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Abstract

Economists have increasingly elicited from survey respondents probabilistic expectations.
Subjective probabilistic expectations show great promise to improve the estimation of struc-
tural models of decision-making under uncertainty. However, a robust finding in these surveys is
an inappropriate heap of responses at “50 percent”, suggesting that some of these responses are
uninformative. The way these 50s are treated in the subsequent analysis is of major importance.
Taking the 50s at face value will bias any aggregate statistics. On the reverse deleting them is not
appropriate if some of these answers do convey some information. Furthermore, the attention of
researchers is so focused on this heap of 50s that they do not consider the possibility that other
answers may be uninformative as well. This paper proposes to take a fresh look at these questions
using a new method based on extremely weak assumptions to identify the informativeness of an
answer. Applying the method to probabilistic expectations of equity returns in three waves of
the Survey of Economic Expectations in 1999-2001, I find that: (i.) at least 65 percent of the 50s
convey no information at all; (ii.) it is the answer most often provided among the uninformative
answers; (iii.) but even if the 50s are a major contributor to noise, they represent at best 70
percent of the identified uninformative answers. These findings have various implications for
survey design.
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1 Introduction

Since the nineties, an important empirical literature has developed to measure probabilistic

expectations that individuals hold about future events (Manski, 2004). Subjective probabilistic

expectations show great promise to improve the estimation of structural models of decision-making

under uncertainty.1 However, researchers are particularly embarrassed by a seemingly inappropriate

high frequency of responses at “50 percent”. Table 1 provides some examples of this heap in surveys

which have included probabilistic questions. There are at least two interrelated problems with

these 50s. The first one is that some of them are probably uninformative, i.e., some respondents

provide this answer when they do not know what probability to answer in the interval [0, 100].

Fischhoff and Bruine de Bruin (1999), for instance, argue that some respondents use this answer as

a proxy for the verbal expression “fifty-fifty”, an expression used to say “I really don’t know”. If so,

treating all the 50s as any other answer will bias any aggregate statistics. On the reverse purely

suppressing all of them is not appropriate, particularly if some of them do actually convey some

information. Given that survey questions usually do not directly reveal if a response provides an

uninformative answer, it raises the question: How can one identify if a 50 is uninformative? The

second related problem is that the attention of researchers is so focused on this heap of 50s that

they do not consider the possibility that other responses may be uninformative as well. This raises

the second question: Do the 50s represent a substantial share of all uninformative answers?

The present paper proposes a conservative solution applicable on a specific but widely used for-

mat of probabilistic questions used to know the distribution of the future realization of a continuous

variable. As argued in this paper, this format, introduced initially in the Survey of Economic Ex-

pectations (SEE) by Dominitz and Manski (1997), facilitates ex-post control on the informativeness

of a probabilistic answer, i.e., if this answer reflects a sharp expression of belief or a more or less

imprecise belief on the event under consideration; and although this method is only applicable in

the specific context of this format, its application permits to shed light on the appropriateness of

some practices in the related literature. Let me introduce this format first. When the variable is

1For work in that direction, see Delavande (2008), Giustinelli (forthcoming), Van der Klaauw and Wolpin (2008),
as well as Attanasio (2009, pp.90-91) who provides an overview of some of his papers in progress.
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continuous, the SEE asks each respondent i a sequence of K probabilistic questions of the type:

What is the percent chance that, one year from now, Ri would be worth over ri,k?

Hence, for each respondent i, we observe the probabilistic answers Qi,k ≡ P (Ri > ri,k), k =

1, 2, . . . ,K, where ri,1 < ri,2 < . . . < ri,K are K thresholds about which the respondent is queried.2

Ri denotes the variable of interest; it can be the respondent’s household income (Dominitz and Manski,

1997), the respondent’s personal income (Dominitz, 2001), or the stock market returns according

to the respondent (Dominitz and Manski, 2011). The responses to this sequence of K probabilistic

questions enable the estimation of each respondent’s subjective distribution. The sequence of K

specific thresholds is chosen among a finite number of possible sequences by an algorithm that uses

the average of the the respondent’s answers ri,min and ri,max to two preliminary questions asking for

the lowest and highest possible values that Ri might take.3 Table 2 provides an example that I will

study in detail in Sections 3 and 4: it considers the questions posed in three waves of the SEE (12,

13 and 14) in July 1999 to March 2001 to measure the probabilistic expectations that Americans

hold about equity returns in the year ahead. The SEE first poses a scenario which highlights that

the respondent has to think in the performance of an investment of $1000 in a diversified mutual

fund in the year ahead. Then the two preliminary questions are posed, and the responses are used

to select via the algorithm a sequence of K = 4 threshold values among a set of 5 possible sequences.

Finally, the SEE asks the sequence of K = 4 probabilistic questions. For instance, if a respondent

answers ri,min = 600 and ri,max = 1100, his midpoint is 850, and he is asked the percent chance

that next year’s investment in the mutual fund would be worth over {500, 900, 1000, 1100}.

The objective is to infer the informativeness of a subjective probability Qi,k. Note that the

response Qi,1 is particularly important because it determines the answers for the subsequent thresh-

olds, while the reverse is not true: once a respondent answers Qi,1, his answers to the next thresholds

2Instead of asking K points on the respondent i’s subjective complementary cumulative distribution function of Ri,
it is possible to ask points on the respondent i’s subjective cumulative distribution of Ri. In that case the probabilistic
questions are of the type “What is the percent chance that, one year from now, the variable Ri would be less than
ri,k?”. See, e.g., Dominitz (2001).

3The two preliminary questions are thus useful to have an idea of the support of the distribution. Following
Morgan and Henrion (1990), Dominitz and Manski (1997) give two additional reasons for asking these preliminary
questions: they decrease overconfidence with respect to central tendencies and anchoring problems wherein respon-
dents’ beliefs are influenced by the questions posed.
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have to weakly fall to satisfy the monotonicity of the complementary cumulative distribution func-

tion (Qi,1 ≥ Qi,2 ≥ . . . ≥ Qi,K).4 Hence, I will mainly focus on the informativeness of Qi,1.

To understand the method, consider a respondent who has a precise subjective distribution in

mind concerning Ri. If so, he is able to provide informative answers to the preliminary questions

and the sequence of probabilistic questions, i.e., answers which reflect sharp expressions of beliefs. If

this is the case, he should also provide coherent answers between the preliminary questions and the

sequence of probabilistic questions, i.e., he should use the same underlying subjective distribution

to answer the preliminary questions and the sequence of probabilistic questions. Alternatively, a

respondent may have imprecise beliefs concerning Ri, i.e., he does not hold a unique subjective

distribution but a set of subjective distributions. This imprecision can occur because he lacks some

information; he may also be unable to form precise beliefs in practice, even if he is able to do so

in principle, because he lacks time and thinking is costly. Whatever the reason of this imprecision,

note that if a respondent provides clearly incoherent answers between the preliminary questions

and the sequence of probabilistic questions, i.e., he does not use the same underlying subjective

distribution, then one can be sure that the respondent has imprecise beliefs; his answers are thus

partially informative. And if the incoherence is too high, one can be sure that the respondent has

extremely imprecise beliefs (a case wherein he lacks any relevant information or he does not want

to put any effort in his answers). In that case, his answers are clearly uninformative.

The general idea is thus to exploit the answers ri,min and ri,max to the preliminary questions to

make a prediction P̃ (Ri > ri,1) of an answer Qi,1. The distance between a predicted value and the

actual value is a measure of coherence. If this measure is too high, Qi,1 is highly incoherent with

the respondent’s answer to the pair of preliminary questions, so the respondent has an extremely

imprecise belief on the event Ri > ri,1. One can thus infer that Qi,1 is uninformative. If this measure

is equal to or slightly different from zero, one cannot reject the possibility that the respondent has

a relatively precise belief on the event Ri > ri,1, rounding only to the nearest 1, 5 or perhaps 10

percent. If so, Qi,1 may be broadly informative. In-between, the measure is too far from zero to say

4Logically, the interviewer informs the respondent if a probability elicited at threshold ri,2, ri,3, . . . or ri,K is higher
than one elicited previously to ensure the monotonicity of the subjective complementary cumulative distribution
function (Dominitz and Manski, 2004).
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that Qi,1 may be broadly informative, and too close to zero to be sure that it is uninformative: this

answer may be partially informative.

To infer the type of Qi,1, we first need to identify the measure of coherence. One can easily

understand the basic aspect of such a measure –the distance between a prediction based on ri,min

and ri,max and a response Qi,1. The crucial elements are however the assumptions to obtain the

prediction P̃ (Ri > ri,1). There is, in the SEE dataset that we will study, a key feature that permits

to learn something about the informativeness of numerous –but not all– Q1 under some weak

assumptions: the algorithm which selects the thresholds does not insure that all of them belong to

(rmin, rmax), and the first threshold r1 is in practice often outside this interval, in particular lower

than rmin. More precisely, r1 /∈ (rmin, rmax) for 72 percent of the respondents (r1 ≤ rmin for 70

percent, and r1 ≥ rmax for 2 percent).

This feature of the dataset is crucial. It is indeed tempting to impose assumptions strong enough

to obtain a point-prediction P̃ (Ri > ri,1); as such, the measure of coherence will be point-identified.

However, to do so, one needs to make a distributional assumption to calibrate a probability distri-

bution based on ri,min and ri,max, and interpret perhaps these responses in a too restrictive way. To

fully understand, consider that one calibrates a continuous uniform distribution over the interval

[ri,min, ri,max]. This distributional assumption permits to obtain a point prediction P̃ (Ri > ri,1).

But it has no foundation and may drive some results of the inferential problem. Why one should

choose a uniform distribution? Furthermore, this assumption implies that [ri,min, ri,max] is the sup-

port of the subjective distribution. This interpretation seems natural. Some researchers, following

Dominitz and Manski (1997, p.858), may think however that “the phrases “lowest [...]” and “highest

[...]” are too vague to warrant this formal interpretation [...]”, and consider that ri,min and ri,max

only “suggest the general region of the respondent’s subjective support of” the distribution.

With these elements in mind, I propose in Section 2 to identify the measure of coherence under

extremely weak assumptions; I then explain how this measure can be used to infer the type of

a probabilistic answer. In particular, I make no distributional assumption to obtain a prediction

P̃ (Ri > ri,1), and capture the idea that the interval (ri,min, ri,max) is a suggestive support. These
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weak assumptions do not point-predict an answer Qi,1 to a probabilistic question, but they do

partially predict it, yielding a bound rather than a point prediction. As a consequence, these

weak assumptions partially identify the measure of coherence, yielding a bound rather than a point

estimate; see Manski (2003) for a textbook exposition of partial identification.

It is important to emphasize that because the measure of coherence is partially identified, it is

not always possible to infer precisely the type of some answers; in some cases, fundamentally when

r1 ∈ (rmin, rmax), we cannot even infer if they are broadly informative, partially informative or

uninformative because the identification region for the measure of coherence is distressingly wide.

Note however that when we are not able to conclude, this is because the additional assumptions

necessary to reduce the identification region are stronger. The approach developed in Section 2 is

thus deliberately conservative.

Although this method is only applicable in the specific context of the SEE format for continu-

ous variables, its application can shed light on the appropriateness of some practices in the related

literature. Contrary to this literature, the measure of coherence does not impose that only some 50s

may be uninformative, nor that the other answers, mainly multiples of ten other than (0, 50, 100)

–M10– (e.g., 10, 20) and multiples of 5 but not of ten –M5– (e.g., 85, 95), are always broadly

informative. Kleinjans and van Soest (2014) propose a parametric model –a model with endoge-

nous regime switching and unobserved regimes– to identify uninformative, partially informative and

broadly informative answers. By assumption in their model, only some 50s may be uninformative

(i.e., they may imply the interval [0,100]). Concerning the M10, Kleinjans and van Soest (2014)

impose that the percent chance of the event is in the range [M10-5,M10+5] in the worst case; and

the M5 are assumed to imply the interval [M5-2.5, M5+2.5] in the worst case (except 25 and 75

which can be rounded to a multiple of 25).5 Manski and Molinari (2010, p.223) use the answers of

a respondent to various expectations questions dealing with the same topic (e.g., the set of personal

finance questions of the Health and Retirement Study -HRS-) to infer the extent to which he rounds

probabilities. If this respondent provides at least one M10 or one M5 to this set of questions, then,

5Furthermore, they also impose some distributional assumptions to achieve point identification of the quantities of
interest.
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by assumption, his answers to the set of questions reflect relatively sharp expressions of beliefs im-

plying maximal intervals of 10 and 5 percentage points. Last but not least, to resolve the unease that

researchers have felt with the 50s, and instead of developing an identification strategy, some recent

surveys directly reveal if a 50 is uninformative by adding a so-called “epistemic” follow-up question.

For instance, if a respondent answers “50 percent” to the stock market probabilistic question of the

HRS 08 described in Table 1, then he is asked if he provides this answer to express the belief that

“it is about equally likely that these mutual fund shares will increase in worth as it is that they will

decrease in worth by this time next year, or [if he is] unsure about the chances” (see Hudomiet et al.,

2011, p.398). The respondents who say they are unsure are then automatically excluded from the

analysis.6 By interpreting reported probabilities as interval data or by considering that only some

50s can be uninformative, all these methods provide more credible results than if these probabilities

were taken at face value. But by imposing restrictions on which answers can be uninformative,

partially or broadly informative, these methods are potentially subject to misclassification and im-

portant biases in the analysis. The empirical findings in Sections 3 and 4 suggest that it is the

case.

Sections 3 and 4 focus on the responses to the stock market expectations questions described in

Table 2. Previous studies analyzing these data include Dominitz and Manski (2011) and Gouret and Hollard

(2011). But they do not really consider the problem of the 50s and other uninformative answers.7 I

choose these data because the topic is similar to the stock market questions of the HRS 08. Thus,

it is sometimes a useful point of comparison (although the period studied and the sample of re-

spondents differ). Furthermore, by analyzing these data, this paper also participates to a recent

literature which tries to provide an empirical foundation for the study of expectations of equity re-

turns (Dominitz and Manski, 2007, Hudomiet et al., 2011, Hurd et al., 2011, Kandel and Pearson,

6The remaining respondents, i.e., those who do not answer “50 percent” or those who answer “50 percent” but say
that the shares are equally likely to increase or decrease in value to the epistemic follow-up question, are asked a
second probabilistic question for an additional point on their subjective distribution. Assuming that each remaining
respondent i has a normal subjective distribution N (µi, σ

2
i ), Hudomiet et al. (2011, pp.400-401) use the answers to

the two probabilistic questions to derive their expected return (µi) and their perceived risk (σi).
7Dominitz and Manski (2011, p.365) note that the pervasiveness of rounding suggests that a researcher should

interpret a probabilistic answer as providing an interval rather than a precise probability, and assume a [40, 60] interval
when the response is 50. However, they aptly explain that this interval is questionable because “the responses of 50%
that we observe are some mixture of rounded subjective probabilities and expressions of what Bruine de Bruin et al.
(2000) call epistemic uncertainty”.
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1995 and Vissing-Jorgensen, 2004).8

In Section 3, I show that the weak assumptions of Section 2 suffice to find that a majority of the

50s are uninformative, and that the 50s represent at most 70 percent of all the answers identified

as uninformative. The other answers identified as uninformative are mainly some M10 and M5.

Hence, by considering that only some 50s can be uninformative, one can miss an important share

of uninformative answers. Furthermore, various M10 and M5 (around 10 percent of the sample)

cannot be informative, but may be partially informative.

