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1 Introdu
tionThe Environmental Kuznets Curve (EKC) hypothesis, whi
h suggests aninverted U-shaped relationship between environmental degradation and in-
ome, has been extensively investigated in the literature. Various environ-mental degradation indi
ators have been examined: emissions or 
on
en-trations of pollutants (CO, CO2, SO2, NOx,...), deforestation rate, waterquality, et
. Results on the existen
e of an EKC are mix and mu
h of themdepend largely on the e
onometri
 methodology.Energy 
onstitutes of 
ourse an important subje
t as it is 
onsideredas a sour
e of many serious environmental problems. The literature on therelationship between e
onomi
 growth and energy 
onsumption is dominatedby parametri
 
ross-
ountry modeling and time series analysis. For example,Suri and Chapman (1998) used parametri
 panel models and showed that therelationship between energy 
onsumption and in
ome displays an in
reasingpattern (and the turning point is outside the data sample). Ri
hmond andKaufmann (2006a,b), by using parametri
 spe
i�
ations for panel data, foundlittle eviden
e for an EKC for energy 
onsumption. They showed that energy
onsumption in
reases with in
ome at a de
reasing rate. Existing time seriesstudies in
lude Stern (2000), Altinay and Karagol (2005), Lee (2005), Leeand Chang (2005), Ri
hmond and Kaufmann (2006b), and papers from are
ent issue of Energy E
onomi
s (volume 29(6), 2007). They investigatednonstationarity, 
ointegration and 
ausality between energy and e
onomi
series. Causality has been found to be uni- or bi-dire
tional between in
omeand energy 
onsumption, depending on the 
ountry 
onsidered.This paper aims to provide a robust estimation of the pro�le of the re-lationship between energy 
onsumption and in
ome, whi
h would help usto intervene 
onvin
ingly in the dis
ussion for the existen
e of an EKC forenergy.1 For this purpose, we use a semiparametri
 partially linear panelmodel, whi
h has the advantage to avoid the misspe
i�
ation problem thatmay arise in parametri
 EKC studies as pointed out by Taskin and Zaim(2000), Roy and van Kooten (2004), Bertinelli and Strobl (2005), Millimet1In this respe
t, the paper is more related to 
ross-
ountries parametri
 studies thantime serie ones. Indeed, we are more 
on
erned by 
orrelation between energy 
onsumptionand in
ome than by the 
ausality relationship between them. Furthermore, in
orporatingnonstationarity in a nonparametri
 
ross-
ountry framework is very 
omplex but may
onstitute an interesting question to be investigated in the future.2



et al. (2003), and Azomahou et al. (2006).Moreover, this modeling enable us to 
ontrol for other variables that en-ter parametri
ally in the regression. We follow Ri
hmond and Kaufmann(2006b) by a

ounting for 
hanges in the stru
ture of �nal energy 
onsump-tion (or 
hanges in energy mix as 
alled by these authors). The authorsargue that stru
tural 
hanges (e.g. from 
oal to oil/natural gas and fromoil/natural gas to hydro and nu
lear ele
tri
ity) allows for higher energy e�-
ien
y (i.e. lower energy 
onsumption for a given level of e
onomi
 a
tivity).They also showed that the presen
e of these stru
tural 
hanges in regressionsredu
es the size of the turning point.The next se
tion presents the data and the e
onometri
 model. Se
tion3 dis
usses estimation results and Se
tion 4 
on
ludes.2 Data and method2.1 DataThe data, 
olle
ted from the Energy Information Administration (EIA),
over a balan
ed panel of 158 
ountries and territories for the period 1980�2004 (3950 observations). Variables are total primary energy 
onsumptionper 
apita (measured in millions British thermal units, Btu) and GDP per
apita (in thousands real 2000 U.S. dollars). Total primary energy 
onsump-tion in
ludes 
onsumptions of petroleum, natural gas, 
oal, hydroele
tri
power, nu
lear power and renewable ele
tri
 power (geothermal, solar, wind,wood and waste). It also in
ludes net ele
tri
ity imports (i.e. imports minusexports). GDP distribution shows that most of observations 
orrespond tolow in
ome 
ountries (about 2800 observations 
orresponding to in
omes per
apita lower than 10,000 dollars).Table 1 hereInsert Figure 1 hereWe 
al
ulate the shares of 
oal, petroleum and gas, and hydroele
tri
,nu
lear and renewable ele
tri
 power in total energy 
onsumption. Note thatthe sum of these three shares, measured in per
entage, might not be equalto 100 due to independent rounding. 3



