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Abstract

We consider hybrid procedures: a first step of reducing the game by it-
erated elimination of weakly dominated strategies (IEWDS) followed by a
second step of applying an equilibrium refinement. We show that the set
of perfect/proper outcomes of a reduced normal-form game might be larger
than the set of the perfect/proper outcomes of the whole game by applying
IEWDS. Even in dominance solvable games in which all the orders of IEWDS
select a unique singleton in the game, the surviving outcome need not be
a proper equilibrium of the whole game. However, in dominance solvable
games that satisfy the transference of decision maker indifference condition
(TDI ∗ of Marx and Swinkels, 1997), the surviving outcome coincides with the
unique stable one and hence is proper.
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1 Introduction

Whereas the iterated elimination of strictly dominated strategies seems to be com-
monly accepted as an appealing procedure to simplify a game,1 the procedure of
iterated elimination of weakly dominated strategies (IEWDS) seems to be more
controversial. Such a result is present, for instance, in the strategic voting litera-
ture (see De Sinopoli [1] among others). Indeed, IEWDS is an order-dependent
procedure that removes at each step some set of weakly dominated strategies; this
order-dependency is among its least attractive features. In our paper, we ask a
simple question: what can be inferred about the set of perfect/proper equilibria
of the whole normal-form game from just focusing on the same set of equilibria of
the fully reduced game(s) obtained through this procedure? In other words, does
applying IEWDS and then using a perfect/proper equilibrium in a normal-form
game refine the set of perfect/proper equilibria? The answer is negative even for
dominance solvable games. Nonetheless, we provide some sufficient conditions
for a positive answer.

Why would one want to infer some information about the set of equilibria of
the whole game by just focusing on the set of equilibria of the reduced game? From
the point of view of computational complexity2, one interesting venue of research
could be to understand the properties of first applying IEWDS and then solving
the game. Kohlberg and Mertens [6] consider such a procedure3 and then prove
that such a method does not uniquely reach stability in a game in which a domi-
nated strategy of a player is replaced with a constant-sum game that has a value
equal to the initial payoff matrix. In a sense, they prove that such a method is too
weak. Samuelson [14] also considers such a procedure4 even though the focus of
the paper is the interaction between the common knowledge of admissibility and
iterated dominance. Our results imply that applying (any order of) IEWDS and
then applying properness might simply lead to different results than properness
(both in the strategy profiles and in the payoffs) so that the “hybrid” procedure
ensures neither perfection nor properness.

1The previous observation holds in finite games. When agents can choose among an infinite
number of strategies, this need not even be the case (see Duwfenberg and Stegeman [2]).

2See the recent advances in computation of equilibria in finite games (for instance von Stengel
et al. [17]).

3Kohlberg and Mertens [6] (p.1015) argue “that one might therefore conclude that strategic
stability could be obtained by first reducing the normal form to some submatrix by iterative elimi-
nations of dominated strategies, and then applying the relevant backwards induction solution (i.e.
proper equilibrium)”.

4Indeed, Samuelson [14] (p.287) states that “concepts such as properness perform well in all
respects except admissibility calculations. In particular, the set of proper equilibria can be affected
by the deletion of a dominated strategy from a game. One possible response is to construct a two-
stage procedure. In the first step, the common knowledge of admissibility is applied to possibly
eliminate some strategies. The second step then consists of the application of a solution concept
such as properness to the resulting strategy sets”.
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A well-known property in the literature can be considered as a benchmark to
our work. First, the set of Nash equilibria of a game G contains the set of NE
of any game G′ obtained from G by deletion of a (weakly) dominated strategy.
Note that Mertens’ stable sets (connected components of perfect equilibria) sat-
isfy a weaker version of the property. The surviving profile in a dominance solv-
able game is hence a Nash equilibrium and is part of the unique stable set of the
game. Therefore, it is perfect as any point in a stable set is perfect. The results get
more icy when one scrutinizes the relation between perfect, proper equilibrium
and IEWDS.

The problem for ensuring perfect and proper inclusion seems to be related
to the existence of connected components of equilibria with a continuum of out-
comes. Examples of such components can be found in Govindan and McLennan
[4] and Kukushkin, Litan and Marhuenda [7].5 We slightly modify the previously
mentioned examples, in order to prove that removing weakly dominated strategies
might enlarge the set of perfect and proper outcomes.