To gauge the relevance of considering as uninformative not only some 50s but all the answers

identified as such, Section 4 proposes a cross-sectional analysis of the subjective distributions of eq-

uity returns in the year ahead conditional on the informativeness of Q1. The recent literature which

studies the expectations of equity returns use the subjective probabilities (Qi,k, k = 1, 2, . . . ,K)

to fit each respondent-specific normal distribution N (µi, σ
2
i ) (Dominitz and Manski, 2011, p.359,

Gouret and Hollard, 2011, p.372, Hudomiet et al., 2011, p.401, and Hurd et al., 2011, p.425). I

follow this normality assumption. If a researcher wants to study the cross-sectional distribution of

(µ, σ) of the population who has meaningful expectations, and includes in his analysis the (µ, σ)

based on uninformative Q1, his analysis might be biased, given that the (µ, σ) based on uninforma-

tive Q1 are meaningless. I provide some evidence that all the (µ, σ) based on uninformative Q1, not

only those based on uninformative 50s, strongly influence the cross-sectional distribution of (µ, σ).

Finally, Section 5 makes concluding remarks about some implications of my findings for the

elicitation of probabilistic questions. I call particularly attention to the HRS 08 and its epistemic

follow-up question, as well as a recent approach proposed by Manski and Molinari (2010, p.229) in

the case of binary discrete variables which consists in eliciting ranges of probabilities rather than

precise probabilities for future events.

8Kandel and Pearson (1995) and Vissing-Jorgensen (2004) differ from the the other papers in that they use surveys
which seek point predictions of equity returns rather than probabilistic expectations. Kandel and Pearson (1995)
analyze the point predictions of financial analysts for the earning of specific firms. Vissing-Jorgensen (2004) considers
the UBS and Gallup surveys which ask to some American households possessing more than $10,000 in financial assets
their point prediction of the rate of return of the stock market in the year ahead and in the next ten years.
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2 Identifying uninformative answers

This Section explains in generality how the specific format of probabilistic questions described

in the Introduction and used in the SEE to elicit the distribution of continuous variables permit

to identify uninformative answers. Subsection 2.1 shows how this format can be useful to obtain

a measure of coherence. I emphasize the importance of making weak instead of strong and unten-

able assumptions; as a result I obtain a partially identified measure of coherence. Subsections 2.2

and 2.3 explain how this partially identified measure of coherence permits to infer if an answer is

uninformative.

2.1 A partially identified measure of coherence

If a respondent i has a precise subjective distribution in mind concerning Ri, he should use the

same underlying subjective distribution to answer the preliminary questions and the sequence of

probabilistic questions. I thus consider that a respondent has potentially two subjective distribu-

tions. The first one is used to answer ri,min and ri,max, the lowest and highest possible values of

this distribution; I denote by P̃ (Ri > r) the subjective probability of the event Ri > r associated to

this first distribution. A second subjective distribution is used by the respondent to answer the se-

quence of probabilistic questions Qi,k ≡ P (Ri > ri,k), k = 1, 2, . . . ,K. I focus on Qi,1 given that this

probabilistic answer determines the probabilistic answers for the subsequent thresholds. Suppose

that a researcher has full knowledge of the first distribution used by the respondent to answer ri,min

and ri,max. Then, he can assess the subjective probability of the event Ri > ri,1 according to this

distribution, i.e., P̃ (Ri > ri,1) which is a prediction of Qi,1. The distance di,1 between P̃ (Ri > ri,1)

and Qi,1 is then a measure of coherence at the first threshold:

di,1 ≡
∣∣∣P̃ (Ri > ri,1)−Qi,1

∣∣∣ (1)

All the difficulty to identify di,1 is to assess the prediction P̃ (Ri > ri,1). A researcher has only a

partial knowledge of the first subjective distribution, not a full knowledge: he only knows by def-
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inition ri,min and ri,max, the lowest and highest possible values of this distribution. Furthermore,

Dominitz and Manski (1997, p.860) consider that some respondents may“associate the phrases “low-

est possible” and “highest possible” with low and high probabilities”. I thus consider the conclusions

that a researcher can draw concerning the distance di,1 if he only makes the following assumption:

Assumption 1. 0 ≤ P̃ (Ri ≤ ri,min) ≤ α and 0 ≤ P̃ (Ri ≥ ri,max) ≤ α

To understand Assumption 1, consider that the responses ri,min and ri,max of respondent i are the

{αi, (1− α
′

i)}-quantiles of his subjective distribution, so P̃ (Ri ≤ ri,min) = αi and P̃ (Ri ≥ ri,max) =

α
′

i. However, the researcher does not know if αi and α
′

i are equal to zero (i.e., ri,min and ri,max

are the minimum and maximum values of Ri) or are low positive probabilities as highlighted by

Dominitz and Manski. Instead of making a point assumption concerning the values of αi and α
′

i,

he thus assumes that αi and α
′

i can take any value in the interval [0, α]. I will carry out the main

empirical analysis assuming that α = 0.10, which means that αi and α
′

i can be any value in the

interval [0, 0.10]. Note that all researchers who would have considered a lower value for α must

accept α = 0.10. In particular, if a researcher considers that [ri,min, ri,max] is the support of the

subjective distribution, so α = αi = α
′

i = 0, he must agree on 0 ≤ αi ≤ 0.10; the same for α
′

i. I

will also discuss how the results change if one chooses the even weaker assumption α = 0.20 (see, in

particular, Remark 3 in Subsection 2.3).

By making only Assumption 1, the prediction P̃ (Ri > ri,1) in Equation 1 is an interval, not a

point. Three cases appear: (i.) H
[
P̃ (Ri > ri,1|ri,1 ≤ ri,min)

]
= [1 − α, 1], where H[·] denotes the

region for the quantity in brackets (i.e., all possible values that the quantity in brackets can take);

(ii.) H
[
P̃ (Ri > ri,1|ri,1 ≥ ri,max)

]
= [0, α]; (iii.) H

[
P̃ (Ri > ri,1|ri,1 ∈ (ri,min, ri,max))

]
= [0, 1]. As

a consequence, Assumption 1 reveals that di,1 lies in the following identification regions in cases (i.),

(ii.) and (iii.):

H [di,1|Qi,1, ri,1 ≤ ri,min] = [max{0, 1 −Qi,1 − α},max{1 −Qi,1, |1 −Qi,1 − α|}] (2)

H [di,1|Qi,1, ri,1 ≥ ri,max] = [max{0, Qi,1 − α},max{Qi,1, |Qi,1 − α|}] (3)

H [di,1|Qi,1, ri,1 ∈ (ri,min, ri,max)] = [0,max{Qi,1, 1−Qi,1}] (4)

9



Although the expressions seem to be cumbersome, the width of the identification region for di,1

cannot be higher than α (and cannot be less than α
2 ) when ri,1 ≤ ri,min (Equation 2) or when

ri,1 ≥ ri,max (Equation 3). When ri,1 ∈ (ri,min, ri,max), the width of the interval is much larger

(Equation 4). To see that, remark first that in that case the lower bound is 0 whatever the response

Qi,1. Second, when Qi,1 = 0.50, the identification region for di,1 is the interval [0, 0.50]. The width

of the interval is larger for any other response Qi,1 6= 0.50, given that Qi,1 = 0.50 is the answer with

the smallest upper bound (0.50).

Illustration 1. To clearly understand, consider Table 3 which provides the identification region

for di,1 conditional on the threshold ri,1 and the response Qi,1, assuming α = 0.10. Column [1]

considers the case when ri,1 ≤ ri,min, so when the prediction is [0.90,1]. If the respondent answers,

e.g., Qi,1 = 0.50, the identification region for di,1 is [0.40,0.50]. It means that the distance can take

any value in this interval. If he answers, e.g., Qi,1 = 0.95, the distance di,1 can take any value in

the interval [0,0.05]. More generally, one can see that the width of the intervals cannot be higher

than 0.10 and cannot be less than 0.05 when ri,1 ≤ ri,min. Column [2] considers the case when

ri,1 ≥ Ri,max, so when the prediction is [0,0.10]. Again, one can see that the width of the intervals

cannot be higher than 0.10 and cannot be less than 0.05. Column [3] considers the case when

ri,1 ∈ (ri,min, ri,max), so when the prediction is [0,1]. If the respondent answers, e.g., Qi,1 = 0.50,

the distance di,1 can take any value in the interval [0,0.50]. If he answers, e.g., Qi,1 = 0, the distance

di,1 can be any value in the interval [0,1]. More generally, when ri,1 ∈ (ri,min, ri,max), the lower

bound is always 0 and the interval has a width of at least 0.50.

Remark 1. One should keep two things in mind concerning the bounds obtained in Illustration 1.

First, and as often highlighted in partial identification analysis (see, e.g., Manski, 2003, p.3), these

bounds establish a domain of consensus among researchers about the value of the distance di,1. For

instance, consider a respondent who answers Qi,1 = 0.50. All researchers who accept Assumption

1 and α = 0.10 must agree that the distance is neither less than 0.40 nor greater than 0.50 when

ri,1 /∈ (ri,min, ri,max), while they must agree that the distance is in between range 0 to 0.50 when

ri,1 ∈ (ri,min, ri,max). Second, the bounds clearly show that different assumptions which could permit
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to point-identify di,1 when ri,1 ∈ (ri,min, ri,max) can give very different -so weakly credible- results

because the bounds are uncomfortably large in that case. For instance, if Qi,1 = 0.70, researchers

making different point-identifying assumptions may reach very different conclusions about the value

of di,1 within the interval [0,0.70].

2.2 The inferential problem under Assumption 1: General considerations

What the bounds of the measure of coherence computed under Assumption 1 can reveal about the

informativeness of an answer? I ask whether the answerQi,1 provided by the respondent i is coherent

with the prediction P̃ (Ri > ri,1). Consider two critical values d and d, such that 0 < d < d < 1. If

di,1 is high -say di,1 ∈ [d, 1]-, the answer Qi,1 is clearly uninformative. If di,1 is close to zero -say

di,1 ∈ [0, d]-, Qi,1 may be broadly informative. In-between, di,1 is too far from zero to say that Qi,1

may be broadly informative, and too close to zero to claim that it is uninformative -say di,1 ∈ (d, d)-:

this answer may be partially informative. There are however two difficulties. One difficulty is to

define plausible values for d and d; I will deal with this point in the next Subsection. The other

difficulty that I address here is that di,1 is not point-identified, but partially identified. One can

infer the type of an answer if the lower and upper bounds of the identification region for di,1 are in

the same critical region. But if it is not the case, it is impossible to identify precisely the type of an

answer.

Formally, let di,1,l and di,1,u be the lower and upper bounds of the identification region for di,1,

as defined in Equations 2, 3 and 4; so H [di,1|Qi,1, ri,1] = [di,1,l, di,1,u]. With the partially identified

measure of coherence based on Assumption 1, the data will be classified as follows:

(i.) If d ≥ di,1,u > di,1,l ≥ 0, Qi,1 is identified as broadly informative (the “Broadly informative”

category).

(ii.) If d > di,1,u > di,1,l > d, Qi,1 is identified as partially informative (the “Partially informative”

category).

(iii.) If di,1,l ≥ d, Qi,1 is identified as uninformative (the “Uninformative” category).
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(iv.) If di,1,u ≥ d > di,1,l > d, Qi,1 cannot be broadly informative, but it is impossible to say if it is

uninformative or partially informative (the“Uninformative or partially informative” category).

(v.) If d > di,1,u > d ≥ di,1,l, Qi,1 may be broadly or partially informative (the“Broadly or partially

informative” category).

(vi.) If di,1,u ≥ d > d ≥ di,1,l, the type of Qi,1 is unknown: it is impossible to infer if Qi,1 is broadly

informative, partially informative or uninformative (the “Unknown” category).

Illustration 2. Consider again Table 3, and assume furthermore that the critical values are d = 0.10

and d = 0.40. First, consider the case when ri,1 ≤ ri,min (Column [1] in Table 3), so when the

prediction is [0.90,1]. If the respondent answers, e.g., Qi,1 = 0.50, the identification region for di,1 is

[0.40,0.50]. This answer is clearly uninformative, given that the lower and upper bounds are in the

critical region [0.40,1] which defines uninformative answers. If the respondent answers, e.g., Qi,1 =

0.99, the identification region for di,1 is [0,0.09]. This answer may be broadly informative because

the lower and upper bounds are in the critical region [0,0.10] which defines broadly informative

answers. Sometimes it is however difficult to identify precisely the type of the response: if, e.g.,

Qi,1 = 0.55, the identification region for di,1 is [0.35,0.45]; the lower bound 0.35 is in the critical

region (0.10,0.40) which defines partially informative answers, but the upper bound is in the critical

region [0.40,1] which defines uninformative answers. Therefore it is impossible to say if the response

is uninformative or partially informative; but at least, we can reject the possibility that it is broadly

informative. The situation is worse when ri,1 ∈ (ri,min, ri,max) because we cannot infer if an answer

is uninformative, partially informative or broadly informative; in other words, the type of the answer

is unknown. For instance, if the respondent answers Qi,1 = 0.50, the identification region for di,1 is

[0,0.50] as shown in Column [3]. The lower bound of the identification region for di,1 is 0 so the answer

may be broadly informative; but the upper bound is 0.50, so the answer may be uninformative too;

and given that di,1 can take any value in this interval, the answer may also be partially informative.

Remark 2. I still have to define plausible critical values d and d, but Illustration 2 suggests that

when ri,1 /∈ (ri,min, ri,max), the width of the identification region for di,1 is sufficiently small to learn
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something about the informativeness of an answer (although it is not always possible to infer precisely

the type of an answer because α > 0). However, when ri,1 ∈ (ri,min, ri,max), one learns nothing

because the width of the identification region for di,1 is too wide. By making only Assumption 1,

I sacrifice the possibility to make some conclusions (when ri,1 ∈ (ri,min, ri,max)), but those that I

will make (when ri,1 /∈ (ri,min, ri,max)) possess credibility. Fortunately, ri,1 /∈ (ri,min, ri,max) for an

important share of respondents in the empirical analysis of Section 3, around 70 percent.

2.3 Defining plausible critical values d and d

Remember that 0 < d < d < 1. Given that my two main objectives are to learn the share of 50s

identified as uninformative and to see if other answers are identified as uninformative, the choice of

d is the most important and I begin by explaining it.

To identify some 50s as uninformative, it is necessary to make the following additional assump-

tion:

Assumption 2. d ≤ 0.50 − α

Assumption 2 is an identification condition, in the sense that without this assumption no 50s will be

identified as uninformative. Indeed, under Assumption 1, H [di,1|Qi,1 = 0.50, ri,1 /∈ (ri,min, ri,max)] =

[0.50 − α, 0.50] (see Equations 2 and 3), and H [di,1|Qi,1 = 0.50, ri,1 ∈ (ri,min, ri,max)] = [0, 0.50] (see

Equation 4). Hence, to have some 50s identified as uninformative, it is necessary that d ≤ 0.50−α.

Nevertheless, one should also ask if at least d = 0.50 − α, say d = 0.40 if we assume α = 0.10,

appears as sufficiently high as a critical value. If, e.g., ri,1 ≤ ri,min and Qi,1 = 0.50, the smallest

possible value that di,1 can take is di,1,l = 0.40. Even if di,1 = 0.40, this distance between the

prediction and the response seems too high to find any information, even partial.

