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Abstract

We investigate what it means for one act to be more ambiguous than another. The
question is evidently analogous to asking what makes one prospect riskier than another,
but beliefs are neither objective nor representable by a unique probability. Our starting
point is an abstract class of preferences constructed to be (strictly) partially ordered
by a more ambiguity averse relation. We de�ne two notions of more ambiguous with
respect to such a class. A more ambiguous (I) act makes an ambiguity averse decision
maker (DM) worse o¤ but does not a¤ect the welfare of an ambiguity neutral DM.
A more ambiguous (II) act adversely a¤ects a more ambiguity averse DM more, as
measured by the compensation they require to switch acts. Unlike more ambiguous
(I), more ambiguous (II) does not require indi¤erence of ambiguity neutral elements to
the acts being compared. Second, we implement the abstract de�nitions to characterize
more ambiguous (I) and (II) for two explicit preference families: �-maxmin expected
utility and smooth ambiguity. Our characterizations show that (the outcome of) a more
ambiguous act is less robust to a perturbation in probability distribution governing
the states. Third, the characterizations also establish important connections between
more ambiguous and more informative as de�ned on statistical experiments by Blackwell
(1953) and others. Fourthly, we give applications to de�ning ambiguity "in the small"
and to the comparative statics of more ambiguous in a standard portfolio problem and
a consumption-saving problem.

JEL Classi�cation Numbers: C44, D800, D810, G11

Keywords: Ambiguity, Uncertainty, Knightian Uncertainty, Ambiguity Aversion,
Uncertainty aversion, Ellsberg paradox, Comparative statics, Single-crossing, More am-
biguous, Portfolio choice, More informative, Information, Garbling.



1 Introduction

Consider a decision maker (DM) choosing among acts, choices with contingent conse-
quences. Following intuitive arguments of Knight (1921) and Ellsberg (1961), pioneering
formalizations by Schmeidler (1989) and Gilboa and Schmeidler (1989), and a body of
subsequent work, modern decision theory distinguishes two categories of subjectively un-
certain belief: unambiguous and ambiguous. An ambiguous belief cannot be expressed
using a single probability distribution. Intuitively, an event is deemed (subjectively)
ambiguous if the DM�s belief about the event, as revealed by his preferences, cannot be
expressed as a unique probability.1 The usual interpretation is that the DM is uncertain
about the �true�probability of the ambiguous event (and takes this uncertainty into ac-
count when making his choice). A DM considers an act to be unambiguous if, for each
set of consequences, its inverse image is unambiguous. Otherwise, the act is ambiguous.
In this paper we investigate what makes one act more ambiguous than another.

One focus of the recent literature applying ideas of ambiguity to economic contexts,
�nance and macroeconomics in particular, is on how equilibrium trade in �nancial as-
sets is a¤ected when agents seek assets that are, in a sense, �robust� to the perceived
ambiguity. A comparative static question of interest in such models is, naturally, that
of more ambiguous.2 We need concepts of more ambiguous just as concepts of orders of
riskiness were needed to facilitate comparative statics of �more risky�. One challenge in
formulating a general de�nition of more ambiguous, in keeping with revealed preference
traditions, is that the de�nition should be preference based but not tied down to par-
ticular parametric preference forms. Following from the question of de�nition, we wish
to identify what structural properties make one act more ambiguous than another and
how this varies according to the class of preferences one considers.

Two key ideas give us two distinct ways of revealing (via choice behavior) whether
an act is relatively more a¤ected by ambiguity than another act, thereby giving rise to
two (generally) distinct orders of more ambiguous on the space of acts. Our de�nition
of more ambiguous (I) says, essentially, that the more ambiguous act is less attractive
to ambiguity averse DMs but not to DMs with preferences neutral to ambiguity. More
ambiguous (II) says that act f is more ambiguous than act g if the more ambiguity
averse agent requires more compensation to give up g for f . In other words, the relative
cost of taking on the more ambiguous act, i.e., going from g to f , is costlier for the
more ambiguous type of agent. What lies at the heart of more ambiguous (II) is a
single-crossing notion, suitably strengthened to ensure that transitivity is respected.
The advantage of the �rst de�nition is it allows us to identify acts which are separated
purely and solely in terms how much they are a¤ected by ambiguity. An advantage
of the second de�nition is it allows us to compare acts which are di¤erently a¤ected by
ambiguity, while possibly being di¤erent in other dimensions. Note, the common element

1There is an extensive literature discussing the de�nition of ambiguous events, e.g., Epstein (1999),
Ghirardato and Marinacci (2002), Nehring (2001) and Klibano¤, Marinacci and Mukerji (2005).

2See, e.g., Hansen (2007), Caballero and Krishnamurthy (2008), Epstein and Schneider (2008), Hansen
and Sargent (2010), Uhlig (2010), Boyle, Garlappi, Uppal, and Wang (2011), Collard, Mukerji, Tallon,
and Sheppard (2011), Gollier (2011).
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in the de�nitions: in both instances the order of more ambiguous arises on the back of
preferences, more speci�cally, on a relation on preferences. In the �rst de�nition, we
compare the choice made by an ambiguity neutral preference with that by a ambiguity
averse preference; in the second de�nition, we compare the choice made by one preference
with another which is more ambiguity averse. In this way, the de�ning properties are
universal across preferences. So, �xing a preference class, partially ordered by a more
ambiguity averse relation, we may apply these properties to determine whether that class
deems an act to be more ambiguous than another act.

We also study the case of events. Bets on events are acts with binary outcomes and
the two notions of more ambiguous acts may be extended, with appropriate quali�ca-
tions, to very analogous notions of more ambiguous events. Conceptually, these notions
take forward the literature on de�nitions of ambiguous events. They are of interest in
applications too: for instance, when investigating the e¤ect of ambiguity on contingent
contracts, it might be natural to want to compare contingent arrangements across more
ambiguous events.

Next, the abstract de�nitions are implemented to characterize more ambiguous (I)
and (II) for some classes of preferences prominent in applications. Two classes of prefer-
ences we investigate in particular are, the class of �-maxmin expected utility preferences
(�-MEU) and smooth ambiguity preferences. The �-MEU class, generalize the well
known maxmin expected utility preferences due to Gilboa and Schmeidler (1989). For
these preferences the decision maker�s belief about relevant stochastic environments3 is
represented by a convex, compact set of probabilities on the state space, with acts being
evaluated by a weighted average of the maximum and minimum expected utility ranging
over the set of probabilities. For smooth ambiguity preferences, decision maker�s beliefs
about relevant probabilistic environments are represented by a set of probabilities on the
state space along with a second-order prior over them.4

To get a �rst idea of the nature and style of the characterizations we obtain we focus in
this introductory section on the case of events. Fix a convex, compact set of probabilities
� on a state space S and consider the associated class of �-MEU preferences, � ranging
over the interval [0; 1]. Given an event E � S; since � is compact convex, the set
of points �(E) 2 [0; 1] as � ranges over � is a closed interval which we denote as
�(E) = f�(E) j � 2 �g � [0; 1]. We show this preference class considers an event E to
be more ambiguous (I) than event E0 if and only if �(E) � �(E0) and the probability
intervals are such that they share the same center. Analogous to the centered expansion
in the case of �-MEU preferences, for smooth ambiguity the characterizing condition
requires that the �-average of the event probabilities �i(E) is retained (� being the
second order prior) while the �(E0) are all contained in the convex hull of the �(E),
� 2 �. Since the more ambiguous (II) notion does away with the requirement of the
ambiguity neutral preference, it is intuitive that the characterization of more ambiguous
(II) for �-MEU is, essentially, that �(E) is more spread out than �(E0), without the
requirement of a common center. For smooth ambiguity preferences, the characterization

3For a discussion of relevance, in the sense used here, see Klibano¤, Mukerji, and Seo (2011).
4See Section 2.3 for more details on these preference classes, including references.
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is analogous: two equal �-measure journeys in the support of �, one tracking the variation
in the probability of E and the other of E0, will show the probability of the more
ambiguous(II) event E to vary more.

The connection between ordering acts by ambiguity and experiments by information
is one of the central themes of this paper and one that we use to formally interpret
various characterizations. Consider, again, the case of events. Adopting the language
of statistical decision theory, the probability distribution over the sample space S is de-
termined by � 2 �, which naturally corresponds to the parameter space. In this sense,
an event E constitutes a statistical experiment, a statistic de�ned on S, whose outcome,
the occurrence or nonoccurrence of E, may reveal information about the �true�under-
lying parameter, �. Intuitively, if �(E) does not depend on � 2 �, i.e., �(E) = �0(E),
�; �0 2 �, then the event E would be clearly deemed unambiguous by any preference
with associated belief in �. Just as clearly, observing an occurrence or nonoccurrence
of E is completely uninformative about which distribution � 2 � actually obtained.
These observations equate uninformative with unambiguous in what appears to be a
very compelling way, so it is very intuitive that more informative should remain central
to the characterization of more ambiguous. Notions of more informative allow us to for-
mally articulate the natural intuition about what is peculiar to the structure of a more
ambiguous act: the (probability of) its outcomes are a¤ected more when the probabil-
ity distribution on the state space is perturbed.5 There are nuances to the way more
ambiguous acts are less robust, depending on the version of more ambiguous and class
of preferences under consideration. Notions of more informative are useful in clarifying
these nuances.

Some of the characterizations are obtained under a condition imposed on prefer-
ences which restricts the nature of associated beliefs. The general condition is U-
comonotonicity ; and, in the special case of events, event-comonoticity. A set of prob-
abilities on the state space, �, is event-comonotone for a pair of events E;E0 if for all
�1; �2 2 �; (�1(E)� �2(E)) (�1(E0)� �2(E0)) � 0. In words, if one of two stochastic
environments subjectively thought relevant is better for E then it also better for E0;
the events order the relevant stochastic environments in the same way. Evidently, this
condition gives a sense in which two events are (stochastically) similar, e.g., a bet on
the S&P being less than 11000 at close on a particular day and an analogous bet on the
FTSE, but not a bet on a stock market index and a bet on the outcome of a boxing
match. The condition is shown to have quite striking implications for the character-
izations. For example, the characterizing condition for E being more ambiguous (II)
than E0, for the class of �-MEU preferences associated with � and also for the class
of smooth ambiguity preferences with supp(�) � � is essentially, that �(E) is more
spread out than �(E0). Hence, remarkably, in this case the characterizing conditions
for the �-MEU class and the smooth ambiguity class are virtually identical and, with
respect to smooth ambiguity preferences, all that matters about the second order prior

5The state space is an objective construct, as is the mapping describing an act. Hence, how the
distribution on outcomes induced by an act and a distribution governing states changes, following a
putative change in the governing distribution from � to �0, say, is a structural property.

3



is its support. Furthermore, U -comonotonicity generalizes the result, in a natural way,
for the case of acts. Hence, event-comonotonicity (and U -comonotonicity) are impor-
tant instances in which structural properties distinguishing more ambiguous (II) do not
vary across a quite wide range of preferences. For an illustration, consider the following
example. Let S = fr; b; gg ; and

� = f� = �P + (1� �)Q j P = (0:2; 0:35; 0:45) ; P = (0:3; 0:6; 0:1) ; � 2 [0; 1]g :

Note, the events R = frg and B = fbg are event-comonotone. Further, the interval �(B)
is wider than �(R) and without an overlap. Take two classes of preferences, �-MEU and
smooth ambiguity, such that the belief associated with �-MEU preferences is the set �
and for the smooth ambiguity preferences, the support of the second order prior � is a
subset of �. By Proposition 3.5 both classes would deem B as a more ambiguous (II)
event than R. Furthermore, the same Proposition shows B is Blackwell (pairwise) more
informative than R for each dichotomy f�1; �2g � �.

Finally we turn to some applications. As a �rst application, we use the idea of
more ambiguous (I) to identify the ambiguity premium for an act and develop measures
of ambiguity based on an approximate formula for the ambiguity premium of a small
(ambiguous) gamble. Next, we illustrate comparative statics of more ambiguous, (I)
and (II). First, we analyze the standard portfolio choice problem with one safe and
one uncertain asset and consider the comparative static e¤ect on the optimal weight
when the uncertain asset is replaced another which more ambiguous (I). We identify
conditions that yield the �expected�comparative static for the �-MEU case and for the
smooth ambiguity case. Secondly, we analyze an optimal saving problem, for �-MEU
and smooth ambiguity preferences, in which future income is ambiguous. We explore
the impact on savings as future income becomes more ambiguous (II).

The literature on more ambiguous is rather spare. Segal (1987) analyzes preferences
over binary acts, e.g., (x;E; 0;:E), where you win x if the event E occurs, 0 otherwise.
It is assumed that the ambiguity concerning the probability of E in the �ambiguous
lottery� (x;E; 0;:E) is represented by a probability distribution F � on [0; 1] governing
the probability that E occurs. It is then suggested that to rank �degrees of ambiguity�,
one should de�ne an order on the set of the distribution functions F �. Segal considers
but rejects the criterion that F � be riskier than G� in the sense of Rothschild and Stiglitz
(1970) in favour of a more restrictive relation, that F � crosses G� only at their common
mean from below. Segal writes, referring to an ambiguity averse DM, �one is tempted
to assume that if G� is more ambiguous than F �, then the value of (x;E; 0;:E) under
F � is greater than its value under G�,�but shows that this is not generally true. Segal�s
counterexample naturally leads one to think of preferences as the starting point for
primitive notions of more ambiguous, so it can be seen as an inspiration for the current
paper. The analysis in Grant and Quiggin (2005) is also related, but less so. It proceeds
in a direction opposite to the one taken in this paper: starting with a primitve notion
of a more uncertain act it goes on to characterize corresponding dual notions of more
uncertainty averse for various preference models. Also, they do not distinguish between
ambiguity and risk.
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The paper is organized as follows. In Section 2 we �rst present the de�nitions of more
ambiguous acts and events in pure decision theoretic terms and then introduce particular
concepts that are invoked in the characterization results: parametric preference families,
the order restrictions on beliefs imposed by comonotonicity ideas, and information or-
ders. Section 3 implements the de�nitions to characterize more ambiguous events, while
Section 4 does the same for more ambiguous acts. Section 5 presents the applications
and Section 6 concludes.

2 Decision theoretic considerations

2.1 Preliminaries

Let X be a compact subinterval of R and L the set of distributions over X with �nite
supports:

L =

(
l :X ! [0; 1] j l(x) 6= 0 for �nitely many x�s in X and

X
x2X

l(x) = 1

)
:

Let S be a separable metric space and let � be an algebra of subsets of S. Denote by
F0 the set of all �-measurable �nite valued functions from S to L. Let F be a convex
subset of LS which includes all constant functions in F0. In the usual decision theoretic
nomenclature, elements of X are (deterministic) outcomes, elements of L are lotteries,
elements of S are states and elements of � are events. Elements of F are acts whose
state contingent consequences are elements of L: Hence, given f 2 F and s 2 S, f (s) is a
(�nitely supported) probability distribution onX while f (s) (x) denotes the probability
of x 2 X under f (s) : As usual, we may think of an element of L as a constant act,
i.e., an act with the same consequence in every state. Given an x 2 X, �x 2 L denotes
a degenerate lottery such that �x (x) = 1: Let � :�! [0; 1] be a countably additive
probability. The set of all such probabilities, �, is denoted by �. Let C (S) be the
set of all continuous and bounded real-valued functions on S. Using C (S) we equip �
with the vague topology, that is, the coarsest topology on � that makes the following
functionals continuous:

� 7!
Z
 d� for each  2 C (S) and � 2 �.

Let B� denote the Borel �-algebra on � generated by the vague topology. Given � 2 �,
any act f 2 F induces a corresponding lottery, a probability distribution over outcomes
conditional on �. To de�ne this formally, denote by BX the Borel �-algebra of X and,
for the act f , de�ne the Markov kernel (�;B) 7! P f� (B) from (�;B�) to (X;BX) such
that6

P f� (B) =

Z
S

X
x2B

f(s)(x)d� (s) ; B 2 BX : (1)

6For a de�nition of a Markov Kernel see, e.g., Strasser (1985), pg 102, De�nition 23.2.
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Notation 2.1 To save on notation, we sometimes write P f� (x) to denote the distribution
function induced by the act f given a probability �. Speci�cally, we write P f� (x) to denote
P f� ((�1; x]\X): Note that x 7! P f� (x) is, therefore, well-de�ned on R �X:We will also
�nd the associated inverse distribution functions, or quantile functions, useful. These
are de�ned to be the right continuous functions Qf�(p) = inffx j P f� (x) > pg; 0 � p < 1;

Qf�(1) = inffx j P f� (x) � 1g:

Acts are objects of choice of a decision maker (DM). A binary relation � over F
denotes a DM�s preference ordering. Throughout, we will assume a DM�s preferences
satisfy properties of weak order and monotonicity, de�ned below.

Axiom 2.1 (Weak order) The preference � is complete and transitive.

Axiom 2.2 (Monotonicity) (i) If x; y 2X and x � y then �x � �y.
(ii) For every l; l0 2 L, if l � l0 and 0 � � < � � 1, then

�l + (1� �)l0 � �l + (1� �)l0:

(iii) For every f; g 2 F , f (s) � g (s) for all s 2 S implies f � g:

Note, (i) and (ii) of Axiom 2.2 ensures that preferences over lotteries respect �rst order
stochastic dominance, while (iii) ensures that preferences are state independent.

2.2 De�ning more ambiguous

We de�ne ordinal measures of how much the (subjective) evaluation of an act is a¤ected,
relative to another act, by (subjectively perceived) ambiguity. The measures are cali-
brated by explicit reference to individual preferences by comparing how two acts are
evaluated by two preferences, one of which is more ambiguity averse than the other.
Hence, our starting point is a notion of comparative ambiguity aversion. We adopt a
notion well entrenched in the literature. De�nition 2.1 is, essentially, a restatement of
Epstein (1999) and Ghirardato and Marinacci (2002) de�nitions of comparative uncer-
tainty/ambiguity aversion which were, in turn, a natural adaptation of Yaari (1969)
classic formulation of comparative (subjective) risk aversion. Just as the de�nition of
comparative risk aversion requires an a priori de�nition of a risk-free act, here the anal-
ogous role for �ambiguity-free�acts is played by lotteries.

De�nition 2.1 Let P be a class of preferences over F . Let �A;�B2 P. We say �B is
(P)-more ambiguity averse than �A if

f �B l ) f �A l
f �A l ) f �B l

for all l 2 L, and for all f 2 F .
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Remark 2.1 The above de�nition implies that if two preferences can be ordered in
terms of ambiguity aversion then they must rank lotteries in the same way.

As Epstein (1999) notes, to de�ne absolute (rather than comparative) risk aversion,
it is necessary to adopt a �normalization�for risk neutrality. The standard normaliza-
tion is expected value. Analogously, to obtain a notion of absolute ambiguity aversion it
is necessary to adopt a normalization for ambiguity neutrality. There are two normaliza-
tions prominent in the literature. Ghirardato and Marinacci (2002) say a preference is
ambiguity neutral if it is a subjective expected utility (SEU) preference. That is, for any
f; g 2 F , there exists a utility function, u : X �! R, and a subjective belief associated
with the preference, � 2 �, such that,

f � g ,
Z
S

"X
x2X

u(x)f(s)(x)

#
d� (s) �

Z
S

"X
x2X

u(x)g(s)(x)

#
d� (s) .

In Epstein (1999), a preference � is ambiguity neutral if it is probabilistically sophis-
ticated, that is, a preference that ranks acts or lotteries solely on the basis of their
implied probability distributions over outcomes (Machina and Schmeidler (1992)). More
precisely, letting P be the set of all Borel probability measures on (X;BX), � is proba-
bilistically sophisticated if there exists a function W : P �! R, and an associated belief
� 2 �, such that,

f � g ,W
�
P f�

�
�W (P g� ) ; f; g 2 F .