We provide a positive result concerning dominance solvable games, in which at
least one order of IEWDS selects a unique singleton from the game. Our question
can be rephrased in dominance solvable games in the following terms: does the
surviving outcome coincide with the outcome of a proper equilibrium? Indeed,
as argued by Marx and Swinkels [8], “at an intuitive level, there seems to be an
intimate relationship between backward induction and weak dominance.” They
prove that, in perfect information games, all orders of IEWDS leave only strategy
profiles that give rise to the unique backward induction payoff vector.6 This result
holds provided that when some player is indifferent between two strategy profiles
that differ only in that player’s choice of strategy, all other players are indiffer-
ent as well: this condition is denoted transference of decision-maker’s indifference
(TDI). Of course, as we deal with normal-form games, the precise definition of
backward induction is elusive in contrast with perfect information games. The
concept of proper equilibrium is often associated with backward induction since
van Damme [15] and Kohlberg and Mertens [6] established that a proper equi-
librium of a normal form game induces a quasi-perfect/sequential equilibrium in
every extensive form game with that normal form.

We first provide an example of a dominance solvable game in which all the
orders of deletion lead to the same strategy profile; this profile does not lead to
a payoff associated with any proper equilibrium of the whole game, as it violates
TDI . We then prove that the surviving outcome coincides with the unique stable
one and hence is proper in dominance solvable games satisfying TDI ∗. Note that
TDI ∗ implies TDI , while both notions are generically equivalent. More precisely,

5See also Pimienta [13] which proves that such components do not exist in three-outcome bi-
matrix games.

6A related work (Hummel [5]) explores the relation of IEWDS and backward induction in bi-
nary voting sequential games.
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let Γ be a normal form game with associated strategy space S. Iteratively applying
IEWDS transforms S into a sequence of restrictions. Note that if the game is solv-
able then there is a unique stable set in the game. We prove that, if the solvable
game satisfies TDI , this stable set is included within a connected component with
a unique associated payoff. Hence, the singleton that survives IEWDS leads to
the stable outcome and hence its outcome is proper. Our contribution is related
to Glazer and Rubistein [3], which underlines an interesting relationship between
IEWDS and backward induction. For dominance solvable games, it is proved that
the elimination procedure is equivalent to backward induction in some appro-
priately chosen extensive game.7 Their result holds provided that the agents are
indifferent among the different outcomes, which is stronger than assuming TDI ∗.

The work is structured as follows. Section 2 introduces the canonical frame-
work in which we work. Section 3 presents the results dealing with perfection,
and Section 4 is focused on the relationship between properness and IEWDS.

2 The setting

Let Γ be an n-person normal-form game Γ = (S1, . . . ,Sn;U1, . . . ,Un;N ), where N =
{1,2, . . . ,n} is the set of players, each Si is a non-empty finite set of pure strategies,
and each Ui is a real-valued utility function defined on the domain S = S1 × S2 ×
. . .× Sn. W.l.o.g we assume Si ∩ Sj = ∅ for any i and j.

For any finite set M, let ∆(M) be the set of all probability distributions over
M. Thus, ∆(Si) is the set of mixed strategies for player i in Γ with ∆(Si). Simi-
larly, ∆0(Si) stands for the set of completely mixed strategies in Si and for player i.
Furthermore, for any mixed strategy σi , its support is denoted by Supp(σi) = {si ∈
Si | σi(si) > 0}.

The utility functions are extended to mixed strategies in the usual way:

Uj(σ1, . . . ,σn) =
∑

(s1,...,sn)∈S1×...×Sn

 n∏
i=1

σi(si)

Uj(s1, . . . , sn).

The pure strategy s∗j is a best response to σ−j for player j iff

Uj(s
∗
j ,σ−j) = max

s′j∈Sj
Uj(s

′
j ,σ−j).

An ε-perfect equilibrium of a normal-form game is a completely mixed strategy
profile, such that whenever some pure strategy si is a worse reply than some other
pure strategy ti , the weight on si is smaller than ε. A perfect equilibrium of a
normal form game is a limit of ε-perfect equilibria as ε→ 0.

7See Perea [12] for a summary of this literature.
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An ε-proper equilibrium of a normal-form game is a completely mixed strategy
profile, such that whenever some pure strategy si is a worse reply than some other
pure strategy ti , the weight on si is smaller than ε times the weight on ti . A proper
equilibrium of a normal form game is a limit of ε-proper equilibria as ε→ 0.

