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Abstract 
 

This paper considers the use of simulated cash flows to determine the optimal holding period in  
real estate portfolio to maximize its present value. The traditional DCF approach with an estimation 
of the resale value through a growth rate of the future cash flow does not let appear this optimum. 
However, if the terminal value is calculated from the trend of a diffusion process of the price, an 
optimum may appear under certain conditions. Finally we consider the sensitivity of the optimal 
holding period to the different parameters involved in the cash flow estimations. This methodology 
may be applied in commercial valuation and enables to get an optimal holding period for a given 
portfolio. 
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Introduction 
In a precedent paper (2005) we proposed to use dynamic cash flows for the rents inflows and for 

the terminal value in a real estate portfolio. These dynamics are supposed to be simple diffusion 
processes where the corresponding parameters are the trend and volatility, respectively for the rents 
and for the price. These parameters may be estimated from a rent index and a real estate index using 
Paris data, taking into account the empirical correlation between theses two indices. This approach 
lets appear an interesting rule played by the holding duration in the determination of the asset value. 

Recent studies on real estate portfolios show the growing interest of the investors to determine an 
optimal holding period that optimizes the portfolio value. Obviously, it depends on a lot of factors: 
market conditions, costs of transactions, type of property, assets volatility, etc…  

This issue has been studied for a long time in the literature relating to stocks (see Demsetz 1968, 
or Tinic 1972). Evidence suggests that transaction costs influence holding periods. More precisely, 
Amihud and Mendelson (1986) show that assets with high bid-ask spreads (which are usually a 
proxy for high transaction costs) would be held, in equilibrium, by investors who expect to hold the 
assets for a long time. Atkin and Dyl (1997) in an empirical research consider the effects of firm 
size, bid-ask spread and volatility of returns on the holding period of stocks for a sample of 2000 
Nasdaq firms and 500-1100 Nyse firms over the period 1981-1993. They show a significant 
positive correlation between holding period and transaction costs and firm size, and a negative one 
between holding period and price variability. 

Concerning real estate holding periods, research is more limited. For the US, Hendershott and 
Ling (1984), Gau and Wang (1994) or Fisher and Young (2000) argue the holding durations are 
principally conditioned by tax laws. For the UK market, the relationship between returns and 
holding period seems to be complex. Rowley, Gibson and Ward (1996) in a study realized from 
investors interviews show that investors or new property developers tend to have a holding period 
in mind from the start. Their conclusion is that for offices, the holding period decision is related 
with depreciation or obsolescence factors. However, for retail property, the decision is more 
empirical and would depend on active management as well as the state of the market. 

In a more recent article, Collett, Lizieri and Ward (2003) underline how the knowledge of the 
holding period is important in the decision to invest in commercial real estate portfolios. Investment 
appraisal requires specifying an analysis period and the asset allocation depends on the variances 
and covariances of assets that are affected by the reference interval or analysis. Using the database 
of properties provided by IPD in the UK over an 18-year period they conclude from an empirical 
analysis that the median holding period is about seven years. But sales rates vary across the holding 
period (probably for rent cycles and lease structures reasons) and the holding period vary by 
property type. The larger or more expensive the properties are, the longer the holding periods. And 
if the return is greater, the holding period is lower. However, they were not able to propose 
conclusions about a possible link between volatility and holding period, because of an absence of 
proxy to measure this eventual relationship. 

For small residential investment, Brown and Geurts (2005) gave an empirical response to the two 
following questions: how long does an investor own an apartment building and why do investors 
sell some property more frequently than others? Through a sample of apartment buildings of 
between 5 and 20 units over the period 1970-1990 in the city of San Diego, they found that the 
average holding period is around five years. They also deduced that investors sell property sooner 
when values rise faster than rent. 

In an another article, Brown (2004) shows that considering the risk peculiar to real estate 
investments may explain the reasons for owning real estate by private investors and their buy-sell 
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behavior. However, applying the CAPM for individuals to understand their portfolio management 
does not drive to relevant results as demonstrated by Geltner and Miller (2001). 

In this paper, our purpose is to determine if there is an optimal holding duration of a real estate 
portfolio if the terminal value is computed using a growth rate for the prices. Firstly, we analyze the 
optimal holding period issue with the DCF method. Secondly, we determine the optimal holding 
duration for a terminal value trend. And finally we explicit the impact of other parameters on this 
optimal holding period through a sensitivity analysis. 

