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Abstract

We consider a regulated monopolist that faces a continuum of markets (e.g., [0, 1]) although
a finite number k of prices must be charged. As a function of the integer k, we provide the
optimal profit policy defined as the optimal market segmentation and the discriminatory prices.
The social welfare is maximized for three prices, but the result is far below the benchmark, the
welfare under the Ramsey price. As this price implies no profit, we study regulatory policies
that yield a welfare closer to the benchmark, but compatible with "reasonable" profits. We
show that a small amount of price discrimination can substantially enhanced the welfare when
the monopolist is subject to an average price constraint.
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1 Introduction

Price discrimination is a very common practice both in domestic and in international markets. For
example, the price of a train’s ticket generally differs as to whether the purchaser is a senior citizen
or not. In the same way, the price of a drug (or a car) depends on the country where the purchase
is made. In the first example, the market segmentation for price discrimination is based on an age
criteria whereas in the second, it is based on a geographic criteria. In the simplest case of a single
firm in a monopoly situation, the present article examines the welfare effects of regulating market
segmentation and price discrimination. Its aim is to shed some light on the following questions.

Should a monopolist be allowed to segment its set of customers? If yes, what is the optimal
number (if any) of market segments from a social welfare point of view ? Should one only regulate
the number of market segments or should one also regulate market segments and/or prices ?

In Economic theory, from the pioneered work of Joan Robinson (1969), the analysis of the welfare
effect of (third-degree) price discrimination in monopoly1 has received a considerable academic
attention. The problem has been to identify the conditions under which price discrimination is
harmful, or beneficial, for the social welfare. In a constant marginal cost model, Schmalensee
(1981) has shown that when the demand function of each market segment is linear, if all the market
segments are served under uniform pricing, then, price discrimination reduces the social welfare
because the total output does not increase. Varian (1985) has shown that this "output effect" turns
out to be true in a much more general model. By deriving the upper and the lower bound to the
change in social welfare, Varian (1985) has shown that a necessary condition (but not sufficient) for
price discrimination to increase social welfare is that output increases.

However, the analysis of the welfare effect (e.g., Cowan 2007, He and Sun 2006, Kaftal and Pal
2008, Shih et al 1988, Schmalensee 1981, Schwartz 1990, Varian 1985) in the third-degree price
discrimination literature2 always reduces to a pure pricing problem because the underlying market
segmentation is always exogenous, i.e., both the number k and the segments are fixed. Thus, for the
given market segmentation, the typical problem is to compute the social welfare under two extreme
scenarios; no discrimination, and "complete" price discrimination, which is the situation where the
monopolist may charge k discriminatory prices when there are k separate segments. Assuming that
the market segmentation is given a priori is indeed surprising because in practice, market segmenta-
tion and discriminatory prices are not chosen independently; they are rather chosen simultaneously
by the monopolist to maximize profits. In the present framework, market segmentation and prices
are endogenous, so that it becomes possible to study the monopolist’s optimal profit policy (market
segmentation and prices), but also the various ways this optimal profit policy can be regulated to
enhance the social welfare.

We consider a patented monopolist that produces an "intellectual property good" (e.g., phar-
maceuticals, computer software...) that has required an important investment in terms of research
and development, but we focus on the commercialization process, that is, on the segmentation and
the pricing problem. A convenient way to study this problem is to consider the case in which the

1See e.g., Phlips 1988, Stole 2007, or McAfee 2008 for a review.
2The article of Malueg and Schwartz (1994) is a notable exception.
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set of customers Ω has the cardinality of the continuum, e.g., Ω = [0, 1]. For a given number k of
segments, the optimal profit policy is defined by

• the optimal way to segment the set Ω = [0, 1] in k disjoint groups.

• the optimal discriminatory price to be charged to each of these k groups.

The possibility for the monopolist to freely segment the set of customers critically depends of
the doctrine of right’s exhaustion. Roughly speaking, when there is no exhaustion of rights, once
the good of the owner of the intellectual property rights (IPR) has been sold, its rights are not
exhausted so that parallel imports (henceforth PI) are not legally possible. On the contrary, under
say the "community exhaustion", which is the doctrine adopted by the European Court of Justice3,
the discriminating monopolist can not legally ban PI from a low price country to a high price
country within EU. As a consequence, in such an environment, the discriminating monopolist must
find strategies to eliminate, or at least to mitigate the parallel import problem (see e.g., Ahmadi
and Yang 2000, Cavusgil and Sikora 1988, Danzon and Towse 2003). Two polar scenarios will be
considered.

1. The number k of segments is fixed by the regulator, but, due to the perfect enforcement of a
no exhaustion doctrine, PI are not possible.

2. The number k of segments can be freely chosen by the monopolist, but under an international
exhaustion doctrine so that PI can not be banned.

We solve the optimal profit policy as a function of k when PI are not a threat. It is shown that
on each (separate) market segment, the well-known price cost margin (or Lerner index) is satisfied.
This optimal profit policy also reveals that if the monopolist is allowed to create k + 1 market
segments rather than k, this both changes the existing market segmentation and prices. This means
that these two quantities (i.e., market segments and prices) can not be chosen independently. We
then solve the optimal profit policy with respect to k when the cost of isolating the market segments
is an increasing function of k. We show that it is never optimal to create more than few segments
even when the cost is low. This best trade-off between the gain and the cost associated to a more
complete price discrimination provides a natural foundation of market segmentation.

We then turn to the regulatory aspect of our problem assuming for simplicity no exhaustion of
rights. We show that the social welfare under the Ramsey price4, the benchmark, is approximately
30% higher than the usual welfare measures in the third-degree price discrimination literature (i.e.,
uniform pricing and "complete" price discrimination). However, under this Ramsey price, the mo-
nopolist’s profit is equal to zero, so that the rate of return of the underlying R & D investment is
negative. Consequently, one must find regulatory policies (that may restrict market segmentation
and/or pricing policies) that aim to yield a social welfare closer to the benchmark, but subject to the
constraint that profits are "reasonable", e.g., higher than the non discriminatory case. In their well
known paper, Malueg and Schwartz (1994) have considered a "mixed system" in which the monop-
olist has to segment its set of markets. They analyzed the case in which the market segmentation

3From the treaty of Rome, the European Union is considered as a single market.
4The Ramsey price maximizes the social welfare.
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is regulated but not the prices, and show that their mixed system is a Pareto improvement over
the uniform pricing case. One of the main result of this paper is to show that, under the optimal
market segmentation, when the monopolist’s pricing policy must satisfy an average-price constraint,
as in Armstrong and Vickers (1991), the social welfare is an aggregate Pareto improvement over
the no discrimination case, but also over the Malueg and Schwartz’s (1994) "mixed system". With
three prices, under the above regulatory policy, we show that, compared to the no discrimination
situation, the profit increases by around 6% and the aggregate consumers surplus by 25%. From
a dynamic point of view, the patented monopolist may have an incentive to cheat. However, by
announcing a stochastic audit, and the shut down of the firm if it is found that the regulatory policy
has not been followed, the regulator is able to eradicate this mis-behavior even when the annual
probability of being auditing is a very low, typically less than 1%.

The next section of this paper, devoted to the presentation of the model and the results, is
organized as follows. In the first subsection, we present the assumptions and the required definitions.
In the second and third subsections, we solve the profit maximization problem of the monopolist
under two different regimes; no exhaustion and international exhaustion. In the last subsection, two
regulatory policies that may yield a social welfare closer to the benchmark are analyzed. Finally,
we briefly conclude.

2 A model of incomplete third-degree price discrimination

2.1 Assumptions, definitions and discussion

Let q(ω, P ) be the demand function of a given customer ω ∈ Ω where Ω = [0, β] is a compact subset
of R+. We consider the case of an uniform measure5 m and of the following set of demand functions.

q(ω, P ) =





ω − P P ≤ ω

∀ω ∈ Ω
0 P > ω

(1)

The parameter ω may be interpreted of the fraction of the income of customer ω devoted to the
consumption of the good produced by the monopolist. Equation (1) defines thus the "linear parallel
demand", as opposed to the "linear rotating demand" considered in Malueg and Schwartz (1994)
(and more recently in Szymanski and Valletti 2006) in which q(ω, P ) = 1− 1

ωP , where ω is uniformly
distributed in Ω =]1−x, 1+x[ and where the parameter x ∈ [0, 1] measures the "dispersion" of the
continuum. We consider in what follows a monopolist that produces an "intellectual property good"
(e.g., pharmaceuticals, computer software...) which is protected by a patent or trademark. While
the conception of this good has required an important R & D investment, we focus uniquely on its
commercialization process assuming that the research has been successful. As noted by Ganslandt
and Maskus (2007) among others, since the essential of the cost of this kind of products is fixed, to
simplify matters, as e.g. Valletti and Szymanski (2006) or Malueg and Schwartz (1994), we shall

5To be precise, (Ω,F , m) is our underlying measured space of agents, where F is the σ-algebra (i.e., the set of
subsets that are stable by complementation and by countable union and or intersection) generated by the topology
of Ω and where m : F → R+ is the Lebesgue measure, i.e., the σ-additive set function such that for any interval
]a, b[, m(]a, b[) = b − a. Expressed in "differential" terms, m(dω) = dω so that for any continuous function f ,∫
Ω

f(ω)m(dω) =
∫
Ω

f(ω)dω.
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assume that the marginal cost of production Cm is identically equal to zero. For each ω ∈ Ω, the
profit function Π(ω, P ) = P (ω − P ) so that the monopoly price is equal to P ∗(ω) = ω

2 .

