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Abstract

The standard problem of adjudicating conflicting claims describes a situation in which

a given amount of a divisible good has to be allocated among agents who hold claims

against it exceeding the available amount. This paper considers more general rationing

problems in which, in addition to claims, there exist baselines (to be interpreted as ob-

jective entitlements, ideal targets, or past consumption) that might play an important

role in the allocation process. The model we present is able to accommodate real-life

rationing situations, ranging from resource allocation in the public health care sector to

international protocols for the reduction of greenhouse emissions, or water distribution

in drought periods. We define a family of allocation methods for such general rationing

problems - called baseline rationing rules - and provide an axiomatic characterization for

it. Any baseline rationing rule within the family is associated with a standard rule and we

show that if the latter obeys some properties reflecting principles of impartiality, priority

and solidarity, the former obeys them too.
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1 Introduction

On February 27, 2009, California Governor Arnold Schwarzenegger proclaimed a state of emer-

gency and ordered all government agencies to implement the state’s emergency plan and provide

help for people, communities and businesses impacted by the third consecutive year of drought.

The governor called for a statewide water conservation campaign and asked all urban water

users to immediately reduce their individual water use. Prompted by this, and only a month

after Governor Schwarzenegger’s message, customers of the Contra Costa Water District faced

a plan to implement mandatory rationing and hence reduce water consumption. The plan

amounted to send a letter to each district customer telling them how much water they used

on average in 2005, 2006 and 2007 for each billing period and asking them to cut that usage

by 15 percent. In this paper, we present (and study) a formal model of what we call baseline

rationing inspired by the previous story.

The simplest (and seminal) model in Economics to analyze rationing problems is due to

O’Neill (1982) who provided an ideal framework to discuss fairness (as well as strategic) issues

when a group of individuals have conflicting claims.1 His model describes a situation in which

a given amount of a divisible good has to be allocated among agents who hold claims against

it whose sum exceeds the amount available. This framework is able to accommodate many

real-life situations, such as the division of an estate that is insufficient to cover all the debts

incurred by the deceased, the collection of a given tax from taxpayers, the allocation of equities

in privatized firms, the distribution of commodities in a fixed-price setting, or sharing the cost

of a public facility.

The standard rationing model, however, fails to accommodate more general rationing situ-

ations in which not only claims, but also individual baselines (reflecting objective entitlements,

ideal targets, or past consumption) might play an important role. The water rationing case

described above is a good case in point. Indeed, customers were asked to reduce their water

usage according to past consumption (i.e., their baseline) and not their current desired con-

sumption (i.e., their claim) which will typically be higher. A similar rationale was behind the

greenhouse gas emissions targets set by the Kyoto Protocol and the more recent Copenhagen

Accord. Another instance is the case of resource allocation in the public health care sector

(see e.g., Chalkley and Malcomson (2000) for a general discussion of health care budgeting

1Another important early contribution dealing with this same model is Aumann and Maschler (1985). The

reader is referred to Moulin (2002) or Thomson (2003, 2006) for recent surveys of the sizable related literature.
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procedures). Hospital departments budgets are typically determined according to a production

target (baseline activity). By the end of each year the actual number of services delivered is

recorded (the claim). On the basis of these measures, and the overall health care budget (which

typically will not cover the full claim but often exceed the budgeted activities) the final depart-

ment funding is settled by allocating any residual claim, i.e., actual expenses minus baseline

budget. Similar procedures also exist at universities and related institutions in which objective

entitlements of agents as well as actual claims play a crucial role in the allocation process (e.g.,

Pulido et al., 2002).

The formal (extended) model of rationing we analyze here enriches the standard model

described above upon assuming the existence of a baselines profile, aimed to complement the

claims profile of a rationing problem. We take first a direct approach to analyze this new

model.2 That is, we single out a natural class of baseline rationing rules which aims to en-

compass the real-life rationing situations mentioned above. In short, rules within this class

tentatively allocate each agent with their baselines and then adjust this tentative allocation

upon using a standard rationing rule to distribute the remaining surplus, or deficit, relative to

the initially available amount. We then take an axiomatic approach and study the implications

of axioms reflecting ethical or operational principles in this context. More precisely, we pro-

vide an axiomatic characterization for the class of baseline rationing rules just described. We

also study the robustness of the class, by showing that the rules within the class inherit some

important basic properties from the associated standard rationing rules reflecting principles of

impartiality, priority and solidarity.

The rest of the paper is organized as follows. In Section 2, we describe the basic framework

of the standard rationing model, as well as the new one to address baseline rationing problems.

Section 3 is devoted to the main results of this paper. We conclude in Section 4 with some

further insights. For a smooth passage, we defer some proofs and provide them in the appendix.

2 Model and basic concepts

2.1 The benchmark framework

We study rationing problems in a variable population model. The set of potential claimants,

or agents, is identified with the set of natural numbers N. Let N be the set of finite subsets of

2The terminology is borrowed from Thomson (2006)
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N, with generic element N . Let n denote the cardinality of N . For each i ∈ N , let ci ∈ R+ be

i’s claim and c ≡ (ci)i∈N the claims profile.3 A standard rationing problem is a triple consisting

of a population N ∈ N , a claims profile c ∈ Rn
+, and an amount to be divided E ∈ R+ such

that
∑

i∈N ci ≥ E. Let C ≡
∑

i∈N ci. To avoid unnecessary complication, we assume C > 0.

