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Abstract 

This paper deals with real estate portfolio optimization when investors are risk averse. In this 

framework, we examine an important decision making problem, namely the determination of 

the optimal time to sell a diversified real estate portfolio. The optimization problem 

corresponds to the maximization of a concave utility function defined on both the free cash 

flows and the terminal value of the portfolio. We determine several types of optimal times to 

sell and analyze their properties. We extend previous results, established for the quasi linear 

utility case, where investors are risk neutral. We consider four cases. In the first one, the 

investor knows the probability distribution of the real estate index. In the second one, the 

investor is perfectly informed about the real estate market dynamics. In the third case, the 

investor uses an intertemporal optimization approach which looks like an American option 

problem. Finally, the buy-and-hold strategy is considered. For these four cases, we analyze in 

particular how the solutions depend on the market volatility and we compare them with those 

of the quasi linear case. We show that the introduction of risk aversion allows to better 

account for the real estate market volatility. We also introduce the notion of compensating 

variation to better measure the impacts of both the risk aversion and the volatility. 
 

Key Words Real estate portfolio, Optimal holding period, Risk aversion, Real estate market 

volatility. 
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1. Introduction 

 

Holding period is defined as the expected period of time during which an investment is or 

should be kept. The holding period is an important topic in finance and has been the subject of 

numerous theoretical and empirical research studies (see Atkins and Dyl, 1997; In, Kim and 

Gençayc, 2011 and Lim and Kim, 2011). The holding period in real estate portfolio 

management is a topic that has only recently drawn the attention of both investors and 

academics. Traditionally, real estate investment had been a rather passive process, with 

investors adopting a buy-and-hold strategy for real estate, an asset class capable of generating 

relatively stable recurring cash flow derived from rental agreements. The strategy was to hold 

real estate for many years, a valid strategy given the large transaction costs. However, the 

sophistication of the real estate industry and to some extent the general perception that real 

estate cycles tend to be shorter have led to more attention to the notion of holding period and 

especially of ex-ante holding period.
2
 

 

Calculations of the optimal holding period are nearly always empirical and the holding period 

is assumed to depend upon many factors, including market conditions, regulation, transactions 

costs and tax, types of property, lease length, and investment style. Hendershott and Ling 

(1984), Gau and Wang (1994) or Fisher and Young (2000) show that, for the US, the holding 

durations depend mainly on tax laws. Brown and Geurts (2005) show the average holding 

period is around 5 years through a sample of small residential investments over the period 

1970-1990 in San Diego. They conclude that investors sell their assets earlier when values 

rise faster than rents. For the UK market, Rowley, Gibson and Ward (1996) prove the 

existence of ex ante expectations about holding periods, related to depreciation or 

obsolescence factors. Collett, Lizieri and Ward (2003) show ex post holding periods are 

higher than those usually claimed by investors using a commercial real estate database of 

properties in the UK. Their empirical analysis shows that the median holding period is about 

seven years. They also suggest a link between price volatility and holding period but they fail 

to highlight a proxy for measuring the relationship. For residential real estate, Cheng et al. 

(2010) demonstrate that higher illiquidity and transaction costs lead to longer holding periods, 

while higher return volatility implies shorter holding periods. These latter results are 

consistent with previous papers on financial assets. These kind of empirical studies does not 

allow concluding about the relation between real estate asset volatility and optimal holding 

period.
3
 

 

Many attempts have sought to develop models to determine optimal holding period for real 

estate portfolio.
4
 Baroni et al. (2007) determine the optimal holding period ex-ante (e.g. for 

closed funds, when the initial investment is realized). They model terminal values as diffusion 

processes, and derive a closed formula for the optimal holding period. This model has been 

                                                 
2
 By analogy with the stock market where the question is often selling the stock or keeping it to receive 

dividends, the question in real estate is selling the property or continue to collect rents.  
3
 Tarbert (1998) shows how over the long run, it is difficult to estimate correlation and therefore to deal 

with investment horizon. 
4
 Some of the optimization problems are specific to real estate investments and differ from standard 

financial portfolio management problems (see Karatzas and Shreve, 2001). First, real estate assets 

exhibit specificities (illiquidity, divisibility, localisation etc.). Second, the control variable is the time to 

sell and not the usual financial portfolio weights as highlighted by Oksendal (2013) for the optimal 

time to invest in a project with an infinite horizon. 
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further developed by Amédée-Manesme et al. (2015) who incorporate lease structure effect in 

order to better account for the specificities of real estate. They show how the volatility can 

influence the optimal time to sell in the context of rational risk neutral investors. Barthélémy 

and Prigent (2009) also compute an optimal ex-ante time to sell using American option 

approach. Nevertheless, they assume that the investor is risk-neutral. Due to this latter 

hypothesis, the volatility of the real estate asset either has no impact on the optimal holding 

period or its role is only implicit. Regarding the volatility, Rehring (2012) examines the U.K. 

real estate market and shows that the conditional standard deviation of commercial real estate 

returns depends on the investment maturity as it is the case for usual stocks in particular on 

the long-term horizons. The transaction costs and marketing period are also discussed. 

 

In this paper, our aim is to better emphasize the impact of the volatility when the investor is 

risk averse. For this purpose, we consider a risk-averse investor that maximizes its expected 

utility at maturity over a given time period. In this approach, time horizon and risk aversion 

are the key parameters. We thus introduce expected utility (EU) theory as suggested by Arrow 

(1965) to model decisions under uncertainty for risk averse investors. This way, we account 

for preferences of individual investors who seek to maximize their preference over possible 

events according to their corresponding probabilities. We concentrate here on the Hyperbolic 

Absolute Risk Aversion (HARA)
5
 utility functions class and particularly on the sub-class 

Constant Relative Risk Aversion (CRRA) utility function. Our results show that the relative 

risk aversion plays a key role to evaluate the monetary loss from not having access to the 

“best” horizon. This feature has to be related to previous works about the influence of risk 

aversion such as Kallberg and Ziemba (1983). We also examine the robustness of our results 

with respect to the utility specification.  