Definition 1 We say that the price discrimination problem is complete if the monopolist can charge
the monopoly price P ∗(ω) = ω

2 , ∀ ω ∈ Ω. We say that it is incomplete otherwise.

Note that the definition of incomplete price discrimination deals with linear pricing and it thus
not related to the imperfect price discrimination considered in Chiang and Spatt (1982) as they are
concerned with non linear pricing. However, the notion of imperfect price discrimination used in Liu
and Serfes (2005) is actually very similar to ours because, in their framework, given k sub-intervals
that forms a partition of [0, ∆] (where ∆ > 0), the firm can charge a different price to each of
the k groups. In their model, as in ours, k = 1 is the no price discrimination situation whereas
k = ∞ is the perfect (complete for us) price discrimination. Of course, in practice, only a finite
number k of prices makes sense. The realistic and interesting cases are thus those in which the
price discrimination is incomplete: the patented monopolist must thus divide optimally the set of
customers Ω in k disjoint segments and charge the optimal discriminatory price to each segment.
The integer k is fixed by the regulator and its choice will be discussed later. This segmentation
implicitly assumes that the monopolist can perfectly isolate the k segments so that there is no
parallel trade problem.

Definition 2 We say that there is a system of parallel trade if the price differential is arbitraged by
an intermediary who sell the product from the low price segment to the high price segment without
the authorization of the owner of the intellectual property right.

When a given consumer "buy low and sell high", this is clearly a parallel trade but not a system
of parallel trade because the consumer acts on her own behalf, i.e., not to do business. The recent
iPhone provides a good example of this. A consumer has typically a strong rebate on the price
of the iPhone if she commits to stay with the same carrier for 12 (or 24) months. The price of
the new iPhone is around 700 euros with no commitment although it is around 150 euros with 12
(or 24) months contract. Thus, each year, many consumers can have a new iPhone for about 150
euros while they can sell the used one on eBay for a higher price, e.g. 300 euros. Although such
parallel resale may not be negligible6, they should not impact too much the market segmentation
policy of Apple as this is not a system of parallel trade. On the contrary, when a system of parallel
trade exists (e.g., parallel imports), this may dramatically impacts the pricing strategies of a firm.
Valletti and Szymanski (2006) report that 20% of the (branded) pharmaceuticals in U.K was sold
via a system of parallel trade. Arfwedson (2004) reports that within the European Union, parallel
import of drugs are estimated to represent $3.3 billion in 2001.

From a international monopolist point of view, the legality of parallel import (PI) critically
depends on the exhaustion of right’s doctrine7. Roughly speaking, this doctrine means that once
the good has been placed on a market segment (nation, region, world), the monopolist that holds

6See however Peter Burrow, "Inside the iPhone Gray Market", BusinessWeek, February 12, 2008 in which the
author relates that 800.000 to 1 million of iPhones bypass Apples’s restriction.

7See e.g., Arfwedson (2004), Ganslandt and Maskus (2007), Szymanski and Valleltti (2005), Szymanski and
Valleltti (2006). In USA, a similar doctrine, known as "first sale doctrine" is applied.
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the IPR (intellectual property right) can not restrict other sales inside the segment. For example,
the European Union has adopted the "Community Exhaustion" policy, which means that the hold-
ers’exclusive rights are exhausted (or extinct) once the good has been placed in the European Union
because the EU is legally a single market. However, parallel imports from outside the European
Union is prohibited. To borrow the example of Szymanski and Valletti (2006), under the Commu-
nity Exhaustion, a U.K exporter can not prevent the resale of a given (patented) drug product first
sold in France back into the U.K, but can prohibit the re-entry of the drug product designed to be
sold outside the European Community (e.g., in Africa). Actually, the Agreement on Trade-Related
Aspects of Intellectual Property Rights (TRIPS) gives WTO members the freedom to design their
own exhaustion doctrine although the European Court of Justice considers a regional notion of
exhaustion8. There exists three regimes of doctrine of exhaustion; national, regional, and interna-
tional. Under national exhaustion, the monopolist can (in principle) charge a high price in a given
country and a low price in another one without having to worry about PI. Under regional exhaus-
tion, the IPR owner can only block PI from countries outside the region but not inside. Finally,
under the international exhaustion, the right holder of the IPR cannot prevent at all PI. We shall
consider two extremes situations; no exhaustion and international exhaustion.

1. Under no exhaustion, PI are not allowed so that the monopolist can freely segment its set of
markets.

2. Under international exhaustion, PI can not be banned so that the monopolist must find
strategies to counter the PI problem.

Throughout this article, we assume complete (or full) information so that both the monopolist
and the regulator knows the set of demand functions given by equation (1) and Ω.

2.2 Profit maximization under no exhaustion when the monopolist is regulated

We consider a monopolist who can charge at most k different prices, and thus forms k different
segments. The regulatory constraint comes with the legal enforcement of the patent due to a no
exhaustion doctrine. Thus, the monopolist can freely segment the set of markets in k disjoint groups
A1, ...Ak and charge respectively the vector of price P = (P1.....Pk), with Pi < Pi+1 for i = 1, ...k;
Pi is the price charged for the segment Ai, which is an interval. Thus, a market segmentation is

simply a collection of interval Ai that forms a partition of Ω, i.e., such that
k⋃

i=0

Ai = Ω, where A0 is

the subset (possibly empty) of customers which are not served under the vector P. Following Wedel
and Kamakura (2000), one may define a segmentation basis as a set of variables or characteristics
used to assign customers (or potential customers) to homogeneous groups. In general, due the
multidimensional aspect of the characteristics of each customer (i.e., age, income, sex, country...),
market segmentation is a rather complicated problem because it requires the use of clustering
methods. In our model, things are much more simple because the market segmentation is based on
an unidimensional characteristic, the income ω ∈ [0, 1].

8See e.g., section 2.2 in Atik and Lidgard 2006.
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Lemma 1 Given equation (1), the set of "interesting" market segmentation reduces to the choice
of numbers x1, ...xk such that 0 < x1 < x2 < ... < xk < β, where xi and xi+1 forms the extremities
of the market segment Ai, for i = 1, 2...k.

It has been assumed that the monopolist both chooses the market segments A1, ...Ak and the
prices P = (P1.....Pk). To prove lemma 1, assume for a moment that decisions are decentralized
in the following sense. The monopolist is now the headquarters whose job is to choose the price
P = (P1.....Pk), with Pi < Pi+1 for i = 1, ...k, and Ω is the set of subsidiaries; each subsidiary ω ∈ Ω
is in a monopoly situation and faces a linear demand function q(ω, P ) = ω − P . Now, for a given
vector P, each subsidiary ω is free to choose one price Pi of P = (P1.....Pk). Each subsidiary ω ∈ Ω
chooses indeed the price Pi that maximizes its own profit function Π(ω, P ) = P (ω − P ). Let Ai be
the subset of subsidiaries that choose the price Pi. Note that Ai may be empty for some i but not
for all as each subsidiary must choose a price. It is rather natural to assume that if, for a given ω,
Π(ω, Pi) = 0 for all i = 1...k, then, ω chooses the lowest price, i.e., P1. The set of subsidiaries that
chooses the price P1 but for which q(ω, P1) = 0 forms the group A0. As a tie breaking rule, if ω

is indifferent between two prices, we assume that she chooses the lowest one. We are now ready to
prove lemma 1

Proof. It suffices now to show that if two subsidiaries ω and ω̄, with ω̄ > ω choose the price Pi,
then, for all ω ∈]ω; ω̄[, the subsidiary ω also chooses the price Pi. Assume that subsidiaries ω and
ω̄ choose the price Pi. We thus have to show that, for all α ∈]0, 1[, the subsidiary αω̄ + (1 − α)ω
also chooses the price Pi. The choices of ω̄ and ω imply that Π(ω, Pi) > Π(ω, Pi−1) and that
Π(ω̄, Pi) > Π(ω̄, Pi+1), which is equivalent to the two inequalities; ω−Pi > Pi−1 and ω̄−Pi < Pi+1.
Consequently, it is easy to see that for all α ∈]0, 1[, αω̄+(1−α)ω−Pi > Pi−1 and αω̄+(1−α)ω−Pi <

Pi+1 for all i = 1...k. It is thus never interesting, from a total profit point of view, to consider a
market segmentation in which say ω and ω̄ would charge the price Pi although a subset of ]ω; ω̄[
would charge a different price. The set of interesting market segmentation, from a total profit point
of view, reduces thus to the numbers x1, x2...xk, the extremities of the market segments ¤

Lemma 1 shows that in our framework, one can restrict the analysis to the case in which the
market segments are "consecutive". It is important to point out that this property depends on the
fact that demand functions have the same functional form. Consider the case in which Ω = {1, 2...n},
where the demand function of each market segment is given by q(ωj , P ) = (ωj−P )αj , with ωj+1 > ωj

and αj > 0 for all j ∈ Ω. It can be shown that if αj = α for all j, then, market segments9 are
consecutive. However, if αj may be higher or lower than one, i.e., if demand functions may be
concave or convex, then, the market segments need not be consecutive.

