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Abstract

We derive the analogue of the classic Arrow-Pratt approximation of the certainty equivalent
under model uncertainty as described by the smooth model of decision making under ambiguity
of Klibano¤, Marinacci and Mukerji (2005). We study its scope by deriving a tractable mean-
variance model adjusted for ambiguity and solving the corresponding portfolio allocation problem.
In the problem with a risk-free asset, a risky asset, and an ambiguous asset, we �nd that portfolio
rebalancing in response to higher ambiguity aversion only depends on the ambiguous asset�s
alpha, setting the performance of the risky asset as benchmark. In particular, a positive alpha
corresponds to a long position in the ambiguous asset, a negative alpha corresponds to a short
position in the ambiguous asset, and greater ambiguity aversion reduces optimal exposure to
ambiguity. The analytical tractability of the enhanced Arrow-Pratt approximation renders our
model especially well suited for calibration exercises aimed at exploring the consequences of model
uncertainty on equilibrium asset prices.

�Crises feed uncertainty. And uncertainty a¤ects behaviour, which feeds the crisis.�

Olivier Blanchard, The Economist, January 29, 2009

1 Introduction

When a von Neumann-Morgenstern expected utility maximizer with utility u and wealth w considers
an investment h, the Arrow-Pratt approximation of his certainty equivalent for the resulting uncertain
prospect w + h is

c (w + h; P ) � w + EP (h)�
1

2
�u (w)�

2
P (h) ; (1)

where P is the probabilistic model that describes the stochastic nature of the problem.
This classic approximation has two main merits, a theoretical and a practical one. Its theoretical

merit is to show that, for an expected utility agent, the premium associated with facing risk h is
proportional to the variance �2P (h) of h with respect to P . This relation between risk and variance
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is a central pillar of risk management. In particular, the coe¢ cient �u (w) = �u00 (w) =u0 (w) that
links risk premium and volatility is determined by the agent�s risk aversion at w. The practical merit
of (1) is in providing the foundation for the mean-variance preference model, where a prospect f is
evaluated through

U (f) = EP (f)�
�

2
�2P (f) ; (2)

obtained from (1) by setting w + h = f and �u (w) = �. This model is the workhorse of asset
management in the �nance industry.

The purpose of this paper is to extend the classic Arrow-Pratt analysis to account for model
uncertainty : the situation in which the agent is uncertain about the true probabilistic model P that
governs the occurrence of di¤erent states. If only risk is present, that is, the agent fully relies on a
single probabilistic model P , then the certainty equivalent c (w + h; P ) of w + h, the sure amount of
money that he considers equivalent to the uncertain prospect w + h, is given by

c (w + h; P ) = u�1 (EP (u (w + h))) : (3)

Here u represents the agent�s attitude toward risk. If, in contrast, the agent is not able to identify a
single probabilistic model P , but he also considers alternative models Q, then c (w + h;Q) becomes
a variable amount of money that depends on Q. Suppose � is the agent�s prior probability on the
space � of possible models and v is his attitude toward model uncertainty (stricto sensu; see Section
2.2). The rationale used to obtain the certainty equivalent (3) leads to a (second-order) certainty
equivalent

C (w + h) = v�1 (E� (v (c (w + h))))

= v�1
�
E�
�
v
�
u�1 (E (u (w + h)))

���
; (4)

where c (w + h) is the random variable that associates c (w + h;Q) to each model Q in �. This is
the smooth ambiguity certainty equivalent of Klibano¤, Marinacci and Mukerji (2005), henceforth
abbreviated KMM.
The case in which the support of the prior � is a singleton P corresponds to the absence of model

uncertainty. In fact, the agent is fully con�dent about P and (4) coincides with (3). Analogously, if
v = u it can be shown that

C (w + h) = c
�
w + h; �Q

�
where �Q is the reduced probability

R
Qd� (Q) induced by the prior �. In this case, the certainty

equivalent (4) reduces to (3) where the probabilistic model P is replaced by �Q; in the jargon of
decision theory, the agent is ambiguity neutral and the reduced distribution �Q represents all the
uncertainty he is facing (see Ellsberg, 1961, p. 661). However, if the support of � is nonsingleton
(there is model uncertainty, an information feature) and v di¤ers from u (the reactions to model
uncertainty and to risk di¤er, a taste feature) the identi�cation of (3) and (4) no longer holds �
model uncertainty cannot be reduced to risk �and the Arrow-Pratt analysis needs to be extended.

The �rst step in our extension of the Arrow-Pratt analysis is to derive in Section 3 the analogue of
approximation (1) under ambiguity, as captured by the KMM certainty equivalent (4). Speci�cally,
Proposition 3 shows that:

C (w + h) � w + E �Q (h)�
1

2
�u (w)�

2
�Q (h)�

1

2
(�v (w)� �u (w))�2� (E (h)) ; (5)

where �Q =
R
Qd� (Q) is the reduced probability induced by the prior �, and E (h) : � ! R is the

random variable
Q 7! EQ (h)
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that associates the expected value EQ (h) to each possible model Q. Its variance �2� (E (h)), along
with the di¤erence �v (w)� �u (w) in uncertainty attitudes, determines an ambiguity premium �the
last term in (5) �that is novel relative to (1). In other words, model uncertainty renders volatile the
return E (h) of h, thereby a¤ecting the agent�s certainty equivalent. Indeed, (5) shows that �v (w)
captures model uncertainty aversion also in �the small,� à la Pratt (1964), in fact, ceteris paribus,
the higher �v (w) the greater the ambiguity premium. In turn, this completes the KMM analysis of
ambiguity aversion, as discussed at the end of Section 3.
In Section 4, we study those prospects that are una¤ected by model uncertainty, that is, the

special class of prospects for which approximation (5) reduces to its classic counterpart (1).

The quadratic approximation (5) allows us to extend, in Section 5, the mean-variance model (2).
Speci�cally, by setting w + h = f , �u (w) = �, �v (w) � �u (w) = �, and �Q = P , we obtain the
following natural and parsimonious extension

U (f) = EP (f)�
�

2
�2P (f)�

�

2
�2� (E (f)) (6)

of the mean-variance model (2) that is able to deal with ambiguity. This augmented mean-variance
model is determined by the three parameters �, �, and �, as opposed to the two parameters � and P
of the classic mean-variance model. The taste parameters � and � represent attitudes toward risk and
ambiguity, respectively. Higher values of these parameters correspond to stronger negative attitudes.
The information parameter � determines the variances �2P (f) and �

2
� (E (f)) that measure the risk

and model uncertainty perceived in the evaluation of prospect f . Higher values of these variances
correspond to poorer information on prospect�s outcomes and on models.

In Section 6, we study the scope of the augmented mean-variance model (6) via a portfolio
allocation exercise. In particular, we study a tripartite portfolio problem with a risk-free asset, a
purely risky asset, and an ambiguous one. Relative to more traditional portfolio analyses with a
risk-free and a risky asset only, the addition of an ambiguous asset allows for the study of model
uncertainty. Our portfolio analysis shows that optimal portfolio rebalancing in response to higher
ambiguity aversion only depends on the ambiguous asset�s alpha, setting the performance of the risky
asset as benchmark. An asset�s alpha, it is found, is the component of the expected excess return of
the ambiguous asset which is ambiguity speci�c, that is, uncorrelated with pure risk. More precisely,
it is the (expected) return of the ambiguous asset in excess of the return on the risk free asset less
the amount that can be explained as the excess return due to the pure risk embedded in the asset.1

When alpha is positive, the asset return o¤ers compensation in excess of its risky component, a
compensation that an ambiguity averse agent would need to hold a long position in the asset. Indeed,
a positive alpha corresponds to a long position in the ambiguous asset, a negative alpha corresponds
to a short position in the ambiguous asset, and greater ambiguity aversion reduces optimal exposure
to ambiguity.