Although De�nition 2.1 says P is partially ordered by a more ambiguity averse rela-
tion, this does not necessarily imply that there exists any distinct pair of preferences in
P which are ordered by the relation.

De�nition 2.2 Let P be a class of preferences over F . We say P is strictly partially
ordered by (P)-more ambiguity averse if for each �2 P there exists �02 P, �6=�0,
such that � is (P)-more ambiguity averse than �0 or �0 is (P)-more ambiguity averse
than �.

The �rst notion of more ambiguous we o¤er is in the spirit of the Rothschild and
Stiglitz (1970) notion of more risky. We require that an ambiguity neutral decision maker
be indi¤erent between the two acts being compared while the ambiguity averse decision
maker disprefers the more ambiguous act. Note, we may use either of the above two
normalizations of ambiguity neutrality to obtain a corresponding notion of (absolutely)
ambiguity averse: an ambiguity averse preference is one that is more ambiguity averse
than an ambiguity neutral preference.

De�nition 2.3 Let P be a class of preferences over F strictly partially ordered by (P)-
more ambiguity averse and such that each �2 P is related to an ambiguity neutral
element of P. Given f; g 2 F , we say f is a (P)-more ambiguous (I) act than g,
denoted f (P)-m.a.(I) g, if the following conditions are satis�ed:
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(i) if �2 P is ambiguity neutral then g � f ;

(ii) for all �A;�B2 P such that �A is an ambiguity neutral preference and �B is
(P)-more (respectively, less) ambiguity averse than �A we have g �B (�B)f .

The notion of an act being more ambiguous than another is calibrated with respect
to a reference class P, restricted be a strictly partially ordered preferences. We restrict
P in such a way to discipline its diversity. Recall, for the study of risk (subjective) beliefs
are typically assumed to be common across the class of DMs. While P may well include
several ambiguity neutral preferences, incorporating di¤erent subjective beliefs and/or
risk attitudes, by condition (i) however, each ambiguity neutral preference must deem
the acts being compared equivalent thereby restricting the subjective belief associated
with the ambiguity neutral preferences included. Furthermore, every preference included
in the reference class may be ordered, in terms of the more ambiguity averse relation
with respect to some ambiguity neutral preference in P.

The requirement in De�nition 2.3 that ambiguity neutral agents be indi¤erent be-
tween the acts being compared is very natural but it has two drawbacks. First, we may
wish to compare acts with respect to how they are a¤ected by ambiguity, even though
they may di¤er on other dimensions.7 Second, there are reference classes P of interest
which do not contain ambiguity neutral elements. For example, the set of all �-MEU
preferences sharing the same set of priors in the representation functional in general will
not include an ambiguity neutral sub-class (see Section 2.3). These considerations lead
to our second de�nition of more ambiguous.

Notation 2.2 Given y 2 R, let (f + �y) denote a uniform translation of the contingent
distributions on outcomes, that is an act such that,

(f + �y) (s) (x+ y) = f (s) (x);

s 2 S, x 2 X: When there is no possibility of confusion, we will sometimes denote the
lottery degenerate at y 2 X simply by y; in particular we sometimes write f + y to
denote f + �y.

We propose to translate acts and wish to avoid hitting the bounds of X. Let LJ � L
be the set of all �nitely supported lotteries for which each outcome lies in a subinterval
J of X with jJ j � jXj =3 and center coinciding with the center of X.

De�nition 2.4 Let P be a class of preferences over F strictly partially ordered by (P)-
more ambiguity averse. Given acts f; g with consequences in LJ � L, we say f is a
(P)-more ambiguous (II) act than g, denoted f (P)-m.a.(II) g, if for all p 2 R with
jpj � jJ j, g �A (f + �p) ) g �B (f + �p), whenever �B is (P)-more ambiguity averse
than �A.

7Analogous issues limit the applicability of the Rothschild-Stiglitz notion in risk analyses and led to
the development of the notion of location independent risk introduced in Jewitt (1989) and analyzed in
e.g., Gollier (2001), Chateauneuf, Cohen, and Meilijson (2004).
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First, consider the case where g �A (f + �p)) g �B (f + �p). In this case, the amount p
may be interpreted as a �compensating premium�; it measures, behaviorally, A�s welfare
loss in giving up g for f . Hence, in this case, the de�ning property for f to be m.a.(II)
than g is that the compensating premium good enough for A is not good enough for
B, who is more ambiguity averse than A. In general, there might not exist p such
that indi¤erence, g �A (f + �p), obtains. If so, suppose g �A f , let p be an amount
that is not enough to �ip A�s preference, (i.e., it does not sweeten f enough for A to
want to give up g for f) then, given the de�nition, p certainly won�t be enough to �ip
B�s preference, which is more ambiguity averse. As with De�nition 2.3 this de�nition
includes the strict partial order condition to discipline the diversity within the reference
class P. For every preference in P there is at least one other preference in P to which it
may be related in terms of the more ambiguity averse relation and preferences, so related,
satisfy the condition that the compensating premium is increasing in ambiguity aversion.
More abstractly, the de�nition requires that translations of acts being compared satisfy
a single-crossing property:

De�nition 2.5 Let P be a class of preferences over F . Let f; g 2 F . The ordered pair
of acts (f ,g) ; satis�es the single-crossing property for ambiguity with respect to
P, denoted (f; g) 2 SCP (P), if for all �B (P)-more ambiguity averse than �A:

(i) f �B g ) f �A g;

(ii) f �A g ) f �B g:

The single-crossing property de�nes a fundamental comparative static in the sense that it
should hold for any comparison of two acts di¤erently a¤ected by ambiguity, irrespective
of whatever else may be a¤ecting their evaluation.8 However, single-crossing is not gen-
erally transitive. Transitivity of m.a.(II) relation is ensured by requiring single crossing
to continue to be satis�ed following arbitrary translations of f . Note, given Monotonic-
ity, if f is m.a.(II) g and �B is more ambiguity averse than �A, then g �A (f + �p),
g �B (f + �q) implies q � p. 9

2.2.1 More ambiguous events

As noted in the Introduction, it is of interest to de�ne (comparative) ambiguity of events.
Preferences for betting on one event rather than another, should reveal (a subjective

8The analog of De�nition 2.5 for risk (with subjective beliefs) allows that the acts di¤er in aspects
other than riskiness (such as di¤erent means) but as risk aversion increases, f tends to become less
attractive than g due to f having a greater riskiness component. If P is taken to be SEU preferences
with nondecreasing vNM utility and identical belief, �, the condition is equivalent to the distribution
functions P f� (x), P

g
� (x), satisfying a single crossing property, see e.g. Gollier (2001), chapter 7. We make

use of this fact below (Lemma A.1).
9Note, the two de�nitions of more ambiguous are distinct in that neither relation is strictly weaker

than the other. The �rst de�nition, requires an ambiguity neutral benchmark, unlike the second. The
second de�nition satis�es a single crossing property. Just as the Rothschild-Stiglitz notion does not
generally satisfy single crossing, neither does the relation generated by De�nition 2.3.
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view) as to how much the event is a¤ected by ambiguity compared to the other event.
While the same basic principles applied to the case of acts apply here, there are new
considerations to take into account. First, by de�nition, when we specify two acts we �x
their (contingent) payo¤s. But specifying two events does not specify their payo¤s: bets
on events are acts, but events themselves are not acts. Second, it seems fundamental to
view an event as ambiguous if and only if its complement is ambiguous. It is natural,
therefore, to require that if an event is more ambiguous than another the respective
complementary events are ranked the same way.

Notation 2.3 If x; y 2 X and E 2 �, xEy denotes the binary act which pays x if the
realized state s 2 E and y otherwise.

De�nition 2.6 Let P be a class of preferences over F strictly partially ordered by (P)-
more ambiguity averse and such that each �2 P is related to an ambiguity neutral
element of P. Given events E, E0 2 �,, we say E is a (P)-more ambiguous (I) event
than E0 if: for, all ambiguity neutral �A2 P,

xE0y �A xEy and x(:E0)y �A x(:E)y;

for all �B2 P, such that �B (P)-more ambiguity averse than �A,

xE0y �B xEy and x(:E0)y �B x(:E)y;

for all �B2 P, such that �A is (P)-more ambiguity averse than �B,

xE0y �B xEy and x(:E0)y �B x(:E)y,

where x; y 2X, with x > y.

Hence, the act of betting on a more ambiguous event should be m.a.(I) and the same
should hold of the complement. As in the case of acts, applying this notion to a class
of preferences requires that class to include an ambiguity neutral preference and that
such preferences be indi¤erent between the bets on the two events being compared. The
following de�nition is constructed along the lines of the m.a.(II) de�nition.

De�nition 2.7 Let P be a class of preferences over F strictly partially ordered by
(P)-more ambiguity averse. Given events E,E0 2 �, we say E is a (P)-more ambigu-
ous(II) event than E0 if, �A;�B2 P; x; y; p; q 2X, with x > y,

xE0y �A pEy ) xE0y �B pEy

and
x(:E0)y �A q(:E)y ) x(:E0)y �B q(:E)y;

whenever �B is (P)-more ambiguity averse than �A.
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For a �rst intuition, think of a variation of Ellsberg�s 2-color, 2-urn example, in
which the subject is given imprecise information about the composition of both urns, as
opposed to the usual example where there is precise information about one urn and no
information about the other. Each urn has a total of 100 balls, red and/or black. Let
E be the draw of a red ball from the urn I which, the subject is told, has between 30
and 70 red balls and let E0 be the draw of a red ball from urn II which is known to have
between 40 and 60 red balls. Let p be the stake on E which makes an ambiguity averse
agent A indi¤erent between the bets on E and E0: In this case, the amount p�x may be
interpreted as a �compensating stake�. For a more ambiguity averse DM, B, the amount
p�x (weakly) under-compensates, so B would rather stick with the bet on E0. Like the
m.a.(II) notion for acts, here too the fundamental idea is of single-crossing, strengthened
to ensure transitivity by requiring the compensation p� x to be monotone in ambiguity
aversion. But unlike there, we do not compare preferences, of a less and more ambiguity
averse agent, between translations to the entire acts. Rather we compare, across two
such agents, the e¤ect of a change of stake on E, relative to the stake on E0 (and then,
analogously, on the complements), to reveal the perceived comparative ambiguity about
E. We use event speci�c payo¤ perturbations, speci�c to the events being compared.10

2.3 Parametric families of preferences considered in characterizations

We will apply the de�nitions to characterize more ambiguous for two parametric fam-
ilies of preferences, the ��maxmin expected utility (�-MEU) family and the smooth
ambiguity family. Next, we provide a brief description of these families.

The �-MEU model (Hurwicz (1951), Ghirardato, Maccheroni, and Marinacci (2004),
henceforth, GMM)11 represents preferences over acts in F according to,

V�;�;u(f) = �min
�2�

Z
S

"X
x2X

u(x)f(s)(x)

#
d� (s)+(1� �)max

�2�

Z
S

"X
x2X

u(x)f(s)(x)

#
d� (s) ,

(2)
where � 2 [0; 1] is a weight, and � � � is a compact, convex set of probability mea-
sures on the state space S. As usual, u : X �! R is a nondecreasing vN-M utility
function, understood to represent risk attitude. The weight � is interpreted to be an
index of ambiguity attitude. The set � is interpreted as the set of probabilities the
DM subjectively deems as relevant and is the belief asociated with the preference. Let
P = f(�; �; u)g�2[0;1];u2U denote the class of �-MEU preferences where, the set � is
the belief associated with preferences in the class, the ambiguity attitude � ranges over
the interval [0; 1] and the risk attitude u ranges over a set U: Let �A;�B2 P: Then,
10We will, in contexts where there is no scope of confusion, use the phrase (P)-more ambiguous (I)

(or, (II)), without appending the quali�er �acts�or �events�.
11The functional form was �rst suggested by Hurwicz. GMM axiomatizes a functional form of which

the �-MEU form is a special case. However, Eichberger, Grant, Kelsey, and Koshevoy (2011) show
that the GMM axiomatization does not provide a complete foundation to the special �-MEU case, in
particular when the state space, S is �nite. Klibano¤, Mukerji, and Seo (2011) provide an alternative
foundation for �-MEU which addresses the problem Eichberger et. al. raise with GMM�s axiomatization.
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by Proposition 12 in GMM, �A is (P)-more ambiguity averse than �B, �A � �B;
and uA and uB are equal up to an a¢ ne transformation, where �A; uA; and �B; uB are
associated with �A and �B, respectively. It is useful to note, given a compact, convex
� � �, f 2 F , the kernel P f� is mixture linear in � 2 �, i.e.,

P f��0+(1��)�00 = �P f�0 + (1� �)P
f
�00 ; �

0; �00 2 � � �; � 2 [0; 1] :

The smooth ambiguity model (Klibano¤, Marinacci, and Mukerji (2005), henceforth,
KMM)12 represents preferences over acts according to,

V�;�;u(f) =

Z
�
�

 Z
S

"X
x2X

u(x)f(s)(x)

#
d� (s)

!
d� (�) ; (3)

where, u : X �! R is a nondecreasing vN-M utility function shown to represent risk
attitude; � : u (X) �! R is a nondecreasing function which maps (expected) utilities to
reals shown to represent ambiguity attitude; � : B� �! [0; 1] is a Borel probability mea-
sure on �. The measure � is interpreted as representing the DM�s belief. The support
of � is taken to be the smallest closed (w.r.t. the vague topology) subset of � whose
complement has measure zero, i.e., supp(�) =

T
fD closed : � (D) = 1; D � �g. Let

f(�; �; u)g�2�(u) denote the class of smooth ambiguity preferences where, the measure �
is the belief associated with the preferences in the class, u is the utility function and the
ambiguity attitude function � ranges over some set �(u) of functions � : u (X) �! R:
Similarly, when the utility function u ranges over a set U; f(�; �; u)g�2�(u);u2U denotes
the class of preferences

S
u2U f(�; �; u)g�2�(u). In the characterizations of more ambigu-

ous to follow, we typically set U = U1, the set of nondecreasing utilities u :X �! R and
�(u) = �1(u) the set of nondecreasing ambiguity attitudes � : u (X) �! R: In this case
we abuse notation and write f(�; �; u)g�2�1;u2U1 . Let �A;�B2 P f(�; �; u)g�2�(u);u2U .
Then, by Theorem 2 in KMM, �A is (P)-more ambiguity averse than �B, �A = h�
�B; where h : �B(u(X)) ! R is concave, and uA and uB are equal up to an a¢ ne
transformation, where uA; �A and uB; �B are associated with �A and �B, respectively.

Given an act, in contrast to �-MEU preferences, smooth ambiguity preferences with
beliefs � naturally induce a joint probability measure on outcomes and possible distrib-
utions over states. For each act f 2 F ; and Borel set B 2 BX ; � ! P f� (B) is a B� mea-
surable function. The Borel measure � therefore uniquely13 de�nes, for each act f 2 F ,
a probability measure P f;� on (X ��;BX �B�) such that for every C 2 B�; B 2 BX ,

P f;�(B � C) =
Z
C
P f� (B) d�(�): (4)

Recall, the de�nition of m.a.(I) invokes the existence of an ambiguity neutral ele-
ment in the relevant preference class. The smooth ambiguity preference (�; �; u) with �

12For other preference models with similar representations see Ahn (2008), Ergin and Gul (2009), Nau
(2006), Neilson (2010) and Seo (2009).
13See, e.g., Meyer (1966), T14, p.15.
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a¢ ne is an SEU preference. Hence, the class f(�; �; u)g�2�1;u2U1 includes an SEU pref-
erence. However, for a given compact, convex � � �; the class of �-MEU preferences
f(�; �; u)g�2[0;1];u2U1 , does not in general contain an SEU preference. Rogers and Ryan
(2008), however establishes a general condition on the set of beliefs � that guarantees
the existence of an ambiguity neutral preference within the class: the �-MEU preference
(�; 0:5; u) is an ambiguity neutral (SEU) preference if � is centrally symmetric.

De�nition 2.8 A set � � � is centrally symmetric if there exists �? 2 � (called
the center of �) such that, for any � 2 �; � 2 �, �? � (� � �?) 2 �:

As noted in KMM, SEU preferences are the only probabilistically sophisticated pref-
erences within the smooth ambiguity class (so long as preferences over lotteries are
expected utility). Marinacci (2002), p.756, shows for �-MEU preferences it is without
loss of generality14 to assume SEU as the benchmark model for ambiguity neutrality;
there is no need to consider the more general probabilistically sophisticated preferences.
Hence, for the preference classes we characterize SEU is the appropriate benchmark for
ambiguity neutrality.

2.4 Event-comonotonicity and U-comonotonicity

Some characterizations, in the sequel, place further structure on the parametric classes
of preferences considered by restricting the nature of associated beliefs. In this section
we discuss some notions of order on beliefs and introduce two restrictions on preferences
which induce a linear order, event-comonotonicity and U-comonotonicity.

Partial order induced by pairs of events Quite generally, a set of events �0 � �
induces a partial order on the set �, � > �0 if �(E) � �0(E) for each E 2 �0. We are
particularly interested in comparing pairs of events: For the pair of events E and E0

from � we write �0 6E;E0 � if �(E) � �0(E) and �(E0) � �0(E0):

Notation 2.4 The meet
V
E;E0 � denotes the greatest lower bound of the set � � �,

when such a bound exists. That is,
V
E;E0 � denotes the largest �

0 2 � such �0 6E;E0 �
for all � 2 �, if such a �0 exist. Similarly, the join

W
E;E0 � denotes the least upper

bound, when that exists.

In general (�;6E;E0) is not a lattice, to see this let E and E0 be disjoint events, there
is a � 2 � which assigns probability 1 to event E and a �0 2 � which assigns probability
1 to E0: By de�nition any upper bound to the set f�; �0g � � must assign probability 1

14More precisely, Marinacci shows SEU preferences are the only probabilistically sophisticated pref-
erences within the class of �-MEU preferences de�ned over acts whose domain includes at least one
unambiguous event which is assigned a strictly positive probability by the subjective belief(s) associated
with the preferences in the class.
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to both events, however since the events are disjoint there is no probability measure in
� which achieves this, hence there is no least upper bound.15

Remark 2.2 If E;E0 2 �; E \ E0 6= ; and E0 [ E 6= S; (�;6E;E0) is a lattice.

The conditions of Remark 2.2 ensure that
V
E;E0 �;

W
E;E0 � 2 � are de�ned for any

compact subset � � �; but it is clearly not generally necessary that
V
E;E0 �;

W
E;E0 � 2

�: Both argmax�2� �(E) and argmax�2� �(E0) are nonempty convex subsets of �: If
these sets have a nonempty intersection, then �

W
E;E0 �

0 exists and is an element of �:
When argmax�2� �(E)\argmax�2� �(E0) = ;; it may still be the case that there is some
�00 = �

W
E;E0 �

0 2 �; =2 � such that �00(E) = max�2� �(E) and �00(E0) = max�2� �(E0):

Comonotonicity and linear order We may think of a bet on event E and a bet on
event E0 as �similar�if the events induce the same ordering on the probability measures
in �: A bet that the S&P 500 index exceeds 1500 on January 1 2012 might be regarded
as similar to a bet that the S&P 500 exceeds 1550 on February 1 2012 since both are
more likely to pay o¤ when � is optimistic about market conditions during the early
part of 2012.