We then obtain the following Proposition:

Proposition 1. Consider a measure of coherence at the first threshold partially identified via As-

sumption 1, and Assumption 2 holds. Then:

(i.) the share of 50s identified as uninformative is similar for all combinations of d and α which
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satisfy Assumption 2:
N∑

i=1

1 [ri,1 /∈ (ri,min, ri,max), Qi,1 = 0.50]

N∑

i=1

1 [Qi,1 = 0.50]

(5)

where 1[A] is an indicator function which is equal to 1 if A is true, and equal to 0 otherwise, and

N is the number of observations;

(ii.) by choosing the precise value d = 0.50−α, the following share provides an upper bound on the

share of 50s among the answers identified as uninformative:

N∑

i=1

1 [ri,1 /∈ (ri,min, ri,max), Qi,1 = 0.50]

N∑

i=1

1
[
di,1,l ≥ d

]
(6)

(iii.) by choosing the precise value d = 0.50 − α, the following share provides a lower bound on the

share of uninformative answers other than 50s in the sample:

N∑

i=1

1
[
di,1,l ≥ d,Qi,1 6= 0.50

]

N
(7)

Part (i.) of Proposition 1 is trivial but crucial: it says that the share of 50s identified as uninformative

is similar for all d and α which satisfy Assumption 2. The 50s identified as uninformative are always

those answered to a threshold ri,1 /∈ (ri,min, ri,max). If ri,1 /∈ (ri,min, ri,max), the identification region

for di,1 is [0.50 − α, 0.50], so the lower and upper bounds of di,1 are in the critical region [d, 1] for

all d ≤ 0.50 − α. If ri,1 ∈ (ri,min, ri,max), the identification region for di,1 is [0, 0.50], so the type of

Qi,1 = 0.50 is unknown for all d ≤ 0.50 − α. Given that it is impossible to learn the type of a 50

answered to a threshold ri,1 ∈ (ri,min, ri,max), note that the share given by Equation 5 is a lower

bound on the share of 50s which are uninformative.

Part (ii.) says that as far as one agrees on a critical value which satisfies Assumption 2, choosing

d = 0.50−α permits to obtain an upper bound on the share of 50s among the answers identified as
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uninformative. Indeed the denominator of Equation 6 is lower if d = 0.50− α than if d < 0.50− α.

Choosing such an upper bound for this share follows the conservative approach of this paper. If we

obtain as an upper bound, e.g., 60 percent, we will know that researchers who focus only on the

informativeness of the 50s miss an important share -at least 40 percent- of the identified uninforma-

tive answers. A potential problem with this share is that the 50s identified as uninformative are a

lower bound on the uninformative 50s, as previously mentioned. If so, the share given by Equation

6 may underestimate the share of the uninformative 50s among the uninformative answers. Hence,

to have a clearer idea on the importance of the uninformative responses other than 50s, I will also

consider the share given by Equation 7 in Part (iii.). This share of uninformative answers other

than 50s in the sample is a lower bound for two reasons. First, this share considers the responses

other than 50s identified as uninformative. This is a lower bound on the share of responses other

than 50s which are uninformative (because it is possible that some of the Q1 6= 0.50 classified as

“Unknown”or classified as “Uninformative or partially informative” are uninformative). Second, the

numerator is lower if d = 0.50 − α than if d < 0.50 − α.

Remark 3. As explained previously, it is logical to choose a value not too small for α because

(ri,min, ri,max) only suggests the support of the distribution. And when ri,1 /∈ (ri,min, ri,max), it

is impossible to learn precisely if some answers are uninformative or partially informative (the

“Uninformative or partially informative”category) and broadly or partially informative (the“Broadly

or partially informative” category) because α > 0 (if α = 0, the measure of coherence will be point-

identified when ri,1 /∈ (ri,min, ri,max), so it will be always possible to learn precisely the type of an

answer). Nevertheless remark that as far as d = 0.50 − α the precise value of α is not important

for the three percentages of Proposition 1 which concern the answers identified as uninformative.

Indeed, the set of answers identified as uninformative is the same for all combinations of α and d

which satisfy d = 0.50 − α. If α = 0.10 and d = 0.40, on can see in Table 3 that the set of Q1

identified as uninformative is given by {Q1 ∈ [0, 0.50]|r1 ≤ rmin}
⋃
{Q1 ∈ [0.50, 1]|r1 ≥ rmax}. It is

easy to see that this set is similar if I choose α = 0 and d = 0.50 or α = 0.20 and d = 0.30.9

9For a formal proof, remark first that if d = 0.50−α, a response is identified as uninformative when di,1,l ≥ 0.50−α.
Then consider the three following cases: (i.) ri,1 ≤ ri,min, (ii.) ri,1 ≥ ri,max, and (iii.) ri,1 ∈ (ri,min, ri,max). (i.)
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For the critical value d, I choose d = 0.10, for two reasons. First, and as already noticed in

the Introduction, the literature usually assumes that the answers other than (0, 0.50, 1) cannot

imply an interval with a width of more than 10 percentage points. If I consider d = 0.10, then

a probability Qi,1 will be identified as partially informative if its difference with the answer to

the pair of preliminary questions is at least 10 percentage points, i.e., di,1,l ≥ 0.10. Second, since

Dominitz and Manski (1997), it has been repeatedly observed that respondents tend to report values

at 1 percent intervals at the extremes (i.e., 0.01, 0.02, 0.03 and 0.97, 0.98, 0.99). It is often considered

that these values are broadly informative.10 Note that if they are, one can see in Table 3 that the

values 0.01, 0.02, and 0.03 will be answered to a threshold ri,1 ≥ ri,max (and will be identified as

broadly informative given that d = 0.10) or to a threshold ri,1 ∈ (ri,min, ri,max) (but in this case

we will not be able to infer their type); concerning the values 0.97, 0.98 and 0.99, they will be

answered to a threshold ri,1 ≤ ri,min (and will be identified as broadly informative) or to a threshold

ri,1 ∈ (ri,min, ri,max) (again, we will not be able to infer their type in that case).

3 Application

This Section revisits SEE data on stock market expectations that has been previously analyzed

by Dominitz and Manski (2011) and Gouret and Hollard (2011). Subsection 3.1 describes the data.

Subsection 3.2 describes the response patterns by type of answers. We assume that the critical

values are d = α and d = 0.50−α, and choose α = 0.10, to classify the respondents in the following

categories: “Broadly informative”, “Partially informative”, “Uninformative”, “Partially or broadly

informative”, “Uninformative or partially informative”, “Unknown”.

When ri,1 ≤ ri,min, di,1,l = max{0, 1 − Qi,1 − α} (see Equation 2). Hence, when ri,1 ≤ ri,min, Qi,1 is identified as
uninformative if max{0, 1−Qi,1−α} ≥ 0.50−α, i.e., if Qi,1 ≤ 0.50. (ii.) When ri,1 ≥ ri,max, di,1,l = max{0, Qi,1−α}
(see Equation 3). Hence, when ri,1 ≥ ri,max, Qi,1 is identified as uninformative if max{0, Qi,1 − α} ≥ 0.50 − α, i.e.,
if Qi,1 ≥ 0.50. (iii.) Lastly, when ri,1 ∈ (ri,min, ri,max), di,1,l = 0 and di,1,u ≥ 0.50 (see Equation 4). Hence, when
ri,1 ∈ (ri,min, ri,max), the type of Qi,1 is always unknown.

10For instance, Manski and Molinari (2010, p.219) write that“when someone states “3%,” one might reasonably infer
that the person is rounding to the nearest 1%.”
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3.1 The Data

I apply the partially identified measure of coherence to study the patterns of responses of data

drawn for the three waves of the SEE where questions on equity returns were asked: wave 12 (where

interviews were conducted in the period July 1999-November 1999), wave 13 (February 2000-May

2000) and wave 14 (September 2000-March 2001). The SEE was administered through WISCON,

a national computer-assisted telephone interview survey conducted by the University of Wisconsin

Survey Center; Dominitz and Manski (1997, 2004) describe the basic features of the survey. 1651

respondents were interviewed in these three cross-sections (547 in wave 12, 465 in wave 13, and 639

in wave 14). Of these 1651 respondents, 1255 answered the two preliminary questions eliciting the

lowest and the highest possible values ri,min and ri,max of the investment in the year ahead (to be

more precise 1284 answered ri,min and 1255 answered ri,min and ri,max). Of these 1255 respondents,

1231 provided an answer Qi,1 to the first probabilistic question (415 in wave 12, 342 in wave 13 and

474 in wave 14). The bounds of the measure of coherence at the first threshold can be computed for

these 1231 respondents, so for 75 percent of the respondents
(
≃ 1231

1651

)
.11 I refer to this sample as

the Preliminary sample. Note also that the Preliminary sample is not the sample that researchers

usually use. Researchers usually use the responses to the sequence of probabilistic questions (Qi,k,

k = 1, 2, 3, 4) to fit respondent-specific subjective distributions. I will be more explicit on this

point in Section 4, but for various reasons, we can fit these subjective distributions for only 979

respondents (340 in wave 12, 264 in wave 13 and 375 in wave 14). So I will also consider the response

pattern at the first threshold of this subsample of 979 respondents called the Final sample. This

Final sample represents about 60 percent of the respondents
(
≃ 979

1651

)
.

Remember that Assumptions 1 and 2 do not permit to infer the type of Qi,1 when ri,1 ∈

(ri,min, ri,max), as Remark 2 highlights. It happens that r1 /∈ (rmin, rmax) for 878 of the 1231

11Remark that of the 420 respondents (= 1651 − 1231) for whom we cannot consider a measure of coherence, 396
did not provide a response ri,min or ri,max to the preliminary questions, so 24 percent of the respondents

(
≃ 396

1651

)
(90

percent of them provided a “don’t know”
(
≃ 354

396

)
, and the other 10 percent refused to respond). These nonresponses,

in particular the “don’t know”, already indicate that responding to the preliminary questions may be a difficult task,
and that many people have little knowledge of the stock market. Note that the HRS 06 and 08 which directly asked
the stock market probabilistic question described in Table 1 have similar nonresponse rates. Of the 16754 respondents
of the HRS 06, 4017 did not provide a probabilistic response (3865 “don’t know” and 152 refusals), so 24 percent.
Of the 15727 respondents of the HRS 08, 3099 did not provide a probabilistic response (2998 “don’t know” and 101
refusals), so 20 percent.
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respondents of the Preliminary sample.12 So we will learn something about the informativeness of

72 percent of the responses to the first threshold in the Preliminary sample
(
≃ 878

1231

)
, as already

mentioned. And the type of the 353 remaining answers (= 1231 − 878) will be unknown (111 in wave

12, 91 in wave 13 and 151 in wave 14). Concerning the Final sample, r1 /∈ (rmin, rmax) for 699 of

the 979 respondents, so 72 percent
(
≃ 699

979

)
.13 The type of the 280 remaining answers (= 979− 699)

will be unknown (93 in wave 12, 64 in wave 13 and 123 in wave 14).

3.2 Response patterns

Table 4 considers the Preliminary sample, and provides a picture of the response patterns at the

first threshold by type and by wave. The column labeled Q1 = 0.50 gives the number of respondents

who answered “50 percent”. The column labeled Q1 = 1 gives the number of respondents who

answered “100 percent”. The column labeled Q1 = 0 gives the number of respondents who answered

“0 percent”. Column M10 gives the number of respondents who answered a multiple of ten other

than (0,50,100): e.g., 20, 30 or 90 percent. Column M5 gives the number of respondents who

answered a multiple of 5 but not of ten: e.g., 5,15 or 85 percent. The column labeled “Other” gives

the number of respondents who did not answer a multiple of 5: e.g., 99, 98 or 1 percent. Three facts

appear:

(i.) First, a majority of the 50s are uninformative. More precisely, of the 80 respondents who

answered Q1 = 0.50 in wave 12, at least 56 provided an uninformative 50. Hence, computing

the share given by Equation 5 in Proposition 1, we find that at least 70 percent of the 50s

are uninformative (≃ 56
80). This first result is robust across waves: at least 66 percent of the

Q1 = 0.50 are uninformative in wave 13 (≃ 44
66 ) and 55 percent in wave 14 (≃ 50

90).

(ii.) Second, the 50s represent a majority of -but not all- the answers identified as uninformative.

More precisely, in wave 12, of the 86 answers identified as uninformative, 56 are 50s; the

second identified uninformative answers most often provided are some M10 with 14 answers.

Computing the share given by Equation 6 in Proposition 1, the 50s represent 65 percent (≃ 56
86 )

12More precisely, r1 ≤ rmin for 851 respondents, and r1 ≥ rmax for 27 respondents.
13More precisely, r1 ≤ rmin for 689 respondents and r1 ≥ rmax for 10 respondents.
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of the identified uninformative answers in wave 12. Similar percentages are found for wave 13

(0.62 ≃ 44
71) and wave 14 (0.60 ≃ 50

83 ).

(iii.) Third, computing the share given by Equation 7 in Proposition 1, the uninformative answers

other than 50s represent at least 7.2 percent of the answers in wave 12 (≃ 3+14+9+4
415 ). Similar

percentages are found for wave 13 (0.079 ≃ 1+3+18+2+3
342 ) and wave 14 (0.07 ≃ 7+17+6+3

474 ).

The fact (i.) highlights that researchers are right to feel embarrassed with the 50s. A majority of

them are clearly uninformative whatever the wave considered. The percentages provided -between

55 and 70 percent depending on the wave- are relatively high despite the fact that they are lower

bounds for a researcher who accepts Assumptions 1 and 2. They are however widely believable. As

a way of comparison, consider the stock market probabilistic question of the HRS 08 described in

Table 1, as well as the answers to the epistemic follow-up question. The wording of the probabilistic

question, the period studied (February 2008 through February 2009) and the sample considered

(Americans over the age of 50) in the HRS 08 are different, but the topic is similar; so it can give

an idea of the plausibility of the percentages we have found. Of the 15727 respondents of the HRS

08, 3399 answered 50 percent. Of these 3399 respondents, 2124 answered that they were “unsure”

at the epistemic follow-up question, so 62.48 percent of the 50s. This percentage is very similar to

those that we have found.

The fact (ii.) suggests however that by focusing only on the informativeness of the 50s, re-

searchers can miss an important share of uninformative answers. Although the 50s always represent

a majority of the identified uninformative answers -between 60 and 65 percent depending on the

wave-, other answers are identified as uninformative as well, mainly M10 and M5 as shown in Table

4. If one had focused only on the informativeness of the 50s, he would have missed between 35 and

40 percent of the identified uninformative answers. The fact (iii.) confirms that the uninformative

answers other than 50s are substantial, given that they represent at least 7 percent of all the answers

in the different waves.

Final sample. The same exercise was done with the Final sample. Table 5 provides a picture

of the response patterns at the first threshold by type and by wave. Columns [5]-[8] of Table 6
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present a summary of the important percentages of Proposition 1. We find again that a majority

of the 50s are uninformative (Line [A] in Table 6). The 50s represent 74 percent of the identified

uninformative answers (Line [B] in Table 6), so around 26 percent of the identified uninformative

answers differ from 50s. This is quite important, although less than in the Preliminary sample. The

last percentage of interest, the share of uninformative answers other than 50s, represents at least 4

percent of the 979 respondents of the Final sample. Again, this percentage is lower than the one

found for the Preliminary sample, but it still shows that by focusing only on the informativeness of

the 50s, one can miss some uninformative answers, mainly some M10 and M5 (see Table 5).