Let DN be the set of rationing problems with population N and D ≡
⋃

N∈N DN .

Given a problem (N, c, E) ∈ DN , an allocation is a vector x ∈ Rn satisfying the following

two conditions: (i) for each i ∈ N , 0 ≤ xi ≤ ci and (ii)
∑

i∈N xi = E. We refer to (i) as

boundedness and (ii) as balance. A standard rationing rule on D, R : D →
⋃

N∈N Rn, associates

with each problem (N, c, E) ∈ D an allocation R (N, c, E) for the problem. Each rule R has a

dual rule R∗ defined as R∗ (N, c, E) = c−R (N, c, C − E), for all (N, c, E) ∈ D.

Some classical rules are the constrained equal awards rule, which distributes the amount

equally among all agents, subject to no agent receiving more than she claims; the constrained

equal losses rule, which imposes that losses are as equal as possible, subject to no one receiving

a negative amount; and the proportional rule, which yields awards proportionally to claims.4

Rules are typically evaluated in terms of the properties they satisfy. The literature has

provided a wide variety of axioms for rules reflecting ethical or operational principles. Here

we shall concentrate on those formalizing the principles of impartiality, priority, and solidarity,

which have a long tradition in the theory of justice (e.g., Moreno-Ternero and Roemer, 2006).

Impartiality refers to the fact that ethically irrelevant information is excluded from the al-

location process. In this context, it is modeled by the axiom of Equal Treatment of Equals,

which requires allotting equal amounts to those agents with equal claims. Formally, a rule

R satisfies equal treatment of equals if, for all (N, c, E) ∈ D, and all i, j ∈ N, we have

Ri (N, c, E) = Rj (N, c, E) , whenever ci = cj.

The principle of priority requires imposing a positive discrimination (albeit only to a certain

extent) towards individuals with higher needs. In this context, needs are reflected by claims

and as such, priority is modeled by the axiom of Order Preservation, which says that agents

with larger claims receive larger awards but face larger losses too. That is, ci ≥ cj implies

that Ri (N, c, E) ≥ Rj (N, c, E) and ci − Ri (N, c, E) ≥ cj − Rj (N, c, E) , for all (N, c, E) ∈ D,

all i, j ∈ N . If only the first condition is satisfied then the axiom is referred to as Order

Preservation in Gains. If, on the other hand, only the second condition is satisfied then the

3For each N ∈ N , each M ⊆ N , and each z ∈ Rn, let zM ≡ (zi)i∈M .
4The reader is referred to Moulin (2002) or Thomson (2003, 2006) for their formal definitions as well as

further details about these rules.
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axiom is referred to as Order Preservation in Losses.

The principle of solidarity, with a long tradition in the axiomatic literature, can be modeled

in various related ways. Resource Monotonicity says that when there is more to be divided,

other things being equal, nobody should lose. Formally, a rule R is resource monotonic if, for

each (N, c, E) ∈ D and (N, c, E ′) ∈ D such that E ≤ E ′, then R(N, c, E) ≤ R(N, c, E ′). Claims

Monotonicity says that if an agent’s claim increases, ceteris paribus, she should receive at least

as much as she did initially. Formally, a rule R is claims monotonic if, for all (N, c, E) ∈ D and

all i ∈ N , ci ≤ c′i implies Ri(N, (ci, cN\{i}), E) ≤ Ri(N, (c′i, cN\{i}), E). The dual property says

that if an agent’s claim and the amount to divide increase by the same amount, the agent’s

award should increase by at most that amount. Formally, a rule satisfies Linked Monotonicity

if, for all (N, c, E) ∈ D and i ∈ N , Ri(N, (ci + ε, cN\{i}), E + ε) ≤ Ri(N, c, E) + ε.5 The next

axiom amounts to simultaneous changes in the amount available and the population. It says

that the arrival of new agents should affect all the incumbent agents in the same direction.

In other words, agents cannot benefit from a change (either in the available wealth or in the

number of agents) if someone else suffers from it. Formally, a rule R satisfies Resource-and-

Population Uniformity if for all (N, c, E) ∈ D and (N ′, c′, E ′) ∈ D such that N ⊆ N ′ and

c′N = c, then, either Ri (N ′, c′, E ′) ≤ Ri (N, c, E), for all i ∈ N, or Ri (N ′, c′, E ′) ≥ Ri (N, c, E),

for all i ∈ N . It is straightforward to show that this axiom implies resource monotonicity. As a

matter of fact, it also satisfies the following axiom that relates the solution of a given problem

to the solutions of the subproblems that appear when we consider a subgroup of agents as

a new population and the amounts gathered in the original problem as the available amount

to be distributed. Consistency requires that the application of the rule to each subproblem

produces precisely the allocation that the subgroup obtained in the original problem.6 More

formally: A rule R is consistent if, for all (N, c, E) ∈ D, all M ⊂ N, and all i ∈ M, we have

Ri (N, c, E) = Ri(M, cM , EM), where EM =
∑

i∈M Ri(N, c, E). It turns out that consistency

and resource monotonicity together imply resource-and-population uniformity.