De�nition 2.9 A set � � � is event-comonotone for a pair of events E;E0 2 �; if
for all �1; �2 2 �; (�1(E)� �2(E)) (�1(E0)� �2(E0)) � 0:

Event comonotonicity for a pair of events E;E0 2 � imposes, or rather requires, a linear
order 5E;E0 on the set of probability measures � � �: Regardless of whether the condi-
tions of Remark 2.2 obtain, this de�nes a lattice (�;5E;E0) which given compactness of
� has top and bottom elements

W
E;E0 � 2 � and

V
E;E0 � 2 � respectively. For �-MEU

decision makers, it will become clear, these two, top and bottom, elements of � contain
all the behaviorally relevant information concerning the beliefs about the events E and
E0. In general, the requirement of event-comonotonicity with respect to a pair of events
restricts preferences over bets on these events by restricting the set of beliefs associated
with the preferences. The idea has a natural extension to the case of acts which is the
subject of the following de�nition.

De�nition 2.10 A set � � � is U -comonotone for a collection of acts A � F and
class of utilities U if � can be placed in linear order 5U such that for each �1; �2 2 �;
�1 5U �2 implies for each u 2 UZ

S
u(f)d�1 �

Z
S
u(f)d�2 for each act f 2 A: (5)

15Similarly, if the events are mutually exhaustive the probabilities should not add to less than one,
however, this is not an issue for us since we do not admit as meaningful the question of whether an event
is more ambiguous than its complement.
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In the case of acts, as opposed to the case of events, the utility function matters for
how the set � is ordered. That is because bets on events are binary acts with just two
outcomes, hence so long as utility indices satisfy monotonicity the choice of a particular
utility would not a¤ect the ordering over �. The relation between event-comonotonicity
and U1-comonotonicity is clari�ed in the following proposition.

Proposition 2.1 Let f; g 2 F be acts mapping states to degenerate lotteries over out-
comes in X. Let Efx � fs 2 S : f(s) � xg ; Egx � fs 2 S : g(s) � xg denote the events
that the outcome is no greater than x 2 X under acts f and g, respectively. Fix a set
� � �. The following statements are equivalent:

(i) � is event-comonotone for each pair of events (Ehx ; E
h0
x0 ); h; h

0 2 ff; gg; x; x0 2X:

(ii) � is U1-comonotone for the pair of acts f; g:

The proposition shows U1-comonotonicity is equivalent to event-comonotonicity of �worse-
outcome�events under the acts being compared.16 Evidently, U�comonotonicity is a
strong condition but it will be a natural and e¤ective analytical tool in economic appli-
cations.

2.5 Elements of Statistical Decision Theory (Information Order)

Intuitively, if the distribution P f� does not depend on � 2 � � �; then the act f would
clearly be deemed unambiguous by any preference with associated beliefs contained
in �. Just as clearly, observing an outcome resulting from the act f is completely
uninformative about which distribution � 2 � actually obtained. These observations
equate uninformative with unambiguous in what appears to be a very natural way. It
should not, therefore, surprise the reader that we will �nd concepts from the literature
on comparison of experiments (more informative) of direct use in characterizing and
interpreting more ambiguous. To this end, in this section we will �rst associate elements
of our decision theoretic set-up with the statistical decision theoretic setup of Wald
(1949) used by Blackwell (1953) and then review the concepts of information order we
invoke in our characterization results. For each concept reviewed, we discuss how an
act deemed more informative by such an order induces distribution on outcomes that
may be interpreted as being is more sensitive/less robust to the particular probability
generating the states.

As is customary in this theory, we start with the sample space S, a triple17 consisting
of a measurable space, which we will take to be (S;�); a parameter space 
 (sometimes

16Other classes of U; other than non-decreasing utlities may be of interest, for instance, non-decreasing
concave utilities. We generally refrain from complicating the paper further by systematically pursuing
this line of enquiry, which is left for future research. Though Remark 4.5 is an interesting exception.
17This is in accord with Blackwell and Girshick (1954) usage. Blackwell and Girshick also for conve-

nience sometimes refer to the measurable space (S;�) itself as the sample space "Though formallythe
sample space is de�ned as a triple, we do not always make the distinction between it and the �rst ele-
ment of the triple. Thus we speak of an event as a set in the sample space... ." (p.77). Other authors
sometimes de�ne the measurable set itself to be the sample space.
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called�confusingly in this context�the set of states of the world) and a family of probabil-
ity measures (P!)!2
 on (S;�). Hence, S = ((S;�);
; (P!)!2
) :We shall be interested
in comparing experiments de�ned on the same sample space S: An experiment de�ned
on S is simply a statistic de�ned on (S;�), i.e., a measurable function f from S to some
set of possible outcomes of the experiment. We shall limit our attention to statistics
which take values in the space of outcomes, i.e., measurable functions f : S ! X: The
experiment f therefore itself induces a sample space and can be equated with the triple
((X;BX);
; (P f! )!2
). In order to map this statistical decision theoretic framework
onto the decision theoretic framework of this paper:

1. We equate the �rst element of the sample space S; (S;�); with the state space
(S;�).

2. We equate 
 to a subset of � and the map ! 7! P! is the identity map on 
.
Henceforth, therefore we shall write � 2 
 instead of ! 2 
.

3. We equate the statistics f de�ning experiments with acts f 2 F which have de-
generate lotteries, i.e. outcomes, as consequences.

Hence, we associate acts with experiments of the form ((X;BX);
; (P f� )�2
), with P f�
de�ned as in equation (1).

There is, of course, a well-developed theory of what it means for one experiment to
be more informative than another which it is helpful to brie�y review18. Blackwell and
Girshick (1954) document six equivalent characterizations for one experiment to be more
informative than another. In the case of dichotomies� that is when the parameter space

 has only two elements, they furnish a seventh characterization. One of Blackwell�s
characterizations starts from a general description of a statistical decision problem in
which the objective is to make the expected loss resulting from a decision procedure
based on the experiment small at each value of the parameter � 2 
. A loss function
is a map from the product of some space of actions A and the parameter space 
, i.e.
L : A � 
 ! R. A decision procedure is a Markov kernel mapping from outcomes (of
an experiment) to probability distributions over actions. If for each loss function, for
any decision procedure based on experiment g; there is a decision procedure based on f
which yields a weakly lower expected loss for each � 2 
, then experiment f is deemed
more informative than experiment g. One natural necessary and su¢ cient condition for
this occurs (as shown in the celebrated Blackwell, Sherman, Stein theorem) if one can
use the more informative experiment plus randomization devices to construct a garbled
experiment equivalent to the less informative experiment.

De�nition 2.11 The experiment ((X;BX);
; (P f� )�2
) is Blackwell more informa-
tive than the experiment ((X;BX);
; (P g� )�2
)) on 
 � � (f is Blackwell more infor-
mative than g on 
) if there exists a Markov kernel (x;B) 7! Kx(B) from (X;BX) to
18The reader is referred to Blackwell and Girshick (1954), or Ferguson (1967), or Berger (1985) for

excellent treatments. Jewitt (2011) gives a detailed discussion of the relationship with Lehmann and
Blackwell information.
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(X;BX) such that

P g� (B) =

Z
X
Kx(B)dP

f
� (x); B 2 BX ; � 2 
: (6)

The experiment f is pairwise Blackwell more informative than the experiment g
on 
; if f is Blackwell more informative than g on each dichotomy f�1; �2g � 
 � �:

To set ideas we describe the Markov kernel condition in case of bets on events. Let
f be an act describing a unit bet on the event E, i.e.,n�

P f� (fx = 0g); P f� (fx = 1g)
�
j � 2 �

o
= f(�(E); �(:E)) j � 2 
g, (7)

and, similarly, let g describe a unit bet of the event E0. If E is Blackwell more informative
than E0 then on 
 there exists a row stochastic matrix K,

K =

�
b 1� b
c 1� c

�
such that,

�
�(E0)
�(:E0)

�
= K

�
�(E)
�(:E)

�
for all � 2 
: (8)

One easily checks that this implies K is bistochastic, i.e., c = 1 � b. Consider, e.g.,
�H ; �L 2 � such that �H(E) > �L(E), and �H(E0) > �L(E0): Hence, if E were pair-
wise Blackwell more informative than E0 on

�
�H ; �L

	
then the likelihood of E is more

sensitive than that of E0 to whether �H or �L obtains.
If 
 � � is a linearly ordered set, and P f� and P

g
� both exhibit monotone likelihood

ratio, Lehmann (1988) characterized conditions appropriate to a speci�c class of loss
functions19 which are simpler to verify than (the �rst six of) Blackwell and Girshick�s
(1954) conditions.

De�nition 2.12 Let 5 be a linear order on the set 
 � �: The family of probability
measures (P f� )�2
 on X satis�es monotone likelihood ratio (with respect to 5) if
there is a density pf� with respect to a sigma-�nite measure � on X such that, P f� (x) =R
(�1;x] p

f
�(�)d�(�); x 2 X with pf�1(x1)p

f
�2(x2) � pf�1(x2)p

f
�2(x1) for all �1 5 �2 in 


and x1 � x2 in X:

De�nition 2.13 Suppose (P f� )�2
 and (P
g
� )�2
 satisfy monotone likelihood ratio with

respect to 5 on 
 � �: Then the experiment f is Lehmann more informative than
g on 
 if for any �1; �2 � 0; �1 + �2 = 1; x 2 X; �1; �2 2 
 , with �1 5 �2 there is an
x0 2X such that

�1(1� P f�1(x
0)) + �2P

f
�2(x

0) � �1(1� P g�1(x)) + �2P
g
�2(x): (9)

This has a simple decision theoretic interpretation: given monotone likelihood ratio, the
Neymann-Pearson Lemma implies that optimal decisions in simple tests of hypothesis

19The class is called KR-monotone in Jewitt (2011) after Karlin and Rubin (1956)), similar conditions
had already appeared in Blackwell and Girshick (1954). See Jewitt (2011) for an extensive discussion.

17



(�1; �2 2 
, �1 < �2;H0 = �1;H1 = �2) are simple cut-o¤ rules: accept the hypothesis
H0 if the outcome is less than some critical value, reject H0 in favor of H1 if the outcome
is larger than the critical value and randomize at the critical value. Under the beliefs,
�1; �2; there is some decision rule based on outcomes from act f , which dominates any
decision rule based on the outcomes from act g. In this sense, under f (likelihood of)
outcomes are more sensitive to whether �1 or �2 obtains than they are under g.

Remark 2.3 Lehmann (1988) presented the condition (9), under the stipulation that
P f� and P

g
� have no atoms and that

Qf�2(P
g
�2(x)) � Qf�1(P

g
�1(x)); �1 5 �2 2 �; x 2X: (10)

We give the slightly more general formulation of De�nition 2.13 in order to compare
better with condition (iii) of Proposition 4.6 below.

Remark 2.4 Suppose (P f� )�2
 and (P
g
� )�2
 satisfy monotone likelihood ratio with re-

spect to 5 on 
 � �: If experiment f is Lehmann more informative than experiment
g on 
 then f is pairwise Blackwell more informative than g on 
: (See; e.g., Jewitt
(2011).)

Next, we introduce a notion of garbling distinct from Blackwell garbling. It obtains
through interposition of an extra Markov kernel from (
;B
) to itself.

De�nition 2.14 We say the Markov kernel (�;C) 7! K�(C) from (
;B
) to (
;B
)
�-garbles act f into act g if for all B 2 BX ;

P g�0(B) =

Z
�
P f� (B)dK�0(�); �

0 2 
: (11)

We say g is a �-garbling of f if there exists a Markov kernel such that (11) obtains.
Given events, E, E0 2 �, we say E0 is a �-garbling of E if g is a �-garbling of f , where
g and f are acts describing unit bets on E0 and E, respectively, as in (7).

To illustrate the essence of �-garbling consider a �nite 
 = f�1; : : : ; �mg � � and
two events, E;E0 ��: In this case, we say E0 is a �-garbling of E if there exists a row
stochastic matrix [kij ]i;j=1;:::;m, such that

�j(E
0) =

mX
i=1

kij�i(E): (12)

Hence, �i(E0), i = 1; :::;m; are all contained in the convex hull of f�i(E)gmi=1; given
f�1; : : : ; �mg, the corresponding event probabilities of E0 lie in a more circumscribed set
than those for E. In this sense probability of E0 is less sensitive than that of E to which
element of 
 actually generates the states.

Finally, we brie�y discuss relative entropy (Kullback and Leibler (1951)), which is a
scalar measure preserving information order on dichotomies. Let P and Q be probability
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measures on X which are both absolutely continuous with respect to some sigma-�nite
measure �: The relative entropy or Kullback-Leibler (K-L) divergence from P to Q is
given by

D(P jjQ) = �
Z
X
p log

�
q

p

�
d�

where dP
d� = p and dQ

d� = q are the respective Radon-Nikodym derivatives. Hence, if
D(P f�0 jjP

f
� ) � D(P g�0 jjP

g
� ) then the two distributions on outcomes corresponding to �

and �0 induced by act f are further apart than those induced by act g. In this sense,
the act f is more sensitive to, or less robust to, the particular probability generating the
states, compared to act g.

Remark 2.5 Suppose for each � 2 
; P f� and P g� are absolutely continuous with respect
to the sigma �nite measure �: If the experiment f is pairwise Blackwell more informative
than the experiment g on 
; then for each pair �; �0 2 
; D(P f�0 jjP

f
� ) � D(P g�0 jjP

g
� ): Since

x 7! � log(x) is convex, this follows immediately from Blackwell and Girshick (1954),
Theorem 12.22. Given Remark 2.4, this also demonstrates the link between the notion
of Lehmann more informative and measures of K-L divergence. See Remarks 4.1 and
4.2 for the connection between measures of K-L divergence and the �-garbling criterion.

3 Characterizing more ambiguous events

3.1 More ambiguous (I)

�-MEU preferences At the outset, it is important to note that, since application of
De�nition 2.6 requires the existence of an ambiguity neutral element in the preference
class, ambiguity neutrality is required for the full set of acts F and not just on bets on the
events being compared. Hence, we characterize the de�nition for a class of preferences
corresponding to a belief described by a compact, convex, centrally symmetric � � �.
Given an event E 2�, since � is compact convex, the set of points �(E) 2 [0; 1] as
� ranges over � is a closed interval which we denote as �(E) = f�(E) j � 2 �g =
[min�(E);max�(E)] � [0; 1]. This interval is itself centrally symmetric, by dint of
being closed convex and unidimensional, with center min�(E)+max�(E)

2 . It is easy to

check, denoting the center of � as �?, that min�(E)+max�(E)2 = �?(E).
One naturally expects �(E) to expand in some way as the event E is substituted

for a more ambiguous one. The following proposition states that �(E) expands while
retaining the same center. The characterization may be seen in terms of a �-garbling.

Proposition 3.1 Let P = f(�; �; u)g�2[0;1];u2U1 ; where � is a compact, convex centrally
symmetric subset of � with center �?. Consider two events, E;E0 2 �. The following
are equivalent:

(i) E is a (P)-more ambiguous (I) event than E0;

(ii) E0 is a �-garbling of E and �?(E0) = �?(E);
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(iii) �(E0) � �(E) and �?(E0) = �?(E).

Since �(E0) is a subset of �(E) and has the same center, it is natural that �(E0) has
a smaller radius than �(E). Remark 4.1 generalizes this observation for acts when the
radius is measured by K-L divergence.

Smooth ambiguity preferences For expositional clarity, we state the analog for
smooth ambiguity preferences for the case where � has �nite support: Analogous to
the centered expansion in the case of �-MEU preferences, for smooth ambiguity the
characterizing condition involves a kind of mean preserving spread of the weighted event
probabilities and, once again, may be formally interpreted as a �-garbling.

Proposition 3.2 Let P be the class of smooth ambiguity preferences f(�; �; u)g�2�1;u2U1,
where supp(�) = f�i 2 � j i = 1; :::;mg: Consider two events, E;E0 2 �. The following
are equivalent:

(i) E is a (P)-more ambiguous (I) event than E0;

(ii) There exists a row stochastic matrix [kij ]i;j=1;:::;m such that

�j(E
0) =

mX
i=1

�i(E)kij (13)

�j =
mX
i=1

kij�i: (14)

That is, E0 is a �-garbling of E and �j =
Pm
i=1 kij�i, j = 1; :::;m:

The characterization for the smooth ambiguity case is very analogous to the �-MEU
case. Condition (14) implies that the �-average of the event probabilities is the same
whether one considers E or E0:

mX
i=1

�i�i(E
0) =

mX
i=1

mX
j=1

kij�j(E)�j =

mX
j=1

�j�j(E): (15)

Condition (13) implies the �i(E0) are all contained in the convex hull of the �i(E).
Hence, as counterpart to �(E0) � �(E) in condition (iii) of Proposition 3.1 we have,

cof�1(E0); :::; �m(E0)g � cof�1(E); :::; �m(E)g:

3.2 More Ambiguous (II)

The following notion of a set of points being doubly star-shaped is useful for characterizing
more ambiguous (II) events.
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De�nition 3.1 We say A � [0; 1]2 is star-shaped if for (a1; a2) ; (a01; a
0
2) 2 A and

1 � a01 > a1 � 0; �a2 = a1 ) �a02 � a01; � � 0; it is doubly star-shaped if, in addition,
� (1� a2) = (1� a1) ) � (1� a02) � (1� a01) ; � � 0: A function � : [0; 1] ! [0; 1] is
star-shaped (doubly star-shaped) if its graph is star-shaped (doubly star-shaped).

To visualize star shapedness, consider, bottom left and top right corners of a unit
square, [0; 1]2. Then A � [0; 1]2 is doubly star-shaped if the slope of the sight line each
of the two corners to a point on A increases further away the point is from that corner.
It is useful to note that the interval [a1; a01] is wider than the interval [a2; a

0
2].

�-MEU preferences Since the m.a.(II) notion does away with the requirement of the
ambiguity neutral preference, it is intuitive to expect it generalizes the rather intuitive
condition �(E0) � �(E); which itself evidently generalizes the condition of Proposition
3.1, by not requiring the expansion to be centered. The characterization of m.a.(II) for
�-MEU requires the doubleton f(min�(E);min�(E0)); (max�(E);max�(E0))g to be
doubly star-shaped. Evidently, �(E) is more spread out than �(E0) though one interval
is not necessarily contained in the other. Recall the partial order on events 6E;E0 ,
introduced in Section 2.4. When (�;6E;E0) is a lattice, the characterizing condition
may be formally interpreted in terms of an information order, with the more ambiguous
event being Blackwell more informative.

Proposition 3.3 Let P = f(�; �; u)g�2[0;1];u2U1, where � is a compact, convex subset
of �. Consider two events, E;E0 2 �. Statements (i) and (ii) are equivalent. IfV
E;E0 �;

W
E;E0 � 2 � exist, statement (iii) is equivalent to (i) and (ii).

