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1 Introduction

The president of the United States of America is elected by an electoral college, the Electors,

who have only one function, vote in this election. The direct election by citizens was

excluded (to avoid tumult and disorder) as the election by the Congress (to avoid that the

President should be too dependent of this powerful institution).

There are two steps in the U.S. presidential election. Firstly, the citizens of every

state choose the Electors. Secondly, the Electors vote for the President. Actually, if a

candidate obtains a majority in a State, he takes all of the electoral votes of this State (this

“winner-take-all” method is generally true except for two States, Maine and Nebraska1).

The winner of the U.S. presidential election is the candidate who receives a majority of votes

from the Electors (in 2000, there was 538 Electors divided into 50 States and the District

of Columbia). The number of Electors for each State is the sum of two components: a

fixed one and a proportional one. The fixed one is the number of U.S. Senators which is

always 2 for every State. The proportional component corresponds to the number of seats

in the House of Representatives allocated to each State. For instance, in 2000, the State of

California had 54 seats in the House of Representatives and 2 Senators, which leads to 56

Electors for the presidential election.

An important part of this paper is based on the proportional component. Even if the

number of representatives depends on the population of the State, the Constitution does

not specify any exact rule to apportion the number of Electors to the different States. The

crucial problem comes from the choice of this rule, because different apportionments can

be obtained by using different methods. For example, consider the 1980 census, where

the Colorado population represents 1.279% of the whole U.S. population. The total num-

ber of seats is equal to 435. By considering an egalitarian apportionment, which should

be as close as possible to the ideal one man-one vote, implies that Colorado gets 5.564

seats. Unfortunately, we can not divide a seat. Hence, should the Colorado receive 5 or 6

seats (or, eventually some other number)? As the same question arises for each State, the

apportionment issue becomes complex.

Moreover, many apportionment methods have been developed in the literature. Obvi-

ously, the choice of the method may have fundamental consequences. For instance, with the

1Maine and Nebraska both use the congressional district method. These two States give an Elector to

the winner in each congressional district and two Electors to the State wide vote.
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1920 census, the State of New York can obtain 41 seats with one method and 45 with an-

other. This difference is significant because it may lead to the election of another President.

As an illustration, President Hayes obtained 185 votes in 1876, and his opponent, Tilden,

obtained 184 votes. This example underlines clearly the importance of the apportionment

issue.

Every 10 years, since 1790, there is a census in U.S. which gives the number of inhabitants

in every State. Since 1790, the proportional repartition of seats is made according to the

most recent census and according to an apportionment method (chosen in an ad hoc way).

Each State obtains at least one seat (according to the Constitution), which leads to at least

three Electors in every State.

The names of the methods of apportionment are generally associated to famous Ameri-

can politicians (John Quincy Adams, Thomas Jefferson, Alexander Hamilton, Daniel Web-

ster), which underlines the importance of the problem. The statesmen have proposed differ-

ent methods to reflect the evolution of the society: the number of States and also the whole

population increased over the period 1790-2000. The size of the House of Representatives

was 105 seats in 1790, while there are 435 seats in 2000. In the same way, the number of

States has increased from 15 in 1790 to 50 in 2000. Finally, the number of Electors which

was 538 in 20002, was only 135 in 1790.

If the politicians have used apportionment in an empirical sense, technical developments

have been made by scientists (several of them have proposed their own method, for instance

James Dean or Joseph A. Hill). The latter have conducted the normative analysis of those

methods. Clearly, the perfect method does not exist which is known since Webster at the

beginning of the nineteenth century. However, Balinski and Young (2001) argue that the

method of Webster, from a normative point of view, is better than the others. This method

belongs to the well-known category of the divisor methods. Obviously, other methods can

be found in the literature, but they are weak from a normative point of view.

The divisor methods are based on a particular number, called the ideal divisor. Keeping

in mind the ideal one man-one vote, each inhabitant of the U.S. should have the same

part of a seat whatever State he belongs to. In an other word, whatever the State, a

seat should be related to the same number of inhabitants. This number of inhabitants

corresponds to the ideal divisor. Hence, the sum of each State population divided by this

2The 435 seats plus the 100 senators and the 3 Electors of the District of Columbia (since 1961).
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divisor, and rounded according to the chosen method, must be equal to the number of

seats (the House of Representatives size). The divisor represents the number of citizens

for one Representative; the higher the number of citizens for one Representative, lower the

size of the House of Representatives. When the number of Representatives is given (for

example 435 in 2000), a brief calculus with an algorithm gives the divisor. The method of

Webster rounds the quotient population/divisor to the nearest integer number. In the same

spirit, the method of Jefferson rounds the quotient population/divisor to the whole part of

this number, whereas the method of Adams rounds the quotient population/divisor to the

smallest integer containing this quotient. Others methods are proposed in the literature, in

particular the methods of Dean and Hill, detailed below.

Several arguments have been proposed in the literature which imply that Webster is

better than the others from a normative point of view. Firstly, an Alabama paradox cannot

appear when using this method. An Alabama paradox occurs when a State gets less seats

when the total number of seats increases. Secondly, the apportionment with the Webster

method is such that the number of seats for each State is near the quota (the quota of the

State is equal to the population of this State divided by the whole population, multiplied

by the total number of seats). Thirdly, we can show that the Webster method does not

systematically advantage the smallest States or the largest ones: there is no bias. Despite

clear normative qualities, the method of Webster was only used to constitute the House

of the Representatives in 1840, and from 1910 to 1930. In this paper, only the five most

famous divisor methods are analyzed: the methods of Adams, Dean, Hill, Webster and

Jefferson. The other famous method of Hamilton, or method of largest remainders, is

not studied because it admits the possibility of an Alabama paradox. This constitutes a

sufficient normative failure to reject it directly.