2.2 E
onometri
 modelWe propose the following semiparametri
 partially linear panel model
yit = m(xit) + z′itγ + δt + uit, i = 1, ..., N, t = 1, ..., T, (1)

= m(xit) + w′
itη + uit, wit ≡ (z′it, t)

′, (2)where yit is energy 
onsumption per 
apita of 
ountry i at year t, xit is GDPper 
apita, m is an unknown fun
tion, identi�able up to an additive 
onstant,
zit 
ontains other observed time-varying regressors, t is the time trend, uitis the error term that in
ludes unobserved fa
tors. The unknown form of mavoids the use of a pre-spe
i�ed parametri
 fun
tional form (polynomial orother parametri
 forms) as in existing studies on the relationship betweenenergy 
onsumption and in
ome, whi
h is sour
e of possible misspe
i�
ation.We assume for instan
e that uit is i.i.d. in the i index and there is norestri
tion in the t index. This assumption in
ludes the 
ase of the one-wayerror 
omponent model with uit = µi+εit where µi is the individual e�e
t and
εit is the standard error term, both of them are un
orrelated with xit and wit,i.e. E(εit|xi1, ..., xiT , w′

i1, ..., w
′
iT ) = E(µi|xi1, ..., xiT , w′

i1, ..., w
′
iT ) = 0. Infa
t, the model dis
ussed here is more general than this well-known randome�e
ts model as it allows for εit being serially 
orrelated and 
ondionallyheteroskedasti
 (Li and Stengos, 1996). Moreover, it also in
ludes the usual�xed e�e
t spe
i�
ation, uit = µi+εit, where E(uit|xi1, ..., xiT , w′
i1, ..., w

′
iT ) =

E(µi|xi1, ..., xiT , w′
i1, ..., w

′
iT ) 6= 0.Regressors in
luded in z 
orrespond to the share of 
oal 
onsumption andthe share of petroleum and natural gas 
onsumption. The share of hydro-ele
tri
, nu
lear, and renewable ele
tri
 power is 
onsidered as the referen
e
ategory. These variables 
apture stru
tural 
hanges in energy 
onsumption.Time trend variable t is used to a

ount for the ma
roe
onomi
 e�e
t 
om-mon to all 
ountries. It is an interesting variable be
ause it may representthe e�e
t of energy pri
es in the international market. However, this vari-able does not distinguish the pri
e e�e
t with other ma
roe
onomi
 e�e
ts(international e
onomi
 
y
le, et
.).22Another variable that would be interesting to be 
ontrolled for is energy pri
es ob-served at the 
ountry level. However, su
h a variable is not available for all 
ountries, andusing it will 
onsiderably redu
e the sample size. It will make our nonparametri
 methodfew attra
tive as it requires a large sample. 4



Consider the 
ase E(µi|xi1, ..., xiT , w′
i1, ..., w

′
iT ) = 0 (random e�e
ts mod-els in
luded). Li and Stengos (1996) proposed an instrumental semiparamet-ri
 estimator for this model. Firstly, taking the expe
tation of (1) 
onditionalon xit and then 
al
ulating the di�eren
e of it with (1), we obtain

yit − E(yit|xit) = (wit − E(wit|xit))
′ η + uit. (3)Assuming there exists an instrumental variable qit (su
h that E(uit|qit) =

0) of the same dimension than wit, Li and Stengos (1996) proposed an in-strumental variable estimator for η, η̂ = (Q′W )−1Q′Y , where Qit = qit −

E(qit|xit), Yit = yit − E(yit|xit), and Wit = wit − E(wit|xit). For simpli
ity,we 
hoose qit = wit as re
ommended by Li and Stengos (1996). On
e η̂ isavailable, m might be estimated by
m̂(xit) = E((yit − w′

itη̂)|xit) = E(yit|xit) − E(wit|xit)
′η̂. (4)In estimations, we use the lo
al linear kernel method with the Epane
h-nikov kernel and the rule-of-thumb bandwidth (see Silverman, 1986) to 
al-
ulate E(qit|xit), E(wit|xit), and E(yit|xit).3 It is well-known that the lo-
al linear kernel estimator has a smaller bias at the data boundary, wherefew data points are available, than the lo
al 
onstant kernel (or Nadayara-Watson) estimator. Using the lo
al liner kernel estimator will then providemore robust estimation than the lo
al 
onstant kernel estimator (Pagan andUllah, 1999).We turn now into the 
ase of the �xed e�e
ts model where E(µi|xi1, ..., xiT ,

w′
i1, ..., w

′
iT ) 6= 0. We 
an take �rst di�eren
es to eliminate the �xed e�e
ts

µi:
yit − yi,t−1 = Ψ(xit, xi,t−1) + (zit − zi,t−1)

