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Abstract

When utilities are additive we propose new arguments vindicating the
familiar Competitive Equilibrium with Equal Incomes division rule, and
criticizing its normative nemesis, the Egalitarian rule.

Resource Monotonicity says that more manna should not hurt anyone.
Responsive Shares means that by raising my bid on one good I cannot end
up with a smaller share of that good. Independence of Lost Bids says that
changing my bid on a good I am not consuming before or after, does not
affect the allocation at all. The latter property, and a mild invariance
axiom allowing us to merge goods that the agents view as equivalent,
characterize the Competitive rule.

1 Introduction

Additive utilities ? Modern economic analysis mostly dismisses additive util-
ities (equivalently, linear preferences) because in many contexts some degree of
complementarity between goods is a fact, as when preferences aggregate hous-
ing, health, education, etc. But recent work on the theory and implementation
of fair division rules gives a central role to additive utilities, for compelling
practical reasons.
The goal is allocate divisible private goods, the common property of a set of

beneficiaries, in a “closed economy”: there is no outside market where the goods
are available at a price, and monetary transfers between agents are not feasible.
Think of distributing the family heirlooms between siblings: the emotional value
attached to these objects bears little connection to their scrap value, and the
siblings often want to avoid “distasteful direct monetary payments”([22]); other
examples include a divorcing couple splitting assets like pets, or the custody of
children ([2]), managers dividing offi ce space, students sharing overdemanded
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business school courses ([27], [4]), or substitutable workers allocating job shifts
([3]).
The empirical observation is that, in the context of the above examples,

most people cannot form sophisticated preferences described by general utility
functions. For the same reason, practical combinatorial auctions do not ask
buyers to report a ranking of all subsets of objects, a complex task even with
6 objects, an outright impossible one with 10 or more ([1], [36], [8]). The web-
sites like Spliddit and Adjusted Winner 1 applying theoretical concepts to solve
concrete division problems, use a transparent bidding system to elicit individ-
ual preferences: you distribute 100 points over the different goods, and these
weights define your additive utility. The proof of the pudding is in the eating:
thousands of visitors use these sites every month, fully aware that their bid will
be interpreted as their additive utility. ([12]).
Linear preferences are unpopular for another reason, of a purely technical

nature: agents consume on the frontier of their budget set, which creates many
technical challenges, illustrated in some of our proofs. The routine assumption
that indifference curves do not cross the axis is meant precisely to avoid corner
consumption. But in the fair division context, it is a good thing that many
goods end up in the basket of a single agent: objects that cannot be physically
split (pets, the grandfather’s clock) can still be divided by randomization or
time sharing, but we normally wish to minimize the number of such indirect
splitting devices.

Two fair division rules and the punchline. Four decades ago, the
literature on fair division under general Arrow Debreu preferences proposed
two rules, the Competitive Equilibrium with Equal Income ([35]), here simply
the Competitive rule, and the Egalitarian Equivalent rule2 ([21]), here simply
the Egalitarian rule. They are, respectively, the hero and the villain of this
paper.
The high level principle behind the Competitive division rule is that the

manna provides equal opportunities to all beneficiaries, in the sense of the No
Envy test ([10]): I weakly prefer my share to yours because I can afford both.
The Egalitarian rule equalizes welfare rather than opportunities, measuring wel-
fare as the share of the entire manna equivalent to the actual share: in the
bidding system above, this is the number of points you assigned to your share.
We discuss three natural axioms, each with a dual fairness and incentive

interpretation, that the Competitive rule meets, but the Egalitarian rule fails,
in the additive domain. And from the third axiom we derive a characterization of
the Competitive rule. We submit these results as a strong normative vindication
of the Competitive rule in the additive domain.
It is remarkable, and well known, that in our context the Competitive rule

has an equivalent welfarist representation, as the maximizer of the Nash product
of individual utilities.3 Thus the Competitive allocations solve a convex opti-

1www.spliddit.org/
www.nyu.edu/projects/adjustedwinner/
2Aka the Adjusted Winner rule ([2]) in the case of two agents.
3See Section 3, or Chapter 7 in [19] for a textbook presentation.
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mization program and, critical to our results, are characterized by a system of
Karush—Kuhn—Tucker conditions (KKT for short) much easier to handle than
competitive demands. But this welfarist representation of the Competitive rule
holds for all homothetic preferences, and to that much bigger domain our results
do not extend at all: in fact two of our axioms are not even defined outside the
additive domain. See point 2 in the next Section.

Three axioms Start with the familiar Resource Monotonicity (RM) prop-
erty: as we add new goods to the pot (or increase the quantity of some goods) the
welfare of all beneficiaries should improve at least weakly. This is a compelling
and popular solidarity property in the common property regime. Originally in-
troduced for the fair division of private goods ([25]), it was applied to a broad
range of resource allocation problems with production and/or indivisibilities
(see the survey [30]). Its incentive aspect is that, if RM fails some agents have
an incentive to sabotage the process by destroying some goods, or failing to
discover them. The Competitive rule meets RM, the Egalitarian rule does not
(Proposition 1).
The next two properties are new, and specific to the additive domain. Re-

sponsive Shares (RS), says that shares should respond monotonically to bids:
if I raise my bid for a certain good, ceteris paribus,4 my share of this good
increases (weakly). Failure of RS invites disingenuous reporting of one’s prefer-
ences: if I like good a today more than yesterday, by reporting this I may end
up with a smaller share of a, or no share at all! The Competitive rule meets
RS, the Egalitarian rule does not (Proposition 2).
To introduce the third axiom, Independence of Lost Bids (ILB), recall that

in the additive domain we expect “corner solutions”. To be precise: if n agents
share p goods, at almost all utility profiles every effi cient allocation of the goods
has at least (n− 1)(p− 1) null entries: most agents do not consume most goods
(Lemma 1). In terms of the bid profiles (one bid per agent per good), most bids
are losing.
Independence of Lost Bids means that when we revise a losing bid (a bid on

a good that we do not consume), and the bid remains losing, nothing happens to
anybody: the allocation selected by the rule does not change. It is an incentive
property inasmuch as a change of report on a good that we do not end up
consuming is "cheap": it is presumably harder to verify ex post my marginal
utility for that good than for a good I am actually eating.
Proposition 3 says that the Competitive rule meets ILB. The Egalitarian

rule fails it spectacularly: a fake increase of my lost bids, small enough that
they remain losing, always benefits me strictly, and hurts every other agent.
Our main result, Theorem 1, characterizes the Competitive rule by the com-

bination of standard effi ciency and symmetry properties, Independence of Lost
Bids, and a mild invariance property allowing us to merge goods that the agents
view as equivalent.

4 In our model we allow bids (vectors of rates of substitution between goods) with an
arbitrary sum, and require rules to be invariant when the scale of the bids profile changes.
If instead the sum of the bids is fixed (to 100 points), raising the bid on good a implies a
proportional lowerig of bids on other goods.
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Contents After reviewing the literature, we define the model and introduce
the Competitive and Egalitarian rules in Section 3. Section 4 discusses our three
properties RM, RS and ILB. The characterization result is the object of Section
5. Most proofs are in Section 6, and two open questions in Section 7.

2 Related literature

1. The fair division of private goods (manna) under heterogenous ordinal pref-
erences is a benchmark problem in distributive justice. The earliest microeco-
nomic model was proposed before 1950 by famous mathematicians as the “cake-
division”problem: the cake is a measure space and utilities are non atomic ad-
ditive measures ([29]), and a key concern is to achieve a fair division by means of
a small number of cuts ([24]). But from the 1970s the literature insists on allow-
ing general microeconomic preferences ([34] is an early survey), and finds that
the Egalitarian rule is the most robust of the two: continuous and monotonic
preferences is all we need to define the Egalitarian allocations and unique utility
profile. By contrast the existence of a Competitive allocation is only guaranteed
if preferences are also convex, and even then multiple allocations with different
utility profiles are possible.
These diffi culties disappear in the domain of homothetic preferences. There

the Competitive allocations maximize the (Nash) product of individual utilities
(and vice-versa: [9]), hence the Competitive utility profile is unique. Although
this equivalence is more than 50 years old, interest in special homothetic do-
mains arose only recently. In the linear domain Schummer shows that Strate-
gyproofness is incompatible with Effi ciency and a minimally fair treatment of
the participants ([26]), a result recently strenghtened by Cho and Thomson ([6]).
Megiddo and Vazirani ([18]) show that the competitive utility profile depends
continuously upon the rates of substitution and the total endowment; it is also
computed in time polynomial in the dimension n + p of the problem ([13]).
As for the type of monotonicity properties we promote in this paper, its only
precursor appears is an unpublished note [33] by Thomson and Kayi.