The main question of this paper is the following: which method of apportionment permits

the best balance between a State’s population and its voting power? This question seems

to be of crucial importance, since to get 10% of the Representatives does not mean that

you get 10% of the power. In our opinion, we have to consider the power of a State and

not its relative weight.

An essential problem is then to define power and to measure it. An interesting tool is

given by cooperative game theory. Indeed, an important field in cooperative game theory

deals with the notion of power, this is known as the theory of power indices. The literature
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about power indices is abundant and we can not summarize it in this paper. An elegant

presentation is given in Felsenthal and Machover (1998) and Laruelle (1998), among others.

For theoretical reasons (developed below), we only use the power index introduced by

Banzhaf (1965). The power of a player is the probability that he should be a pivotal player,

that is to say a player such that when he belongs to a winning coalition (a group of players),

the coalition wins, otherwise the coalition loses. Consider the following simple example: in a

game such that a coalition wins if and only if it contains at least 6 players (and we suppose

that a player has only one vote), if we consider a coalition with 7 players, there is no pivotal

player. Indeed, if an individual leaves the coalition, it is again a winning coalition (with 6

members). However, in a coalition of 6 players, every player is pivotal since the coalition

loses when one player leaves the coalition.

A good balance between population and power implies that each individual gets the

same power. In other words, every individual should have the same probability of being

pivotal in their State and the State is pivotal in the whole country. Obviously, all the

individuals in a State have the same power but the States have different power since the

number of Representatives may be different for two States. The choice of the power index

is based on a probabilistic hypothesis that we impose on individual behavior, or on State

behavior.

Unfortunately, there are technical difficulties when we compare population and power.

Indeed, we have to use a notion of distance between two vectors. There exists an infinity

of possible distances, the most famous being the euclidian distance, or standard deviation,

which is particularly studied in this paper. All the Lk − norm, k ∈]0,∞[, are analyzed
in this paper which is more general than the literature. Obviously, the results depend on

the choice of k. One purpose of the paper is to determine which method of apportionment

minimizes the distance between the population vector and the power vector.

An immediate question arises: why do not determine directly the apportionment which

minimizes such a distance, without using a method of apportionment? This approach, for

instance used by Leech (2002), and has not been examined in the literature from a normative

point of view. Furthermore, we show, in this paper, that such a method can produce an

Alabama paradox. This weakness is certainly a sufficient condition to exclude this method

as we do for the method of Hamilton.

In the second section, we present the tools used in this paper: the methods of apportion-
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ment, the power indices and we explain why we only use the Banzhaf power index. In the

third section, for each of the 22 U.S. censuses, we calculate which method of apportionment

permits the best balance of population-power, in the classical majority case. The ranking

of the methods is also computed. For instance, we show that the method which has a bias

in favor of the largest States (Jefferson) is always ranked last. In section 4, we extend the

results analyzed in sections 2 and 3 to the other cases than the majority. Clearly, the choice

of the α − majority3 may influence the ranking of the methods. The main idea is the
following: the best method in a normative point of view is the one proposed by Webster.

But sections 2 and 3 underline that this method is not ranked first in general when the

majority game is considered. Hence, maybe there exists an α such that the method of Web-

ster is ranked first. Since α is not fixed, studying all the distances would be too tedious.

Hence, we focus on the standard euclidian distance. However, other distances are tested

briefly. In theses three sections, we focus our analysis on the House of Representatives, as

it corresponds to the proportional part of the apportionment (the other part corresponds

to the fixed number of 2 senators, whatever the State). Then, in section 5, we take into

account all the Electors and not only the ones obtained with the proportional part. This

implies a modification of all our results since an important weight is given, proportionally,

to the smallest States. In section 6, the direct distribution of seats by just minimizing a

distance between two vectors (population and power) is analyzed. We show that this ap-

proach admits the possibility of an Alabama paradox and so is not relevant, which justifies

our approach. Section 7 concludes.

2 Tools and methodology

Two concepts, rarely studied together, are briefly presented here: the theory of appor-

tionment and the power indices theory. The purpose of the theory of apportionment is to

distribute a fixed number of seats to several States proportionally to their population. From

a mathematical point of view, the main problem in this theory comes from the manipula-

tion of integer numbers, since a seat cannot be divided. The objective is clearly different

in the power indices theory. The goal is to measure the probability of an individual (or a

State) being a pivotal player in a coalition. Indeed, this is the metric used to measure the

3In the power indices literature, α is called the quota, that is the part of the total number of seats a

coalition must contain to be winning, but this vocabulary is used too in apportionment theory.
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power with power indices. Our approach consist in minimizing, for a State, the difference

between its population and its power. For instance, if a State represents 25% of the whole

population, the apportionment should be such that it owns about 25% of power. The link

between population and power is not common in the literature: exceptions are Leech (2002),

Barthélémy, Martin and Merlin (2007) or Barthélémy and Martin (2007).