1 Optimal holding period in DCF 
In this first part, the holding period for a portfolio of real estate assets is considered in the 

traditional DCF framework. 

Let us denote k as the weighted average cost of capital (WACC) used to discount the different 
free cash flows tFCF , and TP as the terminal value. We assume that the free cash flow of the 
terminal year T (the last year of the investment horizon) is used to estimate the terminal value and is 
supposed to continue growing at a constant rate forever after that date ( g∞ ). Consequently, the 
terminal value TP  of the asset is:  

 ( )
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Then 0,TP  the present value of the asset sold at date T may be computed as: 
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 If g  is the growth rate of the free cash flows, all the free cash flows in (1.2) may be calculated 
from 1FCF . Then the expression (1.2) becomes: 
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In order to study the function 0,TP  as a function of T, we consider the function 0, 1 0,T TP P+ − . From 
(1.3) we deduce the following present value for the asset at date T+1: 
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which can be expressed as a function of 0,TP  by considering separetely the last cash flow 1TFCF +  
and by substraying the discounted terminal value of 0,TP : 
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After calculation (see appendix A.1), we obtain by discounting separately the first free cash 
flow:  
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The sign of the right part of equation (1.6) corresponds to the sign of g g∞− .We have then the 
following situations: 

•  If g g∞>  then 0, 1 0, 0T TP P+ − >  

•  If g g∞=  then 0, 1 0, 0T TP P+ − =  

•  If g g∞<  then 0, 1 0, 0T TP P+ − <  

 

Moreover, as k g> , the function ( ) ( )1 / 1g k+ +  is less than one and  

 ( )
( )

11
1

T

T

g
k

−+

+
 (1.7) 

is decreasing with T, which implies that 

 ( )0, 1 0,lim 0T TT
P P+→∞

− =  (1.8) 

 

Hence, in the DCF approach, if we suppose a constant growth rate from the first period to 
infinity: g g∞= , and a constant discount rate, no optimal detention period can be detected. In fact, 
in this case, the terminal value which could seem to be separated from the cash flows is actually 

1,TP + ∞  and the portfolio present value is in reality 0,P ∞ :  
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which can be expressed by taking into account the break at date T in the valuation process: 
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This clearly illustrates the reason why the valuation is constant whatever is T in the case of a 
unique growth rate. With a constant discount rate, to get a non-constant present value according to 
the break at date T, it is necessary to consider two growth rates: one for the cash flow for the first T 
periods ( g ) and one after T+1 ( g∞ ). Then relation (1.10) becomes, by denoting 0,

TP ∞  the present 
value with a break at date T : 
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The result in (1.6)  shows that the function 0,
TP ∞  is: 

•  a concave and monotonic increasing function of T when g g∞>  

•  a constant function when g g∞=  

•  a convex and monotonic decreasing or increasing function of T when g g∞<  
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For instance, with 8.40%k = , 4%g = , 3%g∞ =  and 1 1FCF = , Figure 1 illustrates the 
monotonous character of the function in the DCF approach. Figure 2 corresponds to a case where 
the loss in the terminal value is exactly balanced by the gain in cash flow: g g∞= . Figure 3 is 
obtained with 4.5%g∞ = . 
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Figure 1: Increase of the portfolio present value with the DCF approach ( g g∞> ) 
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Figure 2: Constant present value of a portfolio with the DCF approach ( g g∞= ) 
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Figure 3: Decrease of the portfolio present value with the DCF approach ( g g∞< ) 

 

We can conclude that the traditional DCF framework cannot let appear an optimal holding value 
for a portfolio, according to the asset present value, whatever the rates of expected growth are. 

2 Determination of an optimal holding period using the terminal value trend 
Baroni and al. (2005) have proposed the use of Monte Carlo simulation method in valuation and 

their main contribution is the modeling of the terminal value. They consider that the real estate price 
of the assets follows a geometric Brownian motion: 

 t
P P t

t

dP dt dW
P

µ σ= +  (1.12) 

This equation assumes that real estate returns can be modeled as a simple diffusion process 
where parameters Pµ  and Pσ  are the trend and volatility. According to the modeling presented in 
(1.12), the expected return of the asset at time T is e Tµ , which represents the trend. We propose this 
modeling to improve the DCF method in order to let appear an optimal detention period. To 
compare this new approach with the discrete case derived in section one, let us denote -1eµµ = .  