Pricing with a fixed segmentation

Before we solve the full problem, let us consider the simpler case in which the various segments
Ai =]xi, xi+1] for i = 1, ...k are fixed. Let Pi be the price charged to the segment Ai. There are thus
two cases; either Pi ≤ xi or Pi ∈]xi; xi+1] because it is never optimal to charge a price Pi > xi+1.
The aggregate demand of the fixed segment Ai denoted Q(xi, xi+1, Pi) ≡ Qi(Pi) is equal to

9See Braouezec (2009) for a proof and definitions in a model with a finite set of markets where decisions are
decentralized.
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Qi(Pi) =





∫ xi+1

xi

(ω − Pi)dω = (xi+1 − xi)
(

xi+1 + xi

2
− Pi

)
if Pi ≤ xi

∫ xi+1

Pi

(ω − Pi)dω =
1
2
(xi+1 − Pi)2 if Pi ∈]xi; xi+1]

(2)

Note that when Pi ≤ xi, the demand function Qi(Pi) is a linear function of the price Pi while
when Pi ∈]xi;xi+1], it is a convex function of the price. Because there are no production costs, the
total profit of the segment Ai is equal to

Πi(Pi) =





Pi(xi+1 − xi)
(

xi+1 + xi

2
− Pi

)
if Pi ≤ xi

Pi

2
(xi+1 − Pi)2 if Pi ∈]xi; xi+1]

(3)

Let P ∗
i be the solution of dΠi(P

∗
i )

dPi
= 0. It is easy to show that P ∗

i = xi+1

3 if P ∗
i ∈]xi; xi+1] and

that P ∗
i = xi+1+xi

4 if P ∗
i ≤ xi. It thus follows that

P ∗
i =





xi+1

3
if xi+1 > 3xi

xi+1 + xi

4
if xi+1 ≤ 3xi

(4)

In both cases, the second order conditions are satisfied. Thus, when the segmentation of the set
of markets Ω is fixed, the problem reduces to k independent pricing problems.

Optimal profit policy: definition and characterization

As the market segmentation is not fixed but rather part of the optimization problem, the monopolist
must find simultaneously the optimal segmentation of the set of markets in k groups, and the optimal
price to be charged to each group. Let

A0 = [0, x1] (5)

Ai = ]xi, xi+1] for i = 1, 2...k (6)

with xk+1 = β (7)

be a segmentation of the set of markets Ω in k (disjoint) segments that forms a partition of Ω, and
let Pi be the price charged to the segment Ai. From the previous paragraph, the case in which
Pi > xi is unlikely to be optimal as it implies that xi+1 > 3xi for i = 1, 2....k, so that xk = 3k−1x1,
with xk < β. We shall thus directly focus on the case in which Pi ≤ xi.

Definition 3 Let

X = {x ∈ Ωk : x1 ≤ x2 ≤ ... ≤ xk ≤ β} (8)

Px = {P ∈ Rk+ : Pi ≤ xi,∀ i = 1, 2...k} (9)

U = X × Px (10)

8



where X is the set of segmentation policies, Px the set of pricing policies given x and U the set of
profit policies.

Note that although the set of pricing policies Px takes as given a segmentation policy, from a
mathematical point of view, we shall determine simultaneously the optimal segmentation policy and
the optimal pricing policy. Let u = (x,P) ≡ (x1, ...xk; P1, ...Pk) be a given profit policy. Without
further information, x and P are of dimension k. For a given profit policy u ∈ U , the aggregate
profit function is equal to

Π(u) =
k∑

i=1

Πi(xi, xi+1, Pi) (11)

where the profit function of the segment Ai (see equation (3)) is equal to

Πi(xi, xi+1, Pi) ≡ Πi(Pi) = Pi(xi+1 − xi)
(

xi+1 + xi

2
− Pi

)
(12)

From a mathematical point of view, this optimization problem turns out to be related to the arti-
cle of Moorthy (1984) (especially section 8) and Oren et al. (1984). However, from an economic point
of view, we depart from the two mentioned articles in that we focus on a linear pricing/homogeneous
good model. Let u∗ = arg max

u∈U
Π(u) be the optimal profit policy.

Proposition 1 Let β = 1. The optimal profit policy u∗ ∈ U is given by

1. x∗i =
2i− 1
2k + 1

for i = 1...k

2. P ∗
i =

i

2k + 1
for i = 1...k, where P ∗

i is the price charged to the segment A∗i =]x∗i ; x
∗
i+1].

Proof. See the appendix

Unless otherwise specified, we now assume that β = 1. Proposition 1 says that it is optimal for
the monopolist to charge the price P ∗

i = i
2k+1 to the segment A∗i =

]
2i−1
2k+1 ; 2i+1

2k+1

]
for i = 1, ...k. In

the particular case in which k = 1, x∗ = P ∗ = 1
3 ; it is thus optimal to serve the segment ]13 ; 1] so

that only 66% of the markets are served. When k ≥ 2, it is optimal for the monopolist to slice the
set [0, 1] in k segments of identical length equal to 2

2k+1 . As one can expect, when k increases, the
length of each segment decreases, which means that the market segmentation becomes finer, and
the difference between the highest and the lowest price tends to 1

2 . Note importantly that when we
move from k to k + 1, this both changes the optimal segmentation and the optimal pricing policy.
As an example, when k = 2, the two optimal segments of markets are ]15 ; 3

5 ] and ]35 ; 1] and their
associated optimal prices are respectively 1

5 and 2
5 . As the intuition suggests, one price is higher

than the uniform monopoly price and one price is lower. When k = 3, the three optimal segments
are now given by ]17 ; 3

7 ], ]37 ; 5
7 ], ]57 ; 1] and their three associated optimal prices are 1

7 ,
2
7 ,

3
7 . Note that

only the highest price is higher than the uniform monopoly price P ∗. To understand proposition 1
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with standard economic theory, recall that from basic monopoly theory, we know that the optimal
price P ∗ of a given market must be such that

P ∗ − Cm

P ∗ =
1

|E(P ∗)| (13)

where E(P ∗) is the elasticity of demand evaluated at P ∗, and Cm is the constant marginal cost.
The left hand side of equation (13) is generally called the price-cost margin (or Lerner index) and is
implied by the first order condition of the profit maximization problem. When Cm = 0, the price-
cost margin reduces to one so that |E(P ∗)| = 1. Returning to our model in which the marginal cost
is zero, it is easy to show that the price cost margin condition is satisfied because

|E(P ∗
i )| =

∣∣∣∣
dQi(P ∗

i )
dPi

∣∣∣∣
P ∗

i

Qi(P ∗
i )

= 1 i = 1, 2...k (14)

so that one can safely conclude that (x∗,P∗) ∈ U is the optimal profit policy. From a mathematical
point of view, the difficult part is to show that the Hessian matrix of the profit function, whose
dimension is (2k × 2k), is negative definite for any value of k ∈ N∗. The total profit under the
optimal profit policy, denoted Π(x∗,P∗) ≡ Π∗k, is equal to

Π∗k =
k∑

i=1

Πi(P
∗
i ) =

k∑

i=1

2i2

(2k + 1)3
=

k(1 + k)
3(2k + 1)2

(15)

When k = 1, we know that P ∗ = x∗ = 1
3 , so that the profit is equal to Π∗1 = 2

27 . Consider now
the case in which the monopolist can completely price discriminate. As P ∗(ω) = ω

2 , Π(P ∗(ω)) = ω2

4

for each ω ∈ Ω, the total profit under the complete third-degree price discrimination is equal to

Π∗cplte =
∫ 1

0
Π(P ∗(ω))dω =

1
12

(16)

From equation (15), it is easy to see that when k → ∞, Π∗k → Π∗cplte, as one can expect.
By moving from a uniform pricing to a complete third-degree price discrimination situation, the
monopolist increases its profit by 12.5%. Note interestingly that Π∗3

Π∗cplte
= 0.9796, which means that

the monopolist is able to capture 98% of the maximum total profit with only 3 prices! In a recent
article, Chu Leslie and Sorensen (2009) get a similar result in a bundle pricing problem. They find
that with a rather simple pricing rule, the monopolist is able to generate 99% of the maximum total
profit. Using part 2 of proposition 1, let

f(k) = 1− 1
2k + 1

(17)

be the proportion of markets that are served under the optimal profit policy (x∗,P∗).

Corollary 1 Assuming that k ∈ R+, the functions f(k) and Π∗k are increasing and concave func-
tions of k.
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Proof. It is easy to show that f ′(k) > 0 and f ′′(k) < 0 and that Π′∗k > 0 and Π′′∗k < 0 for all
k ∈ R+ ¤

It is only when the number of prices k goes to the infinity that all the markets will be served.

Remark 1. Consider once again the "decentralized decisions" version of our model (see the proof
of lemma 1) in which the monopolist chooses the price P and each subsidiary ω chooses one price
Pi of P. It is not difficult to show that if the headquarters proposes the vector of optimal prices P∗

given in proposition 1, then, the resulting endogenous segments A1, A2...Ak are exactly those given
in proposition 1. It is also very easy to show that under the optimal profit policy, each subsidiary x∗i ,
for i = 1, 2...k is actually indifferent between the prices P ∗

i and P ∗
i−1. This "indifference property"

turns out to be used directly by Oren et al (1984) as an optimality condition to analyze the solution
of their optimization problem. As we shall now see, the so called weak-strong partition, frequently
used in the third-degree price discrimination literature (e.g., Robinson 1969, Schmalensee 1981, Shih
et al 1988), does not satisfy this indifference property.