2.1 Apportionment

2.1.1 Preliminaries

This section comes from the very nice short presentation of apportionment by Balinski and

Young (1985). An apportionment method is given by a vector of population p = (p1, ..., pn)

of n States and a total number of seats a > 0, which has to distributed among these n

States. A vector a = (a1, ..., an) is an apportionment of a, with ai a positive integer. For

example, in 2000, there were a = 435 seats in the House of Representatives to be distributed

among n = 50 States. Moreover, constraints can be imposed on the apportionment. For

instance, every U.S. State has at least one seat.

The quota for State i is the part of its population relative to whole population, multiplied

by the total number of seats. Let qi the quota, with qi =
pi
n
j=1 pj

× a.
For example, if a State has a population equal to 100 000 citizens in a country with

1 000 000 citizens, a number of seats equal to 100 implies a quota of 10, for this State.

However, in general, the quota is not an integer (suppose that the number of seats is equal

to 101 in our example) while the number of seats for a State has to be an integer. This

difficulty lies at the heart of the theory of apportionment.

2.1.2 The main methods of apportionment

Apportionment is of crucial importance since it plays an important role in the U.S. presiden-

tial election. There have been many debates since the 1787’s U.S Constitution and several

methods have been proposed, not by scientists, but by famous American politicians. We

do not develop here an historical presentation of the theory of apportionment, as this pre-

sentation is already made in the Balinski and Young monograph (2001). Only the methods

used in U.S. presidential elections are described in this section.
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The method of Hamilton

The apportionment is made easily: compute the quota and give to each State its integer

part. Give any seat unapportioned to the States with the largest remainder. This method is

not really considered in this paper because of its normative weakness. However, it was used

in U.S. from 1850 to 1900, and so is important from a historical perspective. The method

proposed by Hamilton in 1792 seems to be natural and simple, but it is not the first method

proposed in U.S. Instead of considering the quota approach, as in the remainders methods,

the number of citizens for one seat was first considered which corresponds to the divisor

methods.

The divisor methods

Five of them are studied here (the most famous), the methods of Jefferson, Adams,

Webster, Hill and Dean.

The vector a is a Jefferson apportionment, if and only if

∀i = 1, . . . , n, ai = upi
x
J

with x a divisor such that
�n
i=1 ai = a and uyJ the integer part of y. In other words, once

a is fixed, we have to determine the divisor x such that the sum of the integer parts of

the rates population/power is equal to a. For instance, if pi/x = 3.22, then the States i

gets 3 seats. This method was used from 1790 to 1830 for the U.S. House of Representatives.

The vector a is an Adams apportionment, if and only if

∀i, . . . , n, ai = {pi
x
Q

with x a divisor such that
�n
i=1 ai = a and {yQ the smallest integer greater than or equal

to y. The construction of the method of Adams is identical to the one of Jefferson, the only

difference being the way of rounding an integer. For example, if pi/x = 4.28, then the State

i gets 5 seats while it would have get 4 seats with the method of Jefferson.

The vector a is a Webster apportionment, if and only if

∀i, . . . , n, ai = [
pi
x
]
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with x a divisor such that
�n
i=1 ai = a and [y] the nearest integer from y. For example,

if y = 0.51, then [y] = 1 and if y = 3.45, then [y] = 3. In the particular case where y

is an integer plus 0.5, there are two solutions. Thus if y = 8.5, then [y] = 8 or [y] = 9.

This method was used for the House of Representatives in 1840, 1910 and 19304. Let us

remark that between two successive integers, the value which changes the rounding is the

arithmetic mean:

∀y ∈ [n, n+ 1] ,
 [y] = n, if y (n+ (n+ 1))/2

[y] = n+ 1, if y (n+ (n+ 1))/2

The two last methods, proposed by Dean and Hill, are similar to the method of Webster.

The difference comes from the way of computing the mean. Instead of using the arithmetic

mean, we use the harmonic mean for the method of Dean (the harmonic mean for 2 and 3

is equal to 2.4), and the geometric mean for the method of Hill (the geometric mean for 2

and 3 is equal to 2.45). The method of Hill has been used for the House of Representatives

since 1940.

Even if there are other methods proposed in the literature (with or without divisor),

there are not considered in this paper because they are too weak in a normative point of

view.

Remark that for the five divisor methods we have presented, the rounding depends on a

particular value between two successive integers as illustrated in table 1 where ỹ corresponds

to rounded value of y5.

Table 1. Rounding with divisor methods

ỹ = n if

Adams n− 1 < y n

Dean n < y 2/(n−1 + (n+ 1)−1)

Hill n < y (n× (n+ 1))0.5
Webster n < y (n+ (n+ 1))/2

Jefferson n y < n+ 1

4Note that in 1920, there are two new States, two new seats but no new apportionment. The lack of

apportionment violates Constitution.
5Theoretically, when the value of y corresponds to the arithmetic, geometric or harmonic mean, two

rounded values are possible, n and n+ 1. These cases are not mentioned here.
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As n < 2/(n−1+ (n+1)−1) < (n× (n+1))0.5 < [n+ (n+1)]/2 < n+1, these methods
can be ranked on a left-right axis according to their particular value which determines the

rounding. The ranking is therefore Adams, Dean, Hill, Webster and Jefferson.

Comparison of the methods

Since the methods are different by construction, they do not satisfy the same proper-

ties. Hence, a normative approach is useful in order to compare them. Even if we do not

enumerate all the possible properties in this presentation (see Balinski and Young, 2001, for

more details), we present the main reasons that show that the method of Webster is said

to be better than the others.

