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1 Introduction

Consider a repeated game played on a network, where nodes represent players, and edges
link neighbors. Interaction is local: a player’s payoff depends only on his own and his
neighbors’ actions. Players observe their stage payoff only, hence monitoring is private, local
and imperfect. Hence, both interaction and monitoring structures are given by the network.
In addition, players can send costless messages at each stage. Communication can be private
or public, that is: players can send different messages to distinct players (e.g. private emails),
or they can communicate publicly with a subset of players (e.g. Carbon Copy). In the latter
case, the Carbon Copy list of players is certifiable. (Players could also use Blind Carbon
Copy, that is a mixture of private and public communication.) This paper circumscribes the
networks for which a full folk theorem holds in this setup, i.e. under which conditions all
feasible, strictly individually rational payoffs are equilibrium payoffs in the repeated game
when players are sufficiently patient. The main result is that a folk theorem holds if and only
if no two players have the same set of neighbors (Condition DN). For a wide class of payoff
functions, I construct a perfect Bayesian equilibrium (henceforth, PBE) for the family of
networks that satisfy Condition DN. Condition DN is also necessary: if it is is not satisfied,
then the folk theorem does not hold.

The key to the characterization lies in understanding when communication makes it possi-
ble (i) to transmit precise information about players’ deviations (detection and identification)
and (ii) to coordinate players’ behavior. Throughout the paper, I assume that the payoff func-
tions are such that any unilateral deviation affects each neighbor’s payoff (Assumption P).
Hence, neighbors’ deviations are detectable, although deviators may not be identifiable. The
condition on the networks’ topology for a folk theorem to hold for any payoff function that
satisfies Assumption P, is that any two players must have different set of neighbors (Condition
DN). It has a simple interpretation. Assume that player ¢ detects a neighbor’s deviation,
and that, according to player i, the deviator could be either his neighbor j or his neighbor k.
The condition states that there exists another player ¢ who (without loss of generality) is a
neighbor of 7 but not of k. If indeed player j is the deviator, then player ¢ can confirm this to
player i, since he has also detected a unilateral deviation; whereas if player k is the deviator,
then ¢ can report to player ¢ that j is innocent, since ¢ has not detected a deviation. Now,
player ¢ could deviate by not reporting his information. This issue is handled by requiring
deviating players to confess their deviation afterwards, that is: the equilibrium strategies are
such that, each player confesses a deviation after a history in which he did deviate.! Under

unilateral deviations, if player ¢ does not report his information truthfully, then the player

1Close arguments can be found in Ashkenazi-Golan ([2]).



who deviates first, either j or k, will confess to player .

The construction of the equilibrium strategy when Condition DN is satisfied is adapted
from Fudenberg and Maskin ([12]). However, since histories are private here, several mod-
ifications must be made. In particular, a communication protocol is developed in order to
identify the deviator when there is a deviation. Moreover, the punishment and reward phases
have to be adapted. Indeed, Condition DN does not rule out networks for which a player,
say k, has a single neighbor, say ¢. In that case, player ¢ might have an incentive not to
report player k’s deviations for which player ¢ is the unique monitor. However, with the same
argument as before which relies on unilateral deviations, if player ¢ does not report player
k’s deviation, then player k confesses. Nevertheless, it might be impossible for players other
than k£ and ¢ to distinguish between the two following histories: “player k deviates in action
at stage t, and his unique monitor ¢ truthfully reports the deviation” and “player k does
not deviate at stage t, whereas player ¢ lies when reporting player k’s deviation.” However,
it is then possible to punish both players £ and ¢ since no player is a neighbor of both of
them: I require player k (respectively ¢) to minmax player ¢ (respectively k), and all player
{’s neighbors to minmax player £. Finally, public communication also serves the purpose
of coordinating players’ actions. In particular, minmax strategies might be mixed, and pure
actions are not monitored even by neighbors. This is an obstacle to detect deviations dur-
ing punishment phases, and to provide incentives (rewards) for the minmaxing players to
randomize according to the distribution given by their minmax strategies. To tackle this
problem, players announce the pure actions they actually play during the punishment phase
(these announcements are made simultaneously with the choice of action). Therefore, players
can detect the deviations of their neighbors during the punishment phase, and can reward
them accordingly thereafter.

To prove that Condition DN is also necessary for a folk theorem to hold, consider the
case for which two players, say j and k, have the same neighbors. I construct a particular
payoff function for which there is a feasible and strictly individually rational payoff that is
not an equilibrium payoff, no matter how little players discount the future. More precisely,
the payoff function is such that there exists a common neighbor of both j and k, say player
i, who cannot differentiate between some deviations of players j and k. In addition, player
i is unable to punish both: intuitively, player i rewards player k (respectively j) when he
punishes player j (respectively player k). This is a failure of joint rationality, following the
terminology of Renault and Tomala ([30]).

2This joint punishment of players k and ¢ implies that the reward phase has to be modified from Fudenberg
and Maskin ([12]), in a way such that both players k and ¢ have lower continuation payoffs after having been
minmaxed than after the punishment phase of another player (see Section 5.2.4).



Application. An application of interest is a partnership game (see [28]). Consider a part-
nership in which production is conducted by a team whose goal is to maintain a certain level
of individual effort by its members. Each member’s effort is not observable and there is moral
hazard (effort is costly). Assume that each member’s compensation depends on the output
of a subset of members only, referred to as the direct colleagues, and this output depends on
the level of effort of these members. For instance, the head of a subteam’s compensation may
depend on his own, his direct subordinates’ and on his own chief’s levels of effort: this defines
a subteam. In addition, agents may communicate with each other via emails, either privately
or publicly. If a member is reported by his direct colleagues, i.e. identified as exerting low
effort, the group can punish him by reducing his share in the total profit, which raises other
members’ shares. This paper shows that coordination is sustainable if and only if any two
members have a non-common colleague. In particular, the following network structures (G

and G) illustrate when a folk theorem cannot hold.

Figure 1:
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Also, no complete network satisfies Condition DN, which entails that compensation must
not depend on the efforts of the whole firm’s members in order to enable coordination. How-
ever, if the members form a circle (with at least five members, network G in the figure below),
then coordination is sustainable. Moreover, the tree structure depicted by the network G4

also enables a folk theorem to hold.

Figure 2:




Related literature. This paper lies at the juncture of two independent literatures: re-
peated games and social networks. Regarding repeated games, the folk theorem was origi-
nally established for Nash equilibria ([4, 12, 31, 32]) and extended by Fudenberg and Maskin
([12, 13]) to subgame-perfect equilibria. A key assumption is perfect monitoring. A large
fraction of the literature on folk theorems with imperfect monitoring has focused on imperfect
public monitoring (see [11]).The model of collusion by Green and Porter ([18]) also considers
imperfect public monitoring, where the market price serves as a commonly observed sig-
nal. There is a large recent literature on imperfect private monitoring (see [25] for details).
Fudenberg and Levine ([10]) establish an approximate folk theorem with imperfect private
monitoring without explicit communication. They consider private random signals induced
by the action profile of all other players. With public communication, Compte ([8]), Kan-
dori and Matsushima ([21]), and Obara ([27]) provide sufficient conditions for a folk theorem
to hold. All three consider random signals, whereas signals are deterministic in my setup.
My result departs from these folk theorems, either with private ([8, 21, 27]) or public ([11])
monitoring, in two ways. First, they consider restricted set of strategies, which enable them
to characterize a set of equilibrium payoffs included (sometimes strictly) in the set of feasi-
ble and strictly individually rational payoffs. For instance, Fudenberg, Levine and Maskin
([11]) characterize the set of perfect public equilibria, which may have an empty interior.
As mentioned before, my main result is on the contrary a full folk theorem. Moreover, they
only provide sufficient conditions for a folk theorem to hold, whereas Condition DN is also
necessary in my setup.

Closer to my setting, Ben-Porath and Kahneman ([5]) establish a necessary and sufficient
condition for a folk theorem for the case in which (i) each player observes his neighbors’
moves, and (ii) communication is public. Renault and Tomala ([29]) and Tomala ([34]) study
undiscounted repeated games with the same signals as in [5] (i.e. each player observes his
neighbors’ moves) but communication is constrained by the network structure (they also
establish a necessary and sufficient condition for a folk theorem to hold). All these papers
[5, 29, 34] (and also [7, 22, 26, 35]) assume that monitoring among neighbors is perfect. To
the contrary, I assume here that it is imperfect: payoffs encapsulate all an agent’s feedback
about his neighbors’ play (for instance, firms infer rivals’ likely behavior from their own
profits). Besides, in all these papers, interaction is global, i.e. each player interacts with all
other players. Here, interactions revolve around a network. Moreover, because of Condition
DN, I prove that the folk theorem even fails if the network is complete. Recently, Nava
and Piccione ([26]) and Cho ([7]) study games in networks with local interaction. Yet, both
assume that each player perfectly observes his neighbors’ moves.

Finally, repeated games with local interaction and where players only observe their payoffs



are studied in Laclau ([23]). This paper departs from [23] in several ways. First, in [23] com-
munication is assumed to be private and local (i.e. players can communicate only with their
neighbors). On the contrary here, communication is global (i.e. players can communicate
with all opponents), and can be private or public. On the one hand, local communication
seems natural in large decentralized markets, like a Hoteling competition with a large number
of firms which interact and know their closest rivals only. On the other hand, global commu-
nication seems less restrictive in other applications, where players know the identity of their
opponents, and are then able to communicate with all of them (via emails for instance). A
good example is the above partnership game, in which it is natural to allow players to send
emails to all the members of the team. Moreover, emails enable players to certify the list
of receivers (Carbon Copy), hence allowing public communication among the team seems
plausible.

Second, contrary to [23] where a Nash folk theorem is established, I impose sequential
rationality. The main difficulty here is to provide incentives to follow the communication
protocol in case of a deviation, and to follow the equilibrium strategy (in particular for
the minmaxing players during the punishment phase after a deviation). The issue is that
following an action deviation by some player i, player 7 may deviate and send false messages.
As a consequence, the content of the message “k is innocent” becomes manipulable. How to
update sets of innocents becomes challenging, as it is not enough to make conjectures about
a single unilateral deviation, but, possibly, several consecutive deviations. The open issue is
then to construct protocol that allows to identify the player who deviates in action,® even
if another player deviates during the protocol itself. As opposed to [23], the communication
protocol constructed is robust to successive unilateral deviations. The main idea follows
from the fact that players are required to confess their past deviations. With this strategy,
a majority rule prevents a second deviator during the communication protocol to block the
identification of the initial deviator. The incentives for following the equilibrium strategy are
given by adapting the construction of Fudenberg and Maskin ([12]) as explained previously.
This is rather surprising, since their construction crucially relies on the fact that monitoring
is perfect in their setting, and is known not to be robust generically in repeated games
with (private or public) imperfect monitoring. By contrast, their method can be adapted
in my setup since (i) the distribution of private signals does not have full support, and (ii)
public communication enables the players to learn the sequence of pure actions played by the
minmaxing players during the punishment phase.

