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Abstract

This paper proposes a semiparametric analysis for the study of the
relationship between energy consumption per capita and income per
capita for an international panel data. It shows little evidence for the
existence of an environmental Kuznets curve for energy consumption.
Energy consumption increases with income at an increasing rate for low
income levels and then stabilizes for higher income levels. Changes in
energy structure have no significant effect on energy consumption.
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1 Introduction

The Environmental Kuznets Curve (EKC) hypothesis, which suggests an
inverted U-shaped relationship between environmental degradation and in-
come, has been extensively investigated in the literature. Various environ-
mental degradation indicators have been examined: emissions or concen-
trations of pollutants (CO, COg, SOz, NOy,...), deforestation rate, water
quality, etc. Results on the existence of an EKC are mix and much of them
depend largely on the econometric methodology.

Energy constitutes of course an important subject as it is considered
as a source of many serious environmental problems. The literature on the
relationship between economic growth and energy consumption is dominated
by parametric cross-country modeling and time series analysis. For example,
Suri and Chapman (1998) used parametric panel models and showed that the
relationship between energy consumption and income displays an increasing
pattern (and the turning point is outside the data sample). Richmond and
Kaufmann (2006a,b), by using parametric specifications for panel data, found
little evidence for an EKC for energy consumption. They showed that energy
consumption increases with income at a decreasing rate. Existing time series
studies include Stern (2000), Altinay and Karagol (2005), Lee (2005), Lee
and Chang (2005), Richmond and Kaufmann (2006b), and papers from a
recent issue of Energy Economics (volume 29(6), 2007). They investigated
nonstationarity, cointegration and causality between energy and economic
series. Causality has been found to be uni- or bi-directional between income
and energy consumption, depending on the country considered.

This paper aims to provide a robust estimation of the profile of the re-
lationship between energy consumption and income, which would help us
to intervene convincingly in the discussion for the existence of an EKC for
energy.! For this purpose, we use a semiparametric partially linear panel
model, which has the advantage to avoid the misspecification problem that
may arise in parametric EKC studies as pointed out by Taskin and Zaim
(2000), Roy and van Kooten (2004), Bertinelli and Strobl (2005), Millimet

'In this respect, the paper is more related to cross-countries parametric studies than
time serie ones. Indeed, we are more concerned by correlation between energy consumption
and income than by the causality relationship between them. Furthermore, incorporating
nonstationarity in a nonparametric cross-country framework is very complex but may

constitute an interesting question to be investigated in the future.



et al. (2003), and Azomahou et al. (2006).

Moreover, this modeling enable us to control for other variables that en-
ter parametrically in the regression. We follow Richmond and Kaufmann
(2006b) by accounting for changes in the structure of final energy consump-
tion (or changes in energy mix as called by these authors). The authors
argue that structural changes (e.g. from coal to oil/natural gas and from
oil/natural gas to hydro and nuclear electricity) allows for higher energy effi-
ciency (i.e. lower energy consumption for a given level of economic activity).
They also showed that the presence of these structural changes in regressions
reduces the size of the turning point.

The next section presents the data and the econometric model. Section

3 discusses estimation results and Section 4 concludes.

2 Data and method

2.1 Data

The data, collected from the Energy Information Administration (EIA),
cover a balanced panel of 158 countries and territories for the period 1980-
2004 (3950 observations). Variables are total primary energy consumption
per capita (measured in millions British thermal units, Btu) and GDP per
capita (in thousands real 2000 U.S. dollars). Total primary energy consump-
tion includes consumptions of petroleum, natural gas, coal, hydroelectric
power, nuclear power and renewable electric power (geothermal, solar, wind,
wood and waste). It also includes net electricity imports (i.e. imports minus
exports). GDP distribution shows that most of observations correspond to
low income countries (about 2800 observations corresponding to incomes per
capita lower than 10,000 dollars).

Table 1 here

Insert Figure 1 here

We calculate the shares of coal, petroleum and gas, and hydroelectric,
nuclear and renewable electric power in total energy consumption. Note that
the sum of these three shares, measured in percentage, might not be equal

to 100 due to independent rounding.



2.2 Econometric model

We propose the following semiparametric partially linear panel model

vie = m(xy)+ 2y + 0t +uy, i=1,..,N,t=1,.,T, (1)

= m(mzt) + w;tT] + Ui, Wi = (th, t),’ (2)

where y;; is energy consumption per capita of country ¢ at year ¢, x;; is GDP
per capita, m is an unknown function, identifiable up to an additive constant,
zix contains other observed time-varying regressors, ¢ is the time trend, u;
is the error term that includes unobserved factors. The unknown form of m
avoids the use of a pre-specified parametric functional form (polynomial or
other parametric forms) as in existing studies on the relationship between
energy consumption and income, which is source of possible misspecification.

