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CONDORCET MEETS BENTHAM

By Marcus Pivato1

Université de Cergy-Pontoise, France and Trent University, Canada

We show that if the statistical distribution of utility functions in a population satisfies a certain
condition, then a Condorcet winner will not only exist, but will also maximize the utilitarian social welfare
function. We also show that, if people’s utility functions are generated according to certain plausible
random processes, then in a large population, this condition will be satisfied with very high probability.
Thus, in a large population, the utilitarian outcome will be selected by any Condorcet consistent voting
rule. In particular, it will be the subgame-perfect equilibrium outcome of several voting games.

1Please address correspondence to: Marcus Pivato, THEMA, Université de Cergy-Pontoise, 33 Boule-
vard du Port, 95011 Cergy-Pontoise cedex, France. E-mail: marcuspivato@gmail.com.
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1. Introduction

In the origins of modern social choice theory, one can distinguish two radically different
approaches. One approach, due to Condorcet, focused on majority voting. The other, due
to Bentham, focused on the maximization of social welfare, in the form of a utilitarian
sum. The flaws of these two approaches are well-known. Utilitarianism requires complete
knowledge of the utility functions of all individuals in society, and assumes a well-defined
and unambiguous system of cardinal interpersonal utility comparisons. In the absence of
this information, the utilitarian ideal is impossible to realize. But any procedure to acquire
this information (e.g. via surveys) seems vulnerable to strategic manipulation. Finally, if
the utilitarian choice is opposed by a large majority, then it may not be politically feasible.

Condorcet’s approach does not suffer from these problems. Condorcet argued that
society should choose a social alternative which is capable of beating any other single
alternative in a majority vote. Such an alternative (if it exists) is called a Condorcet win-
ner. A voting rule which always selects a Condorcet winner is called Condorcet consistent.
Many well-known voting rules are Condorcet consistent, including the Copeland rule, the
Simpson-Kramer rule, the Slater rule, the Kemeny rule, and any agenda of pairwise major-
ity votes. Furthermore, if a Condorcet winner exists, then it will be the subgame-perfect
Nash equilibrium outcome in any binary voting agenda (Miller, 1977, Proposition 8’), and
many other multistage elimination procedures (Bag et al., 2009).2 So Condorcet’s approach
is quite resistant to strategic voting. However, not all profiles of ordinal preferences admit
a Condorcet winner. Furthermore, in general, there is no relationship between Condorcet
consistency and social welfare.3 So from a normative point of view, it is difficult to justify.

However, given a mild assumption (called “reasonability”) about the statistical distri-
bution of voter’s preferences, we will show that the Condorcet winner actually maximizes
utilitarian social welfare. We will then show that, if the voters’ utility functions arise from
certain plausible random processes, then a sufficiently large population of voters will have
a reasonable distribution of utility functions, with very high probability. In other words,
in a large population satisfying certain statistical regularities, not only is the Condorcet
winner almost guaranteed to exist, but it is almost guaranteed to also be the utilitarian
social choice. So for such populations, Condorcet and Bentham agree.

The remainder of this paper is organized as follows. Section 2 introduces basic notation
and terminology, and states the foundational result: for “reasonable” utility profiles, the
Condorcet winner is the utilitarian social choice. Section 3 considers a model where the
utility functions of the voters are independent, identically distributed (i.i.d.) random
variables drawn from a multivariate probability distribution with certain properties (e.g.
a normal distribution). We show that, in a large population, the resulting profile of utility
functions has a high probability of being reasonable. Section 4 considers spatial voting
models, where the ideal points of the voters are i.i.d. random variables; again, under
certain conditions, the resulting profile of utility functions has a high probability of being

2This assumes each voter has perfect information, and uses only weakly undominated strategies.
3Indeed, it is easy to construct examples where the Condorcet winner does not maximize social welfare

(Lehtinen, 2007, §3).

2



reasonable for a large population. Finally, Section 5 reviews related literature. All proofs
are in the Appendix.

2. Condorcet winners and reasonable utility profiles

Let A be a finite set of social alternatives, let I be a set of voters, and let I := |I|. For
every voter i in I, let ui : A−→R be i’s cardinal utility function over A. We refer to the set
U := {ui}i∈I as a cardinal utility profile. We will suppose that the utility functions {ui}i∈I
admit one-for-one cardinal interpersonal comparisons.4 Thus, a utilitarian would seek the
social alternative which maximizes the utilitarian social welfare function UI defined by

UI(a) :=
1

|I|
∑
i∈I

ui(a), for every alternative a in A. (1)

For every voter i in I, let �i be the preference order induced by ui on A. We refer to the
set P := {�i}i∈I as an ordinal preference profile. Let a ∈ A. We say that a is a Condorcet
winner for P if, for every other alternative b in A, some majority prefers a over b —that
is, #{i ∈ I; a �i b} ≥ I/2.

Let a and b be alternatives in A, and for every voter i in I, let uia,b := ui(a) − ui(b).
Thus, UI(a) ≥ UI(b) if and only if the mean of the set Ua,b := {uia,b}i∈I is positive.
Meanwhile, a strict majority prefers a over b if and only if the median of Ua,b is positive.
Thus, a strict majority will choose the UI-maximizing element of the pair {a, b} if and only
if sign[median(Ua,b)] = sign[mean(Ua,b)]. In this case, we say that the utility profile {ui}i∈I
is reasonable relative to a and b.5

Example 1. If |mean(Ua,b)| exceeds the standard deviation of the set Ua,b (i.e. if the
social welfare gap between the alternatives a and b is large enough), then the utility profile
{ui}i∈I is (a, b)-reasonable. To see this, note that Chebyshev’s inequality implies that
|median(Ua,b)−mean(Ua,b)| ≤ std dev(Ua,b). ♦

We say the utility profile {ui}i∈I is reasonable if it is (a, b)-reasonable for every possible
pair a, b ∈ A. The following observation is immediate.