 

The model is built up on previous work. First, we determine the optimal holding period when 

it has to be chosen at initial date, extending previous results of Baroni et al. (2007). The 

investor is assumed to know probability distribution of real estate asset. We illustrate what are 

the impacts of the risk aversion, the real asset value and the volatility on the selling strategies. 

We determine this latter one when the investor is perfectly informed about the growth rate 

dynamics but must choose his strategy only at initial time. However, usually such a solution is 

not time consistent since the same determination of optimal time to sell at a future date leads 

to a different solution. Second, we study the best ideal case where the investor knows exactly 

the price dynamics, as soon as a new period starts. In that case, he can immediately choose the 

best time to sell the asset. This approach provides the upper bound of the present value of the 

portfolio as a function of holding period policy. Indeed, the present value is maximized using 

perfect foresight. We use this special framework as a benchmark. Finally, we determine the 

optimal holding period according to the American option approach. In this context, at each 

time during a given management period, the investor compares the present expected utility of 

portfolio value with the maximal expected utility he could have if he would keep the asset. 

We show that the investor must sell as soon as the present utility is higher than its 

expectation.  

 

We also introduce the notion of compensating variation to evaluate the monetary loss of not 

                                                 
5
 The specification of utility functions is a tough problem because different utility functions have 

different behavioural implications. In this line, the work of de Palma and Prigent (2009) can be 

consulted. 
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having the “best” portfolio (here not having chosen the best optimal time to sell). 

Compensating variation is the adjustment that returns the consumer to the original utility after 

an economic change has occurred. As shown in de Palma and Prigent (2008, 2009), the 

compensating variation allows to measure the adequacy of a given portfolio to investor’s 

utility.  

Our work contributes to the academic literature in optimal holding period in real estate. Prior 

studies have mainly been empirical and did not propose models to explain investment 

horizon. Here, we derive a closed-form formula to determine the ex-ante optimal holding 

period of a real estate asset. It takes account of the risk aversion of the real estate investors. 

Indeed, real estate investors are usually considered to be risk-neutral while seeking high yield 

returns (see Fugazza et al., 2007). In sum, this paper contributes by considering the risk 

aversion of investors, by proposing a model that allows computing optimal holding period and 

finally by providing solutions whose properties may explain most of the previous empirical 

results. In addition, practitioners may find here an interesting approach to better model their 

ex-ante optimal holding period. 

The structure of the paper is laid out as follows. Section 2 presents the continuous-time 

framework and the optimal time to sell we get in the neutral risk investor case. Results for the 

optimal holding period when the date must be chosen at initial time is developed in section 3 

for quadratic utility function and CRRA utility functions. Section 4 gives a theoretical 

framework for other portfolio strategies, as the perfectly informed investor, the American 

option solution and the buy-and-hold strategy. All these strategies are compared in Section 5 

using compensating variations. Section 6 concludes. 

2. Continuous-time model and risk neutral investor 

In this section, the time of sale is pre-set, committed irrevocably at time 0, based on the 

expected dynamics of the portfolio value and its cash flow. The real estate portfolio value is 

defined as the sum of the discounted free cash flows (FCF) and the discounted terminal value 

(the selling price). We denote k as the discount rate of the free cash flows, and TV the terminal 

value. We assume that the free cash flow grows at a constant rate g 6
. 

2.1. Continuous-time model 

Following Baroni et al. (2007), we suppose that the price dynamics follows a geometric 

Brownian motion:

 
 

t

t

t

d P
dt dW

P
     (1) 

where 
tW  is a standard Brownian motion.  

 

This equation assumes that the real estate return can be modelled as a simple diffusion 

process where parameters   and   are respectively equal to the trend and to the volatility.  

 

                                                 
6
 This assumption allows explicit solutions for the probability distributions of the optimal times to sell 

and of the optimal portfolio values. The introduction of stochastic rates would lead to only simulated 

solutions.  
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Then the future real estate index value at time t, discounted at time 0, can be expressed as: 

   21
0 2

0

exp  with expt
t t

P
P P k t W E k t

P
   

  
  
  

 
      

 
. (2) 

Denote by 
0FCF  the initial value of the free cash flow. The continuous-time version of the 

sum of the discounted free cash flows 
sFCF  is equal to: 

 
   0

0

0 0

1

t t
k g s k g tks

t s

FCF
C FCF e ds FCF e ds e

k g

    
  
 

    
   (3) 

Introduce the real estate portfolio value process ,V  which is the sum of the discounted free 

cash flows and the future real estate index value at time t, discounted at time 0:  
 

   21
2

01 e .
tk t Wat

t t tV C P c e P
              (4) 

 

We determine the portfolio value 
T

V  for a given maturity T . This assumption on the time 

horizon allows accounting of selling constraints before a limit date. The higher T , the less 

stringent this limit. Additionally, this hypothesis allows the study of buy-and-hold strategies 

(see section 6).  

2.2. Computation with the linear utility function:  

The optimization problem is: 

 
[0 ] tt T

Max E V 
   

  (5) 

Since the expectation of tV  is equal to: 

    0
01

k g t k t

t

FCF
E V e P e

k g

    
      

   


 (6) 

Then, the optimal holding period is determined as follows (see Barthélémy and Prigent, 

2009). 

 1: The initial price 0P  is smaller than 0 ( )FCF g T

k
e 



 


. 

Then, the optimal time to sell T 
 corresponds to the maturity T . Since the Price Earning 

Ratio (PER)
7
 is too small (  

( )g Te
k





 


), the sell is not relevant before maturity. 

 2: The initial price 0P  lies between the two values 0 ( )FCF g T

k
e 



 


 and 0FCF

k 
. 