Some fundamental asset allocation problems feature a natural tripartite structure. This is the
case for international portfolio allocation problems with domestic bonds, domestic stocks, and foreign
stocks. Our analysis is relevant for these problems when the information available to investors is such
that the tripartite structure may be interpreted as re�ecting di¤erent types of uncertainty (i.e., risk
and ambiguity) about the assets. We expect this to be often the case.2

Related Works Our work is related to recent papers by Nau (2006), Skiadas (2009), Izhakian
and Benninga (2011), and Jewitt and Mukerji (2011), that inter alia also obtain approximations for
the ambiguity premium in the smooth ambiguity model on the basis of special assumptions. More

1See (29) and its discussion for details.
2See, e.g., French and Poterba (1991), Canner, Mankiw and Weil (1997), and Huberman (2001) for evidence on

these and related allocation problems that is inconsistent with existing static choice models.
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importantly, these papers do not use the approximation to extend the mean-variance approach and
study portfolio decisions.
Our �ndings on the portfolio selection problem share some features with the ones of Epstein and

Miao (2003), Taboga (2005), Boyle, Garlappi, Uppal and Wang (2012), and Gollier (2011). In partic-
ular, Taboga (2005) proposes a model of portfolio selection based on a two-stage evaluation procedure
to disentangle ambiguity and ambiguity aversion. Gollier (2011) investigates the comparative statics
of more ambiguity aversion in a static two-asset portfolio problem. He shows that ambiguity aversion
may not reinforce risk aversion and exhibits su¢ cient conditions to guarantee that, ceteris paribus, an
increase in ambiguity aversion reduces the optimal exposure to ambiguity. Gollier�s insight has been
con�rmed in terms of ambiguity premia by Izhakian and Benninga (2011), who show, for CRRA and
CARA speci�cations, that such premium may di¤er qualitatively from the risk premium. Epstein
and Miao (2003) use a recursive multiple priors model to study the home bias, while Boyle, Garlappi,
Uppal and Wang (2012) employ the concepts of ambiguity and ambiguity aversion in a multiple priors
framework to formalize the idea of investor�s �familiarity�toward assets.
In addition, the analytical tractability of the enhanced Arrow-Pratt approximation (5) favors

empirical tests of our model�s implications to several observationally puzzling (and economically
interesting) investment behaviors. These include the home bias puzzle, the equity premium puzzle,
as well as the employer-stock ownership puzzle. For this reason, our paper is also related to several
papers in the literature that explore the consequences of ambiguity aversion on equilibrium prices.
Among others, Chen and Epstein (2002) identify separate excess return premia for risk and ambiguity
within a representative agent asset market setting, while Garlappi, Uppal, and Wang (2007) extend
a traditional portfolio problem to a multiple priors setting. Caskey (2009) and Illeditsch (2011)
study the e¤ects of �ambiguous�information on investors�market trades and valuations. Easley and
O�Hara (2010a,b) explain how low trading volumes during part of the recent �nancial crisis may have
resulted from investors�perceived uncertainty and how designing markets to reduce ambiguity may
induce participation by both investors and issuers.
By use of recursive versions of the smooth ambiguity model, Ju and Miao (2010) calibrate a

representative agent consumption based asset pricing model and generate a variety of dynamic asset
pricing phenomena that are observed in the data; Chen, Ju, and Miao (2011) study an investor�s
optimal consumption and portfolio choice problem;3 while Collard, Mukerji, Sheppard and Tallon
(2011) show the importance of model uncertainty for the analysis of long run risk (LLR) by matching
the historical equity premium with a LLR model that features endogenously time-varying ambiguity
(e.g., increasing during recessions) based on publicly available data on aggregate consumption and
dividend. Hansen and Sargent (2010) consider two risk-sensitivity operators, one of them being a re-
cursive version of the smooth ambiguity model, in a LLR setup and show how sensitive beliefs become
to information under model uncertainty; they show how the resulting �model uncertainty premia�
a¤ects the price of macroeconomic risk. Finally, Weitzman (2007) shows how model uncertainty can
be important in dynamic asset pricing already under standard expected utility (and so, without tak-
ing into account agents�speci�c reaction to model uncertainty) when �persistent�uncertainty may
prevent full learning of the true data generating process, so that subjective beliefs on models keep
being relevant even with large amounts of observations. Though these dynamic papers are di¤erent
from our static analysis (where learning issues are absent), they share with this paper the insight
that a proper account of model uncertainty is required to better understand the quantitative puzzles
of asset markets.

3The recursive multiple priors case appears in Miao (2009).
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2 Preliminaries

2.1 Mathematical Setup

Given a probability space (
;F ; P ), let L2 = L2 (
;F ; P ) be the Hilbert space of square integrable
random variables on 
 and L1 = L1 (
;F ; P ) be the subset of L2 consisting of its almost surely
bounded elements. Given an interval I � R, we set

L1 (I) = ff 2 L1 : essinf f; esssup f 2 Ig :

Throughout the paper k�k denotes the L2 norm. The space L2 is the natural setting for this paper
because of our interest in quadratic approximations.
We indicate by EP (X) and �2P (X) the expectation and variance of a random variable X 2 L2,

respectively. Moreover, we indicate by �P (X;Y ) the covariance

�P (X;Y ) = EP [(X � EP (X)) (Y � EP (Y ))]

between two random variables X;Y 2 L2.

The set of probability measures Q on F that have square integrable density q = dQ=dP with
respect to P can be identi�ed, via Radon-Nikodym derivation, with the closed and convex subset of
L2 given by

� =

�
q 2 L2+ :

Z



q (!) dP (!) = 1

�
:

By Bonnice and Klee (1963, Th. 4.3), we have the following existence result.

Lemma 1 Given a Borel probability measure � on � with bounded support,4 there exists a unique
�q 2 � such thatZ




X (!) �q (!) dP (!) =

Z
�

�Z



X (!) q (!) dP (!)

�
d� (q) ; 8X 2 L2: (7)

The density �q is denoted by
R
�
qd� (q) and is called barycenter of �. Notice that, when restricted

to indicator functions 1A of elements of F , (7) delivers

�Q (A) =

Z
�

Q (A) d� (Q) ; 8A 2 F ; (8)

where the identi�cation of each probability measure Q with its density q allows to write d� (Q) instead
of d� (q). The probability measure �Q is called reduction of � on 
. In fact, (8) suggests a natural
interpretation of �Q in terms of reduction of compound lotteries. For example, if supp� = fQ1; :::; Qng
is �nite and � (Qi) = �i for i = 1; :::; n, then (8) becomes

�Q (A) = �1Q1 (A) + :::+ �nQn (A) ; 8A 2 F :

Hence, � can be seen as a lottery whose outcomes are all possible models, which in turn can be seen
as lotteries that determine the state.

4A carrier of � is any Borel subset of � having full measure. If the intersection of all closed carriers is a carrier, it is
called support of � and denoted by supp�. Since � inherits the L2 distance, supp� is bounded when fkqk : q 2 supp�g
is a bounded set of real numbers. If F is �nite the support always exists and it is bounded.
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2.2 Decision Theoretic Setup

Given any nonsingleton interval I � R of monetary outcomes, we consider decision makers (DMs)
who behave according to the smooth model of decision making under ambiguity of KMM.5 That is,
DMs who rank prospects through the functional V : L1 (I)! R de�ned by

V (f) =

Z
�

�

�Z



u (f (!)) q (!) dP (!)

�
d� (q) ; 8f 2 L1 (I) ; (9)

where � is a Borel probability measure on � with bounded support, and u : I ! R and � : u (I)! R
are smooth and strictly increasing functions.

Lemma 2 The functional V : L1 (I)! R is well de�ned, with V (L1 (I)) = � (u (I)).

The certainty equivalent function C : L1 (I) ! I induced by V is de�ned by V (C (f)) = V (f)
for all prospects f , that is,

C (f) = u�1
�
��1

�Z
�

�

�Z



u (f (!)) q (!) dP (!)

�
d� (q)

��
; 8f 2 L1 (I) : (10)

In the monetary setting of the present paper, where outcomes are amounts of money and prospects
are �nancial assets, it is natural to consider monetary certainty equivalents. To this end, set v =
� � u : I ! R (see KMM p. 1859). It is then possible to rewrite (9) as

V (f) =

Z
�

�
v � u�1

��Z



u (f (!)) q (!) dP (!)

�
d� (q) ; 8f 2 L1 (I) ; (11)

and so (10) as

C (f) = v�1
�Z

�

v

�
u�1

�Z



u (f (!)) q (!) dP (!)

��
d� (q)

�
; 8f 2 L1 (I) . (12)

Here the certainty equivalent C (f) is viewed as the composition of two monetary certainty equivalents,

c (f; q) = u�1
�Z




u (f (!)) q (!) dP (!)

�
and v�1

�Z
�

v (c (f; q)) d� (q)

�
:

This is the approach we sketched in the introduction, motivated by the paper monetary setting.
In KMM the function v represents attitudes toward stricto sensu model uncertainty, that is, the

uncertainty that agents face when dealing with alternative possible probabilistic models. The function
v is characterized in KMM along with the prior � through prospects whose outcomes depend only on
models and, as such, are only a¤ected by model uncertainty.
Model uncertainty cumulates with the state uncertainty that any nontrivial probabilistic model

features. The combination of these two sources of uncertainty determines in the KMM model the
ambiguity that DMs face in ranking prospects f : 
 ! R. KMM show that overall attitudes to-
ward ambiguity are captured by the function �. In particular, its concavity characterizes ambiguity
aversion, which therefore implies positive Arrow-Pratt coe¢ cients �� = ��00=�0. Since

�� (u (w)) =
1

u0 (w)
(�v (w)� �u (w)) (13)

we conclude that ambiguity aversion amounts to �v � �u � 0, a key condition for the paper.6
Ambiguity neutrality is modelled by � (x) = x, that is, v = u, while absence of model uncertainty

is modelled by a trivial � with singleton support (i.e., a Dirac measure). In both cases criterion
(9) reduces to expected utility, though in one case the reduction originates from a taste component
�a neutral attitude, under which the two sources of uncertainty �linearly� combine via reduction
(8) �while in the other case it originates from an information component (absence of a source of
uncertainty, i.e., model uncertainty).