Additional results. There are some additional interesting results in the response patterns of Tables

4 and 5. I have already said that some M10 and M5 are clearly uninformative. This is in sharp

contrast with the literature (e.g., Manski and Molinari, 2010, p.223) which usually assumes that

these responses cannot imply an interval with a width of more than 10 percentage points, i.e., they

are broadly informative. Remark that some M10 and M5 are also classified as“Partially informative”

(e.g., 33 in wave 12 in Table 4) and few of them as “Uninformative or partially informative” (e.g., 9

in wave 12 in Table 4), i.e., their difference with the answer to the pair of preliminary questions is

at least 10 percentage points, i.e., di,1,l ≥ 0.10. These answers represent around 10 percent of the

samples (e.g., (33 + 9)/415 in the Preliminary sample and (27 + 8)/340 in the Final sample of wave

12), and again, this result is in contrast with the literature. Lastly, researchers usually assume that

the answers which are not a multiple of 5, e.g., 1, 2 or 99 percent, are broadly informative. Most

of our results are in line with this assumption, given that of the few respondents who provide these

answers to a threshold r1 /∈ (rmin, rmax), most of them are usually identified as informative. Some

exceptions appear however in the Preliminary sample: few of these answers are clearly uninformative

whatever the wave (e.g., 4 in wave 12 in Table 4).
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4 Analyzing the cross-sectional distribution of (µ, σ) conditional on

the informativeness of Q1

This Section gauges the relevance of considering as uninformative not only some 50s but all the

answers identified as such. Following the literature which studies the expectations of equity returns,

I use the sequence of subjective probabilities (Qi,k, k = 1, 2, 3, 4) to fit each respondent-specific

normal distribution N (µi, σ
2
i ). Note that the identification process to infer if a Qi,1 is uninformative

does not depend on it; it only depends on Assumption 1 and the conservative choice of fixing

d = 0.50 − α.14 The (µ, σ) based on uninformative Q1 are meaningless. Suppose that one wants to

learn the cross-sectional distribution of (µ, σ) of the population who has meaningful expectations

but only excludes the (µ, σ) based on uninformative Q1 = 0.50 (as Hudomiet et al. (2011, p.398) do

by using the HRS 08 and its epistemic follow-up question; see Footnote 6). Given that he does not

consider the fact that other responses are uninformative, is the cross-sectional distribution of (µ, σ)

still biased?15

Before to step any further, two remarks are in order. The focus is mainly on the uninformative

Q1, and how they can bias the cross-sectional distribution of (µ, σ). But one should keep in mind

that the (µ, σ) based on Q1 classified as “Partially informative” or as “Uninformative or partially

informative”are also meaningless: these Q1 probably do not indicate a lack of knowledge of the stock

market as “don’t know” and uninformative answers, but they reflect at least a partial knowledge of

the stock market. The analysis will also show how the (µ, σ) based on these answers influence the

cross-sectional analysis. The second remark has to do with the category“Unknown”and the weakness

14Instead of assuming a normal distribution to fit each respondent-specific distribution, it would be possible to use a
more flexible (and easily implementable) method proposed recently by Bellemare et al. (2012) which maintains much
weaker assumptions on the shape of each underlying distribution. Such approach is however beyond the scope of this
paper. The objective is to identify uninformative Q1 under the weak assumptions of Section 2, and this Section shows
how the results found in the literature which fits respondent-specific normal distributions may change if one controls
for the informativeness of Q1 (identified under the weak assumptions of Section 2).

15If there is no doubt that the uninformative Q1 are meaningless, one may note however that those who provide these
responses (like those who answer “don’t know”) also take decision to hold or not stocks. Estimating an econometric
model of choice behavior is impossible here because the SEE does not ask respondents if they hold stocks, but one
may ask how we should have included these respondents in such an analysis. It would have been necessary to consider
wide interval to capture the extreme imprecision that these respondents face (some intervals would have been also
necessary to capture the imprecision faced by those who provide partially informative answers). Lastly it would have
been necessary to know how decision makers behave when they have an incomplete subjective distribution (i.e., which
criterion they maximize). If there are some econometric tools to deal with interval data (e.g., Manski and Tamer,
2002), econometric models of choice behavior with interval expectations data are still lacking (Manski and Molinari,
2010, p.231).
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of Assumption 1. In Section 3, this assumption, combined with Assumption 2, suffices to show that

at least 66 percent of the Q1 = 0.50 are uninformative, and that other Q1 are uninformative as

well. But the category “Unknown” represents an important share of the Final sample (28 percent

as mentioned in Section 3). This is a problem to study the cross-sectional distribution of (µ, σ)

conditional on the informativeness of Q1. Given the relative size of this category and the fact that a

subset of these Q1 might be partially informative or uninformative, they can strongly influence the

results. It is possible however to study at least how the (µ, σ) based on uninformative Q1 influence

the cross-sectional distribution of (µ, σ), “Unknown” excluded.

Consequently, in a first step (Subsection 4.1), I mainly exclude the “Unknown”from the analysis,

and obtain the following interesting results: (i.) respondents who provide Q1 identified as broadly

informative price risk in the same way; that is, regressing expected returns µ on perceived risks σ, I

find a robust positive linear relationship and the constant is not significantly different from the risk-

free rate. (ii.) Such linear relationship does not appear at all if one considers all the respondents.

(iii.) The collapse of the linear relationship is mainly due to the (µ, σ) based on Q1 identified as

uninformative, and in particular the 50s. (iv.) But the linear relationship is not so clear-cut if one

only excludes from the analysis the (µ, σ) based on uninformative 50s. In other words, if one had

only focused on the 50s as potential uninformative answers, he would not have only failed to capture

an important share of uninformative answers, he would have obtained different results than if he

had considered all the uninformative answers. Subsection 4.2 discusses some solutions to reduce the

size of the category “Unknown” and include these respondents in the analysis.

4.1 A cross-sectional analysis of fitted subjective distributions conditional on

the informativeness of Q1

Following the literature, we use the sequence of subjective probabilities (Qi,k, k = 1, 2, 3, 4) to

fit a respondent-specific normal distribution N (µi, σ
2
i ). For each respondent i, we find the (µi, σi)
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that solves the following least-squares problem:

inf
µi,σi

4∑

k=1

[(1 −Qi,k)− F (Ri,k;µi, σi)]
2 (8)

where F (Ri;µi, σi) denotes the cumulative normal distribution function with mean µi and standard

deviation σi, evaluated at any point Ri.

We can solve the least-squares problem in Equation 8 for 979 respondents (340 in wave 12, 264

in wave 13 and 375 in wave 14), i.e., the respondents of the Final sample. Indeed, of the 1231

respondents of the Preliminary sample (those who provided an answer Qi,1 to the first probabilistic

question), 1125 answered all of the 4 probabilistic questions. For various reasons, we could not fit a

subjective distribution to the responses of 146 of these persons. In particular, we cannot find (µ, σ)

for 120 respondents because they answered the same probability to all four thresholds.

Consider wave 12. Figure 1 describes the cross-sectional distribution of (µ, σ). Note that, as in

Dominitz and Manski (2011), the data are rescaled such that µi is expected return (e.g., µi = 0.06

means that the expected value of the investment one year from now is 1060). Panel (a) considers

the (µ, σ) of the 340 respondents of this wave. Given that we learn strictly nothing about the

informativeness of the category “Unknown”, Panel (b) proposes the same cross-sectional distribution,

excluding the 93 respondents of this category (see Table 5). Remark also that in each panel, some

respondents have the parameters (µ, σ) of their fitted subjective distribution depicted by a (red)

x mark or a (green) triangle instead of a (blue) dot. The (µ, σ) depicted by a x mark correspond

to the 42 respondents who answered Q1 = 0.50 in an uninformative way, and those depicted by a

triangle correspond to the 16 respondents (9 M10 and 7 M5) who provided an uninformative Q1

other than 50 (see Table 5). These two panels show that there is a great deal of heterogeneity. Notes

(i.) and (ii.) at the bottom of the Figure confirm this visual impression by providing the (0.25,

0.50, 0.75)-quantiles of µ and σ. Figures A1 and A3 in the Appendix (provided as online supporting

information) give similar results for waves 13 and 14.

To evaluate the effect of the informativeness of the answers, Figure 2 presents the cross-sectional

distribution of (µ, σ) conditional on the informativeness of Q1. Note first that most of the re-
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spondents classified as “Broadly informative” (Panel (a)), “Partially or broadly informative” (Panel

(b)), “Partially informative” (Panel (c)) and “Uninformative or partially informative” (Panel (d))

have a positive expected return, while most of the respondents classified as “Uninformative” have

a negative expected return (Panel (e)). It clearly shows that the “Uninformative” strongly bias

the cross-sectional distribution of (µ, σ) (“Unknown” excluded). A researcher may be however very

intrigued by these empirical regularities. To avoid any doubts, Section B of the online Appendix

shows that these regularities mainly follow from the combination of three elements: (i.) the nor-

mality assumption made for all the respondents to fit their individual-specific normal distribution

(Equation 8), (ii.) the fact that ri,1 ≤ ri,min for almost all the respondents in Panels (a)-(e) (see

Footnote 13), and (iii.) the fact that the first threshold is ri,1 = 1000 for an important majority of

these respondents (given that µi is expected return and not the investment one year from now, the

first threshold should be rescaled and ri,1 = 1000 corresponds to a rescaled first threshold of zero).

Furthermore, Panel (a) of Figure 2 shows considerable heterogeneity in the cross-sectional dis-

tribution of (µ, σ) for those who provide a broadly informative Q1, but also shows that the expected

return is positively (and a priori linearly) related to the risk for these respondents (Spearman’s

rho= 0.69 with a p-value= 0.000). Conversely, Panel (e) shows that the cross-sectional distribu-

tion of (µ, σ) for the uninformative exhibits no particular pattern (Spearman’s rho= 0.01 with a

p-value= 0.936). This result suggests that the absence of pattern found in Panel (b) of Figure 1 is

mainly due to the (µ, σ) based on uninformative Q1.

Table 7 provides ordinary least-squares (OLS) regressions of µ on σ for the different categories.

Column [1] shows that a linear regression fits the monotonic relationship found for the broadly

informative remarkably well. It is also possible to conclude that these respondents share a common

ex-ante price of risk. Indeed, the R2 is 82 percent, and the estimated intercept term does not differ

significantly from the risk-free rate during this period. To see that, note that the estimated intercept

term is 0.106, and its estimated standard-error is 0.043. Hence, the 95% confidence interval for this

intercept is [0.02, 0.19]. Concerning the risk-free rate, we take the one year US LIBOR rate which

oscillated in the range [0.056, 0.063] during wave 12.16 Hence, we cannot reject the null hypothesis

16The one year US LIBOR rate is a daily reference rate based on the interest rates at which banks borrow funds
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that the intercept term is equal to the risk-free rate, whatever its value in the interval [0.056, 0.063].

This linear relationship does not appear at all if we consider the uninformative (Column [5]), or if

we consider all the respondents, except the “Unknown” (Column [6]).

Table 7 suggests that the (µ, σ) based on uninformative answers are responsible for the collapse

of the linear relationship found in Column [6]. To confirm this result, and to see if excluding all the

(µ, σ) based on uninformative Q1 or only those based on uninformative 50s generate different results,

we have used the following procedure. We have preliminary sorted the respondents in ascending

order based on the variable Xi: Xi = 1 if Qi,1 is classified as “Broadly informative”, Xi = 2 if

Qi,1 is classified as “Partially or broadly informative”, Xi = 3 if Qi,1 is classified as “Partially

informative”, Xi = 4 if Qi,1 is “Uninformative or partially informative”, Xi = 5 if Qi,1 6= 0.50 and

is classified as “Uninformative”, and Xi = 6 if Qi,1 = 0.50 and is classified as “Uninformative”.

Then, for respondents with common X, we have sorted them according to d1,l. Thereafter, we have

considered first a sample of the 80 “Broadly informative”with the lowest d1,l, and added individuals

one by one according to the final ranking. This has resulted in a series of growing samples of

observations, and an OLS regression on each of this sample has been run.17

Figure 3 represents the evolution of the R2, the estimated intercept and slope coefficients. To

easily see the impact of the “Uninformative”, a (green) triangle is used when the ultimate (µi, σi)

added to the sample is based on an “Uninformative”Qi,1 6= 0.50, and a (red) x mark is used when

the ultimate (µi, σi) added in the sample is based on an “uninformative”Qi,1 = 0.50. At least three

results appear:

(i.) First, Panel (a) clearly shows that the (µ, σ) based on uninformative Q1 are responsible for

from other banks. During wave 12 (July 1999-November 1999), it reached a minimum of 0.056 on 21 July 1999 and a
maximum of 0.063 on 27 October 1999.

17Two interrelated remarks are in order. First, the final ranking would have been slightly different if we had only
sorted the respondents according to d1,l. The uninformative 50s have a lower bound d1,l = 0.40, while the other
uninformative Q1 have a lower bound d1,l > 0.40. Thus the respondents who provided an uninformative 50s would
have been ranked before those providing another uninformative response. Given that we want to see the results if we
only exclude the (µ, σ) based on uninformative 50s, ranking them at the end of the final ranking is logical. Second,
given that we do not know the precise value of d1 in the interval [d1,l, d1,u], one can argue that there is no justification
to rank the respondents with common X according to d1,l. The lower bound of the partially identified measure of
coherence of respondent i can be less than the one of respondent j, i.e., dj,1,l > di,1,l, despite the fact that their true
measures of coherence (that we do not know precisely) can be such that di,1 > dj,1. It may occur if the identification
regions H [di,1] and H [dj,1] overlap. For instance, if H [di,1] = [0, 0.10] and H [dj,1] = [0.05, 0.15], it is possible that
the “true” distances are di,1 = 0.09 and dj,1 = 0.05. Sorting the respondents with common X according to d1,l is only
one way to see if there is (or not) a form of stability in the linear relationship in each subcategory X.
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an important part of the collapse of the linear relationship between µ and σ.

(ii.) Second, this collapse is particularly due to the (µ, σ) based on uninformative 50s. With the

sample of size N = 205, i.e., when the (µ, σ) based on uninformative 50s are excluded, the

R2 is 43 percent. When some (µ, σ) based on uninformative 50s are added, the R2 collapses

tremendously to 25 percent (when N = 209). Then, it decreases progressively until reaching

11 percent when the 247 respondents are considered for the OLS regression. It is also when

these (µ, σ) are added to the sample that the estimated intercept term differs significantly

from the risk-free rate during this period (Panel (b)).

(iii.) Third, the other uninformative answers have also a huge impact on the R2. If only the (µ, σ)

based on uninformative 50s are excluded, the R2 is 43 percent. But if all the (µ, σ) based on

uninformative answers are excluded, the R2 is above 60 percent.

Figures A2 and A4 in the online Appendix provide similar results for waves 13 and 14. The R2 is

always around 60 percent when all the (µ, σ) based on uninformative Q1 are excluded. If only the

(µ, σ) based on uninformative 50s are excluded, the R2 is always around 40 percent. These results

show that the (µ, σ) based on uninformative 50s strongly bias the cross-sectional distribution of

(µ, σ) (“Unknown” excluded), but the other uninformative answers also do so.

4.2 Additional results

If the last Subsection suggests that it is important to consider as uninformative not only some

50s but all the answers identified as such, some readers might be however disappointed by the fact

that the “Unknown” are excluded from the analysis. Without making additional assumptions to

reduce the identification region of di,1 when ri,1 ∈ (ri,min, ri,max), it is impossible to include them in

a cross-sectional analysis of (µ, σ) conditional on the informativeness of Q1. This Subsection briefly

discusses two solutions to include the “Unknown” in the analysis. For the interested reader, the full

descriptions are in Section C of the online Appendix to save space.
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4.2.1 Using the responses to the other thresholds

The first solution, instead of adding assumptions, considers a criterion which extracts what

we can learn about the distances at the other thresholds: the value of (µi, σi) is meaningless if

Qi,1 is uninformative, but it is also meaningless if, e.g., Qi,4 is uninformative. We can consider a

priori four measures of coherence (di,k, k = 1, 2, 3, 4). It is obvious that Assumption 1 permits to

partially identified these four distances. If α = 0.10, the bounds for di,2, di,3 and di,4 are similar

to those described in Table 3 for di,1. Assumptions 1 and 2 permit to learn something about the

informativeness of Qi,k if and only if the corresponding threshold is outside the suggestive support.