The optimal time to sell T   is solution of the following equation:  

 0,tE V

t

 
  





 (7) 

which solves to (see Baroni et al., 2007):  

 0

0

1 1
ln

FCF
T

g P k 

  
   

  
 (8) 

                                                 
7
 The PER 0

0

P

FCF  
is defined as the initial price of a property or group of properties divided by the free 

cash flows produced by this or these properties. It measures the current price relative to its cash flows 

production. The PER is often known in real estate as the price multiple. 
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In particular, note that T 
 is a decreasing function of the initial price 0P  and of the difference 

between the index return   and the growth rate g  of the free cash flows. This latter property 

was empirically observed by Brown and Geurts (2005). It means that investors sell property 

sooner when values rise faster than rent. 

 

 3: The initial price 0P  is higher than 0FCF

k 
. 

The optimal time to sell T   corresponds to the initial time 0. Since the PER, 0

0

P

FCF
, is 

sufficiently large (  1
k 

), there is no reason to keep the asset P .  

 

We note that the discounted expected value tV  of the portfolio is concave. Knowing the 

optimal time to sell T   which is deterministic, the probability distribution of the discounted 

portfolio value 
T

V   can be determined. The value 
T

V  is equal to:  

 
( ) 20

01 exp 1 2
( )

k g T

T T

FCF
V e P k T W

k g
  

   
   
         

   
 
 

       


  

 

Denote 0 ( )

( )
1

FCF k g T

k g
A e

 
 
 
 
 

 


   the cumulative discounted free cash flow value at T 

. Since, 

from (13), the optimal time to sell satisfies: 

 
 

0

0

1
ln

FCF
T

g P k 


 

     

 

then, we deduce: 

 

 
0 0

0

1
( )

k g

g

FCF FCF
A

k g P k








 

         
 

 

and the cdf 
T

VF


 of 
T

V 

 
is given by:  

2

0

0 if

( ) 1
ln 1 2 ifT

V

v A

F v v A
N k T v A

PT
 





  
        
    

  
  

 


  
      

 

               (9) 

where N  denotes the cdf of the standard Gaussian distribution. 

 

3. Optimal time to sell T  , chosen at time 0 with risk aversion 

In what follows, we determine the optimal solution at time 0, for a given maturity T  and for 

an investor maximizing expected utility. We have to analyze the expected utility of the future 

real estate index value at time t, discounted at time 0: if the price return   is higher than the 

discount rate k, then, the optimal solution for the linear utility case is simply equal to the 

maturity T . Thus we consider the case k  . Consequently, not selling the asset implies 

higher cumulated cash but a smaller discounted expected terminal value  
0 e

k t
P


  Hence, the 

investor has to choose between more (discounted) flows and less expected discounted index 
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value. We also focus on the sub case g  , which corresponds to empirical data.  

 

We investigate two main numerical cases. These cases are those of Baroni et al. (2007): 

 
 

 Case 1 corresponds to an early selling, due in particular to weak expected return of the 

real estate asset. We set : 
 

0 04 4 5 , 3 8 4 100 100 22% % g % k % P FCF              . 

 

 Case 2 corresponds to a late selling, due in particular to higher expected return of the 

real estate asset. We set : 

0 06 5 , 2 9 5 100 100 15% % g % k % P FCF             . 

 

To model risk aversion, we introduce a standard decision criterion based on a separable utility 

function which is additive with respect to current time. It is defined by: 

 
0

( ) ( )
t

s t

s te u C ds E U P e    

 

where u and U are utility functions respectively defined on the cash flows and the current 

market value. The assumption is that the free cash flows can be used to consume along the 

time period. Such kind of inter temporal utility function allows getting the time consistency. 

The term ( )t

te u C
can be interpreted as the utility of the consumption at date t viewed at 

initial time 0. For the choice of the utility function, we first analyse some of the specificities 

of the quadratic function and then, we concentrate to the CRRA function
8
. 

 

3.1. Computation with the quadratic utility function 

The expected utility of the portfolio value tV  at time t in the case of the quadratic utility 

function is given by the sum of two terms: 
 

- The first one corresponds to the utility defined on the cash flows: 

 

 

 

 

 

 

2

0 0

2 2

2

0 0

2

1 1

2 2 2

t t
s s c

s s s

k g t k g t

c

E e u C ds e C C ds

e e
FCF FCF

k g k g

 

 





 

 

     

         

    
    

      

 

 (10) 

 

- The second one is the utility provided by the market value 

        21
2

2 22 2 2

0 e
2

tk t Wt t P
t t t tE e U P e E P E P P P

            
         

(11) 

             

         Knowing that  

 21
2 tA B t BW AtE e e

   
  

, where  0, ,tW N t  

                                                 
8
 See Gollier (2001) for main definitions and properties of utility functions.  

 



 9 

 

              we deduce that Relation (11) is equivalent to 

     21
2

22

0 0e e e
2

k tk tt tP
tE e U P P P

                
  (12) 

Then the discounted expected value of the portfolio at time t described, adding (10) and (12) 

is  

 

 

 

 
   21

2

2 2
22 2

0 0 0 0

1 1
e e e

2 2 2 2

k g t k g t
k tk t tc P

t

e e
E V FCF FCF P P

k g k g

 
    

 

     
   

                        

 

 

For instance, Figure 1 illustrates the impact of   on the portfolio utility function according to 

the selling time. We consider the two previous numerical cases 1 and 2. Notice that 0   

corresponds to the risk neutral case presented in section 2.1. In both cases the optimal time to 

sell is increasing with the level of the risk aversion  .
9
  

 

 
(0) 0.13; (0.001) 13.37; (0.002) 16.78T T T          (0) 16.11; (0.001) 17.49; (0.002) 18.83T T T      

       a. Case 1       b. Case 2 
 

Fig 1. Quadratic utility, optimal time T 
 with respect to risk aversion   

 

3.2. Computation with the CRRA utility function 

The “Constant relative risk aversion” (CRRA) function is of the type 
1( ) /(1 ) if 1, ln[ ] if 1cu x x c c x c    . This type of function exhibits decreasing absolute 

risk-aversion (DARA).  Three main cases can be distinguished for the CRRA case:  

 

- If 0 1c   the individual has a small relative risk aversion. If his wealth becomes 

null, his utility is equal to 0. Thus, it is lower bounded. On the contrary, if his wealth 

becomes high, he is never satiated.  
 

