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Abstract 
 

The invasion of native species by exotic species is one of the most serious threats to 

biodiversity and ecosystem functioning. Despite a number of empirical and theoretical 

studies, there is still no general model about why or when settlement becomes invasion. The 

purpose of this work is to test a model of Bayesian population dynamics relying on best-

response strategies that could help in resource management and bioeconomic modeling. 

Given the exotic species survival probability, our static game unveils a breaking-level 

probability in mixed-strategies, where it is in the interest of exotic species to invade and in the 

interest of native species to resist. In dynamic setting, we introduce a stochastic version of the 

balance equation based on conditional probabilities. When the exotic species survival 

probability and the availability of resources in the ecosystem are respectively high and low, 

the dynamics shows that the convergence of subpopulations toward steady-states operates at a 

high pace.  
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resource management, biodiversity, invasive species. 

JEL Codes: C61, C62, C73, Q5, Q56, Q57 
 

  

                                                 
1
 I would like to thank Matias Nunez and Guy Meunier for our discussions and their helpful comments toward 

this project. The usual caveats apply. 
2
 University of Cergy-Pontoise, THEMA, F-95000 Cergy-Pontoise, e-mail: arnaud.dragicevic@u-cergy.fr 



2 

 

1. Introduction 

 

 The invasion of native species by exotic species has become one of the most serious 

threats to biodiversity and ecosystem functioning (Vitousek et al. 1996, Lonsdale 1999, 

Williamson 1999, Sebert-Cuvillier et al. 2007). Exotic species can ruin the ecological health 

and economic value of ecosystems (Williamson and Fitter 1996). Native species can be 

negatively affected by exotic species or ecosystem changes caused by exotic invaders. For 

example, many species listed as threatened or endangered under the Endangered Species Act 

are at risk because of competition with, predation by and pressures of nonnative species 

(Pimentel et al. 2000).  

 Despite a number of empirical and theoretical studies (Lonsdale 1999, Zedler and 

Kercher 2004, Davis et al. 2006, Meiners 2007, Sebert-Cuvillier et al. 2007), there is still no 

general model about why or when settlement becomes invasion. Both the attributes that make 

a species an invader (Kolar and Lodge 2001) and the characteristics that predispose an 

ecosystem to invasion (Sebert-Cuvillier et al. 2007) are still weakly understood. 

 What we know is that three factors promote the settlement of new species on an area: 

the availability of resources, the absence of natural enemies or competitors and the physical 

environment (Shea and Chesson 2002, Byers and Noonburg 2003). Elton (1958) spoke about 

the biotic resistance of ecosystems and asserted that strong interactions between native and 

exotic species prevent the latter from spreading. However, strong interactions can facilitate 

the settlement of invading species and positive interactions can increase the survival rate of 

exotic species and the death rate of native species (Simberloff and Von Holle 1999). 

 The invasive species management aims at reducing the invasion pace, in order to limit 

the environmental and economic impacts of invaders (Pimentel et al. 2000). The literature on 

this subject is substantial (Born and al. 2005, Marten and Moore 2011), but the lack of general 

guidelines generates a multitude of population models for each invader, as pointed out by 

Ramula et al. (2008). These population models work according to the demographic processes 

based on survival, growth and fecundity. Crawley (1986) asserted that simple demographic 

models are not useful given the absence of clear demographic profile of a successful invader. 

Nevertheless, models based on logistic population growth, where the rate of reproduction is 

proportional to the existing population and the amount of available resources, have emerged 

(see Clark 1990, Jayasuriya et al. 2011). Our approach concurs with these factors. 

 The invasive species establish and spread stochastically (Davis et al. 2000, Shea and 

Chesson, 2002). Therefore, a deterministic model is reductive, since it does not capture the 
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environmental stochasticity. Although uncertainty is a central characteristic of the invasion 

process (Williamson 1999), the survey on biological invasion done by Born and al. (2005) 

indicates that uncertainty arising in the ecological context of the invasive process is not 

handled. Likewise, Marten and Moore (2011) emphasize that the absence of biological 

uncertainty in deterministic bioeconomic models leads to significant bias in management 

solutions. In this way, Olson and Roy (2002) show that stochastic shocks to the population 

growth affect the choice of management strategy. 

 This paper answers the calls by Born et al. (2005) and Saphores and Shogren (2005) to 

study exotic pests respectively in uncertainty and Bayesian framework. Along the lines of 

Ramula et al. (2008) who explore general patterns based on survival, and following the recent 

work by Bischi et al. (2009), we aim at modeling population dynamics based on best-

responses and conditional probabilities that could guide resource managers and 

bioeconomists. Our static game unveils pure and mixed Nash-equilibrium strategies. While 

not invading and not resisting are always the pure-strategy equilibria, there is a breaking-level 

probability in mixed strategies, where, given the exotic species survival rate, the best-

response for exotic species is to invade and the best-response for native species is to resist. In 

dynamic setting, we introduce a stochastic version of the balance equation. When the exotic 

species survival probability is high and the availability of resources in the ecosystem is low, 

the Bayesian population dynamics shows that the convergence of subpopulations toward 

steady-states operates in rapid dynamics. 

