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Abstract

In this paper, we show how to recover discrete-time models from their continuous-time versions through

Euler discretizations.

In the first part, we introduce general polynomial discretizations in backward and forward looking and

we study the preservation of stability properties and local bifurcations under different discretizations.

In the second part, we apply these results to popular growth models. We show how to reconcile

the traditional Solow models in discrete and continuous time through a backward-looking discretization.

Discrete-time models of endogenous saving, such as Ramsey (1928), need hybrid discretizations of the

continuous-time model because of the forward-looking nature of the Euler equation. The introduction of

externalities allows us to illustrate the preservation of stability properties and local bifurcations.
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1 Introduction

The issue of time representation, that is, the choice of a discrete or a continuous variable, is a fundamental

concern in economic theory.

On the one side, most of theoretical models, especially in the growth literature, are built in continuous

time and authors are forced to this option by no other reason than formal easiness, as Turnovsky (1977)

recognizes. Gandolfo (1997) puts forward other arguments in favour of the continuous time: the common

sense suggests that life unfolds continuously.

On the other side, economic transactions take place at given instants and data are available as discrete-

time measurements: some authors argue that a discrete-time approach makes more sense from an empirical

point of view.1 From a methodological point of view, there is another difference between these representations

which argues in favour of discrete time. A one-dimensional difference equation, such as the logistic map, can

generate complex dynamics, while a higher-dimensional system is needed in continuous time (Guckenheimer

and Holmes (1983)). As a consequence, one gains in simplicity by modeling complex dynamics in discrete

time.2 Finally, in discrete time, distinction between forward and backward-looking variables turns out to be

more natural. For instance, introducing observed or expected inflation in a Taylor rule changes the dynamic

properties of monetary policy.

These examples show that time modeling is neither trivial nor neutral and has economic consequences.

The choice of time can determine the results independently of the underlying economic mechanisms. In the

case of a logistic equation, the continuous time rules out in advance the occurrence of (a)periodic cycles.

In this paper, we don’t address the question whether discrete or continuous-time models are more ap-

propriate to represent the economic activity. We simply observe formal similarities and some differences of

dynamic behavior and we want to contribute to understand the reasons.

A growing literature focuses on the dynamic effects of time representation. Theorists tackle the question

in different ways.

On the one side, there are papers that consider specific models and compare the stability properties in

discrete and continuous time. For instance, Carlstrom and Fuerst (2005) study the role of time specification

on indeterminacy in models where the central bank implements an interest rate rule. Mino, Nishimura,

Shimomura and Wang (2005) address the issue of stabilization policy in two-sector endogenous growth models

with constant social returns. Time representation also matters under uncertainty: Leung (1995) shows that

the consumption paths are different in discrete and continuous time when agents face an uncertain life-span.

On the other side, there are papers that address more general issues, such as the role of the period length,

to reconcile discrete and continuous-time dynamics. Mercenier and Michel (1994) consider infinite-horizon

optimizations and discretize continuous-time models as usually done in numerical simulation. Their goal is

closely related to ours: the invariance property of the steady state can be achieved through an appropriate

Euler discretization and simple restrictions on discounting. Anagnostopoulos and Giannitsarou (2008) play

with the period length in a dynamic general equilibrium model: they recover popular models as particular

cases of a general framework, compare the dynamic properties under both time specifications and conclude

that the period length matters for indeterminacy. Hintermaier (2005) also shows that the existence of sunspot

equilibria in discrete-time business cycle models depends on the period length. The length of the lag also

plays a role: the literature on the time-to-build has been recently revisited in the light of time specification.

Licandro and Puch (2006) compare continuous and discrete-time time-to-build models. Bambi (2008) makes

an attempt to unify this literature, recovering multi-period investments in discrete-time from delay equations

in continuous time. Cycles occur through Hopf bifurcations under both time representations.

In the first part of the paper, in the spirit of Krivine, Lesne and Treiner (2007), we bridge continuous

and discrete-time dynamics through general polynomial discretizations. Then we study how the stability

property of an invariant steady state are preserved under discretization. In the second part, we apply the

theoretical results to popular growth models with or without market imperfections.

1Two main criticisms are addressed by Gandolfo (1997) to these apparently convincing arguments. First, although individual

decisions are discrete, the fact that they are not synchronized and spread over time from a great number of agents, restores a

theoretical justification for continuous-time models. In addition, statistical inference in continuous time knew consequent and

satisfactory developments since the 1970s (see Bergstrom (1976), Bergstrom (1984), Gandolfo (1981) and Wymer (1972)).
2The logistic map exhibits stable fixed point, stable periodic cycles (of any order) and deterministic chaos. In addition,

all these dynamic behaviors are sensitive to a single parameter value. Conversely, only monotonic orbits, either convergent or

explosive, are generated by a single first-order differential equation.
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A discretization is an approximation of the continuous-time system and the most common representation

is the polynomial approximation. In this case, we distinguish discretizations according to the step, the order

and the direction of discretization.

The step gives the length of the period in discrete time. Common discrete-time form are recovered under a

unit step. The order is that of the Taylor expansion of the continuous-time model. A first-order approximation

gives the classical Euler discretization. The direction depends on the backward or forward-looking nature of

the Taylor expansion. A hybrid discretization mixes backward and forward-looking discretizations.

In the first part of the paper, we study the preservation of dynamic properties under different type

of discretizations. We find that the steady state is invariant to the step, the order and the direction of

discretization. In addition, the continuous-time stability properties of the steady state (sink, saddle, source)

are preserved under a sufficiently small discretization step. This result holds in case of backward, forward or

hybrid discretizations. Local bifurcations in continuous time such as the saddle node, the transcritical and

the pitchfork are also preserved, while the Hopf bifurcation endures under a sufficient small discretization

step. Flip and period-doubling bifurcations disappear in discrete time under a critical discretization step.

In the second part, we illustrate these properties with traditional growth models. The traditional Solow

model in discrete time results from a backward-looking Euler discretization of the Solow model in continuous

time. The traditional Ramsey model is recovered with a hybrid discretization of the Ramsey model in

continuous time (we apply a Euler discretization in backward and forward looking to the law of motion and

the Euler equation, respectively). Eventually, we introduce market imperfections (externalities) in both the

models to obtain richer dynamics (cycles). Two-period cycles, arising in the Solow model with pollution, are

ruled out when the discretization step becomes sufficiently small or the polynomial order sufficiently high

(indeed quadratic forms are enough to exclude flip bifurcations). Limit cycles, emerging in the Ramsey model

with positive externalities, are preserved under a critical discretization step.

The rest of the paper is organized as follows. In Section 2, we present the methodological issue of time

discretization. Section 3 compares the stability properties in continuous and discrete time. Section 4 focuses

on backward-looking discretizations of Solow models, while Section 5 apply hybrid discretizations to Ramsey

models.

Part I

Theory

2 General methodology

The question we address concerns the typology of discretizations we need to recover some equivalence prop-

erties between discrete and continuous time models.

Discretizations based on polynomial representations were introduced by Euler and are today quite popular

in computational science. From a theoretical point of view, the Euler approach can shed a light on the

interplay between continuous and discrete-time dynamics and it proves to be pertinent to investigate and

compare stability properties and bifurcations. In the spirit of Euler, we choose to apply a Taylor expansion

to discretize a continuous-time system. We start by taking a general order expansion, then, we will consider

linear and quadratic approximations.

2.1 Discretizations

Instead of considering a continuous variable  and the corresponding position  () determined by an -

dimensional system of ordinary differential equations:

̇ =  () (1)

where  ∈ 0, jointly with the initial condition 0 ≡  (0), let us pick up a regular sequence of time values:

()
∞
=0 = ()

∞
=0, where  is a (possibly small) positive constant (discretization step), and the associated

values:  ≡  () =  ().

3



The path from  to +1 can be reconstructed component by component through an appropriate inte-

gration of (1). More precisely, if we focus on the th component of the vector  ∈ R, we can integrate the
time derivative on the right or on the left to obtain, respectively,

+1 −  =  (+ )−  () =

Z +



̇

¯̄̄̄
¯
=

=

Z +



 ( ()) 

¯̄̄̄
¯
=

+1 −  =  (+ )−  () =

Z +

+

̇

¯̄̄̄
¯
=0

=

Z +

+

 ( ()) 

¯̄̄̄
¯
=0

with  = 1    .

Defining

 () ≡
Z +



 ( ()) 

 () ≡
Z +

+

 ( ()) 

we get  () = +1 −  =  (0). Clearly,  () =  (0).

Discretizing means approximating  () ( ()) with another (simple) function evaluated in  = 

( = 0). The most popular approximation is the Euler-Taylor discretization: assuming that  ∈ −1 and
considering the th order polynomial, we obtain a backward or a forward discretization, respectively:

+1 −  =  () ≈
X

=0

(− 0)
!


()
 (0) =

X
=1

(− 0)
!


()
 (0) (2)

+1 −  =  (0) ≈
X

=0

(0− )


!

()
 () =

X
=1

(0− )


!

()
 () (3)

because  (0) =  () = 0.

Let us call hybrid a discretization where (2) holds for some components of vector  and (3) holds for others.

In economics, higher-dimensional models require often a hybrid discretization to recover the equivalence

between discrete and continuous time. For instance, in the popular Ramsey model, a mix of discretization in

backward looking (budget constraint) and forward looking (Euler equation) is required to recover the usual

discrete-time form.

2.1.1 First-order discretizations

Setting  = 1, we obtain from (2) and (3):

+1 −  =  () ≈ (− 0)0 (0) =  ( (+ 0)) =  () (4)

+1 −  =  (0) ≈ (0− )0 () = (0− ) [− ( (+ ))] =  (+1) (5)

This proves the following proposition.

Proposition 1 The continuous-time dynamic system ̇ =  () is discretized by linear forms. Using (2) and

(3) we obtain in backward and forward looking, respectively:

+1 −  ≈  () (6)

+1 −  ≈  (+1) (7)

where the subscript  denotes the th component of the vector.

