 0.032 0.027 0.029 0.032 0.036

Table 13: Power of the test by true model, for regression model (C)

ρ = 0 ρ = 0.5
N 15 20 25 30 50 15 20 25 30 50
O 0.304 0.492 0.691 0.837 0.997 0.181 0.276 0.42 0.559 0.954
C 0.247 0.349 0.541 0.797 1 0.167 0.207 0.344 0.637 1
CS 0.263 0.38 0.572 0.796 1 0.188 0.238 0.363 0.606 0.996
dO 0.048 0.046 0.04 0.044 0.047 0.047 0.045 0.043 0.047 0.063
dC 0.032 0.034 0.035 0.037 0.054 0.032 0.034 0.036 0.031 0.042
dCS 0.04 0.045 0.042 0.048 0.076 0.036 0.032 0.034 0.036 0.052

Table 14: Power of the test by true model, for regression model (CS)
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ρ = 0 ρ = 0.5
N 15 20 25 30 50 15 20 25 30 50
O 0.916 0.994 0.998 0.999 1 0.812 0.98 0.997 0.998 1
C 0.342 0.944 0.998 1 1 0.377 0.922 0.996 1 1
CS 0.314 0.793 0.934 0.973 0.986 0.347 0.813 0.951 0.983 0.992
dO 0.203 0.417 0.649 0.83 0.99 0.116 0.233 0.406 0.608 0.973
dC 0.084 0.136 0.193 0.282 0.673 0.082 0.157 0.244 0.389 0.852
dCS 0.199 0.356 0.532 0.698 0.953 0.121 0.239 0.403 0.586 0.962

Table 15: Power of the test by true model, for regression model (dO)

ρ = 0 ρ = 0.5
N 15 20 25 30 50 15 20 25 30 50
O 0.534 0.878 0.984 0.998 0.999 0.368 0.728 0.938 0.992 0.999
C 0.183 0.257 0.59 0.917 1 0.178 0.283 0.6 0.896 1
CS 0.219 0.349 0.592 0.855 0.997 0.218 0.346 0.609 0.871 0.999
dO 0.096 0.161 0.264 0.415 0.915 0.068 0.093 0.148 0.239 0.695
dC 0.092 0.167 0.268 0.406 0.921 0.064 0.101 0.149 0.237 0.7
dCS 0.11 0.207 0.322 0.489 0.934 0.071 0.115 0.177 0.265 0.76

Table 16: Power of the test by true model, for regression model (dC)

ρ = 0 ρ = 0.5
N 15 20 25 30 50 15 20 25 30 50
O 0.503 0.856 0.978 0.999 1 0.347 0.691 0.917 0.99 1
C 0.262 0.324 0.491 0.781 1 0.234 0.322 0.516 0.793 1
CS 0.276 0.437 0.639 0.856 1 0.266 0.415 0.635 0.858 1
dO 0.082 0.131 0.221 0.346 0.869 0.057 0.069 0.119 0.179 0.595
dC 0.07 0.116 0.189 0.299 0.845 0.049 0.073 0.107 0.172 0.578
dCS 0.093 0.171 0.284 0.444 0.941 0.057 0.088 0.138 0.212 0.696

Table 17: Power of the test by true model, for regression model (dCS)
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D other accounts

n̂b selected by cointegration test
O C CS dO dC dCS

(Intercept) 34879.01∗∗∗ 25937.52∗∗∗ 16742.53∗ 7370.84. 7209.48∗ 2744.09
(5541.04) (5639.2) (7144.65) (3844.41) (3412.17) (3225.7)

X 0.52∗∗∗ 0.49∗∗∗ 0.76∗∗∗ 0.35∗∗ 0.01 0.55∗∗∗

(0.02) (0.02) (0.1) (0.1) (0.16) (0.11)
d 26468.75∗∗ 54152.51∗∗ 18059.77∗ 38984.4∗∗

(9096.84) (13941.66) (7295.83) (10783.29)
dX -0.31∗∗ -0.88∗∗

(0.1) (0.23)
rmse.a 12.79 10.64 9.33 16.53 9.06 5.29
sb date NA 2005 2009 NA 2007 2012
inf ADF -3.377 -3.846 -5.425 -2.305 -4.346 -7.516
pval 0.096 0.506 0.115 0.411 0.311 0.005

n̂b selected by annual prediction error
O C CS dO dC dCS

(Intercept) 34879.01∗∗∗ 25951.41∗∗∗ 26928.98∗∗∗ 7370.84. 7209.48∗ 2744.09
(5541.04) (4403.89) (4531.34) (3844.41) (3412.17) (3225.7)