2. As mentioned in Section 1, our axioms and results do not extend to the
homothetic domain. There Resource Monotonicity, Effi ciency, and the very mild
Fair Share Guarantee property5 , are incompatible ([20]), therefore RM fails for
the Egalitarian and Competitive rules. Moreover RS and ILB are not defined
in economies where marginal rates of substitution are not constant.

3. Leontief preferences assume perfectly complementary goods,6 so they
are “diametrally opposed” to linear ones. Such preferences come up naturally
when agents compete for cloud computing resources. Remarkably in this do-
main the Egalitarian rule is not only Envy-Free like the Competitive rule, it
also has very strong incentives properties, that the Competitive rule lacks: it

5Everyone ends up no worse than receiving 1/n-th of each good.
6So i’s utility for allocation zi is mina{ ziaυia } where the υia-s are fixed rates of complemen-

tarity.
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is Strategyproof (truthful report of one’s preferences is a dominant strategy),
even Groupstrategyproof (see [?] and [16]). Although neither rule is Resource
Monotonic, the Egalitarian one is now the hero while the Competitive one has
no known normative advantage

4. A stream of research in algorithmic mechanism design focuses on the
fair division of indivisible objects, with the aim to emulate, approximately, the
results of the divisible goods model. The Nash Product Maximizer (NMP) still
plays a central role in the discussion, although it loses its competitive interpre-
tation and becomes hard to compute. In the general domain of “combinatorial
preferences” (specifying the utility of each subset of objects) Ramezani and
Endriss ([23]) approximate the NMP allocation, and Lipton et al. ([17]) find
effi cient allocations that are approximately envy-free. In the additive domain
the NMP allocation is envy-free “up to at most one object” (Caragianis et al.
[5]). It is still hard to compute ([15]), but finding an approximation is easier
([7]).
Finally Budish ([3]) follows a different approximation route for problems

with a large number of copies of several object-types: a little flexibility in the
number of available copies ensures the existence of a “quasi-CEEI”allocation.

3 The model and two division rules

3.1 Basic definitions

The finite set of agents is N with generic element i. We assume |N | = n ≥ 2.
The finite set of (divisible) goods is A with generic element a. The manna
consists of 1 unit of each object.
Agent i’s allocation (or share) is some zi ∈ [0, 1]A; the profile z = (zi)i∈N

is a feasible allocation if
∑
N zi = eA, where all coordinates of eA in RA+ are 1.

The set of feasible allocations is Φ(N,A).
Each agent is endowed with linear preferences over [0, 1]A, represented for

convenience by a vector ui ∈ RA+ (a utility function). We keep in mind that
only the ordinal preferences matter, i. e., for any λ > 0, ui and λui carry the
same information. Given an allocation z we write i’s corresponding utility as
Ui = ui · zi =

∑
A uiazia.

A division problem is a triple Q = (N,A, u) and the corresponding set of
feasible utility profiles is Ψ(Q). Note that we may have useless goods (uia = 0
for all i) or uninterested agents (uia = 0 for all i). Otherwise we speak of useful
goods and interested agents.
We use two equivalent definitions of a division rule, in terms of utility profiles

or of feasible allocations. When we rescale each ui as λiui the new profile of
utilities is written λ ∗ u.
Definition 1
i) A division rule F associates to every problem Q = (N,A, u) a utility profile
F (Q) = U ∈ Ψ(Q). Moreover F (N,A, λ ∗ u) = λ ∗U for any rescaling λ where
λi > 0 for all i.

5



ii) A division rule f associates to every problem Q = (N,A, u) a subset f(Q)
of Φ(N,A) such that for some U ∈ RA+:

f(Q) = {z ∈ Φ(N,A)|(ui · zi)i∈N = U}

Moreover f(N,A, λ ∗ u) = f(Q) for any rescaling λ where λi > 0 for all i.

The one-to-one mapping from F to f is clear. Definition 1 makes no distinc-
tion between two allocations with identical welfare consequences. For instance
a useless good can be divided arbitrarily, and, if the rule is effi cient, an uninter-
ested agent can only consume positive amounts of useless goods.
Effi cient allocations have a particular structure in the linear domain, a very

important fact for several of our results. In particular this explains why in most
effi cient allocations z most entries of the matrix [zia] are nil.
For any z ∈ Φ(N,A) define the bipartite N × A consumption graph Γ(z) =

{(i, a)|zia > 0}. Write Ψeff (Q) for the set of effi cient utility profiles at Q.
Lemma 1
a) Fix a problem Q = (N,A, u). If U ∈ Ψeff (Q) then there is some z ∈ Φ(N,A)
representing U such that Γ(z) is a forest (an acyclic graph). For such allocation
z the matrix [zia] has at least (n− 1)(p− 1) zeros.

b) Fixing N,A, on an open dense subset U∗(N,A) of utility profiles u ∈ RN×A+ ,
every effi cient utility profile U ∈ Ψeff (N,A, u) is achieved by a single allocation
z. At such profiles an effi cient division rule f is single-valued. The definition
of U∗(N,A) is given in Subsection 6.1.

3.2 The Competitive rule

Definition 2 Given a problem Q = (N,A, u) we say that the feasible allocation
z ∈ Φ(N,A) is a Competitive Equilibrium with Equal Incomes (or simply a
competitive allocation) if there is a price p ∈ RA+ such that

∑
A pa = n and

zi ∈ arg max
yi∈RA+

{ui · yi|p · yi ≤ 1} for all i

We write f c(Q) for the set of all such allocations.

Proposition 1 ([9]): Fix a problem Q = (N,A, u) where all agents are inter-
ested, uiA > 0 for all i. Then the Competitive rule f c selects precisely all the
feasible allocations maximizing the product of utilities:

f c(Q) = arg max
Φ(N,A)

ΠNui · zi (1)

Note that the above maximization is trivial if there is at least one uninterested
agent. And if all agents are interested we have ui ·zi > 0 for all i and z ∈ f c(Q).
The Proposition implies that f c is a bona fide division rule in the sense of

Definition 1: the set f c(Q) is non empty, and the corresponding utility profile
F c(Q) maximizes over the convex compact set Ψ(Q) the strictly quasi-concave
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function ΠNUi, therefore it is unique and effi cient.7 The system of first order
optimality conditions of this convex program (known as the KKT conditions)
plays a central role in the entire paper.

Lemma 2 Fix a problem Q = (N,A, u) where N∗ is the set of interested agents,
and A∗ that of useful goods. The two following statements are equivalent:
i) U = F c(Q)
ii) U = (ui · zi)i∈N for some z ∈ Φ(N,A∗) such that zi = 0 if and only if
i /∈ N∗, and for all i ∈ N∗ we have

for all a: zia > 0 =⇒ {uia
Ui
≥ uja

Uj
for all j ∈ N∗} (2)

(in particular Ui > 0 if i ∈ N∗)

3.3 The Egalitarian rule and a sharp example

For a vector W ∈ RN+ we write W ∗ ∈ Rn+ its order statistics, where the coordi-
nates of W are reordered increasingly. Then the leximin ordering �lxmn of RN+
compares W 1 and W 2 exactly like the lexicographic ordering of Rn+ compares
W 1∗ and W 2∗. Recall that over any convex compact subset of RN+ the leximin
ordering has a unique maximum.
Given a problem Q and a feasible utility profile U ∈ Ψ(Q), we write Ũ for

its normalization where eating all the goods has utility 1 for everyone:

Ũ = λ ∗ U where λi =
1

ui · eA

Definition 3 Given a problem Q = (N,A, u) where all agents are interested
(uiA > 0 for all i), the egalitarian utility profile U = F e(Q) is such that Ũ
maximizes the leximin ordering over Ψ̃(Q) = {Ṽ |V ∈ Ψ(Q)}.
The egalitarian utility profile is clearly effi cient. It equalizes the normalized

utilities as much as permitted by effi ciency. If all agents care for all goods,
uia > 0 for all i ∈ N, a ∈ A, it is easy to check all coordinates of Ũ are equal,
in other words the egalitarian utility profile is defined by effi ciency plus the
equality of normalized utilities:

Ui
ui · eA

=
Uj

uj · eA
for all i, j (3)

If some uia are zero this equality may be incompatible with effi ciency. For
instance two goods a, b, agents 1 likes only a and agents 2, 3 like only b.