5For any given property α, α∗ is the dual property of α if for each rule R, R satisfies α if and only if its dual

rule R∗ satisfies α∗. A property is said to be self-dual if it coincides with its dual. Equal treatment of equals,

order preservation and resource monotonicity are instances of self-dual properties.
6See Thomson (1996) for an excellent survey of the many applications that have been made on the idea of

consistency.
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2.2 The extended framework

We now enrich the model to account for individual baselines that will be part of the rationing

process. An extended rationing problem (or problem with baselines) will be a tuple consisting of

a population N ∈ N , a baselines profile b ∈ Rn
+, a claims profile c ∈ Rn

+, and an amount to be

divided E ∈ R+ such that
∑

i∈N ci ≥ E. We denote by EN the set of extended problems with

population N and E ≡
⋃

N∈N EN . For each extended problem (N, b, c, E) ∈ E , let b̃ denote the

corresponding truncated baseline vector, i.e., b̃ = {b̃i}i∈N , where b̃i = min{bi, ci}, for all i ∈ N .

For ease of notation, let B̃ =
∑

i∈N b̃i.

Given an extended problem (N, b, c, E) ∈ EN , an (extended) allocation is a vector x ∈ Rn

satisfying the following two conditions: (i) for each i ∈ N , 0 ≤ xi ≤ ci and (ii)
∑

i∈N xi = E.

An extended rationing rule on E , R̃ : E →
⋃

N∈N Rn, associates with each extended problem

(N, b, c, E) ∈ E an (extended) allocation x = R̃ (N, b, c, E) for the problem.

This paper will focus on a certain class of extended rationing rules, induced by standard

rationing rules, that will be called baseline rationing rules. More precisely, these rules are con-

structed such that agents are first allocated their truncated baselines, and then the resulting

deficit or surplus is further allocated using a standard rationing rule to the resulting standard

problem after embedding baselines into claims. More specifically, a potential deficit is allo-

cated according to the amounts already received by the agents while a potential surplus is

allocated according to the gap between their claims and what has already been allocated to

them. Formally,

Rb (N, b, c, E) =

 b̃−R(N, b̃, B̃ − E) if E ≤ B̃

b̃ + R(N, c− b̃, E − B̃) if E ≥ B̃
(1)

We shall refer to Rb as the baseline rationing rule induced by (standard rationing rule) R.

Note that, if b = 0, then Rb ≡ R. More interestingly, note that, for any standard rationing

rule R, and any extended problem (N, b, c, E), the induced baseline rationing rule results in an

allocation x satisfying

xi ≤ b̃i for all i ∈ N if and only if E ≤ B̃,

xi ≥ b̃i for all i ∈ N if and only if E ≥ B̃.

In other words, baseline rationing rules impose a rationing of the same sort for each individual

and the whole society according to the profile of baselines.
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Figure 1: Baseline rationing rules in the two-claimant case. This figure illustrates how

baseline rationing rules behave for N = {1, 2}, and b, c ∈ RN
+ , with ci > bi, for i = 1, 2. If the amount

to divide is Ex > b1 + b2, then the proposed solution x can be decomposed as b + (x − b) where

x − b is to be interpreted as the solution for the standard rationing problem arising after adjusting

claims (and available amount) down by the baselines, which implies that b is the new origin, i.e.,

x = b + R(N, c − b, Ex − b1 − b2). If, however, Ey < b1 + b2 then the proposed solution y can be

decomposed as b− (b− y) where b− y is to be interpreted as the solution for the standard rationing

problem arising after replacing claims by baselines and the available amount by the difference between

the aggregate baseline and the original available amount, i.e., b− y = R(N, b, b1 + b2 − Ey).

It is not difficult to show that the following expression is equivalent to (1).

Rb (N, b, c, E) =

 R∗(N, b̃, E) if E ≤ B̃

b̃+R(N, c− b̃, E − B̃) if E ≥ B̃
(2)

By (2), it is straightforward to show that if each individual baseline is exactly one half of each

individual claim, then the induced baseline rule by the constrained equal losses rule described above is

precisely the so-called Talmud rule (e.g., Aumann and Maschler, 1985). Similarly, the induced baseline

rule by the constrained equal awards rule is precisely the so-called Reverse Talmud rule (e.g., Chun et

al., 2001). If instead of one half, baselines are any other fixed proportion of claims, then the induced

baseline rule by the constrained equal losses rule is a member of the so-called TAL-family of rules

(e.g., Moreno-Ternero and Villar, 2006), whereas the induced baseline rule by the constrained equal

awards rule is a member of the so-called Reverse TAL-family (e.g., van den Brink et al., 2008). Thus,

a wide variety of existing standard rationing rules can actually be seen as members of the family of

baseline rationing rules presented here.
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3 Results

3.1 A characterization result

We mentioned above some usual axioms for rules in the standard rationing model. Obviously, none

of them referred to baselines. We now provide a list of new axioms conveying natural ways of taking

baselines into account while designing the rationing scheme.

Baseline Truncation is a property that requires baselines to be disregarded to the extent

that they are above claims.7 Formally, an extended rule R̃ satisfies baseline truncation if, for each

(N, b, c, E) ∈ E , R̃(N, b, c, E) = R̃(N, b̃, c, E).

Truncation of Excessive Claims is a somewhat dual property that requires to disregard the

amount of a claim exceeding its corresponding baseline, whenever all (truncated) baselines cannot be

covered. Formally, an extended rule R̃ satisfies truncation of excessive claims if, for each (N, b, c, E) ∈ E

such that E ≤ B̃, R̃(N, b, c, E) = R̃(N, b, c̃, E), where c̃j = min{cj , bj}, for all j ∈ N .

