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Abstract

We investigate a matching game with transferable utility when some of the characteristics

of the players are unobservable to the analyst. We allow for a wide class of distributions

of unobserved heterogeneity, subject only to a separability assumption that generalizes

Choo and Siow (2006). We first show that the stable matching maximizes a social gain

function that trades off two terms. The first term is simply the average surplus due to the

observable characteristics; and the second one can be interpreted as a generalized entropy

function that reflects the impact of the unobserved characteristics. We use this result to

derive simple closed-form formulæ that identify the joint surplus in every possible match

and the equilibrium utilities of all participants, given any known distribution of unobserved

heterogeneity. Moreover, we show that if transfers are observed, then the pre-transfer

utilities of both partners are also identified. We conclude by discussing some empirical

approaches suggested by these results for the study of marriage markets, hedonic prices,

and the market for CEOs.
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Introduction

Since the seminal contribution of Becker (1973), economists have modeled marriage markets

as a matching problem in which each potential match generates a marital surplus. Given

transferable utilities, the distributions of tastes and of desirable characteristics determine

equilibrium shadow prices, which in turn explain how partners share the marital surplus in

any realized match. This insight is not specific of the marriage market: it characterizes the

“assignment game” (Shapley and Shubik (1972)), i.e. models of matching with transferable

utilities. These models have also been applied to competitive equilibrium with hedonic

pricing (Chiappori, McCann, and Nesheim (2008)) and the market for CEOs (Gabaix and

Landier (2008)). We will show how our results can be used in these three contexts; but for

concreteness, we often refer to partners as men and women in the exposition of the main

results.

While Becker presented the general theory, he focused on the special case in which the

types of the partners are one-dimensional and are complementary in producing surplus.

As is well-known, the socially optimal matches then exhibit positive assortative matching.

Moreover, the resulting configuration is stable, it is in the core of the corresponding matching

game, and it can be efficiently implemented by classical optimal assignment algorithms.

This result is both simple and powerful; but its implications are also quite unrealistic

and at variance with the data, in which matches are observed between partners with quite

different characteristics. To account for this wider variety of matching patterns, one could

introduce search frictions, as in Shimer and Smith (2000). But the resulting model is

hard to handle, and under some additional conditions it still implies assortative matching.

A simpler solution consists in allowing the joint surplus of a match to incorporate latent

characteristics—heterogeneity that is unobserved by the analyst. Choo and Siow (2006)

showed that it can be done in a way that yields a highly tractable model in large populations,

provided that the unobserved heterogeneities enter the marital surplus quasi-additively and

that they are distributed as standard type-I extreme value terms. Then the usual apparatus

of multinomial logit discrete choice models applies, linking marriage patterns to marital
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surplus in a very simple manner1. Choo and Siow (2006) used this model to link the changes

in gains to marriage and abortion laws; Siow and Choo (2006) applied it to Canadian data

to measure the impact of demographic changes. It has also been used to study increasing

returns in marriage markets (Botticini and Siow (2008)) and to test for complementarities

across partner educations (Siow (2009)).

We revisit here the theory of matching with transferable utilities in the light of Choo

and Siow’s insights. Our contribution is threefold. First, we extend this framework to more

general distributions of utility shocks. Chiappori, Salanié, and Weiss (2010) showed that

quasi-additivity by itself reduces the complexity of the matching model to a series of dis-

crete choice problems. We prove that with quasi-additive surplus, the market equilibrium

maximizes a social surplus function that consists of two terms: a term that describes assor-

tativeness on the observed characteristics; and a generalized entropic term that describes

the random character of matching conditional on observed characteristics. While the first

term tends to match partners with complementary observed characteristics, the second one

pulls towards randomly assigning partners to each other. The social gain from any match-

ing patterns trades off these two terms. In particular, when unobserved heterogeneity is

distributed as in Choo and Siow (2006), the generalized entropy is simply the usual entropy

measure.

Our second contribution is to show that the maximization of the social surplus function

described above has very straightforward consequences in terms of identification, both when

equilibrium transfers are observed and when they and are not. In fact, most quantities of

interest can be obtained from derivatives of the terms that constitute generalized entropy.

We show in particular that the joint surplus from matching is (minus) a derivative of the

generalized entropy, computed at the observed matching. The expected and realized utilities

of all types of men and women follow just as directly. If moreover equilibrium transfers are

observed, then we also identify the pre-transfer utilities on both sides of the market.

1Fox (2010) relies instead on a rank-order property to identify the surplus function from the matching

patterns. The handbook chapter by Graham (2011) discusses these and other approaches.
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These results suggest various empirical strategies that can be used to estimate the

parameters of models of matching with transferable utilities. We show how they fit within

the framework of minimum distance estimation, and we discuss their applicability to the

three classes of markets: marriage markets, where transfers between spouses not observed;

the market for CEOs and competitive market with hedonic prices, where transfers (CEO

compensation, the equilibrium prices of different varieties of products) may be observed.