 After this opening section, we begin with the static game and present the pure and 

mixed-strategy Nash equilibria in Section 2. Section 3 introduces the Bayesian population 

dynamics and discusses the stability of equilibria. Conclusive remarks are given in Section 4. 

 

2. Static model 

 

 Following a work by Liu et al. (2006), let i and j respectively be an exotic and a native 

species that simultaneously interact. Let 0w   represent the ecosystem fundamental value, 

notably that of the biotope and biotic community resources, in which the two species evolve. 

Let  , with [0,1] , be the rate of availability of resources in the ecosystem. The 

availability factor reflects the hypotheses that the spread of nonnative species depends on the 

resource availability in the ecosystem (Lonsdale 1999). 
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 Exotic species i’s behavior is defined by a set of two actions: it either settles or spreads 

in native species j’s environment. When i spreads, it does it at an effort or at a cost of 0sc  . 

Native species j holds a set of two actions as well. It can either endorse the invasion or resist it 

at an effort or a cost of 0rc  . In what follows, the cost for both species is assumed 

equivalent, i.e. 
s rc c c  . Despite appearing strong, this assumption is rather reasonable and 

reflects the fact that the greater the resistance from native species, the greater the effort 

needful to exotic species to spread. Finally, let  , with [0,1] , be the survival probability 

of exotic species endowed with a certain level of resilience in the habitat. The survival 

probability is a common prior to both players. We assume that   and   are exogenous, that 

is, the nature decides ex ante on the rate of availability of resources and the likelihood of 

survival of the incomer. 

 

2.1. Exotic species i’s payoff function 

 

If exotic species i settles, its payoff amounts to: 

- w  when native species j resists; 

- w when native species j endorses. 

When native species j resists, the expected payoff of exotic species i is the actual value w  of 

resources. When native species j endorses exotic species i’s settlement without resistance, the 

payoff of the latter is the ecosystem fundamental value, since all resources are within reach at 

no cost. 

 

If exotic species i spreads, its payoff amounts to: 

- (1 )w c   when native species j resists; 

- w c  when native species j endorses. 

When native species j resists, the payoff of exotic species i is the ecosystem residual value 

(1 )w  at the invasion cost c. The residual value is the difference between the fundamental 

w and actual w  values: exotic species i values unavailable resources at a spreading cost. 

When native species j shows no resistance to invasion, the payoff of exotic species i is the 

ecosystem fundamental w value minus the spreading cost c. 

 

2.2. Native species j’s payoff function 
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If native species j resists, its payoff amounts to: 

- (1 )w c   when exotic species i settles; 

- w c   when exotic species i spreads. 

When exotic species i settles, native species j’s payoff is the ecosystem residual value 

(1 )w  less the resistance cost c. If native species j unconditionally resists, it does not share 

the ecosystem resources and values even what it does not consume. When exotic species i 

spreads, native species j’s payoff is the ecosystem actual value w  minus the resistance cost 

c. Given the establishment of competition over resources, native species cannot value the 

whole ecosystem anymore and now values what is available for its subsistence less the cost of 

protection. 

 

If native species j endorses, its payoff amounts to: 

- w when exotic species i settles; 

- 0 when exotic species i spreads. 

When native species j endorses, its payoff amounts to the ecosystem fundamental value w. As 

exotic species i spreads and grabs resources without resistance, native species j’s payoff turns 

out to be null, which implies that 1  , i.e. it makes resources fully available for the 

spreading species. 

  

 In sum, the game matrix is as follows 

 

 
Native species j 

 
resists endorses 

Exotic species i 
settles w  ; (1 )w c   w ; w 

spreads (1 )w c   ; w c   w c  ; 0 

 

2.3. Pure strategies 

 

 We now analyze the Nash equilibrium based on the assumption that the exotic species 

survival probability   is a common prior. When native species j resists, its expected payoff 

amounts to 
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( ) (1 )[(1 ) ] ( )r

j w c w c            (1) 

 

 When native species j endorses, its expected payoff amounts to 

 

( ) (1 ) 0r

j w       (2) 

 

 In pure strategy, native species j will resist to exotic species i only if r r

j j  . 

Algebraically, it means that 

 

2

w c

w







  (3) 

 

When the probability that exotic species i survives is high enough, native species j will resist, 

regardless of whether exotic species i spreads or not. Yet, if native species j resists, exotic 

species i should not invade because of the cost. Exotic species i’s best response is then not to 

spread. This is not a Nash equilibrium. When  
r r

j j  , we have 
2
w c

w



  . Thereby, when the 

survival probability of exotic species i is low enough, native species j’s best response is not to 

resist, which in pure strategy is the Nash equilibrium. 