Equation (6) (respectively (7)) constitutes a backward-looking (forward-looking) discretization, because

the variation +1 −  depends on the past value  (future value +1) on the right-hand side. Equation

4



(6) is the classical Euler discretization.3 In economics, forward-looking discretizations are of interest because

agents behave according to their expectations.

The entire sequence ()
∞
=0 can be computed forward (backward) from the initial condition 0 (final

condition ) by iterating the procedure: 1 ≈ 0 +  (0), 2 ≈ 1+  (1) ≈ 1 +  (0 +  (0)) and

so on (respectively −1 ≈  −  (), −2 ≈ −1 −  (−1) ≈  −  ()−  ( −  ()) and

so on).

However, the sequences () are approximations of the true sequence ( ()), exact solution of system

(1): the smaller , the more accurate the representation. The easiness of the Euler’s method makes it a

popular technique to plot a phase diagram and find numerical solutions of a system of differential equations.

In this paper, we are not interested in numerical simulations, but only in the change of dynamic properties,

when one passes from continuous to discrete time: Euler’s discretization is of great help to understand why

some stability properties (dis)appear from a timing to another.

Conversely, given an ordinary -dimensional discrete-time system: +1 =  (), we can define  () ≡
[ ()− ]  and approximate the discrete-time system with ̇ =  (). As above, the smaller , the more

accurate the approximation. In the following, we will focus only on discretizations of continuous-time system.

2.1.2 Higher-order discretizations

As above, we define  ≡  () =  (), where  ∈ R. We can approximate its th component of +1
with a quadratic form.

Proposition 2 The continuous-time dynamic system ̇ =  () with  ∈ 1 is discretized by second-order

Taylor polynomials. Using (2) and (3), we obtain in backward and forward-looking, respectively:

+1 ≈  +  () +
2

2

X
=1

 ()



() (8)

+1 ≈  +  (+1)− 2

2

X
=1

 (+1)


+1
(+1) (9)

where the subscript  denotes the th component of the vector.

Proof. Focus on the th component. Formulas (2) and (3) become, respectively,

+1 −  =  () ≈ (− 0)0 (0) +
(− 0)2
2!

00 (0) (10)

+1 −  =  (0) ≈ (0− )0 () +
(0− )

2

2!
00 () (11)

We know from (4) and (5) that 0 (0) =  () and 0 () = − (+1). In addition, noticing that

() (+ ) =  ( (+ )), we obtain4

00 () =

X
=1




( (+ ))  ( (+ ))

00 () = −
X
=1




( (+ ))  ( (+ ))

3An equivalent way of deriving (6) is the following. According to the definition of derivative, we can write

̇ () ≡ lim→0 [ (+ )−  ()] . If  is sufficiently small, we can set ̇ () ≈ [ (+ )−  ()]  and, therefore,

[ (+ )−  ()]  ≈  ( ()). We obtain [ ( + )−  ()]  ≈  ( ()), that is [ (+1)−  ()]  ≈  ( ()) where

+1 =  + , and, finally, (+1 − )  ≈  (), that is (6).
4 depends on all the components of the vector  ().
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and, eventually,

00 (0) =

X
=1

 ()



()

00 () = −
X
=1

 (+1)


+1
(+1)

Replacing in (10) and (11) these results, we get (8) and (9).

In the case of a one-dimensional dynamics, discretizations (8) and (9) simplify to

+1 ≈  +  ()+  () 
0 ()22

+1 ≈  +  (+1)−  (+1) 
0 (+1)22

while in the case of a two-dimensional dynamics, non-hybrid discretizations give in backward and forward-

looking, respectively,

+1 ≈  +

∙
 +

2

2
0 ()

¸
 ()

+1 ≈  +

∙
 − 2

2
0 (+1)

¸
 (+1)

where  is the identity matrix and 0 is the Jacobian matrix of  .

Similarly, one derives higher-order discretizations. For instance, in the case of a one-dimensional dynamics

in backward looking, one obtains

+1 ≈  +  ()+  () 
0 ()22 +

h
 () 

0 ()
2
+  ()

2
 00 ()

i
36

If  is an analytic function, infinite-order backward or forward discretizations converges exactly to +1−
 and the sign of approximation can be replaced by the equality:

+1 −  =

∞X
=1

(− 0)
!


()
 (0) =

∞X
=1

(0− )


!

()
 ()

In this case, the Taylor polynomials become a convergent series and the discretized dynamics exactly repre-

sents the continuous time whatever the step .

In general, a discretization is a closer approximation of a continuous-time system when the step  is smaller

or the order of discretization  higher. As we will see below, the dynamic properties of a continuous-time

system can be preserved lowering  or increasing .

2.1.3 Dynamic optimization models

In economics, a large class of dynamic models are microfounded, that is based on rational individual behaviors.

Agents are rational when they optimize their own objective under a system of constraints. Since intertemporal

optimization is the starting point of any microfounded dynamic model in economics, it makes sense to compare

optimization in continuous and discrete time and apply Euler discretizations in order to find some equivalence.

Some popular growth models, such those we will study at the end of the paper, are microfounded and can

be derived as particular solutions of a general dynamic program: they rest on a common set of assumptions,

namely intertemporal separability of the objective. In our approach, both the state and control variables

enter the objective functional and the constraint. Instead of solving different specific models, we solve this

general program. In the second part of the paper, the general solution will be applied to the specific models

we are interested in.

After solving continuous and discrete-time programs of intertemporal optimization, we will discretize the

first-order conditions in continuous time.
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Let us maximize a general intertemporal functional

 ≡
∞Z
0

 ( )  (12)

where  and  denote the state and the control, subject to the law of motion

̇ ≤  ( ) (13)

and a discounting process ̇ = −, where  =  () is a given positive function of time. The initial

conditions 0 and 0 ≡ 1 are also given.

Assumption 1  : R2+ → R and  : R2+ → R are 2, strictly increasing in both the arguments (  0,

  0) and strictly concave.5 The Inada boundary conditions are also satisfied.

The agent chooses the control in order to maximize the functional subject the law of motion.  is a

general discounting which depends on the lapse of time. When the discount rate  is constant, discounting

simplifies to  = 0
−. In this case, it is equivalent to maximize (12) or

R∞
0

− ( ) .
The Hamiltonian associated to the program is  ≡  ( ) +  ( ). Maximizing  with re-

spect to the costate, state and control variables, gives, respectively:  =  ( ) = ̇,  =

 +  = −̇,  = 0 (that is  = − ()  ()) with ̇ = − and
transversality condition: lim→∞  = 0. Setting  ≡ , the current-value shadow price, and noticing

that

̇ = ̇ + ̇ (14)

we obtain ̇ = −
³
̇ + 

´
−  and

 = −



(15)

We can apply the Implicit Function Theorem to equation (15) to obtain  =  ( ) with

µ








¶
=

⎛⎜⎝ 


2


− 


2





2
2
− 



2
2



³



´2



2
2
− 



2
2

⎞⎟⎠ (16)

Hence, we find a two-dimensional system in ( ):

̇ =  (  ( )) (17)

̇ = −
"
̇

+




(  ( ))

#
− 


(  ( )) (18)

Focus now on the corresponding program in discrete time. We maximize the utility series
P∞

=0  ( )

under a sequence of constraints: +1 −  ≤  ( ) with  = 0 1    Under the assumptions   0 and

  0, the Lagrangian multipliers are positive and the constraints is binding. The intertemporal smoothing

is represented by a sequence of Euler equations. We obtain a two-dimensional system

+1 =  +  (  ( )) (19)


+1

=
+1



∙
1 +



+1

¡
+1 

¡
+1 +1

¢¢
+

1

+1



+1

¡
+1 

¡
+1 +1

¢¢¸
(20)

where  is still given by (15). As above (15) allows us to define  =  ( ) with partial derivatives (16).

The variables of system (19)-(20) are  and . We observe that  is the current-value costate variable of

the continuous-time program at time , that is  = .

5Let functions  and  satisfy the Arrow-Mangasarian sufficient conditions for maximization. The second-order restrictions

are explicitly provided in Bosi and Ragot (2009).
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The crucial question is whether the discrete-time system (19)-(20) can be recovered through a (first-order)

Euler discretization. We mix a backward-looking discretization of constraint (17) and a forward-looking

discretization of the Euler equation (18).

Discretizing the continuous-time constraint (17) gives:

+ −  ≈  (  ( )) (21)

that is the discrete-time resource constraint (19) under a unit discretization step ( = 1). Because of the

forward-looking nature of the Euler equation, we can not recover (20) in backward-looking. Using (14),

equation (18) can be written in terms of  =  instead of :

̇ = − 


µ
 

µ






¶¶
− 





µ
 

µ






¶¶
(22)

Let us call (22) the -type Euler equation and apply the forward-looking discretization (7) to (22):

+ −  = −
∙
+



+

µ
+ 

µ
+

+

+

¶¶
+ +



+

µ
+ 

µ
+

+

+

¶¶¸
Replacing  = , we obtain


+


+

= 1 + 

∙


+

¡
+ 

¡
+ +

¢¢
+

1

+



+

¡
+ 

¡
+ +

¢¢¸
(23)

that is the discrete-time Euler equation (20) under a unit discretization step  = 1.

Hence, (1) a hybrid discretization of (2) a -type continuous-time system with (3) a unit discretization

step gives exactly the traditional discrete time system.6

Traditional growth models in discrete time come from a unit-step hybrid approximation of the continuous-

time system: backward-looking discretization of the constraint and a forward-looking discretization of the

-type Euler equation.

3 Topological equivalence

In order to compare continuous-time and discrete-time system, we will study approximations in a neighbor-

hood of the steady state and focus on the persistence of stability properties and elementary bifurcations.

3.1 Steady state

The system ̇ =  () and its discrete-time approximation +1 ≈  +  () have the same steady state.

Indeed, in both the cases we require  () = 0 (respectively, ̇ = 0 and +1 = ). We further notice that

the system of  equations  () = 0 neither depend on the discretization degree  nor on the discretization

method (forward or backward-looking).