Section 1 sets up the model and the notation. We prove our main results in section 2, and

we specialize them to leading examples in section 3. Our results very significantly extend the

Choo and Siow framework: they allow for general error distributions with heteroskedasticity

and correlation across alternatives, as in generalized extreme values models or mixed logit

models for instance. They open the way to new and richer specifications; section 4 explains

how various restrictions can be imposed to identify and estimate the underlying parameters2.

1 The Assignment Problem with Unobserved Heterogeneity

Throughout the paper, we maintain the basic assumptions of the transferable utility model

of Choo and Siow: utility transfers between partners are unconstrained, matching is fric-

tionless, and there is no asymmetric information. We also try to stay as close as possible to

the notation Choo and Siow used. Men can belong to I groups, indexed by i; and women

can belong to J groups, indexed by j. Groups can for instance be defined by education,

race, and other characteristics which are observed by all men and women and also by the

analyst. On the other hand, men and women of a given group differ along some dimensions

that they all observe, but which do not figure in the analyst’s dataset.

Choo and Siow assumed that the utility of a man m of group i who marries a woman

2This paper builds on and significantly extends our earlier discussion paper (Galichon and Salanié (2010)),

which is now obsolete.
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of group j can be written as

α̃ij − τ ij + εijm,

where τ ij represents the utility that the man has to transfer to his partner in equilibrium,

and εijm is a standard type-I extreme value disturbance. If such a man remains single, he

gets utility

α̃i0 + εi0m.

Similarly, the utility of a woman w of group j who marries a man of group i can be written

as

γ̃ij + τ ij + ηijw,

and she gets utility

γ̃0j + η0jw.

is she is single.

Only utility differences matter in this model; we denote

αij = α̃ij − α̃i0 and γij = γ̃ij − γ̃0j .

The key assumption here is that the utility of a man m of group i who marries a woman

w of group j does not depend on who this woman is—with a similar assumption for women.

We will return to the interpretation of this assumption, which we will call “separability”.

When there are very large numbers of men and women within each group, Choo and Siow

showed that there is a simple equilibrium relationship between group preferences, as defined

by α and γ, and equilibrium marriage patterns. Denote µij the number of marriages between

men of group i and women of group j; µi0 the number of single men of group i; and µ0j the

number of single women of group j. Denote

πij =
αij + γij

2
.

the total systematic net gains to marriage; and note that by construction, πi0 and π0j are

zero. Choo and Siow proved the following result:
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Theorem 1 (Choo and Siow) In equilibrium, for all i, j ≥ 1

exp(πij) =
µij

√
µi0µ0j

.

Therefore marriage patterns µ directly identify the gains to marriage π in such a model.

It turns out that the assumption on the distribution of the utility shocks ε and η is

not crucial. As shown in Chiappori, Salanié and Weiss (2010), some of the structure of the

problem is preserved if this assumption is relaxed. The crucial assumption is what they call

“separability”. To state it, let Φmw denote the joint surplus created by a match between a

man m and a women w.

Assumption 1 (Separability) If men m and m′ belong to the same group i and women

w and w′ belong to the same group j, then

Φmw + Φm′w′ = Φmw′ + Φm′w.

It is easy to see that under Assumption 1, the surplus from a match between a man m

of group i and a woman w of group j must decompose into

Φmw = 2πij + εijm + ηijw,

where the ε and η can be normalized to have zero mean. Again, πi0 = π0j = 0: without

loss of generality, singles get zero mean utility.

This assumption rules out interactions between unobserved characteristics in the marital

output from a match, given the observed characteristics of both partners. On the other

hand, it does not restrict group preferences in any way; and it also allows for variation in

marital output within groups, as long as they do not interact across partners. For instance,

men of a given group may differ in the marital outputs they can form, but only as relates

to the group of their partner.
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To take an analogy with discrete choice models of consumer purchases, take the following

standard specification for the utility a buyer b derives from a variety v:

Ubv = π(Xb, Xv) +Xvεb +Xbεv + εbv.

In this context, separability would allow for variation in tastes over observed characteristics

of products (through εv), and for group-dependent tastes for unobserved product charac-

teristics εb. On the other hand, it would rule out the interaction term εbv.

We denote pi the number of men of group i, and qj the number of women of group j;

then

∀i ≥ 1,

J∑
j=0

µij = pi ; ∀j ≥ 1,

I∑
i=0

µij = qj . (1.1)

For future reference, we denoteM the set of (IJ + I + J) non-negative numbers (µij) that

satisfy these (I + J) equalities. Each element of M is called a “matching” as it defines a

feasible set of matches (and singles).

Like Choo and Siow, we assume that the pi’s and qj ’s are “large”: there are a large

number of men in any group i, and of women in any group j. More precisely, our statements

in the following are exactly true when the number of individuals goes to infinity and the

proportions of genders and types converge. To simplify the exposition, we consider the limit

of a sequence of large economies where the proportion of each type remains constant:

Assumption 2 (Large Market) The number of individuals on the market N =
∑I

i=1 pi+∑J
j=1 qj goes to infinity; and the ratios (pi/N) and (qj/N) are constant.

With finite N we would need to introduce corrective terms; we leave this for further

research.