- For the special case 1c   the utility converges to -∞ when the wealth converges to 0 

but the individual is still never satiated when his wealth increases.  
 

                                                 
9
 If risk aversion raises, the expected utility can be no longer monotone with respect to the selling time.  

The quadratic utility function is not clearly defined for all the values of  . If   becomes high enough 

the utility function is then a decreasing function for values higher than 1/  . 
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- Finally, for 1c   the utility converges to -∞ when the wealth converges to 0 more 

quickly than for the previous logarithm case but now the individual can be satiated 

(his utility is upper bounded). In that latter case, such individual searches first of all 

for limiting the downside risk while accepting to give up potential high returns. 

 

The expected utility is given by:  

 
0

( ) ( )
t

s t

s te u C ds e E U P    

with 

 

 

(1 )

0 0

(1 )( )(1 )

0

( )
(1 )

1

(1 ) (1 )( )

c

cc

t t
s s s

s

c

g k t

c c

C
e u C ds e ds

FCF e

g k


 

 



  


 

   




 
  

    

 

 

and 

 

 
 

 

 

 
   

21
2

21
2

1

10
1

0

e

( ) e
1 1

P

t

P
t P

k t W

t k t Wt t

t

P P

P
P

e U P e


  


     

 


   
 


         

 
 
  

 
  

 

 

Finally, we get: 

 

 
 

 
   21

2

(1 )( )(1 )

0

0

1
1 ( ) 10

1
( ) ( )

(1 ) (1 )( )

e
1

cc

P

P P P

g k t
t

s t

s t

c c

k t

P

FCF e
E e u C ds e U P

g k

P

 
 


     

  



   
 


      
 

            





 

and the first derivative with respect to time t is equal to: 
 

 

 

 
   

   21
2

(1 )
(1 )( )0

1
1 ( ) 120 1

2

(1 )

1 ( ) 1 e
1

c

c

P

P P P

g k t

c

k t

P P P

P

FCF
e

P
k


 


     



     



   


      
 

 
 

        

 

 

Previous formula allows getting explicit relations between the optimal selling time T 
 and 

various parameters such as the relative risk aversions c  and P , the volatility   and the 

initial real estate asset value 
0P .  
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4. Solution analysis for the CRRA utility 

 

4.1. Conditions on existence of a non degenerated solution 

First, we note that, under specific assumptions about both real estate and utility parameters, 

the sign of the previous derivative with respect to time is constant, independently from the 

initial cash flow and real asset values.  

 

We have two cases: 
 

A) If (1 ) 0c   and     21
2

1 1 ( ) 0P P Pk            
 then the derivative is non 

negative. Thus, the global utility is an increasing function of the time. In such a case, 

it is never optimal to sell before maturity. The second assumption implies that 1P  . 

It means also that the coefficient   must be relatively high, which corresponds to a 

high degree of impatience.  

 

B) If (1 ) 0c   and     21
2

1 1 ( ) 0P P Pk            
, then the derivative is 

non positive. Thus, the global utility is a decreasing function of the time. In such a 

case, it is never optimal to wait for selling. The first assumption is not too realistic 

since here the cash flows are deterministic.  

 

In what follows, we analyze the other more realistic cases since they depend on initial cash 

flow and real asset values. We assume in particular:  
 

    21
2

1 1 ( ) 0P P Pk            
. 

Sub case B.1. The real estate and risk aversion parameters are such that: 
 

   21
2

1 ( ) (1 )( ) 1 0P c P Pk g k              

This case happens for instance when the relative risk aversion 
P  is high. The optimality 

corresponds here to a minimum as underlined by Figure 2. On the whole range [0, T ], the 

utility is always increasing. Then, it is optimal to wait for selling: *T T .  

 

 
 

Fig 2. Condition for the existence of the analytical solution for T 
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Sub case B.2. The real estate and risk aversion parameters are such that: 
 

   21
2

1 ( ) (1 )( ) 1 0P c P Pk g k              

 

This happens for example when 0< C P    <1 and the volatility has usual values. Then, 

we have to distinguish three main cases for the initial value 0P  of the real asset. For this 

purpose, denote respectively by P  and P the following terms: 

 

 

   

   

 
1

2 1(1 ) 1
21

0 21
2

exp 1 ( ) (1 )( ) 1(1 )

1 1 ( ) 1

Pc

P
P c P P

P

C P P P

T k g k
P FCF

k




     

      




              

         

 

And 

     

1

1(1 )

0

21
2

(1 )

11 ( ) 1

Pc

P

CP P P

FCF
P

k

 

     

 
  
        

 

 

By dividing P  and P  by 0FCF , we get the corresponding limits on the PER coefficient, 

PER  and PER . The range between PER  and PER  is an increasing function of the spread 

between   and g  as illustrated by Figure 3. Note that the dashed line indicates a PER of 22, 

which corresponds to the one of the numerical case 1. 

 

         
4.4% and 3%g                    4.4% and 1%g      

 

Fig 3. PER limits as a function of g   

 

i) The initial value 0P  is smaller than P  

 

In that case, the optimal time to sell corresponds to the maturity. Indeed, the PER 0 0/P FCF

is too small, which implies that the sell is not relevant before maturity. 

 

 

 

*T T
*T T

* 0T 
* 0T 

* ]0, [T T * ]0, [T T
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ii) The initial value lies between P  and P . 

The optimal solution *T corresponding to a null first derivative is given by: 

   

       

*

21
2

(1 )

0

1 21
20

1

1 ( ) (1 )( ) 1

(1 ) 1

1 1 ( ) 1

c

P

P c P P

P

C P P P

T
k g k

FCF
Log

kP





     



      





 
      

 
 

         

  (17) 

 

For the special case C P    , we get: 

    
 

 

21
2

1

0

21
0 2

1
*

1

1

1 ( )

T
g

FCF
Log

P k



   

    



 
  

  
  
            

  (18) 

 

Note that, for  =0 and  =0, we recover the result corresponding to the quasi linear utility 

(no risk aversion):  

   
* 0

0

1 1
 

FCF
T Log

g P k 

  
    

   
 

 

In what follows, we begin by examining the shape of the utility function according to the 

relative risk aversion  . Then, we study the impact of the volatility.  