Theorem 2. Let U = {ui}i∈I be a cardinal utility profile, and let P be the corresponding
ordinal preference profile. If U is reasonable, then P admits a Condorcet winner. This
Condorcet winner maximizes the utilitarian social welfare function UI in equation (1).

4That is, for any alternatives a, b, c, d ∈ A and any voters i, j ∈ I, if ui(b)−ui(a) = uj(d)−uj(c), then
the welfare that i gains in going from a to b is the same as the welfare that j gains in going from c to d.

5If I is odd, then median[Uab] is the unique point m in Ua,b such that #{i ∈ I; uia,b ≥ m} > I/2

and #{i ∈ I; uia,b ≤ m} > I/2. However, if I is even, then median[Uab] is generally an interval [m,m]

with m ≤ m, such that #{i ∈ I; uia,b ≥ m} ≥ I/2 and #{i ∈ I; uia,b ≤ m} ≥ I/2. In this case, we
will say median[Uab] is positive if m ≥ m > 0, and we will say median[Uab] is negative if m ≤ m < 0. If
m ≤ 0 ≤ m, then we consider the “sign” of median[Uab] to be undefined (in this case, the voters are evenly
split between a and b). Our definition of “reasonable” specifically excludes this last possibility.
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Reasonability may seems like a heroic assumption, but the rest of this paper will show
that it is actually quite plausible, under certain hypotheses. We will suppose that the
voters’ utility functions are randomly generated by some stochastic process. Under certain
conditions, we shall see that, in a large population, such a randomly generated utility
profile will be reasonable, with very high probability.

3. Random utility functions

Suppose A is a finite set, so that utility functions correspond to vectors in RA. In this
section, we will suppose that the voters’ utility functions are i.i.d. random vectors. Here
is an illustrative preliminary result.

Proposition 3. Let ρ be any multivariate normal probability measure on RA with mean
m ∈ RA such that ma 6= mb for any distinct a and b in A. Suppose that the utility functions
{ui}i∈I are independent, ρ-random variables. Then

lim
I→∞

Prob
(

The utility profile {ui}i∈I is reasonable
)

= 1. (2)

Thus, in a large enough population of voters with independent normally distributed
utility functions, the Condorcet winner will exist, and will maximize utilitarian social
welfare.

Proposition 3 raises two questions. First, how large must I be to ensure that the utility
profile is reasonable with some probability (say, 95%)? Second, for what other probability
distributions can we obtain a similar result? We will now answer these questions.

Let ρ be a probability measure on RA. For any distinct alternatives a and b in A,
let ρa,b be the distribution of the quantity xa − xb, where x is a ρ-random variable. We
will say that the measure ρ is reasonable if ρ has finite variance, and if mean[ρa,b] and
median[ρa,b] are nonzero and have the same sign, for all distinct alternatives a and b in
A. (For example, if ρ is any multivariate normal distribution satisfying the hypothesis in
Proposition 3, then ρ is reasonable.) The next result generalizes Proposition 3; it says
that reasonable measures generate reasonable utility profiles.

Theorem 4. Let A be a finite set, let ρ be a reasonable probability measure on RA, and
suppose that the utility functions {ui}i∈I are independent, ρ-random variables. Then the
limit (2) holds. To be precise, there are constants q ∈ (0, 1) and C > 0 (determined by the
structure of ρ) such that, if I is large enough, then

Prob
(
{ui}i∈I is not reasonable

)
<

|A|2

2

(
2
√
I qI +

C

I

)
−−−−I→∞−→ 0. (3)
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Remark 5. (a) Inequality (3) tells us how large I must be to ensure some probability
that {ui}i∈I is reasonable. Note that qI→0 very rapidly as I→∞. Thus, inequality (3)

is dominated by the term C |A|2
2I

. For example, suppose q = 0.98. If I ≥ 10 000, then√
I(0.98)I ≤ 10−85, so we can ignore it. Suppose |A| = 7, C = 10, and I = 10 000. Then

Prob
(
{ui}10000i=1 is not reasonable

)
<

49

2

(
2
√
I (0.98)I +

10

I

)
≈ 25 · 10

10 000
= 0.025.

In other words, a ρ-random utility profile of ten thousand voters will be reasonable with
probability at least 97.5%. Thus, with very high probability, the Condorcet winner of such
a profile will be the utilitarian optimum.

(b) The condition that ma 6= mb for all a, b ∈ A is not really essential in Proposition
3; it is for technical convenience. If ma = mb for some a, b ∈ A other than the maximizer
of UI , then the Condorcet winner will still maximize UI . If ma = mb and one of them
is the maximizer UI , then UI(a) and UI(b) will be very close, and one of them will be
the Condorcet winner (with very high probability, when I is large). Thus, even if the
Condorcet winner does not maximize UI , it will still “almost” maximize it. Similarly, the
condition mean[ρa,b] 6= 0 is only for technical convenience in Theorem 4; even if ρ violates
this condition, the Condorcet winner will either maximize or almost-maximize UI (with
very high probability, when I is large).

4. Spatial voting with random ideal points

Spatial voting models are very common in the theoretical political science literature.6 In
these models, we regard RN as a space of policies described by N distinct parameters. For
example, different coordinates of RN might represent interest rates, tax rates, expenditure
levels for various public goods or income support mechanisms, and/or the inflation and
unemployment rates. Suppose that each voter i in I has some “ideal point” xi in RN . In
this section, we will suppose that the voters’ ideal points are i.i.d. random vectors, and
that the utility that each voter assigns to a policy is a decreasing function of the distance
from that policy to her ideal point. Thus, the voter prefers policies which are closer to her
ideal point. Let 0 := (0, 0, . . . , 0). Here is an illustrative preliminary result.