On the Robinson-Schmalensee weak-strong markets partition

In the third-degree price discrimination literature, after Joan Robinson (1969) and Schmalensee
(1981) it is usual to call weak-strong partition, denoted W − S, the segmentation of set of markets
in two groups defined as follows.

W = {ω ∈ Ω : P ∗(ω) ≤ P ∗} S = {ω ∈ Ω : P ∗(ω) > P ∗} (18)

The group W (S) is the set of markets for which the optimal price of the market ω is lower
(higher) than the uniform monopoly price. Historically, Joan Robinson (1969) analyzed the case
in which there are only two markets while Schmalensee (1981) extended it to the finite case. After
Schmalensee (1981), it became common in the third-degree price discrimination literature to use the
weak-strong partition for the social welfare analysis (see e.g., Phlips 1988 for a survey). It is indeed
assumed that it is the optimal segmentation of the set of markets in two groups. To understand its
origin, let us follow the reasoning of Joan Robinson (1969).

"The profitability of the monopoly will depend upon the manner in which the market is
broken up. (...) It is therefore necessary to inquire in what way a monopolist would divide
his market if he were perfectly free to do so in the manner most profitable to himself.
Let us suppose that the monopolist is in possession of some device which enables him to
separate buyers from each other at will, and let us suppose that he is at first charging
a single monopoly price throughout the market, and then proceeds to divide it up by
successive stages. (...) if the elasticities of demand are different, he will first divide all
individual buyers into two classes such that the highest elasticity of demand in the one
class is less than the least elasticity of demand in the other class. To the first class, he
will raise the price, and to the second, he will lower it" p 185-186.

Assume now that the monopolist is allowed to charge two different prices. When there are two
markets, the weak strong partition is clearly the optimal one because it is the unique one. However,

11



when there are more than two markets, the optimality of the weak strong partition is not so clear...
Since P ∗ = 1

3 and P ∗(ω) = ω
2 , the Robinson-Schmalensee weak-strong partition (and its associated

optimal prices) is given by

W =
[
2
9
;
2
3

]
, P ∗

W =
2
9

S =
]
2
3
; 1

]
, P ∗

S =
5
12

(19)

From remark 1, it should be immediate that the profit policy given by [(W,S); (P ∗
W ;P ∗

S)] can
not be the optimal one because the subsidiary ω = 2

3 is not indifferent between the prices 2
9 and

5
12 . Actually, if she had the choice, she would choose the price 5

12 and not 2
9 . Thus, if we leave the

choice of the price to each subsidiary ω ∈ [0, 1], given the prices 2
9 and 5

12 , a fraction of the segment
W will choose the price 5

12 . But then, the market segments change and the profit increases, which
contradicts the optimality of the profit policy10 [(W,S); (P ∗

W ; P ∗
S)]. By proposition 1, the optimal

segmentation policy is given by A∗1 =
]

1
5 ; 3

5

]
; A∗2 =

]
3
5 ; 1

]
and the optimal pricing policy is given

by P ∗
1 = 1

5 ;P ∗
2 = 2

5 . Under the optimal profit policy when k = 2, the total profit is equal to 0.08
while under the weak-strong partition (and its associated optimal prices), the total profit is equal to
0.0798. The loss of profit due to the suboptimal profit policy can thus be considered as negligible.

2.3 Profit maximization under international exhaustion when the monopolist
is not regulated

Firms frequently employ simple pricing strategy (Chu, Leslie and Sorensen 2009) so that they
typically discriminate less than what they could do. For example, Apple, through iTunes store,
charges a uniform price of $0.99 for each song although it could price discriminate (Shiller and
Waldfogel 2009). Why ? If we assume that firms’ decisions are rational, this means that the
marginal cost associated to a finer price discrimination may be higher than its marginal gain. Ideally,
unregulated firms would like to achieve a first-degree price discrimination in which each consumer
would pay a price equal to her willingness to pay so that all the surplus would be absorbed by the
monopolist. However, the cost of such a segmentation would be prohibitively costly because the
efficiency of the price discrimination critically depends on the monopolist’s ability to preserve each
market segment as a distinct market, or, to put it differently, to remove PI. We argue that the cost
of maintaining each segment as a separate market may explain why firms choose a few number of
prices. We consider the case of an unregulated monopolist who is free to choose the number k of
prices (or segments) but this no-regulation situation comes under a legal environment in which an
international doctrine of exhaustion prevails, i.e., PI cannot be legally banned. Consequently, the
monopolist that wishes to price discriminate must develop its own strategy to count the PI problem,
as long as it is optimal to do so.

Non pricing strategies to count parallel imports

As noted by Cavusgil and Sikora (1998) and more recently by Ahmadi and Yang (2000) and Danzon
and Towse (2003), manufacturers can use in practice various non pricing strategies to mitigate
parallel imports. Following Ahmadi and Yang (2000), they fall into three categories

10Note that in a model with a finite number of markets, the weak strong partition need not be the optimal one.
In Braouezec (2009), we show that this partition may indeed fail to satisfy a necessary condition to be the optimal
partition. We also give conditions under which this weak strong partition is the unique optimal partition.
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• Monitoring

• Differentiating products

• Differentiating services

Monitoring is the possibility for a manufacturer to control its dealers’ sales through product
registration. For say the automobiles industry, a serial number is associated to each car that
informs about e.g., its destination. Product differentiation is another possibility that may be used
and concerns the differentiation of the product, which may be minor (e.g., only the packaging)
or major (product itself). Cavusgil and Sikora (1998) provide the example of a manufacturer
of tractors that alters the functional characteristics of the tractor as a function of its country’s
destination; tractors designed to be sold in South America for a low price may not perform very
well in extremely cold weather so that a Canadian contractor may prefer to use the authorized
distribution channel instead of the gray market. As noted by the two authors, this non pricing
strategy is not difficult to implement but it may clearly be quite costly. Eventually, a firm may leave
invariant the product’s characteristics but add services such as technical support and maintenance,
but only to the authorized product. Although the following example is not a gray market example,
it shows that support and maintenance may make a big difference. Consider the case of Matlab
and Scilab11, which are two softwares of scientific computing that are rather very similar. Matlab
is costly while Scilab is free. However, many institutions (e.g., university, banks...) still prefer
Matlab12 not only because it offers specialized toolboxes (e.g., wavelet, statistics, finance...) but
also, and perhaps essentially, because of technical support and maintenance. If a Matlab user has a
problem, he or she can call immediately the technical support to solve it. Such a service is of course
not available with Scilab. For the specific case of drugs, Danzon (1997), and Danzon and Towse
(2003) have suggested that price discrimination could be implemented through confidential rebates
contracts.

On the optimal number of segments

As suggested by Cavusgil and Sikora (1998), the cost of mitigation of parallel imports (PI) should
be part of the overall optimization problem. In Ahmadi and Yang (2000), they explicitly consider
the reduction of PI as a function of a stylized decision variable q ∈ [0, 1], where q = 0 means no
impact on PI while q = 1 means complete elimination of PI. In their model, Ahmadi and Yang
(2000) assume that the cost function is quadratic in q.

We shall here consider a different model in which, when the monopolist supports a cost C, the
market segment is supposed to be perfectly isolated. Thus, when the monopolist decides to create
k segments, the total cost associated to the complete elimination of PI is just C k. Let

TC(k) = k C 1k≥2 (20)

be this total cost function where 1k≥2 is an indicator function. We consider here a "reduced form"
model in which C is simply a percentage x of Π∗1 = 2

27 , the total profit under uniform pricing. Thus,

11See their web site www.scilab.org/
12Actually, the figures included in this article are realized with Matlab...
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for a given value of k ∈ N∗, the total cost is equal to 2
27 xk. The full profit function to be maximized

with respect to k is thus given by

Π(x∗,P∗, C) =
k(1 + k)

3(2k + 1)2
− x

2
27

k1k≥2 (21)

The maximization of equation (21), for a given x, gives thus the optimal trade-off between
the gain associated to a more complete price discrimination and the cost associated to the perfect
isolation (or separation) of each market segment. The following table provides the optimal value k,
denoted k∗π as a function of the percentage x.

Optimal number of segments k∗π(x) as a function of x

x 0.25% 0.5% 1% 2% 3% 4%
k∗π(x) 5, 6 or 7 4 3 3 3 or 2 1

For example, when x = 1%, k∗π = 3, and the total profit is equal to 0.07941. Since the cost of
separation TC(k) is linear in k while Π∗k is concave in k, it is optimal for the monopolist to create
only few segments even when the marginal cost C is rather low. When x > 4%, it is not anymore
interesting for the monopolist to price discriminate.