 

Proposition 1. For any survival probability such that 2
w c

w



  , the Nash equilibrium 

corresponds to the pair of pure strategies {species i settles; species j endorses}. 

 

2.4. Mixed strategies 

 

2.4. a. Equilibrium strategy of species i given the expected payoff of species j 

 

 Let p be the probability that exotic species i spreads, and 1 p  that it settles. Given the 

survival probability of species i, the expected payoff of native species j that resists resumes to 

 

( | ) ( ) (1 )[(1 ) ]r

j p w c p w c            (4) 

 

As a mixed strategy, expression (4) is the factorized sum of expected payoffs relative to: 
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- The probability that exotic species i spreads given its probability of survival, when native 

species j resists. 

- The probability that exotic species i settles given its probability of survival, when native 

species j resists. 

- The probability that exotic species i settles given its probability of death, when native 

species j resists. 

 

 Given the survival probability of exotic species i, the expected payoff of native species 

j that endorses resumes to 

 

( | ) (1 )r

j p w     (5) 

 

As a mixed strategy, expression (5) is the factorized sum of expected payoffs relative to: 

- The probability that exotic species i spreads given its probability of survival, when native 

species j endorses. 

- The probability that exotic species i settles given its probability of survival, when native 

species j endorses. 

- The probability that exotic species i settles given its probability of death, when native 

species j endorses. 

 

 Equalizing ( | ) ( | )r r

j j       yields  

 

*
( 1) ( 1)

w c
p

w c



  




  
 (6) 

 

Proposition 2. In mixed strategies, the best response for exotic species i is to spread with 

probability *p . 

 

2.4.b. Equilibrium strategy of species j given the expected payoff of species i  

 

 Let q be the probability that native species j resists, and 1 q  that it endorses. The 

expected payoff of exotic species i that settles resumes to 
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( ) [ ( 1) 1]s

i w q      (7) 

 

As a mixed strategy, it is the sum of expected payoffs and depends on the probability that 

agent j resists and endorses. 

 The expected payoff of exotic species i that spreads resumes to 

 

( ) (1 )s

i w q c      (8) 

 

 Setting up ( ) ( )s s

i i     yields 

 

*
(1 2 )

c
q

w 



 (9) 

 

Proposition 3. In mixed strategies, the best response for native species j is to resist with 

probability *q . 

 

 We can now make a broader proposition. 

 

Proposition 4. Given the survival probability of exotic species i, the mixed-strategy Nash 

equilibrium corresponds to {species i spreads with p*, species j resists with q* | μ}. 

 

3. Dynamic model 

 

 Understanding population attributes of invasive species is a prerequisite to manage 

invasions efficiently (Sebert-Cuvillier et al. 2007). For that reason, let us carry out an 

evolutionary analysis over the species’ spreading. Species can invade and resist at any time. 

Since species do not have knowledge of the underlying structure of the game, we assume that 

the switching mechanism takes place according to a social learning mechanism (Ellison and 

Fudenberg 1995, Hofbauer and Sigmund 1998, Bischi et al. 2009). It is now admitted that 

social learning generates imitation and protoculture. As well, we know that ecological 

selection favors successful strategies which percolate in time (Hofbauer and Sigmund 1998).  

 Following a work by Bischi et al. (2009), we assume that a species samples a species 

that has chosen the opposite strategy in the past. At each time period, if the payoff of the 
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sampled species is greater than its own, the latter switches to this strategy. The sampling 

follows the uniform probability law so the probability of comparing payoffs with species of a 

given strategy is proportional to the fraction of species using that strategy. 

 Let the population of exotic species be divided in fractions of spreaders ( )s t  and 

settlers ( )s t  operating in period t, where ( ) ( ) 1s t s t  . In parallel, let the population of 

native species be divided in fractions of resistants ( )r t  and endorsers ( )r t  operating at t, with 

( ) ( ) 1r t r t  . The sum denotes a normalized subpopulation density such that 0 corresponds 

to extinction and 1 is the maximal subpopulation density. 

 

3.1. Spreading dynamics of exotic species 

 

 The probability to switch from spreading to settlement is 
ss . This probability is 

obtained by multiplying the probability that the spreading fraction s measures up its payoff 

against a settling fraction s  with the probability that the payoff of that fraction is greater than 

its own, i.e. Pr ( )s s

i i  . We thus have 

 

Pr ( ) (1 )Pr ( )s s s s

ss i i i is s          (10) 

 

Given that the native species equilibrium strategy equates exotic species expected payoffs at 

*q , it implies that Pr ( )s s

i i q   , with *q q . Therefore, we have (1 )ss s q   . 

 Symetrically, we have 
ss  such that 

 

Pr ( )s s

ss i is     (11) 

 

Given that the native species equilibrium strategy equates the exotic species expected payoffs 

at *q , it implies that Pr ( ) 1s s

i i q    , with 1 *q q  . We have (1 )ss s q   . 