Proposition 6. Let ρ be any multivariate normal probability distribution on RN with
mean 0, and let {xi}i∈I be independent ρ-random points. Let A ⊂ RN be a finite set of
alternatives such that ‖a‖ 6= ‖b‖ for any distinct a,b in A,7 and suppose that ui(a) =
−‖a− xi‖2 for every voter i in I and every alternative a in A. Then the limit (2) holds.

Thus, if |I| is sufficiently large, then Proposition 6 says that the utility profile {ui}i∈I
will be reasonable, with very high probability. Thus, with very high probability, the
Condorcet winner of such a profile will be the utilitarian optimum.

Proposition 6 has two limitations. First, it assumes a normal distribution of ideal
points, and second, it assumes negative quadratic utility functions. In the rest of this

6See e.g. Hinich and Munger (1997) or Enelow and Hinich (2008) for introductions to this literature.
7Here, ‖•‖ is the Euclidean norm on RN .
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section, we will work to relax these assumptions. We now let ρ be an arbitrary continuous
probability measure on RN . We will use ρ to randomly generate the ideal points of the
voters. We will suppose that each voter has a distance-based utility function of the form
ui(a) = −φ(‖a− xi‖) for some increasing function φ : [0,∞)−→R.

Proposition 7. Let N ≥ 2. Let ρ be a continuous probability measure on RN that is
rotationally symmetric around 0, and let {xi}i∈I be independent ρ-random points. Suppose
φ : [0,∞)−→R is strictly convex and increasing (e.g. φ(x) = xp, for some p > 1), and∫

RN

φ
(
‖y − x‖

)
dρ[x] < ∞ for all y in RN . (4)

Let A ⊂ RN be a finite set of alternatives such that ‖a‖ 6= ‖b‖ for any distinct a,b in A.
Suppose ui(a) = −φ (‖a− xi‖) for every i in I and a in A. Then the limit (2) holds.

If ρ is a standard normal distribution, then Proposition 6 is a consequence of Propo-
sition 7. However, neither result is consequence of the other in general (because not all
normal distributions are rotationally symmetric). In fact, Propositions 6 and 7 are both
consequences of a single, more general result, as we now explain.

Let ρ be a continuous probability measure on RN . For any vector v in RN , a v-median
hyperplane of ρ is any hyperplane Hρ

v ⊂ RN which is orthogonal to v, and such that at
least half the mass of ρ lies on each side of Hρ

v.8 Such a hyperplane always exists,9 but it
might not be unique for some vectors v in RN . However, if there is a v-median hyperplane
Hρ

v which intersects the support of ρ, then Hρ
v is the only v-median hyperplane.10

Let φ : [0,∞)−→R be any convex increasing function. The φ-median of ρ is the set of
global minima for the function Φρ : RN−→R defined by

Φρ(m) :=

∫
RN

φ
(
‖m− x‖

)
dρ[x], for all m in RN . (5)

(For example, if N = 1 and φ(x) = x for all x ≥ 0, then the φ-median of ρ is the classical
median of ρ: the point(s) in R which cut the distribution of ρ into two equal halves.) We
will say that ρ is φ-balanced if:

(B1) The function Φρ is well-defined by the integral (5);11

(B2) The φ-median of ρ is a single point, mφ
ρ ;

(B3) Φρ is rotationally symmetric around mφ
ρ ; and

8If N = 1, then the vector v is irrelevant, and a median “hyperplane” of ρ is actually a single point
—it is any point h in R such that ρ(−∞, h] ≥ 1

2 and ρ[h,∞) ≥ 1
2 .

9To see this, appy the Intermediate Value Theorem to the function f defined by f(r) := ρ{x ∈ RN ;
v • x ≤ r} (for all r ∈ R), which is continuous because ρ is continuous.

10A point x in RN is in the support of ρ if ρ[U ] > 0 for any open set U ⊆ RN which contains x. Thus,
Hρv intersects the support of ρ if and only if ρ[U ] > 0 for any open set U ⊆ RN which contains Hρv.

11This is equivalent to inequality (4); it means that ρ(x)→0 fast enough as ‖x‖→∞.
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(B4) For every vector v in RN , there is a unique v-median hyperplane Hv
ρ , and mφ

ρ ∈ Hv
ρ .

For example, suppose φ(x) = x2 for all x ≥ 0. If ρ has finite variance, then (B1) and
(B2) are satisfied, and mφ

ρ is the mean of the distribution ρ. Indeed, a straightforward

computation yields Φρ(x) = var[ρ] +
∥∥x−mφ

ρ

∥∥2 for any x in RN .12 Thus, condition (B3)
is also satisfied. Thus, ρ is φ-balanced if and only if the mean of ρ lies in every median
hyperplane of ρ. In particular:

• Any multivariate normal probability measure is φ-balanced. (See Lemma A2.)

• If ρ is a φ-balanced measure on RN , and F : RN−→RM is any affine transformation,
then F (ρ) is a φ-balanced measure on RM . (Proof: F maps the mean of ρ to the
mean of F (ρ). Meanwhile, the F -preimage of any median hyperplane of F (ρ) is a
median hyperplane of ρ.)

• If N = 1, then ρ is φ-balanced if ρ has finite variance and is symmetrically distributed
about some point m contained in the support of ρ. (For example, a uniform distribu-
tion on an interval is φ-balanced. So is the Laplace double-exponential distribution.)