2.4 Social welfare

In the rest of this article, we consider the case of a benevolent-fully informed regulator that max-
imizes the social welfare defined as the sum of consumers surplus and profits. As before, because
the monopolist is subject to some regulation, the no exhaustion doctrine prevails so that there is
no system of parallel trade. Let

Wµ(P ) = Π(P ) + µCS(P ) (22)

where CS is the aggregate consumers surplus, and µ is a fixed value between 0 and 1 that reflects
the weight assigns to consumers’surplus by the regulator. Following Laffont, Rey, Tirole (1998), let
us first consider the Ramsey price, denoted P ∗

R, which is defined as follows

P ∗
R = arg max

P∈[0,1]
Wµ(P ) (23)

It is shown (see e.g., Phlips 1988) that P ∗
R is such that

P ∗
R − Cm = (1− µ)

1
|E(P ∗

R)|P
∗
R (24)

where, as before, |E(P )| denote the demand elasticity at price P . Using equation (2) and the
definition of the elasticity, it is easy to see that in our model, equation (24) reduces to

P ∗
R − Cm = (1− µ)

(
1− P ∗

R

2

)
(25)

When µ = 0, the maximization of the social welfare is equivalent to the maximization of total
profits. Equation (25) reduces in that case to
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P ∗
R =

1 + 2Cm

3
(26)

so that, when Cm = 0, the uniform monopoly price is equal to 1/3, as expected.

When µ = 1, the regulator maximizes the sum of profits and consumers surplus. From equation
(24), we immediately get that P ∗

R = Cm, i.e., the Ramsey price is equal to the marginal cost. As
Cm = 0, it thus follows that13

P ∗
R = 0 (27)

so that the social welfare is equal to the total consumers’ surplus

WRsey ≡ W (P ∗
R) = CS(P ∗

R) =
1
6

(28)

Let us now compute the social welfare as a function of k under the optimal profit policy.

Lemma 2 Under the optimal profit policy u∗ ∈ U , the social welfare W (u∗) ≡ W ∗
k as a function of

k ≥ 1 is equal to

W ∗
k =

1
3

[
3
2

k(1 + k)
(2k + 1)2

+
2k

2(2k + 1)3

]
(29)

Proof. See the appendix

By considering k = 1, we immediately get W ∗
1 = 10

81 , the social welfare under uniform pricing.
Let W ∗

cplte be the social welfare under complete price discrimination. By taking the limit when
k →∞, it is easy to show that W ∗

k → W ∗
cplte = 1

8 , as one may expect. Consequently, W ∗
cplte > W ∗

1 .
However, we are still very far from the benchmark. Equipped with lemma 2, the next interesting
question is whether or not one can find a finite value of k, denoted k∗W when it exists, that maximizes
W ∗

k .

Proposition 2 Under the optimal profit policy u∗ ∈ U , k∗W = 3, i.e., the social welfare is maximized
for three prices and the resulting social welfare is equal to W ∗

3 = 129
1029 ≈ 0.12536.

Proof. Assume that k ∈ R+. It is easy to show that the sign of dW ∗
k

dk is given by the function

g(k) = 1
2 − 1

(2k+1)2

(
2k(1 + k)− 1

3 + 2k
2k+1

)
. It is easy to show that g(1) >, g(2) > 0, g(3) < 0 and

g(k) < 0 for k > 3. By lemma 1, one get immediately the social welfare with three prices ¤

Figure (1) shows the evolution of the social welfare as a function of k. Although W ∗
3 > W ∗

cplte,
the difference remains negligible because there is only a 0.3% increase in the social welfare. Actually,
the essential economic meaning of proposition 2 may be as follows: to achieve the welfare effects of
price discrimination, a few number of prices is enough. Since k∗W = 3, it is optimal to open 86% of
the set of markets.

13A simple way to get this result is as follows. Consider a given market ω. The social welfare is equal W (ω, P ) =
(ω−P )2

2
+ P (ω − P ) so that dW (ω,P )

dP
= −P < 0. Thus, the price that maximizes the social welfare is equal to zero.

15



It is important to note that proposition 2 is not in contradiction with the classical results of
Varian (1985) on the welfare effect of third-degree price discrimination. In a fairly general model,
with a given (finite) number k of market segments, Varian (1985) has shown that the change in
social welfare ∆W is such that ∆W ≤ (P ∗−Cm)∆Q, where ∆Q is the change in total output that
results from the complete price discrimination (i.e., k prices) with uniform pricing as the initial
situation. What the Varian’s (1985) result says is that for ∆W to be positive, ∆Q must be positive.
However, the converse is not true; ∆Q > 0 does not imply that ∆W > 0. Thus, proposition 2
does not contradict the Varian’s (1985) result. It is actually an example in which, when k ≥ 3, ∆Q

increases with k whereas ∆W decreases with k.

In the third-degree price discrimination literature, it is standard to compute only W ∗
1 and W ∗

cplte,
that is, the social welfare under uniform pricing and under complete discrimination. We have shown
here than an intermediate value of k turns out to be optimal from a social welfare point although the
resulting social welfare is far below the benchmark. However, this benchmark implies zero profits.
Since we assume that the conception of the "intellectual good" has required an important R &
D investment, no profit is thus equivalent to a (highly) negative rate of return on the underlying
investment. Thus, from a regulatory point of view, at least to maintain the incentive to further invest
in R & D, profits should be positive, and indeed higher than the uniform price profit. Consequently,
the next challenge is to exhibit regulatory policies that should yield a social welfare closer to the
benchmark, but compatible with "reasonable" profits.

2.5 Regulations of market segmentation and price discrimination

Although there is a rather huge literature on monopoly regulation, (see e.g., Armstrong and Sap-
pington 2007, Laffont and Tirole 1993, Spulber 1989), only few articles (Armstrong and Vickers
1991, Hausman and Mason 1988, Ireland 1992, Malueg and Schwartz 1994) have been devoted to
the analysis of the regulatory welfare effects of third-degree price discrimination. Within our frame-
work, various regulatory policies can be considered since one may both restrict the set of market
segmentation and/or the set of prices. For example, Malueg and Schwartz (1994) analyze the im-
pact of regulating the market segmentation, but not the prices, on social welfare. Armstrong and
Vickers (1991) consider various average-revenue constraints to regulate a multiproduct monopolist
while Ireland (1992) study a specific pricing policy using Varian’s (1985) result. However, as far as
we know, there are no theoretical results on the joint regulation of market segmentation and prices.
This is the subject of this paragraph.

Market segmentation and prices are regulated: the ζ-average-price constraint

Following Armstrong and Vickers (1991), the average-price constraint is defined as follows

k∑

i=1

wi(P)Pi ≤ P 0 (30)

where P 0 is intended to be the monopoly price, P = (P1...Pk) is the chosen k-vector of prices, and
wi(P) is the ratio defined as the produced quantity of segment i over the total produced quantity.
Let us consider this constraint applied to our model when P 0 = P ∗ and Pi = P ∗

i , i = 1, 2...k, for
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a fixed value of k. Using equation (2), it is easy to obtain that w∗i (P
∗) = 2i

k(k+1) , so that for all

k ≥ 2,
k∑

i=1

w∗i P ∗
i = P ∗ =

1
3
. The constraint is indeed binding for any value of k ∈ N∗. Instead of

P 0 = P ∗, one may consider the case in which P 0 = ζP ∗ for some ζ < 1. Let Px∗ be the set of prices
under x∗ ∈ X , the optimal market segmentation given in proposition 1. Consider a ζ-average-price
regulation defined as follows.

Definition 4 The vector of prices P ∈ Px∗ is said to satisfy the ζ-average-price constraint if, for
a given ζ ∈]0, 1[,

k∑

i=1

w∗i (P)Pi ≤ ζP ∗ (31)

where w∗i (P) =
Qi(x∗i , x

∗
i+1, Pi)

k∑

i=1

Qi(x∗i , x
∗
i+1, Pi)

.

Equipped with this definition, one may define the set of prices Px∗(ζ) ⊆ Px∗ as follows

Px∗(ζ) = {P ∈ Px∗ : P satisfies definition 4} (32)

where ζ is a parameter chosen by the regulator. Of course, the monopolist is free to choose the price
P ∈ Px∗(ζ) that maximizes its profits. Instead of deriving the optimal prices, we shall consider
a simple suboptimal pricing policy which turns out to be a particular case of a pricing scheme
proposed by Ireland (1992). Recall that the optimal profit policy (see proposition 1) is denoted by
u∗ = (x∗,P∗) ∈ U . We examine the simple pricing policy given by P∗(ζ) = (ζ P ∗

1 , ...ζ P ∗
k ). As we

shall see, under the optimal market segmentation x∗, when ζ ≥ 0.8, our simple suboptimal pricing
policy is indeed nearly optimal.

Proposition 3 Assume that the optimal market segmentation x∗ ∈ X given in proposition 1 is fixed
by the regulator and that the monopolist’s pricing policy must satisfy a ζ-average-price constraint.
Under the (nearly optimal) pricing policy defined as

P∗(ζ) = (ζ P ∗
1 , ...ζ P ∗

k ) (33)

the social welfare is equal to

W ∗
k (ζ) =

1
3

[
ζ(2− ζ)k(1 + k)

(2k + 1)2
+

2k + (2− ζ)2k(k + 1)(2k + 1)
2(2k + 1)3

]
k ∈ N (34)

and the price given in equation (33) is such that

P∗(ζ) ∈ Px∗(ζ) ∀ζ ∈]0, 1[ (35)
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Figure 1: Total welfare as a function of k when ζ = 1

1 2 3 4 5 6 7 8 9 10
0.1365

0.137

0.1375

0.138

0.1385

0.139

0.1395

0.14

0.1405

0.141

Figure 2: Total welfare as a function of k when ζ = 0.8

Proof. See the appendix.