Baseline Invariance is a property that requires the allocation to be invariant with respect to

additive common shifts in baselines and claims, whenever all (truncated) baselines can be covered.

Formally, an extended rule R̃ satisfies baseline invariance if for each (N, b, c, E) ∈ E such that E ≥ B̃,

and k ∈ Rn
+ such that kj ≤ min{cj , bj}, for all j ∈ N , then R̃(N, b, c, E) = k + R̃(N, b− k, c− k,E −∑

i∈N ki).

Baseline Duality is a property inspired by the influential notion of duality in the standard model

of rationing. It states that a rule should allocate awards for a problem with null baselines in the same

way as it allocates losses for a problem in which baselines are equal to claims. Formally, an extended

rule R̃ satisfies baseline duality if, for each (N, c,E) ∈ D, R̃(N, 0, c, E) = c− R̃(N, c, c, C − E).

It turns out, as the next theorem shows, that these four axioms together characterize our family

of baseline rationing rules introduced above.

Theorem 1 An extended rationing rule satisfies Baseline Truncation, Truncation of Excessive Claims,

Baseline Invariance and Baseline Duality if and only if it is a baseline rationing rule.

Proof. It is straightforward to see that, for any standard rationing rule R, Rb satisfies the four

axioms. Thus, we focus on the converse implication. Let R̃ be an extended rule satisfying the four

axioms from the list and let (N, b, c, E) be a given extended problem. We distinguish two cases.

Case 1. E ≥ B̃.

7This property is reminiscent to the so-called invariance under claims truncation axiom in the standard

rationing model (e.g., Hokari and Thomson, 2003).
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In this case, by baseline invariance, R̃(N, b, c, E) = b̃+R̃(N, b− b̃, c− b̃, E−B̃). It is straightforward

to show that, if bi ≤ ci then bi − b̃i = 0 < ci − b̃i = ci − bi, whereas if bi ≥ ci then bi − b̃i = bi − ci >

0 = ci − b̃i. Thus, by baseline truncation, R̃(N, b− b̃, c− b̃, E − B̃) = R̃(N, 0, c− b̃, E − B̃).

Case 2. E ≤ B̃.

In this case, by baseline truncation, R̃(N, b, c, E) = R̃(N, b̃, c, E). And, by truncation of excessive

claims, R̃(N, b̃, c, E) = R̃(N, b̃, b̃, E). Finally, by baseline duality, R̃(N, b̃, b̃, E) = b̃− R̃(N, 0, b̃, B̃−E).

To summarize,

R̃ (N, b, c, E) =

 b̃− R̃(N, 0, b̃, B̃ − E) if E ≤ B̃

b̃+ R̃(N, 0, c− b̃, E − B̃) if E > B̃
. (3)

Let R : D →
⋃

N∈N Rn be such that, for any (N, c,E) ∈ D,

R (N, c,E) = R̃(N, 0, c, E).

In other words, R assigns to each standard rationing problem the solution that R̃ yields for the

corresponding extended problem in which baselines are null. It is straightforward to see that R is a

well-defined (standard) rationing rule. Hence, (3) becomes

R̃ (N, b, c, E) =

 b̃−R(N, b̃, B̃ − E) if E ≤ B̃

b̃+R(N, c− b̃, E − B̃) if E > B̃
,

which implies that R̃ ≡ Rb.

3.2 Robustness to baseline rationing

We now focus on the robustness to baseline rationing of the standard axioms described above. We

say that a standard axiom is robust to baseline rationing if whenever a standard rule R satisfies it,

then the induced baseline rule Rb satisfies the corresponding extended version of the axiom.8 Note

that, as mentioned above, if b = 0, then Rb ≡ R. Thus, saying that “a property is robust to baseline

rationing” is indeed equivalent to saying that “a standard rationing rule R satisfies a property if and

only if Rb satisfies the extended version of such property”.

We shall distinguish between a direct version of robustness and two indirect versions in which

additional (but mild) properties have to be considered.

8For ease of exposition, we skip the straightforward definitions of the extended versions of each axiom intro-

duced above. Just as an illustration, we say, for instance, that an extended rule R̃ satisfies claims monotonicity

if for each (N, b, c, E) , (N, b, c′, E) ∈ E such that ci ≤ c′i for some i ∈ N , and c′N\{i} ≡ cN\{i}, we have that

R̃i(N, b, c, E) ≤ R̃i(N, b, c′, E).
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3.2.1 Direct robustness

Our first result says that many of the well-known axioms in the benchmark framework are not robust

to baseline rationing.

Proposition 1 If a property is not self-dual then it is not robust to baseline rationing.

Proof. Let P be a property and P ∗ be its dual. Let R be a rule satisfying P , but not P ∗. Then, R∗,

the dual rule of R, satisfies P ∗ but not P .

If P is “punctual” then there exists a problem (N, c,E) ∈ D for which R∗ violates P .9 We then

consider the corresponding extended problem (N, b, c, E) ∈ E in which b = c. It then follows that

Rb(N, b, c, E) = R∗(N, c,E) and hence we conclude that Rb violates P .