Firstly, there does not exist a divisor method such that a State receives less seats than

the integer part of its quota and, at the same time, another State receives more seats than

the integer greater than its quota. For example, suppose that the quota of State i is 3.45

and the quota of State j is 8.25. It is not possible that State i receives 2 seats and State

j 10 seats. However, State i can receive 2 seats and not automatically 3 or 4 seats. We

say that this method does not satisfy the property called “staying with the quota”. There

is no divisor method which stays with the quota for every problem of apportionment. The

probability that Webster violates this property is negligible. Furthermore, the method of

Webster is the only divisor method which respects the property of being “near the quota”.

This property says that if a State gives one seat to another State, it is not possible that the

number of seats of these two States brings them nearer the quota.

The method of Hamilton satisfies the property “staying with the quota”, by construction.

Nevertheless, this method is not monotone when we consider an increase in the number of

seats. It seems to be legitimate that a State does not lose a seat when the total number

of seats increases (with constant population). The Alabama paradox shows that several

methods violate this principle, in particular the method of Hamilton. The 1880’s census,

with 299 seats, gives 8 seats to Alabama and 7 if the number of seats is 3006. With a divisor

method, this kind of problem can not occur.

Because of the Alabama paradox, we have to abandon Hamilton’s method. However,

we still have to choose a method among the divisor methods. An argument for the method

of Webster is that it is the only method “near the quota”. Another important property

6An elegant geometric presentation of Alabama paradox, among other paradoxes, is given by Bradberry

(1992).
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satisfied by the method of Webster concerns a possible bias. It is certainly a negative

characteristic if a method has a persistent bias in favor either the small States or the large

States. There are several ways of measuring this bias, an absolute one (does a State receive

always more seats than its quota?) and a relative one (does a State receive always more seats

for one citizen than another State?). The only divisor method without bias is the method

of Webster. This is a theoretical and an empirical result: it is a fundamental property of

the Webster method.

2.2 Voting games and power indices theory

2.2.1 Voting games

Generally, the power in cooperative game theory is studied through voting games. A voting

game is a pair (N,W ) where N is the set of players (with |N | = n , where |A| means the
number of elements in the set A) and W the set of winning coalitions, which is the set of

groups of players which can enforce their decision. In this paper, the players are the States.

Let a the number of seats and ai the number of seats of the State i. Thus we have

a =
�n
i=1 ai. An α −majority game is [α; a1, ..., an], where α is an integer greater than

a/2. A winning coalition S (written S ∈W ) is a group of States such that

S ∈W ⇐⇒
3
i∈S

ai α

The most famous voting game is the majority game, which perfectly corresponds to U.S.

presidential election, where α = a
2 + 1 if a is even and α = a+1

2 if a is odd. Sometimes,

it is easier to consider α in proportion (for example 50% in the majority case) and this is

denoted ᾱ, with ᾱ = α/a.

2.2.2 Power indices theory

We present here the two most famous power indices in the literature, because of their

normative qualities and their historical importance. The construction of the two power

indices we present here is quite different but there is, in the two cases, a particular player

called the pivotal player which has a crucial role. Our presentation is concise but a complete

and clear description is given in Felsenthal and Machover (1998), in Laruelle (1998), or in

Straffin (1994) among others.
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The Shapley-Shubik power index (1954) takes into account the formation of the coalition

N which contains all the players. The order of appearance in this coalition is important.

Assume that the player 1 belongs first to the coalition N . If a1 α, then this player is

pivotal. Otherwise, assume that player 2 joins the player 1 in the coalition N . If a1+a2 α,

then player 2 is pivotal, otherwise assume that the player 3 joins them in the coalitionN , and

so on. Since an empty set is not a winning coalition, while N is always a winning coalition,

there exists a pivotal player according to the chosen order of appearance in N . Obviously,

there is no reason to only consider one order of appearance: all orders are supposed to have

the same probability of occurring. The Shapley-Shubik power index of player i is then the

number of times it is pivotal divided by the number of possible orders of appearance in N ,

which is n!. Formally the Shapley-Shubik of player i is

φi =
number of orders with i pivotal

n!

and we obtain

φi =
3
S⊆N

(s− 1)!(n− s)!
n!

[v(S)− v(S\{i})]

with s the number of players in S and v(S) = 1 if S is a winning coalition and v(S) = 0

otherwise. Remark that [v(S)− v(S\{i})] is different from 0 only if the player i is pivotal

in S.

Banzhaf (1965) proposes another power index where order in N is not important. Its

manipulation then becomes easier. Firstly, one has to determine all 2n−1 possible coalitions
(non empty) and the number of times player i is pivotal. If this number is divided by 2n−1

(that is the number of coalitions containing the player i), we obtain the non-normalized

Banzhaf power index and if it is divided by the total numbers of pivotal players, we obtain

the normalized Banzhaf power index. The formula of the normalized Banzhaf power index

for the player i is

βi =
number of times i is pivotal

total number of pivotal players

or

βi =

�
S⊆N [v(S)− v(S\{i})]�

j∈N
�
S⊆N [v(S)− v(S\{j})]
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2.2.3 Why do we use Shapley-Shubik and Banzhaf power indices?

The power of a player (a State, a citizen), can be interpreted as the probability he is pivotal,

a priori. The Banzhaf index corresponds to a probabilistic hypothesis called independence:

every player votes a priori for a candidate A or for a candidate B, independently of the

choices of the other players with a probability equals to 1/2. This hypothesis is a perfect

representation of electoral situations with floating voters, where the probability of tight

results is high (the higher the number of players, higher this probability, which is an appli-

cation of the central-limit theorem).