First, we determine the optimal solution in this new approach and then we analyze it according 
the different parameters of interest. 

2.1 Optimal solution 
The expected present value of the asset sold at date T is: 
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( )0, 1 0,E T TP P+ −  is composed of two different components, the first one associated to the free cash 
flows, and the second one associated to the terminal value: 
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Let us notice that if kµ = , the expected difference does not depend on 0P , but only on the T+1th 
free cash flow:  
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Hence, in this case, there is no optimal holding period.  

 

We will now consider that kµ ≠ . We can deduce from (1.16) : 
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As long as ( )0, 1 0,E 0T TP P+ − > , see relation (1.19), there is no reason to sell the asset, the gain 
associated to the T+1th free cash flows is larger than the decrease of the discounted terminal value. 
When ( )0, 1 0,E 0T TP P+ − < , see relation (1.20), the situation is inversed. We deduct that an optimal 
sell date, when such a date exists, corresponds to1: 
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in the cases where the logarithm function can be defined (the argument should be positive) 
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and the optimum is a maximum (the function 0,TP  is concave ; see appendix A.2) 

                                                 
1 If we consider the continuous solution (let us remind that T is an integer). 
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It is obvious that the mathematical restriction (1.23) does not constitute a restriction in practice. 
On the contrary, the restriction (1.22) is linked to the asset characteristics as shown in subsection 
3.3.  

2.2 Solution analysis 
The existence of an optimal detention period comes from the fact the discounted portfolio value 

is the sum of two components, one increasing over time (the sum of the discounted free cash flows), 
and the other decreasing (the discounted terminal value). If the two components are increasing 
simultaneously no optimal detention period can be determined. The discounted terminal value is a 
positive function of the time if and only if kµ > . Using the result in equation (1.18), our analysis 
focuses on the cases where kµ < , as mentioned in (1.22) for a mathematical reason. Where kµ < , 
the difference on a resale at time T or T+1, is simply a “loss” on the discounted terminal value (loss 
because kµ < ) balanced or not by a new free cash flow (the T+1th). 

If the previous condition allows convergence, there is no guarantee on the optimum sign. Indeed, 
if the gain in free cash flows is not high enough, the loss in the terminal value may never be 
compensated. This relation is valid in the cases where the free cash flow growth rate is smaller than 
the real estate return, see (1.24). This constraint corresponds to the fact that the numerator of *T  in 
(1.21) must be positive: 

 ( ) ( ) ( )1 1

0 0

ln 0 1FCF FCF k
P k P k

α µ
µ µ

 
> ⇔ > ⇔ > − − − 

 (1.25) 

 

The higher this difference ( )k µ− is, the larger the constraint (1.25). A large loss on the 
discounted terminal value may be balanced by a higher free cash flow.  

 

Notice 1: if (1.25) is satisfied, the concavity issue brings the same constraint on the parameters 
than the positive character of the denominator of *T  in (1.21): 

 1ln 0
1

g
g
µ µ + > ⇔ > + 

 (1.26) 

Then these constraints can be expressed as a function of µ : 

a) kµ < : necessary for an optimal holding period *T  (else *T  is infinite) 

b) ( )max ,g kµ α> − , from (1.24) and (1.25), which ensures a positive maximum *T  

These constraints are summed up as: 

 ( )max ,g k kα µ− < <  (1.27) 
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The following example illustrates the optimal solution in the case where (1.27) is satisfied. With 
8.40%k = , 3%g = , 4.5%µ = , 0 21P =  and 1 1FCF = , Figure 4 illustrates that the function 0,TP  is 

not monotonous. In this example, an optimal detention period of around 13.81 years appears (here, 
the free cash flow periodicity corresponds to one year).  
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Figure 4: Optimal holding period 

 

Notice 2: when gµ >  and kµ α< − , the optimal detention period is negative. In fact, the value 
of *T  corresponds to a past time where the asset should have been sold. This could indicate an over 
evaluation of the asset at the beginning: the price 0P  seems too high and should have been smaller. 
A decrease of 0P  would imply a decrease in the constraint (1.25) in the sense that α  would become 
higher with a smaller 0P . Figure 5 presents a negative optimal solution: 7%k = , 1%g = , 2%µ = , 

0 21P =  and 1 1FCF = . 
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Figure 5: Optimal holding period (negative solution) 
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Notice 3: when the numerator and the denominator in (1.21) are negative, *T is still positive. 
This occurs when (1.24) and (1.25) are simultaneously not satisfied, but as the function is convex, 

*T  corresponds to a minimum. 