If P is “relational”, a similar argument can be applied, although taking into account that the

violation of P by R∗ would involve several problems and thus the corresponding extended problems

should be constructed so that Rb yields for them the allocations that R∗ yields for the corresponding

(standard) problems.

Contrary to what one might have guessed from the statement of Proposition 1, not all self-dual

properties are robust to baseline rationing either. A straightforward counterexample is equal treat-

ment of equals, which will not be satisfied by an induced baseline rationing rule if two agents with

equal claims have different baselines. Nevertheless, it turns out that some other important self-dual

properties are robust.

Proposition 2 Resource monotonicity is robust to baseline rationing.

Proof. Let R be a rule satisfying resource monotonicity. Let (N, c,E), (N, c,E′) ∈ D be two problems

such that E < E′. Let b ∈ Rn be a baseline profile and let b̃j = min{bj , cj} for all j ∈ N , and

B̃ =
∑

j∈N min{bj , cj}. Finally, let i ∈ N be a given agent. The aim is to show that Rb
i (N, b, c, E) ≤

Rb
i (N, b, c, E

′). To do so, we distinguish three cases.

Case 1. E < E′ ≤ B̃.

In this case, Rb
i (N, b, c, E) = R∗i (N, b̃, E) and Rb

i (N, b, c, E
′) = R∗i (N, b̃, E′). Now, as resource

monotonicity is a self-dual property, it follows that R∗ satisfies resource monotonicity too and hence

R∗i (N, b̃, E) ≤ R∗i (N, b̃, E′), as desired.

Case 2. B̃ ≤ E < E′.

9Following Thomson (2006), if a property applies to a rule for each problem separately, point by point,

we refer to it as punctual. If, however, a property links the recommendations made by the rule for different

problems that are related in a certain way, we call it a relational property. Instances of punctual properties

are equal treatment of equals and order preservation. Instances of relational properties are the monotonicity

axioms described above.
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In this case,

Rb
i (N, b, c, E) = b̃i +Ri(N, c− b̃, E − B̃) ≤ b̃i +Ri(N, c− b̃, E′ − B̃) = Rb

i (N, b, c, E
′),

where the inequality follows from the fact that R satisfies resource monotonicity.

Case 3. E < B̃ < E′.

In this case, the definition of baseline rationing guarantees that Rb
i (N, b, c, E) ≤ b̃i ≤ Rb

i (N, b, c, E
′).

Proposition 3 Consistency is robust to baseline rationing.

Proof. Let R be a rule satisfying consistency. Let (N, c,E) ∈ D and b ∈ Rn
+. Let x = Rb(N, b, c, E).

The aim is to show that, for any M ⊂ N ,

Rb(M, bM , cM ,
∑
i∈M

xi) = xM .

Fix M ⊂ N and let E′ =
∑

i∈M xi and B̃′ =
∑

j∈M min{bj , cj}. Then, it is straightforward to show

that E ≤ B̃ if and only if E′ ≤ B̃′. We then distinguish two cases.

Case 1. E ≤ B̃.

In this case, xi = b̃i − Ri(N, b̃, B̃ − E) for all i ∈ N , and thus B̃′ − E′ =
∑

i∈M Ri(N, b̃, B̃ − E).

Therefore, Rb
i (M, bM , cM , E

′) = b̃i − Ri(M, b̃M , B̃
′ − E′) for all i ∈ M . Now, as R is consistent, it

follows that Ri(N, b̃, B̃ − E) = Ri(M, b̃M , B̃
′ − E′), for all i ∈ M , which concludes the proof of this

case.

Case 2. E ≥ B̃.

In this case, xi = b̃i+Ri(N, c− b̃, E−B̃) for all i ∈ N , and thus B̃′−E′ =
∑

i∈M Ri(N, c− b̃, E−B̃).

Therefore, Rb
i (M, bM , cM , E

′) = b̃i +Ri(M, cM − b̃M , E′− B̃′) for all i ∈M . Now, as R is consistent, it

follows that Ri(N, c− b̃, E − B̃) = Ri(M, cM − b̃M , E′ − B̃′), for all i ∈M , which concludes the proof

of this case.

The previous two propositions and the relationship among the axioms described in Section 2

guarantee the following result.

Corollary 1 Resource-and-population uniformity is robust to baseline rationing.

3.3 Indirect robustness

We have shown that, although some important properties are robust to baseline rationing, others

are not. We now explore whether some of the latter are, at least, indirectly robust. We start with

“robustness as a group”. More precisely, we study whether when a standard rationing rule R satis-

fies a combination of some properties then the induced baseline rule Rb satisfies the corresponding

combination of extended properties.
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Proposition 4 If a standard rationing rule R satisfies resource monotonicity, claims monotonicity,

and linked monotonicity then the induced baseline rationing rule Rb satisfies the corresponding three

extended properties.

Proof. Let R be a rule satisfying resource monotonicity, claims monotonicity, and linked monotonicity.

By Proposition 2, we only need to show that the induced baseline rationing rule Rb satisfies the

extended properties of claims monotonicity and linked monotonicity.

Claims monotonicity. Let (N, c,E), (N, c′, E) ∈ D be two problems such that, for some i ∈ N ,

ci ≤ c′i, whereas cN\{i} ≡ c′N\{i}. Let b ∈ Rn
+ be a baseline profile and let b̃j = min{bj , cj} for all

j ∈ N , b̃′j = min{bj , c′j} for all j ∈ N , B̃ =
∑

j∈N b̃j , and B̃′ =
∑

j∈N b̃′j .
10 The aim is to show that

Rb
i (N, b, c, E) ≤ Rb

i (N, b, c
′, E). (4)

We distinguish several cases:

Case 1. E ≤ B̃.