In a article devoted to the regulation of price discrimination, Ireland (1992) proposed the fol-
lowing pricing formula

P = Γβ + Cm (36)

where Cm is a vector (the marginal cost), Γ is a matrix and β is a vector. It is easy to see that
the pricing policy defined in equation (33) can be written as P∗(ζ) = ζI P∗. By taking Cm = 0,
β = P∗, Γ = ζI, where I is the k × k identity matrix, we obtain a special case of equation (36).
Before we discuss proposition 4, let us analyze the pricing error on the aggregate profit. Without
loss of generality, we consider the case in which k = 2 and ζ ∈ [0.8; 1] because the profits must be
higher than the uniform pricing profits, i.e., ζ can not be too low. Consider the extreme case in
which ζ = 0.8 and let P¦(ζ) = (P ¦

1 (ζ);P ¦
2 (ζ)) ∈ Px∗(ζ) be the optimal pricing policy. We show in

appendix that P ¦
1 (0.8) ≈ 0.139 and P ¦

2 (0.8) ≈ 0.339 whereas the suboptimal pricing policy gives
P ∗

1 (0.8) = 0.16 and P ∗
2 (0.8) = 0.32. Actually, the loss of profit that results from the suboptimal
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profit policy is around 0.25%, and is thus negligible. It is interesting to note that for a given value
of ζ < 1, the total profit under the nearly optimal pricing policy is equal to

Π(x∗, ζP∗) = ζ(2− ζ)Π∗k (37)

and is thus a non linear function of ζ. For example, when ζ = 0.9, the monopolist realizes 99% of
the total (unregulated) profit. We give in the following table the surplus, the profit and the social
welfare under the nearly optimal profit policy for few values of ζ when k = 3. As can be seen from
figures (1) and (2), more than three prices is not very interesting.

Social welfare under the nearly optimal pricing policy

k = 3
∣∣∣ Values of ζ 0.75 0.8 0.85 0.9 1

Surplus 0.0667 0.0617 0.0569 0.0523 0.04376
Profit 0.0765 0.0784 0.0798 0.0808 0.08163

Social welfare 0.1432 0.014 0.01367 0.0133 0.012536

From the above table, we suggest to take ζ = 0.8 so that the social welfare is equal to
W ∗

3 (0.8) = 0.014. The profit is (approximately) equal to 0.0784 whereas the consumers surplus
is (approximately) equal to 0.0617. Compared to the social welfare under uniform pricing, there
is a 6% increase in the profit and a 25% increase in the surplus! Our regulatory policy is thus a
substantial aggregate Pareto improvement.

On Pareto improvement of price discrimination over uniform pricing

In Hausman and Mason (1988) and Malueg and Schwartz (1994), they explicitly show that price
discrimination may yield a Pareto improvement over uniform pricing.

In Hausman and Mason (1988), they show that price discrimination may yield a Pareto im-
provement when the discriminatory price in each market segment is lower than the uniform price.
Let us show that we can get a similar result within our model. When ζ = 0.75, the three discrim-
inatory prices are equal to 3

28 ;
6
28 ;

9
28 and are lower than P ∗ = 1

3 . The profit is equal to 0.0765,
which is higher than 2

27 , and the consumers’s surplus is equal to 0.0667, which is much higher than
4
81 ≈ 0.0494. This is thus a Pareto improvement over uniform pricing.

In Malueg and Schwartz (1994), they consider a form of regulation, called "mixed suystem", in
which the market segmentation is regulated but not the discriminatory prices. Let us now study
the Malueg and Schwartz’s (1994) mixed system within our model. When k = 1, we know that
x∗ = P ∗ = 1

3 so that only the segment [13 , 1] is served. Suppose now that the monopolist is given the
opportunity to charge another price to the residual segment [0, 1

3 ]. The optimal price to this segment
is thus equal to 1

9 . Consquently, if the monopolist is asked to choose two prices to the regulated
(i.e., fixed) segments [19 , 1

3 ] and [13 , 1], she will charge the price 1
3 and 1

9 . Let xms = (x1, x2, ...xk)
but now with x1 > x2 > ...xk, where "ms" means "mixed system". From the above discussion, the
Malueg and Schwartz’s (1994) segmentation is given by
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xms =
(

1
3k

,
1

3k−1
, ...,

1
32

,
1
3

)
(38)

where, as before, a given segment is of the form Ai =] 1
3i ; 1

3i−1 ] for i = 1, 2...k. Let P? ∈ Pxms be
the optimal pricing policy. It is clear that

P? =
(

P ?
k =

1
3k

, P ?
k−1 =

1
3k−1

, ... P ?
1 =

1
3

)
(39)

where P ?
1 is now the highest price and P ?

k the lowest. As noted by Malueg and Schwartz (1994), this
"k-segmentation" given by equation (38) and its associated optimal prices given by equation (39) is
a Pareto improvement not only over the uniform pricing, but also over the "(k − 1)-segmentation"
so that profits, consumers surplus and thus the social welfare are increasing functions of k.

Lemma 3 Assume that the market segmentation xms ∈ X given by equation (38) is fixed by the
regulator. Then, under the optimal pricing policy P? ∈ Pxms given by equation (39), the social
welfare is equal to W (xms,P?) ≡ W ?

k = 10
81

27
26(1− υk), where υk = 1

27k+1 .

Proof. When k = 1, for a given β > 0, the uniform monopoly price is equal to β
3 and the total

welfare is equal to 10
81β3. Under the profit policy (xms,P?) ∈ U , when β = 1, the social welfare is

equal to W ?
k =

k∑

i=0

10
81

(
1
3

)3i

so that the result follows ¤

As the social welfare is an increasing function of k, the maximum is reached for k = ∞, and
W ?∞ = 5

39 , where Π?∞ = 1
13 and CS?∞ = 2

39 . However, as before, with a few number of prices, the
social welfare will be almost maximized. We find that W ?

3 ≈ 0.128198 so that with only 3 prices or
segments, 99.99% of the maximum social welfare is already achieved14.

Corollary 2 There exists a value of ζ ∈]0, 1[ and k ∈ N∗ for which the regulatory policy given in
proposition 3 is an aggregate Pareto improvement over the Malueg and Schwartz’s (1994) mixed
system.

When ζ = 0.8 and k = 3, as shown in the previous table, the profit is equal to 0.0784 and
the consumers’ surplus is equal to 0.0617. Compared to the Malueg and Schwartz’s (1994) mixed
system, our regulatory policy yields a 2% increase in the profit and a 20% increase in the consumers’
surplus.

Possible cheating and stochastic audit: a simple approach to dynamic aspects

Up to now, we focused on a static model in which time plays no role. However, in practice, the
exclusivity of the patent is given for a number of years, e.g., 20 years. Let T be the maturity of the

14In their rotating case, Malueg and Schwartz (1994) obtain the same result with three prices as 8.76
8.82

≈ 99.3% of
W∞ is achieved.
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patent and I be the investment’s cost in the R & D process15. We assume that I is invested at time
t = 0, and that the production and the commercialization processes start at this time t = 0. In a
dynamic model, the parameter β, which may be thought of as the size of the set of markets, need not
be constant over time. It may for example depend of the introduction of other (substitutable) goods
and/or of the underlying change in the consumers’s preferences. Thus, β may be time dependent,
i.e., deterministic or stochastic. Consider the regulatory policy considered in proposition 3. For a
given known value of βt, under the mentioned regulatory policy, the profit is equal to

Π(x∗, ζP∗, βt) = ζ(2− ζ)Π∗k β3
t (40)

It is easy to see that when βt = 1 and ζ = 1, equation (40) reduces to equation (15). Assuming
that ζt = 0.8 for all t ∈ [0, T ], k = 3, and that β3 = (β3

t )t∈R+ follows some stochastic process in
continuous time (such that βt ≥ 0 for all t > 0) the expected present value of the rate of return,
when positive16, is equal to

Y =
E

(∫ T

0
e−rt Π∗3(0.8)β3

t dt

)

I
− 1 (41)

where r is the risk-free rate. Let us suppose that β3
t = e((γ−0.5σ2)t+σWt) where Wt is a standard

brownian motion. Assuming that γ < r, it is standard to show17 that

E
(∫ T

0
e−rtβ3

t dt

)
=

1− e−(r−γ)T

r − γ
(42)

For simplicity, assume that the monopolist and the regulator agree on the estimation of γ = 0.
In such a case the stochastic process β3 is a martingale18, i.e., the best prediction of a future value
of β3 is the current value. Let I = 1. For a given maturity T , the rate of return of the investment
as a function of the regulation parameters (ζ = 0.8, k = 3, T ) is equal to

Y (0.8; 3; T ) =
(1− e−rT )Π∗3(0.8)

r
− 1 (43)

Clearly, ceteris paribus, the higher is the maturity of the patent T , the higher is the (expected)
rate of return of the investment. However, the higher is T , the higher is the cost of monitoring the
monopolist, especially if controls are frequent. To avoid the possible tradeoff between the maturity
T of the patent and the cost of monitoring, we suggest a very simple form of monitoring; an audit
at a random time. As in e.g., Baron and Besanko (1984), the regulator may annouce at time t = 0
a stochastic audit, that will be done at a stochastic time τ ∈ R+ defined as follows

τ = inf{t ∈ R+ : Nt = 1} (44)

where Nt is a Poisson process with constant intensity λ. Equation (44) just says that τ is the first
time t for which the process Nt jumps for the first time. It is well known that the random time τ

15For simplicity, we assume that by investing the amount I in R & D, the success is immediate.
16If the rate of return is negative, the investment is not undertaken.
17To compute this expectation, only the distributional properties of the brownian motion are needed. Since

Wt ∼ N (0,
√

t), one can replace Wt with Z
√

t, where Z is a standard normal gaussian random variable. By permuting
the two integrals, simple computations lead to the desired result.