From a probabilistic point of view, the Shapley-Shubik index corresponds to an hypoth-

esis called homogeneity: instead of voting for A or B with a probability 1/2, the players

choose randomly a probability pi to vote for A in a uniform law in [0, 1]. In other words,

if pi = 0.8 is chosen, we obtain a clear result in favor of A or B. This situation is really

different from the repartition 50% in favor of A and 50% in favor of B mentioned previously

with the independence hypothesis. However, on average, there is no favored candidate. For

a clear application of the probabilistic presentation of power indices, see Straffin (1977) or

Berg (1999). As in this paper we measure the balance population-power with distances, we

have to present and clarify a theoretical point.

The power of a citizen must be distinguished from the power of a State. The citizens

and the States belong to different voting games which imply different pivotal players. A

first voting game, the Electors election, is defined at the level of the States. For a given

State, a citizen may be a pivotal player, all the players being the citizens of this State.

A second voting game corresponds to the vote for the president where the players are the

different States. In this game, a State may be a pivotal player, as defined previously. The

power of a citizen is the probability to be a pivotal player in his State multiplied by the

probability that the State he belongs to, is a pivotal player in the presidential election. The

choice of the index, for the citizens and for the States is obviously important.

Looking for the best balance population-power is similar to level out the power of every

citizen in the country wherever he lives. In other words, in a two-step game (election in the

State followed by a national election), every citizen should have the same probability to be

a pivotal player.

Theoretical results about States behavior are presented in the table 2 (BI corresponds to

the Banzhaf non-normalized index while B corresponds to the Banzhaf normalized index).
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Table 2. Theoretical results

Hypothesis on vote Hypothesis on vote Theoretical

of the citizens of the States recommendation

(index used) (index used)

Independence (B’) Independence (B’,B) Square root

Homogeneity (SS) Independence (B’,B) Proportionality

No model Homogeneity (SS) Unknown

When citizen behavior is represented by the independence hypothesis, Penrose (1946,

1952) proposes an apportionment. He shows that the power of a citizen, measured by

the non-normalized Banzhaf index, is proportional to the inverse of the square root of the

population of his State. As each State has a 1/2 probability to vote for A or B, its behavior

corresponds to the independence hypothesis. In other words, in this situation, the State’s

power is measured by the Banzhaf index. Of course, in this election, its power depends on

its weight ai. If the number of players is large enough and if their weights are allocated

randomly without the domination of one player (to avoid the existence of a too important

weight), Penrose observes that, by applying the law of large numbers, the Banzhaf power

index of this player is proportional to the number of seats he has7. Consequently, the

citizens power is the same in every State with an apportionment proportional to the square

root of the population, this result is the well-known Penrose square root law.

This law is often mentioned in the literature but recent research shows that the inde-

pendence hypothesis is not satisfied from an empirical point of view. In particular when it

is confronted to the electoral results over a long time period (see Gelman, Katz and Tuer-

linckx, 2002, for U.S. elections —(president, senators and governors) — since the 50’s). In

our opinion, this research permits to reject this law in our context.

If we admit that citizens vote according to the homogeneity hypothesis, then the appor-

tionment can be made with a proportional method instead of using the Penrose law. In this

case, the power of a citizen in a State is measured by the Shapley-Shubik index and it is

inversely proportional to the State population. Since the State’s behavior comes from inde-

pendence hypothesis, a proportional apportionment is reasonable from a theoretical point of

view. This model (independence of the votes for the States and homogeneity in the States)

is the more adapted to support theoretically the application of a proportional method and

7For a recent, clear and sharp presentation, see Gelman, Katz and Tuerlinckx, (2002), and Gelman, Katz

and Bafumi (2004).
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thus an apportionment with a divisor method. We have then to use the Banzhaf index

when we compute the power of the States.

3 Apportionment in U.S. since 1790

In this section, we determine which divisor method of apportionment minimizes the distance

population-power when considering the 22 U.S. censuses from 1790 to 2000. The appor-

tionments and the populations can be found in Balinski and Young (2001). To measure the

differences between population and power, different distances can be used. Our goal is to

minimize

dk(x, y) =

X
n3
i=1

|xi − yi|k
~ 1

k

, x ∈ Rn et y ∈ Rn

where x is the population vector and y the power vector. Note that we consider the Lk −
norm, k ∈]0,+∞[, k = 2 corresponds to the well-known standard deviation and k = 1 to
the difference in absolute values. Of course, others distances exist but are rarely used in

the literature. Clearly our results depend on this choice, but the choice of k may be made

answering to the following question: do we want to impose an important weight to the

largest differences or not? If k tends to 0, it means that we impose a very important weight

to the possible equalities between population and power for a State, even if there exists some

large differences between the others. If k tends to infinity, an important weight is given to

the largest differences. In this point of view, k = 2 seems to be a good compromise. To

the best of our knowledge, there does not exist an axiomatic approach about the choice

of the distances, and k = 2 is often taken account for geometric reasons. Our results are

summarized in table 38.