 

3 Sensitivity analysis 
For a given price 0P  and a given WACC k, we are going to analyze the sensibility of the optimal 

detention period to: 

•  α  (section 3.1)  

•  g  (section 3.2)  

•  µ  (section 3.1)  

 

3.1 Sensitivity to α  
The ratio between the first free cash flow and the initial price, denoted α , has an impact on the 

optimum value. To analyze the sensitivity of the optimal date *T  to α , let us compute the 
derivative of the function ( )* , ,T gµ α  according to this variable. From (1.21) we compute: 

 ( )*
1

, , 1 1
1 1ln ln
1 1

T g k

kg g

µ α µ
αα µ µαµ

∂ −= × =
∂    + +×   −+ +   

 (1.28) 

 

As this derivative is always positive, the higher is α , the higher the optimal detention period. If 
α  increases, the sum of the discounted free cash flows increases as well. Then, the equilibrium 
between loss and gain arrives later. This effect is more pronounced when: 

•  The real estate return has a value close to the free cash flows growth rate ( gµ + → ) 

•  The ratio between the first free cash flow and the initial price α is low ( 0α + → ). 

 

As an illustration, table Table 1 gives the optimal holding period evolution according to a 
variation of α . The initial price is constant, and only 1FCF  varies. In this example 8.40%k = , 

3%g = , 4.5%µ = , 0 21P =  and 1FCF  varies from 0.8 to 1.15. This is equivalent to a variation of 
α  from 0.038 to 0.0548. 1 1FCF =  corresponds to the example presented in Figure 4. 

 
1FCF  0,8 0,85 0,9 0,95 1 1,05 1,1 1,15 

α  0,03809 0,0404 0,0428 0,0452 0,0476 0,05 0,0524 0,0548 

*T  -1,62 2,57 6,52 10,26 13,81 17,18 20,40 23,487 

Table 1: optimal detention period according to α  
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The first optimal value is negative, as kα µ< − . The Figure 6 illustrates the modifications of the 

0,TP  function and then the modification of the corresponding optimum. Figure 7 exhibits a more 
important effect than Figure 6, the real estate return being closer to the growth rate ( 3.5%µ = ). 
When α  increases from 1.05 to 1.15, the optimum varies from 17.18 to 23.5 years in Figure 6. This 
variation becomes 4.17 to 22.96 years in Figure 7. 
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Figure 7: 0,TP  function according to α  ( gµ + → ) 
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3.2 Sensitivity to g  

To analyze the sensitivity of the optimal date *T  to g , let us compute the derivative of the 
function ( )* , ,T gµ α  according to this variable. From (1.21) we can compute: 

 ( )

( )2
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2 2

1
1
1 1

, , 1 1ln ln
1 1ln ln
1 1

g

T g g g
g k k

g g
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µ
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 (1.29) 
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11 ln
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µ α µ
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 (1.30) 

 

This derivative is positive as soon as kµ α> − , which is verified (see section 2.1). An increase 
of the free cash flows growth rate implies that the gain obtained by the free cash flow will 
compensate longer the loss in the discounted terminal value.  

With 8.40%k = , 4.5%µ = , 0 21P =  and 1 1FCF = , Figure 8 represents the function 0,TP  for 
different values of g . The optimal detention period are reported in Table 2. 

 
g  0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04 

*T  5,12 5,86 6,85 8,25 10,33 13,81 20,77 41,63 

Table 2: optimal detention period according to g  

 

Instead of representing the functions 0,TP  as functions of g , the optimal solutions may be also 
represented for different values of µ , see Figure 9. The bold curve corresponds to the values 
reported in Table 2 which are the optimum values of the different curves of Figure 8. The effect on 
the optimal value is more important when g  is larger. Moreover, this effect disappears when the 
expected real estate return µ  increases.  
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Figure 8: 0,TP  function according to g  
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Figure 9: Optimal holding period as a function of g  according to µ  

 

3.3 Sensitivity to µ  

If the expected real estate return increases, the terminal value has a more important weight in the 
valuation and then the discounted portfolio value is larger. But, is the optimal holding period shorter 
or longer? To answer, we have firstly to calculate analytically the derivative of the optimal function 
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according to the real estate return/. Then, a numerical approach will be used to precise the effects 
with some examples.  