2 Social Surplus, Utilities, and Identification

As Choo and Siow (2006) remind us (p. 177): “A well-known property of transferable utility

models of the marriage market is that they maximize the sum of marital output in the
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society”. This is true when marital output is defined as it is evaluated by the participants:

the market equilibrium in fact maximizes∑
mw

δmwΦmw

over the set of feasible matchings (δmw). On the other hand, this is not very useful to the

analyst: she does not observe some of the characteristics of the players, and she can only

compute quantities that depend on the observed groups of the partners in a match. A very

naive evaluation of the sum of marital output, computed from the groups of partners only,

would be

2
∑
ij

µijπij ; (2.1)

but this is clearly misleading. Realized matches by nature have a value of the unobserved

marital surplus (εijm + ηijw) that is more favorable than an unconditional draw; and as a

consequence, the equilibrium marriage patterns (µ) do not maximize the value in (2.1) over

M.

In order to find the expression of the value function that (µ) maximizes, we need to

account for terms that reflect the conditional expectation of the unobserved parts of the

surplus, given a match on observable types. To make this more precise, we need to introduce

some notation. We continue to assume separability (Assumption 1) and a large market

(Assumption 2); but we allow for quite general distributions of unobserved heterogeneity:

Assumption 3 (Distribution of Unobserved Variation in Surplus)

a) For any man m ∈ i, the εijm are drawn from a (J + 1)-dimensional distribution Pi;

b) For any woman w ∈ j, the ηijw are drawn from an (I + 1)-dimensional distribution

Qj;

c) These draws are independent across men and women.

Assumption 3 clearly is a substantial generalization with respect to Choo and Siow

7



(2006), who assume that Pi and Qj are independent products of standard type-I extreme

values distributions:

Assumption 4 (Type-I extreme values distribution)

a) For any man m ∈ i, the (εijm)j=0,...,J are drawn independently from a standard type-I

extreme value distribution;

b) For any woman w ∈ j, the (ηijm)i=0,...,I are drawn independently from a standard

type-I extreme value distribution;

c) These draws are independent across men and women.

Assumption 3 generalizes assumption 4 in three important ways: it allows for differ-

ent families of distributions, with any form of heteroskedasticity, and with any pattern of

correlation across partner groups.

2.1 A Heuristic Derivation

Now suppose that the men of group i expect to get mean utilities wj from marrying partner

type j, for j = (0, . . . , J). A given man of this group, characterized by a draw (εj) from

Pi, would then choose the partner type j that makes (wj + εj) largest. Therefore the sum

of the expected utilities of these men would be

Gi(w) = piEPi

[
max

j=0,...,J
(wj + εj)

]
,

where the expectation is taken over a random vector (ε0, . . . , εJ) ∼ Pi.

Similarly, the sum of the expected utilities of the women of group j is

Hj(z) = qjEQj

[
max
i=0,...,I

(zi + ηi)

]
.

The social surplus is simply the sum of the expected utilities of all types of men and

women. Thus if we denote Uij and Vij the mean utilities of a man of type i and of a woman
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of type j when they are matched, the social surplus is

I∑
i=1

Gi(Ui.) +
J∑
j=1

Hj(Vj.),

denoting Ui. = (Ui0 = 0, Ui1, . . . , UiJ) and V.j = (V0j = 0, V1j , . . . , VIj). Of course these

mean utilities are unobserved, and we must find a way to write them in terms of the

matching patterns µ. We will give here a heuristic explanation of how we obtain such a

formula3.

Let us focus on the function Gi. By construction,

Gi(w) = pi

J∑
j=0

Pr(j|i;w) (wj + e(j|i;w)) , (2.2)

where we denote Pr(j|i;w) the probability that the maximum is achieved for a choice of

partner in group j when mean utilities are w, and e(j|i;w) the conditional expectation of

εj in this case. In particular, if w = Ui. then Pr(j|i;w) = µij/pi; and we obtain

Gi(Ui.) =

J∑
j=0

µijUij + pi

J∑
j=0

Pr(j|i;Ui.)e(j|i;Ui.). (2.3)

Now Uij + Vij = 2πij since the mean utilities of the partners must add up to the marital

surplus; and when we add the first term in (2.3) to the corresponding term for women, we

will find
I∑
i=1

J∑
j=0

µijUij +

J∑
j=1

I∑
i=0

µijVij = 2
∑
i,j≥1

µijπij

which is just the “naive” formula in (2.1). We still have to evaluate the conditional terms.

To do this, note that Gi is convex since it is a linear combination of the maxima of linear

functions; as such it is almost everywhere differentiable, with derivatives

∂Gi
∂wj

(w) = pi Pr(j|i;w). (2.4)

But this means that we can rewrite the second term in (2.2) as

pi

J∑
j=0

Pr(j|i;w)e(j|i;w) = Gi(w)−
J∑
j=0

wj
∂Gi
∂wj

(w) ≡ G(w). (2.5)

3Appendix A gives rigorous proofs of all of our results.