X 0.52∗∗∗ 0.61∗∗∗ 0.61∗∗∗ 0.35∗∗ 0.01 0.55∗∗∗

(0.02) (0.02) (0.02) (0.1) (0.16) (0.11)
d -5.6e+04∗∗∗ -9.7e+04∗ 18059.77∗ 38984.4∗∗

(12267.72) (45447.17) (7295.83) (10783.29)
dX 0.07 -0.88∗∗

(0.08) (0.23)
rmse.a 12.79 8.86 8.65 16.53 9.06 5.29
sb date NA 2014 2014 NA 2007 2012

Table 18: Model fitting Chinese fixed capital formation and investment in fixed assets (1998:2014)
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n̂b selected by cointegration test
O C CS dO dC dCS

(Intercept) 8308.5∗∗ 5792.74∗ 12705.1∗∗∗ 2611.42 2575.41. 2220.6
(2726.93) (2325.52) (1616.99) (1906.91) (1365.79) (1385.65)

X 0.59∗∗∗ 0.73∗∗∗ 0.49∗∗∗ 0.43∗∗ 0.22. 0.26∗

(0.02) (0.05) (0.03) (0.14) (0.11) (0.11)
d -2.4e+04∗∗ -8.2e+04∗∗∗ 9468.51∗∗∗ 16803.91∗

(7189.16) (12417.87) (2169.98) (6629.18)
dX 0.5∗∗∗ -0.44

(0.07) (0.38)
rmse.a 16.91 13.33 8.21 35.32 10.79 8.68
sb date NA 2011 2014 NA 2015 2015
inf ADF -0.936 -3.038 -3.634 -3.065 -6.071 -6.843
pval 0.914 0.846 0.709 0.154 0.026 0.015

n̂b selected by annual prediction error
O C CS dO dC dCS

(Intercept) 8308.5∗∗ 12456.3∗∗∗ 13065.65∗∗∗ 2611.42 2039.3. 2220.6
(2726.93) (1731.53) (1217.29) (1906.91) (1103.07) (1385.65)

X 0.59∗∗∗ 0.49∗∗∗ 0.48∗∗∗ 0.43∗∗ 0.28∗∗ 0.26∗

(0.02) (0.02) (0.01) (0.14) (0.08) (0.11)
d 26614.66∗∗∗ -7.2e+04∗∗ 11156.07∗∗∗ 16803.91∗

(4254.76) (21663.04) (1782.43) (6629.18)
dX 0.47∗∗∗ -0.44

(0.1) (0.38)
rmse.a 16.91 9.67 6.57 35.32 8.69 8.68
sb date NA 2016 2016 NA 2016 2015

Table 19: Model fitting Chinese government consumption expenditures and government expendi-

tures (1998:2014)
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E Scatterplot for the Chinese household con-

sumption expenditures (resp. net exports of goods

and services) and retail sales of consumer goods

(resp. net exports of goods )

Figure 8: Scatter representation of the Chinese data, in level and in first difference
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F Cyclical components of the Chinese indica-

tors

ρ(xt, gdpt+k), where k=

x σ(x)
σ(x)

σ(gdp)
ρ1(x) -5 -4 -3 -2 -1 0 1 2 3 4 5

gdp 0.8 1 0.9 0.12 0.28 0.52 0.74 0.9 1 0.9 0.74 0.52 0.28 0.12
cons 2.76 3.44 0.32 -0.18 -0.28 -0.23 -0.24 -0.17 -0.05 0.01 0.12 0.24 0.36 0.5
cf 3.95 4.93 0.75 -0.12 -0.23 -0.32 -0.31 -0.23 -0.14 -0.01 0.08 0.11 0.2 0.25
g 9.17 11.45 0 -0.01 0.04 0.05 0.02 0.01 0 0.03 0.03 0 -0.03 -0.07
nx/gdp 1.23 1.54 0.71 0.11 0.23 0.27 0.23 0.23 0.21 0.27 0.37 0.4 0.35 0.26

Note: Statistics are calculated on HP-filtered season-adjusted deflated data. Except for net exports/output, all series

are in logarithms.