Iterated Dominance.

For W ⊆ S, let the strategies in W that belong to i be denoted Wi = W ∩ Si .
Say that W ⊆ S is a restriction of S if ∀i, Wi , ∅. Note that any restriction W of S
generates a unique game given by strategy spaces Wi and the restriction of Ui to∏n
i=1Wi .

Let Γ k denote the reduced game after k rounds of successive restrictions, and
let Ski ⊆ S

k−1
i , Sk ⊆ Sk−1 be the corresponding strategy spaces. We write S0 = S and

limk→∞S
k = ∩∞k=0S

k = S∞. Γ∞ denotes the reduced game with strategy space S∞

and the restriction of Ui to S∞.

For all i ∈N , let Vi be a nonempty finite subset of ∆(Si)∪Si , and let V = ∪i∈NVi .

Definition 1. [Weak Dominance] Let σi , τi ∈ ∆(Si)∪ Si . Then,
(i) σi very weakly dominates τi on V if Ui(σi ,γ−i) ≥ Ui(τi ,γ−i)∀γ−i ∈ V−i =

∏
j,i Vj ,

and
(ii) σi weakly dominates τi on V if σi very weakly dominates τi on V , and, in addition,
Ui(σi ,γ ′−i) > Ui(τi ,γ

′
−i) for some γ ′−i ∈ V−i .

Redundancy on Mixed Strategies.

Definition 2. [Redundancy] Let σi , τi ∈ ∆(Si)∪Si . Then σi is redundant to τi on V if
for all γi ∈ V−i , Ui(σi ,γ−i) = Ui(τi ,γ−i) implies U (σi ,γ−i) = U (τi ,γ−i). A strategy τi is
redundant on V if there is σi ∈ V redundant to τi .

Following Marx and Swinkels [8], we define nice weak dominance and the TDI ∗

condition.

Definition 3. [Nice Weak Dominance]. Let σi , τi ∈ ∆(Si)∪ Si . σi nicely weakly dom-
inates τi on V if σi weakly dominates τi on V and for all γ−i ∈ V−i , Ui(σi ,γ−i) =
Ui(τi ,γ−i) implies U (σi ,γ−i) =U (τi ,γ−i).

Definition 4. Game Γ satisfies TDI ∗ if for all restrictions W , ∀i ∈N , and ∀si ∈ Si , if si
is very weakly dominated on W by σi ∈ ∆(Si \ si), then ∃σ ′i ∈ ∆(Si \ si) such that either
si is weakly dominated on W by σ ′i or si is redundant on W to σ ′i .

If a game satisfies TDI ∗, then whenever player i is indifferent between strate-
gies si and σi , fixing the profile of opponents’ strategies s−i , either all players are
indifferent between profiles (si , s−i) and (σi , s−i), or there is some strategy σ ′i such
that i strictly prefers σ ′i over si and σi given s−i .

Remark: For games satisfying TDI ∗, weak dominance is equivalent to nice
weak dominance.
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Marx and Swinkels [8] show that if a game satisfies the following condition on
pure strategies, then it generically satisfies TDI ∗: ∀i ∈ N,∀si , ri ∈ Si ,Ui(si , s−i) =
Ui(ri , s−i) =⇒Uj(si , s−i) =Uj(ri , s−i) (TDI).

3 Perfect equilibria

For any game Γ = (S,U ), let P e(Γ ) denote its set of perfect equilibria and P ro(Γ )
denote its set of proper equilibria. The sets of (Nash) equilibria and undominated
equilibria of Γ are respectively denoted Ne(Γ ) and UNe(Γ ).

By iterated weak dominance, there exists a finite number of orders (as there is
a finite number of strategies, and we assume that at least one strategy is deleted
at each stage until the game is fully reduced). Each order belongs to Θ. Hence the
successive reductions of a game Γ due to order o are as follows:

Γ 0
o = Γ = (S,U ),Γ 1

o = (S1
o ,U ),Γ 2

o = (S2
o ,U ), . . . ,Γ∞o = (S∞o ,U ),

with S io ⊇ S i+1
o .

Γ∞o stands for the fully reduced game obtained through iterated weak domi-
nance by the order of reduction o.