9



If Gi were a homogeneous function of degree 1 then the right-hand side G(w) would be

zero. But Gi is convex, and therefore the right-hand side is positive; in fact, it is is easily

computed from the Legendre-Fenchel transform of Gi. This associates to any (a0, . . . , aJ)

the number

max
w=(w0,...,wJ )

 J∑
j=0

ajwj −Gi(w)

 .

Note that if t is any scalar and w′j = wj + t, then Gi(w
′) = Gi(w) + pit: the function

Gi is convex but not strictly convex. As a consequence, the value of its Legendre-Fenchel

transform in (a0, . . . , aJ) is infinite if
∑J

j=0 aj 6= pi. Accordingly, we focus on its restriction

to the hyperplane
∑J

j=0 aj = pi, which always takes finite values; and we use a slightly

different argument list:

G∗i (pi, a1, . . . , aJ) = max
w=(w0,...,wJ )

pi − J∑
j=1

aj

w0 +

J∑
j=1

ajwj −Gi(w)

 ,

extended to G∗(pi; a1, . . . , aJ) = +∞ if
∑J

j=1 aj ≥ pi. We define H∗j (qi, b1, . . . , bI) similarly

for women of type j.

Denoting a0 = pi −
∑J

j=1 aj , the first-order conditions in G∗i (a) can be written

aj =
∂Gi
∂wj

(w); (2.6)

so that if w achieves the maximum in G∗i (pi, a),

G∗i (pi, a) = −G(w).

While this may seem like replacing an unknown quantity with another, combining equations

(2.4) and (2.6) implies that if aj = µij for all j, then the solution w is simply wj ≡ Uij ,

the vector of mean utilities for which men of type i split across partner types with the

probabilities given by µi./pi. Going back to (2.2), we finally obtain

Gi(Ui.) =

J∑
j=0

µijUij −G∗i (pi, µi.), (2.7)

and
I∑
i=1

Gi(Ui.) +

J∑
j=1

Hj(Vj.) = 2
∑
i,j≥1

µijπij −
I∑
i=1

G∗i (pi, µi.)−
J∑
j=1

H∗j (qj , µ.j).
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The right-hand side of this equation gives the value of the social surplus when the

matching patterns are (µij). The first term 2
∑

ij µijπij reflects “group preferences”: if

groups i and j generate more surplus when matched, then they should be matched with

higher probability. In the one-dimensional Beckerian example, an increasing i or j could

reflect higher education. If the marital surplus is complementary in the educations of the

two partners, πij is supermodular and this first term is maximized when matching partners

with similar education levels (as far as feasibility constraints allow.) On the other hand,

the second and the third term reflect the effect of the dispersion of individual affinities,

conditional on observed characteristics: those men m in a group i that have more affinity

to women of group j should be matched to women of group j.

The formula for the social surplus incorporates these two considerations. To take the

education example again, a marriage between a man with a college degree and a woman

who is a high-school dropout generates less marital surplus on average than a marriage

between college graduates; but because of the dispersion of marital surplus that comes from

the ε and η terms, it will be optimal to have some marriages between dissimilar partners.

2.2 Main Results

We now give formal statements of our results. As Legendre-Fenchel transforms of convex

functions, the functions G∗i and H∗j are also convex; as such, they are differentiable almost

everywhere—and very mild assumptions on the distributions Pi and Qj would make them

differentiable everywhere. We will use their derivatives in stating our results; they should

be replaced with subgradients at hypothetical points of non-differentiability.

We denote µi. the vector (µi1, . . . , µiJ), and similarly for µ.j . For simplicity, we will

assume that all matching patterns are possible at the optimal matching:

Assumption 5 (Interior Solution) For every i ≥ 0 and j ≥ 0, µij is positive.

Assumption 5 must hold in large markets if the functions Gi and Hj are increasing in all of

their arguments; as they will be if the distributions Pi and Qj all have unbounded support,
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or if their supports are wide enough relative to the variation in π.

We prove two results in Appendix A. The first one characterizes the social surplus

function that the stable matching maximizes. As explained in section 2.1, the social surplus

trades off matching on observables and on unobservables:

Theorem 2 (Social Surplus) Under assumptions 1, 2, 3, and 5, the market equilibrium

µ = (µij)i,j≥1 maximizes the social gain

W(µ) = 2
∑
i,j≥1

µijπij + E(p, q, µ),

where E is defined by

E(p, q, µ) = −
I∑
i=1

G∗i (pi, µi.)−
J∑
j=1

H∗j
(
qj , µ.j

)
;

and the probabilities of singlehood are given by

µi0 = pi −
J∑
j=1

µij and µ0j = qj −
I∑
i=1

µij .

We call E the generalized entropy function of the distribution of characteristics—as

we will see, in the simple case analyzed by Choo and Siow (2006) it is just the usual

notion of entropy. Theorem 2 has several important consequences. In particular, it yields a

remarkably simple formula for the utilities participants of any type obtain in equilibrium.

We state the result for men—the one for women follows with the obvious change in notation.