Among the subjective probabilities whose thresholds are outside the suggestive support, I have

selected the one whose partially identified measure of coherence has the highest lower bound and

the highest upper bound, except if ri,1 ≤ ri,min and Qi,1 = 0.50 (i.e., if H [di,1] = [0.40, 0.50]). In

this latter case, I have chosen Qi,1 = 0.50 in order not to overstate the role of the uninformative

subjective probabilities other than 50s in the collapse of the linear relationship.18 I have then studied

the cross-sectional distribution of (µ, σ) conditional on the informativeness of the responses selected.

A respondent remains classified as “Unknown” if the four threshold values (ri,k, k = 1, 2, 3, 4) belong

to (ri,min, ri,max). For instance, in wave 12, 64 respondents are concerned. This is less than the 93

“Unknown”of Section 3 and Subsection 4.1, but it remains imperfect. As shown in Subsection C1 of

the online Appendix, we find however similar results: the (µ, σ) based on at least one uninformative

Qk are responsible for the collapse of the linear relationship. When these (µ, σ) are not included,

the R2 is around 60 percent. When we exclude only the respondents whose less informative Qk is

an uninformative 50, the R2 is around 40 percent.

18Indeed, suppose that ri,1 < ri,2 < ri,min < ri,3 < ri,4 < ri,max, Qi,1 = 0.50, Qi,2 = 0.40, and Qi,3 = 0.30 and
Qi,4 = 0.30. If α = 0.10, then H [di,1] = [0.40, 0.50], H [di,2] = [0.50, 0.60], H [di,3] = H [di,4] = [0, 0.70]. In that
case, if I had selected among the subjective probabilities whose thresholds are outside the suggestive support the one
whose partially identified measure of coherence has the highest lower bound and the highest upper bound, I will have
chosen Qi,2. And I will have conclude that (µi, σi) is meaningless because of an uninformative Qi,2 6= 0.50, despite
the fact that it is already meaningless because Qi,1 = 0.50 and is uninformative. This problem occurs because of the
monotonicity condition of the complementary cumulative distribution function and because ri,2 < ri,min.
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4.2.2 Adding assumptions to reduce the identification region of di,1

Although choosing as a criterion the less informative probability among the probabilities whose

thresholds are outside the suggestive support permits to decrease the size of the “Unknown”, it re-

mains imperfect for two reasons. First, some respondents are still classified as “Unknown”. Second,

this criterion does not focus on the answer for the first threshold. This answer is important because

it is not influenced by the answers for the subsequent thresholds, while the reverse is not true. As a

consequence, the second solution explored in Subsection C2 of the online Appendix to learn some-

thing about the informativeness of the “Unknown” and include this important share of respondents

in the analysis is to add assumptions to reduce the prediction region when ri,1 ∈ (ri,min, ri,max).

Under Assumption 1, the prediction region is H
[
P̃ (Ri > ri,1)

]
= [0, 1] for all ri,1 ∈ (ri,min, ri,max).

If we reduce this prediction region, the identification region of the measure of coherence when

ri,1 ∈ (ri,min, ri,max) will be reduced too. I have not considered point-identifying assumptions, given

the difficulty to justify them. I have considered some weaker assumptions that shrink partially the

identification region H [di,1|Qi,1, ri,1 ∈ (ri,min, ri,max)], such that all (or almost all) the “Unknown”

are classified as “Broadly informative”, “Partially or broadly informative”, “Partially informative”,

“Uninformative or partially informative”, and “Uninformative”. These assumptions, presented in

Appendix C2, are however stronger than Assumption 1, and clearly illustrates the fact that there is

a trade-off between the credibility of the additional assumptions and the possibility to learn some-

thing about the informativeness of the “Unknown”.19 Most of the answers classified as “Unknown”

in Section 3 are classified as “Partially or broadly informative” or “Uninformative or partially infor-

mative” in Appendix C2. For instance, in wave 12, of the 93 respondents classified as “Unknown” in

Section 3 (see Table 5), 63 are classified as “Partially or broadly informative”, 20 as “Uninformative

19To fully understand, consider the prediction region at the midpoint
ri,min+ri,max

2
, i.e.,

H
[
P̃
(
Ri > ri,1|ri,1 =

ri,min+ri,max

2

)]
= [θ1, 1 − θ1], where θ1 ∈ [0, 0.5] has to be fixed. If θ1 = 0, the pre-

diction region [0, 1] is similar to the one under Assumption 1: it encompasses all possible point predictions. However,
one can argue that the lower bound of the prediction region is strictly greater than 0 because the respondent should
have provided initially a much lower ri,max; similarly, the upper bound is strictly less than 1 because the respondent
should have provided initially a much higher ri,min. Hence, it is logical that θ1 > 0; the difficulty however is to choose
a value for θ1. It is possible that θ1 is very small. If one chooses a small value, e.g., θ1 = 0.01, the prediction region
is [0.01,0.99]. This assumption is very weak but the width of this interval will be too wide to learn something about
the type of an answer at the midpoint. If one chooses however a relatively high θ1, e.g., θ1 = 0.45, the prediction
region is [0.45,0.55]. The width of this interval is sufficiently small to learn something about the type of an answer at
the midpoint, but this assumption is clearly too strong.
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or partially informative”, 2 as “Partially informative”, 1 as “Uninformative”, and 7 remains “Un-

known” and are included in the “Broadly informative” without influencing the results. Concerning

in particular the 17 Q1 = 50 of type “Unknown” in Section 3 (see Table 5), 11 are classified as

“Partially or broadly informative” and 6 as “Uninformative or partially informative”.

Whatever the wave, the R2 decreases in an important way when we include the (µ, σ) based

on “Partially or broadly informative” Q1. The R2 remains however between 50 (in waves 12 and

13) and 60 percent (in wave 14). These percentages are stable when the (µ, σ) based on “Partially

informative”Q1 are included. Then, at least in wave 12, the R2 strongly decreases when the 6 (µ, σ)

based on “Uninformative or partially informative”Q1 = 0.50 are added. This is not a problem per

se, given that these Q1 are clearly not informative. However, to be sure that the (µ, σ) based on

“Uninformative” Q1 6= 0.50 also influence the cross-sectional distribution, we have included them

before in the ranking. The results suggest that the (µ, σ) based on uninformative Q1, not only those

based on uninformative 50s, as well as those based on “Uninformative or partially informative”Q1,

strongly influence the cross-sectional distribution of (µ, σ). For instance in wave 14, when the (µ, σ)

based on “Uninformative or partially informative” Q1 6= 0.50 are included, the R2 decreases from

60 to 50 percent. Then, including the (µ, σ) based on “Uninformative”Q1 6= 0.50 decreases the R2

to 40 percent. Lastly, including the (µ, σ) based on “Uninformative or partially informative” and

“Uninformative”Q1 = 0.50 decreases the R2 to 30 percent.

5 Conclusion and implications for the elicitation of probabilistic

questions

This paper has proposed a method, a partially identified measure of coherence, to identify unin-

formative subjective probabilities. The method is based on extremely weak assumptions, and does

not impose any restriction on which answers can be uninformative. Hence, although this method

is only applicable on a specific format of probabilistic questions used to know the distribution of

the future realization of a continuous variable, it adds to our understanding of response behavior

to such questions. The empirical application of the paper shows that a majority of the 50s are
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uninformative, and that these 50s represent a majority of, but far from all, the identified unin-

formative probabilities. The other identified uninformative responses, mainly some M10 and M5,

represent between 24 and 40 percent (depending on the wave and the sample) of these identified

uninformative responses. These results highlight that researchers are right to feel embarrassed with

the heap of 50s. But by assuming that only some 50s may be uninformative, as does, e.g., the HRS

08 (by asking the epistemic follow-up question only to those who respond “50 percent” to a first

probabilistic question), they miss an important share of uninformative answers. Furthermore, our

results suggest that the subjective distributions based on uninformative Q1, not only those based

on uninformative 50s, influence the cross-sectional analysis of the subjective distributions.

As a consequence, when the variable of interest is continuous, the format of questions in the SEE

appears particularly attractive to identify uninformative responses to the first threshold. This is

particularly true if this threshold value ri,1 is outside the suggestive support (ri,min, ri,max). Ideally,

one would like that the algorithm which defines the threshold values satisfies two criteria: (i.) it

should insure that some of the thresholds, say k = 2, . . . ,K, belong to the suggested support; (ii.)

it should insure that at least the first threshold value is such that ri,1 ≤ ri,min for all i. Criterion

(i.) is important because it makes no sense to have all the thresholds outside the suggestive sup-

port. Criterion (ii.) permits to learn something about the informativeness of the first probabilistic

responses. We would also learn something about the informativeness of a response if ri,1 ≥ ri,max,

but in that case, all the other thresholds will be outside the suggestive support. A drawback of

the two stages questioning method of the SEE survey is that it does not insure that these two

criteria are satisfied. In particular, ri,1 ∈ (ri,min, ri,max) for 30 percent of the Preliminary and Fi-

nal samples. Proposing an algorithm that satisfies these two criteria would be easy. An obvious

critic to this refinement is that when the survey medium necessitates an interviewer (face-to-face

or telephone interview), the algorithm may make the task of the interviewer too difficult. In the

application of this paper, the interviewer had to consider only 5 possible sequences of 4 threshold

values. Imposing that ri,1 ≤ ri,min, for all i, may increase the number of different sequences and

generate interviewer errors. Note however that most of face-to-face and telephone surveys are, and
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the SEE was, computer-assisted. It greatly simplifies the task of the interviewer.

One potential criticism of the SEE format that one reader might make is that the preliminary

questions attract some nonresponses; it is then impossible to ask the respondents some points on

their complementary cumulative distribution function. Note however that the nonresponse rates

in the HRS 06 and HRS 08 which directly asked the probability of a gain in the stock market are

very similar (see Footnote 11). Furthermore, even it is possible to find a format of question that

will generate a lower nonresponse rate, nonresponses, which are mainly “don’t know”, indicate a

lack of knowledge; and it is very difficult to understand how a respondent who is unable to provide

the (suggestive) support of his subjective distribution would be able to provide some subjective

probabilities which reflect relatively precise beliefs.

Although the paper has mainly focused on uninformative answers, another advantage of the

measure of coherence is that it also shows that they are not the only answers that should not be

taken at face value: various M10 and M5 are classified as partially informative or as uninformative

or partially informative, i.e., their difference with the answer to the pair of preliminary questions

is at least 10 percentage points. This result also casts serious doubts on the way the extent of

rounding is usually inferred, given that it is usually assumed that these answers cannot imply an

interval with a width of more than 10 percentage points. This result suggests that instead of eliciting

precise probabilities, it would be better to ask for interval responses in the case of binary discrete

variable (in the case of a binary variable, there is no suggestive support to elicit in a first stage, so

it is impossible to construct a (partially identified) measure of coherence). Before to explain why

in this case and not in the case of a continuous variable, note that the format of question I have

in mind is of the type: What do you think is the range of percent chances that event A will occur?

Manski and Molinari (2010, p.229) have recently implemented this kind of question in a wave of

the American Life Panel with some encouraging results, in the sense that respondents are willing to

report ranges of probabilities.

If the elicitation of a range of probabilities is easy when the variable is a binary discrete variable,

it will be more difficult in the case of a continuous variable, given that it will be necessary to ask
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for a sequence of ranges. Remember that an interviewer asks for a sequence of precise probabilities

that should satisfy the monotonicity of the cumulative distribution function. Dominitz and Manski

(1997) provide an optimistic view in the sense that only 5 percent (22 of 437 respondents) violate

this monotonicity condition. A much more pessimistic view is provided by Van Santen et al. (2012):

the violation concerns around 30 percent of the respondents. If so, asking for a sequence of ranges

can be even worse. Given this potential problem with continuous variables, our results suggest

again that asking a first probability for a threshold outside the suggestive support might be useful

to detect informativeness of answers to probabilistic questions.
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Table 1: Fraction of probability questions heaped at “50 percent”: Some examples

Topic Question Survey N Fraction of 50

Inflation

How about the chances that the U.S. economy will experience HRS 98 18884 0.32
double-digit inflation sometime during the next 10 years or so?

Economic depression

What do you think are the chances that the U.S. economy will HRS 98 4605 0.26
experience a major depression sometime during the next 10 years or so? HRS06 16754 0.24

Stock market(ii.)

By next year at this time, what is the percent chance that mutual MSC 02-04 3885 0.22
fund shares invested in blue chip stocks like those in the Down HRS 06 16754 0.23
Jones Industrial Average will be worth more than they are today? HRS 08 15727 0.21

Survival probability

What is the percent chance that you will live to be 75 or more? HRS 98 9905 0.25
HRS 06 6713 0.22

Notes: i. HRS and MSC stand respectively for the Health and Retirement Study and the Michigan Survey of Consumers.
ii. The frame of the stock market question is slightly different in the MSC. The wording is as follows: “ Please think about the type of mutual

fund known as a diversified stock fund. This type of mutual fund holds stock in many different companies engaged in a wide variety of business

activities. Suppose that tomorrow someone were to invest one thousand dollars in such a mutual fund. Please think about how much money

this investment would be worth one year from now. What do you think is the percent chance that this one thousand dollar investment will

increase in value in the year ahead, so that it is worth more than one thousand dollars one year from now?”.
iii. The examples drawn from the HRS 98 can be found in Lillard and Willis (2001), and those of the HRS 06 in Manski and Molinari (2010).
The answers to the question about investing in the stock market in the MSC 02-04, the HRS 06 and the HRS 08 are analyzed respectively by
Dominitz and Manski (2011), Hurd (2009) and Hudomiet et al. (2011).
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Table 2: An example of the SEE format of probabilistic questions for continuous variables: The stock market
expectations questions (waves 12, 13 and 14)

SEE scenario

The next question is about investing in the stock market. Please think about the type of mutual fund known as a diversified
stock fund. This type of mutual fund holds stock in many different companies engaged in a wide variety of business activities.
Suppose that tomorrow someone were to invest one thousand dollars in such a mutual fund. Please think about how much money
this investment would be worth one year from now.

Preliminary questions

What do you think is the LOWEST amount that this investment of $1000 would possibly be worth one year from now? (ri,min)

What do you think is the HIGHEST amount that this investment of $1000 would possibly be worth one year from now? (ri,max)

Algorithm for selection of investment thresholds

⌈

ri,min+ri,max

2

⌉

ri,1 ri,2 ri,3 ri,4

0 to 899 500 900 1000 1100
900 to 999 800 900 1000 1100
1000 to 1099 900 1000 1100 1200
1100 to 1299 1000 1100 1200 1500
1300 or more 1000 1200 1500 2000
Note: The midpoint of the lowest and highest values rounded

up to the next integer
(⌈

ri,min+ri,max

2

⌉)

determines the

four investment value thresholds ri,k, k = 1, 2, 3, 4, according
to the algorithm presented in this Table.