(i) E is a (P)-more ambiguous (II) event than E0;

(ii) Let a = (a1; a2) = (min�(E0);min�(E)) and b = (b1; b2) = (max�(E0);max�(E)).
The set fa; bg is doubly star-shaped:

(iii) E is Blackwell more informative than E0 for the dichotomy


 =

8<:^
E;E0

�;
_
E;E0

�

9=; � �:

Remark 3.1 The conditions (i) and (ii) (of Proposition 3.3) are implied by

�(E0) � �(E): (16)

Proposition 3.3 states that if
V
E;E0 � and

W
E;E0 � exist, then E is m.a.(II) event

than E0 if and only if the partition (E;:E) of S is more informative than the partition
(E0;:E0) of S for the dichotomy 
 =

nV
E;E0 � and

W
E;E0 �

o
� �: Note that the

event E plays two roles here� it determines the partition which carries information

about which � 2 � obtains, and it selects the dichotomy
nV

E;E0 � and
W
E;E0 �

o
which
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determines the relevant subset of �: The fact that the partition (E;:E) of S is more

informative than the partition (E0;:E0) for the dichotomy 
 =
nV

E;E0 � and
W
E;E0 �

o
does not imply that (E;:E) is more informative than (E0;:E0) for the dichotomy 
 =nV

:E;E0 � and
W
:E;E0 �

o
.

Smooth ambiguity preferences

Proposition 3.4 Let P be the class of smooth ambiguity preferences f(�; �; u)g�2�1;u2U1.
Consider two events, E;E0 2 �. The following are equivalent:

(i) E is a (P)-more ambiguous (II) event than E0;

(ii) there exists a nondecreasing doubly star-shaped function � : [0; 1]! [0; 1] such that,

�(f� j �(E0) � qg) = �(f� j �(E) � �(q)g; q 2 [0; 1] .

Hence, �(E) has the same distribution, under �; as �(�(E0)):Note, double star-shapedness
of � means that for each subinterval I of [0; 1], � (I) is a wider interval than I: Hence,
the condition here is analogous to the characterizing condition for �-MEU that �(E)
is more spread out than �(E0): two equal �-measure journeys in the support of �, one
tracking the variation in the probability of E and the other of E0, will reveal that the
probability of more ambiguous event E will vary more.20

3.2.1 Adding event comonotonicity: �-MEU and smooth ambiguity

The assumption of event-comonotonicity leads to a particularly striking conclusion: the
characterizing conditions for m.a.(II) events for the two classes of preferences collapse to
the same condition. Consider �-MEU preferences with beliefs �; and smooth ambiguity
preferences with beliefs � with support contained in �. The following proposition asserts

20A star-shaped ordering of distributions has already been found useful in reliability theory. For non-
negative random variables, the distribution F is said to be larger in the star order than the distribution
G if x 7! F�1(G(x)) is a star-shaped function. See e.g. Marshall and Olkin (2007).
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that for both preference classes an event E is m.a.(II) event than E0 if and only if E is
Blackwell pairwise more informative than E0 for all dichotomies from �. An interesting
feature of the condition is that the second order belief, �, does not matter beyond the
determination of its support.

Proposition 3.5 Let � be a compact, convex subset of �: Suppose � is event-comonotone
for a pair of events E;E0 2 �. Let PM (�) = f(�; �; u)g�2[0;1];u2U1; let PS (�) =
f(�; �; u)g�2�1;u2U1 with supp(�) = �. Then the following are equivalent:

(i) The set �E;E0 � f(�(E); �(E0)) j � 2 �g � [0; 1]2 is doubly star-shaped;

(ii) E is a (PM (�))-more ambiguous (II) event than E0;

(iii) E is a (PS (�))-more ambiguous (II) event than E0;

(iv) E is Blackwell pairwise more informative than E0 for each dichotomy f�1; �2g � �:

A �rst important key to the intuition is that since event-comonotonicity forces �E;E0
to be an increasing arc in the unit square the dimension of �E;E0 cannot be greater
than one. If, in addition, � is compact convex, this arc is the convex hull of the top
and bottom elements of the lattice (�;6E;E0), i.e. the convex hull of the two points,�V

E;E0 �(E
0);
V
E;E0 �(E)

�
and

�W
E;E0 �(E);

W
E;E0 �(E

0)
�
. Hence, for the case of �-

MEU preferences, the characterizing condition of Proposition 3.3 reduces to �E;E0 be-
ing (doubly) star-shaped. Second, for each pair �i; �j 2 � such that �i 6E;E0 �j
event-comonotonicity allows us to de�ne the intervals [�i(E0); �j (E0)] and [�i(E); �j (E)]
which, therefore, must have the same �-measure. Hence, condition (ii) of Proposition
3.4 for smooth ambiguity preferences with with supp(�) = � implies that there is a
(doubly) star-shaped function � such that [�i(E); �j (E)] = [� (�i(E0)) ; � (�j(E0))].

Remark 3.2 The requirement that � be convex in Proposition 3.5 is not necessary in
the case of smooth ambiguity preferences. Speci�cally, the equivalence between (i), (iii)
and (iv) remains true if the requirement is dropped. Note that there is no presumption in
KMM that the support of � be convex. It is perhaps worth stressing that in applications
there are likely to be considerable advantages to dispensing with the requirement (for the
same reason that the class of Normal Distributions, although not closed under mixtures,
is an important class).

Remark 3.3 Noting that for observation of events monotone likelihood automatically
obtains, it is furthermore possible to show that condition (iv) of Proposition 3.5 is
equivalent to E being Lehmann more informative than E0 on � (in the sense of De�nition
2.13) (see Jewitt (2011)).
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4 Characterizing more ambiguous acts

4.1 More ambiguous (I)

4.1.1 Without U-comonotonicity

We begin this section with two closely related su¢ cient conditions, relating respectively
to �-MEU preferences and smooth ambiguity preferences. Both are expressions of the
idea that garbling the consequences of an act while preserving its �balance�makes the act
less ambiguous (I). In both cases the notion of garbling condition is that of �-garbling
introduced in Section 2.5. The two notions of preserving balance, one to apply to �-MEU
preferences and the other for smooth ambiguity preferences, are as follows.

De�nition 4.1 Let � be a compact, convex centrally symmetric subset of� with center
�?, and let f 2 F : We say the Markov kernel (�;C) 7! K�(C) from (�;B�) to itself is
(f;�)-center preserving (or, if clear from the context, simply center preserving) if for
all Borel sets B 2 BX ;

P f�?(B) =

Z
�
P f� (B)dK�?(�): (17)

If there is a center-preserving Markov kernel which �-garbles f into g, we say the �-
garbling is center preserving. Then (from substituting �? into (11)) the acts share the
same distribution of consequences at the belief over states � = �?:

P f�?(B) = P g�?(B); B 2 BX : (18)

The second notion of preserving balance is:

De�nition 4.2 Let � : B� �! [0; 1] be a Borel probability measure. We say the Markov
kernel (�;C) 7! K�(C) from (�;B�) to itself is measure�� preserving (or, if clear
from the context, simply measure preserving) if for all C 2 B�;

�(C) =

Z
�
K�(C)d�(�): (19)

If there exists a measure-�-preserving Markov kernel K which �-garbles f into g, we say
the �-garbling is measure-� preserving. It is useful to note (from integrating both sides
of (11)) that then the acts share the same �-averaged distribution over outcomes:

P g;�(B ��) =
Z
�
P g� (B)d�(�) =

Z
�
P f� (B)d�(�) = P f;�(B ��); B 2 BX : (20)

It is immediate from the fact that ambiguity neutral preferences are probabilistically
sophisticated that if two acts f and g induce the same marginal distribution of outcomes,
then all ambiguity neutral preferences are indi¤erent between them. Providing the class
of preferences under consideration is rich enough, for instance it su¢ ces if U = U1, this
is an equivalence which manifests itself in equations (18) and (20).
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�-MEU preferences. The following proposition shows that the natural generalization
of the �-garbling condition of Proposition 3.1 which was a characterization when relating
to events also applies as a su¢ cient condition when applied to acts.

Proposition 4.1 Let P = f(�; �; u)g�2[0;1];u2U1, where � is a compact, convex centrally
symmetric subset of � with center �?. Then f is a (P)�more ambiguous (I) act than g
if there exists a center preserving Markov kernel from (�;B�) to itself which �-garbles
f into g:

Remark 4.1 Let � be a compact, convex centrally symmetric subset of � with center
�?. If there exists a center preserving Markov kernel from (�;B�) to itself which �-
garbles f into g; then the radius (measured by K-L divergence from the center) of the
set of distributions on outcomes induced by f is greater than the corresponding radius
of the set induced by g: That is,

max
�2�

D(P g� jjP g��) � max
�2�

D(P f� jjP f��):

Smooth ambiguity preferences. Similarly, the following proposition states that a
measure preserving �-garbling decreases ambiguity (I) for smooth ambiguity preferences.

Proposition 4.2 Let P = f(�; �; u)g�2�1;u2U1. Then f is a (P)�more ambiguous (I)
act than g if there is a measure-� preserving Markov kernel from (�;B�) to itself which
�-garbles f into g:

Remark 4.2 If there is a measure preserving �-garbling of f into g; then the �-averaged
K-L divergence is less for g than f; that is,Z

���
D(P f�0 jjP

f
� )d (�� �) �

Z
���

D(P g�0 jjP
g
� )d (�� �) :

4.1.2 With U-comonotonicity

�-MEU preferences. The following proposition establishes that for �-MEU prefer-
ences with U1-comonotonicity and f; g 2 F , f m.a.(I) g if and only the bad outcome
events under f are m.a.(I) events than the corresponding bad outcome events under g.
The result shows under an m.a.(I) act the induced distribution function of outcomes
is more sensitive to the probability distribution generating the states: the distribution
shifts (downwards) more when the distribution of states changes from �1 to �2 with
�1 5U1 �2.

Proposition 4.3 Let P = f(�; �; u)g�2[0;1];u2U1, where � is a compact, convex centrally
symmetric subset of � with center �?. Suppose � is U1-comonotone for the pair f; g 2 F .
In the case f and g are acts mapping states into degenerate lotteries over outcomes in
X, the following three conditions are equivalent. In the general case, conditions (i) and
(iii). are equivalent.
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(i) f is a (P)-more ambiguous (I) act than g;

(ii) For each x 2X; Efx , E
g
x 2 �, Efx is a (P)-more ambiguous (I) event than Egx;

(iii) The condition (18) holds and for �1; �2 2 �, �1 5U1 �2, the map (�; h) 7!
P h��1+(1��)�2 is supermodular on [0; 1]� ff; gg: Speci�cally for 0 � � < �0 � 1,

P g��1+(1��)�2 � P
g
�0�1+(1��0)�2 � P f��1+(1��)�2 � P

f
�0�1+(1��0)�2 on X: (21)

Smooth ambiguity preferences. Given a class of smooth ambiguity preferences
P = f(�; �; u)g�2�1;u2U1 , and acts f , g 2 F , the fact that � is common for all preferences
within the class means that there is also a consensus on the probability measures P f;�

and P g;� de�ned on the product space (X ��;BX �B�). P f;� and P g;� have marginal
probability measures de�ned on (X;BX) given by P f;�(B��) and P g;�(B��) respec-
tively which, as we have seen in equation (20), represent the beliefs of the ambiguity
neutral elements of P and will be equal if these elements are indi¤erent between the two
acts. P f;� and P g;� also have marginal probability measures de�ned on (�;B�) given by
P f;�(X �C) and P g;�(X �C) respectively, but since by construction P f;�(X �C) and
P g;�(X � C) = �(C); these are equal also. This means that if f m.a.(I) g, then P f;�

and P g;� have the same marginals. Hence, the ambiguity relation m.a.(I) is determined
by properties of the joint probability measures P f;� and P g;� invariant to the marginals.
With U1-comonotonicity, we induce an order onX�supp(�) which enables us to express
these properties of the joint probability measures in terms of copulas.

Notation 4.1 Denote the collection of lower intervals of X as

XL = ffx 2X j x � x0g j x0 2Xg [ ffx 2X j x < x0g j x0 2Xg:

Similarly, for � 2 B�:

�L = ff� 2 � j � 5U �0g j �0 2 �g [ ff� 2 � j � <U �0g j �0 2 �g:

Hence, XL ��L � BX � B� is the collection of lower quadrants of X ��.

Proposition 4.4 Let P = f(�; �; u)g
�2�1;u2U1

with supp(�) = �: Suppose � is U1-
comonotone for the pair f; g 2 F . Then, the following are equivalent.

(i) f is a (P)-more ambiguous (I) act than g;

(ii) The condition (20) holds and

P f;� � P g;� on XL ��L: (22)

Remark 4.3 The condition in equation (20) of Proposition 4.3 is su¢ cient together
with (21) for the conclusion of Proposition 4.4: Suppose (21) obtains, then if (20) holds,
f (P)-m.a.(I) g for the class P speci�ed in Proposition 4.4.
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To make the connection between condition (22) of Proposition 4.4 with the literature
more explicit, we associate with each element in the 5U1 ordered set � a real number:
Note that � 5U1 (=U1)�0 if and only if

R
S (f + g) d� � (�)

R
S (f + g) d�

0 hence, � 7!
T (�); with T (�) =

R
S (f + g) d� represents the linear order 5U1 on �. De�ne the

distribution function F on R by F (a) = �(f� 2 � j
R
S (f + g) d� � ag). If a = T (�);

� 2 �; let F (xja) = P f
T�1(a) (x) denote the conditional distribution (of outcomes given

T (�) = a). We de�ne the joint distribution function of outcomes and T (�)�s de�ned on
R2 by

F (x; a) =

Z a

�1
F (xj�) dF (�) =

Z
f�2�j�5U1T�1(a)g

P f� (x) d�(�):

Similarly,

G(x; a) =

Z a

�1
G (xj�) dG(�) with G (xja) = P g

T�1(a) (x) :

Since distribution functions are right continuous, conditions (22) and (20) respectively
become, after taking liberties with notation in now using � to denote a real number,

F (x; �) � G(x; �); (x; �) 2 R2

F (x) = F (x;1) = G(x;1) = G(x); x 2 R:

Noting also that
F (1; �) = G(1; �); � 2 R;

it is clear that the joint distributions F and G have equal marginals. This means that
the condition is a property of the copulas 21 of the two joint distributions induced by the
pair of acts being compared. In our case, given that supp (�) is linearly ordered by 5U1 ,
the copula corresponding to P f;� for act f is the function Cf : [0; 1]2 ! [0; 1] satisfying

Cf (F (x;1); F (1; �)) = F (x; �); (23)

and similarly for act g: Hence, condition (ii) of the proposition can equivalently be stated
as: condition (20) together with

Cf � Cg on [0; 1]2: (24)

This condition is discussed in the statistics literature in many places. For instance,
Tchen (1980) calls it concordance. This is very natural in our context, it implies for
instance that bad news about which probability distribution � 2 � is operative is more
strongly associated with bad news about outcomes� i.e., conditioning on the �event�
f�0 2 � j �0 5U1 �g for some given � 2 � makes the conditional distribution of
outcomes worse by �rst-order stochastic dominance� when the more ambiguous act is
taken. We relate the condition to the more informative ordering of Lehmann (1988), the
result in the following remark appears in Jewitt (2011).
21The copula C of a random vector (Z1; Z2) with cdf FZ1;Z2(z1; z2) and marginal cdfs FZ1(z1); FZ2(z2)

satis�es FZ1;Z2(z1; z2) = C(FZ1(z1); FZ2(z2)). By Sklar�s theorem (Sklar (1959)), the copula is unique if
the marginal distributions are atomless. Otherwise the copula is uniquely de�ned at points of continuity
of the marginal distributions.
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Remark 4.4 Suppose (P f� )�2� and (P
g
� )�2� satisfy monotone likelihood ratio with re-

spect to 5U1 on � � �: If experiment f is Lehmann more informative than g on �; and
if � with support in � is such that (20) holds, then (22) of condition (ii) Proposition 4.4
holds.

Remark 4.5 We have restricted attention to the class U1 of monotone utilities, but it
may be of interest to extend the analysis to risk averse utilities. Let U2 be the class of
nondecreasing concave utilities and suppose ambiguity is U2-comonotone for the pair of
acts f and g. Then, it can be shown, f is (P)-m.a.(I) than g if and only ifZ p

0
Cf (�; q)d� �

Z p

0
Cg(�; q)d� on [0; 1]2; 8p s.t. 0 � p � 1:

4.2 More ambiguous (II)

The assumption of U -comonotonicity leads to a considerable simpli�cation and much
more congenial characterizations than are available in the general case. For completeness
we include the characterizations for both �-MEU and smooth ambiguity preferences,
without U -comonotonicity in Appendix A.5.

4.2.1 With U-comonotonicity: �-MEU and smooth ambiguity

Single Crossing We begin by characterizing single-crossing for �-MEU and smooth
ambiguity preferences, this will not only be useful in establishing conditions for m.a.(II),
but given the importance of single crossing conditions for comparative statics exercises,
it is of signi�cant independent interest. The following condition applies for both smooth
and �-MEU preferences.

Condition SCU Suppose � is U1-comonotone for the pair f; g 2 F . For each �1 5U �2
from �, there exist �1; �2 � 0; �1 + �2 = 1 such that for each x 2X,

�1(1� P f�1(x)) + �2P
f
�2(x) � �1(1� P g�1(x)) + �2P

g
�2(x): (25)

In the following characterizations, we separate the statements for two classes of prefer-
ences since in the case of smooth ambiguity preferences, � need not be compact convex.
Recall, if the ordered pair of acts (f; g), satis�es the single-crossing property for ambi-
guity with respect to the preference class P we write (f; g) 2 SCP (P).

Proposition 4.5 Let � � � be compact and U1-comonotone for the pair f; g 2 F .

(a) Suppose � is convex. Let PM = f(�; �; u)g�2[0;1];u2U1. The following conditions
are equivalent:

(i) (f; g) 2 SCP (PM ).
(ii) Condition SCU holds.
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(b) Suppose � = supp(�) is either path-connected or �nite: Let PS = f(�; �; u)g�2�1;u2U1.
The following conditions are equivalent:

(i) (f; g) 2 SCP (PS).
(ii) Condition SCU holds.

Condition SCU therefore characterizes both SCP (PM ) and SCP (PS). The de�ning
inequality (25) is strikingly similar to the inequality (9) of De�nition 2.13. Recall,
Lehmann�s condition has a simple interpretation in terms of Neymann-Pearson tests of
simple hypotheses. Equation (9) means, essentially, that for any loss function (cost of
type I and type II errors), there is some simple cut-o¤ decision rule based on outcomes
from act f; which dominates any simple cut-o¤ decision rule based on the outcomes from
act g. The stipulation of monotone likelihood ratio implies via the Neymann-Pearson
lemma that cut-o¤ rules are optimal. To contrast, condition (25) has the following
non-standard statistical decision theoretic interpretation. The DM must guess whether
� = �1 or � = �2 obtains. If guessing incorrectly she loses £ 1. Furthermore, the DM
is bound to a decision rule of the form: bet that � is small (� = �1) if the outcome
x0 2 X is smaller than some predetermined cut-o¤ x; otherwise bet that � = �2. The
condition asserts that there is a Bayesian DM who prefers the experiment induced by act
f rather than act g; given the imposed decision rule and regardless of the cuto¤ value
x 2 X. Further clari�cation of the relationship with Lehmann information is given in
the discussion of m.a.(II) below. To set the intuition in a perhaps more straightforward
way, note that a su¢ cient condition (25) for is that P g�1 stochastically dominates P

f
�1

and P f�2 stochastically dominates P
g
�2 hence the distribution of outcomes under act f is,

in a very strong way, more a¤ected by the change from �1 to �2 than is the distribution
of outcomes under act g.