 The dynamic equation describing the expected fraction of spreaders among exotic 

species is given by 

 

( 1) ( ) [1 ( )]Pr[ | ( )] ( )Pr[ |1 ( )]ss sss t s t s t s t s t s t        (12) 
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 The fraction of spreading species at time 1t   is the sum of the fraction of spreaders at 

time t , i.e. ( )s t , and of the product of the fraction of settlers and the conditional probability 

of switching strategy given the fraction of spreaders at time t, i.e. [1 ( )]Pr[ | ( )]sss t s t , minus 

the fraction of spreaders multiplied by the conditional probability of switching strategy given 

the fraction of settlers at time t, i.e. ( )Pr[ |1 ( )]sss t s t  . Equation (12) can be interpreted as a 

variant of the balance equation where species change strategies in light of conditional 

probabilities but cannot appear nor disappear from nowhere. 

 We follow the rationale of population growth models, but the novelty of our dynamic 

balancing stands for the probability of switching strategy conditional on the fraction of 

species which strategy is being benchmarked. We thus term it Bayesian population 

dynamics
3
. Indeed, it is apt that an entity will be prone to the mass effect, that is, it will switch 

strategy in proportion to the fraction of entities in the population already using that strategy. 

Rewritten, the precedent equation yields 

 

2 2( 1) [2 ( )]( ) 2s t s t q q q q      (13) 

 

3.2. Resistance dynamics of native species 

 

 The probability of switching from resistance to endorsement is 
rr . This probability is 

obtained by the product of the probability that the resistant fraction r measures up its payoff 

against an endorsing fraction r  and the probability that the payoff of that fraction is greater 

than its own, i.e. Pr ( )r r

i i  . We thus have 

 

Pr ( ) (1 )Pr ( )r r r r

rr j j j jr r          (14) 

 

Given that the exotic species equilibrium strategy equates the native species expected payoffs 

at *p , it implies that Pr ( )r r

j j p   , with *p p . Therefore, we have (1 )rr r p   . 

 Symmetrically, we have 
rr  such that 

 

Pr ( )r r

rr j jr     (15) 

                                                 
3
 Alternative Bayesian density-dependant growth model has been studied by Frigessi et al. (2005) 



11 

 

 

Given that the exotic species equilibrium strategy equates the native species expected payoffs 

at *p , it implies that Pr ( ) 1r r

j j p    , with 1 *p p  . Therefore, we have (1 )rr r p   . 

 The dynamic equation describing the expected fraction of resistants among native 

species is given by 

 

( 1) ( ) [1 ( )]Pr[ | ( )] ( )Pr[ |1 ( )]rr rrr t r t r t r t r t r t        (16) 

 

 The fraction of resisting species at time 1t   is the sum of the fraction of resistants at 

time t , i.e. ( )r t , and of the product of the fraction of endorsers and the conditional probability 

of switching strategy given the fraction of resistants at time t, i.e. [1 ( )]Pr[ | ( )]rrr t r t , 

minus the fraction of resistants multiplied by the conditional probability of switching strategy 

given the fraction of endorsers at time t, i.e. ( )Pr[ |1 ( )]rrr t r t  . Rewritten, the Bayesian 

population dynamics yields 

 

2 2( 1) [2 ( )]( ) 2r t r t p p p p      (17) 

 

3.3.  Dynamical system 

 

 Fractions of spreading and resistant species in time are subject to a nonlinear system. 

The dynamical system ( 1)D t   can be described by the following map in 2  in the dynamic 

variables s and r: 

 

2 2

2 2

( 1) [2 ( )]( ) 2
( 1) :

( 1) [2 ( )]( ) 2

s t s t q q q q
D t

r t r t p p p p

     
 

    
 (18) 

 

 A steady state of the dynamical system is a point ( *, *)S s r  satisfying the following 

nonlinear system of equations 

 

2

2

(2 1)( ) 0

(2 1)( ) 0

s q q

r p p

   


  
 (19) 
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 Any population configuration is represented by the pair of subpopulation densities of 

exotic and native species. The system has four corner equilibria (0,0)S  , (0,1)S  , 

(1,0)S  , (1,1)S   and an inner equilibrium ( *, *)S s r . All corner equilibria represent null 

or full equilibria and can be easily interpreted. For example, (1,0)S   means that the all 

entities among exotic species spread and no entity among native species resists. The inner 

equilibrium signifies that certain levels of density of the subpopulations spread and resist. 