′γ + δ + uit − ui,t−1, (5)where Ψ(xit, xi,t−1) := m(xit) − m(xi,t−1). As Ψ is a very general fun
tion,whi
h may in
lude a 
onstant, we will not 
onsider separately δ and Ψ inestimations (or in other words, δ is not separately identi�ed with Ψ).This model is the same as (1) and may be estimated by the methodof Li and Stengos (1996) detailed abave, ex
ept that variables in level arerepla
ed by their �rst di�eren
es, the univariate fun
tion m now repla
ed3Oversmoothing (
orresponding to a higher value of the bandwidth) and undersmooth-ing (smaller bandwidth) give however similar patterns as m̂ obtained with the rule-of-thumb bandwidth. 5



by a bivariate fun
tion Ψ, and instrumental variables qit = wit repla
edby qit = zi,t−1. When an estimation of Ψ for this model is obtained, i.e.
Ψ̂(xit, xi,t−1) = E((yit − yi,t−1) − (zit − zi,t−1)

′γ̂|xit, xi,t−1), we 
an use themarginal integration method to 
ompute the univariate fun
tion m, whi
h isidenti�able up to an additive 
onstant. This method, developed by Lintonand Nielsen (1995), was applied in the 
ase of CO2 emissions by Azomahouet al. (2006). The main idea of marginal integration 
an be des
ribed asfollows. For simpli
ity, let us rename the arguments of Ψ̂ as u and v. We
an write
Ev

[

Ψ̂ (u, V )
]

=

∫

Ψ̂ (u, v) f(v)dv (6)
= m(u) − Ev [m (V )] (7)
= m(u) − k, (8)and similarly,

Eu

[

Ψ̂ (U, v)
]

=

∫

Ψ̂ (u, v) f(u)du (9)
= k − m (v) . (10)We obtain estimators of m (xit) and m (xit−1) up to the same 
onstant bytaking the sample averages

m̂(1) (xit) =
1

N (T − 1)

N(T−1)
∑

j=1

Ψ̂ (xit, xj) . (11)Similarly, we 
an obtain an estimator for m (xit−1), i.e.
m̂(2) (xit−1) = −

1

N (T − 1)

N(T−1)
∑

j=1

Ψ̂ (xj, xit−1) . (12)A more pre
ise estimator of m 
an be obtained by a weighted average between
m̂(1) and m̂(2), and a simple estimator is given by m̂(x) =

[

m̂(1) (x) + m̂(2) (x)
]

/2.3 Estimation resultsWe 
onsider the parametri
 version of (1) with
m(xit) = b0 + b1xit + b2x

2
it + b3x

3
it and uit = µi + εit. (13)6



We estimate this model by GLS (random e�e
ts model), within and �rst-di�eren
e estimators (�xed e�e
ts model) and estimation results are reportedin Table 2.As noted previously, the underlying assumption behind the GLS andwithin estimators is E(εit|xi1, ..., xiT , w′
i1, ..., w

′
iT ) = 0, whi
h is known as thestri
t exogeneity assumption. However, 
ompared to the within estimator,the GLS estimator has the additional assumption E(µi|xi1, ..., xiT , w′

i1, ..., w
′
iT )

= 0 whi
h may be tested by a Hausman test. The 
omputed statisti
, equalto 35.91 > 12.59 (value of χ2(6) at the 5% level), allows us to reje
t the GLSestimator (i.e. reje
ting the random e�e
ts model) in favor of the withinestimator.A Hausman test is also used to 
ompare the within and the �rst-di�eren
eestimators of the �xed e�e
ts model. First-di�eren
e of the parametri
 modelin (13) is
yit − yi,t−1 = b1(xit − xi,t−1) + b2(xit − xi,t−1)

2 + b3(xit − xi,t−1)
3

+(zit − zi,t−1)
′γ + δ + (uit − ui,t−1) (14)We remark that the new 
onstant of this model is δ while b0 is eliminatedfrom the regression. In fa
t, we always have the stri
t exogeneity assumptionwith the within estimator (the null hypothesis) whereas we have a mu
hweaker assumption with the �rst-di�eren
e estimator, 
alled �rst-di�eren
eassumption, i.e. E(εit − εit−1|xit, xi,t−1, w