Our canonical n-person example is one where the difference between the
competitive and egalitarian allocations is largest.8 We have n−1 goods, (n−1)

7We omit the proof of the Proposition for brevity. A simple presentation is in [28].
8We conjecture that in this example the `∞ and `1 distances between the profiles of nor-

malized utilities at the two allocations are the largest possible for a fixed n.
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single-minded agents i ∈ {1, · · · , n − 1} who like only good i, and one flexible
agent n who likes equally all goods.
The competitive price is n

n−1 for every good, and each agent i ∈ {1, · · · , n−1}
buys n−1

n units of “his”good while agent n gets a 1
n -th share of each good. The

egalitarian solution splits each good i equally between agent i and agent n so
that everyone ends up with a share worth one half of the entire manna. For
instance

a b c
u1 1 0 0
u2 0 1 0
u3 0 0 1
u4 1 1 1

Competitive:

a b c
zc1

3
4 0 0

zc2 0 3
4 0

zc3 0 0 3
4

zc4
1
4

1
4

1
4

Egalitarian:

a b c
ze1

1
2 0 0

ze2 0 1
2 0

ze3 0 0 1
2

ze4
1
2

1
2

1
2

The Egalitarian rule focuses on the (relative) benefits of consuming each
good i, and in this example shares it equally between the two relevant agents,
i and n. The Competitive rule is much more generous to the single-minded
agents: everyone is equal owner of each good i, and so is entitled to an equal
share of the the competitive surplus it generates.
The two rules meet the oldest test of the fair division literature ([26]): every-

one is guaranteed, welfarewise, at least her “fair share”of the entire manna:
Fair Share Guarantee: Ui = ui · zi ≥ ui · ( 1

ne
A) for all i

Notice that at the Competitive allocation zc above, the flexible agent n gets
exactly her fair share, while everybody else gets strictly more ((n − 1) times
more !). By contrast an Egalitarian allocation, here and always, gives strictly
more than fair share to everybody, unless nobody can get more than fair share.9

This is clearly a valid objection to the Competitive rule: in this example it does
not reward the flexibility of agent n’s preferences.
On the other hand we submit that the Egalitarian allocation gives too much

to agent n in the same example : she gets (much) more than her fair share of
every good. By contrast at a Competitive allocation, here and always, everyone
gets at most a 1

n -th share of at least one good:
10

min
a∈A

zia ≤
1

n
for all i (4)

Property (4) is in the same spirit as the familiar test
No Envy: ui · zi ≥ ui · zj for all i, j

that inspired the Competitive rule in the first place. There is no systematic
logical relation between these two properties: in the example the Egalitarian
allocation is envy-free as well.

9Suppose at the egalitarian U we have Ui = ui · ( 1n e
A) for i ≤ k and Uj > uj · ( 1n e

A) for
j ≥ k+1. Then no i agent can like any good a consumed by some j agent at some egalitarian
allocation z: else we could transfer some of a from this j to all i-s and improve the leximin
ordering. Let B be the set of goods liked by the i-s: since the j-s do not eat any B at z,
the i-s can divide B equally and get each ui · ( 1k e

B) > ui · ( 1n e
A), without affecting the j-s.

Contradiction.
10 If zia > 1

n
for all a the competitive price must be parallel to ui and the equal budget

p · zi = p · ( 1
n
eA) gives ui · zi = ui · ( 1n e

A), contradiction.
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4 Three axioms

4.1 Resource Monotonicity

More goods to divide should not be bad news to anyone: all agents “own”the
goods equally and welfare should be comonotonic to ownership. This simple
normative property has played a major role in the modern fair division litera-
ture ([30]). Its incentive interpretation: if it fails, someone has an incentive to
sabotage the discovery of additional “manna”, or destroy parts of it.
In the following definition we write u[B] for the restriction of the utilities in

RA+ to RB+:
Proposition 1 The Competitive rule meets, and the Egalitarian rule fails, Re-
source Monotonicity (RM):

for all Q =(N,A, u) and all B ⊂ A : F (N,B, u[B]) ≤ F (Q) (5)

Recall that in the general Arrow-Debreu preference domain, no effi cient division
rule can be resource monotonic and meet Fair Share Guarantee ([20]): we see
that some complementarity between goods is essential to that result.
It is easy and instructive to show why the Egalitarian violates (5) as soon

as n ≥ 3. We compare two problems with B = {a, b, c}and A = {a, b, c, d}
respectively:

a b c
u1 3 1 1
u2 1 3 1
u3 1 1 3

and

a b c d
u1 3 1 1 0
u2 1 3 1 4
u3 1 1 3 4

The B-problem is symmetric. Any effi cient and symmetric rule allocates goods
“diagonally”: agent 1 gets all of a and so on; normalized utilities are 3

5 . In the
A-problem the natural idea is to keep the same allocation of a, b, c and divide d
equally between agents 2 and 3, because agent 1 does not care for d. This is what
the Competitive rule recommends (prices are (1, 3

5 ,
3
5 ,

4
5 )). But the normalized

utilities at this allocation are ( 3
5 ,

5
9 ,

5
9 ), so the Egalitarian rule must compensate

agents 2, 3 for the loss in normalized utilities caused by the gain of some new
good! Equality is restored at the allocation

ze =

a b c d
55/59 0 0 0
2/59 1 0 1/2
2/59 0 1 1/2

thus agent 1’s welfare decreases when d is added to the manna.

Remark 1 Another popular solidarity property in the fair division literature
is Population Monotonicity (PM): if a new agent joins the beneficiaries while
the manna is unchanged, the welfare of all the old agents decreases weakly. The
Egalitarian rule meets PM for fully general preferences (strictly monotonic and
continuous) and in the linear domain it does as well (this is clear by (3) if all
agents care for all goods; we omit the argument when some entries uia are zero
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). On the full domain the Competitive rule fails PM (ChiThom) but in the linear
domain, it does. This follows easily from RM and the celebrated Consistency
property ([31], [32]).11

4.2 Responsive Shares

If I raise my bid (my reported utility) on a certain good, ceteris paribus, I
expect my share of that good to increase, at least weakly. Otherwise the rule
will have the perverse effect that, by liking a good more relative to all others,
we sometimes end up consuming less of it: the relation between my reported
utility and my shares becomes confusing, and invites participants to go beyond
sincere reporting.
Under the Competitive rule shares are responsive to bids in the sense just

described, but under the Egalitarian rule they are not. Consider the simple
example with two goods a, b, two agents and compute the egalitarian allocation
in the following two problems

a b
u1 2 1
u2 2 2

=⇒ ze =
a b
6
7 0
1
7 1

;
a b

u1 3 1
u2 2 2

=⇒ ze =
a b
4
5 0
1
5 1

where agent 1 eats less good a when it becomes more attractive relative to good
b.

Definition 4 The rule f has Responsive Shares (RS) if for any N,A, any
u, u′ ∈ RN×A+ that only differ in the coordinate i, a, we have:

uia < u′ia =⇒ zia ≤ z′ia for any z ∈ f(u) and z′ ∈ f(u′) (6)

Recall that f(u) can be multivalued: we require that all allocations in f(u′) give
weakly more good a to i than all in f(u).

Proposition 2 The Competitive rule has Responsive Shares, but the Egalitarian
rule does not.