 Let us now study the necessary and sufficient conditions for a unique inner 

equilibrium to exist. The conditions are derived in Tables 1 and 2. As we set ( 1) : ( )s t f s   

and ( 1) : ( )r t g r  , we obtain 

 

 Table 1 Inner equilibrium conditions for ( )f s  

  

(0) 0f   (1) 0f   ( ) 0f s   

1
2

0,  

0c  ,  4 2
0, cw


   

1
2

0,  

0c   

1
2

0,  

0c  ,  2 1
0, cw


   

 1
2
,1   

0c   

 1
2
,1   

0c   

 1
2
,1   

0c   

 

 Table 2 Inner equilibrium conditions for ( )g r  

 

(0) 0g   (1) 0g   ( ) 0g r   

0  , 0c   

 1
2
,1   

0  , 0c   

 0,1
 

0  , 0c   
 0,1  

 0,1 , 0c  , 

 3
0, cw


 ,  2 2

,1w c
c w



 


   

 0,1  

[0,1]
 

 0,1 , 0c   

 0, cw


 ,  0,1  

 

 The roots of ( ) 0f s   and ( ) 0g r   are equal to 

 

2
*

2( 1)

2
*

2( 1)

q
s

q

p
r

p


 


 

 

 (20) 

 



13 

 

 Given that *, * (0,1)s r  , the inner equilibrium exists for 

 

* (0,1)s   * (0,1)r   

1
2

0,  

 2 1
0, cw


   

 1
2
,1   

0  , 0c   

 1
2
,1   

 0,1 ,  0, cw


  

 0,1  

 

Proposition 5. There exists a unique inner equilibrium ( *, *)S s r . 

 

 The stability of equilibria is then studied by means of the linearization analysis (see 

Appendix). Eigenvalues   of the Jacobian matrix are outlined in Table 3. 

 

Table 3 Eigenvalues of the Jacobian matrix 

 

( , )S s r  (0,0)  (0,1)  (1,0)  (1,1)  ( *, *)s r  

stable 

( 0)   

 1
2

0,  

 0,1  
 

 0,1  

 0,1  

 0,1  

 0,1  

2
5
,1     

 0,1
 

unstable 

( 0)   

 1
2
,1   

 0,1  

 0,1  

 0,1  

 

 

0   

 0,1  

2
5

0,   

 0,1  

 

 While the equilibrium in which all exotic species spread and no native species resists 

is always dynamically stable, the equilibrium where no exotic species spreads and all native 

species resist is always instable. Apart these two asymmetric cases, the symmetric corner 

equilibria and the inner equilibrium display both stable and unstable configurations, 

depending on the values of parameters.  

 Patten (2010) clarifies that the useful steady-state question is not whether steady-states 

are achieved in ecosystems, but rather, whether there is a directing tendency that organizes the 

succession process. Our results give intuition that a directing tendency could lie in the 

availability of resources in the ecosystem for which species compete and the survival 

probability of nonnative species. 

 

Proposition 6. The corner equilibrium (1,0)S   is always stable. The corner equilibrium 

(0,1)S   is always unstable. The inner ( *, *)S s r  and corner (0,0)S   and (1,1)S   

equilibria can be stable or unstable, depending on the parameters’ values. 
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a. (0,0)S   b. (0,1)S   

  

c. (1,0)S   d. (1,1)S   

  

e. ( *, *)S s r  for * * 0.3s r   

 

Fig. 1 Numerical simulations of   given   and  , for 1
2

c w  
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 Figures 1.a., 1.b., 1.c., 1.d. and 1.e. illustrate the stability of equilibria with regard to 

the parameters’ values (Tables 4–8 in Appendix). In addition to the nature of steady-states 

provided by  , the eigenvalues also provide information on the pace of convergence toward 

steady-states. Numerical simulations that we conducted under the linearization analysis reveal 

that all configurations show the same distribution of convergence pace, regardless of the 

stationarity in S. Roughly 95% of cases reveal a low rate of convergence, for 0.00   , and 

this is verified for nearly all levels of availability of resources in the ecosystem and all rates of 

survival of exotic species. 

 The only zone where the convergence pace suddenly becomes high and steady-states 

rapidly occur is when the survival rate of the exotic species is almost certain, i.e. lim( ) 1  , 

and resources are very scarce, i.e. lim( ) 0  . This particularity is verified for both corner 

and inner equilibria for 1
2

*r   and can be easily justified. When exotic species are highly 

likely to survive in an environment where resources are in short supply, a strong competition 

with the resisting native biotic community over the resources engages. This in turn provokes a 

rapid steady-state population balancing.  

 

Proposition 7. When the exotic species survival rate and the availability of resources in the 

ecosystem are respectively high and low, the population convergence toward steady-states 

operates at a high pace. 

 

 Proposition 7 excludes 1
2

*r  . Indeed, as the condition  0, cw


  is unverified, there 

is no inner equilibrium for this value of initial density. The condition states that the inner 

equilibrium exists when the fundamental value of resources is at least as great as the cost of 

resisting for its sake. As a result, corner equilibria with null- or full-density configurations of 

resistants ensue perforce. 

 

Proposition 8. When 1
2

*r   and  0, cw


 , resistants evolve toward corner equilibria. 