′
it, w

′
i,t−1) = 0, i = 1, ..., N, t =

2, ..., T .4 The Hausman test statisti
, whi
h 
ompares estimators of b1, b2,
b3, and γ, is equal to 3.30 < 11.07 (value of χ2(5) at the 5% level). We 
an
on
lude that the within estimator is not reje
ted. Therefore, the withinestimator is the best estimator for the parametri
 
ase.Insert Table 2 hereCon
erning the semiparametri
 modeling, we use the Hausman-type testproposed by Li and Stengos (1992) to 
ompare the estimator of γ obtainedunder the null (obtained from equation (5)) and that under the alternative(equation (1)). The 
oe�
ient related to the time trend is ex
luded. Thereason is that δ is, as underlined previously, not separately identi�ed with4As pointed out by Azomahou et al. (2006), an extension of the predeterminednessassumption E(εit|xi1, ..., xit, w

′
i1, ..., w

′
it) = 0 that yields this �rst-di�eren
e assumption is

E(εit|xi1, ..., xi,t+1, w
′
i1, ..., w

′
i,t+1) = 0, i = 1, ..., N, t = 1, ..., T − 1.7



the nonparametri
 
omponent Ψ. The test statisti
 follows a χ2(k), with k =

dim(γ). The 
omputed value of the statisti
 is equal to 0.003 mu
h lower than5.99, the value of χ2(2) at the 5% level, implying that the semiparametri
model given in (1) is preferred.Finally, we implement the nonparametri
 test of Li and Wang (1998).The null hypothesis is the parametri
 model given in (13) and the asso
iatedwithin estimator and the alternative is the semiparametri
 model in levelgiven in (1). The test is based on the residuals of the `mixed' regressionsunder the null and the alternative hypotheses. The statisti
 is given by
I =

1

n2hκ

n
∑

i=1

n
∑

j=1,j 6=i

ûiûjKij (15)with n = NT and û 
orresponding to the parametri
 residuals of the `mixed'regressions, i.e. û = y − m̂(x) − w′η̂ where m̂(x) = b̂0 + b̂1xit + b̂2x
2
it + b̂3x

3
itobtained under the null (given by the within estimator) and η̂ obtainedunder the alternative. Remark also that κ is the dimension of x and inour 
ase κ = 1 as x is univariate. Kij = K

(

xi−xj

h

) where K is thekernel fun
tion (we use the Epane
hnikov kernel) and h is the smoothingparameter (obtained by the rule of thumb). Under the null, nhκ/2I →

N (0,Ω), as n → ∞, where Ω = 2
[∫

K2 (v) dv]

E
[

f(x)
(

E(σ2(x, z)|x)
)2

]with σ2(x, z)|x) = E(u2|x, z), u = y−m(x)−w′η. Ω is 
onsistently estimatedby Ω̂ =
(

2/n2hq
)
∑

i

∑

j 6=i û
2
i û

2
jK

2
ij . It follows that J := nhκ/2I

√

Ω̂ →

N (0, 1). The 
omputed value of the Li and Wang test statisti
 is 152.33mu
h higher than 1.96, implying the reje
tion of the parametri
 model atthe 5% level. We 
an 
on
lude that the more suitable model for our data isthe semiparametri
 model in (1).Di�eren
es between the parametri
 model (within estimation) and thesemiparametri
 model given in (1) in terms of estimations of m might beviewed graphi
ally in Figure 2. The parametri
 
urve, based on the withinestimator, has an inverted-U shape. The downward part 
orresponds to in-
omes per 
apita higher than 35,000 dollars. As too few observations areavailable for this in
ome interval we do not have enough 
on�den
e on theexisten
e of this de
reasing part. We 
an 
on
lude that the parametri
 re-lationship is in
reasing at a de
reasing rate, as obtained by existing stud-ies (Suri and Chapman, 1998, Ri
hmond and Kaufmann, 2006a,b). Thenonparametri
 