This paper is also related to the literature on social and economic networks (for an

3Recall that communication is costless, so communication deviations need not to be punished as long as
they do not affect continuation play.



overview of the networks literature, see Goyal, [17], and Jackson, [20]). Networks in which
a player’s payoff depends on his own and his neighbor’s actions have been studied among
others by Galeotti and al. ([15]) and Bramoullé and Kranton ([6]). However, this literature
does not account for repeated games in general.

The paper is organized as follows. The model is introduced in Section 2. In Section 3, I
discuss the assumption on payoff functions. The main result is stated in Section 4. Section 5
establishes the sufficiency of Condition DN: for that purpose, I construct a communication
protocol which aims at identifying the deviator when a deviation occurs; I then construct a
perfect Bayesian equilibrium. Section 6 establishes that the folk theorem fails if Condition

DN is not satisfied. Finally, Section 7 develops some extensions and raises open questions.

2 The setup

Consider a repeated game played on a fixed network where players interact only with their

neighbors. This is described by the following data:

a finite set N = {1,...,n} of players (n > 3);*

- for each player i € N, a non-empty finite set A of actions (with fA* > 2);

- an undirected graph G = (N, E') in which the vertices are the players and £ C N x N
is a set of links. Let N'(i) = {j # ¢ : ij € E} be the set of player i’s neighbors. Since
G is undirected, the following holds: i € N (j) < j € N(4);

- for each player i € N, a payoff function of the form ¢° : [Liexvoum AT — R, i.e. player

1’s stage payoff depends on his own and his neighbors’ actions only;

- finally, a non-empty finite set M? of player i’s messages. I assume that the cardinality

of M is large, the specification of the set M* is given in Section 5.

I use the following notations: A = [[,cy A, N70 = N\ {i}, ANOVE =TT, Al

N (@)

?

Ui
V' = (a?)jen) and g = (g%, ..., ¢g") denote the payoff vector. o
Throughout the paper, the graph G is assumed to be connected. Indeed, since interaction
is local, players in different connected components do not interact with each other. Therefore,
I model different connected components as different games.
In addition, I introduce costless communication. Players are able to communicate both
privately and publicly. First, each player can send different messages to distinct players.

Second, players can make public announcements to all players or to a subset of players only.

4The 2-player case reduces to perfect monitoring, see Footnote 6 in Section 3.



For instance, if a player i makes a public announcement to a subset S of players, then the
list S is certifiable, that is: each player s in S knows that all members in S received the same
message (this is common knowledge among the players in S), although he does not know the
messages received by players who are not in S. Let M* be a non-empty finite set of player i’s
messages. Let mi(j) represent the private message sent by player i to player j € N at stage
t, and mi(S) the public message sent by i at stage ¢ to players in S C N (hence, mi(N) is a
public announcement to all players).

The repeated game unfolds as follows. At every stage t € N*:

(i) simultaneously, players choose actions in their action sets and send messages to all

players, either publicly or privately as described above.

(ii) Let a; = (a!) be the action profile at stage t. At the end of stage ¢, each player i € N
observes his stage payoff ¢'(a!, atN(i)). A player cannot observe the actions chosen by

others, even by his neighbors.

Hence, both interaction and monitoring possibilities are given by the network G. In addition,
I assume perfect recall and that the whole description of the game is common knowledge.
For each stage t, denote by H; the set of player i’s private histories up to stage ¢, that is
Hi = (A" x (MHN ™ x (M7)en—i x {g'})!, where {g} is the range of g° (H is a singleton).
An element of hi is called an i-history of length ¢. An action strategy for player i is denoted
by o = (0});>1 where for each stage ¢, o} is a mapping from H; | to A(A") (where A(A?)
denotes the set of probability distributions over A%). A communication strategy for player i
is denoted by ¢’ = (¢!);>1 where for each stage t, ¢ is a mapping from H? | to A((M)N ).
Note that a player may deviate from o* or from ¢*, thus I shall distinguish between action and
communication deviations accordingly. A behavior strategy of a player i is a pair (¢*, ¢). Let
¥* be the set of player i’s action strategies and ® his set of communication strategies. I denote
by 0 = (0")ien € [[;,en & the players’ joint action strategy and by ¢ = (¢")ien € [[;en
their joint communication strategy. Let H; be the set of histories of length ¢ that consists of
the sequences of actions, payoffs and messages for t stages. Let H,, be the set of all possible
infinite histories. A profile (o, ¢) defines a probability distribution, P, 4, over the set of plays
H.,, and I denote E, 4 the corresponding expectation. I consider the discounted infinitely
repeated game, in which the overall payoff function of each player 7 in N is the expected sum

of discounted payoffs. That is, for each player ¢ in V:

i = 1 dir i NG
Yi(0,0) = Eog | (1—6) > 6 gi(al, )| ,

t=1

where § € [0,1) is a common discount factor. Let Gs(G, g) be the d-discounted game.

8



The solution concept is perfect Bayesian equilibrium (PBE from now on). While there is
no agreed upon definition of what restrictions this involves after histories off the equilibrium
path, this plays no role in my construction, and any definition will do. The reader is referred
to the definition given by Gibbons (Chapter 4 in [?]).° In fact, I only specify strategies after
private histories along which only unilateral deviations, if any, have taken place. In addition,
the construction has the property that, after such histories, the specified play is optimal no
matter what beliefs a player holds about his opponents’ play, provided that the beliefs are such
that: for every player ¢ € N, if player ¢ observes a private history compatible with a history
along which no deviation has taken place (respectively along which only unilateral deviations
have taken place), then player i believes that no deviation has taken place (respectively only
unilateral deviations have taken place). Plainly, this suffices to ensure optimality. Given that
play after other histories (i.e., histories that involve simultaneous deviations) is irrelevant, the
partial strategy and beliefs that I define can be completed in any arbitrary fashion. Details
are given in Section 5.2.

Let E5(G,g) its associated set of PBE payoffs. For each a € A, I denote g(a) =
(g'(a',aVN M), ... g"(a™, aVN ™)) and g(A) = {g(a) : a € A}. Let cog(A) be the convex
hull of g(A), which is the set of feasible payoffs. Player ¢’s (independent) minmax level is
defined by:°

v'=  min max g'(z', 2V D).
N O[T pr(iy A(AT) T EA(AY)

I normalize the payoffs of the game such that (v!,...,v") = (0,...,0). Idenote by IR*(G,g) =
{9 =1(¢",...,9") € R" : Vi € N, g* > 0} the set of strictly individually rational payoffs.
Finally, let V* = cog(A) N IR*(G, g) be the set of feasible and strictly individually rational
payoffs.

The aim of this paper is to characterize the networks G for which a folk theorem holds,
that is: each feasible and strictly individually rational payoff is a PBE payoff for all discount
factors close enough to one. In the next section, I display and motivate the class of payoff

functions I consider.

SFudenberg and Tirole ([14]) give a definition for games with observable actions, which my game does
not have. A recent definition for general games, including games with imperfect monitoring, is given by
Gonzélez-Diaz and Meléndez-Jiménez ([16]).

6Tt is sometimes possible here to drive equilibrium payoffs below this bound, see Section 7.



3 A class of payoff functions

The following example is taken from [23]. It shows that a necessary condition for a folk

theorem is that the payoff functions are sufficiently rich to enable players to detect deviations.

Example 3.1. Consider the 5-player game played on the following network:

Figure 3:
1
2 )
3 4
G

The action sets of the players are A' = A? = A3 = {C, D} and A* = A® = {0, 1}. The payoff
functions of players 1, 2 and 3 are given by the following matrices (player 2 chooses the row,

player 1 the column, and player 3 the matrix):

3 plays C' 3 plays D
2\ 1 C D 2\ 1 C D
¢ |1020,0,2 ¢ 1006|106
D |1,200,6,0 D 0,2,0 | 1,6,0

In addition, the payoff functions of players 4 and 5 are g*(a® a* a®) = a* + a® — 1 and
g°(al,a*,a®) = 2a* + a® — 1. Notice that int V* # (). The minmax level of each player
i € N is v’ = 0. Therefore, the payoff vector (1,1,1,1,2) is feasible and strictly individually
rational. Notice also that the only way the get this payoff vector is that player 2 chooses
between C' and D with probability %—%, that players 1 and 3 choose action D, and that players
4 and 5 choose action 1. Moreover, playing 1 is a dominant strategy for both players 4 and
5.

However, (1,1,1,1,2) is not a Nash equilibrium payoff of the repeated game: for any
discount factor § € [0, 1), either player 1 or player 3 has an incentive to deviate by choosing
between C' and D with probability %—% The key argument is that both deviations induce
the same distribution of signals for player 2. First, player 2’s payoff is 1 if players 1 and

3 take the same action, 0 otherwise. Hence, the deviations of players 1 and 3 induce the

10



same distribution of payoffs for player 2, and that for every strategy (possibly mixed) of the
non-deviating players.” Hence, player 2 cannot infer the identity of the deviator from the
observation of his payoffs. Second, neither player 4 nor player 5 has relevant information
on the actions chosen by players 1 and 3. As a consequence, player 2 cannot identify the
deviator. In addition, player 2 cannot punish both players 1 and 3: punishing player 1
requires player 2 to play C, in which case player 3 can get a payoff of 6.5. On the contrary,
punishing player 3 requires player 2 to play D, in which case player 1 can get a payoff of 6.
As a consequence, either “player 1 always plays C' and D with probability %—% and pretends
that player 3 does” is a profitable deviation for player 1, or “player 3 always plays C' and D
with probability %—% and pretends that player 1 does” is a profitable deviation for player 3.°
Therefore, the outcome (1,1,1,1,2) is not a Nash equilibrium payoff of the repeated game
and the folk theorem fails.

On the other hand, let ¢g', g%, ¢® and g¢* remain unchanged, and assume that player 5’s

payoff is the following:

2a* +a® —1 ifal =C
20 +a>—14¢€ ifal=D

with € > 0. Player 5 is now able to detect player 1’s deviations. Therefore, if player 2
detects either player 1’s or player 3’s deviation, he can obtain from player 5 the name of
the deviator (player 5 clears player 1 if he does not detect any deviation, and clears player
3 otherwise). However, player 5 could lie about the identity of the deviator. I circumvent
this issue by requiring a deviating player to confess thereafter. Hence, if player 5 lies, then
the initial deviator, say player 1, confesses, and player 3 claims his innocence. A majority
rule then gives the name of the deviator. For a large enough discount factor, it is possible
to construct a perfect Bayesian equilibrium with payoff vector (1,1,1,1,2) (see Section 5 for

the construction). o

The previous example shows that if a deviation of a player ¢ does not alter all his neighbors’
payoffs, then it may possible for some feasible and strictly individually rational payoffs not

to be (Nash) equilibrium payoffs of the repeated game.!® Hence, it is not possible to get a

"Following the terminology of Aumann and Maschler (1966, re-edited in 1995, [3]), this is a jointly con-
trolled lottery over player 2’s payoffs.

8Formally, this argument does not rule out that there exists a strategy that trades off punishing the two
players in a way that drives both of their payoffs below 1; however, it is not hard to show that this is already
too much to ask; the details can be found in Section 6.

9These arguments are formally developed in Section 6.

OFor a similar phenomenon, see [24].
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folk theorem for all payoff functions g. I introduce the following assumption.*!