 

4. Conclusion 

 

 As explicated in the introduction, there is still no global model about why or when an 

invasion occurs. We try to give an answer to this shortage by means of game theory and 
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Bayesian population dynamics, using best-responses and a balance equation dependent on 

conditional probabilities. Our models yield some quite intuitive results, such as invasion as 

best-response strategy and strong competition between exotic and native species over scarce 

resources in rapid dynamics. It should not be intricate for bioeconomists or resource managers 

to model or simulate a biotope evolution and to use our results for their decision-making. 

 To its detriment, our framework does not take into account the traits of exotic species 

other than the resistance potential – life cycle or behavioral aspects of reproduction –  and 

abiotic components of the environment – light, temperature, water, gases or soil properties –, 

which complexify the interactions between native and exotic species (Williamson and Fitter 

1996). Nevertheless, its minimalism and Bayesian approach enable to track population 

dynamics by giving the subpopulation model-species the proper payoff functions. 
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Equation 13 
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Proof of Proposition 6 

 

 We first look at the derivatives over the availability of resources and the cost. 
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      
 
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Eigenvalues of the Jacobian matrix for the dynamical system ( 1)D t   of five steady-state 

configurations S yield as follows 

 

 

 For (0,0)S   

 

3 3

0 0

( , ) 4 ( ) 4 ( )

[ ( 1) ( 1) ] [ ( 1) ( 1) ]

J c c w w c w w c

c w c w
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So 
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det[ ( , )] (0 )

[ ( 1) ( 1) ]
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c w
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  
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 
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Which gives 

 

0   or 
3

4 ( )

[ ( 1) ( 1) ]

w w c

c w

   


  


 
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Given (0,0) , 0   resumes to verifying 

 

4 ( ) 0w w c      □  
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Table 4 Eigenvalues of the Jacobian matrix with 1
2

c w  for (0,0)S   

α / μ   0.00   0.01   0.10   0.20   0.30   0.40   0.50   0.60   0.70   0.80   0.90   0.99 1.00 

0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00    0.00   0.00 

0.01   0.00 –0.00 –0.00 –0.00 –0.00 –0.01 –0.03 –0.07 –0.21 –0.76 –4.83 –124 –245 

0.10   0.00 –0.00 –0.00 –0.00 –0.01 –0.03 –0.06 –0.12 –0.24 –0.47 –0.94 –1.85 –2.00 

0.20   0.00 –0.00 –0.00 –0.00 –0.01 –0.02 –0.04 –0.06 –0.10 –0.16 –0.24 –0.36 –0.38 

0.30   0.00 –0.00 –0.00 –0.00 –0.01 –0.01 –0.02 –0.03 –0.04 –0.06 –0.08 –0.11 –0.11 

0.40   0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.01 –0.01 –0.01 –0.02 –0.02 –0.03 –0.03 

0.50   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00 

0.60   0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.01 +0.01 +0.01 +0.01 +0.01 +0.01 

0.70   0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.01 +0.01 +0.01 +0.01 +0.02 +0.02 +0.02 

0.80   0.00 +0.00 +0.00 +0.00 +0.00 +0.01 +0.01 +0.01 +0.01 +0.02 +0.02 +0.02 +0.02 

0.90   0.00 +0.00 +0.00 +0.00 +0.00 +0.01 +0.01 +0.01 +0.01 +0.02 +0.02 +0.02 +0.02 

0.99   0.00 +0.00 +0.00 +0.00 +0.00 +0.01 +0.01 +0.01 +0.02 +0.02 +0.02 +0.02 +0.02 

1.00   0.00 +0.00 +0.00 +0.00 +0.00 +0.01 +0.01 +0.01 +0.02 +0.02 +0.02 +0.02 +0.03 
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 For (0,1)S   
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Which gives 

 

0   or 
3

4 ( )

[ ( 1) ( 1) ]

w w c

c w

 


  


 

  
 

 

Given (0,1) , 0   resumes to verifying 

 

4 ( ) 0w w c    □ 
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Table 5 Eigenvalues of the Jacobian matrix with 1
2

c w  for (0,1)S   

α / μ   0.00   0.01   0.10   0.20   0.30   0.40   0.50   0.60   0.70   0.80   0.90   0.99 1.00 

0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00    

0.01   0.00 +0.00 +0.00 +0.01 +0.01 +0.03 +0.05 +0.12 +0.31 +0.99 +5.59 +130 +255 

0.10   0.00 +0.00 +0.01 +0.03 +0.07 +0.11 +0.19 +0.31 +0.51 +0.87 +1.56 +2.80 +3.00 

0.20   0.00 +0.00 +0.02 +0.04 +0.07 +0.11 +0.17 +0.24 +0.33 +0.46 +0.63 +0.85 +0.88 

0.30   0.00 +0.00 +0.02 +0.04 +0.07 +0.10 +0.14 +0.18 +0.23 +0.29 +0.36 +0.44 +0.44 

0.40   0.00 +0.00 +0.02 +0.04 +0.07 +0.09 +0.12 +0.15 +0.18 +0.21 +0.24 +0.28 +0.28 