Our last result says that, if any φ-balanced measure is used to generate a random collection
of ideal points, which in turn is used to obtain a profile of distance-based utility functions,
then this utility profile will be reasonable, with very high probability.

Theorem 8. Let φ : [0,∞)−→R be a convex increasing function, and let ρ be a φ-
balanced probability measure on RN with φ-median point mφ

ρ . Let A ⊂ RN be a finite set

of alternatives, such that
∥∥a−mφ

ρ

∥∥ 6= ∥∥b−mφ
ρ

∥∥ for any distinct a,b in A. Finally, let

{xi}i∈I be a set of independent ρ-random points in RN . Suppose ui(a) = −φ (‖a− xi‖)
for every voter i in I and every a in A. Then the limit (2) holds.

Remark. (a) The condition “‖a‖ 6= ‖b‖ for all a,b ∈ A” is not really necessary in
Propositions 6 and 7; it is for technical convenience. The same is true for requirement in
Theorem 8 that

∥∥a−mφ
ρ

∥∥ 6= ∥∥b−mφ
ρ

∥∥ for all a,b ∈ A. If these conditions are violated
for some a,b ∈ A other than the maximizer of UI , then the Condorcet winner will still
maximize UI . If one of a or b is the maximizer of UI , then UI(a) and UI(b) will be very
close, and one of them will be the Condorcet winner (with very high probability, when I
is large). Thus, the Condorcet winner will either maximize UI , or almost-maximize it.

(b) In a general spatial voting model, McKelvey et al. (1980, Thm.2) give a necessary
and sufficient condition for the existence of a Condorcet winner, which is similar to con-
dition (B4).13 The difference is that they apply this condition to the actual distribution
of ideal points, whereas we apply it to the underlying probability distribution from which
these ideal points are drawn. In their model, the Condorcet winner is the median point
mφ

ρ , whereas in our model, (B4) implies that the Condorcet winner is the alternative in

12This result is sometimes attributed to Christiaan Huygens.
13I thank Michel le Breton for pointing out this connection.
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A which is closest to mφ
ρ , while (B1)-(B3) imply that this same alternative maximizes the

utilitarian SWF (with high probability, as I→∞).

5. Related literature

The results in this paper complement those in Pivato (2014a,b). Like the present
paper, Pivato (2014a) considers conditions under which ordinal voting rules maximize the
utilitarian social welfare function (SWF) in a large population. But whereas this paper
focused on Condorcet consistent rules, Pivato (2014a) focuses on scoring rules such as the
Borda rule or approval voting. Meanwhile, Pivato (2014b) considers a broader problem:
how can we compute (and maximize) the utilitarian SWF when we have only very imprecise
information about people’s utility functions and the correct system of interpersonal utility
comparisons, and when people can be strategically dishonest? Under plausible conditions,
Pivato (2014b) shows that, in a large population, we can accurately estimate the utilitarian
SWF despite these difficulties. Indeed, this can be done in a strategy-proof way, using a
modified version of the Groves-Clarke pivotal mechanism.

The results in this paper are also reminiscent of the Condorcet Jury Theorem (CJT),
and the literature it has generated.14 Like the CJT, this paper says that, under certain
statistical assumptions, a large population using a certain voting rule is likely to make the
“correct” decision. But the goal of the CJT is to find the correct answer to an objective
factual question, whereas the goal in the present paper is to maximize social welfare.

The utilitarian analysis of majority voting was pioneered by Rae (1969) and Taylor
(1969). Assuming voters had i.i.d. {0, 1}-valued utility functions over two alternatives,
they showed that, amongst all anonymous voting rules, simple majority vote maximized
the expected value of the utilitarian SWF. This result has been extended to simple games
and weighted majority rules by Badger (1972), Curtis (1972), Schofield (1972), Straffin
(1977), Dubey and Shapley (1979), Bordley (1985, 1986), Fleurbaey (2009), and Laruelle
and Valenciano (2010).

More recently, Schmitz and Tröger (2012) have shown that “weak” majority voting rules
yield the highest expected value for the utilitarian SWF amongst all dominant-strategy
rules. As in the present paper, Schmitz and Tröger (2012) assume all voters are ex ante
identical in the distribution of their utility functions. Azrieli and Kim (2014) relax this
assumption, so that different voters may have different preference intensities, ex ante.
Assuming voters have independent (but not identically distributed) random utilities, they
show that the rule which maximizes ex ante utilitarian social welfare over the class of all
incentive compatible rules is a weighted majoritarian rule (where the weight of each voter
is determined by the expected value of her utility function).

The aforementioned papers considered only dichotomous decisions. But Lehtinen (2007,
2014) has considered agendas of pairwise votes involving any number of alternatives; using
computer simulations, he showed that strategic voting generally improves the utilitarian
social welfare of the outcome, in settings with incomplete information. Most recently,
assuming voters with independent (but not identically distributed) random utility functions

14See Nitzan (2009, Ch.11-12) or Pivato (2013) for surveys of this literature.
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over any number of alternatives, Kim (2014) characterized the rules which are ex ante
Pareto efficient in the class of ordinal voting rules: they are “non-anonymous” scoring
rules (where each voter has perhaps a different score vector). He further showed that, if the
alternatives are ex ante interchangeable, then such rules are truth-revealing in Bayesian
Nash equilibrium (BNE). A special case are the scoring rules which maximize expected
utilitarian social welfare over all ordinal rules. Kim also constructed a rule which obtains
a higher expected utilitarian social welfare than any ordinal rule in BNE.