 

iii) The initial value 0P  is higher than P  

 

In that case, the optimal time to sell corresponds to the initial time 0. Since the PER 

0 0/P FCF  is sufficiently large, there is no reason to wait for selling. 

 

Remark: For 0 , 1C P   , both lower and upper bounds P and P  are decreasing functions 

with respect to parameter  . This is also true for the optimal solution given in Relation (17).  

 

In what follows, concerning the sensitivities, we present the results for the case 1 only as we 

obtain the same qualitative effects for the second numerical, case 2. 

 

4.2. Sensitivities to low risk aversion and to volatility with C P   

 
The optimal time to sell is an increasing function of the risk aversion. Higher the risk 

aversion, higher the rents weight in the portfolio. Hence, it leads to wait more before selling 

the portfolio because the rents may balance longer the loss in capital. This is shown on Figure 

4 representing the expected utility for the first numerical example (case 1) and small values of 

 . Let us notice that, with 0C P     ,  we get the optimal time to sell obtained in 
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Barthélémy and Prigent (2009), 9.13T    (upper curve in both Figures 4a and 4b).With 

0.001C P     , we get 9.43T   , and with 0.002  , 9.73T   . The effects on 

T 
 are more important for a higher level of risk aversion (see Figure 4b). Indeed the optimal 

time to sell can be equal to the maturity itself (see the curve corresponding to 

0.004C P     , for which 20T T   ).  

 

     

a. 0.002P       b. 0.04P   

Fig 4. Expected utility as a function of the risk aversion, first numerical example 

Small values of C P    . 

 

 

The volatility has a negative impact on the optimal time to sell. When the volatility is 

increasing, the optimal time to sell is decreasing (
* / 0dT d  ). But, for the given 

parameters values of cases 1 or 2, the impact is negligible as presented in Table 1 and in 

Table 2.  

 

  *( 0)T    
*( 0.001)T    

*( 0.002)T    

0.05 9.131 9.431 9.732 

0.15 9.131 9.420 9.710 

0.25 9.131 9.398 9.660 
 

Table 1. Optimal time to sell as function of  - first numerical example 

 

  *( 0)T    
*( 0.01)T    

*( 0.02)T    

0.05 16.109 17.206 18.328 

0.15 16.109 17.177 18.274 

0.30 16.109 17.079 18.094 
 

Table 2. Optimal time to sell as function of  - second numerical example 
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4.3. Sensitivities to low risk aversion and to volatility with 0 and 0 1C P     

As in subsection 4.1, we can analyze the range between PER  and PER  (see Figure 3). 

Figure 5a shows that the spread PER PER  is increasing with P  as well as the two 

bounds, PER  and PER . Moreover, with a PER of 22 (the one of the numerical case 1), 

values of P  up to around 0.04 lead to an interior solution for T 
, as underlined by the 

dashed line. This is illustrated in a other way on Figure 5b where values of P  equal to 0.015 

or 0.030 lead to a 20T   , while the curve corresponding to 0.045P   imply that 

20T   . Finally, As in the previous section with C P  , the increase of the risk parameter 

P  leads to a higher optimal time to sell (see Figure 5.b).  

 

     
a. PER     b. Expected utility  

Fig 5. PER limits and expected utility for the numerical example 1 - w.r.t. the risk aversion, 

first numerical example 0C   

 

 

Table 3 exhibits the same relation between T 
and  . 

 

  *( 0)PT    
*( 0.01)PT    

*( 0.02)PT    
*( 0.03)PT    

0.05 9.13 12.06 14.84 17.48 

0.15 9.13 11.97 14.70 17.32 

0.25 9.13 11.79 14.41 16.99 

 

Table 3. Optimal time to sell as function of  - first numerical example, 0C   

 

Remark: If we consider much higher volatilities (as for example for equity markets during 

the recent financial crisis), we note that the optimal time to sell can be decreasing with respect 

to the relative risk aversion but takes high values for a relative risk aversion lying between 0 

and 1, as shown in next subsection (see Figure 6a). 

 

*T T

* 0T 

* ]0, [T T
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4.4. Sensitivities to volatility and to high risk aversion to the real estate asset with 

0 and 1C P    

In what follows, we assume that the relative risk aversion to the real asset can be moderate or 

high. It means that we set 1P  . In such a case, the optimal time to sell as a function of the 

risk aversion is decreasing from a given aversion level, as shown in Figure 6b, contrary to the 

case 1P  , illustrated in Figure 6a. 

 

     

a. 1P       b. 1P   

 

Fig 6. T 
 as a function of volatility, first numerical example, 0C    

 

Additionally, if the volatility takes high values, the optimal time to sell can be smaller than for 

the risk-neutral case (see Figure 6b, where this latter value is equal to 9.13 and corresponds to 

the straight line). 
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5. Other optimal times to sell for a risk averse investor 

5.1. Perfectly informed investor T 
 

 

In this section, the investor is supposed to have a perfect foresight about the entire future price 

path. Trajectories are random (the investor does not choose the realized path) but, at time 0, 

the whole path is known. Therefore, the investor can maximize with respect to this trajectory. 