0.50   0.00 +0.00 +0.02 +0.04 +0.06 +0.08 +0.10 +0.12 +0.14 +0.16 +0.18 +0.20 +0.20 

0.60   0.00 +0.00 +0.02 +0.04 +0.05 +0.07 +0.09 +0.10 +0.12 +0.13 +0.14 +0.15 +0.15 

0.70   0.00 +0.00 +0.02 +0.04 +0.05 +0.06 +0.08 +0.09 +0.10 +0.11 +0.12 +0.12 +0.12 

0.80   0.00 +0.00 +0.02 +0.03 +0.05 +0.06 +0.07 +0.08 +0.08 +0.09 +0.10 +0.10 +0.10 

0.90   0.00 +0.00 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.07 +0.08 +0.08 +0.09 +0.09 

0.99   0.00 +0.00 +0.02 +0.03 +0.04 +0.05 +0.06 +0.06 +0.07 +0.07 +0.07 +0.08 +0.08 

1.00   0.00 +0.00 +0.02 +0.03 +0.04 +0.05 +0.06 +0.06 +0.07 +0.07 +0.07 +0.07 +0.08 
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 For (1,0)S   
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Given (1,0) , 0   resumes to verifying 

 

2 3

4 4 ( )

(1 2 ) [ ( 1) ( 1) ]

c w w c

w c w

   

   




   
 

and 

 

3 2 3

2 4 ( ) 4 4 ( )

(1 2 ) [ ( 1) ( 1) ] (1 2 ) [ ( 1) ( 1) ]

c w w c c w w c

w c w w c w

       

       

 


       
□ 
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Table 6 Eigenvalues of the Jacobian matrix with 1
2

c w  for (1,0)S   

α / μ   0.00    0.01   0.10   0.20   0.30   0.40  0.50   0.60   0.70   0.80   0.90   0.99 1.00 

0.00   0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.01 –0.01 –0.01 

 
0.01   0.00  –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.01 –0.02 –36.8 

0.10   0.00  –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 

0.20   0.00  –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 

0.30   0.00  –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 

0.40   0.00  –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 

0.50   

           
0.60   0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 

0.70   0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 

0.80   0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 

0.90   0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 

0.99   0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 

1.00   0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 –0.00 
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 For (1,1)S   

 

2

3 3

4 2

(1 2 )(1 2 )
( , )

4 ( ) 4 ( )

[ ( 1) ( 1) ] [ ( 1) ( 1) ]

c

ww
J c

c w w c w w c

c w c w





   


     

 
 

 
  

  
      

 

 

So 

 

2 3 3

4 4 ( ) 2 4 ( )
det[ ( , )]

(1 2 )(1 2 ) [ ( 1) ( 1) ] [ ( 1) ( 1) ]

c w w c c w w c
J c

ww c w c w

   
  

      

       
          

            
 

 

And 

 

2 3 3

4 4 ( ) 2 4 ( )
0

(1 2 )(1 2 ) [ ( 1) ( 1) ] [ ( 1) ( 1) ]

c w w c c w w c

ww c w c w

   
 

      

       
          

            
 

 

Which gives 

 

2 3

3 2 3

2
4 ( )42

(1 2 ) [ ( 1) ( 1) ]

4 ( ) 4 ( )42
(1 2 )3 [ ( 1) ( 1) ] (1 2 ) [ ( 1) ( 1) ]

4

1 1(1 2 )
4 ( )2 2 4

[ ( 1) ( 1) ]

w w cc

w c w

c w w c w w cc
w c w w c w

c

w
w w c

c w

 

   

   

       




 

  



   

 

       

 
       

     
     

 

 

Given (1,1) , 0   resumes to verifying 

 

2 3

4 4 ( )

(1 2 ) [ ( 1) ( 1) ]

c w w c

w c w

 

   




   
 

 

And 

 

3 2 3

2 4 ( ) 4 4 ( )

(1 2 ) [ ( 1) ( 1) ] (1 2 ) [ ( 1) ( 1) ]

c w w c c w w c

w c w w c w

   

       

 


       
□ 
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Table 7 Eigenvalues of the Jacobian matrix with 1
2

c w  for (1,1)S   

α / μ   0.00   0.01   0.10   0.20   0.30   0.40  0.50   0.60   0.70   0.80   0.90   0.99 1.00 

0.00   0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.01 +0.01 +0.01 +0.01    

0.01   0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 –0.01 –0.03 –0.15 –1.67 –240 –893 

0.10   0.00 –0.00 –0.01 –0.01 –0.03 –0.06 –0.13 –0.25 –0.53 –1.21 –3.15 –9.16 –10.5 

0.20   0.00 –0.00 –0.02 –0.04 –0.08 –0.15 –0.24 –0.39 –0.64 –1.04 –1.75 –2.89 –3.06 

0.30   0.00 –0.00 –0.03 –0.08 –0.13 –0.21 –0.30 –0.43 –0.60 –0.83 –1.14 –1.51 –1.56 