Kim’s rules do not always choose the utilitarian-optimal alternative —they just yield
the highest expected utilitarian social welfare amongst all BNE-truth-revealing rules. In
contrast, our Theorem 2 says that any Condorcet consistent rule will choose the utilitarian-
optimal alternative in any reasonable profile. Theorem 4 shows that this is highly likely
in a large population of voters with i.i.d. random utility functions —a model very similar
to Kim’s. One difference is that Kim’s voters are not necessarily identically distributed ex
ante, but they all have the same preference intensity ex post (i.e. every utility function
ranges from 0 to 1). In contrast, our voters are i.i.d. ex ante, but may have different
preference intensities ex post. Another difference is that the hypotheses of Theorem 4
contain a built-in asymmetry between the alternatives, whereas in Kim’s model they are
ex ante interchangeable.15

In effect, Theorem 2 yields an implementation of utilitarianism with informational as-
sumptions diametrically opposite to Kim’s. In an environment with independent random
voters, a BNE means that each person votes in complete ignorance of the preferences of ev-
eryone else. In contrast, the Condorcet winner (when it exists) will be the subgame-perfect
Nash equilibrium outcome of any agenda of pairwise votes (and several other “successive
elimination” rules) when voters have perfect information about each other’s preferences
(Miller, 1977; Bag et al., 2009).16 Thus, Theorems 2 and 4 together imply that, in a large
population, with a distribution of utility functions similar to Kim (2014), any of these
voting rules will provide a subgame-perfect implementation of utilitarianism.

6. Conclusion

This paper shows that, if the statistical distribution of utility functions in a large society
satisfies certain conditions, then, with very high probability, a Condorcet winner will exist,
and will maximize the utilitarian SWF. But in reality, does the distribution of utility
functions in a particular society satisfy these conditions? This is an empirical question, and
the answer probably depends on both the society and the particular policy problem under
consideration. This suggests a two-stage approach to utilitarian social choice. In the first
stage, use a survey or some other method to estimate the utility functions of a statistically
representative sample of the population (measured, e.g. in terms of willingness-to-pay).
Using this survey data, we can determine whether the distribution of utility functions is, in

15But as noted in Remark 5(b), this asymmetry is not essential to obtain close-to-optimal social welfare.
16Actually, a voter does not need perfect information; she just needs enough to reliably predict the

outcome of each pairwise vote, so that she can correctly perform backwards induction. It is enough to
have statistics about other voters’ preferences, which could be obtained from public opinion polls.
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fact, reasonable. If it is reasonable, then in the second stage, we can deploy any strategy-
proof, Condorcet consistent social choice rule (e.g. an agenda of pairwise votes) to find
the alternative which maximizes the utilitarian SWF. Otherwise, we must resort to some
other method —e.g. the methods explored in Pivato (2014a,b) or Kim (2014).

In the models of Sections 3 and 4, one possibly questionable assumption is that the
cardinal utility profile is a set of independent random variables.17 This neglects the fact that
voters belonging to the same community or subculture may exhibit correlations in their
preferences. Empirical evidence suggests that the independence hypothesis is false (Gelman
et al., 2004). However, full independence is not required for our results. The stochastic
process generating the utility profile can have correlations, as long as the sample mean
and sample medians converge to the mean and medians of the underlying distribution as
I→∞. For example, this is true for any ergodic stochastic process. It will also happen if
the correlations between voters are sufficiently weak; see Pivato (2014b) for an illustration
of this approach.

If a utility profile U is not reasonable, then Theorem 2 does not apply; there may be
no Condorcet winner, and even if there is, the Condorcet winner is not guaranteed to
be a utilitarian optimum. However, if U is “close” to reasonable, then a suitably chosen
Condorcet-consistent voting rule may still have a high probability of selecting a utilitarian
optimum. For example, consider the Copeland rule, which chooses the alternative with the
highest Copeland score. (The Copeland score of an alternative a is defined as #{b ∈ A;
some majority prefers a over b} −#{b ∈ A; some majority prefers b over a}.) Suppose
that, for every a, b ∈ A, there is a small probability that the profile U will fail to be
(a, b)-reasonable, and that this probability is decreasing as a function of the average utility
gap between a and b (as suggested by Example 1). Also suppose that these reasonability
failures are independent random variables. Then the Copeland score of each alternative
should be a good estimator of the “true” ranking of that alternative by the utilitarian social
welfare order. Thus, the Copeland winner should either be optimal or close-to-optimal with
respect to the utilitarian social welfare order. By a similar argument, the ordering of A
determined by the Slater rule should be a good estimate of the ordering of A determined
by the utilitarian social welfare order. These are interesting questions for future research.
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Appendix

Proposition 3 is a special case of Theorem 4, so it suffices to prove the latter result.

17This assumption is shared by virtually all the literature reviewed in Section 5, except for Bordley
(1985, 1986) and Fleurbaey (2009).
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Proof of Theorem 4. For any distinct a, b ∈ A, recall that ρa,b is the distribution
of xa − xb, where x is a ρ-random variable. Thus, ρa,b has finite variance, because ρ
has finite variance. Let ma,b be the mean value of ρa,b; then ma,b 6= 0, because ρ is
reasonable. Let pa,b := ρa,b(−∞, 0) if ma,b > 0, and let pa,b := ρa,b(0,∞) if ma,b < 0.
(Equivalently, pa,b := ρ{x ∈ RA; sign(xa − xb) = −sign(mab)}.) Then pa,b <

1
2
,

because sign(ma,b) = sign(median[ρa,b]), because ρ is reasonable. Let p := max{pa,b;
a, b ∈ A}; then p < 1

2
because pa,b <

1
2

for all a, b ∈ A, and A is finite. It follows that
p(1−p) < 1

4
(because the function f(x) = x(1−x) has a unique maximum at x = 1

2
, and

f(1
2
) = 1

4
). Thus, if we define q := 2

√
p(1− p), then q < 1. (For example, if p = 0.4,

then q = 2
√

0.4 · 0.6 ≈ 0.98.) Let A := |A|, and without loss of generality, suppose
A = {1, 2, . . . , A}. For all i ∈ I, let ui := (ui1, u

i
2, . . . , u

i
A) ∈ RA be the utility function

of voter i (a ρ-random vector). For any a < b ∈ A, let Ua,b := {uia − uib}i∈I (a collection
of I independent real-valued random variables).