4.3 Independence of Lost Bids

Under the Egalitarian rule if an agent i has a good idea of the profile of other
bids, and in particular if she knows that at the true preference profile, she
will not consume a certain good a, zia = 0, she has a transparent strategic
manipulation: by raising her losing bid uia to u′ia while making sure that this
new bid remains losing, z′ia = 0. Here is a two-person, three-good example

a b c
u1 6 3 1
u2 1 3 6

→ ze =
a b c
1 1

2 0
0 1

2 1
;

a b c
u′1 6 3 3
u2 1 3 6

→ z′e =
a b c
1 8

11 0
0 3

11 1

In general if the egalitarian allocation z meets (3) and we raise uia to u′ia the
numerator of Ui

ui·eA = ui·zi
ui·eA does not change while the denominator increases;

11While dividing the manna ω between n+1 agents, say that the shares of the first n agents
are zi. After dropping agent n + 1, by Consistency the n agents still share ω − zn+1 as zi.
And by RM they are all weakly better off when they share ω.
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therefore to restore equality of Ui
u′i·eA

and Uj
uj ·eA we must increase i’s utility Ui. As

i still eats no a after this move, her new allocation increases her true welfare, and
decreases that of every other agent. The statement is still true if some entries
of the utility matrix are zero and the egalitarian profile of relative welfares
maximizes the leximin ordering (we omit the details).
By contrast under the Competitive rule, raising or lowering a bid on a “lost

good” has no effect at all on the allocation, therefore it allows no profitable
manipulation. This follows from the KKT conditions (2) characterizing the
competitive allocation. Fix u, u′ that only differ in that uia > u′ia and assume
that zia = 0 at some z ∈ f c(u). In the KKT system at z the only inequalities
involving uia are

uja
Uj
≥ uia

Ui
for any j eating some a at z: they still hold at u′ia,

therefore the same allocation z meets (2) at u′.
For our characterization result, we only need to consider the lowering of a

lost bid to zero.

Definition 5 The rule f is Independent of Lost Bids (ILB) if for any N,A,
and u, u′ ∈ RN×A+ that only differ in a single entry ia where uia > u′ia = 0, we
have

∀z ∈ f(N,A, u) : zia = 0 =⇒ z ∈ f(N,A, u′) (7)

Proposition 3 The Competitive rule meets, and the Egalitarian rule fails, In-
dependence of Lost Bids (ILB).

Unlike Propositions 1,2, of which the proof requires some work (see Section
6), Proposition 3 follows at once from the KKT conditions (2) as explained
above.
Interestingly for an effi cient rule f , the ILB implies two related properties

of which the interpretation is somewhat more intuitive. For any u, u′ ∈ RN×A+

that only differ by uia > u′ia = 0, we have (with a simplified notation)

{∀z ∈ f(u) : zia = 0} =⇒ f(u) = f(u′) (8)

Indeed we already checked that under the premises of (8) f(u) ⊆ f(u′); moreover
for all z such that zia = 0 we have u′ · z = u · z hence F c(u) = F c(u′). Fix now
some z′ ∈ f(u′) and observe that z′ia = 0: at least one agent other than i likes
a, otherwise i would eat all a at u by effi ciency; so at u′ it is ineffi cient for i to
eat any a. This implies u′ · z′ = u · z′ and in turn u · z′ = F c(u′) = F c(u) gives
z′ ∈ f(u), and completes the proof.

Property (8) further implies that nothing changes when several agents si-
multaneously change their bids on goods they do not consume before or after
the move: adjustments of bids that do not change the support of the allocation
matrices in f(u) are inconsequential. For any N,A and u, u′ ∈ RN×A+ we have

{∀i, a : uia 6= u′ia =⇒ {∀z ∈ f(u), z′ ∈ f(u′) : zia = z′ia = 0}} =⇒ f(u) = f(u′)
(9)

Indeed if u and u′ differ in several entries where uia > u′ia = 0, repeated
application of (8) implies again f(u) = f(u′). Now if u, u′ are as in the premises
of (9) define ũ by ũia = 0 whenever u and u′ differ, and equal to u, u′ otherwise:
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then f(u) and f(u′) are both equal to f(ũ). Conversely if f is effi cient property
(9) implies (8), because if u, u′ are as in (8) we saw above that z′ia = 0 for all
z′ ∈ f(u′).
Property (9) has an incentive interpretation as well. Suppose a coalition of

agents change their bids on goods they do not consume before or after the shift.
Then they cannot jointly benefit from this move (i., e., if one of them benefits
strictly from the coordinated misreport, then another one must be hurt). To
check this is equivalent to (9) is easy and omitted for brevity.

5 Characterizing the Competitive rule

We use four axioms in addition to ILB. The first two are standard

• Effi ciency (EFF): F (Q) ∈ Ψeff (Q) for all Q = (N,A, u)

• Symmetry (SYM): (the label of agents and goods does not matter) F is
invariant with respect to permutations of N , and of A

The next two axioms come from the fair division context, and they are very
mild.
We say that problem Q = (N,A, u) is partitioned in two subproblems

(Nk, Ak, uk), k = 1, 2, if N1, N2 partition N , A1, A2 partition A, and for
{k, l} = {1, 2} no agent in Nk likes any object in Al.

• Partition (PAR): the rule solves each subproblem of a partitioned problem
separately

(i. e., F (Q) is the concatenation of F (Nk, Ak, uk) for k = 1, 2)
We say finally that two goods a, b are equivalent in problem Q = (N,A, u) if

uia · ujb = uib · uja for all i, j ∈ N

To merge goods a and b means to replace the problem (Q) by (N,A∗, u∗) where
a, b become a single good a∗ with utilities u∗ia∗ = uia+uib for all i, while utilities
for other goods are unchanged.

• Equivalent Goods (EG): if we merge two equivalent goods a, b then
F (N,A∗, u∗) = F (Q)

Note that a useless good a, uia = 0 for all i, is equivalent to every other good,
hence EG says that it can be merged with any other good without affecting the
utility F (Q): this is a way of saying that useless object are irrelevant.
All four axioms are met by many rules, such as the one-dimensional family

of welfarist rules F q, for −∞ ≤ q < +∞. If q is finite and non zero, F q(Q)

maximizes in Ψ(Q) the additive welfare W q(U) = sign(q)
∑
j∈N (

Uj
ui·eA )q. The

limit of F q for q → 0 maximizes
∑
j∈N ln(

Uj
ui·eA ), so it is the Competitive rule.

When q → −∞ the limit of F q is the Egalitarian rule.

12



Theorem: The Competitive rule is characterized by Effi ciency, Symmetry, Par-
tition, Equivalent Goods, and Independence of Lost Bids.

We stress that the only fairness axiom in the Theorem is Symmetry. No
Envy is not used.

6 Proofs

6.1 Lemma 1

6.1.1 a) the consumption forest at effi cient allocations

Assume first that all goods are useful. Pick Q and z representing U ∈ Ψeff (Q)
and assume there is a K-cycle in Γ(z): zkak , zkak−1 > 0 for k = 1, · · · ,K, where
z1a1−1 = ziaK . Then ukak , ukak−1 are positive for all k: if ukak = 0 effi ciency
and uNak > 0 imply zkak = 0.
Assume now

u1a1

u2a1

· u2a2

u3a2

· · · · ·
u(K−1)aK−1

uKaK−1
· uKaK
u1aK

> 1 (10)

Then we can pick arbitrarily small positive numbers εk such that

u1a1 · ε1

u1aK · εK
> 1,

u2a2 · ε2

u2a1 · ε1
> 1, · · · , uKaK · εK

uKaK−1 · εK−1
> 1 (11)

and the corresponding transfer to each agent k of εk units of good k against
εk−1 units of good k−1 is a Pareto improvement, contradiction. Therefore (10)
is impossible; the opposite strict inequality is similarly ruled out so we conclude

u1a1

u2a1

· u2a2

u3a2

· · · · ·
u(K−1)aK−1

uKaK−1
· uKaK
u1aK

= 1 (12)

Now if we perform a transfer as above where

u1a1 · ε1

u1aK · εK
=
u2a2 · ε2

u2a1 · ε1
= · · · = uKaK · εK

uKaK−1 · εK−1
= 1

the utility profile U is unchanged. If we choose the numbers εk as large as
possible for feasibility, this will bring at least one entry (k, ak) or (k, ak−1) to
zero, so in our new representation z′ of U the graph Γ(z′) has fewer edges. We
can clearly repeat this operation until we eliminate all cycles of Γ(z).