Assumption PAYOFFS (P) . For each player i € N, each neighbor j € N (i), every
actions b, ¢7 € AV such that bV # ¢, a' € A*, VO ¢ ANO\UE

g'(at, VO Yy £ gi(al, VO ),
Example 3.2. The following payoff functions satisfy Assumption P:

- for each player i in N, let A’ C N and ¢'(a’,aV®) = f (ZjeN(i)U{i} aj) with f strictly

monotone;

- for each player i in N, let A* C R and ¢(a’,aV®) = > jens @ — a' (this game can be

seen as a generalized prisoner’s dilemma for n players);
- firms’ profits in Cournot games;

- more generally, for each player i in N, let A* C R and ¢° strictly monotone with respect

to each argument.

In the next section, I introduce a necessary and sufficient condition on the networks for
a folk theorem to hold.

4 The main result

Theorem 4.1. The following statements are equivalent:

1. For each payoff function g that satisfies Assumption P and such that the interior of V*
is nonempty, for any payoff v in V*, there exists § € (0,1) such that for all § € (5,1),
v is a PBE vector payoff of the §-discounted game.

2. The graph G is such that, for every pair of players i,5 € N, i and j have different set
of neighbors (Condition DN for Different Neighbors), that is:

vi,j € N, N(@)\{j} # NG\ {i}- (DN)

Assume that Condition DN is satisfied, that Assumption P holds, and that V* is of full
dimension. Then, for any v € V*, it is possible to construct a PBE with payoff v for a

discount factor close to one. I construct this strategy in Section 5. Intuitively, Condition DN

"1 This assumption implies that the two-player case reduces to perfect monitoring.
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makes it possible to construct a communication protocol that enables players to identify the
deviator when a (unilateral) deviation occurs.

In addition, Condition DN prevents the network from having too many links, since it
may lead to less information. The idea is that too many links increase the likelihood for two
players to have the same neighbors, which violates Condition DN. If two players have the
same neighbors, their deviations may not be distinguishable, and I exhibit particular payoff
function for which the folk theorem fails (see Section 6 for the general proof). In particular,
the folk theorem fails for complete networks: for some payoff functions satisfying Assumption
P, the issue is that a deviation of any player is detected when then network is complete, but
every player suspects everybody, and identification of the deviator may not be possible. This
is an obstacle for a folk theorem to hold, see Section 6 for details.

Now, I show some properties of the networks satisfying Condition DN. First, I display
some examples of graphs that satisfy Condition DN (Figure 4), and some that do not (Figure
5). Notice that Condition DN is not monotonic with respect to the number of links, contrary
to connectivity. For instance, both Gy and G are 2-connected, whereas only Gg satisfies

Condition DN. Also, neither GG3 nor G4 are 2-connected, whereas only GG3 satisfies Condition
DN.

Figure 4: Networks satisfying DN Figure 5: Networks not satisfying DN

1 1

2 5 2 5

3 4 3 4
Go

1 2 3

Gy

2 5
1

3 4
G5 GG
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Remark 4.2. Assume that the network G is connected and satisfies Condition DN. It is then
easy to see that a player cannot be the unique neighbor of several players: for every players
7 and j! such that N'(j') = {j}, and every ¢ € N'(j) so that £ # j', player ¢ has at least two
neighbors. One can then easily check that a tree!? satisfies Condition DN if and only if the
distance between any two terminal nodes is greater than or equal to three. Hence, no star
satisfies Condition DN.

Going back to Figures 4 and 5, the distance between two terminal nodes in Gy is at least

three, whereas the distance between nodes 4 and 5 in Gg (or between 6 and 7) equals two.

5 Sufficiency of Condition DN

In this section, I assume that the network G satisfies Condition DN of Theorem 4.1, namely:
for any pair of players ¢, j in N, ¢ and j have at least one different neighbor. Take a payoff
function that satisfies Assumption P and such that int V* is non-empty (this is assumed
throughout this section). I take a point v = (v!,... ,v™) in V* and I construct a PBE of the
repeated game (0%, ¢*) with payoff v for a large enough discount factor.

First of all, notice that each player 7 detects an action deviation from a pure action profile
if and only if he observes a change in his stage payoff (Assumption P). Therefore, there is an

action deviation from a pure action profile of some player k at stage t if and only if all the

12Recall that a tree is a connected graph without cycles, and that the distance in a graph between two
nodes i and j is the length of the shortest path from i to j (the reader is referred to [9] for usual definitions
of graph theory).
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neighbors of player k£ detect it stage t. Nevertheless, player £’s neighbors may not be able to
identify the deviator.

I first introduce a communication protocol which identifies the deviator when there is a
deviation (Section 5.1). Then, I construct the equilibrium strategy (Section 5.2), and prove

the equilibrium property (Section 5.3).

5.1 Identifying a deviator

In this section, I construct a communication protocol which identifies the deviator when there

is a deviation. Then, I exhibit some properties of this protocol.

5.1.1 Construction of the communication protocol

Here, I assume that the players coordinate on playing a sequence on pure actions, a; =
(a})ien at each stage t > 0, and as long as no deviation is detected, on sending the message
my(N) = (mi(N)), where for each player i € N, m}(N) = N (i) U {i}. This message means
that player ¢ did not deviate, and did not detect any action deviation at stage ¢ — 1. Hence,
according to player i, his neighbors and himself are innocent regarding any possible action
deviation at stage t — 1. From now on, I assume that the network G is such that Condition
DN holds, and that g satisfies Assumption P.

We aim at identifying the deviator when a deviation occurs. Like in Example 3.1, it
is not always possible to punish several players, and the identification of the deviator may
therefore be needed. Nevertheless, for the family of networks that satisfy Condition DN,
it is not always possible to identify the deviator. Take for instance a player £ who has a
single neighbor /. It may be impossible for players i # k, ¢ to differentiate between the two

following deviations:

- player k deviates in action at stage t and does not confess any deviation regarding
stages t and ¢ + 1;

- player ¢ deviates in communication at stage ¢ + 1 and claims that player k deviated at

stage t.

These deviations still have to be punished, otherwise either player ¢ or player k might have
an incentive to deviate. Yet, this is not an obstacle for a folk theorem to hold. Indeed, no
player is a neighbor of both players k& and ¢, hence it is possible to minmax both players &
and ¢: while being minmaxed, player ¢ is prescribed to minmax player k. Therefore, if one

of these deviations occurs, players only have to know that the deviator is either & or /.
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I then construct a communication protocol, that is: a profile of communication strategies
and an output rule for each player. In my context, the communication protocol starts as soon
as there is a (unilateral) deviation (either from a,, or from m;(N)), and does not stop before
players find out the identity of the deviator (at least when it is an action deviation), or at
least a subset of two players, k and ¢, containing the deviator when the situation described
above appears.

Each player ¢ € N starts the protocol every time he detects a deviation from (a, m(N)).
Players may start the communication protocol at different stages. Indeed, consider the
situation where there is an action deviation of some player j at stage t. Player j’s neighbors
start the protocol at the end of stage ¢, whereas other players may not start it before the
end of stage t + 1, when they receive messages from player j’s neighbors. I now construct

the communication protocol.

The message space. All players communicate using the same finite set of messages M =
2NV with N the set of players.

The strategy of player i. Player i always takes the action a: when he performs the
protocol.'® 1 denote by gz~5Z his communication strategy during the communication protocol,

which consists in announcing sets of innocents publicly to all players as follows:

- if player ¢ detects an action deviation at stage ¢, then he announces mj_;(N) = N\N (i)
at stage t 4+ 1: player ¢ claims that all his neighbors are suspects regarding a deviation

at stage t; or, in other words, that all other players, including himself, are innocent.

- If player i deviates in action at stage ¢, then he announces mj, (N) O N" at stage

t + 1: player ¢ confesses at stage t + 1 that he deviated at stage t.

The output rule. Denote by X/, C N player i’s set of suspected players at stage ¢ + 1
regarding a possible deviation at stage t. For each player ¢ in N, the set X}, is computed

as follows.

(i) Only announcements of the form mi,,(N) = N(j) U {5}, ml ,(N) = N\ N(j) or
m],(N) = N7 for each player j € N are taken into account. Other announcements
are disregarded: in particular, private messages are ignored. Notice also that player ¢

takes into account his own announcement mj_,(N).

(ii) For every player j such that fA(j1) > 2 for each j! € N (j):

13In the construction of the equilibrium strategy in the next section, player i keeps playing the action
corresponding to the phase of the game, instead of playing a} (see Section 5.3).
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e if there exist at least two players j! and j? such that j! # j2, j € m{jrl(]\f ) and
jJE me(N), then j ¢ X, (i.e. j is cleared);

e otherwise, j € X/, (i.e. j is identified as suspect).
(iii) For every pair of players k and ¢ such that N (k) = {(}:

e if there exist at least two players &' and k? such that k' # k%, k € mf,,(N) and
k€ mip (N):
— if there exist at least two players ¢' and ¢2 such that ¢! # ¢2, ¢ € m{, (N)
and ¢ € mfil(N), then ¢ ¢ X/, (i.e. {is cleared);

— otherwise, £ € X}, (i.e. {is identified as suspect);

e otherwise, {k,(} C X/, (i.e. both k and ¢ are identified as suspects).
I now introduce an example to show how this protocol works.

Example 5.1. Consider the 4-player game played on the following network:
1 2 3 4

*———— 0 —0

for which Condition DN is satisfied. In addition, take a payoff function g for which Assump-
tion P holds.

1. Assume first that player 2 deviates in action at some stage t and, for simplicity, does
not deviate in communication at stage ¢ (but possibly at stage ¢t + 1). Hence, each
player i, except possibly 2, announces publicly mi(N) = N(i) U {i} at stage t. At
stage t + 1, players 1 and 3 should start the protocol, and stick to actions a; and
a; respectively. In addition, strategies @ 41 and &? 11 prescribe to announce publicly

mi(N) = N\ N(1) = {1,3,4} and m} ;(N) = N \ N(3) = {1,3} respectively.

Player 4 starts the protocol at the end of stage t + 1 only, and should announce

mi(N) = mi,, = {3,4}. Finally, player 2 should announce {1,3,4} publicly to

all players at stage ¢t + 1. Under unilateral deviations, players 1, 3 and 4 appear in

the public announcements at stage t + 1 of at least two different players, hence each
player ¢ clears players 1, 3 and 4. Moreover, player 2 appears in at most one public

announcement, therefore each player ¢ identifies player 2 as the deviator.

2. Consider now the case in which there is no action deviation at stage ¢ but a communi-
cation deviation of player 2 at stage ¢+ 1 who announces m7, | (N) = N\N(2) = {2,4}

publicly to all players (recall that private messages are not taken into account in the

17



strategy constructed). Under ¢*, players 1, 3 and 4 announce respectively {1,2},
{2,3,4} and {3,4} publicly to all players at stage ¢t + 1 since by assumption there
is no action deviation at stage t. Hence, X! = {1,2} for each player i in N. The two

following cases are then possible.

- Player 2 also deviates in action at stage t + 1. At stage t + 2, players 1, 2, 3 and
4 should announce respectively {1, 3,4}, {1,3,4}, {1,3} and {3,4} publicly to all
players. Even if one player deviates at stage t + 2, each player clears players 1, 3

and 4 and identifies player 2, hence X;,, = {2} for each player 1.