18Note that the stochastic process β = (βt)t∈R+ is a supermartingale.
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follows an exponential distribution with parameter λ. Consequently, the regulator can just simulate
(at time t = 0) one realization τ̂ of τ by Monte Carlo19. Of course, the monopolist only knows the
probability distribution of τ , not the realization τ̂ . The regulator will thus visit the monopolist at
time τ̂ (if τ̂ ≤ T ) to check whether or not the regulatory policy is satisfied, i.e., that k = 3 and
ζ = 0.8 is actually implemented. If the constraints are not satisfied, the patent is broken and the
monopolist is not anymore allowed to sell the good. As noted by Laffont and Tirole (1993), for
regulated firms in sectors for which substitution is difficult, the regulator may not want to do this.
However, in our framework, the decision to shut down the firm is not related to its inefficiency but
rather to its fraud. But the monopolist is aware at time t = 0 that if she does not respect the
regulation, its activity may be stopped. Here is thus the alternative for the monopolist.

1. Charging a continuum20 of prices and thus realizing a profit at each time t equal to Π∗cplte as
long as τ > t.

2. Satisfying the regulatory policy and realizing a profit at each time t equal to Π∗3(0.8) between
0 and T .

By computing the expected net present value of each decision21, the following proposition pro-
vides the simple condition under which the monopolist won’t cheat.

Proposition 4 Let V (T ) = 1−e−rT

r and assume that the monopolist is risk-neutral. When the
regulator decides to audit stochastically the monopolist (i.e., at the first time a Poisson process
jumps for the first time), then, the monopolist follows the regulatory constraint if

V (T )Π∗3(0.8)−Π∗cplte

(
V (T )e−λT + H(λ, r, T )

)
≥ 0 (45)

where the function H(λ, r, T ) represents the expected discounted value of the flow of profit when the
regulator will audit the monopolist before time T .

Proof. See the appendix.

As one can expect, if λ = 0, i.e., the probability of being auditing is zero, and equation (45)
is negative for any value of T > 0 and r > 0; the monopolist has thus an incentive to cheat. On
the contrary, when λ → ∞, it is easy to see that equation (45) will be positive. Of course, as the
regulator may have many firms to regulate, announcing a high value of λ may be costly because it
must be implemented to be credible. Interestingly, even for a very low probability of being auditing,
the monopolist’s best strategy is to follow the regulatory policy. Consider for example the case in
which r = 4% and T = 20. The expected rate of return of the investment when the monopolist

19It is very easy to simulate a realization of τ since the distribution function of the exponential random variable is
invertible. It suffices indeed to choose randomly a number u ∈]0, 1[, e.g., via a pseudo random generetor, and then
to set τ̂ = − ln(1−u)

λ
20As a fraud implies the shut down of the firm, if the monopolist decide to cheat, she will charge a continuum of

prices. This would not necessarily be the case if the penality was a function of the severity of the fraud.
21A possibility that we disregard is the case in which the monopolist does not cheat until the regulator visits, but

decide to cheat right after. If regulator does not visit a second time, then, this possibility will be at least prefered to
the non cheating solution. However, if the regulator decides to visit the monopolist at the first time of the second
jump, then, this possibility is not be interesting.
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does not cheat is approximately 8%. When λ = 1%, the expected rate of return of the cheating
decision is less than 6%; it is thus in the interest of the monopolist to follow the regulatory policy.
It is important to realize that an intensity equal to λ = 1% implies that the probability of being
auditing over the next 20 years is only equal to 1−e−0.2 ≈ 0.18. When λ = 1%, the honest behavior
turns out to be optimal for a maturity of 25 or 30 years and/or for a risk-free rate equal to 3% or
2%.

3 Conclusion

In this article, we have examined the choice of the market segmentation and the discriminatory prices
as a joint problem. As opposed to the third-degree price discrimination literature in which market
segments are given, it is endogenous in our framework. The full characterization of the monopolist’s
the optimal profit policy has been provided both when the monopolist is regulated and unregulated.
From a social welfare point of view, we have shown that the usual welfare measures used in the
third-degree price discrimination literature typically yield a result which is far below the benchmark,
the social welfare under the Ramsey price. One of the main result of this article has been to exhibit
a regulatory policy that yield an aggregate Pareto improvement over the uniform pricing profit case,
but also over the Malueg and Schwartz’s (1994) mixed system. Our result suggests that a small
amount of regulated price discrimination can substantially enhance the social welfare.

Many things however remain to be done. Since the analysis has been done for linear demands
under an uniform measure, it would clearly be interesting to examine whether or not our results
are still valid under a more general model. Another interesting extension would be to consider
the case in which information is asymmetric, i.e., when the regulator has less information than the
monopolist.
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4 Appendix: proofs

Proof of proposition 1

1. First order conditions.

Recall that for i = 1...k, the profit function of each segment Ai is equal to

Πi(Pi) =
Pix

2
i+1

2
− xi+1P

2
i −

Pix
2
i

2
+ xiP

2
i = Pi(xi+1 − xi)

[
xi+1 + xi

2
− Pi

]
(46)

where xk+1 = β. Using equation (11), it is easy to obtain that the gradient of the aggregate profit
function is equal to:

∂Π(x,P)
∂x1

= −P1x1 + P 2
1 = 0 (47)

∂Π(x,P)
∂xi+1

= Pixi+1 − P 2
i − Pi+1xi+1 + P 2

i+1 = 0 i = 1...k − 1 (48)

∂Π(x,P)
∂Pi

=
x2

i+1

2
− 2Pixi+1 − x2

i

2
+ 2Pixi = 0 i = 1...k (49)

From equation (47), we get directly that x1 = P1. Simplifying equations (48) and (49), we get

xi+1 − (Pi+1 + Pi) = 0 for i = 1...k − 1 (50)

xi+1 + xi − 4Pi = 0 for i = 1...k (51)

It is easy to check that xi =
2i− 1
2k + 1

β and Pi =
i

2k + 1
β, for i = 1, 2...k solve the above system

of equations.

2. Second order conditions

Let H(P,x) be the Hessian matrix of the profit function Π(x,P). To show that (P∗,x∗) is a
(local) maximum, we have to show that H(P∗,x∗) is negative definite. Let H∗ ≡ H(P∗,x∗).

H∗ =

(
A∗PP B∗

Px
C∗
xP D∗

xx

)

where A∗PP =
(

∂2Π(P∗,x∗)
∂Pi∂Pj

)
i,j
, B∗

Px =
(

∂2Π(P∗,x∗)
∂Pi∂xj

)
i,j
, B∗

P,x is the transpose of C∗
xP , and D∗

xx =
(

∂2Π(P∗,x∗)
∂xi∂xj

)
i,j
. Each of these matrices are k×k matrices. Using equations (47), (48) (49) to obtain

the Hessian matrix, it easy to show that :

A∗PP =
β

2k + 1
.A (52)

C∗
PP =

β

2k + 1
.C (53)
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B∗
PP =

β

2k + 1
.CT (54)

D∗
PP =

β

2k + 1
.D (55)

where CT is the transpose of C and

A =




−4 0 . . . 0
0 −4 . . . 0
...

...
. . .

...
0 0 . . . −4




C =




−1 0 . . . . . . 0
−1 −1 . . . . . . 0

0 −1
. . . . . . 0

...
...

. . . . . .
...

0 0 . . . −1 −1




and

D =




−1 0 . . . 0
0 −1 . . . 0
...

...
. . .

...
0 0 . . . −1




Note that the matrices A and D are diagonal and that the matrix C is bi-diagonal, the main
diagonal and the sub-diagonal, i.e., the diagonal just below the main one. Of course, B = CT is
bi-diagonal, the main diagonal and the super-diagonal, i.e., the diagonal which is just above the
main one. Let

M =

(
A B

C D

)

It thus follows that

H∗ =
β

2k + 1
M (56)

Let Q be a matrix such that

Q̄ = −Q (57)

To show that M is negative definite, we shall show that

M̄ =

(
Ā B̄

C̄ D̄

)

is positive definite.
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Definition (see Axelson p 92). Let Q be a matrix partitioned into two by two block form

Q =

(
A1,1 A1,2

A2,1 A2,2

)
(58)

where Ai,j , i = 1, 2 j = 1, 2 are square matrices. If A2,2 is non-singular, the Schur complement (of
Q with respect to A2,2) is defined as

A1,1 −A1,2.A
−1
2,2.A2,1 (59)

Theorem (see Axelsson corollary 3.8’ p 94). Let Q be a symmetric matrix and partitioned as
in (58). Then, Q is positive definite if and only if the Schur complement A1,1 − A1,2.A

−1
2,2.A2,1 and

A2,2 are positive definite.