Recall, in Proposition 3.5 we obtain a characterizing condition for m.a.(II) given
event-comonotonicity that is essentially the same for both classes of preferences, �-MEU
and smooth ambiguity. Here we demonstrate something very analogous for acts, given U -
comonotonicity. In Propositions 4.6 and 4.7 let PM (�) = f(�; �; u)g�2[0;1];u2U1 , where
� is a compact, convex subset of �; let PS (�) = f(�; �; u)g�2�1;u2U1 with supp(�) = �.
Recall, LJ consists of lotteries with outcomes in J (text preceding De�nition 2.3).

Proposition 4.6 Suppose f , g 2 F have consequences in LJ and � � � is U -comonotone
for the pair f; g for U = U1. The following conditions are equivalent:

(i) f (PM (�))-m.a.(II) g:

(ii) f (PS (�))-m.a.(II) g:

(iii) For each �1 5U �2 from �, and p 2 R with jpj � jJ j, there exist �1; �2 � 0;
�1 + �2 = 1 such that for all x 2 J,

�1(1� P f+p�1 (x)) + �2P
f+p
�2 (x) � �1(1� P g�1(x)) + �2P

g
�2(x): (26)
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Remark 4.6 It is clear from the proof that the equivalence between conditions (i) and
(iii) of Proposition 4.6 holds does not require the convexity of �: It would su¢ ce that
� is connected, or � �nite.

One can easily verify that condition (26) implies condition (9) of De�nition 2.13:
Hence, it follows that if (P f� )�2� and (P

g
� )�2� satisfy monotone likelihood ratio with

respect to =U1on � ; if f (PM )-m.a.(II) g; or f (PS)-m.a.(II) g, then f is Lehmann more
informative than g. The following proposition gives an auxiliary condition under which,
act f Lehmann more informative than g on �, is su¢ cient for f m.a.(II) g. The auxiliary
condition requires for each � 2 �, the di¤erences between quantiles of outcomes under
act f are further apart than under act g:

De�nition 4.3 For � 2 �, x 2X, x 7! P f� (x) is more Bickel-Lehmann dispersed than
x 7! P g� (x) if, for all p1 < p2 2 [0; 1],

Qg�(p2)�Qg�(p1) � Qf�(p2)�Qf�(p1); (27)

where Qf�(p) = inffx j P f� (x) > pg; Qg�(p) = inffx j P g� (x) > pg.22 If for each � 2 � � �;
x 7! P f� (x) is Bickel-Lehmann more dispersed than x 7! P g� (x); then we say act f is
more Bickel-Lehmann dispersed than g on �.

Proposition 4.7 Suppose f , g 2 F have consequences in LJ and � � � is U -comonotone
for the pair f; g for U = U1. Assume (P

f
� )�2� and (P

g
� )�2� are absolutely continuous

with respect to Lebesgue measure and satisfy monotone likelihood ratio with respect to
5U1. Further suppose

(i) f is Lehmann more informative than g on �, and

(ii) f is Bickel-Lehmann more dispersed than g on �,

then f (PM (�))-m.a.(II) g, and (PS (�))-m.a.(II) g.

The �rst condition of the proposition states that the more ambiguous act has conse-
quences which are more informative (about � 2 �), the second condition states that the
more ambiguous act is, in a sense, more highly geared. For example in a simple portfolio
problem with a single uncertainty free asset and a single uncertain asset, holding a larger
share of the portfolio in terms of the uncertain asset will produce consequences which are
equally informative as a portfolio with a smaller share of the uncertain asset (providing
it is non-zero), this is obvious since there is a one-to-one map between the payo¤s, they
carry the same information content. On the other hand, the larger portfolio is evidently
more highly geared to the uncertainty.

22Terminology is not uniform in the literature. We use the same terminology as e.g. Landsberger and
Meilijson (1994) in reference to Bickel and Lehmann (1976), Doksum (1969), p.1169 de�nes F to be tail
ordered with respect to G if G�1(F (x))� x is non-decreasing.
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5 Applications

5.1 Ambiguity in the small

In this section we apply our concept of more ambiguous, speci�cally m.a.(I) applied
to �-MEU and smooth ambiguity preferences, to derive two approximate measures of
ambiguity premia inspired by a famous result in risk theory. Arrow (1965) and Pratt
(1964) showed, within the expected utility framework, that under certain conditions, the
risk premium of a small gamble is equal to one half the product of the degree of risk
aversion as measured by the Arrow-Pratt coe¢ cient of absolute risk aversion and the
quantity of risk as measured by variance of the gamble. Arrow and Pratt�s objective
was to establish the measure of risk aversion, rather than to establish variance as a
measure of risk� which seemed as obvious then as now. In our case, since we already
have notions of ambiguity aversion in place, we are primarily interested in establishing
the small gamble analog of variance for the study of ambiguity. To this end, we develop
two measures of ambiguity based on an approximate formula for the ambiguity premium
of a small (ambiguous) gamble.23 We identify the ambiguity premium of an act to be the
price a DM is willing to pay to swap the act for a lottery comparable to the act in terms
of m.a.(I). Why does this make sense? First, that the act and lottery can be compared
in terms of m.a.(I) ensures that it is only the di¤ering e¤ect of ambiguity on the two
prospects that matters for preferences and secondly, a lottery is completely una¤ected
by ambiguity. By making the comparison with a lottery, we turn a relative measure,
m.a.(I), into an absolute measure.

Consider P = PM = f(�; �; u)g�2[0;1];u2U1 , where � is a compact, convex centrally
symmetric subset of � with center �?, and P = PS = f(�; �; u)g�2�1;u2U1 , and let
lfP 2 LJ be the (unique) lottery such that f (P)-m.a.(I) l

f
P . Assume S is a �nite set,

24

then evidently, X
x2B

lfPM (x) = P f�� (B) ; B 2 BX

and X
x2B

lfPS (x) =

Z
�
P f� (B) d�(�); B 2 BX : (28)

That is, the ambiguity neutral elements in the respective classes are indi¤erent between
lfP and f: The ambiguity premium for some �2 P of an act f is given by af 2X, where�

lfP � a
f
�
� f;

23Nau (2006), Izhakian and Benninga (2008), Skiadas (2009) and, Maccheroni, Marinacci, and Ru¢ no
(2010), derive approximations for an uncertainty premium in the smooth ambiguity model (under di¤er-
ent sets of restrictions). Of these, Maccheroni, Marinacci and Ru¢ no�s result is the most general; they
obtain the expression in (30) without the assumption var� (f) (see below) is constant on �. We are not
aware of a primitive de�nition of ambiguity premium in the existing literature nor of uncertainty premia
for other preference classes.
24This is assumed for simplicity, since lotteries are (also) assumed to have �nite supports.
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and
�
lfP � af

�
denotes the translated lottery satisfying

�
lfP � af

� �
x� af

�
=
�
lfP

�
(x):

We say
�
lfP � af

�
is the lottery equivalent of act f for preference �2 P. The certainty

equivalent of act f for �2 P, denoted cf ; is the certainty equivalent of the lottery�
lfP � af

�
. Just as in risk theory, the risk premium is de�ned as the di¤erence between

the expected value of the lottery
�
lfP � af

�
and the certainty equivalent cf , that is

rf = E[lfP ]� a
f � cf :

The sum uf = af + rf is therefore the uncertainty premium.
The next step in deriving approximations for uncertainty and ambiguity premia

for small gambles, is to have a notion of the smallness of a gamble. The variance
of the gamble is uniquely de�ned for the ambiguity neutral members of the class of
preferences under consideration and this will be shown to provide a useful metric for
approximations. We derive approximations for uncertainty and ambiguity premia for
small gambles corresponding to an act f; for the preference classes PS and PM . The
key assumptions used for both classes of preferences are (a) a version of Pratt�s (1964)
condition that the third absolute central moment of the gamble is of smaller order than
the second central moment and (b) the variance of outcomes of act f under beliefs � 2 �;
denoted var� (f) is constant on � in the PM case and constant on the support of � in
the PS case.

First, we consider smooth ambiguity preferences. As discussed in KMM, we may
write � � v � u�1; where v is the vN-M index in the representation of preferences on
second order acts. For the purposes of the present discussion, it is signi�cant that v and
u both map from a set denominated in the same units. We use the following notation
for the di¤erent variances which are needed:

E� [f ] �
Z
X
xdP f� ; var� (f) �

Z
X

�
x� E� [f ]2

�
dP f� ;

E [f ] =

Z
�
E� [f ] d� =

Z
X��

xdP f;�; var (f) �
Z
X��

(x� E [f ])2 dP f;�

var(E� [f ]) =

Z
�
(E� [f ]� E [f ])2 d�:

Note that a consequence of the law of total probability (the law of total variance), under
the assumption that var� (f) is constant on the support of �, is

var (f) = var� (f) + var(E� [f ]): (29)

This fact is useful in formulating the proposition and in its proof since it implies that
if var (f) is small, then so are var� (f) and var(E� [f ]), hence we can use var (f) as a
metric for smallness of gambles for all the beliefs � in the support of �. It is also useful
in interpretation, a natural measure of the proportion of the total uncertainty explained
by ambiguity is the following �R-squared� expression

�S �
var(E� (f))

var� (f) + var(E� (f))
:
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Using standard big O; little o notation to express orders of smallness, h(x) = o(k(x)) if
limx!0

h(x)
k(x) = 0; in which case h is said to be of smaller order than k: Following KMM

(p. 1859), set v = � � u :X �! R: Ambiguity neutrality corresponds to �(x) = x, that
is, u = v (up to a normalization).

Proposition 5.1 For preferences PS = f(�; �; u)g
�2�1;u2U1

, with u and � strictly in-
creasing three times continuously di¤erentiable functions. Suppose, (a) (Pratt�s condi-
tion) for each � in the support of �, the third absolute central moment of P f� , is of smaller
order than the second central moment, (b) var� (f) is constant on the support of �. The
uncertainty, ambiguity and risk premia satisfy, with Rv = �v00=v0 and Ru = �u00=u0
evaluated at E[f ],

uf =
1

2
Ruvar�(f) +

1

2
Rvvar (E�[f ]) + o(var(f)) (30)

af =
1

2
(Rv �Ru) var (E�[f ]) + o(var(f)) (31)

rf = uf � af = 1

2
Ruvar(f) + o(var(f)):

Hence, the e¤ective total coe¢ cient of uncertainty aversion, i.e. what must be multiplied
by one half the total variance of outcomes in order to obtain the uncertainty premium
is given by

uf =
1

2
var(f)

�
Ru + (Rv �Ru)

var(E� (f))

var� (f) + var(E� (f))

�
Note, R� = ��00=�0 = Rv � Ru. Evidently, if either Rv = Ru or �S equal zero, there
is no ambiguity component of the uncertainty premium. In the �rst case, it is because
the DM is neutral to ambiguity. In the second case, it is because the proportion of total
uncertainty caused by ambiguity is zero. This echoes our now familiar insight that for
the more ambiguous act the outcomes, x 2 X; and probabilities, � 2 supp(�); better
explain each other.

We next turn to the class of �-MEU preferences, PM : With,

� 2 argmax
�2�

Z
udP f� ; � 2 argmin

�2�

Z
udP f� ;

we may de�ne as above E�� [f ] ; E��+(1��)�� [f ] ; and var��+(1��)�� (f) :

Proposition 5.2 For preferences PM = f(�; �; u)g�2[0;1];u2U1 ; with u a strictly increas-
ing three times continuously di¤erentiable function. Suppose, (a) (Pratt�s condition) for
each � 2 �, the third absolute central moment of P f� , is of smaller order than the second
central moment, (b) var� (f) = var� (f). The uncertainty, ambiguity and risk premia
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satisfy

uf = E�� [f ]� E��+(1��)�� [f ] +
1

2
Ruvar��+(1��)�� (f) + o (var�� (f)) ;

af = E�� [f ]� E��+(1��)�� [f ]�
1

2
Ru
�
var�� (f)� var��+(1��)�� (f)

�
+ o (var�� (f)) ;

rf =
1

2
Ruvar�� (f) + o (var�� (f)) :

Note that condition (b) of Proposition 5.2 relaxes condition (b) of Proposition 5.1. As has
already been remarked upon the convexity of � is a strong condition, indeed apart from
degenerate cases, it is incompatible with condition (b) of Proposition 5.1. Note that with
var� (f) = var� (f) ; E�[f ] 6= E�[f ], it is easy to check that var��+(1��)�� (f) is uniquely
maximized at � = 1=2. Note also since �� + (1� �)�� is a mixture of distributions, one
can view it as being generated by a random selection: � being interpreted as the prob-
ability that distribution � is selected. With this interpretation in place, an application
of the law of total variance leads to the decomposition of var��+(1��)�� (f) into the ex-
pected conditional variance �var� (f) + (1��)var�� (f) plus the variance of conditional
expectations var(E�(f)) =

�
E�(f)� E��(f)

�2
(� � �2). Hence, var� (f) = var�� (f)

implies the di¤erence in variances var�� (f) � var��+(1��)�� (f) takes the simple form�
E�(f)� E��(f)

�2
(12 � �)

2. We may write alternatively, therefore,

af = z� �
1

2
Ruz

2
� + o (var�� (f)) ; z� =

�
�� 1

2

��
E�� [f ]� E� [f ]

�
:

or

af = E�� [f ]� E��+(1��)�� [f ]�
1

2
Ru
�
E�� [f ]� E��+(1��)�� [f ]

�2
+ o (var�� (f)) :

5.2 Comparative statics of portfolio choice with more ambiguous (I)

A natural test-bed for the applicability of the more ambiguous characterizations is the
standard one risky asset one safe asset portfolio problem analyzed by Arrow (1965). In
our setting, we modify the risky asset to be one whose return embodies not only risk,
but also ambiguity. The safe asset has neither risk nor ambiguity.

Let the act h 2 F , with degenerate lotteries as consequences, represent an uncertain
asset, and a constant act with a degenerate lottery as consequence, f 2 F , represent the
safe asset. The DM�s objective is to select a portfolio share � for the uncertain asset, in
order to maximize the ex ante evaluation of her �nal wealth position. If initial wealth
is w0; the �nal wealth is determined by w1 = w0(�h + (1 � �f) = w0(f + �f); where
f = h� f 2 F represents the excess return of the uncertain asset over the safe one. We
assume no short-selling and that w1 2 X for all 0 � � � 1: Normalizing the utility so
that w0 = 1; f = 0; the program for �-MEU preferences is

max
�2[0;1]

�
�min
�2�

Z
X
u(�x)dP f� (x) + (1� �)max

�2�

Z
X
u(�x)dP f� (x)

�
; (32)
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and for smooth ambiguity preferences it is

max
�2[0;1]

Z
�
�

�Z
X
u(�x)dP f� (x)

�
d�(�): (33)

In the former case, the maximization program (32) de�nes the standard portfolio choice

problem identi�ed by
�
(�; �; u) ;

�
P f�
�
�2�

�
, a tuple of parameters representing the DM

and the uncertain asset. Similarly, in the smooth ambiguity case, the standard portfolio

choice problem is identi�ed by the parameters
�
(�; �; u) ;

�
P f�
�
�2�

�
, where � = supp(�):

We suppose u is strictly concave in both cases, and that � is strictly concave in the second.
It follows that program (33) is concave in � 2 R and strictly so in non-degenerate cases.
The presence of the max�2� operator in program (32) means that concavity is not in
general assured. However, U -comonotonicity does imply that the program is concave. In
this case, the maxima in the programs (33) and (32) are uniquely attained and denoted

respectively ��
�
(�; �; u) ;

�
P f�
�
�2�

�
and ��

�
(�; �; u) ;

�
P f�
�
�2�

�
.

We do not aim here to mirror the exhaustive study of the portfolio comparative
statics problem which has been carried out for risk with expected utility preferences.25

It is, however, convenient to adopt an assumption on preferences motivated by that
literature. It is known for expected utility DMs that a �rst-order stochastic dominance
improvement in the return of the risky asset will never lead to a smaller portfolio share
of the risky asset only if the DM�s preferences satis�es auxiliary conditions su¢ cient
to imply that in terms of the normalized utility, (x; �) 7! u(�x) is supermodular on
[0; 1]�X. It su¢ ces if the DM�s utility (not necessarily normalized) has a coe¢ cient of
relative risk aversion bounded below unity26.

Proposition 5.3 Let P = f(�; �; u)g�2[0;1];u2U1 ; where � is a compact, convex cen-
trally symmetric subset of �: Suppose � is U1-comonotone for the acts f and g: If
f(�; �; u)g�2[0;1] � P has u strictly concave and the normalized utility (x; �) 7! u(�x) is
supermodular, then for � � 0:5, if act f is (P)�more ambiguous (I) than act g

��
�
(�; �; u) ;

�
P f�

�
�2�

�
� ��

�
(�; �; u) ; (P g� )�2�

�
: (34)

To understand this result, note the key simpli�cation induced by U -comonotonicity.
Program (32) becomes

max
�2[0;1]

Z
X
u(�x)dP f��+(1��)� (35)

and the comparative static question reduces therefore to whether for each given � 2 [0; 1]
the change in the probability measure P f��+(1��)� induced by replacing f with a less
ambiguous act causes the desired portfolio shift, i.e. no change for � = 0:5, an increase

25See, e.g., Gollier (2011) for a study of the comparative statics of more ambiguity averse in the
standard portfolio choice problem.
26These and other conditions are comprehensively discussed in Sections 4.5, 7.2 of Gollier (2001).
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in the optimal � for � > 0 and a decrease for � < 0. Using the characterization of m.a.(I)
in Proposition 4.3 (i.e. condition (iii)), it is easy to con�rm that providing a �rst-order
stochastic dominance improvement in asset returns increases the demand for the risky
asset in the Arrow (1965) expected utility portfolio problem, then increased ambiguity
reduces the demand for the uncertain asset in the �-MEU portfolio problem.

The next proposition �nds su¢ cient conditions for the comparative static to hold
for the case of smooth ambiguity preferences. The key conditions are similar to those
invoked for the result in the �-MEU case , however, the proof is more delicate and
requires auxiliary assumptions on �, speci�cally ��00=�0 is nonincreasing.

Proposition 5.4 Let P = f(�; �; u)g�2�1;u2U1. Let � = supp(�): Suppose � is U1-
comonotone for the acts f and g: Suppose f(�; �; u)g�2�1 � P has u strictly concave

and the normalized utility (x; �) 7! u(�x) is supermodular, � is concave, ��
00

�0
is nonin-

creasing. If act f is P�more ambiguous (I) than act g and also satis�es condition (iii)
of Proposition 4.3 then

��
�
(�; �; u) ;

�
P f�

�
�2�

�
� ��

�
(�; �; u) ; (P g� )�2�

�
:

Remark 5.1 In contrast to Proposition 4.3 it is not required that � = supp(�) is
convex.

Remark 5.2 An examination of the proof will show that an alternative to the condition
that ��00

�0
is nonincreasing, is ��00

�0
is increasing with �000 � 0: This admits the class of

quadratic �:

5.3 Comparative statics of savings with m.a.(II)

To illustrate comparative statics using m.a.(II), we consider the following simple saving
problem. The DM lives for two periods, has initial known wealth y1 and will receive
uncertain income Y2 in period 2 generated by an act f + a 2 F . If the DM has �-MEU
preferences, they are represented by

V f�;�;u(a) = u(y1� a)+�min
�2�

Z
u(y2)dP

f+a
� (y2)+ (1��)max

�2�

Z
u(y2)dP

f+a
� (y2): (36)

If the DM has smooth ambiguity preferences, they are represented by

V f�;�;u(a) = u(y1 � a) + ��1
�Z

�

�Z
udP f+a�

�
d�(�)

�
: (37)

The problem is to choose savings27 a 2 R to maximize (36) or (37). We are interested in
investigating the impact on savings of a compensated increase in uncertainty, speci�cally
when f is replaced by g, where f(P)-m:a:(II) gwhile maintaining the DM�s standard
27 In this section we ingnore niceties of boundedness of X:
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of living at the initial level of saving. Hence, we compare the cases, according to which
preference obtains, in which g satis�es:

afM 2 argmax
a2R

V fM(a); V
f
M(a

f
M) = V gM(a

f
M); (38)

afS 2 argmax
a2R

V fS (a); V
f
S (a

f
S) = V gS (a

f
S): (39)

The assumptions in the following proposition will imply that argmaxa2R V
f
M(a) and

argmaxa2R V
f
S (a) are uniquely attained.