- Player 2 does not deviate in action at stage t+1. Then there is no action deviation

at stage ¢ + 1 under unilateral deviations.

3. Suppose now that player 1 deviates in action and, for simplicity, does not deviate in
communication at stage t. At stage ¢t + 1, players 1, 2, 3 and 4 should announce re-
spectively {2,3,4}, {2,4}, {2,3,4} and {3,4} publicly to all players. Therefore, the
name of player 1 appears in at most one public announcement, whereas the names of
players 2, 3 and 4 are in at least two distinct players’ public announcements. Hence,

X/, = {1, 2} for each player .

4. Assume now that there is no action deviation at stage ¢, and that player 1 deviates in
communication at stage ¢ + 1 by announcing m; ,(N) = N~' = {2, 3,4} publicly to all
players: player 1 lies when he confesses his action deviation at stage t. At stage t + 1,
the public announcements of players 2, 3 and 4 are respectively {1,2,3}, {2,3,4} and
{3,4}, hence X] = {1,2} for each player 7 in N.

5. Finally, suppose that there is no action deviation at stage ¢, and that player 1 deviates
in communication at stage t+1 by announcing publicly m; ;(N) = N\N (1) = {1, 3,4}.
The public announcements of players 2, 3 and 4 at stage ¢ + 1 are respectively {1, 2, 3},
{2,3,4} and {3,4}. All players appears in at least two messages, hence X; = () for each
player 7. Each player deduces that there was no action deviation at stage ¢, and that

player 1 deviates in communication at stage t 4 1. o

5.1.2 Properties of the communication protocol

I now exhibit some properties of the communication protocol constructed in the previous

section. All the proofs are in the appendix. With a slight abuse of notation, I call gzgl the
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communication strategy of player i which consists in sending the message m‘(N) when not
performing the protocol, and to send messages according to the strategy prescribed by the
communication protocol otherwise. The next lemma proves that, if a player who has more
than two neighbors deviates in action at some stage ¢, then he is identified as suspect, and

all other players are cleared at stage t + 1.

Lemma 5.2. Consider a connected network G that satisfies Condition DN, and suppose that
Assumption P holds. For each player j such that $N(7) > 2, if j deviates in action at some
stage t and if all players, except possibly a deviator, follow (/5 at stages t and t + 1, then
X/ ={j} for each player i € N.

Notice that there may be a deviation from a player d # j at stage t + 1. Yet, in that case,
player j does not deviate at stage ¢ + 1 under unilateral deviations. The next lemma shows

how the protocol works when a player k£ has a single neighbor £.

Lemma 5.3. Consider a connected network G that satisfies Condition DN, and suppose that
Assumption P holds. For every players k and € such that N'(k) = {{}, if:

(a) either k deviates in action at stage t;

(b) or, there is no action deviation at stage t, my,, = mf (N) and mf ,(N) D N7F (ie.

player k confesses publicly to all players);
(c) or, there is no action deviation at stage t, mi,, = mi, (N) and m{, ,(N) D N\ N(¢)
(i.e. player { claims publicly that he detected a deviation at stage t);

and if all players, except possibly a deviator, follow é at stagest and t+1, then X,f+1 = {k,l}
for each player v € N.

The next lemma shows that no communication deviation other than those of Lemma 5.3

can induce the identification of an innocent player as a deviator.

Lemma 5.4. Consider a connected network G that satisfies Condition DN, and suppose that
Assumption P holds. For each player k in N, if there is no action deviation at stage t, and

if player k deviates in communication at stage t + 1 in such a way that:
- cither N'(k) = {¢}, and ki, # mfy(N) or ml, (V) & (NN (k) U {k}};

- or there exists k' such that N'(k') = {k}, and m} , # mf(N) or {N \ N(k),N (k) U
{k}} & mE (N);
- ormiy # mi(N) or mi (N) # {N(k) U{k}};
and if all players, except possibly a deviator, follow & at stage t + 1, then XfH = () for each
player i € N.
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5.2 The equilibrium strategy

Take a payoff v € V*. In this section, I construct the PBE strategy, denoted (c*, ¢*), with
payoff v (the proof of the equilibrium property is in Section 5.3). More precisely, I construct a
restriction of the PBE strategy to a particular class of private histories; namely, the histories
along which only unilateral deviations from (o*, ¢*), if any, have taken place. Formally, I
denote by H;(U|(c*, ¢*)) the set of private histories for player 7 such that: either no deviation
(from (o*, ¢*)) has occurred, or only unilateral deviations have taken place. That is to say,
for any history in H}(U|(c*, ¢*)), no multilateral deviation has occurred. Similarly, denote
by H:(U|(c*, ¢*)) the set of total histories along which only unilateral deviations, if any, have
taken place.

I define now, for every history in H,(U|(c*, ¢*)), a strategy profile which can be decom-
posed into four phases. First, there is a stream of pure action profiles that yields the desired
payoff. This is how the game starts off and how it unfolds as long as no player deviates.
Second, there is a communication phase (the communication protocol previously described)
in case of a deviation, whose purpose is to inform the deviator’s neighbors of the deviator’s
identity. Third, there is a punishment phase, and finally, a reward phase.

Before constructing the equilibrium strategy, notice that deviations from the equilibrium
strategy are of two kinds: action and communication deviations. Since communication is cost-
less, communication deviations have to be punished only if they affect continuation payoffs.
In the strategy profile I construct, communication deviations that do not affect continua-
tion payoffs are not punished. More precisely, if a player starts sending spurious messages
although no player has deviated in action, and if in addition all players learn that there was
no action deviation—i.e. all players are cleared by the communication protocol-then the de-
viator is not punished. On the other hand, for some communication deviations without any
action deviation, it may not be possible for some players to be aware that there was no action
deviation: in this case, punishments of several players take place in my construction. In any
case, a player can deviate both in communication and in action, and is then punished (action
deviations always lead to the deviator’s punishment). Now, I construct the four phases of
the strategy, then I specify the beliefs (Section 5.2.5).

5.2.1 Phase I: equilibrium path

For each player i in N and each stage ¢ > 0, choose a; € A" such that

-1 i/=i =N( i
(1-06)> 6 "gi(a,a ") =o'

t=1
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This is possible when § > 1 — % (existence is proved by Sorin, Proposition 4 p.151 in [32]).
Moreover, Fudenberg and Maskin (1991) prove that for every € > 0, there exists d. < 1 such
that for all 6 > §. and every v € V* such that v* > v’ for all 7, the deterministic sequence of
pure actions a; can be constructed so that the continuation payoffs at each stage are within
¢ of v (Lemma 2 p. 432 in [13]).1

During this phase, player ¢ should play action a} at stage t. Moreover, at every period,
player 7 should announce mi(N) = N (i)U{i} publicly to all players. This message means that
player 7 did not deviate and did not detect any action deviation at stage t — 1.1° According
to player 7, his neighbors and himself are innocent regarding any possible action deviation
at stage t — 1. Player ¢ then announces his set of innocents publicly to all players at stage t,
denoted I}, made of himself and his neighbors: I} = N (i) U {i}.

5.2.2 Phase II: communication phase

Player i € N enters phase II each time he detects a unilateral deviation from (o*, ¢*). For
instance, in phase I, player i enters phase II at the end of stage t either when he detects an
action deviation at stage ¢, or when he receives a public message different from mi(N) =
N(5)U{j} from some player j € N~% at stage ¢ (only public announcements are taken into
account here). During this phase, player i performs the communication protocol constructed

in Section 5.1.

Remark 5.5. From Lemmas 5.2, 5.3 and 5.4, it turns out that if a player j deviates in action
at some stage t, then he is identified as deviator, and can be punished. Either he is the
unique suspect, or he has a single neighbor who also is suspected, in which case both can be
punished. Moreover, for any pair of players k& and ¢ such that AV'(k) = {¢}, and if there is
no action deviation at stage t, both k and ¢ are identified under communication deviations
(b) and (c) of Lemma 5.3; for all other communication deviations, everybody is cleared. For
the latter case, all players know that there was no action deviation at stage ¢, thus only a
communication deviation at stage ¢+ 1. That is why no player has to be punished since there
is no impact on continuation payoffs. Only players k’s and ¢’s communication deviations that

are indistinguishable with player k’s action deviation have to be punished.

During phase II, players should stick to the action strategy they were playing in the
previous phase. For instance, if players are following the equilibrium path at stage ¢ when

they detect some deviation, they should enter the communication phase and keep playing

141f it was not the case, some player would prefer to deviate from a, even if doing so caused his opponents
to minmax him thereafter.

15Recall that, at each stage, messages are sent before observing stage payoffs. This assumption can be
relaxed: with a slight modification, the strategy construction is still valid for the case in which messages are
sent after the observation of stage payoffs.
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a;+1 at stage t + 1. This part of the strategy is thereby purely communicative. Notice that
player ¢ may start the protocol in phase I, phase III or phase IV.

I now describe how the transition is made from phase II to another phase. Denote by
plan {j} (respectively {k, ¢}) the punishment phase (phase III) in which player j (respectively

players k£ and /) is minmaxed. The transition rule to another phase is the following:

- if X} +1 = 0, then keep playing according to the current action phase and use the

corresponding communication strategy;

- if X}, = {j} for some player j € N such that $N(j) > 2 and N (j') > 2 for each
gt € N(j), then start plan {j};

- if either X/, , = {¢} or X}, = {k, ¢}, with N'(k) = {¢}, then start plan {k, (};

- otherwise, play an arbitrary Nash equilibrium of the one-shot game (history incompat-

ible with unilateral deviations).

Remark 5.6. Assume N (k) = {¢}. Player ¢ may prefer plan {¢} to plan {k, ¢}, or the
opposite. That is the reason why the transition rule prevents plan {¢} to happen: if player ¢
is identified as a suspect, then players start plan {k, ¢} in order to minmax both, no matter
whether player k is also suspected. Moreover, the identification is such that player ¢ is always

suspected when player k is, so that plan {k} never occurs either.

The next example takes up Example 5.1 to show how this transition rule works.

Example 5.7. Consider the 4-player game of Example 5.1 played on the following network:

1 2 3 4

* ———0—0—0

for which Condition DN is satisfied. In addition, take a payoff function g for which Assump-
tion P holds.

1. Assume first that player 2 deviates in action at some stage t and, for simplicity, does
not deviate in communication at stage ¢ (but possibly at stage t + 1). From Example
5.1, each player 7 identifies player 2 as the deviator. The transition rule prescribes

players to enter phase III in order to minmax both players 1 and 2 (plan {1,2}).

2. Assume now that there is no action deviation at stage ¢, and that player 2 deviates in
communication at stage t 4+ 1 by announcing m; ;(N) = N \ NV (2) = {2, 4} publicly to
all players. Then, X; = {1,2} for each player i in N. Players then start plan {1,2}.
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The reason for this joint punishment is that players 3 and 4 do not differentiate between
the histories “player 1 deviates in action at stage ¢ and in communication at stage ¢+ 1
since he does not confess” and “player 1 deviates neither in action at stage ¢ nor in
communication at stage t + 1 and player 2 deviates in communication at stage t + 17.