6A quadratic approximation of (17)-(22) is also possible. As above, we focus on a backward-looking discretization of the

constraint and a forward-looking discretization of the -type Euler equation. In the case the utility function no longer depends on

the state variable ( ( ) =  () as in the Cass-Koopmans model (and a fortiori in Ramsey)), this quadratic approximation

reduces to

+ −  ≈  +
2

2


 − 
















+



+
≈ 1 + 



+
+

2

2



+




+
+ +



+

2

++



−2

2
+


2

2
+

+


+

2

++


with  ≡  (  ( )).

8



3.2 Stability properties

The steady state is invariant to discretization. The subsequent question we raise is whether the stability

properties are also preserved under discretization in a neighborhood of the steady state. On the one hand,

we will prove a topological equivalence: a sink in continuous time remains a sink in discrete time under a

sufficiently small discretization step; the same happens for a saddle point or a source.7 On the other hand,

we will see in the next section how the Euler discretization affects local bifurcations, that is how conditions

for a specific bifurcation change under discretization.

At least, a two-dimensional system is required to study the three cases together (sink, saddle and source)

and to consider hybrid discretizations. Without loss of generality, we linearize the following

̇1 = 1 (1 2) (24)

̇2 = 2 (1 2) (25)

Local dynamics around the steady state are represented by the Jacobian matrix

0 ≡
"

1
1

1
2

2
1

2
2

#
evaluated at 1 (1 2) = 2 (1 2) = 0.

For simplicity, we will focus on first-order discretizations. Our equivalence results holds a fortiori for

higher-order discretizations.8

3.2.1 Backward-looking discretization

We linearize the backward-looking discretization

+1 ≈  +  () (26)

of system (24)-(25) around the common steady state  () = 0 and we obtain +1 = 1 = ( + 0) ,

where  and 1 are the two-dimensional identity matrix and Jacobian matrix of system (26). We observe

that 0 depends on the steady state  which, in turn, does not depend on : then,

1 =  + 0 (27)

depends only linearly on .

Let us denote the trace and determinant of 0 and 1 by (00) and (11), respectively. The

characteristic polynomial in discrete time is given by 1 () ≡ 2 − 1+1, where

1 = 2 + 0 (28)

1 = 1 + 0 + 20 = 1 − 1 + 20 (29)

We can represent the stability properties in the plane of trace and determinant (see Samuelson (1941)).

-2 2

-2

2

sourcesink

saddle

T0

D0

Fig. 1: Continuous time

-2 2

-2

2

source

sink

saddle

source

saddle

T

D1

1

Fig. 2: Discrete time

7We would like to thank Jean-Michel Grandmont for his invaluable comments. Usual disclaimers apply.
8For second-order discretizations, the reader is referred to Bosi and Ragot (2009).
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There are three critical values of the discretization step that determine the intervals of equivalence between

the continuous and the discrete-time dynamics: 1 ≡ −00,

1 ≡ − 0

0

−
sµ

0

0

¶2
− 4

0

and 2 ≡ − 0

0

+

sµ
0

0

¶2
− 4

0

Proposition 3 Consider   0.

(1) Let the steady state be a sink in continuous time (Figure 3).

(1.1) If  20  40, then the steady state is a sink in discrete time if   1 and a source if 1  .

(1.2) If  20  40, then the steady state is a sink if 0    1, a saddle if 1    2 and

source if 2  .

(2) If the steady state is a saddle in continuous time, then the steady state is a saddle in discrete time if

0    2 and source if 2   (Figure 4).

(3) If the steady state is a source in continuous time, then the source property is preserved whatever   0

(Figure 5).

The system generically undergoes a Hopf bifurcation at 1 and flip bifurcations at ,  = 1 2.

Proof.

(1) Assume that the steady state is a sink in continuous time: 0  0  0. According to (29),

1  1 − 1. Focus on two cases: (1.1)  20  40 and (1.2) 
2
0  40.

(1.1) If  20  40, then always 0
2 + 20+ 4  0, that is −1 − 1  1. So, the steady state is

a sink if 1  1, that is   1, and a source if   1. This case corresponds to the upper parabola in

Figure 3. Increasing  away from zero means moving away from the point where  = 0, along the parabola.

(1.2) If  20  40, then 1  −1 − 1 iff 1    2. In addition, 1  1 iff    . We notice

also that 0  1  1  2. Then, the steady state is a sink if 0    1, a saddle if 1    2
and a source if 2  . This case corresponds to the lower parabola in Figure 3.

(2) Assume now that the steady state is a saddle in continuous time: 0  0. According to (29),

1  1 − 1. We observe that 1  0  2 and that 1  −1 − 1 iff 1    2. Thus,

the steady state is a saddle if 0    2 and a source if 2  . If 0  0 (0  0), the curve

{(1 () 1 ()) :   0} is represented by the leftward (rightward) branch of parabola in Figure 4.
(3) Assume now that the steady state is a source in continuous time: 0 and 0  0. (28) and (29) imply

1  2 and 1  1 − 1 for every   0. Therefore the source property is preserved whatever   0. The

branch of parabola in Figure 5 represents this case.

From (28) and (29), it is possible to plot a parametrized curve (1 () 1 ()) for each one of these

different cases: 1 = 1 − 1 +0 [(1 − 2) 0]2 given (00).

-2 2

-2

2source

sink

case (1.2)

T

D1

1

hH1

h F1 case (1.1)
saddle

h = 0

Fig. 3: Sink in continuous time

-2 2

-2

2

saddle

source

T

D1

1

h F2

T < 00 > 0

h = 0

Fig. 4: Saddle in continuous time

-2 2

-2

2

source

T

D1

1

h = 0

Fig. 5: Source in continuous time

Corollary 4 (topological equivalence in backward looking) In every case of Proposition 3, there exists a

nonempty interval (0 ∗) for the discretization step  where the stability properties of the continuous-time

system are preserved.

Proof. Straightforward. Simply observe that, in the case (3), ∗ = +∞.
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3.2.2 Forward-looking discretization

We linearize now the forward-looking discretization

+1 ≈  +  (+1) (30)

of system (24)-(25) around the common steady state  () = 0 to obtain +1 = 1 = ( − 0)
−1

.

Differently from the previous case, the Jacobian matrix of system (30) 1 = ( − 0)
−1
is no longer

linear in . The trace and the determinant of 1 are now given by

1 = (2− 0)1 (31)

1 =
1

1− 0 + 20

= 1 − 1 + 201 (32)

As above, we set three critical values: 2 ≡ 00,

3 ≡ 0

0

−
sµ

0

0

¶2
− 4

0

and 4 ≡ 0

0

+

sµ
0

0

¶2
− 4

0

Proposition 5 Consider   0.

(1) If the steady state is a sink in continuous time, then the sink property is preserved in discrete time

whatever   0.

(2) Let the steady state be a saddle in continuous time.

(2.1) If 1  0, then the steady state is a saddle.

(2.2) If 1  0, then the steady state is a saddle if 0    4 and a sink if 4  .

(3) Let the steady state be a source in continuous time.

(3.1) Let 1  0. If (00)
2
 40, then the source property is preserved whatever   0. If

(00)
2
 40, then the steady state is a source if 0    3 or 4  , and a saddle if 3    4.

(3.2) Let 1  0. If (00)
2
 40, then the steady state is a source if 0    1 and a sink

if 2  . If (00)
2
 40, then the steady state is a source if   3, a saddle if 3<h<h4 and a

sink if 4  .

The system generically undergoes a Hopf bifurcation at 2 and flip bifurcations at ,  = 3 4.

Proof.

(1) Assume that the steady state is a sink in continuous time: 0  0  0. According to (32),

0  1  1 and, so, 1  1 − 1. We observe that 1  −1 (1 + 2− 0) or, equivalently, according to

(31), 1  − [(2− 0)1]−1 = −1−1. Hence, the steady state is a sink in discrete time whatever   0.

(2) Assume now that the steady state is a saddle in continuous time: 0  0. According to (32),

1  1 − 1 iff 1  0. We notice that, according to (31) and (32), 1  −1 − 1 is equivalent to
1− 0 + 2

1− 0 + 20

 −1 (33)

(2.1) If 1  0, then 1  1 − 1. The steady state is a saddle.
(2.2) If1  0, then 1−0+20  0 and1  −1−1, that is (33), is equivalent to0

2−20+4  0,
that is to 3    4. We observe that   0 and 3  0  4. Thus, the steady state is a saddle if

0    4 and a sink if 4  .

(3) Assume now that the steady state is a source in continuous time: 0 and 0  0. According to (32),

1  1 − 1 iff 1  0. We observe that 1  −1 − 1 is still equivalent to (33).
(3.1) If 1  0 (that is 1  1 − 1), then 1 − 0 + 20  0 and 1  −1 − 1, that is (33), is

equivalent to 0
2 − 20+ 4  0.

If (00)
2
 40, then 1  −1 − 1: the steady state is a source, whatever   0.

If (00)
2
 40, then 1  −1−1 is equivalent to 3    4 since 0  3  4. The steady

state is a source if 0    3 or 4  , and a saddle if 3    4.

(3.2) Consider the case 1  0 (that is 1  1 − 1). Then 1 − 0 + 20  0 and 1  −1 − 1 is
equivalent to 0

2 − 20+ 4  0.

11



If (00)
2
 40, then 1  −1 − 1. We have 1  1 iff   00 ≡ 2. Then, the steady state

is a source if 0    2 and a sink if 2  .

If (00)
2
 40, then 1  −1 − 1 iff 3<h<h4. We observe that 0  3  2  4. Then,

the steady state is a source if   3, saddle if 3<h<h4 and sink if 4  .

For brevity, we omit the figures corresponding to the cases of Proposition 5. Their construction is similar

to that of Figures 3-5.

Corollary 6 (topological equivalence in forward looking) In every case of Proposition 5, there exists a non-

empty interval (0 ∗) for the discretization step  where the stability properties of the continuous-time system
are preserved.

Proof. Straightforward. Simply observe that, in cases (1) and (2.1), ∗ = +∞.

3.2.3 Hybrid discretization

In economics, many higher-dimensional models require a hybrid discretization to recover the equivalence

between discrete and continuous time, that is a mix of discretization in backward and forward looking.