Table 20: CHN indicators 1998Q1:2016Q2
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G Cyclical components of other series for the

Chinese economy

ρ(xt, gdpt+k), where k=

x σ(x)
σ(x)

σ(gdp)
ρ1(x) -5 -4 -3 -2 -1 0 1 2 3 4 5

gdp 1.53 1 0.69 -0.1 0.13 0.4 0.69 1 0.69 0.4 0.13 -0.1
cons 2.24 1.46 0.21 0.05 0.31 0.31 0.35 0.54 0.23 0.13 0.05 -0.06
cf 2.51 1.64 0.95 -0.36 -0.26 -0.2 -0.15 -0.1 -0.12 -0.08 -0.01 0.1
g 4.13 2.7 0.41 0.12 0.24 0.54 0.58 0.6 0.35 0.13 -0.05 -0.16
nx/gdp 1.3 ... 0.76 0.12 0.03 0.13 0.38 0.55 0.56 0.42 0.15 -0.06

Note: Statistics are calculated on HP-filtered season-adjusted deflated data. Except for net exports/output,

all series are in logarithms.

Table 21: CHN cycles with estimated gdp, deflated by CPI 1998Q1:2016Q2

ρ(xt, gdpt+k), where k=

x σ(x)
σ(x)

σ(gdp)
ρ1(x) -5 -4 -3 -2 -1 0 1 2 3 4 5

gdp 1.38 1 0.55 -0.06 -0.27 -0.13 0.17 0.55 1 0.55 0.17 -0.13 -0.27 -0.06
cons 2.04 1.48 0.2 -0.11 -0.13 0.13 0.2 0.23 0.54 0.17 -0.1 -0.17 -0.16 -0.04
cf 2.43 1.77 0.94 -0.22 -0.22 -0.15 -0.09 -0.08 -0.11 -0.22 -0.27 -0.26 -0.17 0
g 4.08 2.97 0.39 -0.02 -0.09 -0.01 0.3 0.37 0.4 0.23 0.06 -0.03 -0.09 -0.05
nx/gdp 1.22 0.89 0.75 0.17 0.05 -0.05 -0.02 0.22 0.54 0.6 0.5 0.24 0.03 0

Note: Statistics are calculated on HP-filtered season-adjusted deflated data. Except for net exports/output, all series

are in logarithms.

Table 22: CHN cycles with estimated gdp, deflated by official implied gdp.defl 1998Q1:2016Q2

ρ(xt, gdpt+k), where k=

x σ(x)
σ(x)

σ(gdp)
ρ1(x) -5 -4 -3 -2 -1 0 1 2 3 4 5

gdp 2.52 1 0.84 -0.43 -0.18 0.2 0.56 0.84 1 0.84 0.56 0.2 -0.18 -0.43
cons 3.04 1.21 0.62 -0.42 -0.18 0.21 0.5 0.7 0.82 0.66 0.47 0.2 -0.1 -0.3
cf 3.77 1.5 0.91 -0.38 -0.17 0.12 0.4 0.59 0.64 0.55 0.36 0.13 -0.09 -0.27
g 4.27 1.7 0.27 -0.09 0.03 0.13 0.34 0.41 0.42 0.29 0.14 -0.04 -0.21 -0.25
nx/gdp 1.22 0.49 0.75 0.2 0.13 0.02 -0.04 -0.03 0.06 0.1 0.11 0.04 -0.05 -0.08

Note: Statistics are calculated on HP-filtered season-adjusted deflated data. Except for net exports/output, all series

are in logarithms.

Table 23: CHN cycles with estimated gdp, deflated by reconstructed implied gdp.defl 1998Q1:2016Q2
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H US business cycle correlations (1947:2016)

ρ(xt, gdpt+k), where k=

x σ(x)
σ(x)

σ(gdp)
ρ1(x) -5 -4 -3 -2 -1 0 1 2 3 4 5

gdp 1.62 1 0.85 -0.07 0.12 0.35 0.62 0.85 1 0.85 0.62 0.35 0.12 -0.07
cons 1.21 0.75 0.79 -0.11 0.02 0.18 0.42 0.64 0.79 0.75 0.61 0.43 0.25 0.07
cf 7.66 4.72 0.8 -0.26 -0.09 0.15 0.42 0.66 0.83 0.74 0.56 0.32 0.11 -0.03
g 3.16 1.95 0.89 0.3 0.35 0.33 0.28 0.23 0.15 0.04 -0.04 -0.08 -0.08 -0.05
nx/gdp 0.43 0.26 0.77 0.23 0.15 0.05 -0.11 -0.26 -0.34 -0.38 -0.35 -0.29 -0.23 -0.2

Note: Statistics are calculated on HP-filtered season-adjusted deflated data. Except for net exports/output, all series

are in logarithms.

Table 24: US 1947Q1:2016Q2
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