Thus, the optimal solution is deterministic conditionally to this information. Nevertheless, the 

path is unknown just before time 0. Consequently, the optimal time to sell is a random 

variable. This ‘ideal’ framework is not realistic but provides an upward benchmark. Note that, 

since the investor is rational, his utility function is increasing. Therefore, since the path is 

known, the maximization of the utility of his portfolio value is equivalent to the maximization 

of a linear utility. This means that we recover previous solution provided in Barthélémy and 

Prigent (2009), which does not depend on risk aversion. In what follows, we recall the 

distributions of the optimal holding period T 
and of the optimal value 

T
V   and provide the 

explicit formula by means of a mild approximation of the aforementioned paper. Introduce the 

function G  defined by:  

 

 21 1
( ) 1

2 22 2 2 2

myy t y t
G m y t Erfc m e Erfc m

t t

   
             

   

 

 

where the function Erfc  is given by: 

 
22

( ) u

x

Erfc x e du




   

Denote also  

 
20

0

( ) 1 2 and ( ) ln
FCF v

A v k B v
v P

 
 

        
 

 

Then, the approximated cdf of TV   is given explicitly by:  

 

 

0

0

0 for

[ ] .( ) ( )
for

T

v P

P V v A v B v
G T v P

 



  


    
   

 

 (15) 

 

The probability that the real estate portfolio value is higher than 0P  is equal to 1. Thus, 

whatever the path, the investor receives at least 0P . Indeed, if all the future discounted 

portfolio values are lower than the initial price, he knows he has to sell at time 0 and then 

receives exactly 0P . Summing up, time T 
 does not depend on risk aversion but its 

probability distribution does.  
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5.2. American optimal selling time T 
 

 

In this third case, we allow that the investor may choose the optimal time to sell, according to 

market fluctuations and information from past observations. In this case, he faces an 

“American” option problem. Recall that the investor preferences are modelled by means of 

utility function. At any time t before selling, he compares the utility of the present value tP  

with the maximum of the future utility value he expects given the available information at 

time t (mathematically speaking he computes the maximum expected utility of his portfolio 

on all 
t T

J -measurable stopping times  ). It means that he decides to sell at time t only if the 

utility of his portfolio value at this time is higher than the maximal expected utility that he can 

expect to reach if he does not sell at this time t . Thus, he has to compare ( )tU P  with 

( ) ( )sup ( ) ( )
t T

s t t

s t
t

E e u C ds e U P


  

 


 
    

  
 

J J . Intuitively, the optimal time T 
 must 

be the first time at which the utility ( )tU P  is “sufficiently” high. At this price level, the 

future free cash flows (received in case of no sell) will not be high enough to balance an index 

value lower than the price tP  at time t (the expected index value decreases with time as the 

discounted trend k   is negative). The optimal time T 
 corresponds exactly to the first 

time at which the asset price tP  is higher than a deterministic level (see Appendix B). This 

result generalizes the case considered in Barthélémy and Prigent (2009) where the investor 

has a linear utility. In that case, he sells directly the asset if the price 0P  is higher than 0FCF

k  . 

Then, since the return of the discounted free cash flows is equal to
( )k g te 

, the price tP  has to 

be compared with the value 0 ( )FCF k g t

k
e



 


. Here, we provide an extension of this result when 

the individual has risk aversion.  

 

 

5.2.1. The American option problem 

 

Denote by ( )x tV  the following value function: 

 

 ( ) ( )( ) sup ( ) ( )
t T

s t t

s t
t

x t E e u C ds e U P P x


  

 


 
    

  
 

   JV  

 

Note that we always have ( ) ( )x t U x  V  since t   
t T

J  and, in that case, 

( ) ( )x t U x  V
 

 

 

 

As usual for American options
10

, two “regions” have to be considered:  

                                                 
10

 See Elliott and Kopp (1999, p. 193). 
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 The continuity region: 

 ( ) [0 ] ( ) ( )C x t R T x t U x
  
 
  

      V  

 

 The stopping region: 

 ( ) [0 ] ( ) ( )S x t R T x t U x
  
 
  

      V  

 

The first optimal stopping time 
tT 

 after time t  is given by 

 

 
( ) ( )inf [ ] ( ) ( ) ( )s t t

t s
t

T t T P e u C ds e U P


  

  
 

     
 
 
 

      V  

Then: 

  inf [ ] ( , )tT t T P C      
 

 

5.2.2. Computation of the value function V   

 

To determine 
tT   we have to calculate ( )x t V   We have to compute: 

  ( ) ( ) 2sup ( ) exp 1 2 ( )
t T

s t t

s t t t
t

E e u C ds e U P k t W W P x


  

    


               

       J

 

In particular, we have to search for the value t


 for which the maximum 
 

  ( ) ( ) 2sup ( ) exp 1 2 ( )
t T

s t t

s t
t

E e u C ds e U x k t W W


  

    


               

      J
 

is achieved.  

 

This problem is the dynamic version of the determination of T 
presented in Section 4. 

Introduce the function t xf   defined by: 

 ( ) ( ) 2

, ( ) ( ) exp 1 2
t

s t t

t x z s
t

f e u C ds e U x k z


       
       

     
       

This function is strictly increasing with respect to .x   

 

According to the distribution of the random variable z (which here is the standard Gaussian 

distribution), we have to solve: 

,sup ( )
t T

t x zE f








   
J

 
 

Case 1. The optimal solution is equal to the maturity T . 

 

We have:  

  ( ) ( ) 2( ) ( ) exp 1 2 ( )
T

s t T t

s tTt
x t E e u C ds e U x k T t W W    

                

        V  
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Using Jensen inequality, we deduce in that case that  ( ) ,x t U x V for all three standard 

utility functions (since they are concave and strictly increasing). 

  

 

Case 2: The optimal solution lies strictly between t and T .  

  

The optimal time 
t


 is equal to ( )t     where  
 is the solution of the following equation: 

 
,

( ) 0
t x zE f





     


 

  ( )( ) 2( ) ( ) exp 1 2 ( )
t

t

t

ts t

s t t
t

x t E e u C ds e U x k t W W


 


   






 
      
        

        V  

 

 

Case 3: The optimal time 
t


 corresponds to the present time t , and  

  ( )x t U x  V  

 

Consequently, from the three previous cases, we deduce the value of ( ).x tV  
 

 

Finally, the American optimal time T 
 is determined by: 

 

  inf [0 ] ( )t tT t T P t U P
   
 
  

     V
 

 

Therefore, we can check that  ( )t tP t U P V  if and only if: 

 

,
( ) 0, 0,

tt P zE f
T t 




          

 

Thus, we have:  

  0inf [0 ] , , , , , , , ,t C PT t T P l t FCF k g RA RA 
   
 
  

   
 

where CRA  and PRA denote respectively the parameters characterizing the risk aversions to 

the free cash flows and the real estate asset and where  0, , , , , , ,C Pl t FCF k g RA RA   is 

determined from optimality condition of 0 being optimal for the first problem (see Section 4). 