Without loss of generality, we consider a system where the first equation is discretized backward and the

second one forward. Thus, the system of differential equations (24)-(25) becomes:

1+1 ≈ 1 + 1 (1 2) (34)

2+1 ≈ 2 + 2 (1+1 2+1) (35)

As we know, the steady state is invariant to the choice of time and to the type of discretization (back-

ward/forward). The trace and the determinant of the Jacobian matrix 1 of the hybrid system (34)-(35)

become

1 = 2 +
 (0 − 0)

1− 22
(36)

1 = 1 +
0

1− 22
= 1 − 1 + 20

1− 22
(37)

Notice that, in the particular case 22 = 0, (36) and (37) write

1 = 1 +1 − 20 (38)

1 = 1 + 0 (39)

Let

5 ≡ 0 − 222
0

−
sµ

0 − 222
0

¶2
+

4

0

and 6 ≡ 0 − 222
0

+

sµ
0 − 222

0

¶2
+

4

0

where 22 ≡ 22.

Proposition 7 Consider   0.

(1) Let 22 ≤ 0.
(1.1) If the steady state is a sink in continuous time, then the steady state in discrete time is a sink

if 0    6, and a saddle if 6  .

(1.2) Let the steady state be a saddle in continuous time.

(1.2.1) If [(0 − 222) 0]
2
+ 40  0, or [(0 − 222) 0]

2
+ 40  0 and 0  222, then

the steady state is a saddle point.

(1.2.2) If [(0 − 222) 0]
2
+ 40  0 and 0  222, then the steady state is a saddle if

0    5, and a source if 5  .

(1.3) If the steady state is a source in continuous time, then the steady state is a source if 0    6
and a saddle if 6  .

(2) Let 22  0 with   122. All the previous cases hold, provided we restrict the analysis to the

interval (0 122).

The system generically undergoes a Hopf bifurcation at 2 and a flip bifurcation at ,  = 5 6.

12



Proof.

(1) We consider the case 22 ≤ 0 (the case 22 = 0, that is 1 = 1 + 1 − 20 and 1 = 1 + 0, is

included).

(1.1) Assume that the steady state is a sink in continuous time: 0  0  0. Then from (37) we have

1  1 and 1  1 − 1. We notice that, according to (36) and (37), 1  −1 − 1 is equivalent to
0

2 − 2 (0 − 222)− 4  0 (40)

that is to 5    6. We notice also that 5  0  6. Thus, the steady state is a sink if 0    6,

and a saddle if 6  .

(1.2) Assume now that the steady state is a saddle in continuous time: 0  0. According to (37),

1  1 − 1. 1  −1 − 1 is equivalent to (40).
(1.2.1) If [(0 − 222) 0]

2
+ 40  0, then 1  −1 − 1: the steady state is a saddle point. If

[(0 − 222) 0]
2
+40  0 and 0  222 we have 5  6  0  : the steady state is a saddle point.

(1.2.2) If [(0 − 222) 0]
2
+ 40  0 and 0  222 we notice that 0  5  6. So, the steady

state is a saddle if 0    5, a source if 5  .

(1.3) Assume now that the steady state is a source in continuous time: 0 and 0  0. According to

(37), 1  1 and 1  1 − 1. 1  −1 − 1 is equivalent to (40). We observe that 5  0  6. Hence,

source if 0    6 and saddle if 6  .

(2) The case 22  0 with   122 is similar to the previous one. More precisely, we have to consider

the interval (0 122) and only the bifurcation values in this interval.

(2.1) If the steady state is a sink in continuous time, then it is a sink if 0    min {6 122} and a
saddle if 6  122 and 6    122.

(2.2) Let the steady state be a saddle in continuous time.

(2.2.1) If [(0 − 222) 0]
2
+ 40  0 and 0  222, then the steady state is a saddle if 0   

min {5 122} and a source if 5  122 and 5    122.

(2.2.2) If [(0 − 222) 0]
2
+ 40  0 or 0  222, then the steady state is a saddle if 0    122.

(2.3) Assume now that the steady state is a source in continuous time. Hence, the steady state is a source

in discrete time if 0    min {6 122} and a saddle if 6  122 and 6    122.

We are interested in values of  lying in a right neighborhood of zero, where the stability properties are

preserved. Therefore, the complicate case of a rough approximation with   122 and 22  0 is omitted.

As above, we omit the figures corresponding to the multiple cases of Proposition 7.

Corollary 8 (topological equivalence in hybrid looking) In every case of Proposition 7, there exists a non-

empty interval (0 ∗) for the discretization step  where the stability properties of the continuous-time system
are preserved.

Proof. Straightforward. Simply observe that, in the case (1.2.1), ∗ = +∞.

3.2.4 Dynamic optimization models

The explicit structure of optimization models helps us to understand the (possible lack of) equivalence

between bifurcations in continuous and discrete time. In the following, we reconsider the general program

(12)-(13) and we linearize the first-order discretization.9

The existence of a steady state requires  =  constant over time. In this case, the system writes

0 =  (  ( )) (41)

 =



(  ( )) +

1






(  ( )) (42)

Local dynamics of continuous time system (17)-(18) are summarized by the following Jacobian matrix:10

0 ≡
∙
 +  
− −

¸
(43)

9For brevity, we omit the linearization of higher-order discretizations.
10 In the following, given a generic function  =  ( ),  ≡  and  ≡ 2 () will denote the first and

second-order (partial) derivatives.
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where  and  are given by (16), and

 ≡  +  +  ( + ) (44)

 ≡  +  ( + ) (45)

The trace and the determinant of the Jacobian matrix are given by

0 = −+  +  = +  −  ( + ) (46)

0 = (−) ( + ) +  (47)

= (− ) ( + ) +  [ ( + )−  ( + )]

where −  = .

Discretizing ̇ in forward-looking, we obtain

+ ≈ 1
¡
1 + +

¢
(48)

We can replace (48) in (23) to get


+

=
1 + 

h


+

¡
+ 

¡
+ +

¢¢
+ 1

+


+

¡
+ 

¡
+ +

¢¢i
1 + +

(49)

A constant discounting implies + = , where  = −. In this case, at the steady state, (49)
gives (42). Assumption 1 on the fundamentals ensures the existence and the uniqueness of the steady state,

solution of (41)-(42).

Focus now the local dynamics. Since, at the steady state,  is stationary (while  =  is not because

 decreases over time), we linearize the system with a forward-looking -type Euler discretization.

The hybrid Euler discretization (21)-(23) becomes

+ ≈  +  (  ( )) (50)

(1 + )

+

= 1 + 

∙


+

¡
+ 

¡
+ +

¢¢
+

1

+



+

¡
+ 

¡
+ +

¢¢¸
(51)

Linearizing (50)-(51) gives

+ = [1 +  ( + )]  + 

and

 [ +  +  ( + )] + + (1 +  [ +  ( + )]) + = (1 + ) 

(notice from (42) that  = − ). Using (44) and (45), we find the associated Jacobian matrix 1:

1 ≡
∙

1 +  ( + ) 
− [1 +  ( + )]


1+

1+
1+

− 
1+



¸
(52)

with the following trace and determinant

1 = [1 +  ( + )]
1 + 

1 + 
(53)

1 = 1 +  ( + ) +
1 + 

1 + 
− 

1 + 
 (54)

The traces and determinants in (46) and (47), and in (53) and (54) will be reconsidered in Section 5 when

a hybrid discretization will be applied to the most popular growth model pioneered by Ramsey (1928) and

later refined by Cass (1965) and Koopmans (1965).

In the following, we study how conditions for elementary bifurcations change under a discretization of

a continuous-time system. For brevity, we focus on two-dimensional backward-looking discretizations, but

results can be easily extended to the case of hybrid or higher-dimensional dynamic systems.
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3.3 Local bifurcations

We consider local bifurcations in stability of a simple attractor: the steady state, and we study the role of

either the order or the discretization step  in the occurrence of these bifurcations.11

Two systems are topologically equivalent if they have similar trajectories.12 Most of nonlinear system are

topologically equivalent to their linearizations around a fixed point (steady state). The Großman-Hartman

Theorem states that linearizations well behave around hyperbolic steady states13, that is the stability prop-

erties are preserved.14 In the following, we assume that the assumptions of the Großman-Hartman Theorem

are satisfied and, namely, the steady states is hyperbolic.

In continuous time, a local bifurcation generically arises when the real part of an eigenvalue  () of the

Jacobian matrix crosses zero in response to a change of parameter . Without loss of generality, we normalize

to zero the critical parameter value of bifurcation ( = 0) and we get generically two cases.

(1) Saddle-node bifurcation. A real eigenvalue crosses zero:  (0) = 0.

(2) Hopf bifurcation. The real part of two complex and conjugate eigenvalues  () =  ()±  () crosses

zero:  (0) = 0 and  () 6= 0 in a neighborhood of  = 0.
In discrete time, a local bifurcation generically occurs when one eigenvalue  () of the Jacobian matrix

evaluated at the steady state, crosses the unit circle in response to a change of parameter .15 Normalizing

as above to zero the critical parameter value of bifurcation ( = 0), we find generically three classes of

elementary bifurcations.

(1) Saddle-node bifurcation:  (0) = +1.

(2) Flip bifurcation:  (0) = −1.
(3) Hopf bifurcation: | (0)| = | (0)±  (0)| = 1 with  (0) 6= 0.
Generically, only one eigenvalue is concerned with a saddle-node or a flip bifurcation and the bifurcation

analysis can reduce to the study of a simple one-dimensional invariant manifold. Similarly, two complex

(conjugated) eigenvalues are involved in the Hopf bifurcation and the bifurcation analysis simplifies to the

study of a two-dimensional invariant manifold. When an eigenvalue (or a conjugated pair of eigenvalues in

the case of Hopf) crosses the unit circle, generically, no other eigenvalue crosses simultaneously the circle.

Then higher-dimensional dynamics reduces to a single equation or to a two-dimensional dynamics under a

Hopf bifurcation (Central Manifold Theorem) and the movement of the other eigenvalues does not change

the qualitative properties of dynamics. In other terms, only a one or two-dimensional central manifold is

concerned with the bifurcation: the other manifolds preserve their qualitative properties.