This table may be interpreted as follows: in 1790, for any value of k between 0 and

2.125, the smallest distance is given by the methods of Adams, Dean and Hill (for these

three methods, the apportionment is the same in 1790). We obtain a different result with

k greater than or equal to 2.125. Indeed, for k > 2.125, the method of Webster gives the

smallest distance. In the same spirit, in 1830, the distance is minimal for k 1.5 with the

8As there is an infinity of distances, they can not be all analyzed. We use the following sequence with

a 0.125 step, k = {0.125, 0.250, . . . , 4}. Let us notice that higher values were analyzed to identify the

robustness of the results when k tends to infinity. The degree of precision could certainly be improved and

then the bound proposed in table 3 could be more precise.
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Table 3. Values of k for which a method permits the best balance between population and power

Years Adams Dean Hill Webster Jefferson

1790 ]0;2.125] ]0;2.125] ]0;2.125] ]2.125;∞[
1800 ]0;∞[
1810 ]0;∞[
1820 ]0.25;∞[ ]0;0.25]

1830 ]1.5;∞[ ]0;1.5]

1840 ]1.25;∞[ ]0;1.25] ]0;1.25] ]0;1.25]

1850 ]0.875;∞[ ]0;0.875] ]0;0.875]

1860 ]0.625;∞[ ]0;0.625]

1870 [0.75;∞[ ]0;0.75]

1880 ]1;∞[ ]0;1] ]0;1] ]0;1]

1890 ]2.25;∞[ ]0;2.25] ]0;2.25] ]0;2.25]

1900 ]1.75;∞[ ]0;1.75]

1910 ]0;∞[
1920 ]1;∞[ ]0.75;1] ]0.75;1] ]0;0.75]

1930 ]1.125;∞[ ]0;1.125] ]0;1.125]

1940 ]1.25;∞[ ]0;1.25]

1950 ]1.5;∞[ ]0;1.5] ]0;1.5]

1960 ]1.875;∞[ ]0;1.875]

1970 ]2.25;∞[ ]0;2.25]

1980 ]1.75;∞[ ]0;1.75]

1990 ]1.5;∞[ ]0;1.5]

2000 ]1.25;∞[ ]0.5;1.25] ]0;0.5] ]0;0.5]

method of Dean. For a largest value of k, Adams always minimizes the distance.

If we consider the most important distance in the literature, k = 2, Adams is, in general,

the method which minimizes the difference between population and power. This remark

does not hold for the years 1890 and 1970.

In our exercise, the method of Adams seems to play an important role and not only

for the quadratic distance (k = 2). We can give an intuition to this result. This method

has a systematic bias in favor of the smallest States while the method of Jefferson has a

bias in favor of the largest States. With the method of Adams, the rounding is upward.

Hence, the smallest States receive relatively more seats with the rounding than the largest

States. This is the contrary to the method of Jefferson. Furthermore, in a majority game,
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the Banzhaf index has a bias in favor of the largest States. This result is intuitive and even

if there does not exist a proof, in our knowledge, several studies show it. The first intuition

is given by Straffin (1994), in two examples and footnotes (pp 1133-1134). A confirmation

is given, for example, by Felsenthal and Machover (2001) or by Feix, Lepelley, Merlin and

Rouet (2007) for the European Union. Hence, the combination of the method of Adams

with the Banzhaf index tends to vanish this bias. This explains the good results obtained

with the method of Adams at least for a value of k sufficiently large. For the method of

Jefferson, its bias in favor of the largest States added to the bias of Banzhaf index, implies

that it never gives the best balance population-power. In the following section, we show

that this result does not hold for other voting games when we change ᾱ.

We present now the ranking of the methods in term of balance population-power which

will give a complementary piece of information. Indeed, if the method of Jefferson never

gives us the best adequacy, it maybe ranked second or third. Furthermore, if the method of

Webster, certainly the best method in a normative point of view, would be always ranked

last, it should be a clear argument against it. Not all the results will be reported here9. The

first important remark is that the method of Jefferson is almost always ranked last, except

in 1800 for k 3.25 and in 1960 for k 0.375. This is coherent in view of the intuition

described above.

For the other methods of apportionment, there is no remarkable trend, even if the

method of Webster is often ranked just behind the method of Adams. For the particular

case k = 2, the method of Webster is ranked 13 times first or second (there are 22 censuses):

it is clearly an argument in favor of this method.

Remark that the ranking is not monotone with k. For instance, in 1950, the method of

Webster is ranked third for k 1.375, fourth for k 2.5 and second for k 2.625. Other

similar cases exist, for example for the method of Dean in 1820, 1920 and 2000, for the

method of Hill in 1920 and again for the method of Webster in 1820 and 1870.

More intuitively, when ranking the methods in a natural left-right x axis (the order is

then Adams, Dean, Hill, Webster Jefferson), and if the y axis represents the ranking in

term of balance population-power, we may represent graphically the ranking. For instance,

figure 1 corresponds to k = 2 in 1820.

We obverse that the ranking is not single-peaked10. For k = 2, this phenomenon arises

9Results can be found in the file http:/www.u-cergy.fr/barthelemy/balanceUSCensus.pdf.
10We use deliberately the same graph and the same vocabulary as Black (1958) in its description of single-
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Figure 1. Non monotonicity of ranking

frequently (from 1850 to 70, in 1900, 1930, 1940, from 1960 to 1990).