Theorem 3 (Participant Utilities) Under assumptions 1, 2, 3, and 5,

a) In equilibrium, a man m ∈ i who marries a woman of group j obtains utility

Uij + εijm

where

Uij =
∂G∗i
∂µij

(pi, µi·)
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can also be computed by solving the system of equations

∂Gi
∂wij

(Ui.) = µij for j = 0, . . . , J,

given the normalization Ui0 = 0.

b) The average expected utility of the men of group i is

ui =
Gi(Ui.)

pi
= −∂G

∗
i

∂pi
(pi, µi.). (2.8)

Part b) of Theorem 3, in particular, makes it extremely easy to evaluate the participant

utilities. The data directly yield the number of participants of this type (pi) and their

matching patterns (µi.); and the specification of the distribution of unobserved heterogeneity

determines the function G∗i , thus allowing for the computation of ui.

Remember that 2πij = Uij + Vij ; then Theorem 3 implies directly the following rela-

tionship between the matching patterns and the underlying surplus function:

Theorem 4 (Identification) Under assumptions 1, 2, 3, and 5,

a) In equilibrium, for any i, j ≥ 1

2πij = −∂E(p, q, µ)

∂µij
=
∂G∗i
∂µij

(pi, µi·) +
∂H∗j
∂µij

(
qj , µ·j

)
; (2.9)

b) Denote the systematic part of pre-transfer utilities (α, γ) and of transfers τ as in

section 1. Then

Uij = αij − τ ij and Vij = γij + τ ij .

Therefore if transfers are observed, both pre-transfer utilities αij and γij are also identified.

Equation (2.9) identifies the marital surplus matrix π from the observed matching pat-

terns µ, given the distribution of unobserved heterogeneities. It can also be used to solve for

the optimal matching, given full knowledge of the surplus function; it generates a system

of IJ (typically nonlinear) equations with IJ independent unknowns : the values of µij for

i, j ≥ 1. Once the µ’s are computed, they can for instance be injected into formula (2.8) to

compute the expected utilities of each type of participant.
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3 Examples

The functions G∗i and H∗j , and hence E can often be found in closed form. Appendix B

gives the resulting formulæ for McFadden’s Generalized Extreme Value (GEV) framework.

This comprises some very useful special cases. We now study a couple of examples.

Example 1 (Heteroskedastic logit) Assume that εijm and ηijw are type-I extreme value

random variables with scaling factors σmi and σwj respectively. Then (focusing on men)

Gi(w) = piσ
m
i log

J∑
j=0

exp

(
wj
σmi

)
.

Take numbers of marriages (a1, . . . , aJ) for men of type i, and denote a0 = pi −
∑J

j=1 aj.

These marriage patterns can be rationalized by the mean utilities

wji (pi, a) = σmi log
aj
pi

+ ti(a),

where ti(a) is an arbitrary scalar function. As a result,

G∗i (pi, a1, . . . , aJ) = σmi

J∑
j=0

aj ln
aj
pi

;

and

E(p, q, µ) = −
I∑
i=1

σmi

J∑
j=0

µij ln
µij
pi
−

J∑
j=1

σwj

I∑
i=0

µij ln
µij
qj
.

Hence (2.9) simplifies to

2πij =
(
σmi + σwj

)
lnµij − σmi lnµi0 − σwj lnµ0j ; (3.1)

men of type i get an average expected utility

ui = −σmi ln
µi0
pi
,

and women of type j get an average expected utility

vj = −σwj ln
µ0j
qj
.

14



As a particular case of the above example when σmi = σwj = 1, we get Choo and Siow’s

model:

Proposition 1 Under assumptions 1, 2 and 4 (which implies 5), the function E is simply

E(µ) = −
I∑
i=1

J∑
j=0

µij ln
µij
pi
−

J∑
j=1

I∑
i=0

µij ln
µij
qj
,

so that

W(µ) = 2
∑
i,j≥1

µijπij −
I∑
i=1

J∑
j=0

µij ln
µij
pi
−

J∑
j=1

I∑
i=0

µij ln
µij
qj
. (3.2)

Moreover, surplus and matching patterns are linked by

2πij = 2 lnµij − lnµi0 − lnµ0j ,

which is Choo and Siow’s result (Theorem 1 above.)

To interpret formula (3.2), start with the case when unobserved heterogeneity is dwarfed

by variation due to observable characteristics: Φmw ' 2πij if m ∈ i and w ∈ j. Then we

know that the observed matching µ must maximize the value in (2.1); but this is precisely

what the more complicated expressionW(µ) above boils down to if we scale up the values of

π to infinity. On the other hand, if data is so poor that unobserved heterogeneity dominates

(π ' 0), then the analyst should observe something that, to her, looks like completely

random matching. But information theory tells us that entropy is a natural measure of

statistical disorder; and the entropy of a discrete probability distribution (x1, . . . , xN ) is

simply

−
N∑
i=1

xi lnxi,

which appears in the two terms that constitute W in the framework of Proposition 1 when

π is zero. In the intermediate case in which some of the variation in marital surplus is

driven by group characteristics (through the πij) and some is carried by the unobserved

heterogeneity terms εijm and ηijw, the market equilibrium trades off matching on group

characteristics (as in (N)) and randomness, as measured by the entropy terms in W(µ).
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In the more general cases that Assumption 3 allows for, the function E(µ) cannot be

interpreted as the entropy of a probability distribution; we call it a generalized entropy since

it plays a similar role.