3.3.1 Analytical approach 
To determine how sensitive the optimal sell date is to µ , let us compute the derivative of the 

function ( )* , ,T gµ α  according to µ . From (1.21) we obtain: 

 ( )

( )
( )2

*

2

1
11ln ln

1 1
1, ,

1ln
1

k g
g k

k gT g

g

α
µ µ α

α µ µ
µµ α

µ µ

− −   
   − +   +   × − ×    + −  +   
   − +∂   =

∂   +
  +  

 (1.31) 

 ( )*

2

1ln ln
1

, , 1

1ln
1

g k
T g k

g

µ α
µ

µ α µ µ
µ µ

   +
   + −   −∂ − +=

∂   +
  +  

 (1.32) 

 

The sign of this function is the same as the sign of the numerator. Let us denote 

 ( )
1ln ln
1, ,

1
g kS g

k

µ α
µµ α

µ µ

   +
   + −   = −

− +
 (1.33) 

We then have  ( ) ( )
* , ,

sign sign , ,
T g

S g
µ α

µ α
µ

 ∂
=     ∂ 

 (1.34) 

 

and to know this sign, the derivative of ( ), ,S gµ α must be calculated (see A.3): 

 ( )
( ) ( )2 2

1ln ln
, , 1 0

1
S g g k

k

µ α
µ α µ

µ µ µ

   +
   ∂ + −   = + >

∂ − +
 (1.35) 

 

As ( )max ,g k kα µ− < < , this function is always positive. Then the function ( ), ,S gµ α  is 
monotonous in µ . To understand the behaviour of the derivative function (1.32), we may calculate 
its value in two limit cases when gµ − →  or kµ α+ → −  and kµ − → . 
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For the first derivative, we deduce from (1.32) that 

a) ( )
( )

*

0

ln
, ,

sign lim sign
1

g

T g k g
gε

µ ε

α
µ α
µ+→

= +

  −   ∂ −  = 
∂ +     

 

 (1.36) 

b) 
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( )
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( )
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*
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, , 1sign lim sign

1

1 ln
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1
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k
k kT g g

k k k
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αα ε
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µ α ε α ε

α ε α
α ε

α ε α ε
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  + − +
    − − +∂ +   = −   ∂ − − + + − +    
  

+ − +  
  + − = − 

− + − + 
  

      (1.37) 

 

c) ( )*

0 0

1ln ln, , 1sign lim sign lim
1

k

k
T g g

ε ε
µ ε

α
µ α ε
µ ε µ− −→ →

= +

   +        ∂ +     = − 
  ∂ +     
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 (1.38) 

with 
0

1ln ln
1lim

1

k
g

ε

α
ε

ε µ−→

  +  
    +    − = +∞
 +
 
 

. 

Then  
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( )

( )

*

0

*

0

*

0

, ,
sign lim 0

, ,
sign lim 0

, ,
sign lim 0

g

k

k

T g

T g

T g

ε
µ ε

ε
µ α ε

ε
µ ε

µ α
µ

µ α
µ

µ α
µ

+

+

−

→
= +

→
= − +

→
= +

 ∂
< 

∂  
 ∂

> 
∂  

 ∂
> 

∂  

 (1.39) 

 

From (1.35) and (1.39), two states of nature have to be considered: 
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State 1: ( )* , ,
if , 0

T g
k g

µ α
α

µ
∂

− > >
∂

 (1.40) 

State 2: 

( )

( )
] [

*

*

, ,
0

if , , with ;
, ,

0

T g

k g g k
T g

µ α
µ µ

µ
α µ

µ α
µ µ

µ

∂
< < ∂− < ∈

∂ > > ∂

 (1.41) 

3.3.2 Numerical approach 

State 1 is illustrated in Figure 10 with 8.40%k = , 3%g = , 0 21P =  and 1 1FCF = . It exhibits 
how the function 0,TP  is changing over time and points out the augmentation of the optimum. Two 
situations are considered for state 2 (where 3.75%g = ): as while  