For simplicity, we will study the occurrence of saddle-node bifurcations and flip bifurcations of one-

dimensional dynamics and that of Hopf bifurcations of two-dimensional dynamics. Under the assumptions

of the Central Manifold Theorem, there is no loss of generality with respect to higher-dimensional systems.

3.4 On the saddle-node equivalence

The continuous-time properties of the family of saddle-node bifurcations (saddle-node, transcritical and

pitchfork) are preserved in discrete time. In a way, the saddle-node is the less sophisticated of the elementary

bifurcations.

Focus for simplicity on the continuous-time one-dimensional dynamics ̇ =  ( ). The real eigenvalue

0 =  depends on , the bifurcation parameter. The first-order discretization is given by +1 ≈
11The bifurcation is local if the change of the orbit structure can be observed in an arbitrarily small neighborhood of the

(normalized) steady state; the bifurcation is global otherwise. Good introductions to the theory of bifurcations are, among the

others, Guckenheimer and Holmes (1983), Hale and Koçak (1991).
12Two dynamic systems  and  are topologically equivalent if there exists a homeomorphism (continuous function with

continuous inverse) that maps  orbits into  orbits while preserving the sense of direction in time.
13A steady state ∗ of a nonlinear system of differential equations ̇ =  () (respectively, of a nonlinear system of difference

equations +1 =  ()) is said to be hyperbolic if the Jacobian matrix 0 (
∗) of the system  evaluated at ∗ has no eigenvalues

with zero real parts (respectively, the Jacobian matrix 1 (
∗) of the system  evaluated at ∗ has no eigenvalues with moduli

equal to one).
14 If ∗ is hyperbolic, there exists a neighborhood of ∗ where ̇ =  () is topologically equivalent to the linear system

̇ = 0 (
∗) (− ∗) (respectively, if 1 (∗) is invertible, +1 =  () is topologically equivalent to the linear system +1 =

∗ + 1 (
∗) ( − ∗)).

15We omit the case where the eigenvalue crosses zero. In this case, an orientation reversing map can locally become orientation

preserving, without promoting the occurrence of cycles. In order to have a rigorous but concise introduction to bifurcations in

discrete time, interested readers are highly recommended to see Grandmont (2008).
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 +  ( ) with eigenvalue 1 = 1 +  (evaluated at the steady state). A saddle node bifurcation

arises in continuous time if 0 = 0, that is if  = 0 or, equivalently, 1 = 1. Since neither the steady

state  nor  depend on  in the Euler discretization, this equivalence holds whatever the discretization step.

Similarly, one proves the result in the case of forward-looking discretizations: +1 ≈ + (+1 ). The

eigenvalue is given by 1 = 1 (1 + ) and  = 0 if and only if 1 = 1.

We conclude that under a first-order discretization (backward or forward-looking), a saddle-node bifurca-

tion generically occurs in continuous time if and only if it arises in discrete time, whatever the discretization

step , that is even under an extremely rough approximation.

3.5 On the Hopf equivalence

As was the case for the stability properties in Section 3.2, conditions for Hopf bifurcation in discrete time

tend to those in continuous time as the "distance"  between dynamics in continuous and discretized time

tends to zero.

Proposition 9 A Hopf bifurcation in continuous time generically arises when

0 = 0 (55)

0  0 (56)

while, under a backward-looking discretization, it occurs when

0 = −0 (57)

0 ≥  20 4 (58)

where   0 is the discretization step. Under the assumption  ( ) ∈ 2 in a neighborhood of ( ()  )

(where  is the Hopf bifurcation value in continuous time and  () the corresponding steady state), the

right-hand sides of (57) and (58) generically tend to zero as  goes to zero, and conditions (57)-(58) become

closer to conditions (55)-(56).

Proof. The two roots of the continuous-time characteristic polynomial 0 () = 2 − 0 + 0 are:  =

02 ±
p
 20 4−0. Roots are complex if and only if 0   20 4. In this case, the eigenvalues become

 =  ±  with  ≡ 02 and  ≡
p
0 −  20 4. Hopf bifurcation in continuous time generically requires:

 = 0 and  6= 0, that is 0 = 0 and 0   20 4 = 0.

Consider now the trace and determinant (28)-(29). It is known that a Hopf bifurcation generically arises

in discrete time if and only if 1 = 1 and 1 ≥  21 4 (complex and conjugated eigenvalues have the same

modulus and cross together the unit circle if their product (determinant) is one). Equivalently, conditions to

get a Hopf bifurcation become  21 ≤ 4 and 1 = 1. Using (28)-(29), we get

 21 = (2 + 0)
2 ≤ 4 (59)

1 = 1 +  (0 + 0) = 1 (60)

(60) gives 0 + 0 = 0 or, equivalently,

 = −00 (61)

Replacing (61) in (59), we obtain
¡
2−  20 0

¢2 ≤ 4 or, equivalently, 0 ≤  20 0 ≤ 4. The left-hand inequality
implies 0  0. Therefore the right-hand inequality becomes 0 ≥  20 4.

Summing up, the necessary and sufficient conditions for a Hopf bifurcation in discrete time are, generically:

0 + 0 = 0 and 0 ≥  20 4.

The derivatives appearing in 0 and then in (00) depend directly and indirectly (through the steady

state) on the parameter value :

0 ( ()  ) = −0 ( ()  ) (62)

0 ( ()  ) ≥ 0 ( ()  )
2
4 (63)

where  () is a stationary state corresponding to the parameter value .
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The Hopf bifurcation value  solves (62). Under the assumptions of the Implicit Function Theorem,

equation (62) locally defines a continuous function16  =  ().

We compare (62)-(63) with conditions required in continuous time to obtain a Hopf bifurcation (55)-(56):

0 ( ()  ) = 0

0 ( ()  )  0 ( ()  )
2
4

Since  ( ) ∈ 2 ⊆ 1, we apply the Implicit Function Theorem to 1 (1 2 ) = 0 and 2 (1 2 ) =

0 to obtain the continuity of  () generically. Since  ( ) ∈ 2, we can apply the Implicit Function Theorem

to (62), that is to

11 ( ()  ) + 22 ( ()  ) +  [11 ( ()  ) 22 ( ()  )− 12 ( ()  ) 21 ( ()  )] = 0

(where  ≡ ), to obtain also the continuity of  () generically.
17

Generic continuity of  and  implies lim→  () =  () and lim→0  () =  (0). Thus,

lim
→0

[0 ( ()   ( ()))]→ 0

(the continuity of 0 ensues from  ( ) ∈ 1) and condition (62) converges to (55). (63) becomes closer

to (56): indeed, when 0 6= 0 goes to zero, 0 ≥  20 4  0 remains strictly positive generically.
18

In other terms, if a Hopf bifurcation arises in continuous time, it is (generically) possible to find a

(sufficiently small) discretization step which preserves (by continuity) this bifurcation. Conditions for Hopf

in discrete time can be made arbitrarily close to those in continuous time by simply reducing the period

length . Under mild continuity properties (namely,  ( ) ∈ 2), the discrete-time critical value  ()

lies in a neighborhood of the continuous-time critical value  (0).

We have considered a backward-looking discretization. Forward-looking and hybrid discretization are also

of interest and similar conclusions hold. Just focus on the case of the hybrid discretization (34)-(35) which

is of interest in endogenous saving models. Assuming for simplicity

2 = 0 (64)

we obtain 1 = 2+ 0 − 20 and 1 = 1+ 0. If 0 = 0 and 0  0 (conditions for Hopf bifurcation in

continuous time, see (55)-(56)), we get also 1 = 1 and 1 = 2− 20  2, that is 
2
1 ≤ 4 provided that

2 ≤ 20 (65)

Under condition (64) and inequality (65), the Hopf equivalence still holds between continuous and discrete

time (see (59) and (61)).

One may question whether the equivalence holds in dynamic optimization models. We have discretized

a -type Euler equation and transformed the resulting hybrid discretization in a -type system. Eventually,

we have linearized the -type system around its stationary state ( ) ( is not stationary).

Does the Hopf equivalence hold in general optimization models that satisfy (64) and suitable continuity

properties? Focus on (53)-(54) and observe that

1 = 2 +
 [0 (1 + )− 0 −  (−)]

1 + −  (−)
(66)

1 = 1 +
 [0 (1 + )−  (−)]

1 + −  (−)
(67)

16The critical value for a Hopf bifurcation  depends on , while, as seen above, the critical value for a saddle-node bifurcation

 does not.
17More explicitly, 

01 ()
02 ()


= −


11 12
21 22

−1 
1
2


where  ≡ , provided that 1122 − 1221 6= 0. In addition, 0 () = − (1122 − 1221) ∆ with

(1+ 11)

212

0
1 + 222

0
2 + 22


+ (1+ 22)


111

0
1 + 121

0
2 + 11


−12


211

0
1 + 221

0
2 + 21

− 21

112

0
1 + 122

0
2 + 12


≡ ∆ 6= 0

where  ≡  ().
18The case where both the eigenvalues of 0 are zero is non-generic.
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where (00) and (11) are respectively given by (46)-(47) and (53)-(54). According to (42) and (45),

when  no longer depends on , we have  = . Then (66) and (67) reduce to19

1 = 1 +1 − 2

1 + 
0 (68)

1 = 1 + 0 (69)

and 0 = 0 iff 1 = 1. Using (68) with 0  0 and 1 = 1, condition  21 ≤ 4 is equivalent to  ≤
2

∙
0 +

q
1 + (0)

2

¸
. Therefore, if a Hopf bifurcation arises in continuous time, under a sufficiently

small discretization step, it occurs also in discrete time generically.

3.6 On the flip singularity

As seen above, the saddle-node bifurcation persists under a linear discretization, while the Hopf bifurcation

is characterized by a continuity property (the smaller the step , the closer the critical values in continuous

and discrete time).

The main difference between these dynamics is the flip bifurcation: when the continuous-time eigenvalue

is bounded from below, under linear and higher-order Euler approximations, the flip bifurcation disappears

in discrete time when the discretization step  falls below a positive threshold  . The critical value 
increases with the order  of Taylor discretization (see polynomial (2)-(3)).