In this case, Rb
i (N, b, c, E) = R∗i (N, b̃, E) andRb

i (N, b, c
′, E) = R∗i (N, b̃′, E) = R∗i (N, (̃bN\{i}, b̃′i), E).

As R satisfies linked monotonicity, it follows that R∗ satisfies claims monotonicity, from where we ob-

tain (4).

Case 2. E ≥ B̃′.

In this case, Rb
i (N, b, c, E) = b̃i +Ri(N, c− b̃, E − B̃), and

Rb
i (N, b, c

′, E) = b̃′i +Ri(N, c′ − b̃′, E − B̃′) = b̃′i +Ri(N, ((c− b̃)N\{i}, c
′
i − b̃′i), E − B̃ − b̃′i + b̃i).

Let ε = b̃′i − b̃i ≥ 0. Then, (4) is equivalent to

Ri(N, c− b̃, E − B̃) ≤ ε+Ri(N, ((c− b̃)N\{i}, c
′
i − b̃′i), E − B̃ − ε). (5)

We then distinguish three subcases.

Case 2.1. bi > c′i.

Here, b̃i = ci < c′i = b̃′i (and thus ε = c′i − ci). Then, (5) becomes

Ri(N, ((c− b̃)N\{i}, 0), E − B̃) ≤ ε+Ri(N, ((c− b̃)N\{i}, 0), E − B̃ − ε).

Now, by claims monotonicity (of R),

Ri(N, ((c− b̃)N\{i}, 0), E − B̃) ≤ Ri(N, ((c− b̃)N\{i}, ε), E − B̃).

And, by linked monotonicity (of R),

Ri(N, ((c− b̃)N\{i}, ε), E − B̃) ≤ ε+Ri(N, ((c− b̃)N\{i}, 0), E − B̃ − ε),

10Note that b̃′N\{i} ≡ b̃N\{i}, b̃
′
i ≥ b̃i and thus, B̃′ ≥ B̃.
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which concludes the proof in this case.

Case 2.2. c′i ≥ bi ≥ ci.

Here, b̃i = ci ≤ bi = b̃′i (and thus ε = bi − ci). Then, (5) becomes

Ri(N, ((c− b̃)N\{i}, 0), E − B̃) ≤ bi − ci +Ri(N, ((c− b̃)N\{i}, c
′
i − bi), E − B̃ − bi + ci).

Now, by claims monotonicity (of R),

Ri(N, ((c− b̃)N\{i}, 0), E − B̃) ≤ Ri(N, ((c− b̃)N\{i}, c
′
i − ci), E − B̃).

And, by linked monotonicity (of R),

Ri(N, ((c− b̃)N\{i}, c
′
i − ci), E − B̃) ≤ ε+Ri(N, ((c− b̃)N\{i}, c

′
i − ci − ε), E − B̃ − ε),

which concludes the proof in this case.

Case 2.3. ci > bi.

Here, b̃i = bi = b̃′i (and thus ε = 0), from where (5) trivially follows as a consequence of the fact

that R satisfies claims monotonicity.

Case 3. B̃ < E < B̃′. In this case, Rb
i (N, b, c, E) = b̃i +Ri(N, c− b̃, E − B̃), and Rb

i (N, b, c
′, E) =

R∗i (N, b̃′, E) = b̃′i −Ri(N, (̃bN\{i}, b̃′i), B̃
′ − E). Thus, in order to prove (4), it suffices to show that

Ri(N, (̃bN\{i}, b̃
′
i), B̃

′ − E) +Ri(N, c− b̃, E − B̃) ≤ b̃′i − b̃i (6)

Note that Case 3 implies that b̃i = ci (otherwise, b̃i = bi and hence B̃ = B̃′). Thus, by boundedness,

Ri(N, c − b̃, E − B̃) = 0. Also, by balance and boundedness, Ri(N, (̃bN\{i}), b̃′i, B̃
′ − E) ≤ B̃′ − E =

B̃ − E + b̃′i − b̃i ≤ b̃′i − b̃i, from where (6) follows.

Linked monotonicity. Let (N, c,E) ∈ D and i ∈ N . Let b ∈ Rn
+ be a baseline profile and

let b̃j = min{bj , cj} for all j ∈ N , and B̃ =
∑

j∈N min{bj , cj}. Let ε > 0, b̃′i = min{bi, ci + ε} and

B̃′ = B̃ + b̃′i − b̃i. Then, b̃′i ≤ b̃i + ε and B̃ ≤ B̃′ ≤ B̃ + ε. The aim is to show that

Rb
i (N, b, (ci + ε, cN\{i}), E + ε) ≤ Rb

i (N, b, c, E) + ε (7)

We distinguish several cases:

Case 1. E ≤ B̃′ − ε.

In this case, Rb
i (N, b, c, E) = R∗i (N, b̃, E) and Rb

i (N, b, (ci + ε, cN\{i}), E + ε) = R∗i (N, b̃′, E + ε) =

R∗i (N, (̃b′i, b̃−i), E + ε). By claims monotonicity (of R∗), R∗i (N, b̃′, E + ε) ≤ R∗i (N, (̃bi + ε, b̃−i), E + ε).