Claim 1: If I is large enough, then for all distinct a, b ∈ A, we have

Prob
[
sign (median[Ua,b]) 6= sign (median[ρa,b])

]
< 2

√
I qI .

Proof. Without loss of generality, suppose median(ρa,b) > 0. Let J be the smallest
integer greater than I/2. (That is: J := (I + 1)/2 if I is odd, whereas J := (I/2) + 1
if I is even.) Now, |Ua,b| = I and median(ρa,b) > 0, so18(

sign (median[Ua,b]) 6= sign (median[ρa,b])
)
⇐⇒

(
median(Ua,b) < 0

)
⇐⇒

(
at least J elements of Ua,b are in (−∞, 0)

)
. (A1)

Thus, we need to estimate the probability of the right hand side of (A1).

Let U ′ := {x1, x2, . . . , x2J} be a set of 2J i.i.d. random variables with Prob[xk <
0] = p and Prob[xk ≥ 0] = 1 − p, for all k ∈ [1 . . . 2J ]. Thus, for any i ∈ I and
k ∈ [1 . . . 2J ], we have Prob[uia − uib < 0] = pa,b ≤ p = Prob[xk < 0], and these are
independent random events. Furthermore, |U ′| > |Ua,b| (because 2J > I). Thus,

Prob
(

at least J elements of Ua,b are in (−∞, 0)
)

≤ Prob
(

at least J elements of U ′ are in (−∞, 0)
)
, (A2)

so it suffices to estimate the right hand side of inequality (A2). Now, for any n ∈
18See footnote 5 for how to interpret the left-hand side of statement (A1) when I is even.
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[0 . . . 2J ],

Prob
(

exactly n elements of U ′ are in (−∞, 0)
)

=

(
2J
n

)
pn(1− p)2J−n. Thus,

Prob
(

at least J elements of U ′ are in (−∞, 0)
)

≤
2J∑
n=J

(
2J
n

)
pn (1− p)2J−n ≤

(a)

2J∑
n=J

(
2J
J

)
pJ (1− p)J

= J

(
2J
J

)
pJ (1− p)J <

(b)

J
(2J)!

(J !)2

(
p(1− p)

)I/2
(c)

J
(2J)!

(J !)2

(q
2

)I
≈
(d)

J

√
2

πI
· 2I+2

(q
2

)I
= 4J

√
2

πI
· qI <

(e)

2I
qI√
I

= 2
√
I qI . (A3)

Here, (a) is because p < 1
2
, so the mode of the p-binomial distribution on [0 . . . 2J ]

occurs at some n < J , so that
(
2J
n

)
pn (1 − p)2J−n <

(
2J
J

)
pJ (1 − p)J for all n ∈

[J . . . 2J ]. Next, (b) is because J > I/2, and (c) is because
√
p(1− p) = q/2, so

[p(1− p)]I/2 = (
√
p(1− p))I = (q/2)I . Next, (d) is via Stirling’s approximation of the

factorial, which says n! ≈
√

2π n (n/e)n as n→∞. Thus, if J is large enough, then

(2J)!

(J !)2
≈
√

2π 2J (2J/e)2J

[
√

2π J (J/e)J ]2
=

22J

√
πJ

<
2I+2√
πI/2

=

√
2

πI
· 2I+2.

Finally, (e) is because 2J ≤ I + 2 and 2 ·
√

2/π ≈ 1.59, so 4J ·
√

2/π ≈ 2J (1.59) ≤
(1.59) (I + 2) < 2I, if I is large enough.

Combining statement (A1) and inequalities (A2) and (A3) yields the claim. 3 Claim 1

Let C := max{var[ρa,b]
m2

a,b
; a, b ∈ A}; then C < ∞ because var[ρa,b] < ∞ and ma,b 6= 0 for

all distinct a, b ∈ A, and |A| is finite.

Claim 2: For all a, b ∈ A, Prob
[
sign (mean[Ua,b]) 6= sign(ma,b)

]
≤ C/I.

Proof. Let Ma,b := mean[Ua,b] = 1
I

∑
i∈I(u

i
a − uib). This is an avarage of i.i.d. random

variables, each with expected value ma,b and variance var[ρa,b]. Thus, Ma,b is itself a
random variable with expected value ma,b and variance var[ρa,b]/I. Thus,

Prob
[
sign (Ma,b) 6= sign(ma,b)

]
≤ Prob

[
|Ma,b −ma,b| > ma,b

]
≤
(∗)

var[ρa,b]

I m2
a,b

≤ C

I
,

as claimed. Here, (∗) is by Chebyshev’s inequality. 3 Claim 2
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Now, sign (median[ρa,b]) = sign(ma,b), because ρ is reasonable. Thus, if sign (median[Ua,b])
= sign (median[ρa,b]) and sign (mean[Ua,b]) = sign(ma,b), then sign (median[Ua,b]) =
sign (mean[Ua,b]). Conversely, if sign (median[Ua,b]) 6= sign (mean[Ua,b]), then either
sign (median[Ua,b]) 6= sign (median[ρa,b]) or sign (mean[Ua,b]) 6= sign(ma,b). Thus,

Prob
[
sign (median[Ua,b]) 6= sign (mean[Ua,b])