Proposition 5.5 Let � � � be compact and U1-comonotone for the pair f; g 2 F

(a) Let PM = f(�;�; u)g�2�1;u2U1, where � is convex. Consider a DM with an ob-
jective as given in equation (36) and with u strictly concave, CARA. Suppose f is
(PM)�more ambiguous (II) than g and satis�es (38). Then argmaxa2R V fM(a) =
argmaxa2R V

g
M(a):

(b) Let PS = f(�; �; u)g�2�1;u2U1. � = supp(�): Consider a DM with an objective as
given in equation (37), with u strictly concave, CARA. Suppose also, � is concave
and satis�es the further condition ��00=�0 is decreasing concave. Suppose f is
(PS)�more ambiguous (II) than g and satis�es (39). Then argmaxa2R V gM(a) �
argmaxa2R V

f
M(a).

6 Concluding remarks

In closing we discuss, brie�y, a couple of questions that appear to follow from the analysis
in the paper. In the paper we have discussed a more ambiguous relation on acts and
on events, but not on beliefs. It is natural to ask, �how is the optimal portfolio choice
a¤ected if the agent�s beliefs were to become more ambiguous?�Consider the analogous
question in a model with a subjective expected utility agent, �how is the optimal portfolio
choice a¤ected if the agent�s subjective beliefs were to become more risky?� If we take
�subjective beliefs� to mean the agent�s (prior) belief on the state space, the question
appears to be ill posed since, generally, the state space is not ordered in the way the
outcome space is: a same change in prior may cause the distribution induced by an act f
to become riskier while causing the distribution induced by another act g to become less
risky. One may ask instead, �how is the optimal choice a¤ected if the agent�s subjective
beliefs were to change such that the probability distribution on payo¤s, induced by the
uncertain asset (and subjective beliefs), is made riskier?�This question is meaningful,
and the answer is the same as the answer to the question as to how optimal portfolio
weights change going from one uncertain asset f to a di¤erent but riskier asset g, holding
subjective beliefs constant. Consider the comparative static exercise for, say, an �-
MEU agent with belief �, of replacing one asset f with a more ambiguous asset g with

corresponding induced distributions
�
P f�
�
�2�

and (P g� )�2�. As in the SEU case, this
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exercise may be reinterpreted as showing the comparative static e¤ect of a change in
beliefs, from � to �0, such that the induced distributions of payo¤s of a given (uncertain)

asset changes from
�
P f�
�
�2�

to
�
P f�
�
�2�0

= (P g� )�2�. That is, the distribution induced

by the belief change is the same as that of a more ambiguous asset under unchanged
beliefs. So, it is as if the belief change has engendered a more ambiguous asset.28 Such
a reinterpretation is one pragmatic response to the question of comparative statics of
a "more ambiguous belief". And, under this alternative interpretation, since we are
actually thinking of the same asset under di¤erent beliefs, it is compelling to make the
comparison under the assumption of U -comonotonicity.

Our investigation has been static. In dynamic models, the relationship between
information and ambiguity is likely to be a crucial element in dynamic decision making.
The results in this paper suggest (more) ambiguous acts can be advantageous from the
point of learning about the �true� probability. Avoiding ambiguity in the short term
may suppress learning and lead to more exposure to ambiguity in the future. Building
models to explore these interactions will be an interesting challenge for the future.

A Appendix

A.1 Proofs of results in Section 2.3

Proof of Remark 2.2. (�;6E;E0) is a lattice if, for any pair �; �0 2 �; (a) there is
a probability measure in � which assigns probability maxf�(E); �0(E)g to event E and
probabilitymaxf�(E0); �0(E0)g to event E0; (b) there is a probability measure in� which
assigns probability minf�(E); �0(E)g to event E and probability minf�(E0); �0(E0)g to
event E0: We will establish (a), the proof of (b) follows a similar argument.

If E = E0 there is nothing to prove, therefore assume without loss of generality
that E0nE 6= ;: If E ( E0; then all beliefs in � attach at least as much mass to E0

as to E: Hence, maxf�(E0); �0(E0)g � maxf�(E); �0(E)g let �00 2 � be a probability
measure which assigns mass maxf�(E); �0(E)g to some state s1 2 E \ E0 = E and
mass maxf�(E0); �0(E0)g � maxf�(E); �0(E)g to some state s2 2 E0nE any remaining
mass is assigned to some s3 2 Sn(E [E0): Hence, �00(E) = maxf�(E); �0(E)g; �00(E0) =
maxf�(E0); �0(E0)g as required.

If neither event contains the other and maxf�(E); �0(E)g+maxf�(E0); �0(E0)g � 1,
let �00 assign massm1 = maxf�(E); �0(E)g to s1 2 EnE0;massm2 = maxf�(E0); �0(E0)g
to s2 2 E0nE and m3 = 1 � m1� m2 � 0 to s3 2 Sn(E [ E0) (if S = E [ E0; then
m3 = 0).

28Of course, in general, the same change in belief may well change the induced distribution for another
asset in a way that the initial distribution corresponded to a characterization for more ambiguous,
compared to the distribution following the change. However, there is an instance of a belief change
following which induced distributions for all events change such that new distributions correspond to
a more ambiguous event, for �-MEU preferences (under a given belief). Suppose that � and �0 are
centrally symmetric, share the same center, and there is a Markov Kernel from (�;B�) to (�0;B�0) with
�0 � �; �0 =

R
�
�dK�0(�); �

0 2 �0; from which �0(E) =
R
�
�(E)dK�0(�); �

0 2 �0.
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If neither event contains the other and maxf�(E); �0(E)g+maxf�(E0); �0(E0)g > 1,
let �00 assign mass m1 to s1 2 EnE0; mass m2 to s2 2 E0nE and m3 = m1+ m2 � 1 > 0
to s3 2 E \ E0 (recall, it is assumed E \ E0 6= ;) Choosing m1;m2;m3 � 0 such that
m1+m2 = maxf�(E); �0(E)g;m2+m3 = maxf�(E0); �0(E0)g, which is always possible,
establishes �00(E) = maxf�(E); �0(E)g; �00(E0) = maxf�(E0); �0(E0)g as required.

Proof of Proposition 2.1. Let ux 2 U1 denote the simple step function, ux(x0) = 0
if x0 � x; ux(x

0) = 1 otherwise: The condition
R
ux(f(s))d�1(s) �

R
ux(f(s))d�2(s)

becomes �1(E
f
x ) � �2(E

f
x ); similarly for act g: Hence if condition (ii) of the proposition

holds, then �1(E
f
x ) � �2(E

f
x ) and �1(E

g
x) � �2(E

g
x) for each �1; �2 2 �; x 2 X: This

establishes that condition (i) implies (ii).
Conversely, suppose (i) holds, this implies there is a linear order 5 on � such that

�1 5 �2 , �1(E
f
x ) � �2(E

f
x ) and �1(E

g
x) � �2(E

g
x) for each x 2X: A standard stochas-

tic dominance argument completes the argument. Noting that,
R
S

Pm
i=1 �iuxi(f)d�1 =Pm

i=1 �i(1��2(E
f
xi) it is evident that �i � 0; i = 1; :::;m; �2(E

f
x ) � �1(E

f
x ); for each x 2

X implies
R
S

Pm
i=1 �iuxi(f)d�2 �

R
S

Pm
i=1 �iuxi(f)d�1: For any u 2 U1; one can con-

struct a sequence of positive linear combinations of the form
Pm
i=1 �iuxi which converges

uniformly to u. Similarly for act g: Hence, �1 5 �2 implies
R
S u(h)d�1 �

R
S u(h)d�2;

u 2 U1; h 2 ff; gg as required.

A.2 Proofs of results in Section 3

Proof of Proposition 3.1. Let u 2 U1: Since �(E) is a compact interval and
[u(x)�(E) + u(y)(1� �(E))] is linear in �(E); min�2� [u(x)�(E) + u(y)(1� �(E))] and
max�2� [u(x)�(E) + u(y)(1� �(E))] are attained at the two extreme points of �(E):
For an ambiguity neutral element of the preference class with � = 1

2 ; u 2 U1; this
implies

V�; 1
2
;u(xEy) =

1

2
min
�2�

[u(x)�(E) + u(y)(1� �(E))] + 1
2
max
�2�

[u(x)�(E) + u(y)(1� �(E))]

= u(x)

�
1

2
min�(E) +

1

2
max�(E)

�
+ u(y)

�
1�

�
1

2
min�(E) +

1

2
max�(E)

��
= u(x) (��(E)) + u(y)(1� ��(E)):

Similarly, V�; 1
2
;u(xE

0y) = u(x) (��(E0)) + u(y)(1 � ��(E0)): This establishes that if

��(E) = ��(E0) all ambiguity elements of the preference class P = f(�; �; u)g�2[0;1];u2U1
are indi¤erent between xEy and xE0y. Choosing x; y 2 X and u 2 U1 such that
u(x) 6= u(y) shows the condition also to be necessary.

Using again the fact that �(E) and �(E0) are compact intervals, it follows that
the condition �(E) � �(E0) is equivalent to the condition min�(E) � min�(E0) �
max�(E0) � max�(E): Using this, it is straightforward to show (given ��(E) = ��(E0))
that all preferences in the class P which are more ambiguity averse than than the am-
biguity neutral element

�
�; 12 ; u

�
; that is elements of P with (�; �; u) ; � � 1

2 ; weakly
prefer xE0y to xEy.
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To see this, suppose u(x) > u(y); � > 1
2 ; then

V�;�;u(xEy) = � [u(x)min�(E) + u(y)(1�min�(E))]
+ (1� �) [u(x)max�(E) + u(y)(1�max�(E)))]

= [u(x)max�(E) + u(y)(1�max�(E)))]
� � ([u(x)max�(E) + u(y)(1�max�(E)))]� [u(x)min�(E) + u(y)(1�min�(E))])

= [u(x)max�(E) + u(y)(1�max�(E)))]� � ([(u(x)� u(y)) (max�(E)�min�(E))]) :

Hence,

V�;�;u(xEy)� V�; 1
2
;u(xEy) = (

1

2
� �) ([(u(x)� u(y)) (max�(E)�min�(E))]) :

Similarly,

V�;�;u(xE
0y)� V�; 1

2
;u(xE

0y) = (
1

2
� �)

��
(u(x)� u(y))

�
max�(E0)�min�(E0)

���
:

Since, V�; 1
2
;u(xEy) = V�; 1

2
;u((xE

0y); it follows that V�;�;u(xEy) < V�;�;u(xE
0y) if and

only if �
(max�(E)�min�(E)) <

�
max�(E0)�min�(E0)

��
:

If u(x) < u(y); the proof proceeds in the same way, u(x) = u(y) is trivial. Likewise all
preferences with � < 1

2 weakly prefer xEy to xE
0y: This establishes the equivalence of

conditions (i) and (iii) of the proposition.
The equivalence with (ii) is a simple application of Theorem 108 in Hardy, Littlewood

and Polya (1952). Speci�cally, the conditions min�(E) � min�(E0) � max�(E0) �
max�(E); ��(E) = ��(E0) are equivalent to the statement that the vector (min�(E);max�(E))
majorizes the vector (min�(E0);max�(E0)); hence there exists a bistochastic matrix

B =

�
b 1� b

1� b b

�
such that (min�(E0);max�(E0)) = B(min�(E);max�(E)): It

follows that for any �
 2 �; �
(E0) = 
min�(E0) + (1 � 
)max�(E0); 0 � 
 � 1:
�
(E

0) = 
0min�(E) + (1 � 
0)max�(E) with 
0 = b
 + (1 � b)(1 � 
). Hence,
�
(E

0) =
R
�(E)dK
(�), with K
 placing mass b
 + (1 � b)(1 � 
) on � such that

�(E) = min�(E) and the remaining mass on � such that �(E) = max�(E).

Proof of Proposition 3.2. Let u 2 U1; x; y 2 X: Setting a = u(y); b = u(x)� u(y),
we can write

V�;�;u(xEy) =

mX
i=1

� (a+ b�i(E))�i; V�;�;u(xE
0y) =

mX
i=1

�
�
a+ b�i(E

0)
�
�i:

Hence, (i) implies that

mX
i=1

� (a+ b�i(E))�i �
mX
i=1

�
�
a+ b�i(E

0)
�
�i;
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for all concave nondecreasing � : u(L) ! R: The inequality is required to hold with
equality when � is a¢ ne, corresponding to the case of ambiguity neutral preferences.
If b = 0; there is nothing to prove, hence suppose b > 0 (b < 0 leads to an equivalent
argument). Let A = fz 2 R j a + bz 2 u(L)g 6= ?. The condition can be stated
equivalently as: X

�i(E)�i =
X

�i(E
0)�iX

� (�i(E))�i �
X

�
�
�i(E

0)
�
�i

for all nondecreasing concave � : A ! R: We wish to show that this is equivalent to
condition (ii). That (ii) implies the condition is a direct implication of Jensen�s inequality.
The converse follows from Blackwell (1953)�s extension of Hardy, Littlewood, and Pólya
(1929) (see Theorem in Sherman (1951)). To apply this theorem, we need to show that
the condition implies X

� (�i(E))�i �
X

�
�
�i(E

0)
�
�i

for all concave � : A0 ! R; for some interval A0 � A which contains each �i(E); �i(E0);
i = 1; :::;m: Denoting the largest of the �i(E); �i(E0); i = 1; :::;m; by a; let A0 =
A \ (�1; a]: Any concave function � : A ! R can be decomposed into the sum of a
concave function which is nondecreasing on A0 and an a¢ ne support function at a: This
establishes the required condition and a direct application of the theorem (taking into
account it is expressed in terms of convex, rather than concave functions) establishes the
equivalence between (i) and (ii).

Proof of Proposition 3.3. Let x; y; p 2 X; x > y; P = f(�; �; u)g�=[0;1];u2U1 :
Applying the �rst part of De�nition (2.7), we require for E (P)-m.a.(II) E0 that 1 �
�0 > � � 0, and

�min
�2�

(�(E)u(x) + (1� �(E))u(y)) + (1� �)max
�2�

(�(E)u(x) + (1� �(E))u(y))

= �min
�2�

(�(E0)u(p) + (1� �(E0))u(y)) + (1� �)max
�2�

(�(E0)u(p) + (1� �(E0))u(y))

implies

�0min
�2�

(�(E)u(x) + (1� �(E))u(y)) + (1� �0)max
�2�

(�(E)u(x) + (1� �(E))u(y))

� �0min
�2�

(�(E0)u(p) + (1� �(E0))u(y)) + (1� �0)max
�2�

(�(E0)u(p) + (1� �(E0))u(y)):

Equivalently, x > y; u 2 U1; 0 � � � 1, and

(�min�(E) + (1� �)max�(E)) (u(x)� u(y)) (40)

=
�
�min�(E0) + (1� �)max�(E0)

�
(u(p)� u(y))

implies

(max�(E)�min�(E)) (u(x)� u(y)) �
�
max�(E0)�min�(E0)

� �
u(x0)� u(y)

�
:
(41)
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Evidently, for each choice of x > y, the condition (40) can be met by some choice of u 2
U1 and p 2X, which satis�es u(x) > u(y). Hence, solving (42) for (u(p)� u(y)) = (u(x)� u(y))
and substituting into (41) we require, for all 0 � � � 1,

(max�(E)�min�(E))
(�min�(E) + (1� �)max�(E)) �

(max�(E0)�min�(E0))
(�min�(E0) + (1� �)max�(E0)) : (42)

This is easily seen to be equivalent to

min�(E0)

max�(E0)
� min�(E)

max�(E)
: (43)

The second part of de�nition (2.7) simply repeats the �rst part except it applies to the
complementary events, hence (43) becomes

min
�2�

(1� �(E0))

max
�2�

(1� �(E0)) �
min
�2�

(1� �(E))

max
�2�

(1� �(E)) ;

i.e.
1�max�(E0)
1�min�(E0) �

1�max�(E)
1�min�(E) :

This establishes the equivalence of (i) and (ii).
In order to complete the proof, we apply theorem 12.2.2 of Blackwell and Girshick

(1954) applied to the dichotomy 
 = f
W
E;E0 �;

V
E;E0g. The information available to

the decision maker depends on which of two alternative experiments she chooses to
undertake. The �rst experiment consists of observing whether event E occurs or not.
The second experiment is to observe whether E0 occurs or not. Criterion 4. of Blackwell
and Girshick�s theorem states that the �rst experiment is more informative than the
second if it has a riskier likelihood ratio: speci�cally, for all convex � : R! R,

�

 W
E;E0 �(E)V
E;E0 �(E)

!V
E;E0 �(E) + �

 
1�

W
E;E0 �(E)

1�
V
E;E0 �(E)

!�
1�

V
E;E0 �(E)

�
� �

 W
E;E0 �(E

0)V
E;E0 �(E

0)

!V
E;E0 �(E

0) + �

 
1�

W
E;E0 �(E

0)

1�
V
E;E0 �(E

0)

!�
1�

V
E;E0 �(E

0)
�
:

Since, when � a¢ ne the inequality holds with equality andW
E;E0 �(E)V
E;E0 �(E)

� 1 �
1�

W
E;E0 �(E)

1�
V
E;E0 �(E)

;

W
E;E0 �(E

0)V
E;E0 �(E

0)
� 1 �

1�
W
E;E0 �(E

0)

1�
V
E;E0 �(E

0)

trivially, this condition becomes equivalent to the following condition (a simple mean
preserving spread)W

E;E0 �(E)V
E;E0 �(E)

�
W
E;E0 �(E

0)V
E;E0 �(E

0)
;
1�

W
E;E0 �(E

0)

1�
V
E;E0 �(E

0)
�
1�

W
E;E0 �(E)

1�
V
E;E0 �(E)

:
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W
E;E0 �(E)V
E;E0 �(E)

�
W
E;E0 �(E

0)V
E;E0 �(E

0)
;
1�

W
E;E0 �(E

0)

1�
V
E;E0 �(E

0)
�
1�

W
E;E0 �(E)

1�
V
E;E0 �(E)

:

Equivalently, by the existence of
W
E;E0 and

V
E;E0 ,

max�(E)

min�(E)
� max�(E0)

min�(E0)
;
1�max�(E0)
1�min�(E0) �

1�max�(E)
1�min�(E) :

The following Lemma is rather well known. The su¢ ciency part is implicit in e.g.
Karlin and Noviko¤ (1963), or see e.g. Gollier (2001, Chapter 4) for a more explicit
discussion.

Lemma A.1 Let F and G be distribution functions with supports in an interval I � R.
The following two conditions are equivalent.