By linked monotonicity (of R∗), R∗i (N, (̃bi + ε, b̃−i), E + ε) ≤ R∗i (N, b̃, E) + ε, from where (7) follows.

Case 2. E ≤ B̃.

In this case, Rb
i (N, b, c, E) = b̃i + Ri(N, c − b̃, E − B̃) and Rb

i (N, b, (ci + ε, cN\{i}), E + ε) =

b̃′i +Ri(N, (ci +ε, cN\{i})− (̃b′i, b̃−i), E+ε−B̃′). As B̃′ = B̃+ b̃′i− b̃i and ci +ε− b̃′i = ci− b̃i +ε− b̃′i + b̃i,

(7) follows from linked monotonicity (of R).
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Case 3. B̃′ − ε < E < B̃.

In this case, Rb
i (N, b, (ci + ε, cN\{i}), E + ε) = b̃′i + Ri(N, (ci + ε − b̃′i, (c − b̃)−i), E + ε − B̃′), and

Rb
i (N, b, c, E) = b̃′i −Ri(N, b̃, B̃ − E). Thus, (7) becomes

ε− b̃′i + b̃i ≥ Ri(N, b̃, B̃ − E) +Ri(N, (ci + ε− b̃′i, (c− b̃)−i), E + ε− B̃′) (8)

Now, by balance and boundedness, the right hand side of (8) is bounded above by B̃−E+E+ε− B̃′,

which is precisely the left hand side of (8).

We conclude that Rb satisfies all the desired properties.

To conclude with this section, we take another indirect approach to robustness. More precisely,

we now focus on properties that, while not directly robust to baseline rationing, are so with the help

of additional (mild) conditions over baselines. We refer to that behavior as assisted robustness.

We start with equal treatment of equals. We say that baselines and claims are uniformly impartial

if whenever ci = cj then bi = bj . The following result, which straightforward proof we omit, is a first

instance of assisted robustness.

Proposition 5 If baselines and claims are uniformly impartial then equal treatment of equals is robust

to baseline rationing.

We now consider a slightly stronger condition. We say that baselines and claim-baseline differences

are ordered like claims if whenever ci ≤ cj then bi ≤ bj and ci − bi ≤ cj − bj . Then, we have the

following:

Proposition 6 If baselines and claim-baseline differences are ordered like claims then order preser-

vation is robust to baseline rationing.

Proof. Let R be a rule satisfying order preservation and let (N, b, c, E) be an extended problem for

which baselines and claims are similarly ordered. Let i, j ∈ N be such that ci ≤ cj (and hence bi ≤ bj

and ci − bi ≤ cj − bj). We have to show that

• Rb
i (N, b, c, E) ≤ Rb

j(N, b, c, E).

• ci −Rb
i (N, b, c, E) ≤ cj −Rb

j(N, b, c, E).

To do so, we distinguish two cases.

Case 1. E ≤ B̃.

In this case, Rb
i (N, b, c, E) = R∗i (N, b̃, E) and Rb

j(N, b, c, E) = R∗j (N, b̃, E). Now, as order preser-

vation is a self-dual property, it follows that R∗, the dual rule of R, is order preserving too. As b and c

are similarly ordered, it follows that b̃i ≤ b̃j . Altogether, we have that Rb
i (N, b, c, E) ≤ Rb

j(N, b, c, E).
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As for the second item, note that the fact that b and c are similarly ordered implies that ci − b̃i ≤

cj − b̃j . Thus, as R∗ is order preserving, it follows that

ci −Rb
i (N, b, c, E) = ci −R∗i (N, b̃, E) ≤ cj −R∗j (N, b̃, E) = cj −Rb

j(N, b, c, E),

as desired.

Case 2. E ≥ B̃.

In this case, Rb
i (N, b, c, E) = b̃i +Ri(N, c− b̃, E− B̃) and Rb

j(N, b, c, E) = b̃j +Rj(N, c− b̃, E− B̃).

Note that b̃i ≤ b̃j , ci − b̃i ≤ cj − b̃j , and R satisfies order preservation. Thus, both items above easily

follow.

4 Final remarks

In this paper, we have explored an extended framework of the conventional rationing model including

baselines profiles. An individual baseline can be interpreted as an objective entitlement (in budgeting

situations), an ideal target (in greenhouse gas emissions), or past consumption (in water rationing

problems). We have introduced a natural family of (extended) rationing rules and argued that this

family encompasses a series of real-life rationing situations. It is somewhat surprising that with little

or no structure on the arbitrarily chosen baseline profiles this family still proves relatively robust in

preserving a series of well known and desirable properties from the standard rationing model.

As mentioned in the introduction we have followed a direct and an axiomatic approach to study

rationing problems. There is yet a third approach, the so-called game theoretic approach, which

consists in modeling rationing problems as a game and aims at identifying the likely outcome of such

a game to the solution of the rationing problem. This is the approach taken, for instance, by Pulido et

al., (2002, 2008) to analyze what they call bankruptcy situations with references, which are a specific

case of the baseline rationing problems considered in this paper.