on�den
e interval does not in
lude the parametri
 
urve.The nonparametri
 
urve presents interesting patterns. Energy 
onsump-8



tion in
reases with in
ome for in
ome levels lower than about 10,000 dollars,strongly in
reases for in
ome interval 10,000�15,000 dollars, and then stabi-lizes for in
omes higher than 15,000 dollars. Again, as few observations areavailable for in
ome levels higher than 35,000 dollars, the estimated 
urve isnot enough smooth and therefore we prefer not to interpret the results forthis in
ome interval. The stable part of the 
urve represents an improvementof energy e�
ien
y (higher produ
tion for a given level of energy 
onsump-tion) whi
h might be assigned to past poli
ies and energy-saving te
hnologiesin high in
ome 
ountries. Insert Figure 2 hereFor a majority of 
ountries and territories, of whi
h observed in
ome per
apita is lower than about 10,000 dollars and observed energy 
onsumptionper 
apita is lower than about 100 millions Btu (see Figure 2), our estimationresults suggest that their energy 
onsumption would rapidly in
rease withe
onomi
 development. Indeed, as shown in Figure 2, energy 
onsumptionper 
apita in these 
ountries would rise by three times higher than its ob-served level (to attain about 300 millions Btu) if in
ome per 
apita rea
hesfor example an amount of 15,000 dollars. Taking China and India as an ex-ample, in
ome per 
apita and energy 
onsumption per 
apita of China are inaverage equal to 2,314 dollars (with the maximum value of 5,051 dollars) and26.32 millions Btu (highest value = 45.87 millions Btu). Figures for Indiaare respe
tively 2,202 dollars in average (highest value = 3,442 dollars) and10.290 millions Btu in average (highest value = 14.475 millions Btu). Wethus expe
t that energy 
onsumption of these two 
ountries will in
rease atan in
reasing rate as long as their e
onomies grow. Our �nding 
ontrastswith existing results in the literature where the relationship between energy
onsumption and in
ome is represented by a diminishing returns 
urve, i.e.energy use in
reases with in
ome but at a de
reasing rate even for low in
ome
ountries (e.g., Ri
hmond and Kaufmann, 2006a,b).Con
erning the share of 
oal 
onsumption and the share of petroleumand natural gas 
onsumption in model (1), their estimates, respe
tively 0.229(standard error = 4.333) and 0.016 (3.799) are not signi�
ant 
ompared tothe share of hydroele
tri
, nu
lear and renewable ele
tri
 power. They arealso insigni�
ant in parametri
 models. Changes in energy stru
ture (orenergy mix) have no e�e
t on energy 
onsumption, 
ontrary to the resultsof Ri
hmond and Kaufmann (2006a).9



Finally, the e�e
t of the time trend is not signi�
ant in semiparamet-ri
 models. It seems therefore that ma
roe
onomi
 
y
le does not have animpa
t on �nal energy 
onsumption for the period of the study.4 Con
luding remarksThe EKC hypothesis is not 
on�rmed by our analysis. Energy 
onsumptionrises with in
ome at an in
reasing rate for low in
omes and then stabilizes forhigh in
omes. This �nding suggests that energy 
onsumption in developing
ountries would rise more rapidly than expe
ted by parametri
 studies. Itwould result in a near future in serious e
onomi
 and environmental problemsin these 
ountries like rapid augmentation of greenhouse gas emissions dueto energy use, ex
essive pressure on the provision of energy resour
es, et
.The stru
ture of models used in this paper relies on weaker assump-tions (unknown fun
tional form, weakly exogenous regressors) than those ofstandard parametri
 panel data models (polynomial fun
tional forms, stri
texogeneity) may be applied in the study of other environmental indi
ators.Moreover, the instrumental variables semiparametri
 estimator of our modelwould be interesting to be extended on the 
ase of endogenous regressors.However, our methodology has the drawba
k that we 
annot perform a fore-
asting analysis as in other parametri
 studies.Appendix: List of 
ountries and territoriesAntigua and Barbuda, Afghanistan, Algeria, Ameri
an Samoa, Argentina,Australia, Austria, Bahrain, Barbados, Botswana, Bermuda, Belgium, TheBahamas, Bangladesh, Belize, Bolivia, Burkina Faso, Burma, Benin, SolomonIslands, Brazil, Bhutan, Brunei, Burundi, Canada, Cambodia, Chad, Congo(Brazzaville), Congo (Kinshasa), China, Chile, Cayman Islands, Cameroon,Comoros, Colombia, Costa Ri
a, Central Afri
an Republi
, Cuba, CapeVerde, Cyprus, Denmark, Djibouti, Domini
a, Domini
an Republi
, E
uador,Egypt, Equatorial Guinea, El Salvador, Ethiopia, Fiji, Finland, Fran
e,Fren
h Guiana, Gabon, The Gambia, Ghana, Gree
e, Grenada, Guinea,Guinea-Bissau, Guyana, Haiti, Honduras, Hong Kong, I
eland, India, In-donesia, Iran, Iraq, Ireland, Israel, Italy, Jamai
a, Japan, Jordan, Kenya,Kiribati, North Korea, South Korea, Kuwait, Laos, Lebanon, Lesotho, Liberia,10