(a)
R
I �AdF �

R
I �AdG )

R
I �BdF �

R
I �BdG for all integrable nondecreasing

functions �A; �B : I ! R with �A more concave than �B (�A is a continuous concave
transformation of �B):

(b) Single crossing. R can be partitioned into two intervals (one of which may be
null), R =I1 [ I2; I1 < I2 such that F � G on I2; F � G on I2:

Proof. Let the random variable X have cdf F and Y have cdf G; denote the cdf of
�A(X); by FA and �A(Y ) by GA: Denote FA�GA = HA: If (a) holds then, equivalently,R
�A(I)

vdHA(v) � 0 )
R
�A(I)

'(v)dHA(v) � 0 whenever ' is nondecreasing concave.
Integration by parts gives the implication

R
�A(I)

HA(v)dv � 0)
R
�A(I)

HA(v)d'(v) � 0
and since ' is absolutely continuous, we may write

R
�A(I)

HA(v)dv � 0)
R
�A(I)

HA(v)'
0(v)dv �

0 for some nonincreasing '0 � 0: Suppose HA has a single sign change at v0; from neg-
ative to positive, then

R
�A(I)

HA(v) ('
0(v0)� '0(v)) dv � 0, so '0(v0)

R
�A(I)

HA(v)dv �R
�A(I)

HA(v)'
0(v)dv: Evidently, if '0(v0) > 0; then

R
�A(I)

HA(v)dv < 0)
R
�A(I)

HA(v)'
0(v)dv <

0: If '0(v0) = 0; then '0 = 0 on the interval whereHA(v) is positive, evidently
R
�A(I)

HA(v)'
0(v)dv <

0 unless '0 = 0 on the set where F di¤ers from G: Necessity: if there are x1 < x2 2 I with
F (x1) > G(x1) and F (x2) < G(x2) then with �A(x) de�ned to equal 0 on x < x1; 1 on
x1 � x < x2; 1+B on x � x2; with B =

F (x1)�G(x1)
G(x2)�F (x2) one veri�es that

R
I �AdF =

R
I �AdG.

However, with '(v) = minfv; 1g;
R
I '(�A)dF = 1 � F (x1) <

R
I '(�A)dG = 1 � G(x1);

this contradicts (a).

Lemma A.2 Let F and G be distribution functions with supports in R+, and inverses
F�1 : (0; 1) ! R+; F�1(�) = inff� 2 R+ j F (�) > �g and G�1 : (0; 1) ! R+;
G�1(�) = inff� 2 R+ j G(�) > �g: Let C the set of nondecreasing functions � : R+ ! R:
The following conditions are equivalent:

(a)
R
�A(��)dF (�) �

R
�A(��)dG(�) )

R
�B(��)dF (�) �

R
�B(��)dG(�) ; �A;

�B 2 C with �A more concave than �B (�A is a concave transformation of �B), for
all �; � > 0:
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(b) G(�=�) � F (�=�) has at most a single sign change which if one occurs is from
negative to positive, for all �; � > 0.

(c) � 7! F�1(G(�)) is star-shaped (F�1(G(��)) � �F�1(G(�)) for all � 2 [0; 1] and
� 2 R+):

Proof. Condition (a) can be written after a change of variables asZ
�A(�)dF (�=�) �

Z
�A(�)dG(�=�))

Z
�B(�)dF (�=�) �

Z
�B(�)(�)dG(�=�):

Hence, by Lemma A.1 the di¤erence between the cdfs G(�=�) � F (�=�) must satisfy
(b). The equivalence with (c), together with other equivalent conditions is asserted in
Proposition C.11. in Marshall and Olkin (2007).

Proof of Proposition 3.4. De�nition 2.7 requires for x > y 2 X; p 2 X; that
xEy �A pEy ) xEy �B pEy whenever the preference �B is more ambiguity averse
than the preference �A : For smooth ambiguity preferences this can be written in the
notation introduced in section 3.2 asZ

�A
�
�(E0) (u (x)� u(y)) + u(y)

�
d�(�) �

Z
�A (�(E) (u (p)� u(y)) + u(y)) d�(�)

(44)
impliesZ

�B
�
�(E0) (u (x)� u(y)) + u(y)

�
d�(�) �

Z
�B (�(E) (u (p)� u(y)) + u(y)) d�(�):

(45)
whenever u 2 U1; �A : u(L) ! R; �B : u(L) ! R; and �B is more concave than �A:
Fixing some u 2 U1; with u(x)�u(y) = � > 0 (if u(x) = u(y) the implication is trivial),
and noting that u(p) � u(y) � 0 satis�es the implication trivially by monotonicity, let
� = u(p) � u(y) > 0: Hence, with �A(z) = �A (z + u(y)) ; �B(z) = �B (z + u(y)) we
require Z

�A
�
��(E0)

�
d�(�) �

Z
�A (��(E)) d�(�) (46)

implies Z
�B
�
��(E0)

�
d�(�) �

Z
�B (��(E)) d�(�) (47)

whenever �B is more concave than �A: Applying Lemma A.2 establishes that with

F (x) = �(f� j �(E0) � xg; G(x) = �(f� j �(E0) � xg); q 2 [0; 1] ;

q 7! F�1(G(q)) is star-shaped. To complete the proof one repeats the exercise replacing
E and E0 by their respective complementary events. This establishes that q 7! 1 �
F�1(G(1� q)) is also star-shaped. Hence, q 7! F�1(G(q)) = �(q) is doubly star-shaped.

Let Z be a random variable with distrubution function G: By star-shapedness, G
is strictly increasing on its support, it follows that G(Z) = W is uniformly distributed
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on [0; 1]: Hence, Pr[�(Z) � q] = Pr[F�1(G(Z)) � q] = Pr[F�1(W ) � q] = F (q): These
observations equate to condition (ii) of the proposition.

Proof of Proposition 3.5. (i) , (ii). This is a consequence of convexity and
dimensionality. ��comonotonicity implies that �E;E0 = f(�(E); �(E0)) j � 2 �g �
[0; 1]2 is a nondecreasing arc in the unit square, therefore not space �lling. Given that �
is closed convex, this arc must be the convex hull of two points. This set is doubly star-
shaped if the set comprising the two extreme points is doubly star-shaped. Hence, the
result follows immediately from the equivalence of conditions (i) and (ii) of Proposition
3.3.

(i) , (iii). Condition (ii) and the fact that �E;E0 is the convex hull of two points
imply the representation �(E0) = a+ b�(E); for some real a; b � 0; a+ b � 1 whenever
(�(E); �(E0) 2 �: Evidently, if b = 0; E0 is a (completely) unambiguous event and the
implication holds, therefore let b > 0: Hence, for each q 2 [0; 1]; �(f� 2 � j �(E) �
qg) = �(f� 2 � j �(E0) � q�a

b g): Since q !
q�a
b is doubly star-shaped, Proposition 3.4

applies.
(i) , (iv). Any closed compact subset �0 � � maps into a closed compact subset

�0E;E0 � �E;E0 which given (i) is evidently doubly star-shaped.
W
E;E0 �

0;
V
E;E0 �

0 both
exist in �0 by comonotonicity and compactness of �0. Moreover, �0E;E0 is the con-
vex hull of (

W
E;E0 �

0(E);
W
E;E0 �

0(E0)) and (
W
E;E0 �

0(E);
W
E;E0 �

0(E0)): Given these
observations, that E is Blackwell pairwise more informative than E0 for the dichotomy
(
V
E;E0 �

0;
W
E;E0 �

0) follows from the equivalence of (ii) and (iii) in proposition 3.3. The
proof is completed by observing that for �1; �2 2 �; we can without loss of generality,
take �1 5E;E0 �2, choosing �0 equal to the convex hull of f�1; �2g evidently implies
(
W
E;E0 �

0;
V
E;E0 �

0) = (�1; �2): Hence, the conclusion.

A.3 Proofs of results in Section 4

Proof of Proposition 4.1. From the preference representation (2),

V�;�;u(f) = �min
�2�

Z
S
u(f)d� + (1� �)max

�2�

Z
S
u(f)d�

= �min
�2�

Z
X
udP f� + (1� �)max

�2�

Z
X
udP f� :

At � = 1=2;

V�;�;u(f) =

Z
S
u(f)d (0:5�u + 0:5�u)

where �u and �u respectively minimize and maximize the expected utility over �: It
follows from � is centrally symmetric, that for any u 2 U1; 0:5�

u + 0:5�u = �?; so we
have

V�;0:5;u(f) =

Z
S
u(f)d�? =

Z
X
udP f�� :
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Similarly,

V�;0:5;u(g) =

Z
S
u(g)d�? =

Z
X
udP g�� :

Suppose that g is a center preserving �-garbling of f; then P f�� = P g�� (equation (18)).
Hence, V�;0:5;u(f) = V�;0:5;u(g) for all the risk neutral elements of P = f(�; �; u)g�2[0;1];u2U1 ;
i.e. part (a) of De�nition 2.3 holds. To establish part (b) it will su¢ ce to show that if
g is a center preserving �-garbling of f;

max
�2�

Z
X
udP f� �min

�2�

Z
X
udP f� � max

�2�

Z
X
udP g� �min

�2�

Z
X
udP g� (48)

since this implies f is preferred (dispreferred) to g when � > 0:5 (� < 0:5): Evidently,
since the Markov kernel (�;C) 7! K�(C) from (
;B
) to (
;B
) postulated in (11)
�averages�over � rather than maximizes,

max
�2�

Z
X
udP f� �

Z
�

�Z
X
udP f�

�
dK�0(�); �

0 2 �: (49)

Maximizing over the right hand side of (49) establishesmax
�2�

R
X udP f� � max

�02�

R
�

hR
X udP f�

i
dK�0(�):

The �-garbling condition (11) and T.16, p.16 of Meyer (1966) implies
R
�

hR
X udP f�

i
dK�0(�) =R

X udP g�0 : Hence, max�2�

R
X udP f� � max

�02�

R
X udP g�0 : The same argument applied to min

rather than max establishes min
�2�

R
� udP

f
� � min

�2�

R
� udP

g
� ; hence (48) is established as

required.

Proof of Proposition 4.2. If act g 2 F is a measure preserving ��garbling of f 2 F ,
then using (19) we have

V (f) =

Z
�
�

�Z
X
udP f�

�
d�

=

Z
�
�

�Z
X
udP f�

�
d

Z
�
K�0(�)d�(�

0)

=

Z
�

�Z
�
�

�Z
X
udP f�

�
dK�0(�)

�
d�(�0)

(the second equality is justi�ed e.g. by T.16, p. 16 of Meyer (1966)). Hence by Jensen�s
inequality and T.16 of Meyer (1966) again, it follows from (11) that

V (f) �
Z
�
�

�Z
�

Z
X
udP f� dK�0(�)

�
d�(�0)

=

Z
�
�

�Z
X
udP g�

�
d�:

This shows all ambiguity averse preferences in P weakly prefer g to f: By the same
argument all ambiguity seeking preferences weakly prefer f to g and all ambiguity neutral
are indi¤erent.
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Proof of Remark 4.1. If there is a center preserving �-garbling of f into g; P g� =R
� P

f
�0dK�(�

0); P f�� = P g��: Hence, using Jensen�s inequality, for � 2 �

D(P g� jjP g��) = D(

Z
�
P f�0dK�(�

00)jjP f��)

�
Z
�
D(P f�0 jjP

f
��)dK�(�

0) � max
�2�

D(P f� jjP f��):

Hence,
max
�2�

D(P g� jjP g��) � max
�2�

D(P f� jjP f��):

Proof of Remark 4.2. Since D is convex, if there is a measure preserving �-garbling
of f into g; we haveZ

�
D(P f�0 jjP

f
� )d�(�) =

Z
�
D(P f�0 jjP

f
� )d

Z
K�00(�)d�(�

00)

�
Z
�
D(P f�0 jj

Z
P f� dK�00(�))d�(�

00)

=

Z
�
D(P f�0 jjP

g
�00)d�(�

00):

Repeating the argument givesZ
���

D(P f�0 jjP
f
� )d�� � �

Z
���

D(P g�0 jjP
g
� )d�� �:

That is, the �-averaged K-L divergence is less for g than f:

Proof of Proposition 4.3.
Recall, by convexity of�; P f� ; P

g
� are mixture linear (see Section 2). U1-comonotonicity

for the acts f; g 2 F means that for each x 2 X;
R
udP g� and

R
udP f� are both non-

decreasing on � in the linear order 5U1 : Hence, since � is compact, there exist top
and bottom elements of �, denoted respectively � and � such for all u 2 U1; � 2 �;R
udP f� �

R
udP f� �

R
udP f� and

R
udP g� �

R
udP g� �

R
udP g� : Hence, � : � ! [0; 1];

de�ned by � =U1 �(�)�+(1��(�))�; represents 5U1and P
f
� = �(�)P f� +(1��(�))P

f
� ;

f 2 F :
(i)() (iii): If (i) holds, then for u 2 U1;

�

Z
udP f� + (1� �)

Z
udP f� � (�)�

Z
udP g� + (1� �)

Z
udP g� (50)

whenever � � (�)0:5: Choosing ux 2 U1 equal to the unit step function at x 2 X :

ux(x
0) = 0 for x0 � x; ux(x

0) = 1 for x0 > x gives �P f� (x) + (1 � �)P f� (x) � (�)
�P g� (x) + (1� �)P g� (x) whenever � � (�) 0:5: Since � is centrally symmetric, choosing
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� = 0:5 gives P f��(x) = P g��(x): Choosing � 6= 0:5 gives P f� (x) � P f� (x) � P g� (x) �
P g� (x): Since, P

f
�1(x) � P f�2(x) = (�(�1)� �(�2)) (P f� (x) � P f� (x)); P

g
�1(x) � P g�2(x) =

(�(�1)� �(�2)) (P g� (x)�P
g
� (x)) it follows that for �1 5U1 �2 P

f
�1(x)�P

f
�2(x) � P g�1(x)�

P g�2(x): Repeating the argument for each x 2 X; establishes (i) ) (iii). The re-
verse implication follows from standard stochastic dominance arguments. Condition

(iii) implies that for all u 2 U1; �1 5U1 �2;
R
udP f�� =

R
udP g�� ;

R
ud
�
P f�1 � P

f
�2

�
�R

ud (P g�1 � P
g
�2) ; hence (50) holds, hence (i).

(ii) () (iii): Given that � is compact convex and centrally symmetric, condition
(ii) of Proposition 3.1 is clearly implied by condition (iii) of Proposition 4.3: set �1 = �;

�2 = � and observe �(Efx ) = cof�(Efx ); �(Efx )g; �(Egx) = cof�(Egx); �(Egx)g: Conversely,
given that � is compact convex and centrally symmetric, condition (ii) of Proposition
3.1 implies condition (iii) of Proposition 4.3 by the fact that � =U1 �(�)�+(1��(�))�;
represents 5U1 : If f; g 2 F map states into degenerate lotteries on X; the equivalence
follows immediately since then P f� (x) = �(Efx ); x 2X:

Lemma A.3 Let P = f(�; �; u)g
�2�1;u2U

, � has support �: Suppose that � is U -
comonotone for acts f and g. The following conditions are equivalent (we denote the
extension of U to functions de�ned on X � � and constant in the � coordinate also by
U)

(i) f (P)-m.a.(I) g:

(ii) Z
X�C

udP f;� �
Z
X�C

udP g;�; (51)

for all u 2 U; and C 2 �L:

Proof of Lemma A.3. Suppose (i) holds, i.e. for all nondecreasing concave (convex)
� : u(X)! R we have Z

�

Z
X
udP f� d� =

Z
�

Z
X
udP g�d� (52)Z

�
�

�Z
X
udP f�

�
d� � (�)

Z
�
�

�Z
X
udP g�

�
d�: (53)

Rewriting (52) (KMM, Corollary 2) and using a generalization of Hardy, Littlewood and
Polya�s �angles�theorem (1929, p.152) theorem (see e.g. Chong (1974), Theorem 2.5 and
Corollary 1.8), this is equivalent to: for all t 2 R;Z

X��
udP f;� =

Z
X��

udP g;�Z
�

�Z
X
udP f� � t

��
d� �

Z
�

�Z
X
udP g� � t

��
d�;
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where (�)� = minf�; 0g: Given U -comonotonicity;
R
udP f� is 5U -nondecreasing in � for

all u 2 U . Therefore, for any constant t; � 7�!
R
udP f� � t has at most a single sign

change as � 5U -increases over �, similarly for g 2 F . There exist, therefore, �intervals�
Ift � �; which are either closed I

f
t = f� 2 � j � 5U �fg or open I

f
t = f� 2 � j � < �fg,

for some �f 2 �, such thatZ
�

�Z
X
udP f� � t

��
d� =

Z
Ift

�Z
X
udP f� � t

�
d� =

Z
Ift

Z
X
udP f� � t�(I

f
t )

=

Z
X�Ift

udP f;� � t�(Ift );

similarly for g Z
�

�Z
X
udP g� � t

��
d� =

Z
X�Igt

udP g;� � t�(Igt ):

If
R
X�I udP

f;� �
R
X�I udP

g;� for each I 2 �L; then evidently, for each t 2 R;Z
�

�Z
X
udP f� � t

��
d� �

Z
X�Igt

udP f;� � t�(Igt )

�
Z
X�Igt

udP g;� � t�(Igt )

=

Z
�

�Z
X
udP g� � t

��
d�:

This establishes su¢ ciency. For necessity, suppose that contrary to condition (ii) of the
lemma there exist u 2 U; C 2 �L such thatZ

X�C
udP f;� >

Z
X�C

udP g;�: (54)

Setting �0 = supC and t =
R
X udP f�0 , (54) evidently impliesZ

�

�Z
X
udP f� � t

��
d�(�) =

Z
C

�Z
X
udP f� � t

�
d�(�)

=

Z
X�C

udP f;� � t�(J)

>

Z
X�C

udP g;� � t�(J)

�
Z
�

�Z
X
udP g� � t

��
d�(�):

Proof of Proposition 4.4. Apply Lemma A.3. The proof is a standard stochastic
dominance argument. Choosing u 2 U1 to be simple step functions establishes necessity.
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Approximating each u 2 U1 uniformly by a sequence of positive linear combinations of
simple step functions establishes su¢ ciency.

Proof of Proposition 4.5. (f; g) 2 SCP (PS) ,Condition SCU. Equation (25) of
SCU is equivalent to the existence of (�1; �2) 	 0 such that

�1

h
P g�1(x)� P

f
�1(x)

i
� �2

h
P g�2(x)� P

f
�2(x)

i
: (55)

Equivalently, with (y1(x); y2(x)) =
�
P g�1(x)� P

f
�1(x); P

g
�2(x)� P

f
�2(x)

�
; there is a hy-

perplane which separates Y = f(y1(x); y2(x)) j x 2 Rg � R2 from the orthant O =
f(y1; y2) 2 R2 j y1 > 0; y2 < 0g. Absent such a hyperplane, by the separating hyper-
plane theorem and Caratheodory�s theorem, there is a convex combination of at most
three points in Y which lies in O: Hence, denoting these points x1; x2; x3 with weights

1; 
2; 
3 and denoting by uxi 2 U1 the step function taking values 1 on x � xi; 0
elsewhere, u =

P
i 
iui 2 U1, we haveZ

X
udP f�1 >

Z
X
udP g�1 = a (56)Z

X
udP f�2 <

Z
X
udP g�2 = b: (57)

If � is path connected, it follows from U1-monotonicity that there is an open interval
containing �1 for which

R
X udP g�1 � a but not

R
X udP f�1 � a: Since � 7!