5We use the terms decision maker and agent interchangeably in the paper.
6See Lemma 12 in the appendix.
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3 Quadratic Approximation

Let w 2 int I be a scalar interpreted as current wealth. To ease notation, we also denote by w the
degenerate random variable w1
. Given any prospect h 2 L1 such that w + h 2 L1 (I), we are
interested in the certainty equivalent C (w + h) of w + h, that is,

C (w + h) = v�1
�Z

�

v

�
u�1

�Z



u (w + h) qdP

��
d� (q)

�
: (14)

For all h 2 L1, the functions

E (h) : q 7!
Z



hqdP and �2 (h) : q 7!
Z



h2qdP �
�Z




hqdP

�2
are continuous and bounded on �, and so belong to L1 (�;B; �). The variance of E (h) with respect
to � Z

�

�Z



h (!) q (!) dP (!)

�2
d� (q)�

�Z
�

�Z



h (!) q (!) dP (!)

�
d� (q)

�2
is denoted by �2� (E (h)). This variance re�ects the uncertainty on the expectation E (h) which,
in turn, is implied by model uncertainty. Thus, higher values of �2� (E (h)) correspond to a higher
incidence of model uncertainty on the expectation of h.

We can now state the second order approximation of the certainty equivalent (14).

Proposition 3 Let � be a Borel probability measure with bounded support on � and u; v : I ! R be
twice continuously di¤erentiable with u0; v0 > 0. Then,

C (w + h) = w + E �Q (h)�
1

2
�u (w)�

2
�Q (h)�

1

2
(�v (w)� �u (w))�2� (E (h)) +R2 (h) (15)

for all h 2 L1 such that w + h 2 L1 (I), where

lim
t!0

R2 (th)

t2
= 0: (16)

Moreover, if F is �nite, then R2 (h) = o
�
khk2

�
as h! 0 in L2.

Notice that the �rst three components on the right hand side of (15) correspond to the Arrow-
Pratt approximation of the ambiguity neutral certainty equivalent u�1

�R
u (w + h) d �Q

�
of w + h.

To the contrary, the fourth component represents the e¤ects of ambiguity: the sign and magnitude
of these e¤ects on the certainty equivalent depend on the di¤erence �v (w) � �u (w). In particular,
provided model uncertainty a¤ects the expectation of h, that is �2� (E (h)) 6= 0, ambiguity has no
e¤ects when the DM is neutral to it at w, i.e., �v (w) = �u (w).7 Finally the �fth component �the
error�tends to zero faster than the square of the size of the uncertainty exposure.
The variance �2�Q (h) can be decomposed along the two sources of uncertainty as

�2�Q (h) = E�
�
�2 (h)

�
+ �2� (E (h))

State uncertainty, which exists within each model, underlies the average variance E�
�
�2 (h)

�
. Model

uncertainty, instead, determines the variance of averages �2� (E (h)). Approximation (15) can thus be
rearranged according to the Arrow-Pratt coe¢ cients of u and v as follows:

C (w + h) = w + E �Q (h)�
�u (w)

2
E�
�
�2 (h)

�
� �v (w)

2
�2� (E (h)) +R2 (h) : (17)

7Notice that this may be the case even if v 6= u, that is, the requirement �v (w) = �u (w) is a requirement of
ambiguity neutrality in �the small� rather than in �the large.�
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This formulation shows that, when the indexes u and v are su¢ ciently smooth, both state and model
uncertainty play at most a second order e¤ect in the evaluation.8 Speci�cally, risk aversion determines
the DM�s reaction to the average variance E�

�
�2 (h)

�
and model uncertainty aversion determines his

reaction to the variance of averages �2� (E (h)).
We conclude by observing that formulas (13) and (15) allow to interpret � as capturing ambiguity

aversion both in the large and in the small à la Pratt (1964). Speci�cally, given u; v1; v2 : I ! R
twice continuously di¤erentiable with u0; v01; v

0
2 > 0, then, by (13),

��1 (u (w)) � ��2 (u (w)) ,
1

u0 (w)
(�v1 (w)� �u (w)) �

1

u0 (w)
(�v2 (w)� �u (w))

, �v1 (w) � �v2 (w) :

In �the large,�by Corollary 3 of KMM, this implies that agent 1 is more ambiguity averse than agent
2 if and only if he is more model uncertainty averse than agent 2. In �the small,� by (15), this is
equivalent to say that the ambiguity premium for agent 1 is greater than the ambiguity premium for
agent 2 (while risk premia coincide).
In the rest of the paper we will focus on the case in which the DM is ambiguity averse at w, i.e.,

�v (w)� �u (w) � 0. Similarly, we will assume risk aversion at w, i.e., �u (w) � 0.

4 Approximately Unambiguous Prospects

As previously observed, the ambiguity premium

1

2
(�v (w)� �u (w))�2� (E (h)) (18)

may vanish for two reasons: the ambiguity neutrality condition �v (w) = �u (w) or the informa-
tion condition �2� (E (h)) = 0. In this section we consider the latter case since it directly refers to
model uncertainty (as captured by the parameter �) and our main focus is on ambiguity non-neutral
behavior.

De�nition 4 A prospect h 2 L2 is approximately unambiguous if �2� (E (h)) = 0.

Clearly, if h is approximately unambiguous, then approximation (15) collapses to

C (w + h) = w + E �Q (h)�
1

2
�u (w)�

2
�Q (h) +R2 (h) ;

that is, the DM�s evaluation of h is indistinguishable (in the second order approximation) from the
certainty equivalent of an (ambiguity neutral) expected utility maximizer with utility u and beliefs
given by the reduced probability measure �Q induced by � on 
. The equivalence of (i) and (ii)
in the next result shows that also the converse is true, thus motivating the term �approximately
unambiguous�for such a prospect.

Proposition 5 For a prospect h 2 L2, the following properties are equivalent:

(i) h is approximately unambiguous;

(ii) �2� (E (h)) = R2 (h);

(iii) EQ (h) = EQ0 (h) for all Q;Q0 2 supp�.
8For standard expected utility this follows from the Arrow-Pratt approximation. Segal and Spivak (1990) is a classic

study of orders of risk aversion. In Maccheroni, Marinacci, and Ru¢ no (2011) we study in detail orders of risk aversion
and of model uncertainty aversion in the smooth ambiguity model.
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The equivalence between (i) and (iii) is also noteworthy. It has two di¤erent implications. First,
it says that h is approximately unambiguous if and only if the �rst moment of h is invariant across
all models in the support of �, that is, according to all models that a DM with prior � deems
plausible.9 Second, it shows that the set of all approximately unambiguous prospects forms a closed
linear subspace of L2, and hence any prospect can be decomposed into an approximately unambiguous
part and a residual ambiguous one (see Appendix A.3).

We conclude by showing that under model uncertainty there always exist arbitrarily small �am-
biguous�(that is, not approximately unambiguous) prospects.

Proposition 6 If �v (w) 6= �u (w), then the following properties are equivalent:

(i) all prospects in L2 are approximately unambiguous;

(ii) there is an absorbing10 subset B of L1 such that w + h 2 L1 (I) and

C (w + h) = w + E �Q (h)�
1

2
�u (w)�

2
�Q (h) +R2 (h) (19)

for all h 2 B;

(iii) � is a Dirac measure.

This result shows that the only case in which our approximation (15) coincides with that of
Arrow-Pratt for all �small prospects�(i.e., the prospects in B) is the one in which there is no model
uncertainty to start with, that is, the prior � is degenerate. Otherwise, for each " > 0, however small,
there is a prospect h with khk < " for which the two approximations di¤er. In other words, as long as
� is not trivial and the agent is not ambiguity neutral, ambiguity e¤ects may never fade away, even
approximately for arbitrarily �small prospects�(the counterparts of �small risks�in risk theory).
This result may seem at odds with the �ndings of Skiadas (2009) who shows that ambiguity e¤ects

may fade in the small for speci�c vanishing nets of prospects. But there are two nontrivial di¤erences
that explain the presumed contradiction; for simplicity we elucidate them in the simplest possible
case in which 
 = f1;�1g, thus L2 can be identi�ed with R2.

� First, condition (ii) of Proposition 6 refers to an absorbing subset. For example,
�
(h; k) 2 R2 : h2 + k2 < "

	
.

While Skiadas (2009) considers vanishing nets which are just paths closing to the origin. For
example,

�
(t;�t) 2 R2 : t 2 (0; ")

	
.

� Second, and conceptually more important, here � is �xed. While in Skiadas (2009) it depends
on t. For example, identifying � with the interval [0; 1],11 �x p; p0 2 (0; 1) and consider as �t
the uniform distribution on [p� t; p0 + t] for t 2 (0; ").

Clearly, the second point is very important because it allows model uncertainty to vanish when
�t converges to a Dirac measure.12 A complete analysis can be found in Maccheroni, Marinacci,
and Ru¢ no (2011). In a nutshell, there we show that ambiguity e¤ects fade if and only if model
uncertainty vanishes, which is the perturbed version of Proposition 6 above.

9The interpretation of supp� as the set of plausible models, à la Ghirardato, Maccheroni, and Marinacci (2004),
is formally discussed by Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011, Th. 21). Also notice that a
simple prospect h is unambiguous in the sense of Ghirardato, Maccheroni, and Marinacci (2004) if and only if all of
its moments (not only the �rst ) coincide on the support of �.
10A subset B of a vector space is absorbing if for any point of the space there exists a (strictly) positive multiple of

B that contains the segment joining the point and zero. For example, any ball that contains the origin is absorbing.
11 q 2 [0; 1] being the probability of state 1.
12 In the example, this happens if and only if p = p0, in which case �t weakly converges to �p.