Sequence of K = 4 probabilistic questions

What do you think is the PERCENT CHANCE (or CHANCES OUT OF 100) that, one year from now, this investment would be
worth over ri,k? (Qi,k , k = 1, 2, 3, 4)
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Table 3: Identification region for di,1 assuming α = 0.10

[1] [2] [3]

ri,1 ≤ ri,min ri,1 ≥ ri,max ri,1 ∈ (ri,min, ri,max)

Prediction [0.90,1] [0,0.10] [0,1]

H [di,1|Qi,1, ri,1 ≤ ri,min] H [di,1|Qi,1, ri,1 ≥ Ri,max] H [di,1|Qi,1, ri,1 ∈ (ri,min, ri,max)]

Qi,1

0 [0.90,1] [0,0.10] [0,1]
0.01 [0.89,0.99] [0,0.09] [0,0.99]
0.02 [0.88,0.98] [0,0.08] [0,0.98]
0.05 [0.90,0.95] [0,0.05] [0,0.95]
0.10 [0.80,0.90] [0,0.10] [0,0.90]
0.20 [0.70,0.80] [0.10,0.20] [0,0.80]
0.30 [0.60,0.70] [0.20,0.30] [0,0.70]
0.40 [0.50,0.60] [0.30,0.40] [0,0.60]
0.50 [0.40,0.50] [0.40,0.50] [0,0.50]
0.55 [0.35,0.45] [0.45,0.55] [0,0.55]
0.60 [0.30,0.40] [0.50,0.60] [0,0.60]
0.70 [0.20,0.30] [0.60,0.70] [0,0.70]
0.80 [0.10,0.20] [0.70,0.80] [0,0.80]
0.90 [0,0.10] [0.80,0.90] [0,0.90]
0.95 [0,0.05] [0.90,0.95] [0,0.95]
0.98 [0,0.08] [0.88,0.98] [0,0.98]
0.99 [0,0.09] [0.89,0.99] [0,0.99]
1 [0,0.10] [0.90,1] [0,1]
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Table 4: Number of respondents answering Q1 = 0.50 or another percent according to the
partially identified measure of coherence at the first threshold -Preliminary sample-

[1] [2] [3] [4] [5] [6] [7]

Q1 = 0.50 Q1 = 1 Q1 = 0 M10 M5 Other Total

Wave 12

Broadly informative 59 3 37 19 14 132

Partially informative 11 22 33

Uninformative 56 3 14 9 4 86

Uninformative or partially informative 8 1 9

Broadly or partially informative 37 6 1 44

Unknown 24 4 58 21 4 111

Total 80 63 6 165 78 23 415

Wave 13

Broadly informative 63 28 13 8 112

Partially informative 8 20 28

Uninformative 44 1 3 18 2 3 71

Uninformative or partially informative 7 7

Broadly or partially informative 27 6 33

Unknown 22 6 2 40 21 91

Total 66 70 5 128 62 11 342

Wave 14

Broadly informative 67 3 38 17 8 133

Partially informative 12 27 1 40

Uninformative 50 7 17 6 3 83

Uninformative or partially informative 11 5 16

Broadly or partially informative 47 4 51

Unknown 40 8 1 64 34 4 151

Total 90 75 11 189 93 16 474
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Table 5: Number of respondents answering Q1 = 0.50 or another percent according to the
partially identified measure of coherence at the first threshold -Final sample-

[1] [2] [3] [4] [5] [6]

Q1 = 0.50 Q1 = 1 M10 M5 Other Total

Wave 12

Broadly informative 54 30 17 12 113

Partially informative 9 18 27

Uninformative 42 9 7 58

Uninformative or partially informative 8 8

Broadly or partially informative 34 6 1 41

Unknown 17 4 50 19 3 93

Total 59 58 140 67 16 340

Wave 13

Broadly informative 52 27 12 8 99

Partially informative 8 14 22

Uninformative 32 1 8 1 42

Uninformative or partially informative 7 7

Broadly or partially informative 24 6 30

Unknown 13 4 33 14 64

Total 45 57 107 47 8 264

Wave 14

Broadly informative 54 33 12 8 107

Partially informative 12 22 1 35

Uninformative 37 11 2 50

Uninformative or partially informative 11 4 15

Broadly or partially informative 41 4 45

Unknown 26 7 54 32 4 123

Total 63 61 162 76 13 375
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Table 6: Summary results

Preliminary sample Final sample
[1] [2] [3] [4] [5] [6] [7] [8]

Wave 12 Wave 13 Wave 14 Total Wave 12 Wave 13 Wave 14 Total

[A] Fraction of 50s identified as uninformative (Equation 5-Proposition 1)
0.70 0.66 0.55 0.63 0.71 0.71 0.58 0.66

[B] Fraction of 50s among identified uninformative answers (Equation 6-Proposition 1)
0.65 0.62 0.60 0.62 0.72 0.76 0.74 0.74

[C] Fraction of identified uninformative answers other than 50s in the sample (Equation 7-Proposition 1)
0.072 0.079 0.070 0.073 0.047 0.038 0.035 0.040
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Figure 1: Plots of the expected return (µ) against risk (σ)-wave 12-
Notes: i. Panel (a)-All categories-: The means of µ and σ are 0.32 and 0.57 respectively.
The (0.25,0.50,0.75)-quantiles of µ are (0.03,0.17,0.50). The (0.25,0.50,0.75)-quantiles of σ are
(0.18,0.34,0.67).
ii. Panel (b)-All categories except Unknown-: The means of µ and σ are 0.37 and 0.53 respec-
tively. The (0.25,0.50,0.75)-quantiles of µ are (0.05,0.18,0.51). The (0.25,0.50,0.75)-quantiles
of σ are (0.15,0.30,0.66).
iii. 58 respondents have the parameters (µ, σ) of their fitted probability distribution depicted
by a (red) x mark (42 respondents) or a (green) triangle (16 respondents) instead of a (blue) dot.
The 42 (µ, σ) depicted by a x mark correspond to the respondents who answered Q1 = 0.50 in
an uninformative way, and the (µ, σ) depicted by a triangle correspond to the 16 respondents
(9 M10 and 7 M5) who provided an uninformative Q1 other than 50 (see Table 5).
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Figure 2: Plot of expected return (µ) against risk (σ) by type -wave 12-
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Table 7: Least-squares regressions of µ on σ -wave 12-

[1] [2] [3] [4] [5] [6] [7] [8]
B.I. B. or P.I. P.I. Un. or P.I. Un. All categories Unknown All categories

except Unknown

Intercept 0.10** 0.015 -0.06 -0.04 -0.15*** 0.20*** 0.11 0.18***
(0.04) (0.01) (0.05) (0.06) (0.03) (0.06) (0.08) (0.05)

σ 1.42*** 0.82*** 0.53*** 0.24** 0.024 0.30* 0.11 0.24**
(0.10) (0.02) (0.02) (0.08) (0.018) (0.16) (0.15) (0.11)

R2 0.82 0.96 0.66 0.52 0.01 0.11 0.03 0.09

Obs. 113 41 27 8 58 247 93 340
Notes: i. Heteroskedasticity-robust standard errors are in parentheses.
ii. “B.I.” stands for “Broadly informative” (it corresponds to the (µ, σ) based on broadly informative Q1). “B. or P.I.” stands for “Broadly or
partially informative”. “P.I.” stands for “Partially informative”. “Un. or P.I.” stands for “Uninformative or partially informative”. “Un.” stands for
“Uninformative”.
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Figure 3: Coefficient of determination, estimated intercept and slope coefficients conditional on the sample
(respondents preliminary ranked according to Xi and then di,1,l, category “Unknown” excluded) -wave 12-
Notes: i. The two solid red lines in Panels (b) and (c) represent the 95% confidence intervals of the intercept and slope coefficients of the
OLS estimates. They are computed using heteroskedasticity-robust standard errors.
ii. The two dashed black lines in Panel (b) correspond to the minimum and maximum values of the daily one-year U.S. LIBOR rate
(RF12) during wave 12 (July 1999 to November 1999). It reached a minimum of 0.056 (21 July) and a maximum of 0.063 (27 October),
so it oscillated in the range RF12 ∈ [0.056, 0.063]. Let γ12 be the intercept of an OLS regression of µ on σ. If one wants to test the null
hypothesis H0: γ12 = RF12 versus γ12 6= RF12, one can look at if RF12 lies inside the 95% confidence interval of the intercept -depicted
by the two solid red lines-. If RF12 lies inside the confidence interval, we cannot reject the hypothesis that the intercept is equal to the
risk-free rate, ∀RF12 ∈ [0.056, 0.063]. If it is outside, we can reject the null hypothesis with 95% confidence.
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Supplement to “What can we learn from the fifties?”

by Fabian Gouret

November 2015

This Appendix presents tables of results for the waves 13 and 14 and supplementary materials. The
Appendix is organized as follows. Section A describes some results for the waves 13 and 14, similar
to those presented for the wave 12 in Section 4.1. Section B explains why in Figure 2 (Section 4.1 of
the main text) most of the respondents classified as “Uninformative” have a negative expected return,
while most of the other respondents have a positive expected return. Section C fully describes two
solutions to reduce the size of the category “Unknown”, and include these respondents in the analysis.

A Cross-sectional analysis of the fitted subjective normal distribu-

tions: Waves 13 and 14

This Section presents results for waves 13 and 14, similar to those presented for wave 12 in Section
4.1. Note that, as in Section 4.1, the data are rescaled such that µi is expected return (e.g., µi = 0.06
means that the expected value of the investment one year from now is 1060).

A.1 Wave 13

Figure A1 describes the cross-sectional distribution of (µ, σ) for wave 13. Panel (a) considers the
(µ, σ) of the 264 respondents of this wave. Panel (b) proposes the same cross-sectional distribution,
excluding the 64 respondents classified as “Unknown” (see Table 5). In each panel, the (µ, σ) depicted
by a (red) x mark correspond to the 32 respondents who answered Q1 = 0.50 in an uninformative
way, and those depicted by a (green) triangle correspond to the 10 respondents who provided an
uninformative Q1 other than 50 (see Table 5).

Figure A2 provides similar results to those provided for wave 12 in Figure 3. We have preliminary
sorted the respondents in ascending order based on X: Xi = 1 if Qi,1 is classified as “Broadly infor-
mative”, Xi = 2 if Qi,1 is classified as “Partially or broadly informative”, Xi = 3 if Qi,1 is classified as
“Partially informative”, Xi = 4 if Qi,1 is “Uninformative or partially informative”, Xi = 5 if Qi,1 6= 0.50
and is classified as “Uninformative”, and Xi = 6 if Qi,1 = 0.50 and is classified as “Uninformative”.
Then, for respondents with common X, we have sorted them according to d1,l. Thereafter, we have
considered first a sample of the 80 “Broadly informative” with the lowest d1,l, and added individuals
one by one according to the procedure. This has resulted in a series of growing samples of observations,
and an OLS regression on each of this sample has been run. Figure A2 represents the evolution of the
R2, the estimated intercept and slope coefficients.

A.2 Wave 14

Figure A3 describes the cross-sectional distribution of (µ, σ) for wave 14. Panel (a) considers the
(µ, σ) of the 375 respondents of this wave. Panel (b) proposes the same cross-sectional distribution,
excluding the 123 respondents classified as “Unknown”(see Table 5). In each panel, the (µ, σ) depicted
by a (red) x mark correspond to the 37 respondents who answered Q1 = 0.50 in an uninformative
way, and those depicted by a (green) triangle correspond to the 13 respondents who provided an
uninformative Q1 other than 50 (see Table 5).

1



−
2

0
2

4
6

E
xp

e
ct

e
d

 r
e

tu
rn

0 2 4 6 8
Risk −Standard deviation−

Spearman’s rank correlation: 0.24*** (p−value=0.001); Observations: 264

Wave 13
All categories

−
2

0
2

4
6

E
xp

e
ct

e
d

 r
e

tu
rn

0 2 4 6 8
Risk −Standard deviation−

Spearman’s rank correlation: 0.20*** (p−value=0.003); Observations: 200

Wave 13
All categories except Unknown

(a) (b)

Figure A1: Plots of the expected return (µ) against risk (σ)-wave 13-
Notes: i. Panel (a)-All categories-: The means of µ and σ are 0.40 and 0.67 respectively.
The (0.25,0.50,0.75)-quantiles of µ are (0.08,0.28,0.60). The (0.25,0.50,0.75)-quantiles of σ are
(0.22,0.43,0.76).
ii. Panel (b)-All categories except Unknown-: The means of µ and σ are 0.42 and 0.64 respec-
tively. The (0.25,0.50,0.75)-quantiles of µ are (0.10,0.29,0.64). The (0.25,0.50,0.75)-quantiles
of σ are (0.20,0.46,0.76).
iii. 42 respondents have the parameters (µ, σ) of their fitted probability distribution depicted
by a (red) x mark (32 respondents) or a (green) triangle (10 respondents) instead of a (blue) dot.
The 32 (µ, σ) depicted by a x mark correspond to the respondents who answered Q1 = 0.50 in
an uninformative way, and the (µ, σ) depicted by a triangle correspond to the 10 respondents
(1 Q1 = 1, 8 M10 and 1 M5) who provided an uninformative Q1 other than 50 (see Table 5).
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Figure A2: Coefficient of determination, estimated intercept and slope coefficients conditional on the sample
(respondents preliminary ranked according to Xi and then di,1,l, category “Unknown” excluded) -wave 13-
Notes: i. The two solid red lines in Panels (b) and (c) represent the 95% confidence intervals of the intercept and slope coefficients of the
OLS estimates. They are computed using heteroskedasticity-robust standard errors.
ii. The two dashed black lines in Panel (b) correspond to the minimum and maximum values of the daily one-year U.S. LIBOR rate
(RF13) during wave 13 (February 2000 to May 2000). It reached a minimum of 0.067 (28 February) and a maximum of 0.075 (31 May),
so it oscillated in the range RF13 ∈ [0.067, 0.075]. Let γ13 be the intercept of an OLS regression of µ on σ. If one wants to test the null
hypothesis H0: γ13 = RF13 versus γ13 6= RF13, one can look at if RF13 lies inside the 95% confidence interval of the intercept -depicted
by the two solid red lines-. If RF13 lies inside the confidence interval, we cannot reject the hypothesis that the intercept is equal to the
risk-free rate, ∀RF13 ∈ [0.067, 0.075]. If it is outside, we can reject the null hypothesis with 95% confidence.