Our model is also related to another extension of the standard rationing model provided to account

for multi-issue rationing problems, i.e., rationing problems in which claims refer to different issues (e.g.,

Kaminski, 2006; Ju et al., 2007; Moreno-Ternero, 2009). In actual bankruptcy laws, the creditors’

legal characteristics are typically divided among categories (e.g., secured claims, unsecured claims,

taxes, and trustee expenses) which calls for a more complex model in which, rather than single claims,

vectors of claims, each indicating the claim for a given characteristic, are considered (e.g., Kaminski,

2006). In the canonical case with only two issues, the underlying mathematical model is equivalent

to our model, in which two profiles of individual characteristics (baselines and claims in our case) are

included in each rationing problem. Our main departure from that case is to provide an asymmetric

role to both profiles, considering baselines as tentative allocations, and claims as means to correct
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them.

Finally, it is worth mentioning that an alternative approach to baseline rationing, in which baselines

are assumed to be an endogenous component of a standard rationing problem, can also be considered.

In some rationing problems, it makes sense to postulate that the part of a claim that is above a

certain threshold (e.g., the amount to divide) should be ignored. Somewhat polar to the previous

idea is the principle that a minimal amount (a lower bound) should be ensured for each agent (e.g.,

Moreno-Ternero and Villar, 2004; Dominguez and Thomson, 2006). One could then define, for each

standard rationing problem, a baseline profile, to be interpreted as a rule violating the requirement

of balance described in the definition of the standard model. Formally, a baseline b would be a

function b : D →
⋃

N∈N Rn, associating with each problem (N, c,E) ∈ D a profile b (N, c,E) satisfying

0 ≤ bi (N, c,E) ≤ ci for each i ∈ N . If
∑

i∈N bi (N, c,E) < E, then b (N, c,E) can be interpreted

as a profile of lower bounds for that problem. If, on the other hand,
∑

i∈N bi (N, c,E) > E, then

b (N, c,E) can be interpreted as a new claims profile for that problem. The analysis of such endogenous

baselines, and their connections to the study of operators for the space of (standard) rationing rules

(e.g., Thomson and Yeh, 2008), is undertaken in a companion paper (Hougaard et al., 2010).

5 Appendix

To save space, we have included in this appendix, which is not for publication, the proofs of some

statements made in the text.

5.1 On the tightness of the characterization result

We now provide examples of extended rules showing the independence of the axioms in Theorem 1. In

what follows, let A denote the (standard) constrained equal awards rule and P denote the (standard)

proportional rule.11

• Let R̃ be defined by

R̃(N, c, b, E) =


P (N, b̃, E), E ≤ B̃

b̃+ P (N, c− b̃, E − B̃) if E ≥ B̃ and ci ≥ bi for all i ∈ N

b̃+A(N, c− b̃, E − B̃) E ≥ B̃ and ci < bi for some i ∈ N,

It is straightforward to show that R̃ is a well-defined rule that satisfies Truncation of Excessive

Claims, Baseline Invariance and Baseline Duality but not Baseline Truncation.

11Formally, for all (N, c,E) ∈ D, A (N, c,E) = (min{ci, λ})i∈N where λ > 0 is chosen so that∑
i∈N min{ci, λ} = E, whereas P (N, c,E) = E

C · c.
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• Let R̃ be defined by

R̃ (N, b, c, E) =

 P (N, c,E) if E ≤ B̃

b̃+ P (N, c− b̃, E − B̃) if E ≥ B̃

It is straightforward to show that R̃ is a well-defined rule that satisfies Baseline Truncation,

Baseline Invariance and Baseline Duality but not Truncation of Excessive Claims.

• Let R̃ be defined by

R̃ (N, b, c, E) =

 b̃− P (N, b̃, B̃ − E) if E ≤ B̃

P (N, c,E) if E ≥ B̃

It is straightforward to show that R̃ is a well-defined rule that satisfies Baseline Truncation,

Truncation of Excessive Claims and Baseline Duality but not Baseline Invariance.

• Let R̃ be defined by

R̃ (N, b, c, E) =

 b̃−A(N, b̃, B̃ − E) if E ≤ B̃

b̃+ P (N, c− b̃, E − B̃) if E ≥ B̃

It is straightforward to show that R̃ is a well-defined rule that satisfies Baseline Truncation,

Truncation of Excessive Claims and Baseline Invariance but not Baseline Duality.

5.2 On the proof of Proposition 1

Illustration of the argument when the property is punctual. Let R be a rule satisfying order preserva-

tion in gains but not order preservation in losses. Then, its dual rule, R∗, violates order preservation

in gains. More precisely, there exists a problem (N, c,E) ∈ D and i, j ∈ N such that ci ≤ cj , and

for which it holds that R∗i (N, c,E) > R∗j (N, c,E). Then, Rb(N, c, c, E) = R∗(N, c,E), from where it

follows that Rb violates the extended property of order preservation in gains.

Illustration of the argument when the property is relational. Let R be a rule satisfying claims

monotonicity but not linked monotonicity. Then, its dual rule, R∗, violates claims monotonicity. More

precisely, there exist two problems (N, c,E) , (N, c′, E) ∈ D such that ci ≤ c′i for some i ∈ N , and

c′−i ≡ c−i, and for which it holds that R∗i (N, (c′i, c−i), E) < R∗i (N, (ci, ci), E). Then, Rb(N, c, c, E) =

R∗(N, c,E) and Rb(N, c, c′, E) = R∗(N, c′, E). It then follows from here that Rb violates the extended

version of claims monotonicity.
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