Now if some goods are useless we give them all to an arbitrary agent and
the statement still holds.
The last statement follows at once from the fact that a forest with n + p

edges contains at most n+ p− 1 edges.
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6.1.2 b) at almost all profiles each effi cient utility profile is achieved
by a single allocation

We let U∗(N,A) be the open and dense subset of RN×A+ such that for any
cycle C = {1, a1, 2, a2, · · · , aK , 1} in the bipartite graph N ×A we have π(C) =
u1a1
u2a1
· u2a2u3a2

· · · · · u(K−1)aK−1uKaK−1
· uKaK

u1aK
6= 1 (property (12) fails) and moreover uia > 0

for all i, a. It is clearly an open dense subset of RN×A+ .
We pick a problem Q with u ∈ RN×A+ , fix U ∈ Ψeff (Q) and assume there is

two different z, z′ ∈ Φ(N,A) such that u · z = u · z′ = U . There must be some
pair 1, a1 such that z1a1 > z′1a1 . Because a1 is eaten in full there is some agent 2
such that z2a1 < z′2a1 and because u2 ·z2 = u2 ·z′2 there is some good a2 such that
z2a2 > z′2a2 . Continuing in this fashion we build a sequence 1, a1, 2, a2, 3, a3, · · · ,
such that {zkak−1 < z′kak−1 and zkak > z′kak} for all k ≥ 2. This sequence must
cycle, i. e., we must reach K, aK such that zKaK > z′KaK and zk̃aK < z′

k̃aK
for

some k̃, 1 ≤ k̃ ≤ K − 1. Without loss we label k̃ as 1, and the corresponding
cycle as C.
If π(C) > 1 we pick as in the above proof small positive numbers εk meeting

(11) and we add εk of good k to z′kak while taking it away from z′(k+1)ak
(with

the convention K + 1 = 1): then every agent k in the cycle improves strictly
upon z′k without affecting other agents’allocation, contradicting effi ciency. If
π(C) < 1 we construct similarly a Pareto improvement of z for the agents in the
cycle without affecting other agents.
We conclude that π(C) =∞ so that u ∈ RN×A+ �U∗(N,A) as desired.

6.2 Lemma 2: KKT conditions for the Competitive rule

It is clearly enough to prove the result when all goods are useful and all agents
interested.
ii) =⇒ i). Take z representing U s. t. Γ(z) is a forest (Lemma 1). Then if
zia > 0 and we transfer some small amount of a from i to any agent j, the
inequality (2) ensures this does not increases the Nash product.
i) =⇒ ii). We check that the system {uiaUi ≥

uja
Uj
for all (i, a) ∈ Γ(z) and all j}

is precisely the KKT conditions for problem (1). The Lagrangien is

L(z, δ, θ) =
∑
N

ln(ui · zi)−
∑
A

δa(zNa − 1) +
∑
i,a

θ+
iazia + θ−ia(1− zia)

where θ ≥ 0 and the sign of each δa is arbitrary. The conditions ∂L∂z (z, δ, θ) = 0
amount to

uia
Ui
− δa + θ+

ia − θ
−
ia = 0 for all i, a (13)

If zia = 1 then zja = 0 for all j 6= i, and system (13) gives uia
Ui
≥ δa ≥ uja

Uj
.

If 0 < zia < 1 then uia
Ui

= δa, and for another agent j we have zja < 1 hence
uja
Uj
≤ δa.
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6.3 Proposition 1: the Competitive rule is ResourceMonotonic

We can assume without loss of generality that all agents are interested and all
goods are useful.
We first generalize the definition of F c, f c to problems where the endowment

ωa of each good is arbitrary, and we check that the KKT conditions capturing
the optimal allocations f c(N,A, ω, u) are unchanged. Then we fix N,A, u, ω, ω′

such that ω ≤ ω′. For λ ∈ [0, 1] we write ωλ = (1 − λ)ω + λω′, and for every
forest Γ in N ×A we define

B(Γ) = {λ ∈ [0, 1]|∃z ∈ f c(N,A, ωλ, u) : Γ(z) = Γ}

Note that B(Γ) can be empty or a singleton, but if it is not, then it is an
interval. To see this take z ∈ f c(ωλ), z′ ∈ f c(ωλ

′
) such that Γ(z) = Γ(z′).

For any ω′′ = (1 − µ)ωλ + µωλ
′
the allocation z′′ = (1 − µ)z + µz′ is feasible,

z
′′ ∈ Φ(N,A, ω′′), the forest Γ(z′′) is unchanged, and the KKT system (2),
which holds at z and z′, also holds at z′′. Thus z′′ ∈ f c(ω′′) and the claim is
proven.
Next we check that inside an interval B(Γ) the rule F c is resource monotonic.

The forest Γ is a union of trees. If a tree contains a single agent i, she eats (in
full) the same subset of goods for any λ in B(Γ), hence her utility increases
weakly in λ. If a subtree of Γ connects the subset S of agents, then system
(2) fixes the direction of the utility profile (Ui)i∈S , because along a path of Γ
the equalities uiaUi =

uja
Uj

ensure that all ratios Ui
Uj
are independent of λ in B(Γ).

As λ increases in B(Γ) the agents in S together eat the same subset of goods,
therefore the Ui-s increase weakly by effi ciency.
Finally Lemma 1 implies that the finite set of intervals B(Γ) cover [0, 1].

On each true interval (not a singleton) the utility profile Uλ = F (N,A, ωλ, u)
and there is at most a finite set of isolated points not contained in any true
interval.Moreover the mapping λ→ Uλ is continuous because ω → U(ω) is (an
easy consequence of Berge Theorem). The desired conclusion U(ω) ≤ U(ω′)
follows. �

6.4 Proposition 2: the Competitive rule has Responsive
Shares

The long proof takes three steps. We show RS when the consumption forest Γ(z)
does not change (Step 1); then that this forest does not change on an interval of
the utility parameter (Step 2); and finally in Step 3 we provide a local version
of RS at those points where the consumption forest does change.
We fix throughout the proof N,A, a pair i, a and a profile u ∈ RN×A�(i,a)

+ .
We write u[λ] ∈ RN×A+ the utility matrix where λ ∈ R+ replaces uia and the
rest is unchanged.
Step 1 Pick λ, λ′such that λ < λ′ and z ∈ f c(u[λ]), z′ ∈ f c(u[λ′]). If Γ(z) =
Γ(z′) then zia ≤ z′ia.

This is clear if zia = 0, and if zia = 1, as i remains the sole consumer of a at
z′. We assume now 0 < zia < 1, and let K be the set of agents k in the same
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tree of Γ (the common forest) as i and on the other side of a. It contains at
least any other agent eating some a. The remaining agents in the tree of i, if
any, are connected to i by a path of Γ not containing a: their set is T .
Note first that agents in a different tree of Γ than i are unaffected by the shift

from u[λ] to u[λ′]. The easiest way to see this uses the Consistency property:
together the agents in N�(K ∪T ∪{i}) are allocated the same set of goods and
have the same preferences in both problems, and the competitive rule allocates
those goods to them as in this constant sub-problem.
We turn to the agents in K ∪ T ∪ {i}, for whom the net utility goes from

Uj = uj [λ] · zj to U ′j = uj [λ
′] · zj . The KKT conditions (2), before and after,

imply:
U ′k
Uk

is independent of k ∈ K ;
U ′i
Ui

=
U ′t
Ut

for all t ∈ T (14)

Within the T ∪ {i}-subtree (with all goods they eat except a) the equalities
utd
Ut

= usd
Us

give the right-hand equalities by the same propagation argument as
in the previous proof. If K∗ is the set of k ∈ K eating some a we have

uka
Uk

=
λ

Ui
and

λ′

U ′i
=
uka
U ′k

(15)

so that U ′k
Uk
is constant in K∗. Any other k is connected in Γ to some k∗ ∈ K∗

so that U
′
k

Uk
=

U ′k∗
Uk∗

by the usual argument.

Observe now that U ′i ≤ Ui and λ < λ′ imply λ
Ui

< λ′

U ′i
so by the KKT

conditions above we get U ′k < Uk for k sharing a with i, then everywhere in
K by (14). And U ′t ≤ Ut for t ∈ T follows from the second statement of (14).
Moreover

ui[λ
′] · z′i ≤ ui[λ] · zi < ui[λ

′] · zi
As the agents in K ∪ T ∪ {i} are allocated the same goods before and after, we
see that at the utility matrix u[λ′] the restriction of z to those goods is more
effi cient than z′, a contradiction of the effi ciency of z′.

We have shown Ui < U ′i , and Ut < U ′t for all t ∈ T .
Write nowD for the goods d allocated to T∪{i}, other than a. We write∆ =∑
d∈D uidzid, so that Ui = λzia+ ∆, and we compare ∆ and ∆′ =

∑
d∈D uidz

′
id.