The two following cases are then possible.

- If player 2 also deviates in action at stage ¢ + 1, then X, , = {2} for each player
i. Nevertheless, players also start plan {1,2}.

- If player 2 does not deviate in action at stage ¢ + 1, then there is no action devi-
ation at stage t + 1 under unilateral deviations. Players keep playing plan {1,2}

until a new possible deviation.

. Assume now that player 1 deviates in action and, for simplicity, does not deviate in
communication at stage . Then, X} +1 = {1,2} for each player i. Again, players 3 and
4 cannot differentiate between this deviation of player 1 and the deviation of player 2

described in the previous case. Therefore, all players start plan {1, 2}.

. Assume now that there is no action deviation at stage ¢, and that player 1 deviates
in communication at stage ¢ + 1 by announcing my, (N) = N~!' = {2,3,4} publicly
to all players: player 1 lies when he confesses his action deviation at stage t. Then,

X! ={1,2} for each player i in N. Again, all players start plan {1, 2}.

. Finally, assume that there is no action deviation at stage ¢, and that player 1 deviates in
communication at stage ¢ + 1 by announcing publicly m/ ,(N) = N\ N (1) = {1, 3,4}.
Then, X} = ) for each player i: each player deduces that there was no action deviation
at stage t, and that player 1 deviates in communication at stage ¢t + 1. However,
communication being costless, my construction does not require to punish player 1.
The transition rule prescribes all players to keep playing according to the phase in

which the game is and to use the corresponding communication strategy. o

This concludes the description of the communication phase.

5.2.3 Phase III: punishment phase

First case: plan {j}. Consider the situation in which each player enters a punishment

phase in order to minmax player 5. Notice first that only player j’s neighbors are able to pun-

ish him. Besides, since minmax strategies might be mixed, minmaxing players’ deviations
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might be undetectable: players may not know the sequences of pure actions their neigh-
bors should play. For that reason, announcements are added in the construction. Players’
strategies during phase III, denoted & and gzg, are as follows.

During this phase, each player’s communication strategy is twofold:

(i) first, at each stage s, each player i in N announces his set of innocents I’ publicly to
all players (as in phase I). For instance, I! = N (i) U {i} belongs to player i’s public

announcement at stage s if player ¢ does not detect any action deviation at stage s — 1.

(ii) In addition, each player i reveals his pure action a’ publicly to all players at each stage
s. With these announcements, all players know the pure actions each player should
have played at each stage s. This enables the players to detect deviations and start

phase I if needed.

Recall that players choose actions and messages simultaneously at each stage, hence
player j has not received his opponents’ announcements when he chooses his action and
sends his messages. Therefore, player j is indeed punished when minmax strategies are

mixed.

A message of any player i during phase III has then the following form: for each stage s in

phase I1I, mi(N) = (I%,a).

ERE]

Action strategies of the players are as follows. At each stage s > t + 2 during phase III
(the length of phase III, denoted T'(¢), is adapted in Section 5.2.4):

- each player i € N(j) plays according to his minmax strategy against j, denoted (P;)
(recall that P} can be a mixed strategy). Denote by P(j) = (P})ienry) the profile of

minmax strategies of player j’s neighbors against him. For any strategy (o7,17) of

player j:

(1—08)0" 1’

NE

"Yg(U%P(j)?wja (¢l)z€/\/’(])) <

<

1

O

where ¢' is an arbitrary communication strategy of a minmaxing player i € N'(j).

- Player j commits to play an arbitrary pure action P’ during his punishment, hence his
deviations are detectable. In particular, player j is supposed to play P’ even if a player
i € N(j) deviates by privately reporting to player j the sequence of pure actions he

will play during plan {j}. Hence, player j cannot use this information to get a higher
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payoff. If he deviates from P7, then player j only lengthens his punishment (see Section
5.3).

- The actions of other players m # i, j are arbitrary. Recall that each player m should
announce publicly the pure action chosen at each stage, hence his deviations are de-
tectable.

During phase III, each player ¢ in N starts the communication phase at some stage s if:

- either player 7 detects an action deviation at stage s — 1, 7.e. his payoff at stage s —1 is
not the one he would get if all his neighbors would have played the pure actions they

announce at stage s — 1;

- or, there exists i € N(j) NN (i) such that a!_, is not in the support of Pi(k) (this

deviation is regarded as an action deviation);'

- or, there exists a player m € N such that I # N (s) U {s}.

If player i never starts phase II (or if all players are cleared), then player ¢ goes to phase
IV at the end of the punishment phase, hence at stage t + 2 + T'(9).

Second case: plan {k,¢}. Consider now the situation in which two players k and ¢, with
N (k) = ¢, are minmaxed from stage t + 2 on. It means that either player k or player ¢ have
been identified as suspect at the end of stage ¢ + 1.

Remark 5.8. The strategy constructed in phase II is such that, whenever the state is {k, ¢},
it must be the case that N (k) = {¢} without loss of generality (see Lemmas 5.2, 5.3 and 5.4
in Section 5.3). In this case, phase III is such that both k and ¢ are punished. It is possible

since each player has to punish only one suspect among k or /.

Each player’s communication strategy during phase III is the same as for the first case.

However, action strategies differ and are as follows. At each stage s > ¢+ 2 during phase III:

- each player ¢ € N ({), including player k, plays according to his minmax strategy against
¢, denoted (P'(¢)) (recall that P'(¢) can be a mixed strategy).

- Player £ plays according to his minmax strategy against k, P‘(k).

- The actions of other players m # i, k, ¢ are arbitrary. As explained above, each player

m should still announce publicly the pure action chosen at each stage.

Each player ¢ in N starts phase II at some stage s if:

I6Notice that one can have i = j.
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- either player ¢ detects an action deviation at stage s — 1, i.e. his payoff at stage s — 1
is not the one he would get if all his neighbors would have played the pure action they

announced at stage s — 1;
- or there exists 7 € N'(£) NN (i) such that a’_, is not in the support of P*(¢);"7
- ori € N(f) and a’_, is not in the support of P¢(k);

or there exists a player m such that I # N (s) U {s}.

If player i never starts phase II (or if all players are cleared), then player i goes to phase IV at
the end of the punishment phase, hence at stage ¢t + 2+ T'(4). This concludes the description
of the punishment phase.

In the next section, I define a reward phase such that players k’s and ¢’s continuation
payoffs after the punishment phase vary according to their realized payoff during phase III
(see Section 5.2.4). Therefore, they are indifferent between the pure actions in the support
of their minmax strategies. In particular, they cannot benefit from a minmaxing player

reporting privately his sequence of pure actions.

5.2.4 Phase IV: reward phase

The aim of this phase is twofold.

(i) In order to provide each minmaxing player (who is not minmaxed himself) with an
incentive to play his minmax strategy in phase III, an additional bonus p > 0 is added
to his average payoff. If the discount factor is large enough, the potential loss during

the punishment is compensated by the future bonus.

(ii) Moreover, to induce each minmaxing player to draw his pure actions according to
the right distribution of his minmax strategy, I add a phase so that his payoff in the
continuation game varies with his realized payoff in a way that makes him indifferent
between the pure actions in the support of his minmax strategy. As in Fudenberg and
Maskin ([12, 13]), it is convenient to require that any feasible and strictly individually
rational continuation payoff must be exactly attained. Otherwise, a minmaxing player
might not be exactly indifferent between his pure actions in the support of his minmax

strategy.

The possibility of defining such rewards relies on the full dimensionality of the payoff set
(recall that int V* # ). T use the insights of Fudenberg and Maskin (1986). The main

17Notice that one can have i = £ and 7 = k, or the reverse.
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difference here relates to the case where two players, k£ and ¢, are simultaneously minmaxed
during the punishment phase: the rewards are then adapted so that neither k nor ¢ are
rewarded of an additional p > 0 during the reward phase (otherwise, they might have an
incentive to deviate when minmaxing another player j # k,¢). Moreover, all players who
were not minmaxed during the punishment phase are rewarded of an additional p > 0, even
if they were not minmaxing during the punishment phase. The formal construction of these
rewards is now given.

Choose (v},...,v") € int V* such that for each player i € N, v* > v’. Since V* has full
dimension, there exists p > 0 such that for each player j such that tA/(j) > 2 and N (5') > 2
for every j! € N'(j), the following holds:

v.(j) = (v}+p,...,vi_1+p,vz,v£+1+p,...,vf+p) eV,

and for every players k and ¢ such that NV'(k) = {¢(}:

vp(k, 0) = (v 4+ p, . 0FT R R 4 p 0l 4 p 0l g,vf“ +p, 0t 4 p) VI
For each player i in N, let w(d) be player 4’s realized discounted average payoff during phase
IIT when punishing player d in N. Denote by §* player i’s greatest one-shot payoff, that is:

g'=  max g'(a’,d’).
at,(ad) jen (i)
Lemma 5.9. For every € > 0 small enough, there exists 6* > 6.2 such that for all § > §*,

there exists an integer T'(8)%° (if several take the smallest) such that for every pair of players
v and d:

(1 —06%)g + 67Oyl < gl — ¢ (1)
(1= 097" + 8T+ < (1= 0" )u'(d) + 8702w} + p), 2)
(1-0%)g" + "% < (1= 6)w'(d) + 6*(v] + p). (3)

8This element exists since int V* # (). Notice that the non-equivalent utilities condition introduced by
Abreu, Dutta and Smith ([1]) is not sufficient to ensure that v, (k,¢) exists and lies in V*.

YRecall that d, is defined in Section 5.2.1 such that for every e > 0, there exists §. < 1 such that for all
§ > 6. and every v € V* such that v* > v for all i, the deterministic sequence of pure actions @; can be
constructed so that the continuation payoffs at each stage are within e of v.

20Recall that T'(d) is the length of phase III.
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Proof. Choose ¢ > 0 such that, for every players i and d, € < min; v’ and

i
v — €

—w'(d) < (p—w'(d)) . (4)

7
Uy

This is possible since p > 0. Now, I can rewrite Equation (4) as follows:

0< (Urf€)p— (1—Urf€> w'(d).
(5 (2

Then, there exists z € (0,1) such that zv! < v’ — € and 20! < (1 — z)w'(d) + (vl + p) (take
“€) Then, I choose 6* close to one and 67 close to z as € tends

X3
vl

to zero (notice that x is close to 1 as € tends to zero). The left hand side of Equations (1),
(2) and (3) tends to zv! as € tends to zero and Equations (1) and (2) directly follow. The
right hand side of Equation (3) tends to v’ + £ as € tends to zero and Equation (3) follows

x close to but lower than

directly since p > 0. As a consequence, 6" exists. O]

Define now, for every pair of players ¢ and d:

wi(d) =i, it i e N(d),

0, otherwise.

2'(d) =

Finally, let a;(j,9, (2'(4))ien()) and a(k, £, 9, (z°(k)), (2'(€))ienr(e)) be deterministic sequences

of pure actions that result in the following payoffs:

(vga(vi"'_p_zi(j))i#j) € V*7 (5)
(vf — 25(0), vy — 28(k), (v; + p = 2°(0))izne) € V7, (6)

and whose continuation payoffs are within € of (5) and (6) respectively.