In the following, we consider one-dimensional discretizations. There is no loss of generality under the

assumptions of the Central Manifold Theorem.

A continuous-time scalar system: ̇ =  ( ), where  is the bifurcation parameter, can be approximated

by a first-order Taylor polynomial: +1 ≈  +  ( ) ≡  ( ). Consider a parametrized steady

state:  ( ) = 0. We introduce a simplified notation for the partial derivatives:  ≡ ,  ≡ ,

 ≡ 22,  ≡ 22 and so on. As seen above, under the assumptions of the Implicit Function

Theorem, the stationary state depends on the bifurcation parameter:  =  ().20

A flip bifurcation generically requires:  =  ( ()  ) = −1 or, more explicitly:
 [ +  ( )]



¯̄̄̄
=()

= 1 +  ( ()  ) = −1 (70)

Applying the Implicit Function Theorem to (70), we get, locally, the critical value as a function of

discretization degree:  =  ().
21

Let us give now sufficient conditions to exclude flip bifurcations in discrete time. Without loss of generality,

we set   0 and we call  () ≡ {( ) :  ( ) = 0} the set of stationary states  corresponding to a given
parameter value .  ( ) ≡ ∪∈ () is the graph of the stationary states obtained by varying the (scalar)
parameter .  () is empty, when the system admits no stationary states at . In the sequel, we consider

only the range of parameter values generating a nonempty set of stationary states:  ≡ { :  () 6= ∅}. Let
us also define the sets  ≡  ( ( )) and  ≡  ( ×  ) with  ∈ 1 and  the domain of . We provide

sufficient conditions to exclude flip bifurcations.

Proposition 10 (1) If inf  ≥ 0, no flip bifurcation arises whatever .
(2) If −∞  inf   0, there exists a nonempty discretization range (0  ) with  ≡ −2 inf  , where

no flip bifurcation arises.

Proof. (1) If inf  ≥ 0, then 1 +  ( ()  )  0  −1 whatever  and whatever the selection ( ()  ) ∈
 (). (2) If inf   0, solve 1+ inf   −1 in order to exclude the flip bifurcation, that is, set   −2 inf  .

19Clearly, when  = 0, expressions (68)-(69) reduce to (38)-(39).
20 If  ∈ 1 and  6= 0, we get 0 () = −.
21 If  ∈ 2,  6= 0 and  6= , then

0 () =
1





 − 
(71)
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Corollary 11 If −∞  inf  , there exists a nonempty discretization range (0  ) with  ≡ |−2 inf  |,
where no flip bifurcation arises.

Proof. Apply Proposition 10.

Computing the graph  ( ) and its image with respect to  can be difficult. Let us provide another

sufficient condition, less general than Corollary 11, but easier to check.

Corollary 12 If −∞  inf , then there exists a discretization range (0  ) with  ≡ |−2 inf | with no
flip bifurcation.

Proof. Simply notice that  ( ) ⊆  ×  and apply Corollary 11.

Bosi and Ragot (2009) provide explicit examples of Corollaries 11 and 12 with either bounded or un-

bounded parameter ranges.

In addition, they obtain the same qualitative results for higher-order and higher-dimensional discretiza-

tions under similar assumptions (namely boundedness of derivatives on  ( )).

On the one hand, in the case of two-dimensional dynamics, they prove that, if the derivatives of the

Jacobian matrix are bounded on  ( ), there exists a critical step  such that  ∈ (0  ) rules out the
occurrence of flip bifurcations.

On the other hand, they show that, in the case of a th-order discretization, if the th derivatives

of  ∈ +1 are bounded over  ( ), then there exists a nonempty discretization range (0  ), where

generically no flip bifurcation arises.

In the rest of the paper, we focus on popular growth models to apply the equivalence results of our

stability and bifurcation analysis.

Part II

Economic applications

Discrete-time version of popular dynamic models such as Solow (1956) can be derived through a backward-

looking (Euler) discretization. To highlight the role of the discretization step in the occurrence of cycles of

period two (flip bifurcation), we introduce negative externalities in the seminal Solow model (Day (1982)).

Hybrid discretizations are important in economic theory when agents’ behavior results from a dynamic

optimization. Households smooth consumption over time under a budget constraint with the wealth in-

herited from the past (backward-looking information), while considering the future interest rate in their

intertemporal arbitrage (forward-looking information). The twofold nature of the dynamic system becomes

more explicit when we discretize the continuous-time model. In order to recover the discrete-time model we

need to discretize backward the budget constraint (as in Solow) and forward the Euler equation (intertem-

poral smoothing and endogenous saving). Influential examples of dynamic optimization is Ramsey (1928),

later refined by Cass (1965) and Koopmans (1965), which is characterized by a saddle-path stability prop-

erty. Introducing market imperfections can promote non-monotonic dynamics. Invariant closed curves (Hopf

bifurcation) occur in Ramsey models with positive externalities (Zhang (2000)).

4 Backward-looking discretizations of Solow models

In this section, we compare the continuous-time and the discrete-time Solow models. We show that the

discrete-time version ensues from a backward-looking discretization of the continuous-time one.

4.1 Solow models

The continuous-time version of Solow (1956) without technical progress is a two-dimensional dynamic system:

̇ =  ( )−  (72)

̇ =  (73)
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where and  are the capital stock and the labor supply at time . Parameters ,  and  denote respectively

the rates of saving, capital depreciation and demographic growth. Dynamics reduces to an intensive law of

motion ( = ) under the assumption of a CRS technology:

̇ =  ()− ( + )  (74)

Under the Inada conditions, the non-trivial steady state solves

 ()  = ( + )  (75)

and is unique and locally stable: the eigenvalue of the intensive dynamics, evaluated at the steady state, is

0 = − (1− ) ( + )  0, where  ≡  0 ()  () ∈ (0 1) is the capital share. There is no room for (local)

bifurcations.

In discrete time, the basic model writes:

+1 − =  ( )−  (76)

+1 −  =  (77)

and reduces to the intensive law:

+1 = [(1− )  +  ()]  (1 + ) (78)

The positive steady state still solves  ()  = ( + )  and is unique under the usual assumptions. Local

stability is ensured by the eigenvalue in the unit circle:

1 = 1− (1− ) ( + )  (1 + ) ∈ (0 1) (79)

As above, there is no room for local bifurcations.

A first-order discretization of system (72)-(73) gives

+1 ≈  +  [ ( )− ] (80)

+1 ≈ (1 + ) (81)

Normalizing (80) by , we derive the intensive law: +1 ≈ [(1− )  +  ()]  (1 + ). The

discrete time dynamics (78) is recovered under a unit discretization step ( = 1). So, we can say that the

discrete-time Solow model is actually the backward-looking Euler discretization of the continuous-time model.

The steady state does not depend on the discretization step and solves (75) as above, while the eigenvalue

depends on :

1 = 1− (1− ) ( + )  (1+ ) (82)

Discretization introduces artificially the possibility of a flip bifurcation at  ≡ 2 [(1− )  − (1 + ) ]  2

(under the assumption    (1− )  (1 + )). However, the traditional discrete-time Solow model is charac-

terized by monotonic stability because, as seen above, it corresponds to  = 1   : the unit discretization

step rules out any flip bifurcation.

A continuity property holds: to recover the stability properties in continuous time we need to make our

Euler-Taylor development "as close as possible" to the continuous-time system. Intuitively, we can either

reduce the discretization step (as seen above:    ) or increase the order of development. In the following,

we prove that the second order is enough to exclude any artificial bifurcation in a Solow model.

Indeed, the second-order (backward-looking) discretization of (72)-(73) gives under constant returns to

scale

+1 ≈
 + [ ()− ]

¡
+ [ 0 ()− ]22

¢
+  [ ()− 

0 ()]22

1 +  + ()
2
2

(83)

with eigenvalue

2 =
1

2

1 + (1 +  [ − (1− ) ])
2

1 +  + ()
2
2

 0 (84)

which prevents the model from any flip bifurcation.22

22 = 1 implies 2 ∈ (0 1): the saddle-node bifurcation is also excluded.
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4.2 Externalities

A unit discretization step rules out any bifurcation in the Solow model. However, there is room for (flip)

bifurcations in discrete-time Solow models with suitable market imperfections. The twofold question we

raise is whether a smaller discretization step or a higher discretization order can remove the flip bifurcation

observed in discrete time (under a unit discretization step).

We introduce in the Solow model negative productive externalities from a firm to another, by assuming

that the environmental quality enhances factors’ productivity and is, in turn, negatively affected by the

average capital intensity. Formally, capital intensity  reduces the environmental quality to − 1−, where
  0 is the endowment of quality.

As in Day (1982), we assume a Cobb-Douglas production function and introduce an upper bound for the

negative externality to ensure a positive TFP:

 ( ) ≡ 
¡
− 1−

¢

 

1−
 (85)

with

0 ∈
h
01(1−)

i
(86)

Replacing (85) in (72), we obtain the following law of motion:

̇ ≡ 
¡
− 1−

¢
 − ( + )  (87)

Integrating (87) we find an explicit solution:  =
£
1− +

¡
1−0 − 1−

¢
−(1−)(++)

¤1(1−)
. Restric-

tion (86) ensures that the entire sequence of capital intensities lies in the interval
£
01(1−)¤, the steady

state  is asymptotically stable and the capital intensity converges monotonically towards its stationary value

in the long run:

 = lim
→+∞

 = [ ( + + )]
1(1−) ∈

h
01(1−)

i
(88)

Therefore, in continuous time there is no room for bifurcations.

Conversely, in discrete time, persistent cycles and, possibly, chaos can arise. Introducing the externality

(85) in the Solow model (76)-(77) gives:

+1 = [(1−  − )  +  ]  (1 + ) (89)

with steady state (88).

The eigenvalue of dynamics (89) is given by 1 =  + (1− ) (1−  − )  (1 + )  1: only a flip

bifurcation generically occurs at

 =  ≡ 1


∙
1−  + (1 + )

1 + 

1− 

¸
(90)

Negative productive externalities generate cycles (when production increases, capital intensity goes up,

productivity is lowered by the externalities and, eventually, production as well).