Figure A4 provides similar results to those provided for wave 12 in Figure 3. We have preliminary
sorted the respondents in ascending order based on X: Xi = 1 if Qi,1 is classified as “Broadly infor-
mative”, Xi = 2 if Qi,1 is classified as “Partially or broadly informative”, Xi = 3 if Qi,1 is classified as
“Partially informative”, Xi = 4 if Qi,1 is “Uninformative or partially informative”, Xi = 5 if Qi,1 6= 0.50
and is classified as “Uninformative”, and Xi = 6 if Qi,1 = 0.50 and is classified as “Uninformative”.
Then, for respondents with common X, we have sorted them according to d1,l. Thereafter, we have
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Figure A3: Plots of the expected return (µ) against risk (σ)-wave 14-
Notes: i. Panel (a)-All categories-: The means of µ and σ are 0.36 and 0.65 respectively.
The (0.25,0.50,0.75)-quantiles of µ are (0.03,0.20,0.47). The (0.25,0.50,0.75)-quantiles of σ are
(0.19,0.39,0.79).
ii. Panel (b)-All categories except Unknown-: The means of µ and σ are 0.37 and 0.58 respec-
tively. The (0.25,0.50,0.75)-quantiles of µ are (0.07,0.20,0.49). The (0.25,0.50,0.75)-quantiles
of σ are (0.15,0.33,0.71).
iii. 50 respondents have the parameters (µ, σ) of their fitted probability distribution depicted
by a (red) x mark (37 respondents) or a (green) triangle (13 respondents) instead of a (blue) dot.
The 37 (µ, σ) depicted by a x mark correspond to the respondents who answered Q1 = 0.50 in
an uninformative way, and the (µ, σ) depicted by a triangle correspond to the 13 respondents
(11 M10 and 2 M5) who provided an uninformative Q1 other than 50 (see Table 5).

considered first a sample of the 80 “Broadly informative” with the lowest d1,l, and added individuals
one by one according to the procedure. This has resulted in a series of growing samples of observations,
and an OLS regression on each of this sample has been run. Figure A4 represents the evolution of the
R2, the estimated intercept and slope coefficients.
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Figure A4: Coefficient of determination, estimated intercept and slope coefficients conditional on the sample
(respondents preliminary ranked according to Xi and then di,1,l, category “Unknown” excluded) -wave 14-
Notes: i. The two solid red lines in Panels (b) and (c) represent the 95% confidence intervals of the intercept and slope coefficients of the
OLS estimates. They are computed using heteroskedasticity-robust standard errors.
ii. The two dashed black lines in Panel (b) correspond to the minimum and maximum values of the daily one-year U.S. LIBOR rate
(RF14) during wave 14 (September 2000 to March 2001). It reached a minimum of 0.045 (22 March 2001) and a maximum of 0.069 (1
September 2000), so it oscillated in the range RF14 ∈ [0.045, 0.069]. Let γ14 be the intercept of an OLS regression of µ on σ. If one
wants to test the null hypothesis H0: γ14 = RF14 versus γ14 6= RF14, one can look at if RF14 lies inside the 95% confidence interval of
the intercept -depicted by the two solid red lines-. If RF14 lies inside the confidence interval, we cannot reject the hypothesis that the
intercept is equal to the risk-free rate, ∀RF14 ∈ [0.045, 0.069]. If it is outside, we can reject the null hypothesis with 95% confidence.
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B Difference of structure in the cross-sectional distribution of (µ, σ)
between the different types

The difference of structure in the data between the different types of respondents in Figure 2 may
be puzzling. For instance, it seems that most of the respondents classified as broadly informative
have a positive expected return, while most of the respondents classified as uninformative have a
negative expected return. Why this is so? This Section shows that these regularities mainly follow
from the combination of three elements: (i.) the assumption (made in the literature and in Section
4 of this paper) that all the respondents have a normal distribution (see Equation 8 in the main
text), (ii.) the fact that ri,1 ≤ ri,min for almost all the respondents in Panels (a)-(e) of Figure 2 (see
Footnote 13), and (iii.) the fact that the first threshold is ri,1 = 1000 for an important majority
of these respondents. Table B1 presents the relative frequencies of the different first thresholds by
type for the wave 12 (the results for the other waves are not presented but are qualitatively similar).
Table B1 shows that r1 = 1000 for more than 88 percent of the respondents classified as “Broadly
informative”. This percentage reaches 92 percent in the case of the respondents classified as “Broadly
or partially informative”. The lowest percentage, 50 percent, concerns the respondents classified as
“Uninformative or partially informative”. But remember that this category includes only 8 respondents
(see Table 5 in the main text). One can thus conclude that there are a relative intra-type homogeneity
in r1 (i.e., there is a relative homogeneity in r1 across respondents of the same type) and a relative
inter-type homogeneity in r1 (i.e., the respondents classified in different categories have similar r1).
To understand why this homogeneity matters, I characterize the sets of possible values that (µ, σ) can
take in principle conditional on the type of the respondents. Assumptions 1-2 hold, and the critical
values are d = 0.10 and d = 0.40 as in the rest of the text. Remember that, as in Dominitz and
Manski (2011), µi is expected return (e.g., µi = 0.06 means that the expected value of the investment
one year from now is 1060), so Ri, ri,min and ri,1 should also be rescaled. I denote R∗

i = Ri−1000
1000 ,

r∗i,min =
ri,min−1000

1000 and r∗i,1 =
ri,1−1000

1000 (so r∗i,1 = 0 means that the first threshold is ri,1 = 1000).

Table B1: Relative Frequencies of r1 (Final sample) by categories -wave 12-

Wave 12

r1
r1 = 500 r1 = 800 r1 = 900 r1 = 1000

Broadly informative
0.0177 0.0973 0 0.885

Broadly or partially informative
0 0 0.732 0.9268

Partially informative
0.1111 0 0.1111 0.7778

Uninformative or partially informative
0 0.25 0.25 0.50

Uninformative
0.1207 0.0517 0.0862 0.7414

Unknown
0.129 0.0538 0.2043 0.6129

Furthermore, let me make the two following additional assumptions.

Assumption B1. r∗i,1 = r∗1 for all i = 1, . . . , N

Assumption B1 says that the (rescaled) first threshold r∗i,1 is the same for all the respondents. As
shown in Table B1, the homogeneity in ri,1, and so in r∗i,1, is strong but not as extreme as in Assumption
B1. Making this assumption permits however to simplify the presentation and to understand the
implication of the relative homogeneity of r∗i,1 around zero.

Assumption B2. r∗i,1 ≤ r∗i,min, for all i = 1, . . . , N .
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Assumption B2 implies that all the respondents have provided a probabilityQi,1 ≡ Prob
(
R∗

i > r∗i,1

)

to a threshold r∗i,1 ≤ r∗i,min. As a consequence, we can learn something about the informativeness of
all the Qi,1. We already know that Assumption B2 is broadly supported by the data (see Footnote 13
in the main text).

Consider Qi,1 = P(R∗
i > r∗i,1). Suppose for simplicity that the respondent-specific normal distribu-

tions perfectly fit the elicited probabilities (see Equation 8 in the main text), and let Φ(.) denote the

standard normal cumulative distribution function, so Qi,1 = 1 − Φ
(
r∗i,1−µi

σi

)
. The expected return of

respondent i, µi, is thus equal to:

µi = r∗i,1 − Φ−1(1−Qi,1)× σi (B1)

Equation B1 permits to characterize for each respondent i a set of values that (µi, σi) can take condi-
tional on the rescaled threshold r∗i,1 and Qi,1. Assumption B1 holds, so r∗i,1 = r∗1 for the N respondents.
Suppose furthermore that they have provided the same Q1. Then, the cross-sectional distribution of
(µ, σ) may be heterogenous, but Equation B1 shows that the N values of (µ, σ) are on the same line in
a (σ, µ) space. The intercept and the slope coefficients of this line are r∗1 and Φ−1(1−Q1), respectively.

The values that Qi,1 can take in Equation B1 is closely linked to the type of respondent i. Because
of Assumption B2, and given that the critical values are d = 0.10 and d = 0.40, then one can see in
Table 3 that:

(i.) 0.90 ≤ Qi,1 ≤ 1 for all the respondents classified as “Broadly informative”. If so, 1 − Qi,1 is
bounded in the interval [0, 0.10] for all these respondents. Using Equation B1, and given that
Φ−1(0) = −∞ and Φ−1(0.10) ≃ −1.28, then the set of possible values of µ for the “Broadly
informative” is:

H [µ|0 ≤ d1,l ≤ d1,u ≤ 0.10] = {µ|µ ≥ r∗1 + 1.28σ} (B2)

(ii.) 0.80 ≤ Qi,1 < 0.90 for all the respondents classified as “Broadly or partially informative”. Using
Equation B1, and given that Φ−1(0.10) ≃ −1.28 and Φ−1(0.20) ≃ −0.84, then the set of possible
values of µ for the “Broadly or partially informative” is:

H [µ|d1,l ≤ 0.10 < d1,u < 0.40] = {µ|r∗1 + 0.84σ ≤ µ < r∗1 + 1.28σ} (B3)

(iii.) 0.60 < Qi,1 < 0.80 for all the respondents classified as “Partially informative”. Using Equation
B1, and given that Φ−1(0.20) ≃ −0.84 and Φ−1(0.40) ≃ −0.25, then the set of possible values of
µ for the “Partially informative” is:

H [µ|0.10 < d1,l < d1,u < 0.40] = {µ|r∗1 + 0.25σ < µ < r∗1 + 0.84σ} (B4)

(iv.) 0.50 < Qi,1 ≤ 0.60 for all the respondents classified as “Uninformative or partially informative”.
Using Equation B1, and given that Φ−1(0.40) ≃ −0.25 and Φ−1(0.50) = 0, then the set of
possible values of µ for the “Uninformative or partially informative” is:

H [µ|0.10 < d1,l < 0.40 ≤ d1,u] = {µ|r∗1 < µ < r∗1 + 0.25σ} (B5)

(v.) 0 ≤ Qi,1 ≤ 0.50 for all the respondents classified as “Uninformative”. Using Equation B1,
and given that Φ−1(0.50) = 0 and Φ−1(1) = +∞, then the set of possible values of µ for the
“Uninformative” is:

H [µ|0.40 ≤ d1,l < d1,u] = {µ|µ ≤ r∗1} (B6)

Using Equations B2-B6, Panels (a)-(e) of Figure B1 describe the sets of possible values of (µ, σ)
conditional on the type of respondents in the (σ, µ) space (the shaded sets). A decrease of the possible
values of Qi,1 rotates the sets of possible values of (µi, σi) in a clockwise fashion around r1, and the
different sets do not overlap. If r∗1 = 0, then all the respondents classified as “Uninformative”have a
negative expected return; the other respondents have a positive expected return.
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Figure B1: Set of possible values of (µ, σ) by type assuming that r∗i,1 = r∗1 and r∗i,1 ≤ r∗i,min for all i = 1, ..., N

C Reducing the size of the “Unknown”

This Section presents in details the two solutions discussed in Subsection 4.2 to reduce the size
of the “Unknown”, and include them in the cross-sectional analysis of (µ, σ). To keep this Section
self-contained, part of it repeats in the main text.

C.1 Using the responses to the other thresholds

I first consider a criterion which extracts what we can learn about the distances at the other
thresholds. The general idea is to exploit the fact that the value of (µi, σi) is meaningless if Qi,1

is uninformative, but it is also meaningless if, e.g., Qi,4 is uninformative. We can consider a priori
four measures of coherence (di,k, k = 1, 2, 3, 4). It is obvious that Assumption 1 permits to partially
identified these four distances. If α = 0.10, the bounds for di,2, di,3 and di,4 are similar to those
described in Table 3 for di,1. Assumptions 1 and 2 permit to learn something about the informativeness
of Qi,k if and only if the corresponding threshold is outside the suggestive support. Among the
subjective probabilities whose thresholds are outside the suggestive support, the criterion selects the
one whose partially identified measure of coherence has the highest lower bound and the highest upper
bound, except if ri,1 ≤ ri,min and Qi,1 = 0.50 (i.e., if H [di,1] = [0.40, 0.50]). In this latter case,
Qi,1 = 0.50 is chosen in order not to overstate the role of the uninformative subjective probabilities
other than 50s in the collapse of the linear relationship.1 A respondent remains classified as“Unknown”

1Indeed, suppose that ri,1 < ri,2 < ri,min < ri,3 < ri,4 < ri,max, Qi,1 = 0.50, Qi,2 = 0.40, and Qi,3 = 0.30 and
Qi,4 = 0.30. If α = 0.10, then H [di,1] = [0.40, 0.50], H [di,2] = [0.50, 0.60], H [di,3] = H [di,4] = [0, 0.70]. In that case,
if I had selected among the subjective probabilities whose thresholds are outside the suggestive support the one whose
partially identified measure of coherence has the highest lower bound and the highest upper bound, I would have chosen
Qi,2. And I would have concluded that (µi, σi) is meaningless because of an uninformative Qi,2 6= 0.50, despite the fact

6



if the four threshold values (ri,k, k = 1, 2, 3, 4) belong to (ri,min, ri,max). By construction, the size of
the “Unknown”has to decrease. If ri,1 ∈ (ri,min, ri,max), but at least ri,4 ≥ ri,max, then the respondent
is no more classified as “Unknown”.

More formally, denote by Ji the set of thresholds whose values are outside the suggestive support;
thus, Ji = {k ∈ {1, 2, 3, 4}|ri,k /∈ (ri,min, ri,max)}. If Ji 6= ∅, the criterion considered, denoted Ci, is:

Ci ≡





∣∣∣Qi,i − P̃ (Ri > ri,1)
∣∣∣ if Qi,1 = 0.50 and ri,1 /∈ (ri,min, ri,max)

maxk∈Ji

∣∣∣Qi,k − P̃ (Ri > ri,k)
∣∣∣ otherwise

(C1)

Under Assumption 1, Ci is partially identified. Let di,k,l and di,k,u be the lower and upper bounds of
the identification region for di,k, and Ci,l and Ci,u be the lower and upper bounds of the identification
region for Ci. If so, the identification region for Ci is given by:

H [Ci] = [Ci,l, Ci,u] =

{
[0.50 − α, 0.50] if Qi,1 = 0.50 and ri,1 /∈ (ri,min, ri,max)
[maxk∈Ji

di,k,l,maxk∈Ji
di,k,u] otherwise

(C2)
Hence, if Ji 6= ∅, the distance Ci can take any value in the interval [Ci,l, Ci,u]. Under Assumption
1, the width of this interval cannot be higher than α (and cannot be less than α

2 ). It is easy to see
that Assumption 2 permits to claim that the corresponding subjective probability will be classified in
one of the following categories: “Broadly informative”, “Broadly or partially informative”, “Partially
informative”, “Uninformative or partially informative”, “Uninformative”. If Ji = ∅, there is no subjec-
tive probability at a threshold outside the suggestive support, so we cannot make any conclusion; it
corresponds to the category “Unknown”.

Except when ri,1 ≤ ri,min and Qi,1 = 0.50, note that criterion Ci considered is closely linked to a
Kolmogorov-Smirnov (KS) distance. The KS distance, which is often used to compare two continuous
one-dimensional probability distributions, is the maximum distance between the two cumulative dis-
tribution functions of Ri (the one based on the two preliminary questions and the one based on the
sequence of probabilistic questions); or, equivalently, the maximum distance between the complemen-

tary cumulative of these two distributions: KSi ≡ maxk=1,...,4

∣∣∣Qi,k − P̃ (Ri > ri,k)
∣∣∣ = maxk=1,...,4 di,k.

Under Assumption 1, the KS distance is partially identified. A problem with the partially iden-
tified KS distance is that there is a class of situations where we learn almost nothing about this
distance despite the fact that some of the thresholds are outside the suggestive support. Suppose that
ri,1 < ri,min < ri,2 < ri,max < ri,3 < ri,4, Qi,1 = 1, Qi,2 = 0.90 and Qi,3 = 0.15 and Qi,4 = 0. If
α = 0.10, then H [di,1] = H [di,4] = [0, 0.10], H [di,2] = [0, 0.90], H [di,3] = [0.05, 0.15]. As a conse-
quence, we infer that Qi,1 and Qi,4 may be informative, Qi,3 may be broadly or partially informative,
but the type of Qi,2 is unknown. The bound on the KS distance is [0.05, 0.90]. So if one chooses
a KS distance as a criterion, he will conclude that the highest distance is between 0.05 and 0.90;
hence he learns almost nothing about the KS distance. The difficulty to identify the KS distance is
due to the fact that Assumption 1 is too weak to learn something about the distance at a threshold
ri,k ∈ (ri,min, ri,max). That is why Ci considers the highest distance among the distances at a threshold
outside the suggestive support (except when ri,1 ≤ ri,min and Qi,1 = 0.50).