We assume for instance that w;; is i.i.d. in the 7 index and there is no
restriction in the ¢ index. This assumption includes the case of the one-way
error component model with u;; = u;+¢e; where p; is the individual effect and
it is the standard error term, both of them are uncorrelated with z;; and w;,
ie. E(ei|zir, ..., xir, Wy, ..., wp) = E(ui|zi, ..., zir, Wy, .., wip) = 0. In
fact, the model discussed here is more general than this well-known random
effects model as it allows for €;; being serially correlated and condionally
heteroskedastic (Li and Stengos, 1996). Moreover, it also includes the usual
fixed effect specification, wyy = p;+€it, where E(uit| %1, ..., Tir, Wy, ooy Whp) =
E(wilzit, .o, Tir, Wy, ooy W) # 0.

Regressors included in z correspond to the share of coal consumption and
the share of petroleum and natural gas consumption. The share of hydro-
electric, nuclear, and renewable electric power is considered as the reference
category. These variables capture structural changes in energy consumption.
Time trend variable ¢ is used to account for the macroeconomic effect com-
mon to all countries. It is an interesting variable because it may represent
the effect of energy prices in the international market. However, this vari-
able does not distinguish the price effect with other macroeconomic effects

(international economic cycle, etc.).?

2 Another variable that would be interesting to be controlled for is energy prices ob-
served at the country level. However, such a variable is not available for all countries, and
using it will considerably reduce the sample size. It will make our nonparametric method

few attractive as it requires a large sample.



Cousider the case E(u;|i1, ..., Tir, W, ..., wip) = 0 (random effects mod-
els included). Li and Stengos (1996) proposed an instrumental semiparamet-
ric estimator for this model. Firstly, taking the expectation of (1) conditional

on x;; and then calculating the difference of it with (1), we obtain
Yit — Eyilwi) = (wir — B(wg|wi)) 0+ ua. (3)

Assuming there exists an instrumental variable g;; (such that E(u;|qir) =
0) of the same dimension than wj, Li and Stengos (1996) proposed an in-
strumental variable estimator for n, # = (Q'W)~1Q'Y, where Qi = qit —
E(qit|xit), Yie = yit — E(yit|xi), and Wy = wyy — E(wye|2i). For simplicity,
we choose ¢;; = w;; as recommended by Li and Stengos (1996). Once 1) is

available, m might be estimated by
(i) = E((ya — wiygh)|wi) = Eyaelzi) — E(wili) ). (4)

In estimations, we use the local linear kernel method with the Epanech-
nikov kernel and the rule-of-thumb bandwidth (see Silverman, 1986) to cal-
culate E(qit|zit), E(wi|zi), and E(yi|zi).® It is well-known that the lo-
cal linear kernel estimator has a smaller bias at the data boundary, where
few data points are available, than the local constant kernel (or Nadayara-
Watson) estimator. Using the local liner kernel estimator will then provide
more robust estimation than the local constant kernel estimator (Pagan and
Ullah, 1999).

We turn now into the case of the fixed effects model where E(u;|x;1, ..., 27

Wl .y whp) # 0. We can take first differences to eliminate the fixed effects

i
Yit — Yit—1 = V(Tit, Tig—1) + (zit — zie—1)'v+ 0 +uwir —uip—1,  (5)

where W(z, i —1) == m(zy) —m(xi—1). As ¥ is a very general function,
which may include a constant, we will not consider separately § and ¥ in
estimations (or in other words, ¢ is not separately identified with ¥).

This model is the same as (1) and may be estimated by the method
of Li and Stengos (1996) detailed abave, except that variables in level are

replaced by their first differences, the univariate function m now replaced

30versmoothing (corresponding to a higher value of the bandwidth) and undersmooth-
ing (smaller bandwidth) give however similar patterns as /m obtained with the rule-of-
thumb bandwidth.



by a bivariate function ¥, and instrumental variables ¢; = w;; replaced
by git = zi4—1. When an estimation of ¥ for this model is obtained, i.e.
U(zi, wig-1) = B((it — Yi—1) — (zit — Zig—1)'3|%i, Tiy—1), we can use the
marginal integration method to compute the univariate function m, which is
identifiable up to an additive constant. This method, developed by Linton
and Nielsen (1995), was applied in the case of CO2 emissions by Azomahou
et al. (2006). The main idea of marginal integration can be described as
follows. For simplicity, let us rename the arguments of U as u and v. We

can write

B, [¥ @ V)] = / ¥ (u,0) f(v)dv
= m(u) — Ey [m (V)]
= m(u) — k,

—~~ o~~~
o N D
~— ~— ~—

and similarly,

B0 w0)] = [0 )