As a more complex example of a GEV distribution, consider a nested logit.

Example 2 (Nested logit) Suppose for instance that men of type i choose among “nests”

Ail for l = 1, . . . ,mi, and that the scale parameter is σmil in nest l, and smi overall. Then

the system of equations that defines the Uij:

∂Gi
∂wij

(Ui.) = µij for j = 0, . . . , J,

can be rewritten as

µij
pi

=

(∑
j′∈Ai

l
exp

(
Uij′
σm
il

))σm
il /s

m
i

∑mi
k=1

(∑
j′∈Ai

k
exp

(
Uij′
σm
ik

))σm
ik/s

m
i

exp (Uij/σ
m
il )∑

j′∈Ai
l
exp

(
Uij′/σ

m
il

) (3.3)

where l is the index of the nest such that j ∈ Ail. There is no general closed-form expression

for Uij; however, note that within a nest Ail,

Uij = σmil log
µij
pi

+ til

and that in (3.3) only the constants til remain to be determined numerically.

While the GEV framework is convenient, the mixed logit model has also become quite

popular in the applied literature; it is our last example4.

Example 3 (Mixed logit) Take nonnegative numbers αik such that
∑K

k=1 αik = 1 for

each i.. Consider the mixture model in which for any type i of men, with probability αik the

distribution Pi is iid type-I extreme value with standard error σmik.

Then the Uij solve

µij
pi

=
K∑
k=1

αik
eUij/σ

m
ik∑J

j′=0 e
Uij′/σ

m
ik

.

4Our framework allows for more general specifications, e.g. mixed GEV models.
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4 Empirical Approaches

The assumptions in Choo and Siow (2006) imply a stark trade-off in the specification of the

model: in order to keep the joint surplus π entirely non-parametric, the distribution of the

unobserved heterogeneity is very tightly specified—in fact, imposing Assumption 4 leaves

it with no free parameter at all. Our results open the way to a wider range of empirical

strategies, in which the analyst can leverage on restrictions on the joint surplus in order to

allow for more general distributions of unobserved heterogeneity.

4.1 Estimation

Suppose for instance that the joint surplus π and the distributions of unobserved hetero-

geneity (Pi), (Qj) are specified up to a parameter vector θ, so that πij ≡ πij(θ) and the

generalized entropy Eθ also depends on the unknown parameters. Then given observed

matching patterns (µij) we could estimate θ by using minimum distance methods. To see

this, take a hypothetical matching (νij) that satisfies the feasibility constraints in (1.1):

∀i ≥ 1,

J∑
j=0

νij = pi ; ∀j ≥ 1,

I∑
i=0

νij = qj . (4.1)

Then (up to constant terms) the log-likelihood of the matching ν is

L(ν;µ) = 2
∑

i≥1,j≥1
µij log νij +

∑
i≥1

µi0 log νi0 +
∑
j≥1

µ0j log ν0j .

Since this is concave in ν and the feasibility constraints are linear, maximizing the log-

likelihood over the set of all feasible matchings ν simply gives νij = µij . But the parame-

terization imposes constraints, in the form of equation (2.9): given parameter values θ, for

any i, j ≥ 1,

πij(θ) = −∂Eθ(p, q, ν)

∂µij
. (4.2)

These additional constraints exhaust the restrictions from the theoretical model; there-

fore if the model identifies θ, choosing θ and ν to maximize the log-likelihood under the

constraints (4.1) and (4.2) yields a consistent and asymptotically efficient estimator of θ.
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Conceptually, this is a minimum distance estimator: if for every θ equation (4.2) can be

solved for

ν = K(π(θ), p, q, θ),

then maximizing L(K(π(θ), p, q, θ);µ) over θ amounts to minimizing the Kullback-Leibler

distance between the model and the data. Moreover, if the model is overidentified, then a

specification test can be constructed in the usual way from the value of the distance at its

minimum.

Rather than solving for ν for each current value of θ, it may be more efficient to maximize

L(ν;µ) under the constraints in (4.2). This empirical strategy is similar to that advocated

by Su and Judd (2010) for discrete choice models. Modern software implementing the

Mathematical Programming with Equilibrium Constraints approach can solve this very

efficiently, and a specification test can be constructed from the multiplier of the constraint

at the optimum.

This can easily be extended to the case when transfers τ ij are observed. Suppose that the

analyst has specified pre-transfer utilities αij(θ) and γij(θ). Then it follows from Theorem 3

that

τ ij = αij(θ) +
∂G∗i
∂µij

(pi, µi·, θ) = −γij(θ)−
∂H∗j
∂µij

(
qj , µ·j , θ

)
, (4.3)

where the argument θ in G∗i and H∗j reflects the possible dependence of the distributions

Pi and Qj on θ.

Like (4.2), the equations in (4.3) can simply be added as a constraint in the maximization

of the likelihood of the model. Using information on transfers of course makes the estimator

more efficient and the specification tests more powerful.