9



5 Robust Mean-Variance Preferences

Inspired by the quadratic approximation (15), in this section we generalize standard mean-variance
preferences to account for model uncertainty. Speci�cally, we consider a DM who ranks prospects f
in L2 through the robust mean-variance functional C : L2 ! R[f�1g given by

C (f) = E �Q (f)�
�

2
�2�Q (f)�

�

2
�2� (E (f)) ; 8f 2 L2; (20)

where � and � are (strictly) positive coe¢ cients, and � is a Borel probability measure on � with
bounded support and barycenter �Q given by (8).
As mentioned in the introduction, this preference functional is fully determined by three para-

meters: �, �, and �. Its theoretical foundation is given by the quadratic approximation (15), which
shows that (20) can be viewed as a local approximation of a KMM preference functional (12) at a
constant w such that � = �u (w) and � = �v (w)��u (w). Thus, the taste parameters � and � model
the DM�s negative attitudes toward risk and ambiguity, respectively. In particular, higher values of
these parameters correspond to stronger negative attitudes.
In turn, the information parameter � determines the variances �2�Q (f) and �

2
� (E (f)) that measure

the risk and model uncertainty that the DM perceives in the evaluation of prospect f . Higher values
of these variances correspond to a DM�s poorer information on prospect�s outcomes and on models.

Since the probability measure �Q is the reference model for a DM with prior �, in order to facilitate
comparison with the classic case we identify the barycenter �Q of � with the baseline probability P .
That is, in the rest of the paper we maintain the following assumption:

Assumption 1 �Q = P .

Under this assumption, C (f) is always �nite and (20) takes the form

C (f) = EP (f)�
�

2
�2P (f)�

�

2
�2� (E (f)) ; 8f 2 L2; (21)

which we will consider hereafter. When the information condition �2� (E (f)) = 0 holds, we obtain
the standard mean-variance evaluation

C (f) = EP (f)�
�

2
�2P (f) (22)

for prospect f . Approximately unambiguous prospects are thus regarded as purely risky by robust
mean-variance preferences, that is, they form the class of prospects on which robust and conventional
mean-variance preferences agree.

Like standard mean-variance preferences, our robust mean-variance preferences (21) separate taste
parameters, � and �, and uncertainty measures, �2P (f) and �

2
� (E (f)). This sharp separation gives

standard mean-variance preferences an unsurpassed tractability and is the main reason for their
success and widespread use. These key features fully extend to robust mean-variance preferences, as
(21) shows. As a result, they are well-suited for �nance and macroeconomics applications and can
improve calibration and other quantitative exercises. Their scope will be illustrated in detail in the
portfolio problem of next section.

Finally, we expect that a monotonic version of robust mean-variance preferences can be derived
by suitably generalizing what Maccheroni, Marinacci, Rustichini, and Taboga (2009) established for
conventional mean-variance preferences.
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6 The Portfolio Allocation Problem

In this section we apply the newly obtained robust mean-variance preferences to a portfolio allocation
problem. The theoretical di¤erence between these preferences and the smooth ambiguity preferences
of KMM is analogous to the one that separates the expected utility approach and the mean-variance
utility approach in the case of portfolio selection under risk only.13

In the �nal part of the section we focus on a portfolio of three assets: a risk-free asset, a purely
risky asset, and an ambiguous asset. This problem is the natural extension of the standard portfolio
problem (with a risk-free and a risky asset) to our setting with model uncertainty. As mentioned in the
introduction, international portfolio allocation problems provide a natural application of our setting
with domestic Treasury bonds viewed as risk-free assets, other domestic assets viewed as purely risky
assets, and foreign assets viewed as ambiguous assets. This will be our motivating example.

6.1 The General Setting

We consider the one-period optimization problem of an agent who has to decide how to allocate a
unit of wealth among n+1 assets at time 0. The gross return on asset i after one period, i = 1; :::; n,
is denoted by ri 2 L2. Then, the (n � 1) vector of returns on the �rst n assets is denoted by r and
the (n � 1) vector of portfolio weights (indicating the fraction of wealth invested in each asset) is
denoted by w. The return on the (n+ 1)-th asset is risk-free and it is equal to a constant rf .
The end-of-period wealth rw induced by a choice w is given by

rw = rf +w � (r� rf1) ;

where 1 is the n-dimensional unit vector. We assume frictionless �nancial markets in which assets are
traded in the absence of transaction costs and both borrowing and short-selling are allowed without
restrictions. Then, the portfolio problem can be written as

max
w2Rn

C (rw) = max
w2Rn

�
EP (rw)�

�

2
�2P (rw)�

�

2
�2� (E (rw))

�
: (23)

A simple argument, in appendix, delivers the optimality condition

[�VarP [r] + �Var� [E [r]]] bw = EP [r� rf1] ; (24)

where:

� VarP [r] = [�P (ri; rj)]ni;j=1 is the variance-covariance matrix of returns under P ,

� Var� [E [r]] = [�� (E (ri) ; E (rj))]
n
i;j=1 is the variance-covariance matrix of expected returns

under �,

� EP [r� rf1] = [EP (ri � rf )]ni=1 is the vector of expected excess returns under P .

Thus, the solution to (23) is an ambiguity-adjusted mean-variance portfolio whose weights re�ect
uncertainty about expected returns as captured by Var� [E [r]]. A key feature of condition (24) is
that it allows to make use of the vast body of research on mean-variance preferences developed for
problems involving risk to analyze problems involving ambiguity. For example, also here the optimal
investments are smooth functions of the taste parameters � and � and of the information parameters
EP [r� 1rf ], VarP [r], and Var� [E [r]]. This is crucial for the comparative statics analysis. In fact,
given the available information on assets� returns,14 condition (24) allows to explicitly write the

13An empirical comparison of the two (a la Levy and Markowitz, 1979) goes beyond the scope of this paper and it
is left for future research.
14That is, EP

�
r� 1rf

�
, VarP [r], and Var� [E [r]].
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optimal portfolios as functions of the uncertainty attitudes,15 and so to study how di¤erent attitudes
in�uence optimal holdings. Conversely, given the uncertainty attitudes of an agent, condition (24)
allows to explicitly write the optimal portfolios as functions of the available information on assets�
returns, and so to study how information and its quality a¤ect optimal holdings.

Next, we study condition (24) for the case of a single ambiguous asset and for the case of one
purely risky asset and one ambiguous asset. These two cases are important because they immediately
contrast the optimal portfolio solution with and without ambiguity.

6.2 One Ambiguous Asset

If n = 1, then there is only one uncertain asset and (24) delivers

bw = EP (r)� rf
��2P (r) + ��

2
� (E (r))

: (25)

If r is purely risky, i.e., �2� (E (r)) = 0, then (25) reduces to the standard mean-variance Markowitz
(1952) solution bw = EP (r)� rf

��2P (r)
: (26)

Notice that ambiguity does not a¤ect excess returns so that the di¤erence between (25) and (26)
lies in their denominators only. Speci�cally, an increase in ��2� (E (r)) � that is, an increase in
either ambiguity aversion � or ambiguity in expectations �2� (E (r)) �makes the ambiguous asset less
desirable and increases the DM�s demand for the risk-free asset (a �ight-to-quality e¤ect). As shown
by Gollier (2011), this very intuitive result is not in general true for the smooth ambiguity preferences
of KMM. Speci�cally, Gollier (2011) gives conditions under which more ambiguity aversion reduces the
optimal level of exposure to uncertainty for KMM preferences; in our simpli�ed setting no additional
condition is needed.

6.3 One Purely Risky and One Ambiguous Assets

We now turn to the case of two uncertain assets with returns rm and re in L2, which we interpret as a
domestic and a foreign security index, respectively. For this reason, we choose rm to be purely risky for
robust mean-variance preferences, i.e., �2� (E (rm)) = 0, and re to be ambiguous, i.e., �

2
� (E (re)) > 0.

The DM can now invest in a risk-free asset, with rate of return rf , in a purely risky asset, with rate
of return rm, and in an ambiguous one, with rate of return re.

Here, condition (24) becomes

�

�
�2P (rm) �P (rm; re)

�P (rm; re) �2P (re)

� � bwmbwe
�
+ �

�
0 0
0 �2� (E (re))

� � bwmbwe
�
=

�
EP (rm)� rf
EP (re)� rf

�
;

that is,
EP (rm)� rf = bwm��2P (rm) + bwe��P (rm; re)

and
EP (re)� rf = bwm��P (rm; re) + bwe ���2P (re) + ��2� (E (re))� :

15That is, � and �.
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For convenience, we set

A = EP (re)� rf ;
B = EP (rm)� rf ;
C = ��2P (rm) ;

D = ��2P (re) + ��
2
� (E (re)) ;

H = ��P (rm; re) :

Then, the optimal portfolio weights associated with the purely risky and the ambiguous assets are

bwm = BD �HA
CD �H2

and bwe = CA�HB
CD �H2

and CD � H2 > 0.16 We are interested in determining how changes in the preference parameters
a¤ect the optimal amounts bwm and bwe, as well as their ratiobwmbwe = BD �HA

CA�HB :

These quantities vary with �, the prior probability over models, with �, the parameter of ambiguity
aversion, and with �, the parameter of risk aversion. Before stating the results, we collect all the
assumptions we make, most of which are non-triviality assumptions.