It is simple to understand that the set of perfect equilibria of a reduced game
is not nested in the whole set of perfect equilibria. The next well-known example
proves that removing eitherM, C or bothM and C leads to different sets of perfect
equilibria on the reduced games, whereas the unique perfect equilibrium of the
whole game is (T ,L).

L C
T 2,1 1,1
M 2,1 0,0

However, despite this path-dependent procedure, we can state the following
result.

Proposition 1. For any order of deletion o ∈Θ, P e(Γ ko )∩ P e(Γ ) , ∅ ∀k ≥ 1.

Proof. We omit the definition of Mertens’ stable sets and refer to Mertens (1989) [9]
for a complete definition. We simply use three of its properties. First, the existence
property states that stable sets always exist. Second, stable sets are connected sets
of normal-form perfect equilibria (connectedness). Third, stable sets of a game
contain stable sets of any game obtained by deleting a pure strategy which is at its
minimum probability in any normal form ε-perfect equilibrium in the neighbor-
hood of the stable set (iterated dominance and forward induction). Hence, the last
property applies in particular to any weakly dominated strategy. Therefore, there
exists at least one stable set of Γ ko which is included in a stable set of Γ k−1

o . As any
point in a stable set is a perfect, we can directly conclude.
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We can therefore state the next corollary without proof.

Corollary 1. For any order of deletion o ∈Θ, P e(Γ∞o )∩ P e(Γ ) , ∅.

3.1 Bimatrix games

Within the set Θ, m stands for the maximal simultaneous reduction by weak dom-
inance in which all mixed and pure strategies that are weakly dominated by some
(mixed) strategy are removed at each step.

Proposition 2. Let Γ be a bimatrix game. By maximal simultaneous deletion, P e(Γ 1
m) ⊆

P e(Γ ). Moreover, P e(Γ∞m ) ⊆ P e(Γ ).

The converse of Proposition 2 does not hold. To see this, let us consider the
example in Myerson (1978) [10]. There are two players 1,2 with three strategies
each. There are two perfect equilibria (T ,L) and (M,C); however the only equilib-
rium that survives maximal simultaneous deletion is (T ,L).

L C R
T 1,1 0,0 -9,-9
M 0,0 0,0 -7,-7
B -9,-9 -7,-7 -7,-7

To see why, it suffices to understand that M �S B and that C �S R in Γ . Further-
more, in the game Γ 1 in which both B and R have been deleted, both T �S1 M and
L �S1 C, hence only (T ,L) is perfect in the fully reduced game, and it is the unique
proper equilibrium of the game.

We now state the proof of Proposition 2.

Proof. Let σ be a perfect equilibrium in the game Γ 1
m. In bimatrix games, an equi-

librium is perfect if and only it is undominated. An equilibrium σ is undominated
if each of its components σi of σ is undominated. Suppose that σ is not a perfect
equilibrium in Γ = Γ 0

m.
Either σ is not an equilibrium in Γ or σ is an equilibrium in such a game,

but some of the strategies in σ are dominated in Γ . In the former case, this is a
contradiction with the definition of iterated dominance as an equilibrium σ of a
reduced game is an equilibrium of the whole game. In the latter case, some of the
strategies in σ are dominated in Γ so that by maximal simultaneous deletion, the
strategy σ is not present in Γ 1

m, a contradiction.

Proposition 3. Let Γ be a bimatrix game satisfying TDI ∗. For any order of deletion, the
set of perfect outcomes of any fully reduced game is a subset of the set of perfect outcomes
of Γ .
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Proof. By Proposition 2, the set of perfect equilibria of the fully reduced game Γ∞m
is a subset of the set of perfect equilibria of Γ . As stated by Marx and Swinkels
[8], in any game satisfying TDI ∗, any two full reductions by weak dominance are
the same up to the addition or removal of redundant strategies. Moreover, the set
of perfect equilibria is invariant to the addition of redundant strategies (see for
instance Kohlberg and Mertens [6]). It hence follows that the set of outcomes of
any fully reduced game is a subset of the set of outcomes of the whole game.

3.2 Finite Games

To see why Proposition 2 does not hold with more than two players, let us consider
the next example (p.29 Van Damme (1996) [16]).