= k—m(v). (10)

We obtain estimators of m (z;;) and m (x;—1) up to the same constant by
taking the sample averages

N(T-
m(l) (fUzt) Z \i/ xztymj (11)

Similarly, we can obtain an estimator for m (z;—1), i.e

) N(T-1)
m® (zi-1) = CN(T-1) ; U (2, Tig-1) - (12)

A more precise estimator of m can be obtained by a weighted average between

) and ), and a simple estimator is given by m(z) = [ (z) + m® (2)] /2.

3 Estimation results
We consider the parametric version of (1) with

m(xi) = by + bixy + bz:l??t + ng?t and  w; = i + €. (13)



We estimate this model by GLS (random effects model), within and first-
difference estimators (fixed effects model) and estimation results are reported
in Table 2.

As noted previously, the underlying assumption behind the GLS and
within estimators is E(ei¢|@i1, ..., Tir, Wiy, ..., wip) = 0, which is known as the
strict exogeneity assumption. However, compared to the within estimator,
the GLS estimator has the additional assumption E(u;|;1, ..., Tir, Wy , .., Wig)
= 0 which may be tested by a Hausman test. The computed statistic, equal
to 35.91 > 12.59 (value of x?(6) at the 5% level), allows us to reject the GLS
estimator (i.e. rejecting the random effects model) in favor of the within
estimator.

A Hausman test is also used to compare the within and the first-difference
estimators of the fixed effects model. First-difference of the parametric model
in (13) is

Yit — Yit—1 = bi(ip — xie-1) + ba(zip — xi4-1)? + b3 (v — zig—1)?

+(2it — zig—1)"y + 6 + (wig — uip—1) (14)

We remark that the new constant of this model is § while by is eliminated
from the regression. In fact, we always have the strict exogeneity assumption
with the within estimator (the null hypothesis) whereas we have a much
weaker assumption with the first-difference estimator, called first-difference
assumption, i.e. E(gy — Eit_l\xit,xi,t_l,w;t,w;t_l) =0,¢t=1,..,N, t=
2,...,7.* The Hausman test statistic, which compares estimators of by, by,
b3, and 7, is equal to 3.30 < 11.07 (value of x2(5) at the 5% level). We can
conclude that the within estimator is not rejected. Therefore, the within

estimator is the best estimator for the parametric case.
Insert Table 2 here

Concerning the semiparametric modeling, we use the Hausman-type test
proposed by Li and Stengos (1992) to compare the estimator of v obtained
under the null (obtained from equation (5)) and that under the alternative
(equation (1)). The coefficient related to the time trend is excluded. The

reason is that § is, as underlined previously, not separately identified with

“As pointed out by Azomahou et al. (2006), an extension of the predeterminedness
assumption E(g;t|Ti1, ..., Tit, Wi, ..., wiy) = 0 that yields this first-difference assumption is

/ / .
E(eit|Tit, ooy Tijtr 1, Wiy ooy, Wigr) =0, =1, ,N, t =1,..., T — 1.



the nonparametric component . The test statistic follows a x2(k), with k =
dim(y). The computed value of the statistic is equal to 0.003 much lower than
5.99, the value of x2(2) at the 5% level, implying that the semiparametric
model given in (1) is preferred.

Finally, we implement the nonparametric test of Li and Wang (1998).
The null hypothesis is the parametric model given in (13) and the associated
within estimator and the alternative is the semiparametric model in level
given in (1). The test is based on the residuals of the ‘mixed’ regressions

under the null and the alternative hypotheses. The statistic is given by

n o n
I= n2—1hn SN Ky (15)
i=1 j=1,j#i
with n = NT and @ corresponding to the parametric residuals of the ‘mixed’
regressions, i.e. @ =y — m(x) — w'f) where m(x) = by + byzy + bpa?, + bzx?,
obtained under the null (given by the within estimator) and 7 obtained
under the alternative. Remark also that  is the dimension of x and in
our case k = 1 as x is univariate. K;; = K (%) where K is the
kernel function (we use the Epanechnikov kernel) and h is the smoothing
parameter (obtained by the rule of thumb). Under the null, nh*/2I —
N (0,9), as n — oo, where @ = 2[[ K?(v)dv] E [f(x) (E(az(a;,z)]a;))z}
with 02(z, 2)|z) = E(u?|z, 2), u = y—m(z)—w'n. Qis consistently estimated
by @ = (2/n?h?) ¥, 30, a2a2K2. Tt follows that J == nh*2IvVQ —
N (0,1). The computed value of the Li and Wang test statistic is 152.33
much higher than 1.96, implying the rejection of the parametric model at
the 5% level. We can conclude that the more suitable model for our data is
the semiparametric model in (1).