Libya, Madagas
ar, Malawi, Malaysia, Maldives, Mali, Malta, Martinique,Mauritania, Mauritius, Mexi
o, Mongolia, Moro

o, Nepal, Netherlands,Netherlands Antilles, New Zealand, Ni
aragua, Niger, Nigeria, Norway, Oman,Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Portu-gal, Puerto Ri
o, Qatar, Reunion, Rwanda, Saint Kitts and Nevis, SaintLu
ia, Saint Vin
ent/Grenadines, Samoa, Sao Tome and Prin
ipe, SaudiArabia, Senegal, Sey
helles, Sierra Leone, Singapore, Solomon Islands, So-malia, South Afri
a, Spain, Sri Lanka, Sudan, Suriname, Swaziland, Sweden,Switzerland, Syria, Taiwan, Tanzania, Thailand, Togo, Tonga, Trinidad andTobago, Tunisia, Turkey, Uganda, United Arab Emirates, United Kingdom,United States, Uruguay, Vanuatu, Venezuela, Vietnam, US. Virgin Islands,Yemen, Zambia, Zimbabwe.Referen
es[1℄ Altinay G., Karagol E. (2005), �Ele
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Table 1: Des
riptive statisti
sVariable Units Mean Std. Dev. Min. Max.Energy 
onsumption per 
apita millions British thermal units (Btu) 88.904 174.09 0.12 2507.34GDP per 
apita thousands real 2000 U.S. dollars 7.89 8.04 0.07 44.07Coal share per
ent 7.67 15.86 0 84.65Petroleum and natural gas share per
ent 78.11 23.32 4.28 100.54Hydroele
tri
, nu
lear & renewable power per
ent 14.19 18 -3.05 91.51Notes: Balan
ed panel data on 158 
ountries and territories observed for the period 1980�2004 (3950 observations).Data sour
e: Energy Information Administration (EIA).
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Table 2: Parametri
 regressionsGLSa Withinb First-di�eren
ecCoef. Std.Err Coef. Std.Err Coef. Std.ErrGDP, linear term 4.038∗ 1.70 1.599 1.769 -2.389 2.795GDP, quadrati
 term 0.196∗ 0.097 0.275∗ 0.099 0.533∗ 0.148GDP, 
ubi
 term -0.005∗ 0.002 -0.006∗ 0.002 -0.010∗ 0.002Coal share -0.082 0.241 -0.056 0.250 0.045 0.286Petroleum and gas share -0.007 0.146 -0.035 0.150 -0.007 0.153Time trend 0.377∗ 0.112 0.467∗ 0.113 0.254 0.422Inter
ept 40.814∗ 17.386 53.182∗ 14.056 � �Notes: aGLS estimation of the random e�e
ts model. bwithin estimation of the �xede�e
ts model. c�rst-di�eren
e estimation of the �xed e�e
ts model. The inter
eptterm b0 
annot be estimated in the �rst-di�eren
ed model as it is drooped from theregression. Signi�
ant 
oe�
ients at the 5% level are starred.
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Table 3: Nonparametri
 regressionsLevela First-di�eren
ebCoef. Std.Err Coef. Std.ErrCoal share 0.229 4.333 -0.120 151.9Petroleum and gas share 0.016 3.799 -1.084 210.0Time trend 0.022 4.242 � �Notes: a Li and Wang' (1996) estimator for equation in level, i.e. equation (1).
bLi and Wang' (1996) estimator for equation in �rst-di�eren
e, i.e. equation (5).In the �rst-di�eren
ed model, the 
oe�
ient of the time trend δ is note separatelyidenti�ed from the nonparametri
 
omponent Ψ. Signi�
ant 
oe�
ients at the 5%level are starred.
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Figure 1: Kernel density estimation for GDP per 
apita (in thousands real2000 US dollars).
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Figure 2: Relation between energy 
onsumption per 
apita (in millions Btu)and GDP per 
apita (in thousands real 2000 US dollars). The solid 
urve isthe nonparametri
 estimation of m(x). The short dashes 
urves 
orrespondto its 95% 
on�den
e interval. The long dashes 
urve 
orresponds to thewithin estimation of the parametri
 model with m(xit) = b0 + b1xit + b2x
2
it +

b3x
3
it.

17