]
≤ Prob

(
sign (median[Ua,b]) 6= sign (median[ρa,b])

or sign (mean[Ua,b]) 6= sign(ma,b)

)
≤ Prob

[
sign (median[Ua,b]) 6= sign (median[ρa,b])

]
+ Prob

[
sign (mean[Ua,b]) 6= sign(ma,b)

]
<
(∗)

2
√
I qI +

C

I
, (A4)

where (∗) is by Claims 1 and 2. Thus,

Prob
(

the profile {ui}i∈I is not reasonable
)

= Prob
(

sign (median[Ua,b]) 6= sign (mean[Ua,b]) for some a < b ∈ A
)

<
(∗)

∑
a<b∈A

(
2
√
I qI +

C

I

)
=

A(A− 1)

2

(
2
√
I qI +

C

I

)
−−−−(†)

I→∞−→ 0,

as desired. Here, the inequality (∗) follows from inequality (A4), and the limit (†) is a
straightforward application of l’Hospital’s rule, because 0 < q < 1. 2

Propositions 6 and 7 are special cases of Theorem 8, so we will prove that first. The proof
of Theorem 8 and Proposition 7, in turn, use the following lemma.

Lemma A1. Let ρ be any probability measure on RN , let φ : [0,∞)−→R be any (strictly)
convex function, and let Φρ be defined as in equation (5). Then Φρ is (strictly) convex.

Proof. For any x ∈ RN , define φx : RN−→R by setting φx(y) := φ (‖x− y‖) for all
y ∈ RN . First observe that φx is (strictly) convex. To see this, let y, z ∈ RN , and let
r ∈ (0, 1). Then

‖r y + (1− r) z− x‖ = ‖r (y − x) + (1− r) (z− x)‖
≤ r ‖y − x‖ + (1− r) ‖z− x)‖, (A5)

by the triangle inequality. Thus,

φx (r y + (1− r) z) = φ (‖r y + (1− r) z− x‖) ≤
(∗)

φ (r ‖y − x‖ + (1− r) ‖z− x)‖)

≤
(†)

r φ (‖y − x‖) + (1− r)φ (‖z− x)‖)

= r φx(y) + (1− r)φ(z), as desired. (A6)
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Here, (∗) is by inequality (A5), because φ is increasing, while (†) is because φ is convex,
and becomes a strict inequality in the case when φ is strictly convex.

Now, for any y ∈ RN , the defining equation (5) says Φρ(y) =
∫
RN φx(y) dρ[x]. Thus,

for any y, z ∈ RN , and any r ∈ (0, 1), we have

Φρ (r y + (1− r) z) =

∫
RN

φx (r y + (1− r) z) dρ[x]

≤
(∗)

∫
RN

r φx(y) + (1− r)φx(z) dρ[x]

= r

∫
RN

φx(y) dρ[x] + (1− r)
∫
RN

φx(z) dρ[x]

= rΦρ(y) + (1− r) Φρ(z),

as desired. Here, (∗) is by inequality (A6), and is a strict inequality in the case when φ
is strictly convex. 2

Proof of Theorem 8. Recall that A ⊂ RN . Let a,b ∈ A. Let v := b− a, and define:

Ca :=
{
r ∈ RN ; ‖r− a‖ < ‖r− b‖

}
,

Ha,b :=
{
r ∈ RN ; ‖r− a‖ = ‖r− b‖

}
,

and Cb :=
{
r ∈ RN ; ‖r− a‖ > ‖r− b‖

}
.

Then Ca and Cb are two open halfspaces in RN , separated by Ha,b, which is the hyper-
plane orthogonal to v, and passing through the point (a + b)/2.

Claim 1: If mφ
ρ ∈ Ca, then lim

I→∞
Prob

(
A majority of {ui}i∈I prefer a over b

)
= 1.

Proof. Let HI
v ⊂ RN be any v-median hyperplane of the collection {xi}i∈I —that is,

HI
v is a hyperplane in RN orthogonal to v, such that at least half the points in {xi}i∈I

lie either in HI
v or on one side of HI

v, and at least half the points in {xi}i∈I lie either
in HI

v or on the other side of HI
v. (Such a hyperplane may not be unique; if it is not

unique, then just pick one arbitrarily.)

For any i ∈ I, we have ui(a) > ui(b) if and only if xi ∈ Ca. It follows that(
A majority of {ui}i∈I prefer a over b

)
⇐⇒

(
HI

v ⊂ Ca
)
. (A7)

Let Hρ
v be the (unique) v-median hyperplane of ρ; then condition (B4) says mφ

ρ ∈ Hρ
v.

Thus, Hρ
v ⊂ Ca (because mφ

ρ ∈ Ca and Hρ
v is parallel to Ha,b). But as I→∞, the

sample median hyperplane HI
v converges to Hρ

v in probability (by the Weak Law of
Large Numbers). Thus, since Ca is an open set containing Hρ

v, we have

lim
I→∞

Prob
[
HI

v ⊂ Ca
]

= 1. (A8)

Combining statement (A7) with limit (A8) yields the claim. 3 Claim 1
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Claim 2: There is a strictly increasing function γ : [0,∞)−→R such that Φρ(x) =

γ
(∥∥x−mφ

ρ

∥∥) for all x ∈ RN .

Proof. Condition (B3) implies that there is some function γ : [0,∞)−→R such that

Φρ(x) = γ
(∥∥x−mφ

ρ

∥∥) for all x ∈ RN . Lemma A1 says that Φρ is convex; this implies

that γ must be nondecreasing. Furthermore, the only place γ could fail to be strictly
increasing (i.e. be constant) is in a neighbourhood of 0. But if γ was constant near 0,
then Φρ would be constant in a neighbourhood of mφ

ρ , contradicting (B2). Thus, we
conclude that γ is strictly increasing. 3 Claim 2

Let UI :=
1

I

∑
i∈I

ui, as in equation (1).