Differences between the parametric model (within estimation) and the
semiparametric model given in (1) in terms of estimations of m might be
viewed graphically in Figure 2. The parametric curve, based on the within
estimator, has an inverted-U shape. The downward part corresponds to in-
comes per capita higher than 35,000 dollars. As too few observations are
available for this income interval we do not have enough confidence on the
existence of this decreasing part. We can conclude that the parametric re-
lationship is increasing at a decreasing rate, as obtained by existing stud-
ies (Suri and Chapman, 1998, Richmond and Kaufmann, 2006a,b). The
nonparametric confidence interval does not include the parametric curve.

The nonparametric curve presents interesting patterns. Energy consump-



tion increases with income for income levels lower than about 10,000 dollars,
strongly increases for income interval 10,000-15,000 dollars, and then stabi-
lizes for incomes higher than 15,000 dollars. Again, as few observations are
available for income levels higher than 35,000 dollars, the estimated curve is
not enough smooth and therefore we prefer not to interpret the results for
this income interval. The stable part of the curve represents an improvement
of energy efficiency (higher production for a given level of energy consump-
tion) which might be assigned to past policies and energy-saving technologies

in high income countries.
Insert Figure 2 here

For a majority of countries and territories, of which observed income per
capita is lower than about 10,000 dollars and observed energy consumption
per capita is lower than about 100 millions Btu (see Figure 2), our estimation
results suggest that their energy consumption would rapidly increase with
economic development. Indeed, as shown in Figure 2, energy consumption
per capita in these countries would rise by three times higher than its ob-
served level (to attain about 300 millions Btu) if income per capita reaches
for example an amount of 15,000 dollars. Taking China and India as an ex-
ample, income per capita and energy consumption per capita of China are in
average equal to 2,314 dollars (with the maximum value of 5,051 dollars) and
26.32 millions Btu (highest value = 45.87 millions Btu). Figures for India
are respectively 2,202 dollars in average (highest value = 3,442 dollars) and
10.290 millions Btu in average (highest value = 14.475 millions Btu). We
thus expect that energy consumption of these two countries will increase at
an increasing rate as long as their economies grow. Our finding contrasts
with existing results in the literature where the relationship between energy
consumption and income is represented by a diminishing returns curve, i.e.
energy use increases with income but at a decreasing rate even for low income
countries (e.g., Richmond and Kaufmann, 2006a,b).

Concerning the share of coal consumption and the share of petroleum
and natural gas consumption in model (1), their estimates, respectively 0.229
(standard error = 4.333) and 0.016 (3.799) are not significant compared to
the share of hydroelectric, nuclear and renewable electric power. They are
also insignificant in parametric models. Changes in energy structure (or
energy mix) have no effect on energy consumption, contrary to the results
of Richmond and Kaufmann (2006a).



Finally, the effect of the time trend is not significant in semiparamet-
ric models. It seems therefore that macroeconomic cycle does not have an

impact on final energy consumption for the period of the study.

4 Concluding remarks

The EKC hypothesis is not confirmed by our analysis. Energy consumption
rises with income at an increasing rate for low incomes and then stabilizes for
high incomes. This finding suggests that energy consumption in developing
countries would rise more rapidly than expected by parametric studies. It
would result in a near future in serious economic and environmental problems
in these countries like rapid augmentation of greenhouse gas emissions due
to energy use, excessive pressure on the provision of energy resources, etc.
The structure of models used in this paper relies on weaker assump-
tions (unknown functional form, weakly exogenous regressors) than those of
standard parametric panel data models (polynomial functional forms, strict
exogeneity) may be applied in the study of other environmental indicators.
Moreover, the instrumental variables semiparametric estimator of our model
would be interesting to be extended on the case of endogenous regressors.
However, our methodology has the drawback that we cannot perform a fore-

casting analysis as in other parametric studies.