Lemma 5.10. The sequences a;(j,9, (2'(7))ien)) and ai(k, €, 0, (25(k)), (z(0))iene)) ewist

for e close to zero and  close to one.

Proof. Consider a sequence (€,,d,) such that ¢, tends to zero and d,, tends to one as n tends
to infinity. By construction, T'(0) is the smallest integer satisfying equations (3), (4) and

(5), and 67 is close to ? Hence, 64" is close to one for n sufficiently large, which

1_%ﬁ<5n)

implies that z°(j) = w'() Ty tends to zero as n tends to infinity. As a consequence, for
n sufficiently large, p— z%(j) > 0 and the payoffs in (8) are in VV* and bounded away from the
axes by at least €,. By Lemma 2 in Fudenberg and Maskin (page 432 in [13]), this implies

that for n sufficiently large, there exists & close to one (and greater than §* > §,) such that,
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for every 0 > 6, there exists a sequence of pure actions a;(j,d,, (2°(j))ien) with payoffs (8)

and whose continuation payoffs are within €, of (8). Similar arguments apply to prove that

ar(k, 0,6, (24(k)), (z(0))iene)) exists. O

The strategy o for any player i in phase IV is then the following. On one hand, if only
player j is minmaxed in phase III, player i starts playing a;(j, 6, (2(5))ien)at stage t+3+T'()
until a new possible deviation. On the other hand, if both players k& and ¢ are minmaxed in
phase III, then player i starts playing a;(k, £, 6, (z°(k))ienx), (2'(€))ien(e)) at stage t+3+71(6)
until a new possible deviation.

Intuitively, these rewards are such that, if plan {j} or plan {k, ¢}, with N(k) = {(},
is played, each player i # k, ¢ has an incentive to play his minmax strategy against j due
to the additional bonus of p thereafter. In addition, players k£ and ¢ have no incentive to
deviate during plan {k, ¢}, otherwise they would only lengthen their punishment, postponing
positive payoffs (recall that by construction plans {k} and {¢} are never played). Finally,
when punishing any player d in N, each minmaxing player ¢ has no incentive to draw the
sequence of pure actions according to another distribution, whose support is included in the
support of P'(d): any expected advantage that player ¢ gets from playing some pure action
in phase III is subsequently removed in phase IV.

For each player i € N, ¢* is the same as before: when a player ¢ does not detect any
deviation at stage ¢, then he should send the message m;,; = N(i) U {i}. When a player i
detects a deviation, he starts phase II.

Finally, notice that play after histories that involve simultaneous deviations is irrelevant.
Hence, the partial strategy that I define can be completed in any arbitrary fashion. This

concludes the construction of (0*, ¢*). The next section specifies the beliefs.

5.2.5 Specification of the beliefs

A belief assessment is a sequence pu = (ui);>1ien With pi : H; — A(H;): given a private
history h* of player i, ui(h?) is the probability distribution representing the belief that player
i holds on the full history. An assessment is an element ((o, ¢), 1) where (o, ¢) is a strategy
profile and 1 a belief assessment.

I consider a restricted set of beliefs, which is strictly included in the set of total histories
H;. T call this set of beliefs B = (B%);cy. Namely, for each player i in N, every belief in
B only assigns positive probability to histories that differ from equilibrium play, (o*, ¢*),
in as much as, and to the minimal extent which, their private history dictates that it does.
Formally, for every player 7 in N and every history hi € H}, I denote by H;[hi] C H; the set
of total histories for which the projection on H; is hi. A total history h; in Hy[h!] is said to
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be compatible with private history h! of player i. Now, for every player i in N and every
history h! € H}, let Hi[hi](U|(c*,¢*)) C Hyhi] be the set containing all the total histories
that are compatible with A! and included in H,(U|(c*, $*)).?' Formally, for each player i in
N and every history hi € H}:

Hy[h)(U](0, ¢")) = Hy[hi] 0 H(U](0, ¢")).
The set of beliefs B is then the following:
B = {(Mi)m LVt > 1, Vhi € H, by € Hi(U|(0",¢")) = supp p;(hy) C Ht[hﬂ(U\(U*ﬁ*))},

where supp stands for the support of i (h!). In other words, the beliefs of the players are such
that, if they observe a history compatible with either no deviation or unilateral deviations,
then they assign probability one to the fact that the total history is in H,(U|(c*, ¢*)) and is
compatible with ht.

In the next section, I show that for every u € B, ((0*, ¢*), 1) is a PBE with payoff v*.

5.3 The equilibrium property
I now prove the following proposition, which implies the sufficiency part of Theorem 4.1.

Proposition 5.11. Assume that G is such Condition DN holds, that g satisfies Assumption
P, and that int V* # (. Then, for every v € V*, there exists & € (0,1) such that for
all 6 € (5,1), the assessment ((o*,¢*), 1), for each u € B, is a PBE with payoff v in the

0-discounted game.

Proof. Assume that G is such that Condition DN holds, that g satisfies Assumption P, and
that int V* # (). Take v € V*, § (defined in Section 5.2.4), and consider § > §. Recall
that 6 > d. so that the sequence of pure actions @, defined in Section 5.2.1 exists and the
continuation payoffs are within € of v.

Since, play after histories that involve multilateral deviations is irrelevant, consider the
strategy (0%, ¢*) constructed in the previous sections for all private histories in H; (U|(c*, ¢*)),
for each player ¢ in N. Take a belief assessment p in B. I now prove that ((o*,¢*), ) is a
PBE.

Take first a player j such that tAV(j) > 2 and fN (i) > 2 for each i € N (j). By Lemma 5.4,

player j’s communication deviations do not change continuation strategies, provided player

21Recall that Hy(U|(c*, ¢*)) is the set of total histories along which only unilateral deviations, if any, have
taken place.
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j does not deviate in action (recall that the deviation which consists in falsely reporting his
pure actions during phase III is regarded as an action deviation). Henceforth, I focus on
player j’s action deviations. Assume that player j stops playing action d{ at some stage t
during phase I and then conforms; without loss of generality, let ¢t = 1. Lemmas 5.2 and 5.3
imply that player j is identified as the deviator at stage t +1 = 2 by all players and the state
becomes {j}. Player j is thus minmaxed at stage ¢ + 2 = 3 during 7T'(d) periods. Player j’s

discounted expected payoff is then no more than:

2

1= g +(1—-06) > & = (1-6)7 +"O

t=1 t>T(8)+3

Since § > & > 0*, Equation (1) ensures that this is less than v/ — ¢ which is a lower bound
for player j’s continuation payoff for conforming from date ¢ on.

If player 5 deviates in action during phase III when he is being punished, he obtains at
most zero the stage in which he deviates, and then only lengthens his punishment, postponing
the positive payoff vJ. The case where player j deviates in action in phase III when a player
d ¢ N(j) is being punished is also trivial, since by construction player j’s action is arbitrary
and may be a best-response.

Assume now that player j deviates in action at stage ¢ during phase III when player
d € N(j) is being punished and then conforms. Two cases are possible. Assume first that
player j deviates at stage t by playing an action which is not in the support of his minmax
strategy. By construction, player j is identified as deviator at stage t+1. Player j’s discounted

expected payoff from the beginning of stage ¢ is thus no more than:

2
L=0)) g +1—-06) > & = (1-6)g +5"0. (7)
t=1

t>T(8)+3

On the contrary, if he conforms, he gets at least:
(1 — §7O52) (d) 4 TO2(0d 4 p). (8)

If ¢ = 1, then Equation (2) implies that Equation (8) exceeds Equation (7). If t = T(9),
it follows from Equation (3) that Equation (8) exceeds Equation (7). Finally, the cases for
which 1 <t < T(9) follow from Equations (2) and (3) combined.

Second, Phase IV is constructed so that player j is indifferent among all actions in the
support of his minmax strategy during phase III when player i is punished (if player j

conforms during phase IV). Regardless of player j’s actions in this phase, his continuation
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payoff from the beginning of phase III is within € of:

T(5)
(1=0)Y 20 g (af, ) + 6T (] + p = 27(0)) = 67 (] 4 p)
t=1
Hence, player j has no incentive to deviate in phase III by randomizing according to another
distribution, whose support is included in the support of his minmax strategy.
Finally, if player 5 deviates in action at stage ¢ during phase IV, his discounted expected

payoff is no more than:

2

L=0)> &'g+(1—=06) > o = (1-0")g +6" Oy

t=1 t>T(6)+3

If player j conforms, his continuation payoff is at least v/ — ¢, and so Equation (1) ensures

that deviation is not profitable.

Take now a pair of players k and ¢ such that NV (k) = ¢. If player k (respectively player
¢) deviates only in communication, then either continuation strategies do not change (in the
case in which all players are cleared, see Lemma 5.4), or both players k£ and ¢ are minmaxed
(see Lemma 5.3) and similar arguments as for action deviations apply. Moreover, similar
arguments as before (cases in which player j deviates) show that neither player k& nor player
¢ has an incentive to deviate in action during any phase of the game. (Notice that even if
neither player k nor ¢ obtain a reward after plan {k, ¢} although they are minmaxing players,
they still have an incentive to play their minmax strategies, otherwise they would lengthen

their punishment, postponing positive payoffs.)

To conclude, notice that the proof of the optimality of (¢*, ¢*) above does not take into
account the beliefs. Indeed, since p' in B, for any history in H;(U|(c*, ¢*)), each player
t in N believes that there is either no deviation or only unilateral deviations. The partial
strategy (o*,¢*) prevents player i from deviating, no matter what his beliefs (in B') are.
Indeed, under p, player i believes that if he deviates, it will lead either to his punishment,

or to no changes in his continuation payoff (in case of a communication deviate only). O]

Remark 5.12. One can deduce from the previous proof that the strategy ((o*, ¢*), p) is belief-
free for each history in H;(U|(c*, ¢*)) and for each belief assessment in p € B. Formally, I
denote by ((a?, ¢%), u')|hi player i’s continuation assessment after private history hi. Let also
(67", ¢, ") |h;" be the profile of continuation assessments of players j # i after private
histories h!. The assessment ((0*, ¢*), j1) satisfies the following: for every hy € Hy(U|(c*, $*)),
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every pu € B and every ¢ € N:
(o) i € B ( (07,7 "),

where BR stands for the best-reply function of player 7. In other words, ((¢*, ¢*), p) is such
that, for every player i, every private history hi € H{(U|(c*, ¢*)), every u' € B

(o', &), u)|Ii € BR (((a-é ¢-i>,u—i>|h;i>,

for every = € B~ and every h;* € H;*(U) that are possible given the monitoring structure.

6 Necessity of Condition DN

Condition DN of Theorem 4.1 is necessary for the folk theorem to hold.

Proposition 6.1. Assume that G does not satisfy Condition DN. Then, there exists a payoff
function g such that: Assumption P holds, int V* # (), and there exists a feasible and strictly
indiwvidually rational payoff v € V* such that v is not a Nash equilibrium payoff of the repeated

game.

The proof builds on the arguments developed in [23] (Section 3 page 720), and is thus
relegated to Appendix A. Intuitively, when Condition DN is violated, there exists a player 1,
two of his neighbors j and k, and two deviations of j and k such that: for any action profile
(possibly mixed), both j’s and k’s deviations induce the same distribution over player i’s
payoffs, and the same distribution over the messages received by player i.22 The payoffs are
constructed so that there exists a feasible and strictly individually rational payoff which is
not jointly rational (in the sense of Renault and Tomala in [30]; see Example 3.1 therein for

a similar phenomenon).