In the following, we prove two results: (1) on the one hand the discrete-time system still comes from

a first-order backward-looking discretization of the original system (72)-(73) with (85), (2) a second-order

discretization is enough to recover the continuous-time property and rule out the flip bifurcation.

(1) The intensive form of the first order discretization is given by

+1 ≈ [(1−  − )  + ]  (1 + )

Setting  = 1, we recover exactly the discrete-time Day model (equation (89)). In particular, we get the

same flip bifurcation value as in (90).

(2) A second-order discretization constitutes a finer discretization of the continuous-time Day model and

rules out the occurrence of flip bifurcations. Let us set 1 ( ) ≡ 
h
− ()

1−
i

 

1−
 − 
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and 2 ( ) ≡ . Noticing that +1 = 1++()
2
2 and that, under constant returns to scale,

 = −1 − and  = (1− ), we get the quadratic approximation

+1 =
 + [


− ( + ) ]

£
+

¡
−1 −  − 

¢
22

¤
+ (1− ) 22

1 +  + ()
2
2

(91)

The steady state is still given by (88) and does not depend on . The eigenvalue of the intensive law (91):

2 =
1

2

1 + (1 +  [ − (1− ) ( + )])
2

1 +  + ()
2
2

is strictly positive and, therefore, there is no longer room for flip bifurcations, whatever the discretization

step.

There are other possible extensions of the Solow (1956) model. The interested reader is referred to Bosi

and Ragot (2008) for an application to the Keynesian Kaldor (1940) model where an exogenous aggregate

saving function promotes the emergence of limit cycles through a Hopf bifurcation.

5 Hybrid discretizations of Ramsey models

The most popular optimal growth model is undoubtedly Ramsey (1928), later refined by Cass (1965) and

Koopmans (1965). Ramsey argued against discounting utility of future generations as being "ethically inde-

fensible". This "ethical" undiscounted utility functional in Ramsey (1928) is replaced in the Cass-Koopmans

model (1965) by a weighted average of future felicities with decreasing weights over time (discounting).

5.1 Ramsey models

A benevolent planner determines the profile of capital accumulation in order to maximize the representative

consumer’s utility functional (12) subject to the resource constraint (13).23 In Ramsey (1928), Cass (1965)

and Koopmans (1965), the physical capital law of motion saving is specified as

 ( ) =  ()−  −  (92)

while the consumer’s utility functional differs.

(1) In the Ramsey model,  ≡ 1 for every  and the felicity is defined as

 ( ) =  ()−  () (93)

where  denotes the "bliss point". In order to ensure a bounded utility functional (a convergent integral), we

fix a particular bliss point value:  =  ()−  with  0 () = . This bliss point is the steady state value

of consumption in the Ramsey model.24

(2) In the Cass-Koopmans model, ̇ ≡ − for every  and

 ( ) =  () (94)

Equation (15) reduces to  = 0 () and  =  ( ) = 0−1 () ≡  () with  = 0 and  = 100.
System (17)-(18) simplifies:

̇ =  ()−  −  () (95)

̇ =  [ +  −  0 ()] (96)

(with  = 0 for every  in the Ramsey model).

23With no imperfections, a market economy decentralizes the planner’s solution.
24The bliss point is the modified golden rule with a null discount rate.
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In discrete time, the planner maximizes the utility series
P∞

=0  () (or
P∞

=0 [ ()−  ()] in the

Ramsey model) subject to the sequence of resource constraints: +1− +  ≤  ()−  with  = 0 1   

System (19)-(20) writes:

+1 −  =  ()−  −  (97)


+1

=
+1


[1 +  0 (+1)− ] (98)

(with +1 = 1 for every  in the Ramsey model).

Under (92) and (94), system (50)-(51) reduces to

+ −  ≈  [ ()−  −  ()] (99)


+

≈ +


(1 +  [ 0 (+)− ]) (100)

(with + = 1 for every  in the Ramsey model), and becomes the discrete-time system (97)-(98) under

a unit discretization step ( = 1).

Dynamics generated by backward-looking approximations of the Euler equation work very differently from

(98) because the productivity depends on  instead of +1. The forward-looking component in the hybrid

approximation not only allows us to recover the discrete-time model, but also makes economic sense because

it captures saving decisions that depend on the future interest rate  0 (+1).
Focus now on the equivalence of stability properties.

System (99)-(100) comes from the discretization of the -type continuous-time system and a subsequent

change of variable ( instead of ). As seen above, setting  = 1 gives (97)-(98). This proves that,

in the Cass-Koopmans model, only a hybrid discretization of the continuous-time system expressed in the

variables ( ) with a unit discretization step yields the traditional discrete-time system. The local analysis

of the stability properties rests on an approximation around the steady state. However, the discretization

variable  cannot be the linearization variable, because the multiplier  is non-stationary at the steady

state. Conversely,  becomes stationary at the steady state. Thus, we can linearize only the -type system

(99)-(100). This question no longer matters in the Ramsey model where considering the multiplier  or 
is indifferent (indeed, under no discounting,  = ).

In the case of the Cass-Koopmans model (see (95)-(96)), the Jacobian matrix (43) of the continuous-time

system simplifies:

0 =

∙
 

 0

¸
(101)

where  ≡  [+  (1− ) ]  0 and  ≡ (+ ) (1− )   0. ,  and  denote, respectively, the

capital share in total income, the elasticity of capital-labor substitution and the elasticity of intertemporal

substitution. The trace and determinant become 0 =   0 and 0 = −  0. In the Ramsey model,

 = 0: so, 0 simplifies more with 0 = 0. In both the cases, 0  0 entails the saddle-path stability property.

In the Cass-Koopmans model, the Jacobian matrix (52) of the discretized system writes

1 ≡
∙
1 +  

 1 +2 (1 + )

¸
(102)

The trace and determinant become 1 = 1 + 1 + 2 (1 + ) and 1 = 1 + . In the Ramsey

model ( = 0), 1 also simplifies and we obtain 1 = 2 + 2 and 1 = 1. In both the cases, we have

1 ≤   1 − 1 and we recover the saddle-path stability property.
Summing up, saddle-path stability is a robust feature of the Ramsey-Cass-Koopmans framework and holds

whatever the discretization step. However, Proposition 7 applies only to the Ramsey case ( = 0). Indeed, in

the Ramsey model the discretization variable and the linearization variables are the same ( = ), so, the

general expressions (36) and (37) make sense. The Ramsey model corresponds to point (1.2.1) in Proposition

7 with [(0 − 222) 0]
2
+ 40 = −4  0.
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5.2 Externalities

We have seen that introducing market imperfections in the Solow models makes the discrete-time dynamics

richer. There is room for cycles through a flip bifurcation in a Solow model with productive externalities.

In the spirit of Proposition (10), reducing the step or increasing the order of discretization restores the

monotonic stability property.

Similarly, we can introduce externalities in the Ramsey model to obtain cycles through a Hopf bifurcation.

In order to illustrate Proposition (9), we show that reducing the step of discretization also restores the saddle-

path stability property.

Externalities can affect either the production or the utility levels of economic agents. The public goods

constitute a prominent class of externalities. Zhang (2000) introduces externalities of public spending in

the Cass-Koopmans framework. As in Barro (1990), the public good plays the role of positive productive

externality. However, Zhang (2000) considers also a public consumption good which enters households’

utility functions. In his original model, Cobb-Douglas technology and preferences are considered and time is

continuous.

We generalize Zhang in two directions: on the one side, we use more general production and utility

functions; on the other side, we provide also the discrete-time version of Zhang and we compare bifurcations

in continuous and discrete time. Exemplifying one of the simplest Hopf bifurcations in a Ramsey economy is

the main asset of Zhang (2000) and the sense of revisiting his model in our work.

Zhang (2000) introduces two positive externalities in the Cass-Koopmans model:

(1) externalities of public capital () in a homogeneous production function as in Barro (1990):  ≡
 ( ) or, in intensive terms,  =  ( ), where  ≡  and  ≡ ;

(2) externality of public capital in the utility function:  =  ( ).

These functions satisfy suitable properties.

Assumption 2 The production function  : R2+ → R+ is CRS in ( ). The intensive production

function  ( ) is 2, increasing in  and  and strictly concave in the private capital  (  0 and

22  0). In addition: 2 ()  0.

Assumption 3 The utility function  : R2+ → R is 2, strictly increasing in  and  (   0,

  0) and strictly concave in  ( 22  0).

According to Assumption 2, the impact of public capital on private production is positive (  0)

and positively affects the marginal productivity of private capital (2 ()  0).

For simplicity, we assume no population growth and no capital depreciation. The public budget is assumed

to be balanced over time and the receipts to come from a homogenous tax on labor and capital earnings:

 =  =  (  ) (or, in per capita terms,  =  =  ( )). The implicit equation

 =  ( ) (103)

locally determines the equilibrium public spending as a function of capital stock:  =  ().

Assumption 4

 = ()  (1− )  0 (104)

In the following, we focus on the competitive dynamics which is different from the planner’s solution

because of the external effects. The representative household chooses the consumption path and the profile

of capital accumulation in order to maximize the utility functional (12) subject to the resource constraint

(13) with the following fundamentals:

 ( ) = (1− ) ( + )−  (105)

 ( ) =  ( ) (106)

The initial endowment 0 is given.

Under Assumption 2, profit maximization gives

( ) = (  ( )− ) (107)
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while  =  () solves the government budget constraint (103).

For simplicity, labor supply is inelastic:  = 1.

Under Assumptions 2 and 3 that replace Assumption 1, we can substitute (107) in the dynamic system

(17)-(18) to obtain:25

̇ = (1− )  (  ())−  ( ) (108)

̇ = 

∙
 − (1− )




(  ())

¸
(109)

In discrete time, the households maximize the utility series
P∞

=0  ( ) subject to the sequence of

budget constraints: +1 −  +  ≤ (1− ) ( + ) with  = 0 1   

With fundamentals (105) and (106), system (19)-(20) reduces to

+1 −  = (1− ) ( + )−  (110)


+1

=
+1


[1 + (1− ) +1] (111)

Substituting  = 1 and (107) in (110)-(111), one gets

+1 −  = (1− )  (  ())−  (  ()) (112)


+1

=
+1


∙
1 + (1− )



+1
(+1  (+1))

¸
(113)

where  =  is the current-value costate variable of the continuous-time program.