4 The importance of α

It seems natural to use the majority rule in the U.S. presidential election since there are

only 2 main candidates, a Republican and a Democrat. However, if we admit that the

balance population-power is an important normative criterion, as the problem of bias or

the Alabama paradox, the following question occurs: is it really judicious to use the method

of Hill for the U.S. House of Representative? The Balinski and Young’s results clearly show

that Hill is not the best method and this reinforced by introducing the criteria of balance

population-power. We have shown above that the method of Adams often minimizes the

difference between population and power in majority games, but its systematic bias in favor

of the smallest States is an obvious weakness. Our purpose is now to show that if we change

α, the ranking of the methods, in term of distance, changes.

In the previous section, we study a great number of distances with a given α. Since α is

not fixed now, we have to specify a value for k, otherwise the number of possibilities would

become too large. With respect to the literature, the euclidian distance is considered (k =

preferences. Obviously, the connection of the points has no mathematical sense, the goal is only pedagogical,

even if the method can be ordered according to the way of rounding as seen previously.
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2). Nevertheless, as this choice is arbitrary, some results with others values of k are studied.

Only one graph is presented here, the one corresponding to 182011: the apportionment is

different for the 5 methods, which is not the case in general.

Figure 2 is read as follows: the x axis corresponds to α in proportion (ᾱ = α/a) and the

y axis corresponds to the ranking, from 1 to 5.

Figure 2. Ranking of the methods according to ᾱ for year 1790

The results underline the fact that there always exists a ᾱ such that the method of

Jefferson minimizes the standard deviation. This ᾱ is between 0.63 and 0.67. In other

words, when ᾱ is about 65% or more, the method which admits a systematic bias in favor

of the largest States permits the best balance population-power. In the same spirit, in every

census, an ᾱ exists, around 60%, such that the method of Webster minimizes the standard

deviation. Thus, there exists a ᾱ such that the best method in a normative point of view

minimizes the standard deviation. This result is consistent with recent empirical studies. In

the previous section, we saw that empirical studies show a bias in favor of the largest States

when we use the Banzhaf power index in a majority game. In the same way, the intuition

11All the results can be consulted in the file cited above.
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suggests that there exists ᾱ such that the Banzhaf power index has a bias in favor of the

smallest States and then, there exists ᾱ for which the Banzhaf index has no bias, and this

value is between 60 and 65%12. It is thus coherent that the best balance population-power

should be obtained with the method of Webster. When ᾱ increases, the Banzhaf index is

in favor of the smallest States. As the method of Jefferson balances this bias, we logically

find this method minimizes the distance between population and power.

Notice that there are some censuses for which the methods of Dean and Hill never

minimize the euclidian distance. For example, this is the case in 1960, a period when the

method of Hill has been used! Obviously, there always exists an ᾱ for which all the methods

minimizes the distance. Indeed, if ᾱ tends to 1, only one winning coalition arises (the great

coalition N), for which every State is pivotal. Then the power of the States does not depend

on the apportionment.

When k = 2, a general trend can be described even if strange situations may be observed.

The general trend maybe illustrated for instance in 1790, as represented in figure 3. As

ᾱ increases, the best method that minimizes the euclidian distance changes as follows,

Webster, then Adams, then Webster and so on: there is a particular sequence.

We present now briefly other results13, when the distance is different from the traditional

euclidian one. Two small values of k are studied, k = 0.25 and k = 1 (the latter being as

well quite used in the literature), and two large ones, k = 4 and k = 8.

When k = 0.25, the instability of the results is evident. There are a lot of variations

in the ranking and the curves are not as regular as seen for the euclidian distance case.

However, there always exists an ᾱ such that the method of Webster minimizes the distance.

Moreover, for all the quotas greater than this particular value, the method of Jefferson

minimizes the distance. When k = 1, the results are the same even if the curves look more

regular.

The results for k = 4 and k = 8, are similar to the results for k = 2. In this point of

view, considering k = 2 seems to be a relevant choice. The weight imposed to the large

differences is sufficient (since the results are almost identical with higher values of k) and

the curves are regular (there is a general simple trend).

12See Feix, Lepelley, Merlin and Rouet (2007).
13As mentioned previously, see the file http:/www.u-cergy.fr/barthelemy/balanceUSCensus.pdf.
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Figure 3. Ranking of the methods according to ᾱ for year 1820

5 The Electors

In this section, all the Electors are considered and not only the ones corresponding to the

House of Representatives, which are determined by a method of proportionality. We have

to add two seats to every State to the apportionments given by Balinski and Young (2001).

Furthermore, we have to add the District of Columbia and its 3 seats. Indeed, since 1961,

this new State has 3 Electors and this number does not depend on its population14.

Adding these non proportional seats is not neutral. In this situation, the smallest States

are overweight since their number of seats increases more in proportion. For instance, in

2000, adding 2 seats to Alaska corresponds to an increase of 200%, while the same two

seats corresponds to an increase of 3.8% for California. Thus, only the bias in favor of

the largest States induced by the method of Jefferson can balance the excess weight of the

smallest States. For 0.5 < ᾱ < 0.6, the method of Jefferson minimizes all the distances.

When increasing ᾱ, for instance ᾱ = 0.8, it is almost always the method of Jefferson which

14Note that Balinski and Young (2001) only consider the House of Representatives and thus do not give

the population of the District of Columbia. We then consider the population given on the official census

website http://www.census.gov/prod/www/abs/decennial/.
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minimizes the distance (except for exceptional cases, when k is slightly less than 1, for which

the methods of Adams or of Webster minimize the distance. In other words, the bias in

favor of the smallest States implied by the two non proportional seats is only balanced by

the method of Jefferson, even if ᾱ is small (1/2). When adding only one seat to every State,

the results remain nearly the same, although the predominance of the method of Jefferson

is not so evident15. In other words, adding some seats to the proportional apportionment

change drastically the results. Obviously, this is particularly true in some situations where

the populations are really different.