7 Concluding remarks

In this section, I introduce some extensions of the model, and state some open problems.

Strict incentives to confess. Part of the equilibrium strategy constructed in Section 5
is weakly dominated. Indeed, a player who deviates at some stage t is required to confess at

stage t + 1. Nevertheless, it is possible to make the players have strict incentives to confess,

2Following the terminology of Fudenberg, Levine and Maskin ([11]), pairwise identifiability fails.
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by adjusting accordingly the reward in phase IV: indeed, the reward phase can be such that a
player who deviates, and confesses publicly his deviation after that, obtains a bonus of £ > 0
during phase IV. Hence, a player who deviates has a strict incentive to confess. In addition,
this bonus is strictly lower than p, otherwise a minmaxing player might have an incentive to
deviate. Indeed, a minmaxing player’s realized payoff during phase III may be less than if
he would get his minmax level instead. However, a minmaxing player has still no incentive

to deviate, otherwise he would loose £ at each stage during phase IV.

Correlated minmax. In some repeated games with imperfect monitoring, it is possible
to drive equilibrium payoffs below the independent minmax, see Renault and Tomala ([29])
for illuminating examples. It is the case here: Theorem 4.1 remains unchanged if I rather

consider correlated minmax, defined as follows:

i

min max g'(z', 2N),
N @ EA(AN D) i€ A(AT)
To prove Theorem 4.1 in that case, I adapt the strategy constructed in Section 5 in the
following way. The idea is that players can correlate their actions when punishing player &
(respectively players k and ¢) in phase III, without revealing information to the minmaxed

player(s). For that, define QV® (k) € A(AN®) (respectively QVO () € A(AMN®)) a cor-

* (respectively w*). Choose a player j # k

related strategy that realizes the minimum in w
(respectively j # k,£). At the beginning of phase III, I add a stage in which player j draws
i.i.d. sequences of pure actions according to @V (k) (respectively Q¥ (¢) when both play-
ers k and ¢ are minmaxed)? for the minmaxing players for T'(¢) periods. Player j announces
the sequences publicly to all players except k (respectively player ¢). Deviations of player j
are punished as before, and the reward phase makes player j indifferent between the pure
actions actually played by him and his neighbors (recall that the reward phase is based on

player j’s realized payoff).

Private communication An alternative model would be to consider private announce-
ments, .e. the list of receivers of a message is not certifiable. The construction requires the

possibility for the players to make public announcements in two cases only.

(i) First, if there exists a player k such that A(k) = {¢}, then players k and ¢ have to
make public announcements in phase II of the construction. Otherwise, a communi-

cation deviation of player k (respectively player ¢) could be to send spurious messages

Z3Notice that if N'(k) = {¢}, and both players k and ¢ are minmaxed, there is no need to correlate in order
to punish player k since only player ¢ is a neighbor of k.
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to a subset of players only. With the possibility of public communication, the strategy
constructed in Section 5 ignores such deviations. If public communication is not al-
lowed, this implies a lack of common knowledge of the deviation’s date, and there may

be a coordination failure with some players starting phase III whereas other do not.

(ii) Second, public announcements are crucial in the punishment phase (phase III). Other-
wise, some communication deviations may entail a coordination failure, since players
could have different informations on the pure actions chosen by their opponents (recall

that pure actions are announced in phase III).
Otherwise, only private communication is required. Hence, the following corollary holds:

Corollary 7.1. Assume that players are only allowed to communicate privately with each
other (no certifiability). If Condition DN holds, and if each player has more than two neigh-
bors, then the folk theorem holds with minmaz levels in pure strategies (and PBE as solution

concept).

The proof is a straightforward application of the proof of Theorem 4.1.

Folk theorem without discounting. Condition DN of Theorem 4.1 is also the necessary
and sufficient condition for a folk theorem to hold if I consider uniform (sequential) equilibria
of the undiscounted repeated game (see [10] and [33]). Namely, every feasible and individually
rational payoff is a uniform (sequential) equilibrium payoff for any payoff function g that
satisfies Assumption P if and only if Condition DN holds. Moreover, in that case, public
announcements are not required, and players can be only allowed to send private messages
(coordination in cases (i) and (ii) above is not required). In addition, it is possible to restrict
communication along the network: the necessary and sufficient conditions for a folk theorem
to hold are known (but are different from Condition DN) if (i) only private communication
is allowed (no public announcements) and (ii) I consider Nash equilibrium of the repeated
game or uniform sequential equilibrium for the undiscounted case ([23]). If communication
is restricted along the network, finding conditions for a folk theorem to hold is an open
problem for (i) public announcements and (ii) sequential equilibria of repeated games with

discounting.
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Appendix

A Proof of Proposition 6.1

A.1 Proof

Take a network GG such that Condition DN does not hold. It implies that there exists two
players j and k in N, who have the same neighbors: N (j) \ {k} = N (k) \ {j}. For brevity, I
focus on the case where players j and k£ are not neighbors. The proof can be easily extended
to the case where j and k are neighbors.

Take a player i € N(j). Notice that all other players, m # i,j, k are either neighbors
of both 7 and k, or of none of them. Consider the payoff function for players i, j and k
represented by the following table (where player ¢ chooses the row, player j the column, and

player k the matrix):?

k plays C k plays D
i\j| C | D i\j|] C | D
C |1,0,2]0,0,2 C 1006 1,0,6
D |1,20]06,0 D 10,20/ 16,0

[ write u(a’, a’, a*) for this payoff vector. Player j’s payoff does not depend on k’s action,
nor does k’s payoff depends on j’s action. Accordingly, I write u?(a’,a’) and u*(a*,a’) in
what follows. To complete the description of g, each player m # i, 7, k has two actions C' and
D such that:

- for each player m such that m ¢ N (7) NN (k), player m’s payoff at stage ¢ is:

m(,m N(m) :gf
g (a’tﬂat ) tn

for some € > 0, and ¢; = £{¢ : £ € N (m) U {m} and af = C} (4 is the number of m’s
neighbors including himself who play C' at stage t);

- for each player m such that m € N (j) NN (k), player m’s payoff at stage ¢ is:

1 +€;jki if a/ = a¥;

—ik .
6rE otherwise.

24Tn the case where j and k are neighbors, I assume that if player j plays D it adds € > 0 to player k’s
payoff, and symmetrically if player k plays D it adds € > 0 to player j’s payoff. This ensures that Assumption
P holds.
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for some € > 0, and £;7* = #{¢ : £ € N(m)\ {j,k} U {m} and a! = C} (¢, is the
number of m’s neighbors distinct from j and k, including himself, who play C' at stage

t);

- for players i, 5 and k:

ir i NG i i g i €
g(at,at ()) = u<at7ag7a§>_€tﬁ7
oo af") = waf, o)+l
. €
g (af. @) = u(afa) + 0

where i = {0 : L € N(i)\ {j, k} and af = D}, ¢ = #{¢ : £ € N(j)\ {i} and ! = D},
0 =4{0 : e N(k)\ {i} and a! = D} and w(al,al,a¥), v/ (al,a?), and u*(al,al) are
defined by the matrix above.

This payoff function g has the following properties:?
(i) g satisfies Assumption P;
(ii) int V* # 0
(iii) v* <0, v/ =0, and v* = 0;
(iv) C is a dominant strategy for each player ¢ # i, j, k;
(v) the outcome (1,1,1) (representing the payoffs of players i, j and k) is in V*;
(vi) if af # C for every £ € N(i), then gi(a, a)”) < 1. Hence, the unique way to obtain

1

the outcome (1,1,1) is that player i chooses between C' and D with probability %— %

and that all his neighbors (including players j and k) take action C;

(vii) player i cannot punish both players j and k: player ¢ has to play C' in order to minmax
player j, which yields a payoff of 6 for player k; and player 7 has to choose action D in
order to minmax player k, which yields a payoff of 6 for player j;

(viii) for each player m € N(j) NN (k) (including player i), for every o™ € {C, D}, and for
every aV(™\Uk} the following properties hold:

g™ (a™, aN(m)\{jvk}’ @ = C, aF = C) = g™(a™, aN(m)\{jvk}’ @’ = D, aF = D),

gm(am,a//\/(m)\{jk}, aj — 07 ak — D) — gm<am,a./\/'(m)\{j,k},aj _ D,Clk _ O)

25Tt is possible to construct a payoff function g which satisfies these properties when players have more
than two actions. This construction is described in the next section (A.2).
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Assume now that (1, 1,1) is a Nash equilibrium of the repeated game, and let the profiles
o = (6°,67,6% (6™)mpijr) and ¢ = (&', ¢, ¢*, (0™ )mxijx) be an equilibrium yielding a
payoff of 75 = (1,1,1) for players 4, j and k. I construct deviations (77,17) and (7%, ¢*) for
players j and k such that:

(1) both deviations induce the same probability distributions over the sequences of mes-

sages and payoffs received by player i (deviations are indistinguishable).
(2) T will deduce from (1) that: (77,677, 47, ¢77) + % (75, 67F, % ¢=%) > 3.

The latter equation contradicts that (7, ¢) is an equilibrium of the repeated game. Indeed,
V7, 9) +7(7,¢) = 2 and (77,677, 7, ¢77) +~A*(7F, 6%, F, %) > 3. Therefore, either
(77,4)7) is a profitable deviation for player j, or (7%, 0%) is a profitable deviation for player
k. 1 now construct these deviations. Define (77,17) as follows (the construction of (7%, )

is symmetric):

- at each stage, player j chooses between C' and D with probability %—% (instead of C
with probability 1);

- player j uses the communication strategy ¢/ = ¢(hi (7%, 0% % ¢7%)), where the
element h? (7%, 0% % ¢~F) stands for an arbitrary private history of player j in which
player k plays according to (7%,¢%), and all other players follow (o=%, ¢=*): player j
follows the equilibrium communication strategy but replaces the true history by the

fictitious one in which player £ is the deviator.

Under such a deviation, player ¢ has no way to deduce whether j or k deviated, even when
(7, ¢) is a mixed strategy. Indeed, for every pure action profile, both player j’s and k’s devia-
tions induce the same payoffs for player ¢, since g satisfies property (viii). In addition, notice
that player ¢’s payoff is 1 if j and k choose the same action, and 0 otherwise. Therefore, since
7 and 7" prescribe to choose C' and D with probability 3-1 at each stage, (77,¢7,577,¢77)

and (7%, %, 7%, ) induce the same distribution over the payoffs of player i, even if 7 and

) 1126
273

relevant information on the deviator’s identity: each player is either a neighbor of both j and

o” are mixed: player i gets a payoff of 1 or 0 with probability Hence, no player has
k, or a neighbor of none of them. Moreover, both deviations induce the same distribution

over the messages received by player i, even when ¢ is a mixed strategy.?”

26These deviations of players j and k also induce the same distribution of payoffs for all players who are
neighbors of both j and k.