If T = ∅ then ∆ = ∆′ because D is a set of goods that i alone consumes, before
and after. It T 6= ∅ we know Ut < U ′t for all t, so ∆ ≤ ∆′ would mean that the
good in D are assigned more effi ciently at z′ than at z, impossible. Therefore
∆ ≥ ∆′.
Finally we assume z′ia ≤ zia and derive a contradiction. Consider the total

allocation to the agents inK: they eat more of a after than before, and the other
goods allocated to K are unchanged. On the other hand U ′k

Uk
is independent of

k, so it can only go up when K eats a bigger total share: U ′k ≥ Uk for all k.
Back to (15) we conclude λ′

U ′i
≤ λ

Ui
and in turn

Ui
λ
≤ U ′i
λ′
⇐⇒ zia +

∆

λ
≤ z′ia +

∆′

λ′
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and the desired contradiction.
We also proved z′ia ≤ zia and U ′k < Uk for all k ∈ K

Step 2 Under the same premises as in Step 1 we show that for all µ, λ < µ < λ′,
there is some z∗ ∈ f c(u[µ]) such that Γ(z∗) = Γ(z).
By Step 1 if the competitive utility profile U∗ at u[µ] obtains by some alloca-

tion z∗ such that Γ(z∗) = Γ(z), then U∗j = Uj for j outside the tree containing i,
and for the agents in this tree, utilities are determined by two positive numbers
δ, ε such that

U∗i
Ui

=
U∗t
Ut

= 1 + δ for all t ∈ T ; U
′
k

Uk
= 1− ε for all k ∈ K (16)

We show how δ, ε are computed for any µ in ]λ, λ′[. Property (15) implies, for
any k in K who eats some a:

uka = λ
Uk
Ui

= µ
U∗k
U∗i

=⇒ λ(1 + δ) = µ(1− ε) (17)

Moreover the gain U∗t − Ut is linear in δ therefore so is the loss ∆∗ − ∆ =∑
d∈D uidz

∗
id −

∑
d∈D uidzid. Similarly the gain z

∗
ia − zia is linear in ε because

each loss U∗k − Uk is too. Thus there exist positive numbers A,B such that

∆∗ = ∆−Aδ ; z∗ia = zia +Bε

=⇒ U∗i
Ui

=
µ(zia +Bε) + ∆−Aδ

λzia + ∆
= 1 +

(µ− λ)zia +Bµε−Aδ
λzia + ∆

and the first equality in (16) gives

(λzia + ∆ +A)δ −Bµε = (µ− λ)zia

while from (17) we get
λδ + µε = µ− λ

This system in δ, ε is non singular, and its solutions take the form

δ = (µ− λ)D ; ε =
µ− λ
µ

E

for some positive constants D,E. Both δ, ε increase in µ, so the utility profile
U∗ is between U and U ′/
Now we construct an allocation z∗ achieving the utility profile U∗. As the

KKT system (2) holds at (z, U) and (z′, U ′) it holds at (z∗, U∗) as well: for
instance if b is eaten by j outside the tree containing i, we have for k ∈ K

ujb
Uj
≥ ukb
Uk

,
ukb
U ′k

=⇒ ujb
Uj
≥ ukb
U∗k

and the same holds true for agents in T and for i. We let the reader check that
all the KKT conditions hold, so that z∗ ∈ f c(u[µ]) as desired.
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Step 3 For r = 1, 2, · · · , pick a strictly increasing sequence µr and a strictly
decreasing sequence νr that both converge to λ. Pick also zr ∈ f c(u[µr]) and
z̃r ∈ f c(u[νr]). We show

lim sup
r
zria ≤ wia ≤ lim inf

r
z̃ria for all w ∈ f c(u[λ]) (18)

By contradiction: suppose there is a subsequence of zr, also denoted zr for
simplicity, such that α = limr z

r
ia > wia.

The correspondence µ→ f c(u[µ]) is upper hemi continuous (by Berge The-
orem) so there is another subequence such that zr converges to z ∈ f c(u[λ]).
As α = zia > wia, and z, w yield the same utility profiles, we can construct a
cycle i = i1, a = a1, i2, a2, · · · , aL, iL+1 = i1 such that

zi1a1 > wi1a1 ; · · · ; zi`a` > wi`a` ;wi`+1a` > zi`+1a` ; · · · ;wiL+1aL > ziL+1aL (19)

(as zia > wia there is some j such that wja > zja by feasibility, and so on). For
r large enough these inequalities hold with zr replacing z. Suppose now that
the following inequality holds for the entries of the matrix u[µr]:

µr

ui2a1
· ui2a2
ui3a2

· · · · ·
uiL−1aL−1
uiLaL−1

· uiLaL
ui1aL

< 1

Then we can pick positive numbers ε` such that

µr · ε1

ui1aL · εL
< 1,

ui2a2 · ε2

ui2a1 · ε1
< 1, · · · , uiLaL · εL

uiLaL−1 · εL−1
< 1

and when these numbers are small enough they allow a Pareto improving shift
from zr at u[µr]: agent i` gets ε`−1 extra units of good ` − 1 and gives up ε`
units of good `. This contradiction means that we have

µr

ui2a1
· ui2a2
ui3a2

· · · · ·
uiL−1aL−1
uiLaL−1

· uiLaL
ui1aL

≥ 1

for r large enough. Because µr increases strictly, we conclude

λ

ui2a1
· ui2a2
ui3a2

· · · · ·
uiL−1aL−1
uiLaL−1

· uiLaL
ui1aL

> 1

Now we can pick positive numbers ε` such that

λ · ε1

ui1aL · εL
> 1,

ui2a2 · ε2

ui2a1 · ε1
> 1, · · · , uiLaL · εL

uiLaL−1 · εL−1
> 1

and we construct a Pareto improvement of w at u[λ].
We omit the symmetrical proof of the other inequality in (18).

Step 4
We define the closed interval ψ(λ) = {zia| for some z ∈ f c(u[λ])}. The

correspondence λ → ψ(λ) is upper hemi continuous and (6) means that is
increases weakly: λ < λ′ =⇒ ψ(λ) ≤ ψ(λ′), which we must prove.
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For any forest Γ and λ < λ′ we define Θ(Γ;λ, λ′) = {µ ∈ [λ, λ′]|Γ(z) = Γ for
some z ∈ f c(u[µ])}. By Step 2 Θ(Γ;λ, λ′) is an interval (possibly empty or a
singleton), and these intervals cover [λ, λ′] so some of them are non trivial (not
a singleton). We call the corresponding forest non trivial as well.
Let θ(λ, λ′) be the number of non trivial forests in [λ, λ′]. We prove by

induction on q the following property Pq(λ, λ′)

{λ < λ′ and θ(λ, λ′) ≤ q} =⇒ ψ(λ) ≤ ψ(λ′)

which, for q large enough, is the desired conclusion.
Step 1 implies P1. If Γ be the unique non trivial forest in [λ, λ′], then

Θ(Γ;λ, λ′) contains ]λ, λ′[. By (18) (Step 3) we have ψ(λ) ≤ lim infr z̃
r
ia for

any sequence z̃r ∈ f c(u[λ + 1
r ]); similarly ψ(λ′) ≥ lim supr

˜̃zria for a sequence˜̃zr ∈ f c(u[λ′− 1
r ]). We can choose these sequences with Γ(z̃r) = Γ(˜̃zr) = Γ, and

the desired conclusion follows from Step 1.
Assume now Pq′ holds for all q′ ≤ q and pick λ, λ′ such that θ(λ, λ′) = q+ 1.

Let Γ0 be a non trivial forest in [λ, λ′], and J be the closure of Θ(Γ0;λ, λ′), a
non trivial subinterval [µ, µ′] of [λ, λ′].
For any ν ∈]λ, µ[ we have θ(λ, ν) ≤ q, so the induction assumption ensures

ψ(λ) ≤ ψ(ν). For the same reason ψ(ν) ≤ ψ(ν′) for ν ≤ ν′ < µ. Applying
now Step 3 to a sequence zr ∈ f c(u[µ − 1

r ]) we see that the sequence zria is
increasing therefore (18) gives ψ(µ− 1

r ) ≤ ψ(µ), and ψ increases in [λ, µ]. That
it increases in [µ, µ′] is clear by the same argument proving P1 above, and in
[µ′, λ′] we mimick the argument of the previous sentence.