Omnibus Condition Suppose that A > 0 and B > 0, i.e., excess returns on uncertain assets are
both positive, and CA 6= HB, i.e., the optimal investment in the ambiguous asset is nonzero.

The next lemma simpli�es our analysis of the e¤ects of varying ambiguity on the optimal portfolio.

Lemma 7 Suppose that the Omnibus Condition holds and set �2� = �2� (E (re)). Then,

@ ( bwm= bwe)
@�2�

=
�

�2�

@ ( bwm= bwe)
@�

;
@ bwm
@�2�

=
�

�2�

@ bwm
@�

; and
@ bwe
@�2�

=
�

�2�

@ bwe
@�

: (27)

Notice that, since the optimal portfolio allocation varies with � (the prior over models) only
through �2� (the variance of expected returns), changes in � can be measured by taking derivatives
with respect to �2�. Moreover, variations in bwm, bwe and bwm= bwe due to changes in �2� and � share the
same sign. In view of this result, hereafter we only consider variations in � and we generally refer to
them as variations in ambiguity.

6.3.1 Changes in �

We begin our comparative statics analysis by studying the e¤ects of changes in �; later, we study the
e¤ects of changes in �.
For the comparative analysis it is convenient to decompose the excess return of the ambiguous

asset by means of the ordinary least square coe¢ cients. To this end, we project the excess return of
the ambiguous asset over the excess return of the purely risky one, that is, we consider the solutions
of

min
�;�2R

k(re � rf )� (�+ � (rm � rf ))k :

As well known, they are given by

�P (rm; re) =
�P (rm; re)

�2P (rm)
(28)

16 In fact, CD �H2 = �2
h
�2P (rm)�

2
P (re)� �P (rm; re)

2
i
+ ���2P (rm)�

2
� (E (re)) with the �rst summand nonneg-

ative by the Cauchy-Schwartz inequality and the second one positive since all of its factors are positive.
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and
�P (rm; re) = EP (re � rf )� �P (rm; re)EP (rm � rf ) : (29)

The beta coe¢ cient �P (rm; re) measures the level of pure risk �as embodied in rm �of asset re; in
the �nance jargon, �P (rm; re) is a pure risk adjustment.17 As a result, �P (rm; re)EP (rm � rf ) is
what index re is expected to earn/lose, net of rf , given its level of pure risk sensitivity. The residual
component �P (rm; re) of the expected excess return EP (re � rf ) is then what re is expected to
earn/lose, net of rf , given its level of uncertainty uncorrelated with pure risk.18 Such uncertainty is
speci�c to the ambiguous asset.
The next result shows that the sign of �P (rm; re) alone determines the e¤ect of changes in

ambiguity on the optimal proportion between risky and ambiguous holdings bwm and bwe, as well as
on the variation of bwe. On the other hand, also the sign of �P (rm; re) becomes relevant to describe
the variation of bwm.
Proposition 8 Suppose the Omnibus Condition holds. Then,

sgn
@

@�

� bwmbwe
�
= sgn�P (rm; re) : (30)

Moreover,

sgn
@ bwe
@�

= � sgn�P (rm; re) and sgn
@ bwm
@�

= sgn�P (rm; re)�P (rm; re) : (31)

The sign of �P (rm; re) also governs the sign of optimal ambiguous holdings bwe.
Proposition 9 Suppose the Omnibus Condition holds. Then

sgn bwe = sgn�P (rm; re) : (32)

In other words, the agent uses �P (rm; re) as a criterion to decide whether to take a long or
short position in the ambiguous asset, that is, to decide in which side of the market of asset re to
be. As anticipated in the introduction, when this term is positive, the ambiguous asset return o¤ers
compensation in excess of its risky component, which induces the agent to hold a long position on
the asset (the symmetric argument holds in case of negativity).
In the jargon of investment practitioners, our agent �seeks the alpha�(buys/sells the ambiguous

fund if �P (rm; re) is positive/negative) and he is aware that this extra return comes from the am-
biguous nature of the investment, �therefore�he reduces exposure to ambiguity as ambiguity aversion
rises.

Thanks to Propositions 8 and 9 we can show how variations in � a¤ect the optimal portfolio
composition, both in relative and in absolute terms. Two possible cases arise.19

Case 1 If � is positive, then bwe > 0 and
4� > 0 =) 4

� bwmbwe
�
> 0 and 4 bwe < 0; (33)

17Equation (50) in the appendix further illustrates this interpretation by showing that �P (rm; re) = �P (rm; re � rae ).
That is, only the purely risky projection re � rae of the ambiguous re enters its covariance with the purely risky rm.
18To see why it is uncorrelated, notice that, by the Hilbert Decomposition Theorem,

re � rf = AP (rm;re) + �P (rm;re)
�
rm � rf

�
where AP (rm;re) 2 L2 is the part of the excess return re � rf that is uncorrelated with rm � rf and �P (rm;re) is
the expected value of the uncorrelated part AP (rm;re), that is, �P (rm;re) = EP (AP (rm;re)).
19To ease notation, in what follows we just write � and � without the subscript P (rm; re).
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where 4 denotes a small variation.20 Here, an increase in ambiguity aversion determines a higher
ratio bwm= bwe and a lower optimal bwe. Since bwe is positive, a lower optimal bwe corresponds to a lower
exposure to ambiguity. Finally, the sign of the variation in bwm coincides with the sign of �, that is,
of the covariance �P (rm; re),

4� > 0 =) 4 bwm ? 0 if and only if �P (rm; re) ? 0:
When � is positive, higher ambiguity aversion thus results in a higher value of bwm and a lower value
of bwe. Otherwise, the ratio bwm= bwe still increases, but only because the optimal amount bwm decreases
less than bwe.
Case 2 If � is negative, then bwe < 0 and

4� > 0 =) 4
� bwmbwe

�
< 0, with 4 bwe > 0 and 4 bwm < 0:

Here, an increase in ambiguity aversion determines a lower ratio bwm= bwe, a higher optimal bwe, and
a lower optimal bwm (it is easy to check that � < 0 implies � > 0). Since bwe is negative, a higher
optimal bwe corresponds again to lower exposure to ambiguity.
In sum, depending on the values of the technical risk measures � and �, we have di¤erent e¤ects

of variations in � on the composition of the optimal portfolio. But, in any case our DM:

� goes long on re when � is positive and short otherwise (Proposition 9);

� reduces exposure to re as ambiguity increases (Proposition 8).

For example, in an international portfolio interpretation of our tripartite analysis, this means that
higher ambiguity results in higher home bias.

6.3.2 Changes in �

We now study the e¤ects of changes in risk attitudes on the agent�s assets holdings.

Proposition 10 Suppose the Omnibus Condition holds. Then,

sgn
@

@�

� bwmbwe
�
= sgn

@ bwe
@�

= � sgn�P (rm; re) : (34)

Variations in the ratio bwm= bwe due to changes in � thus have opposite sign relative to changes
in �. That is, changes in risk attitudes vary the portfolio proportional composition in the opposite
direction to changes in ambiguity attitudes. This con�rms the numerical �ndings of KMM p. 1878,
in the general theoretical setting of this paper.
Moreover, variations in bwm= bwe and bwe share the same sign, which again is determined by

�P (rm; re). As to @ bwm=@�, we have:
@ bwm
@�

= bwe @ ( bwm= bwe)
@�

+
bwmbwe @ bwe@�

: (35)

If bwm and bwe are both positive, then variations in bwm have the same sign as those in bwm= bwe andbwe. If bwm and bwe are not both positive, then the relations among variations in bwm= bwe and bwe and
variations in bwm are more complicated, but can be determined through (35).

20Not to be confounded with the set of probability measures �.
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7 Conclusions

In this paper, we study how the classic Arrow-Pratt approximation of the certainty equivalent is
altered by model uncertainty. Under the smooth ambiguity model of Klibano¤, Marinacci and Mukerji
(2005), we �nd that the adjusted approximation contains an additional ambiguity premium that
depends both on the degree of ambiguity aversion displayed by the DM and on the incidence of
model uncertainty on the expectation of the prospect he is evaluating.
Then, we introduce robust mean-variance preferences, which are the counterpart for the smooth

ambiguity model of standard mean-variance preferences for the expected utility model. We illustrate
their scope by studying a static portfolio problem under model uncertainty. In the special case of a
risk-free asset, a purely risky one, and an ambiguous one, the implied comparative statics of ambiguity
aversion carries two noteworthy consequences: (i) portfolio rebalancing in response to ambiguity
depends solely on the return alpha generated by the ambiguous asset in excess of the purely risky
asset after correcting for beta (e.g., the DM takes a long/short position on the ambiguous asset if and
only if alpha is positive/negative) and (ii) an increase in ambiguity aversion decreases the optimal
exposure in the ambiguous asset.
Finally, we note that the analytical tractability of the enhanced approximation renders our model

particularly �t for the study of puzzling investment behaviors including the home bias puzzle, the asset
allocation puzzle, the equity premium puzzle, and the employer-stock ownership puzzle. The natural
direction of development of this project is therefore the derivation of a robust CAPM, corresponding
to robust Mean-Variance preferences, and its calibration.