L C
T 1,1,1 1,0,1
M 1,1,1 0,0,1

A

L C
T 1,1,0 0,0,0
M 0,1,0 1,0,0

B

In such a game, both L �S C and A �S B. There is just one perfect equilibrium
in Γ : (T ,L,A). Nevertheless, applying maximal simultaneous deletion removes C
and B from S, so that (T ,L,A) and (M,L,A) are both perfect equilibria in the fully
reduced game. In other words, removing weakly dominated strategies may enlarge
the set of perfect equilibria.

Yet, the outcome is not enlarged in this example. One might wonder whether
inclusion holds in terms of outcomes. The answer is again negative, as the follow-
ing example shows.

This example is a modified version of the one present in Govindan and McLen-
nan [4] with the addition of a weakly dominated strategy X for player 3 (as long
as the payoff for player 3 in each of the outcomes is strictly positive). This is an
outcome game that satisfies TDI and TDI ∗.

L R
T a a
M b b
B a b
D e f

U

L R
T c c
M d d
B c d
D e f

D

L R
T c c
M d d
B 0,0,0 0,0,0
D e f

X

There is a connected component of equilibria with a continuum of outcomes
with support {T ,M,B,D}×{L,R}×{U,D}. Hence, in the fully reduced game without
X, this game has a continuum of perfect equilibria.
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However, in the whole game, in any sequence of ε-perfect equilibria,U1(T ,σ ε−1) >
U1(B,σ ε−1) so that there is not a perfect equilibrium with both T and M in the sup-
port. There is not a continuum of outcomes anymore in the set of perfect equilib-
ria. Hence, the perfect outcomes of the reduced game are a superset of the set of
perfect outcomes of the whole game. Therefore, it is not even the case that IEWDS
restricts the set of perfect outcomes.

4 Proper Equilibria

4.1 A non-solvable game

This section presents an example that proves that the proper outcomes of the
whole game and of the reduced game differ. This example is a modification of
the one provided by Kukushkin, Litan and Marhuenda [7]: more precisely, two
strictly dominated strategies (X and Y ) have been added. Moreover, the game sat-
isfies TDI and TDI ∗. There are four outcomes: a, b, c and d. We let si stand for the
payoff for player i associated to outcome s.

L C R S
T c a b b
M d a a b
B c d b c
X 0,0 1,1 1,1 0,0
Y 1,1 0,0 0,0 1,1

Note that X and Y are strictly dominated by T , B andM as long as a1,b1, c1,d1 >
1 (a). We assume that this inequality holds. If we remove this pair of strategies,
the reduced game Γ∞ = Γ \ {X,Y } has no dominated strategies. Moreover, there is a
connected component C with a continuum of outcomes as proved by Kukushkin,
Litan and Marhuenda [7] provided that

d1,b1 < a1, c1 and d2 < b2 < a2, c2, (b)

and that
b2(d1 − c1) + b1(c2 − d2) + c1d2 − c2d1 , 0 (c).

This component is defined by the following strategies

σ1(u2) =
1

a2 − b2 + c2 − d2
(b2 − d2, c2 − b2, a2 − d2),

and
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σ2(u1; t) =(
a1 − b1

a1 − b1 + c1 − d1
− (a1 − b1)t

a1 − d1
,
(c1 − b1)t
a1 − d1

c1 − d1

a1 − b1 + c1 − d1
− (c1 − d1)t
a1 − d1

, t).

We assume that (a), (b) and (c) hold so that it is easy to check that the pair (σ1,σ2)
defines a completely mixed strategy equilibrium in Γ∞, provided t is positive and
small enough.

We now prove that every equilibrium in C is not a proper equilibrium in Γ ,
proving that the set of proper equilibria of both games differ. Note that every
equilibrium in C is an equilibrium in Γ and is also perfect as every undominated
equilibrium is perfect in bimatrix games.

We consider the sequences σ ε = (σ ε1 ,σ
ε
2 ) of ε-proper equilibria converging to-

wards the strategy profiles in C.
By the definition of properness, U2(L,σ ε1 ) =U2(S,σ ε1 ) as both are in the support

of player 2’s strategy. As the utility payoffs of L and S only differ when player
1 plays strategies T and M, it follows that in any ε-proper equilibrium, σ ε1 (M) =
c2−b2
b2−d2

σ ε1 (T ). Moreover, we must have that U2(C,σ ε1 ) = U2(R,σ ε1 ) so that σ ε1 (B) =
a2−b2
b2−d2

σ ε1 (T ).