We raise the question whether the discrete-time dynamics can be obtained through an Euler discretization

of the continuous-time system. As above, the answer is positive if we choose a hybrid discretization, that is,

backward and forward-looking discretizations for the budget constraint and the Euler equation, respectively.

Under (105) and (106), system (50)-(51) simplifies to

+ −  ≈  [(1− )  (  ())−  (  ())] (114)


+

≈ +


∙
1 +  (1− )



+
(+  (+))

¸
(115)

and, setting a unit discretization step ( = 1), we recover exactly the discrete-time system (112)-(113).

Under the forward-looking approximation + ≈ 1
¡
1 + +

¢
,  =  (that is  = 0

−) and
 = 1, (113) becomes:


+

=
1 + (1− ) 

+1
(+1  (+1))

1 + 

The existence of a steady state requires  =  constant over time. In this case, equations (41)-(42)

become:

 = (1− )  (  ()) (116)

 = (1− )



(  ()) (117)

Solving (117) for  and replacing in (116) gives .

Focus now on the steady state of the discretized time model (114)-(115) or, equivalently, when  = 1, of

the discrete-time model (112)-(113).

Equation (114) evaluated at the steady state gives (116). In addition, we can replace + by

1
¡
1 + +

¢
in (115) to get


+

≈
1 +  (1− ) 

+
(+  (+))

1 + +

25The households maximizes the utility functional taking the externality  as given, and the (Arrow-Mangasarian) second-order

conditions reduce to the partial concavity of  (22  0) jointly with the partial concavity of  (22  0).
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Immediately, we obtain that  = + and + =  imply the steady state (117) of the continuous-time

model.

The issues of existence and uniqueness rests on the solution of (116)-(117).

Proposition 13 Let

 () ≡ 


(  ())

Under Assumptions 2, 3, 4 and the boundary conditions

lim
→0+

 ()   (1− ) and lim
→+∞

 ()   (1− ) (118)

or

lim
→0+

 ()   (1− ) and lim
→+∞

 ()   (1− ) (119)

a steady state exists.

Moreover, if, at the steady state: (1) 0 ()  0 in case (118), or (2) 0 ()  0 in case (119), then the

steady state is unique.

Proof. Focus first on equation (117):  () =  (1− ). The boundary conditions (118) and (119), jointly

with the continuity of , are sufficient to ensure the existence of a strictly positive .

Derivability of  is entailed by Assumption 2 ( ( ) is twice continuously differentiable) and Assumption

4 (derivability of ):

0 () ≡ 2

2
+

2


0 () (120)

Derivability of  implies continuity.

We notice that, under conditions (118) or (119), and continuity, the number of steady states is odd. In

addition, given a strictly positive , equation  =  ( ) has a non-negative solution  () because  is

continuous,  ( 0) ≥ 0 and lim→+∞   1 (this inequality is entailed by Assumption 4). Thus

 = (1− )  (  ()) is non-negative and  is strictly positive (Assumption 3). If there are  steady states

 with   +1 and  = 1     , the sign of 0 changes from steady state  to steady state +1. In order

to ensure the uniqueness, a sufficient condition is that, in case (118), always 0 ()  0 at the steady state,

or, in case (119), always 0 ()  0 at the steady state.
(118) and (119) correspond to the cases of dominant increasing and dominant decreasing returns to scale,

respectively. As we will see later (equation (128)), 0 ()  0 is a necessary condition to get a Hopf bifurcation.
We conclude that increasing returns promote the uniqueness of the steady state and the occurrence of Hopf

bifurcations (limit cycles). Conversely, this explains also why the Ramsey-Cass-Koopmans framework is

characterized by saddle-path stability.

Define now the following elasticities to focus on the local dynamics:

(1 2) ≡
µ
















¶
(11 12) ≡

µ
2

2




2







¶
(11 12) ≡

µ
2

2




2







¶
Notice that 1 ≡  is the capital share in total income, while 11 ≡  is the elasticity of the interest

rate with respect to the capital intensity and  = −111  0 is the elasticity of intertemporal substitution.
Usual assumptions give 1  0, 2  0, 11  0, 12  0, 11  0, 12 Q 0.
At the steady state, the discounting is constant over time: + = , where  = −. Using

( ) = (1−   )  , ( ) = ( (1− )  ) and  = 1, the Jacobian matrix (43) simplifies:

0 =

⎡⎣ 
h
1 + 1

1

³
2 − 





´
0()


i
− 



−
h
11 + 12

0()


i



0

⎤⎦ (121)

26



Differentiating (103) gives
0 ()


=

1

1− 2
(122)

We observe that Assumption 4 implies 0 ()   0, that is 2  1. We get alsoµ
















¶
=

µ
1

11
−12

11

¶
(123)

Replacing (122) and (123) in (121), we find

0 =

⎡⎣ 
1+1211
1−2 − 1

11


1




−
³
11 +

112
1−2

´



0

⎤⎦ = " 
1−12
1−2  





−
³
 +

12
1−2

´



0

#
(124)

The trace and the determinant in continuous time (46)-(47) become:

0 = 2
µ



+

12

1− 2

¶
0 = 

1− 12
1− 2

but now, in contrast with the Cass-Koopmans framework (0  0 and 0  0), saddle-path stability is no

longer ensured. Indeed, since   0,   0,   0 and 2 ∈ (0 1), we have

0 ≥ 0⇔ 12 ≤
1


(125)

0  0⇔ 12  −1− 2


 (126)

 is a predetermined variable, while  is a jump variable. So, local indeterminacy requires that both

the eigenvalues have negative real parts, that is 0  0 and 0  0, or more explicitly:

12 
1


and 12  −1− 2


 (127)

As seen above, increasing returns promotes the occurrence of Hopf bifurcations.

We remark also that, using (120) and computing the elasticity of  at the steady state, we get

0 ()
 ()

=  +
12

1− 2
(128)

Thus, increasing returns (0 ()  0) require sufficiently large positive externalities (12  − (1− 2) )

that imply in turn, according to (126), a necessary condition to the occurrence of Hopf bifurcations (0  0).

Focus now on the hybrid discretization (114)-(115). At the steady state, (114) becomes  = (1− )  ,

while, under a forward-looking approximation with a constant  (+ ≈ 1 (1 + )), (115) gives  =

 (1− ). Moreover, the government budget constraint becomes  =  . Finally,  = . Thus,

unsurprisingly, we recover (116)-(117).

Differentiating (114)-(115) around this steady state or, equivalently, applying (52) with (105) and (106),

and eventually replacing (122) and (123), gives the system
¡
+ +

¢
= 1 ( )


, where

1 =

"
1 0


1+

³
 +

12
1−2

´



1

#−1 ∙
1 + 

1−12
1−2  





0 1

¸
(129)

and  ≡ 1,  ≡ 11 and  = −111.
The determinant and the trace (equations (53)-(54)) are given by:

1 = 1 + 
1− 12
1− 2

(130)

1 = 1 +1 − 






1 + 

(1− 2)  + 12

1− 2
(131)

27



We observe that the Zhang model generalizes the Ramsey-Cass-Koopmans benchmark. Under no external-

ities in production and utility (2 = 12 = 12 = 0), we recover exactly the Jacobians of the Cass-Koopmans

model (with  = 0). Indeed, the continuous-time matrix (124) collapses in (101), while the hybrid matrix

(129) becomes (102).

Local indeterminacy occurs if the steady state is a sink, that is if 1  1, 1  1−1 and 1  −1−1.
Using (130)-(131), 1  1, 1  1 − 1 are respectively equivalent to inequalities (127) whatever the
discretization step , while 1  −1 − 1 becomes

2 


1− 2

µ


1 + 



2
[(1− 2)  + 12] + 12 − 1

¶
which is satisfied for a sufficiently small . Then, we find that, under a sufficiently small discretization step,

multiple equilibria arise in discrete time around a sink if and only if they occur in continuous time according

to conditions (127).

One of the assets of the Zhang model (2000) is the occurrence of a Hopf bifurcation, which generically

requires 0 = 0 and 0   20 4 = 0 (see Section 3.5), that is, according to (125) and (126):

12 = 1 ( 0) (132)

12  −1− 2


 ( 0) (133)

In other terms, cycles require the synergy of external effects on production (12  0) and on consumption

(12  0). Both the externalities are necessary: for instance, in the Barro model (1990), even if 12  0,

saddle-path stability prevails because 12 = 0.

It is known that a Hopf bifurcation generically arises in discrete time if and only if 1 = 1 and  21 ≤ 4
(see Section 3.5). Replacing (130) in 1 = 1, we get

12 = 1 (134)

as in the continuous-time case (whatever the discretization step), while, replacing (131) in  21 ≤ 4 with  = 1

and using 12 = 1, we need

12 ≥ −1− 2


 (135)

()
2

1 + 
≤ 4





1− 2

(1− 2)  + 12
(136)

(136) is equivalent to

 ≤  ≡ 1


h
 +

p
2 + 2

iµ





 0

¶
where

 ≡ 2


1− 2

(1− 2)  + 12
( 0)

Conditions (134) and (135) are respectively equivalent to conditions (132) and (133). Since the RHS of

(136) is positive under condition (135), inequality (136) is satisfied for    .

We have shown in Section 3.5 that, under a sufficiently small discretization step, a Hopf bifurcation occurs

in discrete time if and only if it arises in continuous-time. More precisely, Proposition 9 applies to the Zhang

model in the case  = 0, that is in the Ramsey version of Zhang (2000). Indeed, as seen above, our Proposition

9 holds if the discretization and the linearization variables are the same. In Zhang (as in Cass-Koopmans)

the discretization variable is , while the linearization variable is . However, when  = 0,  =  and

Proposition 9 works. When   0, a Hopf equivalence still holds for small discretization steps between

the continuous-time system and the hybrid -type discretization, but the critical condition is different from

   .
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