A Proofs and Related Analysis

To prove the quadratic approximation (15) we need the following version of standard results on
di¤erentiation under the integral sign.

Lemma 11 Let O be an open subset of RN , (
;F) be a measurable space, and g : O � 
! R be a
function with the following properties:

(a) for each x 2 O, ! 7! g (x; !) is F-measurable;

(b) for each ! 2 
, x 7! g (x; !) is twice continuously di¤erentiable on O;

(c) the functions g, @jg, and @jkg are bounded on O � 
 for all j; k 2 f1; 2; :::; Ng.

Then,

(i) for each probability measure � on F , the function de�ned on O by G (x) =
R
g (x; !) d� (!) is

twice continuously di¤erentiable;

(ii) the functions ! 7! @jg (x; !) and ! 7! @jkg (x; !) are measurable for all x 2 O, with

@jG (x) =

Z
@jg (x; !) d� (!) (36a)

@jkG (x) =

Z
@jkg (x; !) d� (!) (36b)

for all x 2 O and j; k 2 f1; 2; :::; Ng.
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A.1 Quadratic Approximation

Here we prove Proposition 3. We assume throughout the section that � is a Borel probability measure
with bounded support on � and the functions u : I ! R and v : I ! R are twice continuously
di¤erentiable, with u0; v0 > 0. We start with a simple lemma.

Lemma 12 Let � = v�u�1 : u (I)! v (I) and  = v�1 : v (I)! I. The functions � and  are twice
continuously di¤erentiable on u (int I) and v (int I), respectively. In particular, there exist " > 0 such
that [w � "; w + "] � int I and M > 1 such that the absolute values of u, v, �, and  �as well as their
�rst and second derivatives �are bounded by M on [w � "; w + "], [w � "; w + "], u ([w � "; w + "]),
and v ([w � "; w + "]), respectively. Finally, for all x 2 int I:

�0 (u (x)) =
v0 (x)

u0 (x)
; �00 (u (x)) =

v00 (x)

u0 (x)
2 � v

0 (x)
u00 (x)

u0 (x)
3 ;

 0 (� (u (x))) =
1

v0 (x)
;  00 (� (u (x))) = � v00 (x)

v0 (x)
3 :

If h 2 L1 (
;F ; P )N and x 2 RN , set x � h =
NX
i=1

xihi 2 L1. Denote by j�j the Euclidean norm

of RN . The next result yields Proposition 3 as a corollary.

Proposition 13 Let � be a Borel probability measure with bounded support on � and u; v : I ! R be
twice continuously di¤erentiable, with u0; v0 > 0. Then, for each h 2 L1 (
;F ; P )N and all x 2 RN
such that w + x � h 2 L1 (I),

C (w + x � h) = w+E �Q (x � h)�
1

2
�u (w)�

2
�Q (x � h)�

1

2
(�v (w)� �u (w))�2� (E (x � h))+o

�
jxj2

�
(37)

as x! 0.

Proof Let h =(h1; :::; hN ) and (wlog) assume that all the his are bounded.

Clearly, kx � hksup �
NX
i=1

jxij khiksup therefore there exists � > 0 such that kx � hksup < " (" is the

one obtained in Lemma 12) for all x 2 (��; �)N .21 In particular, for all x 2 (��; �)N and all ! 2 
,

w � " < w � kx � hksup � w + x � h (!) � w + kx � hksup < w + "

that is, w + x � h (!) 2 (w � "; w + "), and so w + x � h 2 L1 ([w � "; w + "]) � L1 (I). Set
O = (��; �)N .
De�ne

g : O � 
 ! R
(x; !) 7! u (w + x � h (!)) :

Next we show that g satis�es assumptions (a), (b), (c) of Lemma 11.

(a) For each x 2 O, ! 7! g (x; !) is F-measurable; in fact, ! 7! w + x � h (!) 2 (w � "; w + ") is
measurable and u : (w � "; w + ")! R is continuous.

21Take for example � = "

 
NX
i=1

khiksup + 1
!�1

. Then,

kx � hksup �
NX
i=1

jxij khiksup � �
NX
i=1

khiksup = "
 

NX
i=1

khiksup

!
=

 
NX
i=1

khiksup + 1
!
< ":
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(b) For each ! 2 
, x 7! g (x; !) is twice continuously di¤erentiable on O; in fact, given ! 2 
, for
all x 2 O and all j; k 2 f1; 2; :::; Ng

@jg (x; !) = u0 (w + x � h (!))hj (!) and @jkg (x; !) = u00 (w + x � h (!))hj (!)hk (!)

and the latter equation de�nes (for �xed !; j; k) a continuous function on O.

(c) The functions g, @jg, and @jkg are bounded on O � 
 for all j; k 2 f1; 2; :::; Ng; in fact, given
j; k 2 f1; 2; :::; Ng, for all (x; !) 2 O � 
 (choosing M like in Lemma 12)

jg (x; !)j = ju (w + x � h (!))j �M

j@jg (x; !)j = ju0 (w + x � h (!))j jhj (!)j �M khjksup
j@jkg (x; !)j = ju00 (w + x � h (!))j jhj (!)j jhk (!)j �M khjksup khkksup

and indeed a uniform bound K for the supnorms on O�
 of all these functions can be chosen.

Then (by Lemma 11) for each q 2 �, the function de�ned on O by

G (x; q) =

Z
g (x; !) dQ (!)

�
=

Z



u (w + x � h) qdP
�

is twice continuously di¤erentiable, the functions ! 7! @jg (x; !) and ! 7! @jkg (x; !) are measurable
for all x 2 O, and

@jG (x; q) =

Z
@jg (x; !) dQ (!)

�
=

Z



u0 (w + x � h)hjqdP
�

@jkG (x; q) =

Z
@jkg (x; !) dQ (!)

�
=

Z



u00 (w + x � h)hjhkqdP
�

for all x 2 O and j; k 2 f1; 2; :::; Ng.
Notice that, by point (c) above, for all j; k 2 f1; 2; :::; Ng and all (x; q) 2 O ��,

jG (x; q)j � K, j@jG (x; q)j � K, and j@jkG (x; q)j � K

and that, by de�nition, G (x; q) 2 u ([w � "; w � "]) where � is twice continuously di¤erentiable.
Set f = ��G. Next we show that the function f : O��! R, with (x; q) 7! � (G (x; q)), satis�es

assumptions (a), (b), and (c) of Lemma 11.

(a) For each x 2 O, q 7! f (x; q) is Borel measurable; in fact, given x 2 O, the function f (x; �) =
� (G (x; �)) = � (hu (w + x � h) ; �i), being a composition of continuous functions, is continuous.22

(b) For each q 2 �, x 7! f (x; q) is twice continuously di¤erentiable on O; this follows from the fact
that it is a composition of twice continuously di¤erentiable functions, speci�cally, given q 2 �,
for all x 2 O and all j; k 2 f1; 2; :::; Ng

@jf (x; q) = �0 (G (x; q)) @jG (x; q)

@jkf (x; q) = �00 (G (x; q)) @kG (x; q) @jG (x; q) + �
0 (G (x; q)) @jkG (x; q)

and the latter equation de�nes (for �xed q; j; k) a continuous function on O.

(c) the functions f , @jf , and @jkf are bounded on O �� for all j; k 2 f1; 2; :::; Ng; in fact, given
j; k 2 f1; 2; :::; Ng, for all (x; q) 2 O �� (choosing M like in Lemma 12 and K as above)

jf (x; q)j = j� (G (x; q))j �M

j@jf (x; q)j = j�0 (G (x; q))j j@jG (x; q)j �MK

j@jkf (x; q)j � j�00 (G (x; q))j j@kG (x; q)j j@jG (x; q)j+ j�0 (G (x; q))j j@jkG (x; q)j �MK2 +MK

and the latter majorization holds term by term.
22The duality pairing EP (XY ) in L2 is denoted, as usual, by hX;Y i for all X;Y 2 L2.
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By Lemma 11, the function de�ned on O by

F (x) =

Z
f (x; q) d� (q)

�
=

Z
�

�

�Z



u (w + x � h) qdP
�
d� (q)

�
is twice continuously di¤erentiable, the functions q 7! @jf (x; q) and q 7! @jkf (x; q) are measurable
for all x 2 O, and

@jF (x) =

Z
@jf (x; q) d� (q) and @jkF (x) =

Z
@jkf (x; q) d� (q)

for all x 2 O and j; k 2 f1; 2; :::; Ng.
Finally, for all x 2 O and all q 2 �, G (x; q) 2 u ([w � "; w � "]) implies f (x; q) = � (G (x; q)) 2

v
�
u�1 (u ([w � "; w � "]))