Appendix: List of countries and territories

Antigua and Barbuda, Afghanistan, Algeria, American Samoa, Argentina,
Australia, Austria, Bahrain, Barbados, Botswana, Bermuda, Belgium, The
Bahamas, Bangladesh, Belize, Bolivia, Burkina Faso, Burma, Benin, Solomon
Islands, Brazil, Bhutan, Brunei, Burundi, Canada, Cambodia, Chad, Congo
(Brazzaville), Congo (Kinshasa), China, Chile, Cayman Islands, Cameroon,
Comoros, Colombia, Costa Rica, Central African Republic, Cuba, Cape
Verde, Cyprus, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador,
Egypt, Equatorial Guinea, El Salvador, Ethiopia, Fiji, Finland, France,
French Guiana, Gabon, The Gambia, Ghana, Greece, Grenada, Guinea,
Guinea-Bissau, Guyana, Haiti, Honduras, Hong Kong, Iceland, India, In-
donesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kenya,
Kiribati, North Korea, South Korea, Kuwait, Laos, Lebanon, Lesotho, Liberia,
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Libya, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Martinique,
Mauritania, Mauritius, Mexico, Mongolia, Morocco, Nepal, Netherlands,
Netherlands Antilles, New Zealand, Nicaragua, Niger, Nigeria, Norway, Oman,
Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Portu-
gal, Puerto Rico, Qatar, Reunion, Rwanda, Saint Kitts and Nevis, Saint
Lucia, Saint Vincent/Grenadines, Samoa, Sao Tome and Principe, Saudi
Arabia, Senegal, Seychelles, Sierra Leone, Singapore, Solomon Islands, So-
malia, South Africa, Spain, Sri Lanka, Sudan, Suriname, Swaziland, Sweden,
Switzerland, Syria, Taiwan, Tanzania, Thailand, Togo, Tonga, Trinidad and
Tobago, Tunisia, Turkey, Uganda, United Arab Emirates, United Kingdom,
United States, Uruguay, Vanuatu, Venezuela, Vietnam, US. Virgin Islands,

Yemen, Zambia, Zimbabwe.
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Table 1: Descriptive statistics

Variable Units Mean Std. Dev. Min. Max.
Energy consumption per capita millions British thermal units (Btu) 88.904 174.09 0.12 2507.34
GDP per capita thousands real 2000 U.S. dollars 7.89 8.04 0.07  44.07
Coal share percent 7.67 15.86 0 84.65
Petroleum and natural gas share percent 78.11 23.32 4.28 100.54
Hydroelectric, nuclear & renewable power percent 14.19 18 -3.05  91.51

Notes: Balanced panel data on 158 countries and territories observed for the period 1980-2004 (3950 observations).

Data source: Energy Information Administration (EIA).



Table 2: Parametric regressions

GLS® Within? First-difference®
Coef.  Std.Err Coef.  Std.Err Coef.  Std.Err
GDP, linear term 4.038* 1.70 1.599 1.769 -2.389  2.795
GDP, quadratic term 0.196* 0.097 0.275* 0.099 0.533* 0.148
GDP, cubic term -0.005*  0.002 -0.006*  0.002 -0.010*  0.002
Coal share -0.082 0.241 -0.056 0.250 0.045 0.286
Petroleum and gas share -0.007 0.146 -0.035 0.150 -0.007 0.153
Time trend 0.377* 0.112 0.467* 0.113 0.254 0.422
Intercept 40.814*  17.386 53.182*  14.056 - -

Notes: “*GLS estimation of the random effects model. ’within estimation of the fixed
effects model. “first-difference estimation of the fixed effects model. The intercept
term by cannot be estimated in the first-differenced model as it is drooped from the

regression. Significant coefficients at the 5% level are starred.

14



Table 3: Nonparametric regressions

Level® First-difference®
Coef.  Std.Err Coef.  Std.Err
Coal share 0.229  4.333 -0.120  151.9
Petroleum and gas share 0.016  3.799 -1.084  210.0
Time trend 0.022  4.242 - -

Notes: * Li and Wang’ (1996) estimator for equation in level, i.e. equation (1).
Li and Wang’ (1996) estimator for equation in first-difference, i.e. equation (5).
In the first-differenced model, the coefficient of the time trend ¢ is note separately
identified from the nonparametric component W. Significant coefficients at the 5%

level are starred.
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Figure 1: Kernel density estimation for GDP per capita (in thousands real

2000 US dollars).
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Figure 2: Relation between energy consumption per capita (in millions Btu)
and GDP per capita (in thousands real 2000 US dollars). The solid curve is
the nonparametric estimation of m(x). The short dashes curves correspond
to its 95% confidence interval. The long dashes curve corresponds to the
within estimation of the parametric model with m(x;) = b + byt + box? +
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