 

 

5.2.3. The American option problem for the CRRA case 

 

For the CRRA case, we can give explicit conditions on the current value tP  of the real estate 

asset to determine the American optimal time T 
. In Appendix, we prove that ( )x tV has 

indeed an explicit value and that the price tP  has to be compared with the value: 
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     

 
1

11(1 ) ( )
10

21
2

(1 )

11 ( ) 1

CPc

P

k g t
P

CP P P

FCF
e

k




     

  


 
 
        

 

 

Previous formula allows getting explicit relations between the optimal selling time T 
 and 

various parameters such as the relative risk aversions C  
and P , the volatility   and the 

initial cash flow value 0FCF . 

 

6. Compensating variations of the three optimal strategies and the buy-and hold one 

The ratio of expected utilities characterizes the investor’s choice behaviour but it is only a 

qualitative criterion since utilities are defined up to affine transformations. In what follows, 

we use instead a quantitative index of investor's satisfaction based on the standard economic 

concept of compensating variation. The compensating variation (CV) is a measure of utility 

change. It is the amount of money required to reach the initial utility when a change occurs in 

prices or in the market. CV can thus be used to find the effect of changes on the net welfare 

(of an agent or of a portfolio). As illustrated in de Palma and Prigent (2008, 2009), the notion 

of CV is very useful to evaluate the monetary loss of not having the “best” portfolio. The 

utility loss from not having access to a “better” portfolio is provided by the compensating 

variation measure. If an investor with risk aversion   and initial investment V0 faces a choice 

between two (random) horizons 
(1)T  and 

(2)T , he has to compare the two expected utilities 

( ) 0[ ( ); ]iT
E U V V . Assume that horizon 

(2)T  provides higher utility than maturity 
(1)T . If the 

investor selects maturity 
(1)T  

instead of 
(2)T , he will get the same expected utility provided 

that he invests an initial amount 0 0V V such that:   

(1) (2)0 0( ); ( );
T T

E U V V E U V V 
      

 

 

Therefore, this investor requires (theoretically) a monetary compensation that can be 

evaluated by means of the ratio 0 0/V V . This amount is in line with the certainty equivalent 

concept in expected utility analysis. It can be viewed as an implicit initial investment 

necessary to keep the same level of expected utility. 

 

Recall also that, at any time t of the management period 0, ,T 
 

 the “portfolio” value is 

given by:  

,t t tV C P   

with 

 0 1
k g t

t

FCF
C e

k g

  
  
 

 
  

and 
2

0 exp 1 2t tP P k t W  
  
  
  

      

We introduce the returns (1) (1) (2) (2)0 0 an/ /d 
T T T T

R V V R V V  . 
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6.1. The compensating variation for the quadratic case 

Suppose that the investor’s utility U is of quadratic. Function U  is equal to: 

2

( ) ,  with >0.
2

v
U v v     

If we fix the level of risk aversion  , then relation (1) (2)0 0[ ( ); ] [ ( ); ]
T T

E U V V E U V V   is 

equivalent to: 

(1) (1) (2) (2)

2
2

0 0 0 0

2 2 = .
2 2T T T T

V E R V E R V E R V E R
 

                 

 

The previous relation provides the expression of the compensating variation for the quadratic 

case, through the resolution of the following polynomial equation: 

(1) (1) (2) (2)

2 220 0-  + 0,
2 2T T T T

V V
x E R xE R E R E R

 
                 

where x denotes the possible values of the compensating variation 0 0/ .V V  Set: 

 (1) (1) (2) (2)

2
0 2

0

2 -2 .
2T T T T

V
E R V E R E R E R




 
                 

 
 

Then, we deduce: 

(1)

(1)

2

0

0 0

.T

T

E RV

V V E R

    
  

 

Since the relative risk aversion is increasing for the quadratic case, it is not surprising that the 

compensating variation depends on the wealth level 0.V   

 

6.2. The compensating variation for the CRRA case 

Suppose that the investor’s utility u and U are of CRRA type. Function u and U are 

respectively equal to: 
1

1

( ) ,  with >0,
1

( ) ,  with >0.
1

c

P

c

c

P

P

FCF
u FCF

P
U P





















 

 

We have:  

 

 

 

 
   21

2

1(1 )(1 )
1 10 0

0

1
( ) ( ) e

(1 ) (1 ) 1

Pcc
P P P

g t
t ts t

ts

c c P

FCF Pe
e u FCF ds e U P

g

 
      

   

  
        

 
   

    


 

 

Then, relation  
*

0 0 0 0
0 0

( , ) ( , ) ( , ) ( , )
T T

s t s t
t ts se u FCF FCF ds e U P P e u FCF FCF ds e U P P           

 

is equivalent to 
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 

 

 
   

 

 

 

 
   

21
2

21
2

(1 ) 1
(1 )

1 10 0

1(1 ) *(1 )
1 1 *0 0

1
e

(1 ) (1 ) 1

1
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(1 ) (1 ) 1

c P
c

P P P

Pcc
P P P

g T
T

c c P

g T
T

c c P

FCF Pe

g

FCF Pe

g

 
 

     

 
     

   

   

 
  

     
 

  
     
 

 
 

    



 
 

    

 

 

which yields to a linear relation between 
0FCF  and 

0P . 

 

In that case, several additional conditions can be imposed to determine the compensating 

variations. For example: 
 

1) We can adjust the initial free cash flow 
0FCF  and fix the initial index price:

00P P . 