�
= v ([w � "; w � "]) and F (x) 2 v ([w � "; w � "]). Thus

c (x) =  � F (x) 8x 2 O

is well de�ned and twice continuously di¤erentiable on O = (��; �)N . Its second order McLaurin
expansion is

c (x) = c (0) +rc (0)x+ 1
2
x|r2c (0)x+ o

�
jxj2

�
: (40)

Next we explicitly compute it using repeatedly the relations obtained above as well as those
provided by Lemma 12. For all x 2 O,

@jc (x) =  0 (F (x)) @jF (x) and @jkc (x) =  00 (F (x)) @kF (x) @jF (x) +  
0 (F (x)) @jkF (x)

in particular for x = 0,

@jc (0) =  0 (F (0)) @jF (0) and @jkc (0) =  00 (F (0)) @kF (0) @jF (0) +  
0 (F (0)) @jkF (0)

but F (0) = � (u (w)) for all j; k 2 f1; 2; :::; Ng

@jF (0) =

Z
�

@jf (0; q) d� (q) =

Z
�

�0 (G (0; q)) @jG (0; q) d� (q)

=

Z
�

�0 (u (w))

�Z



u0 (w)hjqdP

�
d� (q) = �0 (u (w))u0 (w)

Z
�

�Z



hjqdP

�
d� (q)

= v0 (w)

Z
�

�Z



hjqdP

�
d� (q) = v0 (w)E �Q (hj)

and

@jkF (0) =

Z
�

@jkf (0; q) d� (q) =

Z
�

�00 (G (0; q)) @kG (0; q) @jG (0; q) + �
0 (G (0; q)) @jkG (0; q) d� (q)

=

Z
�

�00 (G (0; q)) @kG (0; q) @jG (0; q) d� (q) +

Z
�

�0 (G (0; q)) @jkG (0; q) d� (q)

where the last equality is justi�ed by the fact that both summands are continuous and bounded in
q.23 NowZ
�

�00 (G (0; q)) @kG (0; q) @jG (0; q) d� (q) =

Z
�

�00 (u (w))

�Z



u0 (w)hkqdP

��Z



u0 (w)hjqdP

�
d� (q)

= �00 (u (w))u0 (w)
2
Z
�

hhk; qi hhj ; qi d� (q) =
�
v00 (w)� v0 (w) u

00 (w)

u0 (w)

�
E� (hhk; �i hhj ; �i)

23Boundedness was already observed. Continuity in q descends from G (0; q) = u (w), @iG (0; q) = hu0 (w)hi; qi for
i = j; k, and @jkG (0; q) = hu00 (w)hjhk; qi.
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andZ
�

�0 (G (0; q)) @jkG (0; q) d� (q) =

Z
�

�0 (u (w))

�Z



u00 (w)hjhkqdP

�
d� (q) =

v0 (w)

u0 (w)
u00 (w)E �Q (hjhk) :

Finally
c (0) = w (41)

for all j 2 f1; 2; :::; Ng

@jc (0) =  0 (F (0)) @jF (0) =  0 (� (u (w))) v0 (w)E �Q (hj) =
1

v0 (w)
v0 (w)E �Q (hj) = E �Q (hj)

so that
rc (0)x = E �Q (x � h) 8x 2 O (42)

and, for all j; k 2 f1; 2; :::; Ng,

@jkc (0) =  00 (F (0)) @kF (0) @jF (0) +  
0 (F (0)) @jkF (0) =  00 (� (u (w))) v0 (w)

2
E �Q (hk)E �Q (hj)

+  0 (� (u (w)))

��
v00 (w)� v0 (w) u

00 (w)

u0 (w)

�
E� (hhk; �i hhj ; �i) +

v0 (w)

u0 (w)
u00 (w)E �Q (hjhk)

�
= �v

00 (w)

v0 (w)
E �Q (hk)E �Q (hj) +

�
v00 (w)

v0 (w)
� u00 (w)

u0 (w)

�
E� (hhk; �i hhj ; �i) +

u00 (w)

u0 (w)
E �Q (hjhk)

= �v (w)E �Q (hj)E �Q (hk) + (�u (w)� �v (w))E� (hhj ; �i hhk; �i)� �u (w)E �Q (hjhk)

= �
�
�u (w)� �Q (hj ; hk) + (�v (w)� �u (w))�� (hhj ; �i ; hhk; �i)

�
:

denoting by � �Q and �� the variance-covariance matrixes
�
� �Q (hj ; hk)

�N
j;k=1

and [�� (hhj ; �i ; hhk; �i)]Nj;k=1

r2c (0) = �
�
�u (w)� �Q + (�v (w)� �u (w))��

�
and

1

2
x|r2c (0)x =� 1

2
�u (w)�

2
�Q (x � h)�

1

2
(�v (w)� �u (w))�2� (E (x � h)) 8x 2 O: (43)

This concludes the proof since replacement of (41), (42), and (43) into (40) delivers

c (x) = w + E �Q (x � h)�
1

2
�u (w)�

2
�Q (x � h)�

1

2
(�v (w)� �u (w))�2� (E (x � h)) + o

�
jxj2

�
as x! 0, and c (x) = v�1 (F (x)) = C (w + x � h) for all x 2 O. If x 2 RN nO and w+x �h 2 L1 (I)
just set

o
�
jxj2

�
= C (w + x � h)�

�
w + E �Q (x � h)�

1

2
�u (w)�

2
�Q (x � h)�

1

2
(�v (w)� �u (w))�2� (E (x � h))

�
the property of vanishing faster than jxj2 as x! 0 has no bite there. �

Proof of Proposition 3 We �rst consider the case in which F is �nite. Let A = fA1; :::; ANg be
the family of atoms of F that are assigned a positive probability by P . Then f1A1 ; :::; 1AN

g is a base
for L2 and, setting h = (1A1 ; :::; 1AN

), the map

 : x 7!
NX
i=1

xi1Ai
= x � h
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is a norm isomorphism between RN and L2.24 In particular, choosing � > 0 as in the proof of

Proposition 13, for all x 2 
�
(��; �)N

�
=
n
x � h : x 2 (��; �)N

o
C (w + x) = w + E �Q (x)�

1

2
�u (w)�

2
�Q (x)�

1

2
(�v (w)� �u (w))�2� (E (x)) + o

�
jxj2

�
(44)

as x! 0 in RN . Set

R2 (x) = C (w + x)�
�
w + E �Q (x)�

1

2
�u (w)�

2
�Q (x)�

1

2
(�v (w)� �u (w))�2� (E (x))

�
for all x 2 

�
(��; �)N

�
, p = mini=1;:::;N P (Ai), and p = maxi=1;:::;N P (Ai), then

p
NX
i=1

x2i � kxk
2 � p

NX
i=1

x2i :

Now, if xn is a (nonzero) vanishing sequence in 
�
(��; �)N

�
,

jR2 (xn)j

p
NX
i=1

(xn)
2
i

� jR2 (xn)j
kxnk2

� jR2 (xn)j

p
NX
i=1

(xn)
2
i

and by (44) the three sequences above vanish as n ! 1. That is, R2 (x) = o
�
kxk2

�
since


�
(��; �)N

�
is a neighborhood of 0 in L2.

In the general case, let h 2 L1 (
;F ; P ). By Proposition 13, for all t 2 R such that w + th 2
L1 (I),

C (w + th) = w + E �Q (th)�
1

2
�u (w)�

2
�Q (th)�

1

2
(�v (w)� �u (w))�2� (E (th)) + o

�
t2
�

as t! 0. That is, setting, for all t 2 R such that w + th 2 L1 (I),

R2 (th) = C (w + th)�
�
w + E �Q (th)�

1

2
�u (w)�

2
�Q (th)�

1

2
(�v (w)� �u (w))�2� (E (th))

�
(45)

it results limt!0R2 (th) =t
2 = 0. Moreover, the assumption w + h 2 L1 (I) guarantees that we can

consider t = 1 in (45), that is

C (w + h) = w + E �Q (h)�
1

2
�u (w)�

2
�Q (h)�

1

2
(�v (w)� �u (w))�2� (E (h)) +R2 (h)

as wanted. �

A.2 Approximately Unambiguous Prospects

Proof of Proposition 5 (iii) trivially implies (i), which in turn implies (ii). To complete the proof,
we show that (ii) implies (iii). First notice that for all h 2 L2 and all t 2 R

�2� (E (th)) = �2� (tE (h)) = t2�2� (E (h)) : (46)

24Finite dimensionality guarantees that � is bounded, therefore � in this case �the assumption that the support of
� is bounded is automatically satis�ed.
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Therefore, �2� (E (h)) = R2 (h) implies

0 = lim
t!0

�2� (E (th))

t2
= �2� (E (h)) ;

It remains to show that �2� (E (h)) = 0 implies that hh; �i is constant on supp�. If h 2 L2 and
�2� (E (h)) = 0, then

hh; qi = E� (hh; qi) = E �Q (h)

for �-almost all q 2 �. If, per contra, there exists q� 2 supp� such that hh; q�i 6= E �Q (h), then the
continuity of hh; �i on � implies the existence of an open subset G of � such that hh; qi 6= E �Q (h) for
all q 2 G. But G \ supp� 6= ;, and so � (G) > 0, a contradiction. We conclude that hh; qi = E �Q (h)
for all q 2 supp�. �

Proof of Proposition 6 (i) trivially implies (ii) and (iii) implies (i). Next we show that (ii) implies
(iii). For all h 2 B, set

F (h) = C (w + h)�
�
w + E �Q (h)�

1

2
�u (w)�

2
�Q (h)

�
and

G (h) = C (w + h)�
�
w + E �Q (h)�

1

2
�u (w)�

2
�Q (h)�

1

2
(�v (w)� �u (w))�2� (E (h))

�
by (19) and Proposition 3, limt!0 F (th) =t

2 = limt!0G (th) =t
2 = 0. Therefore, for all h 2 B, setting

k = 2 (�v (w)� �u (w))�1,

�2� (E (h)) = lim
t!0

�2� (E (th))

t2
= lim

t!0
k
G (th)� F (th)

t2
= 0:

Since B is absorbing in L1, for all A 2 F there is " = "A > 0 such that "1A 2 B, thus

�2� (E (1A)) =
�2� (E ("1A))

"2
= 0

and 1A is approximately unambiguous for all A 2 F . Then, by Proposition 5, for all A 2 F ,

Q (A) = EQ (1A) = EQ0 (1A) = Q0 (A) 8Q;Q0 2 supp�;

that is, Q = Q0. �

A.3 Orthogonal Decomposition

By Proposition 5, the collection M of all approximately unambiguous prospects is easily seen to be a
closed linear subspace of L2. Clearly,M contains all risk-free (constant) prospects, and its orthogonal
complementM? is a closed subspace of

�
h 2 L2 : EP (h) = 0

	
. The Hilbert Decomposition Theorem

then implies the following decomposition of each prospect.

Proposition 14 For each prospect h 2 L2 there exist unique hc 2 R, hg 2M with EP (hg) = 0, and
ha 2M? such that

h = hc + hg + ha: (47)

Moreover,
�2P (h) = �2P (h

g) + �2P (h
a) (48)

and
�2� (E (h)) = �2� (E (h

a)) : (49)

In particular, h is approximately unambiguous if and only if ha = 0, and it is risk-free if and only if
hg = ha = 0.
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Proof Let h 2 L2. By de�nition of M? and by the Hilbert Decomposition Theorem, decomposition
(47) and its uniqueness are easily checked. In particular, EP (h) = hc. Moreover, the maps h 7! hg 2
M and h 7! ha 2M? are linear and continuous operators.
Since hg and ha are orthogonal and have zero mean, then

�2P (h) = kh� EP (h)k
2
= kEP (h) + hg + ha � EP (h)k2 = khg + hak2

= khgk2 + khak2 = �2P (h
g) + �2P (h

a) ;

which proves (48).
Finally, observe that hh; �i = hhc + hg; �i + hha; �i and hc + hg 2 M implies that hhc + hg; �i is

�-almost surely constant, thus �2� (hh; �i) = �2� (hha; �i). The rest is trivial. �

In view of decomposition (47), the constant hc �which is equal to EP (h) �can be interpreted
as the risk-free component of h. Indeed, h = hc if and only if �2P (h) = 0. The next component,
hg, can be viewed as a fair gamble because hg 2 M and EP (hg) = 0. The sum hc + hg of the �rst
two components is approximately unambiguous. In contrast, (48) and (49) show that the �residual�
component ha re�ects both risk and ambiguity in pure variability terms (net of any level e¤ect factored
out by the constant hc).

In our portfolio exercise of Section 6.3.1, this implies the orthogonal decompositions rm =
EP (rm) + rgm and re = EP (re) + rge + rae of the purely risky and the ambiguous assets. In par-
ticular, EP (re) + rge = re � rae is the purely risky component of the ambiguous asset. Simple algebra
shows that

�P (rm; re) =
�P (rm; re � rae )

�2P (rm)
(50)

which con�rms the interpretation of � as a measure of the risk sensitivity of re relative to rm.

A.4 Portfolio

Derivation of (24). Setting

m = [EP (r1 � rf ) ; :::; EP (rn � rf )]| ; �P = [�P (ri; rj)]
n
i;j=1

�� = [�� (E (ri) ; E (rj))]
n
i;j=1 ; � = ��P + ���

(23) becomes

max
w2Rn

�
rf +w �m� �

2
w|�Pw �

�

2
w|��w

�
which is equivalent to

max
w2Rn

�
w �m� 1

2
w|�w

�
so that the optimal solution bw satis�es �bw=m. �

Proof of Lemma 7 Since @D=@�2� = � and @D=@� = �2�, simple algebra shows that

@ ( bwm= bwe)
@�2�

= �
B

CA�HB and
@ ( bwm= bwe)

@�
= �2�

B

CA�HB (51)

and this implies the �rst equality in (27). Analogously,

@ bwm
@�2�

= �
(AC �BH)H
(CD �H2)

2 and
@ bwe
@�2�

= �� (CA�HB)C
(CD �H2)

2 ; (52)

@ bwm
@�

= �2�
(AC �BH)H
(CD �H2)

2 and
@ bwe
@�

= ��2�
(CA�HB)C
(CD �H2)

2 (53)
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which imply the other equalities in (27). �

Proof of Proposition 8 By de�nition

�P (rm; re) =
H

C
and �P (rm; re) = EP (re)� rf � �P (rm; re) (EP (rm)� rf ) = A� H

C
B (54)

while, by (51),
@ ( bwm= bwe)

@�
= �2�

B

CA�HB
thus

sgn
@

@�

� bwmbwe
�
= sgn (CA�HB) = sgn

�
CA�HB

C

�
= sgn�P (rm; re)

that is (30) holds.
Moreover, by (53) and (54)

sgn
@ bwe
@�

= sgn (HB � CA) = � sgn�P (rm; re) (55)

that is the �rst part of (31) holds. Moreover, (53) and (54) again deliver

@ bwm
@�

= �
 
��2�

(CA�HB)
(CD �H2)

2C

!
H

C
= �@ bwe

@�
�P (rm; re)

which together with (55) delivers the second part of (31). �

Proof of Proposition 9 By (54)

�P (rm; re) = A� H

C
B

but bwe = CA�HB
CD �H2

which together with CD �H2 > 0 and C > 0 delivers (32). �

Proof of Proposition 10 Direct computation delivers

�
@ ( bwm= bwe)

@�
= ��@ ( bwm= bwe)

@�

which together with Proposition 8 determines the sign of @ ( bwm= bwe) =@�. Moreover,
@ bwe
@�

@ ( bwm= bwe)
@�

= �
��2�B

�2 (CD �H2)
2

�
H2 � C

�
D � ��2�

��
hence

@ bwe
@�

@ ( bwm= bwe)
@�

> 0, H2 � C
�
D � ��2�

�
< 0, �P (rm; re)

2
< �2P (rm)�

2
P (re) :

By the Cauchy-Schwartz inequality the above relation fails if and only if

re � EP (re) = k (rm � EP (rm))

for some k 2 R, but this would imply that re is approximately unambiguous, which is absurd. �
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A.5 Proofs of Section 2

Proof of Lemma 1 Consider the duality inclusion � :supp� !
�
L2
��
given by q 7! h�; qi. For all

X 2 L2, the composition X � � :supp�! R given by q 7! hX; � (q)i = hX; qi is (norm) continuous and
hence Borel measurable on supp�, that is, � is weak* measurable (see, e.g., Aliprantis and Border,
2006, Ch. 11.9). The range of � is norm bounded since supp� is norm bounded and � is an isometry.
Therefore, � is Gelfand integrable over supp� (ibidem, Cor. 11.53). In particular, there exists a unique
�q 2 L2 such that

hX; �qi =
Z
supp�

hX; � (q)i d� (q) ; 8X 2 L2: (56)

By (56) it readily follows that �q 2 �. �

Proof of Lemma 2 Let f 2 L1 (I) and set a = essinf f and b = esssup f . There exists A 2 F
with P (A) = 1 such that f (A) � [a; b] � I. Since u is increasing and continuous u (f (!)) 2
[u (a) ; u (b)] � u (I) for all ! 2 A. Moreover, u � fjA : A ! [u (a) ; u (b)] is measurable since fjA is
measurable and u is continuous. Therefore, u (f) is de�ned P -almost surely on 
, measurable, and
u (a) � u (f) � u (b) P -almost surely. It follows that hu (f) ; �i : � ! R, with q 7!

R


u (f) qdP , is

norm continuous, a¢ ne, with range in [u (a) ; u (b)] � u (I). Therefore, � � hu (f) ; �i : � ! R, with
q 7! �

�R


u (f) qdP

�
, is well de�ned, norm continuous, with range in [� (u (a)) ; � (u (b))] � � (u (I)).

Therefore, V (f) =
R
�
� � hu (f) ; �i d� 2 [� (u (a)) ; � (u (b))] � � (u (I)) is well de�ned.

The �rst part of this proof yields V (L1 (I)) � � (u (I)). Conversely, if z = � (u (x)) for some
x 2 I, then x1
 2 L1 (I) and V (L1 (I)) 3 V (x1
) =

R
�
� � hu (x) ; �i d� = � (u (x)) = z. �
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