2"Indeed, player j draws a fictitious history, using ¢’. If ¢’ is mixed, so is 1/ (and similarly for player k’s
deviation).
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As a consequence, at every stage t, for each private history h! of player :
Pri 53 09,33 (1) = P 5ot i g (hp).
Now, I define the following numbers b, and ¢:
br = Pri 51 45 5-1 (0 = C) = Pri sk yi 51 (a; = C),

Ct = Pf.j7&—j’wj,¢_5—j (a]t/ - D) — ]P)Tk,a'_k,wk,q_ﬁ_k (a; = D)

Under (77,107,577, ¢77), player j’s expected payoff at stage t is then: g/ (77,6V0)) > 4¢, >
4(1 = by). As a consequence, vi (9,47, ¢77) > 4(1 — §) 32/ 6 1(1 — b;). Since (7, @)
is a Nash equilibrium of the repeated game, there must exist § € (0,1) such that for any
§€(6,1),4(1—0)> 7671 (1 —b) <1, s0 that (1—8) Y7 6" 1h, > 3. In the same way,
player k’s expected payoff under (7%, 1%, 6% ¢=*) at stage t is: gF(r*,aN®) > 4b,. Hence,
AE(TR PR ER R) > 4(1—6) 377 5 1h,. However, there exists § € (0, 1) such that for any

t=1
5 € (0,1), (1—=0) >, 6171, > 3, so 4k (r*, 9%, 67, ¢~*) > 3. This contradicts the fact that
(7,¢) is a Nash equilibrium of the repeated game. O

A.2 Payoff function with more than two actions

In this section, I modify the payoff function constructed in Section 6 for games in which play-
ers have more than two actions. For this purpose, I duplicate rows, columns, matrices. . .in
the following manner. For each player p € N, identify A? with {1,...,k,}, where k, = fA?.
The payoft functions are the following.

e For each player m =# i, j, k such that m ¢ N (j) NN (k), player m’s payoff at stage ¢ is
m( .m N(m)y _ (€ 1
g (at ) Qg ) - Yty + )

pEN (m)U{m} Fp

e For each player m # i, j, k such that m € N (j) NN (k), player m’s payoff at stage ¢ is:

—jk 1 ik
14 ¢77%e 4 if @/ = a”;
g (@, a¥ ™y = Eon T Y e m\kyu{m) ke ’

—k 1 .
0% E ¢ otherwise.
Eon D Y peN Gk Umy
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e Player ¢’s payoff at stage t is:

ui(al,al,ab) if a? € {1,2} for each p € N (i),
i i N@ON _ ) i i 0 kY 1 e i 7k m
g'(ay,a; ) = S u'(ay, az, ay) S pen oty Fr if at, af, ai € {1,2}, ai" > 3Vm € N(Z) \ {7, 7, k},
S S i
6 X:peN(i)Umkpothermse.
e For each player n € {j, k}, player n’s payoff at stage ¢ is:

u(al,al,ak) if a? € {1,2} for each p € N(n),

N(n) 0k 1 ei od ok -
gn(a’?’a’t ): un<aé7at7at)+m if a, 4y, a; € {172}7 ajtnz?)vm#%jak?

6+ ékotherwise.
ZPEN(n)U{n} P

It is easy to see that this payoff function satisfies Assumption P, and that all the desired

properties for the proof of necessity in Section 6 hold.

B Proof of Lemma 5.2

Proof. Take a network G that satisfies Condition DN and a player & € N such that fN (k) >
2. Assume that player k deviates in action at stage t. Take any player j # k. I first prove
that j is cleared at stage t + 1 by every player ¢ € N. Two cases are possible.

(1) Assume first that for each player j' € N(j), tN(j') > 2. Then, each player i in N
clears player j at stage t + 1. Indeed, the following holds:

- first, if j plays ¢* at stage t + 1, then j € m], (N). Indeed, either j € N(k) and
@’ prescribes player j to announce publicly N \ N (j) to all players at stage ¢ + 1, so
Jj e Th{H(N). Or j ¢ N (k) and player j starts the protocol at the end of stage ¢ + 1,2
so j is prescribed to announce N (j) U {j} publicly to all players at stage ¢t + 1, so
j € mi(N).

- Second, since Condition DN is satisfied, there exists a player m # j, k such that m €
N(E)\ {7} AN() \ {k}. Moreover, if m plays ¢*™ at stage ¢t + 1, then j € mj,(N).

Z8Notice that player j could have started the protocol at the end of stage t if (a) one of his neighbor
deviated at stage t, or (b) if a player who is not his neighbor deviated at stage ¢ — 1, or (c) if player k
deviated also in communication at stage ¢ by sending to j a message different from mf " 1(IN). However, in
any case, player j ends this “previous” protocol at the end of stage ¢, and starts a “new” protocol at the end
of stage t + 1.
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Indeed, either, m € N (k) and ¢™ prescribes player m to announce N \ NV(m) publicly
to all players at stage t + 1, so j € m";(N). Or m ¢ N(k), and ¢™ prescribes player
m to announce N (m) U {m} publicly to all players at stage t + 1, so j € ¢"™(N).

- Third, if k follows ¢** at stage t + 1 , then ¢* prescribes player k to announce N \ {k}
publicly to all players at stage ¢ + 1, so j € my,,(N).

Since at most one player in {j, k, m} deviates in communication at stage ¢+ 1, then j ¢ X/,

for each player i € N.

(2) Assume now that there exists j' € N(j) such that N(j') = {j}. First,j' is unique
(see Remark 4.2). Second, G is connected and n > 3, so fN(j) > 2. Finally, j! # k since
#N (k) > 2 by assumption. Hence, j' is cleared at stage t + 1 by every player i in N (see
(1) above). In addition, with the same reasoning as before, at least two players in {j, k, m}
make public announcements including j to all players at stage ¢t + 1. As a consequence, for
each player i € N, j ¢ X/ ;.

Finally, I prove that no player i € N clears player k, i.e. k € X/, for each player i € N.
By construction, k& ¢ mJ ,(N) for any j € N who follows ¢*/. Since at most one player
deviates in communication at stage t + 1, k € X}, for each player i € N.

Hence, X}, , = {k} for each player i in N. O

C Proof of Lemma 5.3

Proof. Take a connected network G that satisfies Condition DN and suppose Assumption P
holds. Take a pair of players k and ¢ such that N (k) = {¢}.

Assume first that player k& deviates in action at stage t. At stage t + 1, players k and /¢
should announce N=* and N \ N (k) respectively publicly to all players. All other players
j # k, £ should announce N'(j) U {5} and k ¢ m],,(N) publicly to all players since N (k) =
{l}. As a consequence, the name of k appears in at most one public announcement at stage
t and X7, D {k,¢} for each player i in N. In addition, no player j # k, including player
¢, deviates in action at stage ¢ under unilateral deviations. So, each player j # k such that
#tN(j) > 2 appears in the public announcements of at least two distinct players (among his
two neighbors and himself), and j ¢ X}, for each player ¢ € N. On the other hand, each
player j # k such that A/ (j) = 1 also appears in the public announcements of at least two
distinct players: either j and his single neighbor do not deviate and j appears in both of their

public announcements, or one of them deviates at stage ¢ + 1, which implies that k follows
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jff_l and j € mF (). As a consequence, each player j # k is cleared by all players at stage
t + 1. Hence, X}, = {k,(} for each player i in N.

Assume now that there is no action deviation at stage ¢ and that my, , = N~*. Player
k thus deviates in communication at stage ¢ + 1 and no other player does under unilateral
deviations. It follows that all other players j # k announce N (j) U {j} publicly since there
was no action deviation at stage t. As a consequence, each player j # k is cleared by at least
two players at stage t + 1, and player k appears in the public announcement of player ¢ only.
Henceforth, X/, = {k, ¢} for each player i € N.

Finally, assume that there is no action deviation at stage ¢ and that m{,,(N) = N\ N(0).
Player ¢ thus deviates in communication at stage ¢t + 1 and no other player does under
unilateral deviations. It follows that all other players j # k announce N (j) U {j} publicly
to all players since there was no action deviation at stage t. As a consequence, each player
Jj & N(¥) is cleared by at least two players at stage t + 1. Moreover, for each player j €
N\ {k}, tN(5) > 2. Indeed, if it was not the case, then N(j) = {¢} = N(k) which
contradicts Condition DN. Therefore, each player j € N (¢) \ {k} also appears in the public
announcements of at least two distinct players at stage t + 1. Finally, player k appears in his

own public announcement only. As a conclusion, X, , = {k, ¢} for every player i in N. [

D Proof of Lemma 5.4

Proof. Take a connected network GG that satisfies Condition DN, and suppose that Assump-
tion P holds. Take a player £ in N and assume that there is no action deviation at stage
t.

Assume first that N (k) = {¢} and that k deviates in communication at stage ¢ + 1. If
my,, # my, 1 (N) (k does not make a public announcement to all players), then the message of
player k is ignored. Assume now that my,, = my,(N) and {N=* N(k) U{k}} ¢ m} ,(N).
Under unilateral deviations, all other players j # k announce N (j) U {j} publicly. Two
cases are then possible. Either N\ N (k) ¢ my,,(N) and m},,(N) is not taken into account
under ¢* since it implies that player k’s message is different from the kinds of messages
regarded during the communication protocol. Then, X/ ; = @ for every player ¢ in N. Or,
N\ N (k) € mf_,(N). Player k is then cleared by all players since his name is in the public
announcements of k£ and ¢. Player ¢ is also cleared by all players because his name is in at
least two public announcements among his own and his other neighbor than k (since n > 3
and G is connected, fN (k) > 2). Each other player i is cleared by all players since his name
appears in the public announcements of at least two players among him and his neighbors

(each has at least one neighbor since G is connected). Hence, X}, = 0 for every player i in
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N.

Assume now that there exists &’ such that N'(k') = k, and that k deviates in communi-
cation at stage t + 1. If m{ ; # mf,,(N), then the message of player k is ignored. Assume
now that my,, = my, (N) and that {N \ N'(k),N(k) U{k}} ¢ m},,(N). Under unilateral
deviations, all other players j # k announce N (j) U {j} publicly to all players. Two cases
are possible. Either N™% ¢ m! ,(N) and player k’s public announcement is not taken into
account as before. Or N € mf,,(N), in which case it is obvious that all players are cleared
(recall that player k has at least two neighbors). In any case, X}, , = () for each player i in
N.

Finally, assume ftN(k) > 2, tN(j) > 2 for every j € N(k), and that k deviates in
communication at stage t + 1. If mf,; # mf (N), then player k’s message is ignored.
Assume now my,; = mf,(N) and {N(k) U {k}} ¢ m;,;(N). Under unilateral deviations,
all other players j # k announce N (j) U{j} publicly to all players. Three cases are possible.
Assume first that N=% € m# .1 (IV). Then all players are cleared by everybody at stage ¢ 4 1,
since player k has at least two neighbors. Second, assume N \ N(k) € mf (N). Since
player k’s neighbors have more than two neighbors, they are cleared by all players at stage
t + 1. Obviously, so are players other than k’s neighbors. Third, assume {N~* N\ N (k)} ¢
my,1(N). As before, my,; is not taken into account. Therefore, in any case, X ; = 0 for

each player ¢ in N. O]
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