6 Why do we use a method of apportionment?

In this paper, we have shown which are the best classical methods of apportionment in order

to minimize the difference between population and power. A natural question arises: why

do we use such a classical method of apportionment? Indeed, the optimal apportionment

could be determined directly such that the distance population-power would be minimal. If

we agree that this criteria of minimal distance is essential from a normative point of view,

like the Alabama paradox or the bias, then an apportionment is possible without using a

classical method as in the manner of Leech (2002).

We assume that the power vector should be equal to the population vector p. We

associate a power vector, denoted bz(a) = (bz1(a), ..., bzn(a)) to each apportionment a ∈
Rn. We look for a∗, which minimizes a distance between p and bz(a∗). Like Leech (2002),

we consider the euclidian distance (k = 2). Thus we have:

a∗ = argmina
n3
i=1

p
bz(a)i − pi

Q2
Leech (2002), with an iterative procedure (but with real numbers and not with integers),

shows that it is not necessary to know every possible apportionment. The integer case is

studied here, as it corresponds to our empirical data. Is this approach relevant when

considering the normative properties mentioned before? We are going to answer to this

fundamental question using the following example: let a voting game with a = 6 and 3

players16 with populations in proportion equal to p = (0.46, 0.33, 0.21).

15See all the results on our web site.
16We assume that a1 a2 a3, the populations are ranked in decreasing order, p1 p2 p3.

22



As the ai are integers, all the apportionments can be listed. And, for each one, the

corresponding values of the distances are computed. As shown in table 4, the optimal

apportionment in this case is a1 = a2 = a3 = 2.

Table 4. Apportionment and distance population-power

a1 a1 a3 Distance

6 0 0 0.4446

5 1 0 0.4446

4 2 0 0.4446

4 1 1 0.4446

3 3 0 0.0746

3 2 1 0.0366

2 2 2 0.0313

When we consider 7 seats (details are omitted), two solutions are possible, (3, 2, 2) and

(4, 2, 1), which which lead to the same result. Below, the arrow means that the optimal

solution (2, 2, 2) with 6 seats becomes (3, 2, 2) with 7 seats or (4, 2, 1). The States for which

the number of seats changes are in bold.

• (2, 2, 2) −→ (3, 2, 2)

• (2, 2, 2) −→ (4, 2,1)

When there are 8 seats instead of 7, we obtain again 2 different solutions, (4, 2, 2) et (5, 2, 1).

• (3, 2, 2) −→ (4, 2, 2)

• (4, 2, 1) −→ (4, 2,2)

• (4, 2, 1) −→ (5, 2, 1)

When there are 9 seats instead of 8, the State 1 loses at least 1 seat according to solution

used with 8 seats: (3, 3, 3).

• (4, 2, 2) −→ (3,3,3)

• (5, 2, 1) −→ (3,3,3)

Thus, with this method, an Alabama paradox can arise. Furthermore, the solution is not

necessarily unique. For these reasons, as for the method of Hamilton, this method of ap-

portionment should be rejected. This reinforces the approach we have proposed previously.
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7 Conclusion

The number of Electors for each State of the U.S. is obtained principally via a proportional

method of apportionment. Since the 1790 census, various methods were used for the ap-

portionment. The purpose of the paper is to determine if one of them permits a better

balance between population and power. From a normative perspective, this criterion seems

important, as important as the bias or the Alabama paradox for instance. A good balance

between population and power means that every citizen in the country has the same power

whatever the State he belongs to, which seems to be a minimal condition of democracy.

Technical difficulties arise. Firstly, we have to measure the power. For that we use

the tools of cooperative game theory, specifically the power indices. We only consider the

Banzhaf index for technical and theoretical reasons. Secondly, since we want to balance

population-power as much as possible, we have to compare two vectors with a notion of

distance. We use the Lk − norm distances with a particular attention to the standard

euclidian distance, which is largely used in the literature.

When considering only the proportional part of the Electors and a majority game, the

method of Adams permits the best balance between population and power. If the different

methods are ranked, the method of Jefferson is almost always ranked last. This result is

intuitive since, for a majority game, Banzhaf has a bias for the largest States. The two

bias are balanced to obtain the best proportionality. If we do not consider only majority

games, the result changes drastically. Around a value of 62% (the majority being 50%), the

Banzhaf index has no bias and is then perfectly compatible with the method of Webster, the

only method of apportionment without bias. This positive result means that there exists ᾱ

such that the best method from a normative point of view permits the best balance between

population and power. If ᾱ 65%, the method of Jefferson always minimizes the distances.

If we consider all the Electors and not only its proportional part, the weight given to the

smallest States is too high and it could only be balanced using the method of Jefferson.

In this paper, we compare the 5 most famous methods of apportionment from an em-

pirical point of view. A theoretical study seems to be essential. But it is clear that it

will be very difficult to obtain exact results, since the methods of apportionment and the

Banzhaf index are technically awkward to manipulate. A possibility is certainly to obtain

these results with simulations even if it should be difficult to obtain general trend. Indeed,

the number of possibilities is huge: population, ᾱ and the number of seats are variables.
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