Hence, it follows that σ ε1 (B) = a2−b2
c2−b2

σ ε1 (M) (*).
Finally, in any equilibrium with full support for player 2, it must be the case

that U2(R,σ ε1 ) =U2(S,σ ε1 ). This implies that:

a2σ
ε
1 (M) + b2σ

ε
1 (B) + σ ε1 (X) = b2σ

ε
1 (M) + c2σ

ε
1 (B) + σ ε1 (Y ).

Due to (*), one can check that the previous equality implies that σ ε1 (X) = σ ε1 (Y ).
Hence, U1(X,σ ε2 ) = U1(Y ,σ ε2 ) as otherwise there is a contradiction with the defini-
tion of ε-properness. However, this implies that

σ ε2 (C) + σ ε2 (R) = σ ε2 (L) + σ ε2 (S).

It is clear that not every equilibrium in C satisfies this constraint, proving the
claim.

4.2 Dominance Solvable Games

Dominance Solvability need not imply Properness

In this example, the unique strategy profile that survives all orders of deletion of
IEWDS need not be proper. Note that the game does not satisfy TDI . Further-
more, the outcomes by dominance solvability and properness need not coincide.

10



We focus on a bimatrix game in which each player has three strategies. Let us
remark that L strictly dominates C.

L C R
T 2,3 1,0 0,4
M 2,2 0,0 1,-1
B 2,3 1/2,-1 1/2,4

The set of Nash equilibria equals player 1 randomizing between his three strate-
gies with the probability ofM being higher or equal than 1/4 and player 2 playing
L. Within this set, the unique pure strategy equilibrium is (M,L). Such an equilib-
rium is not proper since whenever the probability of player 1 playing M becomes
sufficiently close to 1, player 2 strictly prefers to play C than R. Therefore, due to
the definition of ε-properness, player 1 strictly prefers to play T than to play M
for any ε > 0.

Furthermore, any order of deletion of IEWDS singles out the singleton (M,L).
To see this, it suffices to understand that it will first remove C then T and B (si-
multaneously or sequentially) and finally strategy R.

Hence, the strategy profile (M,L) satisfies three interesting features: (i) it is the
unique strategy profile that survives all orders of deletion of IEWDS, (ii), it is
not a proper equilibrium of the whole game and (iii) it does not lead to the same
payoff outcome as any proper equilibrium of the whole game.

This happens because IEWDS and properness choose different profiles in the
Nash component. When the Nash component includes a continuum of outcomes
as in this example, IEWDS and properness need not induce the same outcome.
One may think that this phenomenon is not surprising when we only consider
dominance by pure strategies; the IEWDS is a purely ordinal concept whereas
the properness depends on the expected payoffs from the deviations, hence on
the cardinality of the payoffs. However, the above example does not hinge on the
exact cardinality of the payoffs, in the sense that we can find a class of games with
the same structure; the fact that the solution (M,L) is not proper depends on the
dominance relations between the pure strategies.

Therefore, one way to ensure that both concepts lead to the same prediction is
to impose a condition on the payoff structure which provides restrictions on the
other players’ payoffs given a deviation of a player by a mixed strategy. One such
condition is TDI ∗, not just TDI , since the dominance by mixed strategy matters,
as in the example of Myerson ([11], Table 5.2). The following Theorem shows that
when TDI ∗ is combined with the dominance solvability, the outcome of the Nash
component is singled out, and thus the predictions by the IEWDS and by the
properness coincide.
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A Positive Result

Before stating our main positive result, we list four properties of stable sets (see
Mertens [9] for a complete definition.).

1. Stable sets always exist (Existence).

2. Stable sets are connected sets of normal-form perfect equilibria (Connected-
ness).

3. Stable sets of a game contain stable sets of any game obtained by deleting
a pure strategy which is at its minimum probability in any normal form ε-
perfect equilibrium in the neighborhood of the stable set (Iterated dominance
and Forward Induction).

4. Every stable set contains a proper (hence sequential) equilibrium (Backwards
induction.).

Let us recall that the set of Nash equilibria consists of finitely many connected
components (Kohlberg and Mertens [6]).

Observation 1: Let Γ be a normal-form game that is dominance-solvable while
satisfying TDI ∗. We let X and Y be two full reductions by weak dominance. X
and Y are the same up to the addition or removal of redundant strategies (Marx
and Swinkels [8]). Moreover, since Γ is dominance-solvable, there is some order of
deletion that isolates some singleton s = {s1, . . . , sn}. Therefore, any pure strategy
profile t in both X and Y satisfies Ui(t) =Ui(s) for any i ∈N .