4.2 Identification

As the previous subsection shows, if the model is identified (or overidentified) then esti-

mating and testing it is fairly straightforward. Identification, however, is not a foregone

conclusion. Proposition 1 illustrates the underlying difficulty in the basic Choo and Siow
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(2006) framework, when transfers are not observed. If the analyst leaves the joint surplus

function unrestricted, then the parameters of interest θ consist in the marital surplus matrix

π. We can pick ν to be the observed matching µ; then π obtains from equation (4.2),

2πij =
µij

√
µi0µ0j

,

and the specification test has no bite: the model is just identified, and any observed matching

pattern can be rationalized by choosing the marital surplus matrix π as above.

On marriage markets, even indirect estimates of transfers between partners are hard to

come by; therefore identification requires additional restrictions. If the analyst can observe

several markets and exclusion restrictions are imposed, this information can be used to

generate specification tests. Decker, Lieb, McCann, and Stephens (2010) consider the case

when the analyst observes several markets with the same function π, the same distribution

of unobserved heterogeneity as in Choo and Siow (2006), and different distributions of

men and women pi and qj . They derive comparative statics results that imply testable

restrictions on the matching patterns across markets.

When the distributions Pi and Qj are incompletely specified, identification can come

from imposing exclusion restrictions across several markets, and/or from restrictions on

the shape of the function π. Chiappori, Salanié, and Weiss (2010) rely on a mixture of

both, within the heteroskedastic logit model of Example 1. The nature of the parametric

restrictions that can be brought to bear is of course application-specific. In an earlier version

(Galichon and Salanié (2010)) we used a semilinear parameterization of the joint surplus

π and we showed that it is a fruitful way to explore such restrictions. We are currently

working on an application of this approach.

When transfers are observed, the situation is typically less dire, as further restrictions

it can also help in identification. The market for CEOs is a case in point: regulatory

rules allow the analyst to observe compensation, and the pre-transfer utilities have a simple

interpretation. Let CEOs be indexed by i and firms by j. Then αij = −dij , with dij the

disutility for CEO i of working in firm j; and γij = ρij , the profit of the firm (before it

pays the CEO.) To take a simple example of identifying restrictions, if the work disutility
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of CEOs does not depend on the firm they work in, then in our notation

αij = Uij + τ ij

should not depend on the firm j. This generates additional constraints that can be used to

estimate the model; and less blunt restrictions on the drivers of disutility and profit would

also help, as illustrated by Dupuy (2010) in a rather different framework.

Finally, consider competitive equilibrium in a market for differentiated products, with

0-1 demand and quasi-linear utilities. Chiappori, McCann, and Nesheim (2008) show how

such a hedonic pricing model can be reinterpreted as an assignment game. Introducing

unobserved heterogeneity, however, requires some care. Assume that buyer m of observed

type i derives utility αik + εikm from variety k, which seller w of observed type j produces

at cost −γjk+ηjkw. Let Pk be the equilibrium price of variety k. Then buyer m ∈ i chooses

to buy the product that maximizes (αik−Pk+εikm), while seller w ∈ j produces the variety

that maximizes (Pk − γjk + ηjkw). The surplus from a match between a buyer m in group

i and a seller w in group j is

Φmw = max
k

(αik − γjk + εikm + ηjkw).

For the surplus to satisfy assumption 1, we need to impose that either εikm or ηjkw is further

separable. If for instance buyers of type i have the same preferences over varieties and only

differ in their valuation for the good:

εikm = ζik + ξim,

then without further assumptions on η we can rewrite

Φmw = max
k

(αik − γjk + ηjkw) + ξim,

which does not involve any interaction between m and w conditional on i and j and hence

satisfies Assumption 1. Our other assumptions do not raise any new problem here; Theo-

rems 2, 3 and 4 apply, and so does our discussion of identification. Note that the transfers

here are just the prices of the different varieties, which are often available.
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Appendix A:

Proofs of Theorems 2 and 3

Proof of Theorem 2

By the classical dual formulation of the matching problem, the market equilibrium assigns

utilities uim to man m ∈ i and vjw to woman j ∈ w so as to solve

G = min

∑
i,m

uim +
∑
j,w

vjw


where the minimum is taken under the set of constraints

uim + vjw ≥ 2πij + εijm + ηijw

uim ≥ εi0m

vjw ≥ η0jw.

Denote

Uij = min
m
{uim − εijm} , i ≥ 1, j ≥ 0

Vij = min
w

{
vjw − ηijw

}
, i ≥ 0, j ≥ 1

so that

uim = max
j=0,...,J

{Uij + εijm} , i ≥ 1

vjw = max
i=0,...,I

{
Vij + ηijw

}
, j ≥ 1

Then

G = min

∑
i,m

max
j=0,...,J

{Uij + εijm}+
∑
j,w

max
i=0,...,I

{
Vij + ηijw

}
under the set of constraints

Uij + Vij ≥ 2πij

Ui0 ≥ 0

V0j ≥ 0.
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Assign non-negative multipliers µij , µi0, µ0j to these constraints. By duality in Linear Pro-

gramming, we can rewrite

G = max
µij≥0

2
∑
i,j≥1

µijπij

−max
Uij


∑
i≥1
j≥0

µijUij −
∑
i,m

max
j≥0
{Uij + εijm}


−max

Vij


∑
i≥0
j≥1

µijVij −
∑
j,w

max
i≥0

{
Vij + ηijw

}
 .