64 respondents are classified as “Unknown” in wave 12 (against 93 in Section 3 and Subsection
4.1), 42 in wave 13 (against 64), and 85 in wave 14 (against 123). This is less than when we only
focus on the first threshold, but it remains imperfect. I find however similar results to those found in
Subsection 4.1: the (µ, σ) based on at least one uninformative Qk are responsible for the collapse of
the linear relationship. When these (µ, σ) are not included, the R2 is around 60 percent. When we
exclude only the respondents whose less informative Qk is an uninformative 50, the R2 is around 40
percent.

that it is already meaningless because Qi,1 = 0.50 is uninformative. This problem occurs because of the monotonicity
condition of the complementary cumulative distribution function and because ri,2 < ri,min.
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Figure C1: Coefficient of determination, estimated intercept and slope coefficients conditional on the sample
(respondents preliminary ranked according to Xi and then Ci,l, category “Unknown” excluded) -wave 12-
Notes: i. The two solid red lines in Panels (b) and (c) represent the 95% confidence intervals of the intercept and slope coefficients of the
OLS estimates. They are computed using heteroskedasticity-robust standard errors.
ii. The two dashed black lines in Panel (b) correspond to the minimum (0.056) and maximum (0.063) values of the daily one-year U.S.
LIBOR rate during wave 12 (July 1999 to November 1999).
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Figure C2: Coefficient of determination, estimated intercept and slope coefficients conditional on the sample
(respondents preliminary sorted according to Xi and then Ci,l, category “Unknown” excluded) -wave 13-
Notes: i. The two solid red lines in Panels (b) and (c) represent the 95% confidence intervals of the intercept and slope coefficients of the
OLS estimates. They are computed using heteroskedasticity-robust standard errors.
ii. The two dashed black lines in Panel (b) correspond to the minimum (0.067) and maximum (0.075) values of the daily one-year U.S.
LIBOR rate during wave 13 (February 2000 to May 2000).

C.2 Adding assumptions to reduce the identification region of di,1

Although the criterion of Subsection C.1 permits to decrease the size of the “Unknown”, it remains
imperfect for two reasons. First, some respondents are still classified as “Unknown”. Second, this
criterion does not focus on the answer for the first threshold. This answer is important because it
is not influenced by the answers for the subsequent thresholds, while the reverse is not true. To
learn something about the informativeness of the Q1 classified as “Unknown”, and include them in
the analysis of the cross-sectional distribution of (µ, σ), this Subsection adds assumptions to reduce
the prediction region when ri,1 ∈ (ri,min, ri,max). By reducing this prediction region, the identification
region of the measure of coherence will be reduced too. This Section considers assumptions which
are stronger than Assumption 1 but weaker than point-identifying assumptions. These assumptions
clearly highlight that there is a tension between the credibility of these additional assumptions and
the possibility to learn something about the informativeness of the “Unknown”.

More precisely, I assume that:

Assumption C1. Assumption 1 holds. Moreover,
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Figure C3: Coefficient of determination, estimated intercept and slope coefficients conditional on the sample
(respondents preliminary sorted according to Xi and then Ci,l, category “Unknown” excluded) -wave 13-
Notes: i. The two solid red lines in Panels (b) and (c) represent the 95% confidence intervals of the intercept and slope coefficients of the
OLS estimates. They are computed using heteroskedasticity-robust standard errors.
ii. The two dashed black lines in Panel (b) correspond to the minimum (0.045) and maximum (0.069) values of the daily one-year U.S.
LIBOR rate during wave 14 (September 2000 to March 2001).

(i.) θ1 ≤ P̃
(
Ri ≥

ri,min+ri,max

2

)
≤ 1− θ1, where θ1 ∈ [0, 0.5] is a probability to be fixed.

(ii.) θ2 ≤ P̃ (Ri ≥ ri,min + δi) ≤ 1, where θ2 ∈ [0, 1 − α] is a probability and δi ∈
[
0,

ri,max−ri,min

2

]
a

positive real number to be fixed.
(iii.) 0 ≤ P̃ (Ri ≥ ri,max − δi) ≤ 1− θ2

Parts (i.), (ii.) and (iii.) in Assumption C1 easily provide the prediction region H
[
P̃ (Ri > ri,1)

]

when ri,1 =
ri,min+ri,max

2 , ri,1 = ri,min + δi and ri,1 = ri,max − δi. When ri,1 is between two of these
points, linear interpolations are used to find the bound of the prediction region.2 Panel (a) in Figure C4
depicts the prediction region (the shaded area) under Assumption C1 and the linear interpolations. In
order to see how Assumption C1 reduces the prediction region, Panel (b) depicts the prediction region
under Assumption 1. Note that there are three new parameters: the two probabilities θ1 ∈ [0, 0.5]

and θ2 ∈ [0, 1 − α], and a positive real number δi ∈
[
0,

ri,max−ri,min

2

]
that have to be fixed. Figure C4

shows the trade-off between the credibility of the values chosen for θ1, θ2 and δi and the possibility
to learn something about the informativeness of the “Unknown”. It is easy to see in Panel (a) that if
δi = 0, θ1 = 0 and θ2 = 0, the prediction region is similar to the prediction region under Assumption 1,

i.e., H
[
P̃ (Ri > ri,1)

]
= [0, 1] for all ri,1 ∈ (ri,min, ri,max). These values for δi, θ1 and θ2 are extremely

credible because the prediction region encompasses all possible point predictions. However these values
will not permit to learn something about the type of the“Unknown”because the width of the prediction
region is too wide. On the contrary, if one considers that θ1 = 0.45, θ2 = 1−α = 0.9 and δi = 0, these
values will permit to learn something about the“Unknown”because the width of the prediction region is
0.10 (so sufficiently small) for all ri,1 ∈ (ri,min, ri,max). It is however difficult to argue for the credibility
of so high values for θ1 and θ2. To fully understand, consider, e.g., θ1 which is associated to the

prediction region at the midpoint
ri,min+ri,max

2 , i.e., H
[
P̃
(
Ri > ri,1|ri,1 =

ri,min+ri,max

2

)]
= [θ1, 1− θ1].

2The prediction regions are thus given by:

(i.) H
[
P̃ (Ri > ri,1|Qi,1, ri,1 ≤ ri,min)

]
= [1− α, 1]

(ii.) H
[
P̃ (Ri > ri,1|ri,1 ∈ (ri,min, ri,min + δi])

]
=

[
θ2 − (1− α− θ2)

ri,1−ri,min−δi

δi
, 1
]

(iii.) H
[
P̃ (Ri > ri,1|ri,1 ∈ (ri,min + δi, zi])

]
=

[
θ1 + (θ2 − θ1)

ri,1−zi

ri,min+δi−zi
, 1− θ1 + θ1

ri,1−zi

ri,min+δi−zi

]

(iv.) H
[
P̃ (Ri > ri,1|ri,1 ∈ (zi, ri,max − δi])

]
=

[
θ1

ri,1−ri,max+δi

zi−ri,max+δi
, 1− θ2 + (θ2 − θ1)

ri,1−ri,max+δi

zi−ri,max+δi

]

(v.) H
[
P̃ (Ri > ri,1|ri,1 ∈ (ri,max − δi, ri,max))

]
=

[
0, α− (1− θ2 − α)

ri,1−ri,max

δi

]

(vi.) H
[
P̃ (Ri > ri,1|Qi,1, ri,1 ≥ ri,max)

]
= [0, α]
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It is easy to argue that θ1 > 0, i.e., this prediction region is not [0, 1]: the lower bound cannot be 0
because the respondent should have provided initially a much lower ri,max; the upper bound cannot
be 1 because the respondent should have provided initially a much higher ri,min. If it is logical that
θ1 > 0, the difficulty however is to argue for a too high value of θ1.

1

1− α

θ2

1− θ2

α

ri,1ri,min

ri,min + δi ri,max − δi

ri,max
ri,min+ri,max

2

θ1

1− θ1

H
[ P̃

(
R

i
>

r
i
,
1
)
]

α

ri,min + δi
1

1− α

ri,1ri,min ri,max

H
[ P̃

(
R

i
>

r
i
,
1
)
]

(a) (b)

Figure C4: Prediction region H
[
P̃ (Ri > ri,1|ri,1)

]
under Assumption C1 (Panel (a)) and under Assumption

1 (Panel (b))

Given that the objective is to classify almost all the “Unknown” of Subsection 4.1, the values for
the three new parameters have been chosen to do so: θ1 = 0.30, θ2 = 0.75 and δi =

ri,max−ri,min

8 .
Given the discussion above, these values may generate some misclassifications, but we believe that
they provide a good middle ground. Remember that the prediction region under Assumption 1, i.e.,

H
[
P̃ (Ri > ri,1)

]
= [0, 1] for all ri,1 ∈ (ri,min, ri,max), encompasses all possible point predictions. That

is all possible point-predicting assumptions generate point predictions which always belong to the
prediction region under Assumption 1. Under Assumption C1 and the values mentioned above for the
parameters, not all but numerous point-predicting assumptions generate point predictions P̃ (Ri > ri,1)
which belong to this prediction region. In particular, using the Final sample, we have verified that it
is true when one assumes that the first subjective distribution used by the respondent to

report ri,min and ri,max follows a continuous uninform distribution over the support (ri,min, ri,max).
It is also true for a set of point-predicting assumptions based on triangular distributions, with lower
limit ri,min, upper limit ri,max and different modes ci ∈ [

ri,min+ri,max

2 −δi,
ri,min+ri,max

2 +δi]). Lastly, we
have considered a set of point-predicting assumptions based on normal distributions. More precisely,
we have considered the following assumptions: (i.) P̃ (Ri ≤ ri,min) = P̃ (Ri ≥ ri,max) = γ and (ii.)

P̃
(
Ri ≥

ri,min+ri,max

2

)
= P̃

(
Ri ≤

ri,min+ri,max

2

)
= 1

2 . Assumption (i.) says that the answers to the

preliminary questions give the (γ,(1 − γ))-quantiles of a respondent’s first subjective distribution,
where γ is homogenous across respondents. Assumption (ii.) says that

ri,min+ri,max

2 is the median of
the first subjective distribution. Assumptions (i.) and (ii.) combined with the assumption that the
first subjective distribution is normal permit to obtain a point prediction. The point predictions, for
all γ ∈ (0, 0.10], always belong to the prediction region under Assumption C1, considering the values
mentioned for the parameters θ1, θ2 and δi.

Using the prediction region under Assumption C1 (see Footnote 2), one can easily find the iden-
tification region of the measure of coherence. Considering that d = 0.50 − α, d = α and α = 0.10,
most of the Q1 classified as “Unknown” in Section 3 are classified as “Partially or broadly informative”
or “Uninformative or partially informative”. For instance, in wave 12, of the 93 respondents classified
as “Unknown” in Section 3 (see Table 5), 63 are classified as “Partially or broadly informative”, 20
as “Uninformative or partially informative”, 2 as “Partially informative”, 1 as “Uninformative”, and
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7 remains “Unknown” and are included in the “Broadly informative” without influencing the results.
Concerning in particular the 17 Q1 = 50 of type “Unknown” in Section 3 (see Table 5), 11 are classified
as “Partially or broadly informative” and 6 as “Uninformative or partially informative”.

In some preliminary analyses, at least in wave 12, the 6 (µ, σ) based on “Uninformative or partially
informative” Q1 = 0.50 strongly influenced the cross-sectional distribution of (µ, σ). This is not a
problem per se, given that these Q1 are clearly not informative. However, to be sure that the (µ, σ)
based on “Uninformative”Q1 6= 0.50 also influence the cross-sectional distribution, they are included
before in the results presented. We have preliminary sorted the respondents in ascending order based
on the variable Yi: Yi = 1 if Qi,1 is classified as “Broadly informative”, Yi = 2 if Qi,1 is classified
as “Partially or broadly informative”, Yi = 3 if Qi,1 is classified as “Partially informative”, Yi = 4
if Qi,1 6= 0.50 and is classified as “Uninformative or partially informative”, Yi = 5 if Qi,1 6= 0.50
is classified as “Uninformative”, Yi = 6 if Qi,1 = 0.50 is classified as “Uninformative or partially
informative”, and Yi = 7 if Qi,1 = 0.50 is classified as “Uninformative”. Then, for respondents with
common Y , we have sorted them according to d1,l. Figures C5, C6 and C7 present the results for
waves 12, 13 and 14. To easily see the impact of the different “Uninformative or partially informative”
and “Uninformative”, I use an (orange) square (�) when the ultimate (µi, σi) added in the sample is
based on an “Uninformative or partially informative” Qi,1 6= 0.50, a (green) triangle (N) when it is
based on an “Uninformative” Qi,1 6= 0.50, a (pink) plus (+) when it is based on an “Uninformative
or partially informative”Qi,1 = 0.50, and a (red) x mark (×) when it is based on an “Uninformative”
Qi,1 = 0.50.

Whatever the wave, the R2 decreases in an important way when we include the (µ, σ) based on
“Partially or broadly informative” Q1, but it remains however around 50 percent (in waves 12 and
13) or 60 percent (in wave 14). These percentages are stable when the (µ, σ) based on “Partially
informative”Q1 are included. The R2 then quickly decreases when the other (µ, σ) are included. For
instance, in wave 14, when the (µ, σ) based on “Uninformative or partially informative”Q1 6= 0.50 are
included, the R2 decreases from 60 to 50 percent. Then, including the (µ, σ) based on “Uninformative”
Q1 6= 0.50 decreases the R2 to 40 percent. Lastly, including the (µ, σ) based on “Uninformative”
Q1 = 0.50 decreases the R2 to 30 percent. The (µ, σ) based on“Uninformative or partially informative”
Q1 = 0.50 do not have an important impact on the R2 in this wave (although they do in wave 12).
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Figure C5: Coefficient of determination, estimated intercept and slope coefficients conditional on the sample
(respondents preliminary sorted according to Yi and then di,1,l) -wave 12-
Notes: i. The two solid red lines in Panels (b) and (c) represent the 95% confidence intervals of the intercept and slope coefficients of the
OLS estimates. They are computed using heteroskedasticity-robust standard errors.
ii. The two dashed black lines in Panel (b) correspond to the minimum (0.056) and maximum (0.063) values of the daily one-year U.S.
LIBOR rate during wave 12 (July 1999 to November 1999).
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Figure C6: Coefficient of determination, estimated intercept and slope coefficients conditional on the sample
(respondents preliminary sorted according to Yi and then di,1,l) -wave 13-
Notes: i. The two solid red lines in Panels (b) and (c) represent the 95% confidence intervals of the intercept and slope coefficients of the
OLS estimates. They are computed using heteroskedasticity-robust standard errors.
ii. The two dashed black lines in Panel (b) correspond to the minimum (0.067) and maximum (0.075) values of the daily one-year U.S.
LIBOR rate during wave 13 (February 2000 to May 2000).

Y=1 Y=2 Y=3

Y=4 5 6 Y=7

.2
.4

.6
.8

1

100 200 300 400
Sample

Wave 14 with individuals preliminary ranked according to Y and d1l
Coefficient of determination and sample

−
.1

0
.1

.2
.3

100 200 300 400
Sample

Wave 14 with individuals preliminary ranked according to Y and d1l
Estimated intercept and sample

(a) (b) (c)

0
.5

1
1

.5

100 200 300 400
Sample

Wave 14 with individuals preliminary ranked according to Y and d1l
Estimated slope coefficient and sample

Figure C7: Coefficient of determination, estimated intercept and slope coefficients conditional on the sample
(respondents preliminary ranked according to Yi and then di,1,l) -wave 14-
Notes: i. The two solid red lines in Panels (b) and (c) represent the 95% confidence intervals of the intercept and slope coefficients of the
OLS estimates. They are computed using heteroskedasticity-robust standard errors.
ii. The two dashed black lines in Panel (b) correspond to the minimum (0.045) and maximum (0.069) values of the daily one-year U.S.
LIBOR rate during wave 14 (September 2000 to March 2001).
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