2) We can adjust proportionally both the initial free cash flow 0FCF  and the initial 

index price. In that case, we have:  

0
0

0

0

0 0

0
0 0  with 

V FCF P
V

V FCF
C P

P
F F     

Then, we deduce that the compensating variation 0

0

 
V

V
 when the investor selects the 

maturity T  instead of the optimal one T 
 is given by: 

 
 

   

 

   

 
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0 0 0 0 1 1
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e
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1
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Pc

c

P P P

Pcc
P P P

g T
T

c c P

g T
T

c c P

V FCF V PeV V

g

FCF Pe

g

 


 
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 
     

   

   

 


  
     
 

  
     
 

 
 

    



 
 

    

 

 

 

For the special case where C P    , the following relation provides the expression of 

the compensating variation for the CRRA case: 

 

 

 
     

 

 
     

(1 )
21

2

21
2

1

(1 ) *
1 1 *1(1 )

0 0

0 (1 )
1 11(1 )

0 0

0

1
e

(1 )

1
e

( )

/

1

g T
T

g T
T

e
FCF P

g
V

e
FCF P

g

V

 
     

 
     

 

 

  
       

  
       

  
  

   
         

  (20) 

 

 

In what follows, we numerically illustrate the CV for the CRRA case, according to the values 

of the parameter 
P

  in the cases where 
C P
   (see eq. 20) or when 0

C
  . Moreover, we 
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consider the parameter values of the numerical cases 1 and 2. 

 

6.2.1 - The relative risk aversions are smaller than 1  

The compensating variation increases with the risk aversion as illustrated on Figure 7, where 

Figure 7a refers to the numerical case 1 and Figure 7b to the numerical case 2. The 

corresponding T 
 are respectively 9.13, 14.20 and 19.32 (in 7a) and 16.11, 18.07 and 19.97 

(in 7b). The first case (7a) raises an additional comment: although compensating variation 

increases with the risk aversion for short holding period, the contrary may occur for longer 

holding period, even if the impact is not that significant.  

 

   
a. Case 1     b. Case 2 

 

Fig. 7. Compensating variation for very small RRA ( 0
C
  ) 

6.2.2 - The relative risk aversion to the real asset 
P

  is higher than 1  

In such a case, we have to set 0
C
   to get non degenerated solutions (since the free cash 

flows are deterministic).  

The effects of the RRA on T 
appear with standard error around 30%. Figure 8 illustrates the 

compensating variations for moderate relative risk aversions for the first numerical case. The 

optimal time to sell ( )PT 
 are (5) 19.10T   , (6) 16.00T    and (7) 13.80T   . The 

compensating variations can be very high in that case. Note that the results for the second 

numerical case are quite similar to those of the first numerical case one presented here.  
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Fig. 8. Compensating variation with 30%   for medium RRA 
P

  ( 0
C
  ) 

The higher the RRA, the smaller T 
 and the higher the compensating variations. We obtain 

the same effects when increasing the standard deviation for a given RRA. This is illustrated 

on figure 9, where the RRA is set to 7. 

 

   

Fig. 9. Compensating variation for medium RRA 7
P
   ( 0

C
  ) 

 

7. Conclusion 

This paper emphasizes the impact of the real estate market volatility on optimal holding 

period. For this purpose, the investor is assumed to be risk-averse, which is an usual 

assumption when dealing with portfolio optimization but not in the standard real estate 

literature. The investor is also assumed to consume his free cash flows along the time period. 

We investigate several kinds of optimal times to sell, illustrating their sensitivities to real 

estate parameters and risk aversion level. Note in particular that, in the CRRA case, we 

provide a quite explicit solution of American optimal time to sell, extending previous results 

which correspond only to the no risk aversion case. Our findings show that, for usual 

parameter values for the real estate markets, the optimal times to sell are increasing with 

respect to weak risk aversions while, for high risk aversion levels, it is the converse. Finally, 

we evaluate the monetary loss of not choosing the “best” optimal time to sell (the so-called 

compensating variations). We show that this loss can be severe which emphasizes that the 
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optimality of the holding period is crucial when dealing with real estate investment. In 

practice, the compensating variation allows investors to measure the cost of not waiting the 

optimal time or of holding the asset too long. 
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Appendix: The American case T*** for the CRRA case 

 

First, to compute: 

( ) ( )( ) ( ),s t t

s
t

e u C ds e U P


  



     

note that we have: 
(1 ) (1 )
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As in Section 4, we introduce respectively tP  and tP  defined by: 
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Consequently, we have three cases: 

 

Case 1. The real estate asset value x is smaller than tP . 

Then the optimal time corresponds to the maturity T  and the value function ( )x tV  is given 

by: 
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This is a linear function with respect to
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Case 2. The asset value lies between the two values tP and tP . 

The optimal solution 
*

t  corresponding to a null first derivative is given by: 
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Case 3. The asset value is higher than tP . 

Then, the optimal time 
*

t is equal to the present time t itself. In that case, we get: 
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Consequently, the American optimal time is determined by:  
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Therefore, we can check that ( )t tP t P V  if and only if t tP P . Thus, we have:  
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In what follows, we denote by A the term  
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Then, we have: 

 

 

1
( )

1
inf [0 ]

C

P

k g t

tT t T P Ae





 
  

  
 
 
 
 

     
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random yT  is given by:  
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(0) 0.13; (0.001) 13.37; (0.002) 16.78T T T          (0) 16.11; (0.001) 17.49; (0.002) 18.83T T T      

       a. Case 1       b. Case 2 
 

Fig 1. Quadratic utility, optimal time T 
 with respect to risk aversion   

 

 

 

Fig 2. Case 1 - condition for the existence of the analytical for T 
 

 

 

 

        

*T T
*T T

* 0T  * 0T 

* ]0, [T T * ]0, [T T
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4.4% and 3%g                    4.4% and 1%g      

 

Fig 3. PER limits for the case 1 as a function of g   

 

 

 

 
Fig 4. Expected utility as a function of the risk aversion, first numerical example 

Small values of   

 

 

 

 
Fig 5. PER limits and expected utility for the numerical example 1 - w.r.t. the risk aversion,  

first numerical example 0C   

 

 

*T T

* 0T 

* ]0, [T T
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Fig 6. T 
 as a function of volatility, first numerical example, 0C    

 

 

 

 