Claim 3: If mφ
ρ ∈ Ca, then lim

I→∞
Prob [UI(a) > UI(b)] = 1.

Proof. Let γ be as in Claim 2. If mφ
ρ ∈ Ca, then

∥∥a−mφ
ρ

∥∥ <
∥∥b−mφ

ρ

∥∥; thus,
Φρ(a) < Φρ(b) (because γ is strictly increasing). Fix C ∈ R with Φρ(a) < C < Φρ(b)

Let x be a ρ-random variable. From equation (5) it is clear that Φρ(a) is the expected
value of φ (‖x− a‖). Meanwhile, −UI(a) = 1

I

∑
i∈I φ (‖xi − a‖) is an empirical esti-

mate of this expected value, based on the sample set {xi}i∈I . Thus, since Φρ(a) < C,
the Weak Law of Large Numbers says lim

I→∞
Prob[−UI(a) < C] = 1. By a similar

argument, lim
I→∞

Prob[−UI(b) > C] = 1. Thus, lim
I→∞

Prob [UI(a) > −C > UI(b)] = 1.
3 Claim 3

If mφ
ρ ∈ Ca, then Claims 1 and 3 together imply that

lim
I→∞

Prob
(

The utility profile {ui}i∈I is {a, b}-reasonable
)

= 1.

We can make a similar argument in the case when mφ
ρ ∈ Cb. Finally, it is impossible

that mφ
ρ ∈ Ha,b, because

∥∥a−mφ
ρ

∥∥ 6= ∥∥b−mφ
ρ

∥∥ by hypothesis.

This argument holds for any pair a, b ∈ A. Since A is finite, we conclude that

lim
I→∞

Prob
(

The utility profile {ui}i∈I is reasonable
)

= 1. 2

Proposition 6 follows from Theorem 8 and the next result.

Lemma A2. Suppose φ(x) = x2 for all x ≥ 0. Then any multivariate normal probability
measure on RN is φ-balanced.

Proof. Let ρ be a multivariate normal probablity measure on RN . As observed in the
text, ρ is φ-balanced if and only if the mean of ρ lies in every median hyperplane of
ρ. Let v ∈ RN , and let ρ′ be the orthogonal projection of ρ onto the line L through
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v. Then ρ′ is also normal, and the mean of ρ′ is just the orthogonal projection of the
mean of ρ onto L. Meanwhile, the v-median hyperplane Hρ

v is just the hyperplane in
RN orthogonal to L, passing through the median point of ρ′. But in a one-dimensional
normal distribution, the mean equals the median. So the mean and median of ρ′ are
equal. This means that the mean of ρ lies in Hρ

v, as desired. 2

Proposition 7 follows from Theorem 8 and the next result.

Proposition A3. Let ρ be any probability measure on R which is symmetrically dis-
tributed about some point m in the support of ρ. Or, let N ≥ 2, and let ρ be any proba-
bility measure on RN which is rotationally symmetric around some point m in RN . Then
for every strictly convex increasing function φ : [0,∞)−→R satisfying inequality (4), the
measure ρ is φ-balanced, with mφ

ρ = m.

Proof. First, note that φ satisfies inequality (4) if and only if it satisfies condition (B1).
Thus, the function Φρ is well-defined in equation (5).

Claim 1: m is the unique global minimum of Φρ.

Proof. First suppose N ≥ 2. Since φ is strictly convex, Lemma A1 says that Φρ is
strictly convex. Thus, the global minimum of Φρ is unique. But if ρ is rotationally
symmetric around m, then so is the function Φρ. Thus, so is the set of global minima
of Φρ. Thus the (unique) global minimum must be at m.

The argument in the case N = 1 is similar, except now “rotationally symmetric
around m” is changed to “symmetric under reflection across the point m”. 3 Claim 1

Claim 2: For every v ∈ RN , the measure ρ has a unique v-median hyperplane Hρ
v,

and m ∈ Hρ
v.

Proof. We will handle the cases N = 1 and N ≥ 2 separately.

In the case N = 1, a median “hyperplane” is just a median point of ρ (the vector
v is irrelevant in this case). The theorem hypothesis states that ρ is symmetrically
distributed about m. Thus, m is a median point of ρ. But we also assumed that m
is in the support of ρ; thus, m is the only median point of ρ.

Now suppose N ≥ 2. If ρ is rotationally symmetric around m, then so is support(ρ).
Thus, support(ρ) can be written as a union of concentric spheres centred at m. Now
let v ∈ RN be any vector, and define

C−v :=
{
r ∈ RN ; v • r < v •m

}
,

Hρ
v :=

{
r ∈ RN ; v • r = v •m

}
,

and C+v :=
{
r ∈ RN ; v • r > v •m

}
.

Thus, Hρ
v is the unique hyperplane in RN orthogonal to v and containing m. Note

that the halfspace C−v can be transformed into C+v by rotating 180 degrees through
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any axis passing through m. Since ρ is rotationally symmetric around m, this implies
that ρ[C−v ] = ρ[C+v ]; thus, Hρ

v is a v-median hyperplane for ρ. However, we have
already noted that support(ρ) is a union of concentric spheres centred at m; thus, Hv

intersects support(ρ). Thus, Hρ
v is the only v-median hyperplane for ρ. This argument

works for any v ∈ RN . 3 Claim 2

By hypothesis, ρ satisfies condition (B1). Claim 1 implies that ρ satisfies conditions (B2)
and (B3), while Claim 2 implies that it satisfies condition (B4). Thus, ρ is Φ-balanced.
2
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