6.5 Characterization Theorem

Step 0 The rule f c meets all the axioms.
Effi ciency, Symmetry and Partition require no proof. To check EG we fix

(N,A, u) where goods a, b are equivalent and let zc ∈ f c(Q). Assume first that
both a and b are useful and all agents are interested. Define the allocation z∗

in the merged problem (N,A∗, u∗), identical to zc on goods other than a, b, and
such that for all i

z∗ia∗ =
uia

uia + uib
zcia +

uib
uia + uib

zcib if uia + uib > 0 ; z∗ia∗ = 0 if uia = uib = 0

Clearly z∗Na∗ = 1 because if uia = uib = 0 effi ciency implies zcia = zcib = 0. And
u∗i · z∗i = ui · zci ⇐⇒ U∗i = U ci is equally clear for all i. It remains to check that
z∗ is the competitive allocation in the merged problem. The KKT conditions
(2) at any good other than a∗ are unchanged, and at a∗ we must check for all
i, j:

z∗ia∗ > 0 =⇒ u∗ia∗

U ci
≥
u∗ja∗

U cj

From z∗ia∗ > 0 one of zcia, z
c
ib is positive, say z

c
ia > 0, and by effi ciency uia > 0

as well. Applying (2) to u gives uia
Uc
i
≥ uja

Uc
j
. The equivalence of a and b implies
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uja
uia

=
ujb
uib

if uib > 0 and ujb = 0 if uib = 0: in both cases we get

uia
U ci
≥ uja
U cj
⇐⇒ uib

U ci
≥ ujb
U cj
⇐⇒ uia + uib

U ci
≥ uja + ujb

U cj

cpmpleting the proof of EG when both a and b are useful and all agents are
interested. The cases where one of a, b is useless, and/or some agents are unin-
terested are left to the motivated reader.

Converse statement: The set N is fixed throughout and written [n] =
{1, · · · , n}. The set A varies and in view of the Symmetry property is always
written [m]. A problem is described by a non negative n × m utility matrix
u = [uia]i∈[n],a∈[m]. We write U(n,m) the set of such matrices, and Φ(n,m) the

set of feasible allocation matrices z = [zia]. A rule F maps U(n,m) into R[n]
+

and f is a correspondence into Φ(n,m). Recall from Definition 1 that F, f are
scale invariant : multiplying a certain row of u by a (strictly) positive constant
does not change the image of f , and multiplies the corresponding coordinate of
F (u) by the constant.
In Step 1 we define a family denoted D(n, n+1) of relatively simple problems,

for which we compute explicitly the competitive allocation. Then in Steps 2,3
we show that a rule f meeting all the axioms in the Theorem must coincide
with f c on D(n, n+ 1).

Step 1 For each ` ∈ [n] and w ∈ R[n]
+ we define the following matrix u`,w ∈

U(n, n + 1), with the help of the familiar symbol δ : δij = 1 if i = j, δij = 0 if
i 6= j:

u`,wij = δijwi for all i, j ≤ n (20)

u`,wi(n+1) = 1 if i ≤ ` ; u`,wi(n+1) = 0 if i ≥ `+ 1 (21)

and we write D(n, n+ 1) the subset of matrices u`,w for ` ∈ [n], w ∈ R[n]
+ . Each

good j, j ≤ n is liked by agent j only (or is useless if wj = 0), while good n+ 1
is liked by the first ` agents only.
Define now for any ` ∈ [n] and t ∈ R[`]

+ such that
∑`

1 ti = 1 the allocation
matrix z`,t ∈ Φ(n, n+ 1):

z`,tij = δij for all i and j ≤ n ; z`,ti(n+1) = ti if i ≤ `, = 0 if i ≥ `+ 1 (22)

Clearly z`,t is effi cient in the problem ([n], [n+ 1], u`,w); conversely if all goods
are useful, w � 0, then all effi cient allocations in this problem are of this form.
We write ED(n, n + 1) the set of allocations z`,t for all ` ∈ [n], t ∈ R[`]

+ s. t.∑`
1 ti = 1.

Now we compute by Lemma 2 the allocation f c(u`,w) = z`,t ∈ ED(n, n+ 1)
at an arbitrary u`,w ∈ D(n, n+ 1).12 Relabel the rows so that the sequence wk
12Strictly speaking fc(u`,w) is a singleton only if all goods are useful, i. e., w � 0.
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is weakly increasing in [`] (and arbitrary after `). The inequality

wi ≤
1

i
(1 +

i∑
j=1

wj) (23)

holds for i = 1 and we let i∗ be the largest integer in [`] such that it does. Thus

if i∗ ≤ `− 1 we must have 1
i′ (1 +

∑i′

j=1 wj) < wi′ for i∗ + 1 ≤ i′ ≤ `.
The vector t defining z`,t, and the utility profile F c(u`,w) = U `,w, are

ti =
1

i∗
(1 +

i∗∑
j=1

wj)− wi for 1 ≤ i ≤ i∗, and ti = 0 for i∗ + 1 ≤ i ≤ `

U `,wi =
1

i∗
(1 +

i∗∑
j=1

wj) for 1 ≤ i ≤ i∗, and U `,wi = wi for i∗ + 1 ≤ i ≤ n (24)

as one checks easily by the KKT conditions (2).

We fix from now on a rule f as in the statement of the Theorem and show
in Step 3 that it coincides with f c on D(n, n + 1). To that end we need a key
reduction result which is our next step.

Step 2 Fix u ∈ U(n,m), a good a ∈ [m] useful only to the first ` agents, ` ≥ 1,
and an allocation z ∈ f(u). Consider the matrix u`,w ∈ D(n, n+ 1), where

wi =
ui · zi
uia

− zia for 1 ≤ i ≤ ` (25)

wi = ui · zi for i ≥ `+ 1 (26)

Then we have f(u`,w) = z`,t (or z`,t ∈ f(u`,w) if some goods are useless), with
ti = zia for all i ≤ `.
Proof of the claim. Set Q =([n], [m], u) and U = F (Q) so Ui = ui · zi. We note
that EO is about merging equivalent goods, but it also allows us to split any
good b ∈ [m] into equivalent goods provided the corresponding split utilities
keep the same sum. We apply this remark to transform problem Q into a new
problem 1Q =([n], [1m],1 u) where 1m = 1 + n · (m − 1), each good b ∈ [m]�a
(recall a is fixed in the statement of the claim) is split into n equivalent goods
bi, one for each i ∈ [n], and the utility of agent j for good bi is 1ujbi = zibujb.
For instance

a b c
u1 5 1 1
u2 6 3 1
u3 1 4 4

→

a b c
zc1

2
3 0 0

zc2
1
3

2
3 0

zc3 0 1
3 1

→

a b1 b2 b3 c1 c2 c3
1u1 5 0 2

3
1
3 0 0 1

1u2 6 0 2 1 0 0 1
1u3 1 0 8

3
4
3 0 0 4

(in the example we use the competitive allocation but the construction aplies
to any allocation z)
As the matrix z contains many zeros (when Γ(z) is a tree which is the normal

pattern), the problem 1Q contains many useless goods.
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As all n fragments of good b are equivalent EO implies F (1Q) = U , therefore
f(1Q) contains the allocation 1z that for each b ∈ [m]�a gives all good bi to
i (1zibj = δij) and such that 1zia = zia for all i. For j 6= i agent j does not
eat any bi at 1z, hence if we lower to zero the term 1ujbi = zibujb while every
other entry of 1u is unchanged, ILB tells us that 1z remains chosen by f in the
new matrix. Lowering successively every entry j, bi, j 6= i, in 1u and each time
invoking ILB we obtain the following matrix 2u ∈ U(n, [1m])

2uja = uja , 2ujbi = δijzibujb

such that 1z ∈ f(2u) and F ([n], [1m],2 u) = U . In the above example

a b1 b2 b3 c1 c2 c3
2u1 5 0 0 0 0 0 0
2u2 6 0 2 0 0 0 0
2u3 1 0 0 4

3 0 0 4

a b1 b2 b3 c1 c2 c3
1z1

2
3 0 0 0 0 0 0

1z2
1
3 0 1 0 0 0 0

1z3 0 0 0 1 0 0 1

Fix now agent i and consider goods b and c in [m]�a: if 2uibi and 2uici
are both positive the goods bi and ci are equivalent at 2u because i likes them
both and others dislike them both; if 2uibi and/or 2uici is zero they are still
equivalent because a useless good is equivalent to any other good. Thus if we
merge bi and ci into a good for which i’s utility is 2uibi +2 uici = zibuib + zicuic,
EO implies that in the new problem the rule still picks the same utility profile
U .
Now we merge successively all goods bi, b ∈ [m]�a, into a single good labeled

i, for which the utilities are now 3uii =
∑

[m]�a zibuib = Ui−ziauia and 3uji = 0

for j 6= i. We do this for all agents and reach a problem 3Q =([n], [n + 1],3 u)
where only agent i may like good i. Still, F (3Q) = U and, upon labeling good
a as n + 1, f(3Q) contains the allocation z`,t, where ti = zia for all i. In the
example ` = 3 and

a 1 2 3
3u1 5 0 0 0
3u2 6 0 2 0
3u3 1 0 0 16

3

z3,t =

1 2 3 4

z3,t
1 1 0 0 2

3

z3,t
2 0 1 0 1

3

z3,t
3 0 0 1 0

To reach the format u`,w as in (20) (21), with w in (25),(26), we divide each
row i, i ≤ `, of 3u by 3uia = uia and leave alone the rows j, j ≥ ` + 1, so their
only non zero term is Ui. E. g.,

u3,w =

1 2 3 4

u3,t
1 0 0 0 1

u3,t
2 0 1

3 0 1

u3,t
3 0 0 16

3 1

This rescaling does not affect the allocations selected by f (Definition 1),
and the proof of the claim is complete.