0.40   0.00 –0.00 –0.05 –0.11 –0.18 –0.25 –0.34 –0.43 –0.55 –0.67 –0.82 –0.97 –0.98 

0.50   

           
0.60   0.00 –0.01 –0.09 –0.17 –0.24 –0.30 –0.35 –0.40 –0.44 –0.48 –0.51 –0.53 –0.53 

0.70   0.00 –0.01 –0.11 –0.20 –0.26 –0.31 –0.35 –0.38 –0.40 –0.41 –0.42 –0.43 –0.43 

0.80   0.00 –0.02 –0.13 –0.22 –0.28 –0.32 –0.34 –0.36 –0.36 –0.37 –0.36 –0.36 –0.36 

0.90   0.00 –0.02 –0.15 –0.24 –0.30 –0.32 –0.34 –0.34 –0.33 –0.33 –0.31 –0.30 –0.30 

0.99   0.00 –0.02 –0.17 –0.26 –0.31 –0.32 –0.33 –0.32 –0.31 –0.30 –0.28 –0.27 –0.27 

1.00   0.00 –0.02 –0.17 –0.26 –0.31 –0.32 –0.33 –0.32 –0.31 –0.29 –0.28 –0.26 –0.26 
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 For ( , )S s r  

 

2

3 3

4 2

(1 2 )(1 2 )
( , )

4 [ ( ) ( )] 4 [ ( ) ( )]

[ ( 1) ( 1) ] [ ( 1) ( 1) ]

cs s

ww
J c

c w w r r c r r w w r r c r r

c w c w





           


     

 
 

 
            

  
      

 

 

So 

 

2 3

3

4 4 [ ( ) ( )]
det[ ( , )]

(1 2 ) [ ( 1) ( 1) ]

2 4 [ ( ) ( )]

(1 2 ) [ ( 1) ( 1) ]

cs w w r r c r r
J c

w c w

s c w w r r c r r

w c w

     
  

   

     

   

        
      

      

        
   

        
 

And 

 

2 3

3

4 4 [ ( ) ( )]

(1 2 ) [ ( 1) ( 1) ]

2 4 [ ( ) ( )]
0

(1 2 ) [ ( 1) ( 1) ]

cs w w r r c r r

w c w

s c w w r r c r r

w c w

     
 

   

     

   

        
     

      

        
   

        
 

which gives 

 

2 3

3

2
4 [ ( ) ( )]4

(1 2 ) [ ( 1) ( 1) ]2
4 [ ( ) ( )]2

(1 2 ) [ ( 1) ( 1) ]

43

(1 2

4

1 1(1 2 )
4 [ ( ) ( )]2 2 4

[ ( 1) ( 1) ]

w w r r c r rcs

w c w

c w w r r c r rs
w c w

cs

w

cs

w
w w r r c r r

c w

     

   

     

   




     

  

     

   

     

   



   
  

  
       

      2 3

4 [ ( ) ( )]

) [ ( 1) ( 1) ]

w w r r c r r

c w

     

   

     

  

 
 
 
 

 

 

We know that 2

2( 1)
*

q

q
s




 , 

2

2( 1)
*

p

p
r




 . Given ( *, *)s r , 0   resumes to verifying  

 

2 3

4 * 4 [ ( * *) ( * *)]

(1 2 ) [ ( 1) ( 1) ]

cs w w r r c r r

w c w

     

   

     


   
 

 

And 

  

3

2 3

2 * 4 [ ( * *) ( * *)]

(1 2 ) [ ( 1) ( 1) ]
4 * 4 [ ( * *) ( * *)]

0
(1 2 ) [ ( 1) ( 1) ]

s c w w r r c r r

w c w
cs w w r r c r r

w c w

     

   
     

   

     

   
     

 
   

□ 
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Table 8 Eigenvalues of the Jacobian matrix with 1
2

c w  for ( *, *)S s r  

α / μ   0.00   0.01   0.10   0.20   0.30   0.40  0.50   0.60   0.70   0.80   0.90   0.99 1.00 

0.00   0.00 ± ± ± ± ± ± ± ± ± ± ± ± 

0.01   0.00 ± ± ± ± ± ± ± ± ± ± ± ± 

0.10   0.00 ± ± ± ± ± ± ± ± ± ± ± ± 

0.20   0.00 ± ± ± ± ± ± ± ± ± ± ± ± 

0.30   0.00 ± ± ± ± ± ± ± ± ± ± ± ± 

0.40   0.00 ± ± ± ± ± ± ± ± ± ± ± ± 

0.50   

           
0.60   0.00 – – – – – – – – – – – – 

0.70   0.00 – – – – – – – – – – – – 

0.80   0.00 – – – – – – – – – – – – 

0.90   0.00 – – – – – – – – – – – – 

0.99   0.00 – – – – – – – – – – – – 

1.00   0.00 – – – – – – – – – – – – 

 