R
udP f� ; � 7!R

udP g� are continuous functionals and � is a strictly positive measure on � (recall, it is
assumed that supp(�) = �);

�

��
� 2 � j

Z
X
udP f�1 � a

��
< �

��
� 2 � j

Z
X
udP g�1 � a

��
�

��
� 2 � j

Z
X
udP f�1 � b

��
> �

��
� 2 � j

Z
X
udP g�1 � b

��
:

The same conclusion evidently obtains if � is �nite. These inequalities express a single
crossing condition on distribution functions of expected utilities. Hence, applying Lemma
A.1, there are nondecreasing �1; �2 with �2 a concave transformation of �1 such thatZ

�
�1

�Z
X
udP f�

�
d� >

Z
�
�1

�Z
X
udP g�

�
d� (58)Z

�
�2

�Z
X
udP f�

�
d� <

Z
�
�2

�Z
X
udP g�

�
d�: (59)

This contradicts SCP (PS), hence Condition SCU (25) is necessary for (f; g) 2 SCP (PS).
Su¢ ciency follows similarly, if Condition SCU holds, there is a hyperplane which

separates Y from O: It follows that the system of inequalities (56) and (57) does not
obtain for any u 2 U1 of the form u =

Pn
i 
iui , with 
i > 0 and ui a nondecreasing step
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function, i = 1; :::; n. Standard approximation arguments implies the system does not
hold for any u 2 U1: Applying Lemma A.1 again, the system of inequalities (58) and
(59) never obtain. Hence, (f; g) 2 SCP (PS) holds.

(f; g) 2 SCP (PM ) ,Condition SCU. Since � is compact and linearly ordered,
there exist top and bottom elements, respectively �; � 2 � such for all u 2 U1; � 2 �;R
udP f� �

R
udP f� �

R
udP f� and

R
udP g� �

R
udP g� �

R
udP g� . Hence, if (ii) holds, then

for each u 2 U1,with �1 = �; �2 = �.

�

Z
X
udP f�1 + (1� �)

Z
X
udP f�2 �

�
�

Z
X
udP g�1 + (1� �)

Z
X
udP g�2

�
= �

�Z
X
udP f�1(x)�

Z
X
udP g�1

�
+ (1� �)

�Z
X
udP f�2(x)�

Z
X
udP g�2

�
= �A+ (1� �)B

has (at most) single sign change from negative to positive as � increases from 0 to 1.
This rules out the con�guration A < 0; B > 0 but all others are admissible. Choosing
u to be step functions and arbitrary convex combinations of step functions requires,
therefore as for the SCP (PS) case, that Y be separated from O: This establishes (f; g) 2
SCP (PM ),equation (25) with �1 = �; �2 = �. Using the convexity of �; and the fact
that P f� ; P

g
� are mixture linear, the equivalence is seen to extend to all �1 5U1 �2 2 �:

Hence, (f; g) 2 SCP (PM ),Condition SCU.

Proof of Proposition 4.6. Su¢ ciency of the condition follows immediately from the
fact that for each �xed p 2 R, with jpj � jJ j ; condition (iii) of the Proposition implies
Condition SCU holds with f replaced by f + p: Application of Proposition 4.5 implies
(f + p; g) 2 SCP (PS) and (f + p; g) 2 SCP (PM ), which is the desired result. Necessity
is equally immediate, if condition (iii) fails to hold then there exists some p 2 R, with
jpj � jJ j, such that (f + p; g) =2 SCP (PS) and (f + p; g) =2 SCP (PM ):

Proof of Proposition 4.7. To establish the conditions (i) and (i) su¢ ce for f (PS)-
m.a.(II) g: it su¢ ces (by Lemma A.1) to establish that for each p 2 R, with jpj � jJ j ;
the map � 7!

R
X udP f+p� �

R
X udP g� has at most a single sign change as � increases

in the 5U1 order, which, if one occurs, is from negative to positive. For act g we may
express the expected utility

R
X udP

g
� in terms of the quantile function asZ

X
udP g� =

Z
J
udP g� =

Z 1

0
u(Qg�(�))d�; � 2 �:

Using the fact that x 7! P f� (x) is absolutely continuous with respect to Lebesgue measure
�, we express expected utility for act f asZ

J
udP f+p� =

Z
J
upf+p� d�; � 2 �; (60)
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and the following further change of variables is permissibleZ 1

0
u(Qg�(�))d� =

Z
J
u(Qg�(P

f+p
� (�)))pf+p� (�)d�(�):

Hence, we seek conditions under which the map � 7!
R
J

h
u(�)� u(Qg�(P f+p� (�)))

i
pf+p� (�)d�(�)

has a single change of sign in the manner prescribed above. Speci�cally, we require for
�1 5U1 �2 Z

J

h
u(�)� u(Qg�1(P

f+p
�1 (�)))

i
pf+p�1 (�)d�(�) � 0)Z

J

h
u(�)� u(Qg�2(P

f+p
�2 (�)))

i
pf+p�2 (�)d�(�) � 0: (61)

This is established this by establishing in turn the implicationZ
J

h
u(�)� u(Qg�1(P

f+p
�1 (�)))

i
pf+p�1 (�)d�(�) � 0)

Z
J

h
u(�)� u(Qg�1(P

f+p
�1 (�)))

i
pf+p�2 (�)d�(�) � 0;

(62)
and the inequality

u(Qg�1(P
f+p
�1 (�))) � u(Qg�2(P

f+p
�2 (�))); � 2 J : (63)

Implication (62) is established by noting: 1: f is Bickel-Lehmann more dispersed than

g; this implies that � 7!
h
u(�)� u(Qg+q�1 (P

f+p
�1 (�)))

i
has at most a single sign change,

if one occurs it is from negative to positive. 2: P f+p� has monotone likelihood ratio.
Application of Karlin (1968)�s Theorem 3.1 gives the result (or see Jewitt (1987), Athey
(2002)). Inequality (63) follows from the fact that u 2 U1 is nondecreasing, and that
act f is assumed Lehmann more informative than act g; hence by (10) Qg�1(P

f+p
�1 (�)) �

Qg+�2 (P
f+p
�2 (�)); � 2 X. This establishes the claim that conditions (i) and (ii) imply

f (PS)-m.a.(II) g: That f (PM )-m.a.(II) g follows immediately from the equivalence
established in Proposition 4.6.

A.4 Proofs of results in Section 5

Proof of Proposition 5.1. The ambiguity premium and total uncertainty premium
corresponding to an act f , denoted af and uf , respectively, is de�ned implicitly as follows:Z

�
�

�Z
X
udP f�

�
d� = �

�Z
X
u
�
x� af

�
d

Z
�
P f� d�

�
(64)Z

�
�

�Z
X
udP f�

�
d� = �

�
u
�
E[f ]� uf

��
(65)
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Consider the l.h.s. of equation (65). Under the assumption (Pratt (1964)) that the
absolute third central moments of P f� are of smaller order than var�[f ] for each � 2 �,Z

�
�

�Z
X
udP f�

�
d� =

Z
�
v

�
u�1

�Z
X
udP f�

��
d�

=

Z
v

�
E�[f ]�

1

2
Ru(E�[f ]))var�[f ] + o(var�[f ])

�
d� (�) ;

where the second equality is the Arrow-Pratt approximation for certainty equivalents.
Note by the law of total variance and assumption that var�[f ] is constant on supp�; if
var[f ] is small, then var�[f ] is smaller, hence we may substitute o(var[f ]) for o(var�[f ]),
similarly for var (E�[f ])). Given Ru has a continuous second derivative, by Taylor�s
theorem, Ru(E�[f ])) = Ru(E[f ])) + R0u(E[f ])) (E�[f ])� E[f ]) + o(E�[f ]) � E[f ]): It
follows that

var

�
E�[f ]�

1

2
Ru(E�[f ]))var�[f ] + o(var�[f ])

�
= var (E�[f ]))

�
1 +R0u(E[f ])var�[f ]

�
var (E�[f ])) + o(E [var�[f ]])

= var (E�[f ]) + o(var[f ]):

Using these facts in applying the Arrow-Pratt approximation again now givesZ
�
�

�Z
X
udP f�

�
d� = v

�
E[f ]� 1

2
Ru(E[f ]))var�[f ]�

1

2
Rv(E[f ]))var (E�[f ]) + o(var[f ])

�
:

From (64) similar arguments giveZ
�
�

�Z
X
udP f�

�
d� = v

�
E[f ]� uf � 1

2
Ru(E[f ]))var[f ] + o(var[f ])

�
:

Trivially, �
�
u
�
E[f ]� uf

��
= v(E[f ] � uf ): Hence, equating terms and using (29),

one obtains

uf =
1

2
Ruvar�(f) +

1

2
Rvvar (E�[f ]) + o(var(f))

af =
1

2
(Rv �Ru) var (E�[f ]) + o(var(f))

rf = uf � af = 1

2
Ruvar(f) + o(var(f));

where Rvand Ru are evaluated at E[f ]:

Proof of Proposition 5.2. Since, �min�2�
R
udP f� + (1 � �)max�2�

R
udP f� =R

udP f��+(1��)�; the ambiguity and uncertainty premia are de�ned respectively byZ
udP f��+(1��)� =

Z
u(x� af )dP f�?(x);Z

udP f��+(1��)� = u(E�? [f ]� cf ):
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In terms of the Arrow-Pratt certainty equivalents, since var��+(1��)� (f) � var0:5�+0:5� (f) =
var�? (f) ;

E��+(1��)�[f ]�
1

2
var��+(1��)� (f) = E�? [f ]� af �

1

2
var�? (f) + o (var�? (f)) ;

E��+(1��)�[f ]�
1

2
var��+(1��)� (f) = E�? [f ]� cf + o (var�? (f))

Hence,

af = E�? [f ]� E��+(1��)�[f ]�
1

2

�
var�? (f)� var��+(1��)� (f)

�
+ o (var�? (f)) ;

cf = E�? [f ]� E��+(1��)�[f ] +
1

2
var��+(1��)� (f) + o (var�? (f)) :

Proof of Proposition 5.3. U1-comonotonicity implies the objective function may be
written as

�min
�2�

Z
X
u(�x)dP f� (x) + (1� �)max

�2�

Z
X
u(�x)dP f� (x) =

Z
X
u(�x)dP f��+(1��)�

=

Z 1

0
u(�Qf��+(1��)�(p))dp:

If (�; x) 7! u(�x) is supermodular on the lattice [0; 1]�X (with the partial order (�; x)
larger than (�0; x0) if � � �0 and x � x0), then (�; P ) 7!

R
X u(�x)dP (x) is easily seen to be

supermodular on the lattice [0; 1]�L (with (�; P ) larger than (�0; P 0) if � � �0 and P �rst-
order stochastically dominates P 0). Condition (iii) implies that for � > 1

2 ; P
g
��+(1��)�

�rst order stochastically dominates P f��+(1��)�; conversely for � < 1
2 ; P

f
��+(1��)� �rst

order stochastically dominates P g��+(1��)�: The result follows immediately.

Remark A.1 In light of Proposition 4.4, the following equivalence is a restatement of
Tchen (1980) (also, Epstein and Tanny (1980)). Let supp(�) be U1-comonotone for the
pair f; g 2 F . f m.a.(II) g if and only if for all supermodular functions � :X ��! R;Z

X��
�dP f;� �

Z
X��

�dP g;�:

Proof of Proposition 5.4. At the portfolio share �� = ��
�
(�; �; u) ; (P g� )�2�

�
� 0;

the following �rst-order condition holdsZ
��X

�0
�Z

X
udP g�

�
u0 (��x)xdP g;� = 0: (66)
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It su¢ ces for the result that (66) impliesZ
��X

�0
�Z

X
udP f�

�
u0 (��x)xdP f;� � 0;

since, by concavity the � satisfying the �rst-order condition for f must be greater than
��: Since u0 (w + ��x)x is nondecreasing in x and �0

�R
X udP g�

�
is nonincreasing in � 2 �;

by concavity and U1�monotonicity, it follows from P f;� more ambiguous (I) than P g;�

(Remark (A.1)) that (66) impliesZ
��X

�0
�Z

X
udP g�

�
u0 (��x)xdP f;� � 0:

Hence, it su¢ ces to establish the implicationZ
��X

�0
�Z

X
udP g�

�
u0 (��x)xdP f;� � 0

)
Z
��X

�0
�Z

X
udP f�

�
u0 (��x)xdP f;� � 0:

This will be achieved by showing that there exists � � 0 such thatZ
��X

�
�0
�Z

X
udP f�

�
� ��0

�Z
X
udP g�

��
u0 (��x)xdP f;� � 0: (67)

To this end, choose � = �� > 0 so thatZ
��X

�
�0
�Z

X
udP f�

�
� ���0

�Z
X
udP g�

��
dP f;� = 0: (68)

It follows from the assumptions that �0 is convex, hence from f m.a.(I) g it follows thatZ
�
�0
�Z

X
udP f�

�
d� �

Z
�
�0
�Z

X
udP g�

�
d�;

therefore �� � 1: Hence, since �0 is decreasing, �0
�R
X udP f�

�
� ���0

�R
X udP g�

�
impliesR

X udP f� �
R
X udP g� : Let �(�) =

R
X udP f� �

R
X udP g� ; � is a nondecreasing function by

assumption. If �0 is logconvex, then �0(���)
�0(�)

is nondecreasing in � for all � < 0 and, since

�0 is decreasing, is nondecreasing in �: It follows that, for �0 = �;

�0
�R
X udP f� � �(�)

�
�0
�R
X udP f�

� �
�0
�R
X udP f�0 � �(�)

�
�0
�R
X udP f�0

� �
�0
�R
X udP f�0 � �(�0)

�
�0
�R
X udP f�0

� :

Hence,�
�0
�Z

X
udP f�

�
� ���0

�Z
X
udP g�

��
=

24 �0
�R
X udP f�

�
�0
�R
X udP f� � �(�)

� � ��
35�0�Z

X
udP g�

�
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has at most a single sign change which is from positive to negative if one occurs. The
rest of the proof is standard. Since � 7!

R
X u0 (��x)xdP f� is nondecreasing, there exists

a k 2 R such thatZ
�

�
�0
�Z

X
udP f�

�
� ���0

�Z
X
udP g�

���Z
X
u0 (w + ��x)xdP f� � k

�
d� � 0:

Using (68) this is easily seen to imply (67) as required.

Proof of Proposition 5.5. For the case of �-MEU preferences, one obtains, by the
envelope theorem, the �rst order condition

u0(y1 � a) = �

Z
u0(y2 + a)dP

f
� (y2) + (1� �)

Z
u0(y2 + a)dP

f
� (y2)); (69)

this condition uniquely determines the optimum given u is strictly concave. For the
CARA case, compensation

�

Z
udP f� + (1� �)

Z
udP f� = �

Z
udP g� + (1� �)

Z
udP g� (70)

means the �rst order condition is unchanged

�

Z
u0dP f� + (1� �)

Z
u0dP f� = �

Z
u0dP g� + (1� �)

Z
u0dP g� :

As noted in Gierlinger and Gollier (2008), Hardy, Littlewood, and Pólya (1952)�s
generalization of Minkowski�s inequality, that the generalized mean � 7! M'(�) =
'�1

�R
'(�(�))d�(�)

�
is concave if x 7! �'0(x)='00(x) is a concave function. Hence,

with �1(�) =
R
u(y2+ s1)dP

f
� (y2); �2(�) =

R
u(y2+ s2)dP

f
� (y2); ��(�) =

R
u(y2+�s1+

(1��)s2)dP f� (y2) we have �M�(�1)+ (1��)M�(�2) �M�(��1+(1��)�2). It follows
that if u is strictly concave, a 7! V fS (a) is strictly concave. The �rst-order conditions
are (having set the optimal saving a = 0 without loss of generality) are

u0(y1) =

R
�0
�R

udP f�
��R

u0dP f�
�
d�

�0
�
��1

�R
�
�R

udP f�
�
d�
�� :

We wish to show that for an m.a.(II) compensated increase in ambiguity

u0(y1) �
R
�0
�R
udP g�

� �R
u0dP g�

�
d�

�0
�
��1

�R
�
�R
udP g�

�
d�
��

since, a strict inequality will require a reduction in saving to restore the �rst order
constraint. That is, we wish to establishZ

� (Uf ) d� =

Z
� (Ug) d�)Z

�0 (Uf )U
0
fd� �

Z
�0 (Ug)U

0
gd�: (71)
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where Uf =
R
udP f� ; U 0f =

R
u0dP f� and Ug =

R
udP g� ; U 0g =

R
u0dP g� : Using CARA, this

becomes Z
� (Uf ) d� =

Z
� (Ug) d�)Z

�0 (Uf )Ufd� �
Z
�0 (Ug)Ugd�:

Note that the function e�(U) = �0(U)U is a nondecreasing concave transformation of � on
R�: Increasing is immediate, the concavity part can be seen from the fact that the ratio
of derivatives �

00(U)U+�0(U)
�0(U)

= ��00(U)
�0(U)

(�U) + 1 is the product of two positive decreasing
function and therefore decreasing. The result now follows since a compensated increase
in m.a.(II) satisfying the equality condition in (71) implies that

R e� (Uf ) d� � R e� (Ug) d�
for any e� which is a concave transformation of �:
A.5 Characterizing more ambiguous (II) acts without U�comonotonicity
A.5.1 �-MEU and smooth ambiguity

As in Proposition 2.1 we begin by restricting attention to acts f and g having degenerate
lotteries as consequences, Egx = fs 2 S j g(s) � xg and Efx = fs 2 S j f(s) � xg. For
anym -vector x = (xi; :::; xm) 2Xm; i = 1; :::;m; the set f(�(Efx1+�); :::; �(E

f
xm+�)) j � 2

�g is a closed convex subset of [0; 1]m which since Efxi�1 = ; and Efxi+1 = S expands
from f(0; :::; 0)g and then contracts to f(1; :::; 1)g as � traverses the real line from �1
to 1: For any given � 2 [0; 1]m; � � x = � 2 [0; 1] de�nes a hyperplane. Denote cl� [Z] as
the union of all such hyperplanes which have a non-null intersection with Z � [0; 1]m:

Proposition A.1 Let P = f(�; �; u)g�2[0;1];u2U1, where � is a compact, convex subset
of �. In the case that f; g 2 F are acts mapping states into degenerate lotteries over
outcomes in X, the following conditions are equivalent.

(i) Act f is (P)�more ambiguous (II) than act g;

(ii) There is no m 2 N; x 2Xm; � 2 [0; 1]m; � 2 R such that

cl� [f(�(Efx1+�); :::; �(E
f
xm+�)) j � 2 �g $ cl�[f(�(Egx1); :::; �(E

g
xm)) j � 2 �g

however, there do exist m 2 N; x 2Xm; � 2 [0; 1]m; � 2 R such that

cl�[f(�(Egx1); :::; �(E
g
xm)) j � 2 �g $ cl� [f(�(Efx1+�); :::; �(E

f
xm+�)) j � 2 �g:

Although this proposition gives a reasonably intuitive characterization of increased
ambiguity in terms of a collection of possible event probabilities becoming �enlarged�,
it will be hard to apply in speci�c circumstances

Proposition A.2 Let P be the class of smooth ambiguity preferences f(�; �; u)g
�2�1;u2U1

;

the following conditions are equivalent.
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(i) The act f is (P)�more ambiguous (II) than act g:

(ii) For each u 2 U1; �1; �2; � 2 R; �1 < �2;

�

�
f� 2 � j

Z
X
u(g(s) + ��)d� � �1

�
� (>)�

�
f� 2 � j

Z
X
u(f(s) + ��)d� � �1

�
implies

�

�
f� 2 � j

Z
X
u(g(s) + ��)d� � �2

�
� (>)�

�
f� 2 � j

Z
X
u(f(s) + ��)d� � �2

�
:
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