Step 3 f and f c coincide on D(n, n+ 1): proof by induction on n

Step 3.1 n = 2. A problem in D(2, 3) with ` = 1 is one where each good is liked
by one agent (at most) so all effi cient rules coincide. A problem Q with ` = 2 is

22



u◦ =
w1 0 1
0 w2 1

For any number γ, 0 < γ ≤ 1 consider the problem

u =
w1 0 γ 1
0 w1 1 γ

By EFF and SYM F (u) = (w1 + 1) · (1, 1), and agent 1 (on the top row) gets
the 4th good (4th column) in f(u) (for sure if γ < 1, and in one z ∈ f(u) if
γ < 1). By Step 2 this agent gets the 3rd good in

u′ =
w1 0 1
0 w1+1

γ 1

For any w1, w2 such that w1 + 1 ≤ w2 we can choose γ so that w1+1
γ = w2. We

conclude that whenever |w1 − w2| ≥ 1 in problem Q, the "low utility" agent
eats all good 3, and F (u◦) = (w1 + 1, w2). This is also what the Competitive
rule does in this case.
Conversely we assume that in Q agent 1 eats all good 3 and show that

w1 + 1 ≤ w2. Fix ε > 0 and split good 3 in two as follows

u′′ =
w1 0 ε 1− ε
0 w2 ε 1− ε

By EO the rule still gives goods 3 and 4 to agent 1, so by Step 2 this agent eats
the 3rd good in

u′′′ =
w1+1−ε

ε 0 1
0 w2

ε 1

Now if w2 < w1 + 1 we have w2
ε + 1 < w1+1−ε

ε for small enough ε, therefore
agent 2 should get good 3, contradiction.
We pick now Q such that |w1 − w2| < 1: we just proved that both agents

must eat some of good 3 for instance z13 = λ, z23 = 1 − λ. We split good 3 in
Q as follows

u◦◦ =
w1 0 λ 1− λ
0 w2 λ 1− λ

and note that f(u◦◦) contains the allocation where agent 1 eats all good 3 and
none of good 4. By Step 2 agent 1 still eats all good 3 in

u◦◦ =
w1
λ 0 1

0 w2+1−λ
λ 1

therefore w1
λ + 1 ≤ w2+1−λ

λ ⇐⇒ w1 + λ ≤ w2 + 1− λ. Exchanging the roles of
agents 1 and 2 gives the opposite inequality so we conclude w1 +λ = w2 +1−λ,
i.e., F (u◦) = 1

2 (w1 + w2 + 1) · (1, 1) just like the Competitive rule.

Step 3.2 induction argument. We assume F is the Competitive rule in D(m,m+
1) for m ≤ n − 1, and pick a problem u`,w ∈ D(n, n + 1) as in (20) (21). If
` ≤ n − 1 we can partition the problem into N1 = [`], A1 = [`] ∪ {n + 1} and
N2 = {`+ 1, · · · , n}, A2 = {`+ 1, · · · , n}: the PAR property and the inductive
assumption ensure that F distributes A1 to N1 exactly like Competitive, and
A2 to N2 in the obvious effi cient way, so F and F c coincide on u`,w.
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Assume now ` = n so all agents like good n + 1. By EFF f(un,w) = zn,t

where t, the allocation t of good n + 1, is unique. Without loss we label the
agents so that ti is weakly decreasing in i. We let i∗ be the largest i such that
ti > 0. If i∗ ≤ n − 1, we invoke PAR: f allocates the goods in [i∗] ∪ {n + 1}
exactly like in the smaller problem with those i∗+1 goods and the first i∗ agents,
so by the inductive assumption, exactly like CEEI, and we are done.
We are left with the case where ti > 0 for all i ∈ [n]. We split now good

n+ 1 in two

u =
w1 · · · 0 t1 1− t1
· · · · · · · · · · · · · · ·
0 · · · wn tn 1− t1

By EO F (un,w) = F (u), and f(u) contains an allocation where all good n + 1
goes to agent 1 while the shares of good n+2 are (0, t2

1−t1 , · · · ,
tn

1−t1 ). Upon par-
titioning problem u into N1 = {1}, A1 = {1, n+ 1} and N2 = {2, · · · , n}, A2 =
{2, · · · , n} ∪ {n + 2}, PAR implies that in the reduced problem (N2, A2) the
shares of good n+ 2 are ( t2

1−t1 , · · · ,
tn

1−t1 ) as well. After normalizing utilities we
see that at the following problem ũn−1,w̃

ũn−1,w̃ =

w2
1−t1 · · · 0 1

· · · · · · · · · · · ·
0 · · · wn

1−t1 1

our rule f shares the last good as ( t2
1−t1 , · · · ,

tn
1−t1 ). But by the inductive assump-

tion this is also the choice of the Competitive rule: as all shares are strictly posi-
tive, we conclude by (24) that all utilities are equal, i. e., w2+t2 = · · · = wn+tn.
The choice of agent 1 in the above argument was arbitrary, so by repeat-
ing it with another agent, we conclude that F (un,w) gives the same utility
wi + ti = 1

n (1 +
∑n
j=1 wj) to all agents. Moreover wi increases weakly in i, and

wn ≤ 1
n (1 +

∑n
j=1 wj) as required by (23). The proof that F (un,w) = F c(un,w)

is complete.

Step 4We fix an arbitrary u ∈ U(n,m) with associated utility profile U = F (u);
we also choose an allocation z ∈ f(u) and an arbitrary good a ∈ [m]. We need
to show that the KKT inequalities (2) corresponding to good a: for all i ∈ [n]
such that zia > 0 we have uia

Ui
≥ uja

Uj
for all j.

If good a is liked by exactly ` agents, and exactly i∗ of those consume some
a at z, relabel the latter as the first i∗ in u, followed by the `− i∗ who like a but
do not eat any of it. Let u`,w ∈ U(n, n+ 1) be defined as in Step 2 by (25),(26):
for i ∈ [`] we have Fi(u`,w) = wi+ zia = Ui

uia
. And by step 3 F (u`,w) = F c(u`,w)

is given by (24): the first i∗ agents end up with the same utility 1
i∗ (1+

∑i∗

j=1 wj)
and every agent in {i∗ + 1, · · · , `} with a higher utility wi (it does not matter
for this statement that the wi are not ordered increasingly before or after i∗).
Hence Ui

uia
is constant for each i such that zia > 0, and all ratios Uiuia for each for

i∗+ 1 ≤ i ≤ ` are larger. And for i ≥ `+ 1 we have uia
Ui

= 0. This proves (2) for
good a as desired.
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7 Two open questions

We noticed in Section 2 that neither Responsive Shares nor Invariance to Lost
Bids has a clear counterpart with non additive utilities, so our results are strictly
limited to the additive domain. Extensions and variants of our results may be
investigated in two other directions.
The first one is the cake division model, where the resource is a compact sub-

set in an euclidian space and utilities are non atomic non negative measures on
this cake. Technical diffi culties notwithstanding, we suspect that our arguments
can be extended to that model.
The second, equally diffi cult, extension comes from dropping symmetry in

N . The focal rule becomes Competitive Equilibrium with Fixed income Shares,
which still maximizes the corresponding weighted Nash product. This rule meets
all other axioms in our Theorem axioms, but it is not clear if, conversely, these
axioms characterize this new family of Competitive rules.
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