Now ∑
i,m

max
j≥0
{Uij + εijm} =

∑
i

piEm∈i max
j≥0
{Uij + εijm} .

In this formula Em∈i denotes the empirical average over the population of men in group i.

Now we invoke Assumption 2: if there is a large number of men in each group,

Em∈i max
j≥0
{Uij + εijm} ≈ EPi

[
max

j=0,1,...,J
{wj + εj}

]
.

Adding the similar expression for women, we get

G = max
µij≥0

2
∑
i,j≥1

µijπij −A (µ)−B (µ)


where

A (µ) = max
Uij


∑
i≥1
j≥0

µijUij −
∑
i≥1

Gi(Uij)


B (µ) = max

Vij


∑
i≥0
j≥1

µijVij −
∑
j≥1

Hj(Vij)


Consider A(µ) for instance. It is the sum of Legendre-Fenchel transforms of the functions

Gi; and as explained in the text, if
∑J

j=0 µij 6= pi for any i, then A(µ) is plus infinity.
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Therefore at the maximum in G, the feasibility constraints in (1.1) must hold. and we can

rewrite A(µ) and B(µ) in terms of the restricted Legendre-Fenchel transforms:

A (µ) =
∑
i≥1

G∗i (pi, µi.) and B (µ) =
∑
j≥1

H∗j
(
qj , µ.j

)
.

It follows that

G = max
µij≥0

2
∑
i,j≥1

µijπij −
I∑
i=1

G∗i (pi, µi.)−
J∑
j=1

H∗j
(
qj , µ.j

) . �

Proof of Theorem 3

From the proof of Theorem 2, and given µij > 0,

Uij =
∂A

∂µij
(µ);

but since

A (µ) =
∑
i≥1

G∗i (pi, µi.) ,

part a) of Theorem 3 follows immediately.

For part b), note that the social surplus G is equal to the sum of expected utilities of all

types
∑I

i=1 piui +
∑J

j=1 qjvj at the optimum; and that the numbers of available men and

women of each type pi and qj define the feasibility constraints in (1.1). As a consequence,

ui =
∂G
∂pi

;

But given Theorem 2,
∂G
∂pi

= −∂G
∗
i

∂pi
(pi, µi.). �
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Appendix B: The Generalized Extreme Values Framework

Consider functions gi : IRJ+1 −→ IR and hj : IRI+1 −→ IR such that the following four

conditions hold:

• each gi or hj is positive homogeneous of degree one

• they go to +∞ whenever any of their arguments goes to +∞

• their partial derivatives of order k exist outside of 0 and have sign (−1)k

• the functions defined by

Pi (w0, ..., wJ) = exp
(
−gi

(
e−w0 , ..., e−wJ

))
Qj (z0, ..., zI) = exp

(
−hj

(
e−z0 , ..., e−zI

))
are multivariate cumulative distribution functions.

Then introducing utility shocks εi ∼ Pi, and ηj ∼ Qj , we have by a theorem of McFad-

den (1978):

Gi(w)

pi
= EPi

[
max

j=0,1,...,J
{wj + εj}

]
= log gi (ew) + γ

Hj(z)

qj
= EQj

[
max

i=0,1,...,I
{zi + ηi}

]
= log hj (ez) + γ

where γ is the Euler constant γ ' 0.5772.

Therefore,

G∗i (pi, a) =

pi − J∑
j=1

aj

wi0(pi, a) +

J∑
j=1

ajw
i
j (pi, a)− pi

(
log gi

(
ew

i(pi,a)
)

+ γ
)

where for i = 0, . . . , I, the vector wi (pi, a) solves the systempi − J∑
j=1

aj , a1, . . . , aJ

 = pi
∂

∂w
log gi

(
ew

i
)
. (.4)
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Similarly, if
∑I

i=0 bj = qj then

H∗j (b) =
I∑
i=0

biz
j
i (qj , b)− qj

(
log hj

(
ez

j(qj ,b)
)

+ γ
)

(.5)

where the vectors zj (qj , b) solve the systems(
qj −

I∑
i=1

bj , a1, . . . , bI

)
= qj

∂

∂z
log hj

(
ez

j
)
.

Hence,

E(p, q, µ) =
I∑
i=1

pi log gi

(
ew

i(pi,µi·)
)
−

J∑
j=0

µijw
i
j (pi, µi·)


+

J∑
j=1

(
qj log hj

(
ez

j(qj ,µ·j)
)
−

I∑
i=0

µijz
j
i

(
qj , µ·j

))
+ C

where C = γ
(∑I

i=1 pi +
∑J

j=1 qj

)
, and for i, j ≥ 1

∂E
∂µij

(p, q, µ) = −wij (pi, µi·)− z
j
i

(
qj , µ·j

)
.
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