Figure 11 focuses on values that leads to a diminution of the optimum, Figure 12 underlines the 
changing in the evolution of the optimum. Moreover  

Figure 11 shows the deformation of the curves 0,TP  that implies a reduction in the optimal 
holding period.  
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Figure 10 : 0,TP  function according to µ  (state 1) 
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Figure 11 : 0,TP  function according to µ  (state 2 where µ µ< ) 
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Figure 12 : 0,TP  function according to µ  (state 2 where µ µ<  and µ µ> ) 

 

The different results on the optimal detention period are reported respectively in Table 3, Table 4 
and Table 5.  

 
µ  0,035 0,0425 0,045 0,0475 0,05 0,0525 0,055 0,0575

*T  8,18 11,40 13,81 15,78 17,52 19,12 20,68 22,24 

Table 3: optimal detention period according to µ  (case 1) 

 
µ  0,0395 0,0405 0,0415 0,0425 0,0435 0,0445 0,0455 0,0465

*T  35,18 31,33 29,56 28,61 28,08 27,80 27,67 27,66 

Table 4: optimal detention period according to µ  (case 2 where µ µ< ) 

 
µ  0,0385 0,04 0,045 0,05 0,06 0,065 0,07 0,075 

*T  47,25 32,84 27,72 28,13 31,94 35,12 39,69 46,92 

Table 5: optimal detention period according to µ  (case 2 where µ µ<  and µ µ> ) 

 

The evolution of the optimum solution is represented in the following figures.  

Figure 13 illustrates the evolution of the optimum ( )* , ,T gµ α  as a function of µ in state 1. 

 

As demonstrated in the previous section, the function is always increasing in this case. The range 
of values are k kα µ− < < . As µ  tends to k , the function rises up as shown in the first derivative 
analysis (1.39). The derivative limit is infinity. Figure 14 and Figure 15 show the interaction 
between µ  and g . 
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Figure 13 : ( )* , ,T gµ α  according to µ  (state 1) 
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Figure 14 : ( )* , ,T gµ α  according to µ  and g  (state 1) 
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Figure 15 : ( )* , ,T gµ α  according to µ  and g  (state 1) 

 

Figure 17 illustrates the state 2. The interactions between µ  and g  are presented in, Figure 18, 
Figure 19 and Figure 19 
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Figure 16 : ( )* , ,T gµ α  according to . (state 2 with µ µ<  and µ µ> ) 
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Figure 17 : ( )* , ,T gµ α  according to µ  and g (state 2 with µ µ<  and µ µ> ) 

 

 
Figure 18 : ( )* , ,T gµ α  according to µ  and g (state 2 with µ µ<  and µ µ> ) 
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Figure 19 : ( )* , ,T gµ α  according to µ  and g (state 1 and state 2 with µ µ< ) 

In this last figures we can see the deformation of T* in function of the expected price returns and 
the growth rate return of the cash flows and observe the various possible behaviors of this optimal 
holding period according to the assumptions concerning the discounting rate k. 

 

Conclusion 
As seen above, the consideration of all parameters that are influent to determine an optimal holding 
period reveals a certain complexity and the interaction between these different variables suggests 
difficulties to put into practice this approach. In fact the precise knowledge of the trend of the real 
estate price return and of the anticipated rent growth rate is the key issue. However, this approach 
which lies on the dynamics of price returns on a holding horizon may often be more realistic than 
assumptions on infinite growth rate of the cash flows. Moreover, on a diversified portfolio of assets, 
it is not necessarily too difficult to get a measure of the price returns trend from indexes. In this 
paper we essentially deal with the trends of cash flows and terminal value. The results we find to 
determine an optimal holding period may be changed if volatility parameters are introduced in the 
analysis, but that will be the object of a future research. 
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Appendix 
A.1 
By multiplying the last term of (1.5) by 1 k+  
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Then the difference between the present values can be expressed as  
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A.2  

The function 0,TP  is concave if when the function is increasing, the second difference is negative. 

Let us denote ( ) ( )2
0, 0, 0, 1 0, 1 0, 2-T T T T TP P P P P− − −∆ = − −  
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The second difference is equal to  
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At time T we have 
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With the normalization 0 1P = ,  
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The constraint on T for the concavity is 
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