Theorem 1. Let Γ be a dominance-solvable game satisfying TDI ∗ and let s be a sur-
viving profile. Any equilibrium with s present in its support is payoff-equivalent to
s.

Proof. Let σ = (σi ,σi) be an equilibrium of Γ with σi(si) > 0, ∀i ∈ N . We have three
cases: (case 1) σ is a pure strategy equilibrium, (case 2) σ is a mixed strategy
equilibrium with exactly one player playing a mixed strategy, or (case 3) at least
two players play a mixed strategy in σ .

Case 1. If σ is a pure strategy equilibrium, then σ = s so that U (σ ) =U (s) holds
by definition.

Case 2. If σ is a mixed strategy equilibrium in which just one player plays a
mixed strategy, we let j be such a player and hence let #Supp(σj) ≥ 2. It follows
that σ−j = s−j . Therefore, Uj(sj , s−j) = Uj(tj , s−j) for any sj , tj ∈ Supp(σj). Since TDI
holds, it follows that U (sj , s−j) =U (tj , s−j) and hence U (σ ) =U (s), as wanted.

Case 3. Assume finally that σ is a mixed strategy equilibrium in which at least
two players play a mixed strategy (#Supp(σi) ≥ 2 for at least two players in N ).

12



Since the game is dominance-solvable and satisfies TDI ∗, we know that every
order of deletion o leads to a fully reduced game G∞o in which all pure strategy
combinations t satisfy U (t) = U (s) (Observation 1). Since nice weak dominance
is equivalent to weak dominance in TDI ∗ games, without loss of generality we
can consider the order of maximal elimination e that removes at each step every
nicely weakly dominated strategy. We let Dke denote the set of pure nicely weakly
dominated strategies after k steps of elimination according to e.

3.a: If there is no nicely weakly dominated strategy in S (which is equivalent
to D0

e = ∅), then G is a fully reduced game so that every pure strategy profile t in S
satisfies U (t) =U (s). Hence U (σ ) =U (s), as wanted.

3.b: If, on the contrary, D0
e , ∅, then we let mi in D0

e . If mi is in the support of
σ , there are two possibilities: either σi(mi) = 1 or σi(mi) < 1.

If σi(mi) = 1, then since σi(si) > 0 for all i ∈ N , we must have that mi = si . Since
now si is nicely weakly dominated, there must exist some ti that nicely weakly
dominates it in S. If Ui(ti ,σ−i) > Ui(si ,σ−i) then si is not a best response, proving
that σ is not an equilibrium. Hence, it must be the case that Ui(ti ,σ−i) =Ui(si ,σ−i).
However, the definition of nice weak dominance implies that ifUi(ti ,σ−i) =Ui(si ,σ−i)
then U (ti ,σ−i) =U (si ,σ−i).

If σi(mi) < 1, the equilibrium conditions imply that for every i ∈N , Ui(si ,σ−i) =
Ui(mi ,σ−i) for any mi ∈ Supp(σi). However, nice weak dominance implies that if
Ui(si ,σ−i) =Ui(mi ,σ−i) then U (si ,σ−i) =U (mi ,σ−i).

In both cases, the equilibrium payoff can be reached without the nicely weakly
dominated strategy in the support.

3.c: Given that the payoff of σ does not depend on any nicely weakly dominated
strategy in D0

e , it must depend on the strategies in S \D0
e .

We let S1 be the restriction S \D0
e . Note that the game G1 = (S1,u) is the one

obtained after one step of removing all nicely weakly dominated strategies.
3.d: If there are no nicely weakly dominated strategies in this restriction (i.e.D1

e =
∅), then the game is fully reduced so that every pure strategy combination t satis-
fies U (t) =U (s) and hence U (σ ) =U (s), as wanted.

3.e: If, on the contrary, D1
e , ∅, the equilibrium payoff can be attained without

the nicely weakly dominated strategies. Since the game is dominance-solvable,
iterating this procedure until no nicely weakly dominated strategy is left leads to
a game in which any pure strategy combination has the same payoff as s proving
that U (σ ) =U (s), as wanted.

Theorem 2. Let Γ be a dominance-solvable game that satisfies TDI∗. Then:

(i) Under any order of iterative elimination of weakly dominated strategies, the out-
come is the unique stable one.