Applying this theorem to M̄ , we thus have to show that the matrices D̄ and its Schur complement
Ā− B̄.D̄−1.C̄ are positive definite. Since

D̄ =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




it is obviously invertible and positive definite. Since D̄ is the identity matrix and as C is the
transpose of B, the Schur complement in our case reduces to:

Ā− C̄T C̄ (60)

It thus follows that

C̄T .C̄ =




2 1 0 . . . 0
1 2 1 . . . 0

0 1 2
. . .

...
...

...
. . . . . . 1

0 0 . . . 1 1




is a (real symmetric) tri-diagonal matrix (the main diagonal, the sub-diagonal, and the super-
diagonal ) so that the Schur complement

Ā− C̄T .C̄ =




2 −1 0 . . . 0
−1 2 −1 . . . 0

0 −1
. . . . . .

...
...

...
. . . . . . −1

0 0 . . . −1 3




is also a tri-diagonal matrix. Before we show that the Schur complement is positive definite, we have
to briefly present the notion of irreducible matrix. Our presentation follows from Warga (2000). Let
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Q be a n × n matrix and let P1...Pn be distinct points in the plane which are called "nodes". For
each qi,j 6= 0, Pi is connected to Pj by means of a directed arc Pi y Pj denoted

−−→
PiPj . One can thus

associate a finite directed graph G(Q) to the matrix Q.

Definition (Warga p 19). A directed graph with n nodes is strongly connected if, for any
ordered pair (PiPj) of nodes, with 1 ≤ i, j ≤ n, there exists a directed graph consisting of abutting
directed arcs

−−−→
PiPl1 ,

−−−→
Pl1Pl2 ...

−−−−−→
Plr−1Plr=j (61)

connecting Pi to Pj .

Theorem (Warga p 20). An n×n matrix Q is irreducible if and only if its directed graph G(Q)
is strongly connected.

Since the Schur complement Ā − C̄T .C̄ is tri-diagonal (main diagonal sub-diagonal and super-
diagonal), its directed graph G(Ā− C̄T .C̄) is strongly connected. To see this, consider for example−−→
PiPj , with j > i. Since the super-diagonal is given by ai−1,i, we just have to use it to connect Pi

and Pj . If j < i, we just have to use the sub-diagonal. See e.g., example 4.4 of Axelsson p 127 for
a similar example.

Definition (Axelsson p 133). The matrix Q is said to be irreducibly diagonally dominant if Q

is irreducible and if |qi,i| ≥
∑

j 6=i

|qi,j | with a strict inequality for at least one i.

Theorem (Axelsson p 133). If Q is a real symmetric with positive diagonal dominant entries
and is irreducibly diagonally dominant, then, Q is positive definite.

The main diagonal of the Schur complement is equal to 2 except the last component which is
equal to 3 so that it is irreducibly diagonal dominant. Since the Schur complement is also a real
symmetric matrix, the above theorem allows us to conclude that it is definite positive. We have thus
shown that both the Schur complement Ā − C̄T .C̄ and D̄ are definite positive. As a consequence,
M̄ is positive definite so that M is negative definite ¤ Note that by unicity of the candidate point,
it is the global maximum.

Proof of Lemma 2. Consider a given consumer ω ∈ Ai ≡]xi, xi+1], where Pi < xi is the
price charged. Given the demand function, the surplus of consumer ω is equal to (ω−Pi)

2

2 so that
Si =

∫ xi+1

xi

(ω−Pi)
2

2 dω = (xi+1−Pi)
3−(xi−Pi)

3

6 . Evaluated at the optimal profit policy, it follows that

S∗i (P ∗
i ) = 6i2+2

6(2k+1)3
. Let CS∗k =

k∑

i=1

Si(P ∗
i ) be the total surplus. It thus follows that

CS∗k =
1
3

(
k(k + 1)(2k + 1) + 2k

2(2k + 1)3

)
(62)

Combining now equations (15) and (62) yields the desired result ¤

Proof of proposition 3
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Let QA∗i (Pi) be the demand function of the segment A∗i =]x∗i ; x
∗
i+1] (see proposition 1) with

Pi < x∗i . Recall from equation (2) that Qi(Pi) = (xi+1 − xi)
(

xi+1+xi

2 − Pi

)
so that under the

optimal segmentation policy given by A∗i =
]

2i−1
2k+1 ; 2i+1

2k+1

]
, the demand function, denoted QA∗i (Pi) of

each segment is given by

QA∗i (Pi) =
2

2k + 1

(
2i

2k + 1
− Pi

)
(63)

Since the demand is evaluated in Pi = ζP ∗
i = ζi

2k+1 , it follows that QA∗i (ζP ∗
i ) = 2i(2−ζ)

(2k+1)2
. As a

consequence, the weight w∗i (ζP ∗
i ) is such that

w∗i (P
∗(ζ)) =

QA∗i (ζP ∗
i )

k∑

i=1

QA∗i (ζP ∗
i )

(64)

so that w∗i (P
∗(ζ)) = 2i

k(k+1) . It is easy to show that

k∑

i=1

ζP ∗
i w∗i (P

∗(ζ)) =
k∑

i=1

ζ2i2

k(k + 1)(2k + 1)
=

ζ

3
(65)

Since P ∗ = 1
3 , the constraint is binding and satisfied for all value of ζ. Consequently, P∗(ζ) ∈

Px∗(ζ). The profit of a given segment A∗i is equal to ΠA∗i (ζP ∗
i ) = ζP ∗

i QA∗i (ζP ∗
i ) = ζ(2−ζ)2i2

(2k+1)3
, so

that, for a given fixed value of k, the sum is equal to
k∑

i=1

ΠA∗i (ζP ∗
i ) =

ζ(2− ζ)k(k + 1)
3(2k + 1)2

. It is easy

to show that the consumers surplus of a given group A∗i is equal to S∗i (ζP ∗
i ) = 6i2(2−ζ)2+2

6(2k+1)3
so that

CS∗k(ζ) = 2k+(2−ζ)2k(k+1)(2k+1)
6(2k+1)3

¤

Optimal pricing policy under the optimal segmentation with a ζ-average price con-
straint

Assume that the segmentation is fixed as given by proposition 1 and let k = 2. The optimal
pricing policy is the solution of the following optimization problem, with ζ < 1

max
P1,P2

ΠA∗1(P1) + ΠA∗2(P2) (66)

subject to the average-price constraint given by

ΠA∗1(P1) + ΠA∗2(P2)
QA∗1(P1) + QA∗2(P2)

≤ ζP ∗ (67)

where ΠA∗i (Pi) = PiQA∗i (Pi), and where QA∗i (Pi) is given by equation (63). We then form the
Lagrangian given by

L(P1, P2, λ) = ΠA∗1(P1) + ΠA∗2(P2)− λ

(
ΠA∗1(P1) + ΠA∗2(P2)
QA∗1(P1) + QA∗2(P2)

− ζP ∗
)

(68)
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where λ is the multiplier. It is easy but cumbersome to show that the gradient of the Lagrangian
with respect to P1, P2 leads to P ¦

2 = P ¦
1 + 0.2. Assuming that the constraint is binding, i.e., λ > 0,

we then reinject P ¦
2 = P ¦

1 + 0.2 in the constraint to obtain the following quadratic equation in P ¦
1 .

−2(P ¦
1 (ζ))2 + P ¦

1 (ζ)
(

12 + 10ζ

15

)
+

(
9− 25ζ

75

)
= 0 ζ ∈ [0, 1] (69)

It is easy to check that when ζ = 1, P ¦
1 (ζ) = 0.2, as expected. Consider now the case in which

ζ = 0.8. Then, the two roots in Pζ,1 are given by

P ¦
1 (0.8) =

(−20/15)±
√

(20/15)2 − (88/75)
−4

(70)

The optimal pricing policy gives thus P ¦
1 (0.8) = (−20/15)+

√
(20/15)2−(88/75)

−4 ≈ 0.139, so that
P ¦

2 (0.8) ≈ 0.339 whereas the suboptimal pricing policy gives P ∗
1 (0.8) = 0.16 and P ∗

2 (0.8) = 0.32.
The total profit under the optimal pricing policy is equal to 0.0770 while it is equal to 0.0768 under
the sub-optimal pricing policy.

Proof of proposition 4
Let

V (x) =
1− e−rx

r
x ≥ 0 (71)

When the monopolist follows the regulatory constraint, the net present value is equal to

E(Z) = V (T )Π∗3(0.8)− 1 (72)

We implicitly assume that we restrict the set of parameters (r, T ) so that E(Z) > 0. Consider
now the case in which the flow of profits is stopped at the first time a standard Poisson process
jumps for the first time. Let 1τ>T be an indicator. The net present value when the monopolist does
not follow the regulation is given by the following random variable

Zcheat = Π∗cplte (V (T )1τ>T + V (τ)1τ≤T )− 1 (73)

Since τ follows a exponential distribution with parameter λ, it thus follows that, since the monopolist
is risk-neutral

E(Zcheat) = Π∗cplte (V (T )E(1τ>T ) + E(V (τ)1τ≤T ))− 1 (74)

Π∗cplte

(
V (T )e−λT +

∫ T

0
V (τ)λe−λτdτ

)
− 1 (75)

Π∗cplte


V (T )e−λT +

1− e−λT

r
+

λ

r(λ + r)
(e−(r+λ)T − 1)

︸ ︷︷ ︸
H(λ,r,T )


− 1 (76)

Taking now E(Z)− E(Zcheat) and the result follows ¤
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