(ii) For any equilibrium of the fully reduced game, there is a proper equilibrium of Γ
which induces the same outcome.

13



Proof. Since the game satisfies TDI ∗, all fully reduced games lead to the payoff
associated with s, the surviving singleton. Moreover the inclusion property of
Mertens sets ensures that s is stable. Hence, there must exist some proper equilib-
rium in G with payoff identical to s (Backwards Induction property of stable sets).
Moreover, since some order isolates s, then there is at most one stable set. Finally,
all equilibria in the component of s lead to the same payoff (Theorem 1). Hence,
the outcome of s is the unique stable one.

Why do we need TDI ∗ rather than TDI ?
The main logic behind Theorem 1 is that all orders of deletion are equivalent

under TDI ∗. More specifically, nice weak dominance and weak dominance coin-
cide whenever the game satisfies TDI ∗. The proof of the theorem relies on the fact
that (iteratively) applying nice weak dominance does not enlarge the set of Nash
payoffs. Does the same result hold if we only apply TDI?

Suppose that a singleton is selected by some order of IEWDS. The outcome of
this singleton must coincide with that of a proper equilibrium of the whole game
if this precise order satisfies nice weak dominance (i.e. all removed strategies are
nicely weakly dominated). Yet, the set of proper outcomes might be enlarged by
applying IEWDS in a game satisfying TDI but not TDI ∗, as shown by the next
example, related to the one provided by Marx and Swinkels [8] (p.233).

L C R
T 2,1 4,3 0,2
M 0,3 3,1 4,2
B 1,4 1,4 1,4
D 1,4 0,3 0,2

This game satisfies TDI but not TDI ∗. Indeed, the strategy R is very weakly
dominated by 1/2L+1/2C in S \{D,B} but is neither weakly dominated nor redun-
dant on S \ {D,B}. Moreover, this game is dominance solvable. After eliminating
R, the strategies M,B,D are strictly dominated by T . Then eliminating L leads to
(T ,C) as the surviving profile.

On the contrary, if we only eliminate D and B from S, then we are left with
the fully reduced game {T ,M} × {L,C,R}. In this game, there is a set of completely
mixed strategy equilibria (hence proper) of the following type:

(1/2T + 1/2M, (pL+ qC + (1− p − q)R)) as long as 6p+ 5q = 4.

However, some equilibria of this set are not proper equilibria of the whole
game. Indeed, note that as far as R is in the support of an equilibrium (take
for instance the equilibrium in which p = ε and q = (4 − 6ε)/5), this equilibrium
cannot be proper in the whole game since R is weakly dominated by 1/2L + 1/2R
in S. Therefore, the set of proper equilibria might be enlarged by IEWDS in a
dominance solvable game that satisfies TDI but fails to satisfy TDI ∗.
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5 Conclusion

In this paper we explore the conditions under which simplification of the game by
IEWDS can be applied to analyze strategic stability of the equilibria.

We show that neither the TDI ∗ condition of Marx and Swinkels [8] nor the
dominance solvability alone is sufficient to guarantee that the set of proper out-
comes of the reduced game is included in the set of proper outcomes of the whole
game (proper inclusion). We show by example that the TDI ∗ condition alone is
not sufficient; indeed IEWDS may enlarge the set of proper outcomes. Dominance
solvability alone is not sufficient either: we give an example in which the outcome
singled out by the dominance solvability does not coincide with any proper out-
come of the whole game.

If the game satisfies both TDI ∗ and dominance solvability, we show that proper
inclusion holds. Moreover, the uniqueness of the stable outcome is guaranteed.

There is a large class of games for which our sufficient conditions are satisfied.
For example, in many strategic interactions in political competition, such as vot-
ing, players’ payoff depends solely on the outcome, which is determined by the
social choice, such as the winner of the election. TDI ∗ condition is relevant in
many situations (see Marx and Swinkels [8]). Even in the games in which the DS
condition is not satisfied, if the outcome is isolated, the proper inclusion is guaran-
teed. We can safely apply IEWDS to simplify the game and analyze the strategic
stability of the whole game by focusing on the reduced game.

This paper provides a set of sufficient conditions under which we can take ad-
vantage of both the simplicity of IEWDS and the robustness of strategic stability.
This is what we call hybrid procedures.
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